

REPORT

ON AN ENVIRONMENTAL

SITE ASSESSMENT

AT

BUCKLEY & MANN, INC. NORFOLK, MA

PREPARED BY

CAMP DRESSER & MCKEE INC. BOSTON, MA

JULY, 1986

One Center Plaza Boston. Massachusetts 02108 617 742-5151

1121-5-RT j

July 11, 1986

Mr. Richard Mann Buckley & Mann Inc. P. O. Box 409 Franklin, MA 02038

Dear Dick:

Enclosed for your review is a draft-final report which responds to the DEQE's March 25, 1986 letter requesting an assessment of the Buckley & Mann site. The DEQE's buried tank removal and/or testing request must still be addressed, presumably as part of the "Final Judgement" in a manner similar to that proposed in CDM's May 29, 1986 letter to you.

I would be pleased to discuss the report with you at your earliest convenience. Please do not hesitate to call if you have any questions.

Very truly yours,

CAMP DRESSER & MCKEE INC.

notat A Danipl

Robert A. Dangel

Approved by: in Takent

James T. O'Rourke, Ph.D., P.E. Senior Vice President

Enclosure

TABLE OF CONTENTS

	Page
Introduction	1
Recent History of The Site	1
Geology and Hydrogeology	2
Sampling and Analysis	5
Surface and Groundwaters	8
Lagoons #1 and #2 - Water	17
Miscellaneous Waters	17
Soils and Sludges	17
Septic Tanks	18
Conclusions and Recommendations	19

Appendix	A	-	Boring Lo	ogs	
Appendix	В	-	Complete	Analytical	Results

ł

P

1

LIST OF TABLES

TABLE	É	
1	Sampling and Analysis Plan	6
2	Conventional Parameters	9
3	Metals	11
4	Volatile Organic Compounds	14
5	Base Neutral Extractable Compounds	15

LIST OF FIGURES

Figure 1	Buckley & Mann Property Boundary and Adjacent Land Use	3
Drawing	Buckley & Mann Groundwater Elevations (attached)	

ENVIRONMENTAL SITE ASSESSMENT

INTRODUCTION

Buckley & Mann, Inc. (B&M) has manufactured textile products at its facility in Norfolk, MA northwest of the junction of Park and Lawrence Streets for over 100 years. Until recently, the company operated a small dyehouse which discharged wastewater to two lagoons for settling and facultative biological treatment, the outflow from the lagoons is by percolation to the ground. The Massachusetts Department of Environmental Quality Engineering (DEQE) asked B&M to conduct a study of the impact of the lagoons and some nearby, old solid waste disposal areas on the groundwater. Camp Dresser & McKee (CDM) was retained by B&M to develop a plan of investigation and execute the plan. The report describes CDM's work and conclusions about the groundwater and soils on the site.

RECENT HISTORY OF THE SITE

B&M has operated both a carbonizer and a dyehouse, as wastewater generating processes, in addition to its dry textile manufacturing operations. Until it was discontinued and demolished in about 1965, the carbonizer was part of a process to reclaim wool from old garments by passing the stock through acidic steam. This charred the cotton threads on the seams, zippers, buttons, etc. and facilitated their separation from the wool. The wool was then neutralized and rinsed, and the solid residues were discarded, mostly on-site. The wastewater from the neutralization and rinsing was discharged via a shallow ditch to the Carbonizer lagoon for settling and facultative biological treatment.

The dyehouse operations were fully discontinued in June, 1986, although little fiber was dyed after March, 1986. Over the previous 10 years, about 90% of the work was polyester fiber processed with disperse dyes. Of the remainder, basic dyes accounted for about 8% and acid dyes for the other 2%. In earlier years, chrome dyes were applied to wool. The total wastewater flow was estimated by B&M at 30,000 to 40,000 gallons per week. The wastewater was discharged via a ditch to Lagoon #1 for settling and facultative biological treatment.

In 1978, B&M constructed two new lagoons to supplement Lagoon #1. Lagoon #2 received the overflow from Lagoon #1. The wall of Lagoon #3 was breached in 1978 to drain a groundwater spring which upwelled into the lagoon. Lagoon #3 remains as a large diversion ditch and has never received wastewater.

The industrial activities at B&M have been conducted in a cluster of buildings near Lawrence Street. The area north of the buildings, between Lagoon #1 and the Carbonizer lagoon, is covered with varying amounts of fiber wastes, carbonizer residue (including buttons), and building and machinery debris. The dike separating the Carbonizer lagoon from the Mill River is made of soil mixed with fiber residue from dredging the lagoon, probably prior to 1940. The areas outside the immediate vicinity of the manufacturing buildings support a hardwood forest.

The site and the neighboring properties are shown in Figure 1. Adjacent uses are residential, proposed residential and undeveloped and are all well separated from B&M's activities by virtue of B&M's boundaries.

GEOLOGY AND HYDROGEOLOGY

Regional Conditions

The geology and hydrogeology of the area was described in a December, 1985 untitled draft report by Goldberg-Zoino and Associates (GZA). The GZA study area was to the south side of Lawrence Street, across from B&M. CDM reviewed the topography of the area from the USGS Wrentham map and a field visit. CDM also reviewed the hydrogeology from the USGS Massachusetts Hydrologic - Data Report No. 19 for the Charles River Basin to develop a

11

Scale 1" is about 430'

conceptual understanding of the regional groundwater hydrology. From the USGS data and Norfolk town records, CDM established that local residences obtain water from individual bedrock wells and there are no public water supply wells or other major groundwater withdrawals within one mile of B&M. Based on the above information, CDM concluded that the Mill River acts as the drainage for runoff from the surrounding low hills, which consists of rhyolite and shale bedrock overlain by glacial till and stratified drift. Precipitation which does not runoff or evapotranspirate percolates into and through the unconsolidated soils and joints and fractures in the bedrock to recharge groundwater. The groundwater then flows to the Mill River, which act as a discharge point for the region.

Site Conditions

In 1977 and 1978, R.E. Chapman installed five monitoring wells near the lagoons. Two wells were removed during or after construction of Lagoons #1 and #2. The remaining 3 wells were installed in sand and gravel over bedrock encountered at between 18 and 27 feet below grade, according to Chapman's boring logs. The screens extended to near the bedrock. EW-1 and EW-3 were filled with silt or obstructed at less than 5 feet below grade during the May, 1986 sampling program.

On April 21 through 23, 1986, CDM observed the installation by Guild Drilling Co., Inc. of five water table wells in unconsolidated soils and one bedrock well at B&M. The locations are shown on the drawing attached with this report and the boring logs are included in Appendix A. The well boreholes encountered statified drift ranging from gravel to sand with some silt. No glacial till was encountered in any of the boreholes. The bedrock well was constructed in rhyolite, which showed little surface weathering and had tightly closed joints filled with silt. The wells were developed with air and water purging immediately after completion. Subsequently, water in the wells was pumped to waste with a peristaltic pump about one week before samples were collected.

-4-

Water elevations relative to the top of the well casings were measured on May 7, 1986, before sample collection. On June 10-11, 1986, the elevations of top of the well casings were determined, along with several surface water elevations, in a survey by Stavinski Engineering Associates, Inc. The elevations of the well casings, groundwaters and surface waters are shown on the Drawing.

Based on the survey data, the lowest water elevation line in the study area is along the Tailrace. Ground and surface water elevations to the west of the Tailrace, including Lagoons 1, 2 and 3 and wells MW-3, EW-1, EW-2 and EW-3 were higher than observed in the Tailrace, generally as would be expected from the ground surface contours. The bedrock well, MW-3A, near the Tailrace had a 1.5 foot higher water level than the adjacent well MW-3 constructed in the unconsolidated overburden soils. Water elevations in monitoring wells MW-4, MW-5 and MW-6 and the Carbonizer lagoon indicate the presence of a groundwater mound between the Mill River and the Tailrace. General groundwater flow directions are shown by the arrows on the Drawing.

The site data confirms that the general description of the regional geohydrology in the Mill River valley, prepared by GZA is accurate, except that the Tailrace as well as the Mill River are groundwater discharge locations in the B&M study area. The bedrock well (MW-3A) water elevation indicates that there is a vertical flow up from the bedrock to the unconsolidated overburden in the vicinity of the Tailrace, as would be expected at a discharge location.

SAMPLING AND ANALYSIS

The sampling and analysis plan shown in Table 1 was prepared after several discussions between CDM and the DEQE. CDM was able to collect and analyze all of the samples described in the plan, with the exception of four soils and sludges from the lagoons, as explained below.

Twelve-inch soil cores from Lagoon #1 showed about a 6" layer of organic sludge including some leaves and fiber, underlain by a mixture of sand and

			ł	۲. D			ł		
	(X - Sampl	S S Ie coll	TAI BUCKLEY AMPLING ANI ected and	SLE 1 & MANN S D ANALYS analyzee	ilTE ilS PLAN 1. 0 - Sample omi	tted)			
Sample Code	Sample Name	VOA	Metals	B/N	pH, SC, Alk, T	Anions	00	Comment	
I-MS	Tailrace at culvert exit downstream of Dyehouse	×	×	×	×	×		Test for Hg	
SW-2	Boiler Blowdown				X	×		Test for Fe,	Na
SW-3	Lagoon #2	×	×	×	×	×	×		
SW-4	Lagoon #1	×	×		×		×		
SW-5	Mill River 100 Ft below confluence with Tailrace	×* ^{**}	×		×	×			
SW-6	Bush Pond	°, X	×		×	×			
ZW-7	Cooling Waters				×				
MW-2	Upgradient Watertable Well	×	×	×	×	×	×		
MW-3	Watertable Well N. of Lagoon #2	×	×	×	×	×	×		
MW-3A	Bedrock Well N. of Lagoon #2	×	×	×	×	×	×		
MW-4	Watertable Well near drums in Old Disposal Area	×	×		×		×		
MW-5	Watertable Well between Tailrace and Mill River (WP-1)	×	X	×	X	ž	×		
MW-6	Watertable Well NW of Carbonizer Lagoon	×	×		x	×	×		
GW-1	Bedrock Well at 25 Lawrence St.	×	×	×	x	X			
GW-2	Bedrock Well at B&M	×	×	×	×	×			
GW-3	Dug Well at B&M	×	×	×	×	×		<i>\$</i> .	

-6-

	COD Comment						Composite B/N	XXX	11 Hg,Fe,Na-l 	11	peak identification of
	Anions								12	12	h for other
(Cont'd)	1, SC, A1k, T								16 	16	h library searc
: 1 (Cont'd) & MANN SITE ALYSIS PLAN	B/N PH				××		×		10 2	12	or 625, wit temperature
TABLE BUCKLEY ING AND AN	Metals	×	×	×o	××	××			14 7	21	ethod 8270 Linity and
SAMPL	VOA	×		00	o×	dge X soil X	XXX		17 4	21	Al, Zn y EPA me y, alkal method.
×	ole de Sample Name	l Soils near drums at Old Disposal Area	<pre>2 Soils at Sludge Pile W. of Lagoon #1</pre>	3 Soil Core Lagoon #2: Sludge : Subsoil	4 Soil Core Lagoon #1: Sludge 4A : Subsoil	5 Soil Core Carbonizer Lagoon: Slud 5A : Subs	1,2,3 Cesspools & Septic Tanks Tanks	1,2,3 Existing Monitoring Wells*	Water Solid/Sludge	Total	<pre>= Volatile organic by EPA Method 624 als = As, Cd, Cr, Pb, Se, Ag, Fe, Na, / = Base/Neutral extractable organics by non-priority pollutants. SC, Alk, T = pH, specific conductivity ons = Anions by the ion chromatograph n = Chemical oxygen demand.</pre>
	Samp Cod	SS-1	SS-2	SS-3	SS-4 SS-4	SS-E	ST-1	EW-1			VOA Met B/N PH, COD

*The designations EW-2 and EW-3 are different from the previous numbering for these wells.

sludge. It was not possible to obtain a longer core due to the water level in the lagoon and the loose sand encountered. No volatile organics (VOA) sample was collected from the top sludge layer because CDM judged that the result would be the same as the lagoon water.

Lagoon #2 had less than 1/2" of sludge in the area accessible from the banks. The underlying soils were coarse sand mixed with gravel and appeared clean. Consequently, a sample of sludge, but not subsoil, was collected for metals analysis. No samples were collected for VOA from the sludge or soils in Lagoon #2, because CDM judged that the results would be the same as the lagoon water.

The Carbonizer lagoon was found to have a soft bottom. CDM collected 12" soil cores and submitted separate composites of the top and bottom layers to the laboratory.

• Groundwater was collected from the wells by a peristaltic pump. Nevertheless, there was considerable silt in the waters. CDM filtered all groundwater samples prior to preservation with nitric acid for metals analysis.

The analytical methodologies are described fully in the Appendix B to this report, along with the complete analytical results. Library searches were conducted on the volatile organic chemical analysis (VOA, EPA Method 624) and base/neutral extractable organic chemical analysis (EPA Method 625 or 8270) spectra to identify non-priority pollutant compounds.

The analytical results are summarized in Tables 2 through 5 and are discussed below.

SURFACE AND GROUNDWATERS

All samples had similar results within the ranges expected for pH, alkalinity, temperature, conductivity, anions and COD in uncontaminated waters of southeastern Massachusetts, based on comparison with data from other sites. TABLE 2 CONVENTIONAL PARAMETERS

14

.

2

		Trailrace	Cooling		Upgradient	Bedrock Well	Bedrock Well	Dug Well
	Ruch Pond	Head	Water	Mill River	Well	25 Law. St.	B&M	8 & M
		SW-1	SW-7	SW-5	MW-2	GW-1	GW-2	GW-3
нч	6.59	6.04	6.68	7.02	6.43	6.94	6.39	6.71
Temn. ^O C	15.2	13.0	26.0	14.8	8.1	13.3	I	12.4
Conductivity,	158	160	153	152	74	168	221	208
umho Alkalinity, mg/l	18	35	19	28	17	110	68	13
as CaCO ₃ chlorido ma/1	27	36	44	30	7.4	<0.5	21	68
Vitoriae, mg/ -	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	2.3	7.2
Sulfate. mg/l	12	8.3	12	11	10	5.0	14	10
COD, mg/1	ł	,	t	1	50	r	I	ı

Fluoride, nitrite and bromide were <0.5 mg/l in all samples. Orthophosphate was <1.0 mg/l in all samples.

-9-

TABLE 2 (Cont'd) CONVENTIONAL PARAMETERS

		Bedrock							Boiler
		Well					Lagoon #1	Lagoon #2	B] owdown
	MW-3	MW-3A	MW-4	MW-5	MW-6	EW. 1,2,3	SW-4	SW-3	SW-2
hd	6.23	6.89	6.42	6.20	6.45	I	7.18	6.70	9.2
Temp., ^o C	1	9.5	9.0	8.0	7.8	-,8.9, -	Ľ	Ľ	85
Conductivity. umho	86	102	92	100	153	1	730	352	1330
Alkalinity. mg/l as CaCO,	18	32	17	24	25	ı	270	130	320
Chloride, mg/l	14	12	7.8	14	24	1	22	14	75
Nitrate. mg/l	0.8	8.2	1.6	0.7	<0.5	1	<0.5	<0.5	0.6
Sulfate. mg/l	9.8	10	11	9.4	9.7	I	170	74	240
COD, mg/1	<10	<10	<10	<10	40	<10,<10,140	440	360	ł

Orthophosphate was 2.8 mg/l in SW-4, 2.4 mg/l in SW-3, 3.6 mg/l in SW-2 Fluoride, nitrite and bromide were <0.5 mg/l in all samples and <1.0 mg/l in all other samples. TABLE 3

-

i t

•3

METALS

(All Concentrations in mg/l)

		Trailrace	Mill	Upgradient	Bedrock Well	Bedrock Well	Dug Well
	Bush Pd.	Head	River	Mell	25 Law. St.	B&M	B&M
	SW-6	SW-1	SW-5	MW-2	GW-1	GW-2	GW-3
Aq	<0.01	<0.01	<0°01	<0.01	<0.01	<0.01	<0.01
- IA	0.13	0.29	<0.1	0.21	<0.1	0.22	0.11
As	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016
Cd	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
cr	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Fe Fe	0.13	2.8	0.16	<0.025	0.44	<0.025	0.13
Na	20	20	21	8.1	14	21	31
Pb	<0.003	0.004	<0.003	<0.003	0.004	0.006	0.005
Se	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Zn	<0.02	<0.02	<0.02	<0.02	0.02	0.02	<0.02
ЬH		<0.0004					

.

SW-2 Boiler Blowdown Fe 4.5, Na 260

Hд

-11-

TABLE 3 (Cont'd) METALS

.

(All concentrations in mg/l)

.

Bedroc Well	*				Lagoon #1	Lagoon #2
MW-3A MW-4	MW-4	10	MM-5	MW-6	SW-4	SW-3
<0.01 <0.01	<0.01		<0.01	<0.01	<0.01	<0.01
<0.1 0.12	0.12		0.31	0.32	0.61	0.27
<0.016 <0.016	<0.016		<0.016	<0.016	<0.016	<0.016
<0.001 <0.001	<0.001		<0.001	<0.001	<0.001	<0.001
<pre><0.025 <0.025</pre>	<0.025		<0.025	<0.025	0.72	0.09
<pre>< <0.025 0.11</pre>	0.11		0.96	1.9	0.76	2.1
8.3 6.1	6.1		9.1	18	180	73
t <0.003 0.007	0.007		<0.003	0.003	0.03	0.009
i <0.003 <0.003	<0.003		<0.003	<0.003	<0.003	<0.003
<0.02 <0.02	<0.02		<0.02	<0.02	0.23	0.10

•

- 1

. .

7	٥
4	E
- 01	5
¢	n
L	Ľ
L A D	AP

L

METALS

(All concentrations in mg/kg)

.

			Lagoon #1	Lagoon #1	Lagoon #2	Carbonizer	Carbonizer
•	Soils	Soils	Sludge	Sludge	Sludge	Lag. Sludge	Lag. Sludge
	SS-1	SS-2	SS-4	SS-4A	SS-3	SS-5	SS-5A
Ag	16	<1.0	<1.0	<1.0	<1.0	5.7	<1.0
T	27,000	11,000	7600	5900	5900	6700	13,000
As	21	12	2.1	2.9	1.3	4.7	2.7
Cd	28	<2.5	<2.5	<3.8	<2.8	18	2.9
Cr	1000	2100	270	1300	430	450	62
ر Fe	110,000	13,000	10,000	8400	7700	7600	5800
Na	1300	97	250	850	311	200	96
Ъb	1200	38	12	19	12	670	88
Se	0.35	0.50	<0.19	0.57	<0.21	0.97	0.44
Zn	8200	110	930	4600	230	920	260

-13-

	cection Limit cection Limit cection Limit	(A11 co Bush Pd. <u>SW-6</u> 10 10 10 10	ncentratior Tailrace Head SW-1 * Bedrock Well WW-3A	Mill Niver SW-5 10 10 10 10	1 for wat MW-5 10	ter and ug/kg/ fo <u>MW-2</u> 10 <u>10</u> 10 10 10	r soil an Bedrock 25 Law. 6W-1 * 10 SW-4 10 10 *	Mell well st.	Bedrock Well B & M GW-2 10 * Lagoon #2 SW-3 10 10	Dug Well B & M GW-3 ++
--	---	--	--	---	-------------------------	---	---	---------------	---	---------------------------------

-

I

R

-14-

	BA	SE/NEUT (All c	TABLE 5 RAL EXTRACTABLI concentrations	E COMPOUNDS in ug/l)				
	Tailrace Head SW-1	MW-2	Bedrock Well 25. Law. St. GW-1	Bedrock Well B & M GW-2	Dug Well B & M GW-3	MW-3	Bedrock Well MW-3A	MW-5
Detection Limit	10	10	10	10	10	10	10	
None	*		*	*	*			
<pre>Benzamide N-(1,1-dimethylethyl) -4-Methyl-</pre>		9						27
Benzenesulfonamide, N-Butyl						32	11	

.

62

*None - No priority pollutants and no other compounds detected.

3

•

	COMPOUNDS
(p	ш
(Cont'	ACTABL
10	TR.
	\times
TABLE	BASE/NEUTRAL E

l

					endix B)		
Septic Tanks ST-C ug/l	10		34		(See App		
Lagoon #1 Sludge SS-4A ug/kg	1700		3200 9100 5700	61,000 8700 5300		3800 13,000 29,000 6500	11,000 4700 5400 6300
Lagoon #1 Sludge SS-4 ug/kg	3300			1600 10,000 8600 3400		7700 11,500 23,000 7700 1400 1300	2100 10,000
Lagoon #2 Water SW-3 ug/1	10		ç	50 50 33 33		53 95 150 50 50	
	Detection Limit	Priority Pollutants	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	Hexachioroetnane 1,2,4-Trichlorobenzene Napthalene Acenaphthene Fluorene Phenanthrene	Other Compounds	Benzamine Benzene, 2-ethyl-1,4Dimethyl- Napthalene, 2-Methyl- 1,1-Biphenyl Heptadecane Dibenzofuran Isoquinoline Naphthalene,2,3-Dimethyl	Naphthalene,1,2-Dimethyl Phenol, 4-Nonyl Benzene,1,2,3-Trichloro- Benzene,1,2,3,5-Tetramethyl Phenol, 4-(2,2,3,3-Tetramethylbutyl)

1

No metals were found above trace levels, except for iron, aluminum and sodium, which were present at concentrations typical for the area. No volatile organic compounds were found. No base/neutral priority pollutants were found, although traces of surfactants were found in four wells.

The COD was less than 10 mg/l in MW-3, 3A, 4 and 5 and EW 1 and 2. The COD was 50 mg/l in the upgradient well MW-2, 40 mg/l in MW-6 and 140 mg/l in EW-3. There is no pattern in the higher COD samples, in terms of proximity to the lagoons or groundwater elevation. EW-3 and MW-6 are near swampy areas, which may account for the presence of oxygen demanding substances.

LAGOONS #1 AND #2 - WATER

Wastewater samples from Lagoons #1 and #2 had higher alkalinity, conductivity, sulfate, COD and sodium than the uncontaminated surface and groundwaters, but were similar in the other conventional parameters. Lagoon #1 had 0.72 mg/l of chromium, and both lagoons had zinc concentrations slightly above background levels. The other metals were present at concentrations below the detection limits or comparable with non-contaminated samples. Lagoon #1 contained 45 ug/l of xylene and less than 10 ug/l of toluene and 1,1,1-trichloroethane. Lagoon #2 contained no volatile organic compounds, but the base/neutral extract contained a variety of naphthelene derivates and related compounds, typical of dyecarriers, at concentrations up to 340 ug/l.

MISCELLANEOUS WATERS

The non-contact cooling water was almost identical to Bush Pond water, other than temperature. The boiler blowdown had conductivity, alkalinity and dissolved salts typical of blowdown.

SOILS AND SLUDGES

The soil and sludge samples were subjected to a rigorous hot acid/hydrogen peroxide digestion prior to metals analysis. Hence, metal ions normally

present in the soil were dissolved in the sample preparation procedure. Likewise, metal ions incorporated in textile fiber mixed with the soil and sludge were dissolved.

Aluminum and iron were the principal metals in all soil and sludge samples. Traces of silver, arsenic, cadmium and selenium were found in some samples at concentrations which could be expected for uncontaminated soils. Chromium was found in the range of 62 to 1000 mg/kg and most likely originates from chrome-dyed textile fiber. Lead was above the anticipated background level in soil sample SS-1 and Carbonizer lagoon sludge sample SS-5. Zinc concentrations ranged from 110 to 8200 mg/kg. Zinc may derive from the basic dye family or from brass buttons, zippers, etc.

The metal contentrations (except for iron and aluminum) in the Carbonizer lagoon were two to ten times greater in the surface sludge as compared to the samples taken about 6 to 12 inches into the sediments. In contrast, the lower sample layer had slightly higher metal concentrations in Lagoon #1.

Of the four soils and sludges tested for volatile organics, detectable concentrations were found only in SS-4A, the lower sludge layer from Lagoon #1. Toluene, ethylbenzene, xylenes and chlorobenzene were the principal compounds detected. These are all related to dyeing operations.

The base/neutral extractable analyses of the upper and lower sludge/soil layers in Lagoon #1 contained a variety of naphthalene and benzene derivatives at concentrations up to 61,000 ug/kg (61 mg/kg). The compounds are all related to dyeing operations, mostly as dye carriers or impurities in dye carriers.

SEPTIC TANKS

Of the three septic tanks tested for volatile organics, only ST-2 contained any compounds above the detection limit. ST-2 had traces of toluene and xylene. The base/neutral extractable organic analysis of the composite of

-18-

the three septic tanks contained a variety of aliphatic and several proteinaceous compounds. A listing of the compounds is included with the complete analytical data in Appendix B. The compounds are typical of what would be expected from human wastes, with the addition of a small amount of paint thinner.

CONCLUSIONS AND RECOMMENDATIONS

In this section, CDM presents its conclusions and recommendations for cleanup of the Buckley & Mann site, based on the laboratory data, visual observations and the history of the site.

Surface and Groundwaters

There was no analytical evidence that the wastewater lagoons or solid wastes on the site have caused any contamination of the Mill River or the Tailrace. CDM found above background COD levels in monitoring well EW-1 adjacent to the Lagoon #1 in previous sampling in 1979 and 1980, so it is likely that the groundwater between Lagoons #1 and #2 and the Tailrace continues to be contaminated with partially treated leachate from the Lagoons. Traces of surfactant found in four wells, including the upgradient well, in CDM's May 1986 sampling program are not considered significant. Otherwise, there is no evidence that the lagoons or the solid wastes on the site have had any impact on the groundwater.

As there is no longer any wastewater discharged to the lagoons, CDM anticipates that the contaminated groundwaters immediately adjacent to Lagoons #1 and #2 will be further treated by soil microorganisms and diluted by groundwater. Consequently, CDM recommends that B&M take no action in regard to groundwater on the site.

Lagoons #1 and #2 Water

The wastewater in Lagoons #1 and #2 contain dyehouse wastewater that has undergone facultative biological treatment and dilution from rain since the

-19-

dyehouse was shutdown. CDM anticipates that further purification and dilution will occur during the summer. The water levels in the lagoons should drop during the summer of 1986, and by fall Lagoon #2 should be dry and Lagoon #1 nearly dry, assuming normal precipitation. Consequently, CDM recommends that B&M take no action with regard to the water in Lagoon #1 and #2.

Lagoon #1 and #2 Sludge

The sludge in Lagoons #1 and #2 contain both metals and dyecarriers including naphthalene and benzene derivatives. CDM analyzed samples of the sludges from the lagoons in 1980 by the RCRA Extraction Procedure method and found less than 0.1 mg/l of lead and 0.1 mg/l chromium in the extracts. Consequently, the sludges are not hazardous wastes.

The dyecarrier compounds are amenable to aerobic biological decomposition, according to literature reports. This is supported by observation of the sludge which was dredged from Lagoon #1 prior to 1975 and deposited nearby. The sludge appears to be stabilized and looks like fine grained soil with fabric/fiber scraps mixed in, has no black color or odor, and supports vegetation. CDM proposes that the sludge from Lagoons #1 and #2 be stabilized in a similar, but faster aerobic process: composting. Sludge would be mixed with wood chips and leaves and aerated with a blower through perforated pipe in a windrow arrangement. The composting would be process in the fall of 1986. If successful, full scale operation would commence in the warm months of 1987. The estimated quantities of sludge are 600 and 50 cubic yards for Lagoons #1 and #2, respectively.

After removal and treatment of the sludge, the lagoons would be filled and regraded with clean fill available nearby on the site. The stabilized sludge, which would be primarily sand and composted leaves/wood chips, would remain on-site to decay further, or could be trucked to a licensed landfill.

Carbonizer Lagoon

The Carbonizer Lagoon sediments contain metals, which were greater in the upper 6-inches than the next lower 6-inches. There is no evidence from MW-6 that any of the metals are leaching into the groundwater. The lagoon was well-established wetland vegetation on the non-flooded areas, and a soft bottom, indicating that it was probably swampland prior to construction of the containment dikes. Consequently, any filling or dredging would require special permits under Massachusetts wetland regulations. As the lagoon sediments do not appear to have any impact on the groundwater, CDM recommends that B&M take no action with regard to the Carbonizer Lagoon.

Residues and Debris

The machinery, building materials, carbonizer process residues (including buttons and zippers) and sludge dredged from Lagoon #1 discarded on the site have had no impact on the ground or surface waters, based on the laboratory results. Consequently, there is no need to remove these materials from the site. Nevertheless, CDM recommends that B&M initiate a program for aesthetic reasons to excavate and dispose of the soils and debris at a local, licensed landfill. Removal of the material would enhance the value of B&M's land. CDM recommends that such a program be conducted as expeditiously as possible within B&M's financial capability, with completion within 3 to 5 years.

Septic Tanks

and suggesting on an end of product transformed to

Septic Tank #2 contained traces of toluene and xylene, and is the most likely source of the aliphatic compounds observed in the base/neutral extract composite. As the compounds were present at low concentrations (most at less than 100 ug/l), CDM recommends that B&M take no action, other than ensuring that the septic systems be used in the future for disposal of sanitary wastes only. APPENDIX A BORING LOGS

2

T

Î

F.

Ì

.

.

.

amp, Dresser & McKee, Inc. One Center Plaza, Boston, Massachusetts 02108 Soil Boring Log Well Installation and Completion Data

$\frac{1}{5} - \frac{1}{1} - \frac{1}{13-25-43} + \frac{1}{4.0-5.5'} - \frac{1}{18''/18''} - \frac{1}{0ppm} + \frac{1}{5.0'} - \frac{1}{13} - \frac{1}{13-25-43} + \frac{1}{13-25-43}$	Depth (feet)	Samp. No.	Blows per 6* <u>140</u> ibs.	Sample Interval	Adv./ Recov.	Org. Vap. - PPM	Sample Description	Strata. Change	Equipment Installed
10 2 10-8-11 9.0-10.5 18"/18" Oppm 9.0'-9.5' Tan fine-medium sand and gravel, trace silt 9.5' 10 2 10-8-11 9.0-10.5 18"/18" Oppm 9.5'-10.5' Tan fine silty sand 9.5' 10 3 17-14-27 14.0-15.5'18"/18" Oppm 14.0'-15.0' Tan course angular sand, trace gravel 14.0' Schemen 15 3 17-14-27 14.0-15.5'18"/18" Oppm 14.0'-15.0' Tan course angular sand, trace gravel 15.0' Silt 0 PVC 15 10 0 0 15.0'-15.5' Tan fine silt, trace fine silt 15.0'	5 _		13-25-43	4.0-5.5'	18"/18"	Оррт	0-0.5' Topsoil Loam Brown fine-course sand and gravel subangular-subrounded 4.0' Tan fine sand some silt, trace gravel 5.0'	sand and gravel	Cement Bentonite Pellets
15 17-14-27 14.0-15.5'18"/18" 0ppm 14.0'-15.0' Tan course angular sand, trace gravel 14.0' sand 15 15.0'-15.5' Tan fine silt, trace fine silt 15.0' 15.0' 15.0'	10 —	2	10-8-11	9.0-10.5	18"/18"	Oppm	9.0'-9.5' Tan fine-medium sand and gravel, trace silt 9.5'-10.5' Tan fine silty sand	9.5' silty sand	#2 Morry Sand 10.0' Sch 40 PVC Screen
	15 —	- 3	17-14-27	14.0-15.	' 18"/18"	Oppm	14.0'-15.0' Tan course angular sand, trace gravel 15.0'-15.5' Tan fine silt, trace fine sand	14.0' sand 15.0' silt	@ 16.0'
	-	-							

Remarks:

쮵

amp, Dresser & McKee, Inc. One Center Plaza, Boston, Massachusetts 02108

Soil Boring Log

Well Installation and Completion Data

.

Client	Buckley & Mann	Inc SiteNor	folk, MA	Job No. 1121-5-RT Surveye	d Elevation: Ground
Late Dril	lied 5/22/86	Well No. MW-3	Boring Co. Gui	ld Drilling Co. Top of Casing 164	.81 Screen Length 7.5'
Total De	pth	Boring Method Used Hollc	w Stem Auger	Piezometer Casing Size	& Type 1.5" Schedule 40 PVC
Field Co	ologiet M. D. Jo	hison Organic Vapor	Inctnuments Lised HN	n -	Water Table Depth 4.01

Depth (feet)	Samp. No.	Blows per 6°	Sample Interval	Adv./ Recov.	Org. Vap. - PPM		Sample Description	Strata. Change	Equipment Installed
5	Sainy. No.	25-33-46	4.0-5.5'	18"/18"	- РРМ - РРМ 1 ррт Оррт	0-0.5' 4.0' 5.5' 9.0' 10.5'	Sample Description Topsoil (Loam) Brown fine-course sand and gravel subangular-rounded, little cobbles Brownish green fine-course sand and fine-medium gravel, angular-subangular, trace silt Brown-tan fine-course sand, angular-subangular and fine- medium gravel (angular)	Sand and gravel	Installed Cement Bentonite Pellets #2 Morry Sand 7.5' Sch 40 PVC Screen @ 10.5'

omarks:

Soil Boring Log One Center Plaza, Boston, Massachusetts 02108 Well Installation and Completion Data

Client	Buckley & Mar	nn Inc Site	Norfolk, MA	Job No. 1121-5-RT	Surveyed Elevation: Ground
ate Dril	led 5/22-23/86	Well NoMW-3A	Boring Co	Guild Drilling Cotop of Casi	ng 165.32 Screen Length 10.0'
Total De	pth	Boring Method Used	Hollow Stem Auger	Piezometer Cas	sing Size & Type 1.5" Schedule 40 PVC
Lield Ge	ologist M. D.	Johnson Organic V	apor Instruments Used	HNu	Water Table Depth 4.0"

Depth (feet)	Samp. No.	NX-Core min./ft.	Sample Intervai	Adv./ Recov.	Org. Vap. - PPM	Sample Description	Strata. Change	Equipment Installed
5	-					No samples taken See MW-3 Logsheet for unconsolidated statigraphy	sand and gravel	Cement
10 -		5 min/ft 5 min/ft 5 min/ft 5 min/ft	12'3"- 17'3"	60"/60"		12'3" Rhyolite-Quartz, Alkali Feldspar minerals, some pla- gioclase and mafic minerals 14'7" Tichtly closed fracture 450	12'3" Rhyolite	Bentonite Pellets
15 -		5½ min/ft 5½ min/ft 5 min/ft 4½ min/ft 5 min/ft	17'3"- 23'3"	60"/60"		Dip South Same as above 18'4" Fracture 45 ⁰ Dip East filled with silt 1/8 inch spacing		#2 Morry Sand
20 _		4 min/ft 5 min/ft 5 ¹ / ₃ min/ft	23'3"- 25'3"	36"/36"		21.0' Fracture irregular 40-50 ⁰ Dip Southeast closed spacing Same as above 23'3" Fracture 90 ⁰ closed spacing		10.0' Sch 40 PVC Screen
25 -		4 min/tt				25'3"	25'3"	@ 25'3"

amp, Dresser & McKee, Inc. One Center Plaza, Boston, Massachusetts 02108 Soil Boring Log Well Installation and Completion Data

ClientBuckley & Mann Inc.	_ SiteNorfolk,	Inc.	Job No1121-5-RT	Surveyed Elevation: Ground
ate Drilled <u>4/21/86</u> Well No.	MW-4	Boring Co. <u>Guild Drill</u>	ing Co. Top of Casin	g166.55 Screen Length5'
Total Depth <u>10,5'</u> Boring Method	Used <u>Hollow Ster</u>	n Auger	Piezometer Casi	ng Size & Type 1.5" Schedule 40 PVC
eld Geologist M. D. Johnson	Organic Vapor Instrum	ents Used HNU		Water Table Depth 3.0'

.

.

Depth (feet)	Samp. No.	Blows per 6' 140 lbs.	Sample Interval	Adv./ Recov.	Org. Vap. - PPM	Sample Description	Strata. Change	Equipment Installed
5	Samp. No.	2-5	Sample Interval 4.0'-5.5' 9.0-10.0'	Adv. / Recov.	Org. Vap. - PPM Oppm Oppm	Sample Description 0-0.5' Topsoil (Loam) Brown medium-course sand gravel, trace cobbles 4.0' Tan fine silt, trace-litt sand 5.0' Tan fine-medium rounded s. 5.5' 2" fine silt 9.0' Tan-gray fine silty sand 10.0'	Strata. Change and sand gravel 4.0' silt 5.0' sand 9.0' silty sand	Equipment Installed
			-					

Pemarks:

Soil Boring Log Well Installation and Completion Data

lient	Buckley & Mar	nn Inc.	SiteNorfol	lk, MA	Job No Surv	eyed Elevation: Ground	
ate Drilled	4/21/86	Well No	MW-5	_ Boring Co.Guild Dr	illing Co. Top of Casing 16	4.57 Screen Length	7.5'
Total Depth	10.0'1	Boring Method	Used <u>Hollow</u>	Stem Auger		ize & Type <u>1.5" Schedu</u>	<u>le 40 P</u> VC
eld Geolog	gist <u>M.D.</u>	Johnson_Or	ganic Vapor Ins	struments Used <u>HNU</u>		Water Table Depth _	3.5'

i De (fi	epth eet)	Samp. No.	Blows per 6' 140 lbs.	Sample Interval	Adv. / Recov.	Org. Vap. - PPM	Sample Description	Strata. Change	Equipment Installed
	5	1	9-7-6	4.0-5.5'	18"/4"	Oppm	0-0.5' Topsoil (Loam) Tan-brown medium-coarse gra some sand, little cobbles 4.0' Brown medium-coarse angular sand, little silt 5.5'	vel, Sand and Gravel 4.0' sand	Cement Bentonite Pellets #2 Morry Sand
	10	2	<u>10-14-14</u>	9.0-10.5'	18"/18"	Oppm	9.0'-9.5' Light brown medium-coarse angular sub-angular sand 9.5-10.5' Fine light brown silt	9.5' silt	40 PVC Screen @ 10.0'

emarks:

amp, Dresser & McKee, Inc. One Center Plaza, Boston, Massachusetts 02108 Soil Boring Log Well Installation and Completion Data

Client Buckley & Mann	Inc. S	ite <u>Norfolk</u> ,	MA	Jot	No. 1121-5-RT	Surveyed El	evation: Ground	
te Drilleci <u>4/22/86</u>	Well No!	1W-6	Boring Co.	Guild Drilling	<u>Co</u> . Top of Casir	9 168.06	Screen Length	7.5'
otal Depth 10.5'	Boring Method Use	d Hollow Stem	Auger		Piezometer Casi	ng Size & Ty	ype <u>1.5" Schedu</u>	le 40 PVC
eld Geologist <u>M. D. Jo</u>	<u>hnson</u> Orgar	nic Vapor Instrum	ents Used	HNu		Wa	ter Table Depth .	3.5'

_ Depth (feet)	Samp. No.	Blows per 6' <u>140</u> lbs.	Sample Interval	Adv./ Recov.	Org. Vap. - PPM		Sample Description	Strata. Change	Equipment Installed
5-		20-42-54	4.0-5.5'	18"/12"	0.5 ppm	00.5' 4.0' 5.5'	Topsoil (Loam) Brown fine silty sand, trace clay Brown fine-coarse sand and gravel subrounded, trace silt	silty sand 4.0' sand and gravel	Cement Bentonite Pellets #2 Morry Sand
		6-8-14	9.0-10.5	18"/18"	Oppm	9.0'	Green-gray fine silt, some fine sand rounded	9.0' sandy silt	7.5' Sch 40 PVC Screen @ 10.5'

Pemarks:

APPENDIX B COMPLETE ANALYTICAL RESULTS

I

12

.

3392

CAMP DRESSER & McKEE CLIENT	JOB NO. DATE CHECKED	·	_ COMPUTED BY _ DATE	
KEY TO SA	- CHECKED BY	DENTIFI	- PAGE NO.	-
SAMPLE LOCATION	SAMPLE TD# #	CDM LAB. 186	CAA LAS.	Computivity Lab. # 849
BUSH POND TAILRACE HEAD COOLING WATER	5W-6 5W-1 5W-7	13 15 4	06	17
LAGOON 2 LAGOON 22	5W-5 5W-4 5W-3	09 22	03 13	21
UPGRALIENT WATER TABLE WELL BELIROCK WELL OF 25 LAWRENCES BED ROCK WELL of BY-M BUG WELL AT BY M	MW-2 57; Cow-1 GW-3 GW-3	21 12 17 07	12 05 08	20 15 18 11
NATER TABLE WELL N. OF LAGOON 2 ESLIZORY WELL N. OF " 2 EX STITE DELL E. OF " 2 NEOF " 22	MW-3 MW-3A EW-1 EW-2	14 11 31 32	०७ ०५) دو ۱۰
WATER HY ZLE WELL NEPROLDUSER WATER HY ZLE WELL NEPROLDUSER """"" SETHEEN PROCESSION """" AGRIC CHERMER,	EW-2 24 MW-4 E MK-5 L. MW-G	33 18 19 20	64 10 : 1	19
SEIL LAGOUR SELVICE PILE	55-1 55-2	24	19 22	
SLUDGE CRIE LAGERNING TOF LI II EDITION LI II EDITION LI II EDITION LI II CAREONIZER LAGERNI TOP LOTIN	55-4 55-4A 55-3 55-5 54 55-5A	27 23 25 26	20 16 21 17 18	10
SUITIONACK * 1 ····································	57-1 57-2 57-3 57-C	29 29 30 3= A		22
Banst Blanks	(. a)=2	18610	14	

CDM environmentel angineers, scientists, planners, & management consultants

11 JUNE 1986

CERTIFICATE OF LABORATORY ANALYSIS

PROJECT: BUCKLEY & MANN

REPORT TO:

ROBERT A. DANGEL CDM/BOSTON RE: 1121-5-RT-GEAD

DATE SAMPLES RECEIVED: 8 MAY 1986

DATE SAMPLES COLLECTED: 7 MAY 1986 BY A.MICHELINI, R.DANGEL/CDM

ANALYTICAL METHODS: METHOD 624, PURGEABLES, METHODS FOR ORGANIC CHEMICAL ANALYSIS OF MUNICIPAL AND INDUSTRIAL WASTEWATER, EPA-600/4-82-057, JULY 1982.

> BASE NEUTRALS + LIBRARY SEARCH ANALYSIS CONDUCTED BY COMPUCHEM LABORATORIES, RESEARCH TRIANGLE PARK, NC, IN ACCORDANCE WITH APPROVED EPA METHODOLOGY.

ALL OTHER PARAMETERS - STANDARD METHODS FOR THE EXAMINATION OF WATER & WASTEWATER, 16TH ED., 1985, AND/OR BY THE US EPA MANUAL OF METHODS FOR CHEMICAL ANALYSIS OF WATER & WASTES, MARCH 1983.

ANALYTICAL RESULTS:

AS ON ATTACHED TABLES. COMPUCHEM RESULTS AS ON ATTACHED REPORTS.

DATE n.

PETER T. MAYNARD DAT SENIOR INDRGANICS CHEMIST

PTM, JFO/EK

186

JAMES F. OCCHIALINI LABORATORY SUPERVISOR

CAMP DRESSER & MCKEE INC.

One Center Plaza Boston, Massachusetts 02108 617 742-5151

TASK ND: 86050802 FILE ND: 9956-182 LAB ND: 18607-33

ANALYTICAL RESULTS

.

CDM LAB NO.	SAMPLE DESCRIPTION	ALKALINITY, TOTAL, MG/L	CHEMICAL OXYGEN ⁻ Demand, mg/l
		AS LALUS	
18607	GW-3	13.	~
18608	SW-5	28.	x
18609	SW-4	270.	440.
18610	SW-2	320.	×
18611	MW-3A	32.	<10.
18612	GW-1	110.	×
18613	SW-6	18.	×
18614	MW-3	18.	<10.
18615	SW-1	35.	×
18616	SW-7	19.	×
18617	GW-2	68.	×
18618	MW-4	17.	<10.
18619	MW-5	24.	<10.
18620	MW-6	25.	40.
18621	MW-2	17.	50.
18622	SW-3	130.	360.
18631	EW-1	X	<10.
18632	EW-2	×	<10.
18633	EW-3	×	140.

X - ANALYSIS NOT REQUESTED

.

1

į.

H

.

₿* ₿* 		6		- ALL	EPA ME CONCENTR	THOD 300 ATIONS I	- Nevr		8	8	1	8.
SAMPLE DESCRIPT CDM LAB ND:	10N1 6	5W-3 18607	SW-5 18608	SW-4 18609	SW-2 18610	MW-3A 18611	GW-1 18612	SW-6 18613	MW-3 18614			
NION						÷						
FLUORIDE	V	:0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5			
CHLORIDE		68.	30.	22.	75.	12.	<0.5	27.	14.			
NITRITE-N	V	20.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Октно-Р	V	<1.0	<1.0	2.8	3.6	<1.0	<1.0	<1.0	<1.0			
BROMIDE	v	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
NI TRATE-N		7.2	<0.5	<0.5	0.6	8.2	<0.5	<0.5	0.8			
SULPHATE		10.	11.	170.	240.	10.	5.0	12.	9.8			
ANALYTICAL NOTE	S.											
CHROMATOGRAPHIC	CONDITIC	ISN0										
UNIT: ANION COLUMN: GUARD COLUMN: DETECTOR:	DIONEX 2 DIONEX 1 DIONEX 1 CONDUCTI	2000İ HPIC-A: HPIC-A: IVITY	S4A S6A									

•

0.75 MM NAHCU₃/2.2 MM NA₂CU₃ 100 US 2.0 ML/MIN. 100 µL (APPROX.) ELUENT: RANGE: PUMP VOLUME: SAMPLE LOOP:

F
- ALL CONCENTRATIONS IN MG/L -EPA METHOD 300

SAMPLE DESCRIPTION:	SW-1	2-WS	GW-2	MW-4	MW-5	9-MW	MW-2	SW-3	
CDM LAB NO:	18615	18616	18617	18618	18619	18620	18621	18622	
= NION					•				
FLUORIDE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
CHLORIDE	36.	44.	21.	7.8	14.	24.	7.4	14.	
NITRITE-N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Октно-Р	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.4	
BROMIDE	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
NI TRATE-N	<0.5	<0.5	2.3	1.6	0.7	<0.5	0.9	<0.5	
SULPHATE	8.3	12.	14.	11.	9.4	9.7	10.	74.	
ANALYTICAL NDTES:									
CHROMATOGRAPHIC CONDI	1 T IONS :								
UNIT: DION	EX 20001								
ANION COLUMNI DION	EX HPIC-A	S4A							

INIT:	DICNEX 20001
ANION COLUMN:	DICNEX HPIC-AS4A
GUARD COLUMN:	DICNEX HPIC-AS6A
DETECTOR:	CONDUCTIVITY
ELUENT:	0.75 MM NAHCU3/2.2 MM NA2CU3
RANGE:	100 US
PUMP VOLUME:	2.0 ML/MIN.
SAMPLE LOOP 1	100 µL (APPROX.)

ß

R

B

.

VOLATILE ORGANICS

- ALL VALUES REPORTED AS µG/L -

CODES ND - NOT DETECTED P - PRESENT

SAMPLE DESCRIPTION:

GW-3

SW-5 SW-4

MW-3A GW-1

CDM LAB NO:

.

R

18607

18608 18609

18611 . 18612

CHLOROMETHANE	ND	ND	ND	ND	ND	
BROMOMETHANE	1.	1	1			
VINYL CHLORIDE						
CHLOROETHANE						
METHYLENE CHLORIDE						
TRICHLOROFLUOROMETHANE						
1.1-DICHLORDETHYLENE						
1.1-DICHLOROETHANE						
TRANS-1.2-DICHLORDETHYLENE						
CHLOROFORM						
1.2-DICHLOROETHANE			¥			
1.1.1-TRICHLOROETHANE	e traine and the second		. P			
CARBON TETRACHLORIDE			ND			
BROMODICHLOROMETHANE			f			
1.2-DICHLOROPROPANE						
TRANS-1, 3-DICHLOROPROPENE						
TRICHLOROETHYLENE						
DIBROMOCHLOROMETHANE						
CIS-1,3-DICHLOROPROPENE						
1,1,2-TRICHLOROETHANE						
BENZENE						
2-CHLOROETHYLVINYLETHER						
BROMOFORM						
1.1.2.2-TETRACHLOROETHYLENE						
1.1.2.2-TETRACHLORDETHANE			V			
TOLUENE			Р			
CHLOROBENZENE			ND			
ETHYLBENZENE	*	¥	. P	Ψ	<u> </u>	
XYLENES	ND	ND	45.	ND	ND	82
ACETONE	ND	ND	ND	ND	ND	
% SURROGATE RECOVERY:						
D6 BENZENE	110	100	90	97	97	
D8 TOLUENE	120	115	86	100	100	

ND - NOT DETECTED & DETECTION LIMIT OF 10 UG/L

P - PRESENT, BUT BELOW METHOD DETECTION LIMIT

VOLATILE DRGANICS

- ALL VALUES REPORTED AS µG/L -

CODES ND - NDT DETECTED P - PRESENT

SAMPLE DESCRIPTION:

SW-6

MW-3 SW-1 GW-2

MW-4

CDM LAB NO:

.

18613

3 18614 18615

18618

18617

CHLOROMETHANE	ND	ND	ND	ND	ND	
BROMOMETHANE					-	~ ~
VINYL CHLORIDE				· · · ·		
CHLOROETHANE	<u> </u>					
METHYLENE CHLORIDE						
TRICHLOROFLUOROMETHANE					· · ·	
1,1-DICHLORDETHYLENE						
1,1-DICHLOROETHANE						
TRANS-1,2-DICHLORDETHYLENE						
CHLORDFORM						
1.2-DICHLORDETHANE						
1.1.1-TRICHLOROETHANE						
CARBON TETRACHLORIDE						
BROMODICHLOROMETHANE						<u>a a</u>
1.2-DICHLOROPROPANE						
TRANS-1, 3-DICHLOROPROPENE						
TRICHLORDETHYLENE						1.1.1. eff
DIBROMOCHLOROMETHANE						a.
CIS-1, 3-DICHLOROPROPENE						<u>.</u>
1.1.2-TRICHLORDETHANE						
BENZENE						
2-CHLORDETHYLVINYLETHER						
BROMOFORM						-
1.1.2.2-TETRACHLOROETHYLENE					the to serve a	
1,1,2,2-TETRACHLORDETHANE						
TOLUENE						
CHLOROBENZENE						
ETHYLBENZENE		¥	V		V	
XYLENES	ND	ND	ND	ND	ND	
ACETONE	ND	ND	ND	ND	ND	
Y SUPPOGATE RECOVERY:						
D6 BENZENE	110	100	100	100	100	
	110	110	96	100	100	

ND - NOT DETECTED & DETECTION LIMIT OF 10 UG/L

P - PRESENT, BUT BELOW METHOD DETECTION LIMIT

VOLATILE ORGANICS

CODES ND - NOT DETECTED P - PRESENT

SS-4A*

- ALL VALUES REPORTED AS µG/L - *UG/KG

SAMPLE DESCRIPTION:	MW-5	MW-6	MW-2	SW-3

COM LAB NO:

H

18619

18620 18621

18622 18623

CHLOROMETHANE	ND	ND	ND	ND	ND
BROMOMETHANE					
VINYL CHLORIDE					
CHLOROETHANE					
METHYLENE CHLORIDE					
TRICHLOROFLUOROMETHANE					
1.1-DICHLOROETHYLENE					
1.1-DICHLOROETHANE					
TRANS-1,2-DICHLORDETHYLENE					
CHLOROFORM					
1,2-DICHLOROETHANE					
1.1.1-TRICHLORDETHANE					
CARBON TETRACHLORIDE					
BROMODICHLOROMETHANE					
1.2-DICHLOROPROPANE					
TRANS-1, 3-DICHLOROPROPENE				-	
TRICHLORDETHYLENE					45.
DIBROMOCHLOROMETHANE					ND
CIS-1, 3-DICHLOROPROPENE					ND
1,1,2-TRICHLORDETHANE					ND
BENZENE					<u> </u>
2-CHLORDETHYLVINYLETHER					ND
BROMOFORM					ND
1.1.2.2-TETRACHLORDETHYLENE					<u> </u>
1,1,2,2-TETRACHLOROETHANE					<u>ND</u>
TOLUENE					150.
CHLOROBENZENE					1100
ETHYLBENZENE	¥	¥	<u>v</u>	V	860.
XYLENES	ND	ND	ND	ND	2100.
ACETONE	ND	ND	ND	ND	ND
% SURROGATE RECOVERY:					
D6 BENZENE	96	100	110	93	93
D8 TOLUENE	92	100	93	96	83

ND - NOT DETECTED & DETECTION LIMIT OF 10 UG/L

P - PRESENT, BUT BELOW METHOD DETECTION LIMIT

*ND - NOT DETECTED @ DETECTION LIMIT OF 45 UG/KG

- ,	VOLAT	ILE ORGAN	IICS AS VG/L ·	ND P	COD - NOT D - PRESE	ES ETECTED NT
			*UG/KC	5		
					-	
SAMPLE DESCRIPTION:	SS-1*	SS-5*	SS-5A*	ST-1	ST-2	ST-3
CDM LAB NO:	18624	18625	18626	18628	18629	18630
	ND	ND	ND	ND	ND	ND
BROMOMETHANE					1	
METHYLENE CHLORIDE						
TRICHLOROFLUOROMETHANE						
1.1-DICHLOROETHYLENE						
1.1-DICHLORDETHANE						
TRANS-1,2-DICHLOROETHYLENE						
CHLORDFORM		-				
1.2-DICHLOROETHANE				_		
1,1,1-TRICHLOROETHANE						
CARBON TETRACHLORIDE						_
BROMODICHLOROMETHANE						
1.2-DICHLOROPROPANE						
TRANS-1.3-DICHLOROPROPENE						
TRICHLOROETHYLENE						
DIBROMOCHLOROMETHANE		1.00				
CIS-1, 3-DICHLOROPROPENE	<u> </u>					
1,1,2-TRICHLOROETHANE						
BENZENE						
2-CHLOROETHYLVINYLETHER						-

. .

ł

ļ

ľ

BROMOFORM

TOLUENE

XYLENES

ACETONE

CHLOROBENZENE

ETHYLBENZENE

D6 BENZENE

D8 TOLUENE

1,1,2,2-TETRACHLORDETHYLENE

1,1,2,2-TETRACHLOROETHANE

% SURROGATE RECOVERY:

ND - NOT DETECTED & DETECTION LIMIT DF 10 UG/L

J

ND

ND

87

85

V

ND

ND

93

69

V

ND

ND

90

81

V

ND

ND

115

82

P - PRESENT, BUT BELOW METHOD DETECTION LIMIT

*ND - NOT DETECTED & DETECTION LIMIT OF 25 UG/KG

1

ND

ND

ND

100

92

91.

20.

ND

ND

93

100

RI	ECE	IVE	ED
INE	OUSTRIA	L GRO	OUP
	JUN 1	7 1988	5
OPIE	S TO:	2A0	

REPORT TO

Camp, Dresser & McKee, Inc. One Center Plaza Boston, MA 02108

Attn: Mr. Robert Dangel

1

Cambridge Analytical Associates 1106 Commonwealth Avenue / Boston, Massachusetts 02215 / (617) 232-2207

Work Order # 86-05-056	CERTIFIED BY CERTIFIED BY CONTACT LAWLER	e by the following staff:	A on this report Selenium (Se)-furnace Selenium (Se)-furnace Zinc (Zn)-ICP	
REPORT 06/16/86 08:52:47	PREPAREDCambridgeAnalytical AssoBYEnvironmental DivisionBYEnvironmental Division1106Commonwealth AvenueATTENBoston, MA 02215ATTENEnvironmental Division	This report is approved for releas Laboratory Director: Inorganic Laboratory:	TEST CODES and NAMES useSilver (Aq) -ICPSilver (Aq) -ICPSilver (Aq) -ICPSilver (Aq) -ICPSilver (Aq) -ICPSilver (Aq) -ICPSilver (Aq) -ICPAluminum (Al) -ICPArsenic (As) -furnace AASArsenic (As) -ICPArsenic (As) -ICPCadmium (Cd) -furnace AASCadmium (Cd) -furnace AASCromium (Cc) -ICPChromium (Cc) -ICPChromium (Cc) -ICPAcid digestion-soil-SW846Acid (Pb)-furnace AASLead (Pb) -furnace AASLead (Pb) -furnace AASLead (Pb) -furnace AAS	
Page 1 Received: 05/08/86	REPORT Camp, Dresser & McKee, Inc. TO <u>One Center Plaza</u> <u>Boston, MA 02108</u> ATTEN <u>Mr Robert Dangel</u>	CLIENT CDM BOSTON SAMPLES 22 COMPANY Camp, Dresser & MCKee, Inc. FACILITY One Center Plaza Boston, MA 02108 WORK ID 1121-5-RT-GEAD (Buckley) TAKEN By Client TRANS By Client TYPE Aqueous & Sludge P.0. # 36710	SAMPLE IDENTIFICATION 01 GW-3 02 SW-5 03 SW-4 04 MW-3A 05 GW-1 06 SW-6 07 MW-3A 08 GW-2 09 GW-6 07 MW-5 08 GW-2 09 GW-6 11 MM-6 12 SW-2 13 SW-2 14 SW-2 15 SW-2 16 SS-4A 17 SS-5A 18 SS-5A 19 SS-14 10 SS-5A 11 SS-5A	

وه و. رست محمد المحمد الم

-

- - - -

--- . .-.

8

Work Order # 86-05-056						
REPORT 06/16/86 08:52:47			×			
Page 2 Received: 05/08/86	SAMPLE IDENTIFICATION21SS-322SS-2					

.

Page 3 Received: 05/08/86		Results By	REPORT Test	Work Order	# 86-05-056
TEST CODE default units	Sample <u>01</u> (entered units)	Sample 02 (entered units)	Sample 03 (entered units)	Sample <u>04</u> (entered units)	Sample <u>05</u> (entered units)
AGIA	<0.01	<0.01	<0.01	<0.01	<0.01
AL I A	11.0	<0.1	0.61	<0.1	<0.1
AS GFA	<0.016	<0.016	<0.016	<0.016	<0.016
CD GFA	<0.001	<0.001	<0.001	<0.001	100.0>
	<0.025	<0.025	0.72	<0.025	<0.025
	05/29/86	05/29/86	05/29/86	05/29/86	05/29/86
FE I A	0.13	0.16	0.76	<0.025	0.44
NA I A	31	21	180	8.3	14
PB GFA	0.005	<0,003	0.03	<0.003	0.004
SE GFA	<0.003	<0.003	<0.003	<0.003	<0.003
Z I A Z I A Mg/I	<0.02	<0.02	0.23	<0.02	0.02
BUCO HORE				00 Clames	01 01 01
default units	sample <u>06</u> (entered units)	Sample 07 (entered units)	Sample <u>08</u> (entered units)	sample <u>09</u> (entered units)	sample <u>10</u> (entered units)
AGIA	<0.01	<0.01	<0.01	<0.01	<0.01
AL I A	0.13	0.15	0.22	0.12	0.31
AS GFA	<0.016	<0.016	<0.016	<0.016	<0.016
CD GFA	<0.001	<0.001	100.0>	<0.001	<0.001
	<0.025	<0.025	<0.025	<0.025	<0.025

ŀ

R

1

Page 4 Received: 05/08/86		Results By	REPORT . Test	Work Order Continued F	# 86-05-056 rom Above	
DIG AQ	05/29/86	05/29/86	05/29/86	05/29/86	05/29/8 ^{<}	
FE I A	0.13	<0.025	<0.025	0.11	6.0	-
	20	9.5	21	6.1	7.6	
PB_GFA	<0.003	<0.003	0.006	0.007	<0.003	
SE GFA	<0.003	<0.003	<0.003	<0.003	<0.003	
	<0.02	0.03	<0.02	<0.02	<0.02	
+ /6						
TEST CODE default units	Sample <u>11</u> (entered units)	Sample <u>12</u> (entered units)	Sample <u>13</u> (entered units)	Sample <u>14</u> (entered units)	Sample <u>15</u> (entered units)	
AGIA	10.0>	<0.01	<0.01		10.0>	
	0.32	0.21	0.27		0.29	
AS GFA	<0.016	<0.016	<0.016			
					<0.016	
CD GFA	<0.001	<0.001	<0.001		<0.001	
	<0.025	<0.025	0.09		<0.025	
DIG AQ	05/29/86	05/29/86	05/29/86	05/29/86	05/29/86	
FEIA	1.9	<0.025	2.1	4.5	. 2.8	
HGCVA				÷	<0.0004	
	18	8.1	73	260	50	
	0.003	<0.003	0.009	×	0.004	
SE GFA	<0.003	<0.003	<0.003		<0.003	
	-					

ge 5 ceived: 05/08/80		Results By	REPORT Test	work order Continued I	# 86-05-056 'rom Above
ZN_I_A mg/1	<pre>< 02</pre>	<0.02	0.10		<0.02
TEST CODE default units	Sample <u>16</u> (entered units)	Sample <u>17</u> (entered units)	Sample <u>18</u> (entered units)	Sample <u>19</u> (entered units)	Sample <u>20</u> (entered un <u>i</u> ts
AG_I_S	<1.0	5.7	<1.0	16	<1.0
ug/g (dry wt) AL I S MG/G (drut)	ug/g (dry wt 5900	6700	13000	27000	7600
AS I S AS I S	2.9	4.7	2.7	21	2.1
ug/g (ury wt) CD GFS	<3.8	18	2.9	28	ن ۲ ۲
ug/g (ary wt) CR I S	1300	450	62	1000	277
ug/g (ary wt) DIGSOL date corriete	05/23/86	05/23/86	05/23/86	05/23/86	05/23/86
TEIS TEIS	8400	7600	5800	110000	10000
ug/9 (urf wc) NA I S 	850	200	96	1300	250
ug/g (ury wc) PB GFS	19	670	88	1200	12
ug/g (ury wc) SE GFS	0.57	0.97	0.44	0.35	<0.19
ug/g (ury wr) 2N I S ug/g (dry wt)	4600	920	260	8200	930
rEST CODE default units	Sample 21 (entered units)	Sample <u>22</u> (entered units)			
AG I S	<1.0	<1.0			
ug/g (ary wc) AL I S AL 2 (3	5900	11000			
ug/g (ary wt) As I s ur/r (dry wt)	I.3	12			-

\$

age 6 ereived: nE/ng/g2		REPORT Dociite Dir Most	Work Order # 86-05-056
STELLEL DO/08/80		results of lesu	CONLINUED FLOM ADOVE
CD_GFS	<2.8	<2.5	
ug/g (dry wt)	054	0010	
uq/g (drv wt))) 	
DIGSOL	05/23/86	05/23/86	
date complete	7700	13000	
ug/g (dry wt)			
NA_I_S	310	57	
ug/g (dry wt) be rec	5	äc	
ug/g (drv wt)	77	0	×
SE GFS	<0.21	0.50	
ug/g (dry wt)			
ZN I S	230	110	
ug/g (dry wt)			

ANALYTICAL REPORT OF DATA SUBMITTED TO:

> Ms. Eileen Kireilis Camp, Dresser, and McKee One Center Plaza Boston, MA 02108

METHOD REFERENCE

CompuChem® employs Method 625 for GC/MS analysis of base/neutral organics in liquid matrices. This method is published in Volume 49, October 26, 1984 Federal Register.

METHOD SUMMARY

As stated in the October 1984 reference, "A measured volume of sample, approximately one-liter, is serially extracted with methylene chloride at a pH greater than 11 and again at pH less than 2 using a separatory funnel or a continuous extractor. The methylene chloride extract is dried and concentrated to a volume of 1 ml."

"Qualitative identification is performed using the retention time and the relative abundance of three characteristic ions. Quantitative analysis is performed using either external or internal standard techniques."

Semi-quantitative analysis (library search) is performed by automatic comparison of the unknown peak spectrum to the National Bureau of Standards (NBS) mass spectral library. Estimated concentration is calculated using the known concentration and peak area of the closest internal standard while assuming a response factor of one for the unknown compound.

17

- -

.

4

SAMPLE IDENTIFIER: 18615 COMPUCHEM® SAMPLE NUMBER: 84917

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
1B.	N-NITROSODIMETHYLAMINE	BDL	10
2B.	BIS (2-CHLOROETHYL) ETHER	BDL	10
3B.	1,3-DICHLOROBENZENE	BUL	10
4B.	1,4-DICHLOROBENZENE	BUL	10
5B.	1,2-DICHLOROBENZENE	BUL	10
6B.	BIS (2-CHLOROISOPROPYL) ETHER	BUL	10
7B.	N-NITROSODI-N-PROPYLAMINE	BUL	10
8B.	HEXACHLOROETHANE	BDL	10
98.	NITROBENZENE	BDL	10
10B.	ISOPHORONE	BDL	10
118.	BIS(2-CHLOROETHOXY) METHANE	BDL	10
128.	1,2,4-TRICHLOROBENZENE	BDL	10
13B.	NAPHTHALENE	BDL	10
14B.	HEXACHLOROBUTADIENE	BUL	10
15B.	HEXACHLOROCYCLOPENTADIENE	BDL	10
16B.	2-CHLORONAPHTHALENE	BDL	10
17B.	DIMETHYLPHTHALATE	BDL	10
18B.	ACENAPHTHYLENE	BDL	10
19B.	2,6-DINITROTOLUENE	BDL	10
20B.	ACENAPHTHENE	BDL	10
21B.	2,4-DINITROTOLUENE	BDL	10
22B.	DIETHYLPHTHALATE	BDL	10
23B.	4-CHLOROPHENYL PHENYL ETHER	BDL	10
24B.	FLUORENE	BUL	10
25B.	DIPHENYLAMINE (N-NITROSO)	BUL	10
26B.	1,2-DIPHENYLHYDRAZINE (AZOBENZENE)	BDL	10
27B.	4-BROMOPHENYL PHENYL ETHER	BUL	10
28B.	HEXACHLOROBENZENE	DUL	10

(Continued)

1

Î

Î

H

1

- -

SAMPLE IDENTIFIER: 18615 COMPUCHEM® SAMPLE NUMBER: 84917

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
29B.	PHENANTHRENE	BDL	10
30B.	ANTHRACENE	BDL	10
31B.	DI-N-BUTYLPHTHALATE	BDL	10
32B.	FLUORANTHENE	BDL	10
33B.	PYRENE	BDL	10
34B.	BENZIDINE	BDL	50
35B.	BUTYLBENZYLPHTHALATE	BDL	10
36B.	3,3'-DICHLOROBENZIDINE	BDL	20
37B.	BENZO(A)ANTHRACENE	BDL	10
38B.	BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10
39B.	CHRYSENE	BDL	10
40B.	DI-N-OCTYLPHTHALATE	BDL	10
41B.	BENZO(B)FLUORANTHENE	BDL	10
42B.	BENZO(K)FLUORANTHENE	BDL	10
43B.	BENZO(A)PYRENE	BDL	10
44B.	INDENO(1,2,3-C,D)PYRENE	BDL	10
45B.	DIBENZO(A, H)ANTHRACENE	BDL	10
46B.	BENZO(G,H,I)PERYLENE	BDL	10

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	Control Range%
D ₅ -Nitrobenzene	75	(41-120)
2-Fluorobiphenyl	75	(44-119)
D ₁₄ -Terphenyl	122	(33-128)
D ₁₀ -Pyrene*	119	*

BDL=BELOW DETECTION LIMIT *Advisory Surrogate; therefore no control range

SAMPLE IDENTIFIER: 18615 COMPUCHEM® SAMPLE NUMBER: 84917

- -

X

.

15 PEAK IDENTIFICATION - Base/Neutral

.

.....

Exclusive of any priority pollutants (specific to this analysis), surrogate standard, and internal standard peaks, no compounds greater than 10% of the closest internal standard were tentatively identified by mass spectral library search.

.

- -

SAMPLE IDENTIFIER: 18621 COMPUCHEM® SAMPLE NUMBER: 84920

			ENTRATION JG/L)	DETECTION LIMIT (UG/L)
1B.	N-NITROSODIMETHYLAMINE		BDL	10
2B.	BIS (2-CHLOROETHYL) ETHER		BDL	10
3B.	1,3-DICHLOROBENZENE		BDL	10
4B.	1,4-DICHLOROBENZENE		BDL	10
5B.	1,2-DICHLOROBENZENE	S. Car	BDL	10
6B.	BIS (2-CHLOROISOPROPYL) ETHER		BDL	10
7B.	N-NITROSODI-N-PROPYLAMINE		BDL	10
88.	HEXACHLOROETHANE		BDL	10
9B.	NITROBENZENE		BDL	10
108.	ISOPHORONE		BDL	10
118.	BIS(2-CHLOROETHOXY) METHANE		BDL	10
12B.	1,2,4-TRICHLOROBENZENE		BDL	10
13B.	NAPHTHALENE		BDL	10
14B.	HEXACHLOROBUTADIENE		BDL	10
15B.	HEXACHLOROCYCLOPENTADIENE		BDL	10
16B.	2-CHLORONAPHTHALENE		BDL	10
17B.	DIMETHYLPHTHALATE		BDL	10
18B.	ACENAPHTHYLENE		BDL	10
198.	2,6-DINITROTOLUENE		BDL	10
20B.	ACENAPHTHENE		BDL	10
21B.	2,4-DINITROTOLUENE		BDL	10
22B.	DIETHYLPHTHALATE		BDL	10
23B.	4-CHLOROPHENYL PHENYL ETHER		BDL	10
24B.	FLUORENE		BDL	10
25B.	DIPHENYLAMINE (N-NITROSO)		BDL	10
26B.	1,2-DIPHENYLHYDRAZINE (AZOBENZENE)		BDL	10
27B.	4-BROMOPHENYL PHENYL ETHER		BDL	10
28B.	HEXACHLOROBENZENE		BDL	10

(Continued)

ł

1

- (Page Two)

SAMPLE IDENTIFIER: 18621 COMPUCHEM® SAMPLE NUMBER: 84920

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
29B.	PHENANTHRENE	BDL	10
30B.	ANTHRACENE	BDL	10
318.	DI-N-BUTYLPHTHALATE	BDL	10
32B.	FLUORANTHENE	BDL	10
33B.	PYRENE	BDL	10
34B.	BENZIDINE	BDL	50
35B.	BUTYLBENZYLPHTHALATE	BDL	10
36B.	3.3'-DICHLOROBENZIDINE	BDL	20
37B.	BENZO(A)ANTHRACENE	BDL	10
38B.	BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10
39B.	CHRYSENE	BDL	10
40B.	DI-N-OCTYLPHTHALATE	BDL	10
41B.	BENZO(B)FLUORANTHENE	BDL	10
42B.	BENZO(K)FLUORANTHENE	BDL	10
43B.	BENZO(A)PYRENE	BDL	10
44B.	INDENO(1,2,3-C,D)PYRENE	BDL	10
45B.	DIBENZO(A, H)ANTHRACENE	BDL	10
46B.	BENZO(G, H, I)PERYLENE	BDL.	10

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	Control Range%
D5-Nitrobenzene	83	(41-120)
2-Fluorobiphenyl	79	(44-119)
D ₁₄ -Terphenyl	110	(33-128)
D ₁₀ -Pyrene*	109	*

BDL=BELOW DETECTION LIMIT

*Advisory Surrogate; therefore no control range.

·*

,

RETENTION TIME COMPATIBILITY UNKN

.

.

SAMPLE IDENTIFIER: 18612 COMPUCHEM® SAMPLE NUMBER: 84915

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
1B.	N-NITROSODIMETHYLAMINE	BDL	10
2B.	BIS (2-CHLOROETHYL) ETHER	BDL	10
3B.	1,3-DICHLOROBENZENE	BDL	10
4B.	1,4-DICHLOROBENZENE	BDL	10
5B.	1,2-DICHLOROBENZENE	BDL	10
6B.	BIS (2-CHLOROISOPROPYL) ETHER	BDL	10
7B.	N-NITROSODI-N-PROPYLAMINE	BDL	10
8B.	HEXACHLOROETHANE	BDL	10
9B.	NITROBENZENE	BDL	10
10B.	ISOPHORONE	BDL	10
11B.	BIS(2-CHLOROETHOXY) METHANE	BDL	10
12B.	1,2,4-TRICHLOROBENZENE	BDL	10
13B.	NAPHTHALENE	BDL	10
14B.	HEXACHLOROBUTADIENE	BDL	10
15B.	HEXACHLOROCYCLOPENTADIENE	BDL	10
16B.	2-CHLORONAPHTHALENE	BDL	10
17B.	DIMETHYLPHTHALATE	BDL	10
18B.	ACENAPHTHYLENE	BDL	10
19B.	2,6-DINITROTOLUENE	BDL	10
20B.	ACENAPHTHENE	BDL	10
21B.	2,4-DINITROTOLUENE	BDL	10
22B.	DIETHYLPHTHALATE	BDL	10
23B.	4-CHLOROPHENYL PHENYL ETHER	BDL	10
24B.	FLUORENE	BDL	10
25B.	DIPHENYLAMINE (N-NITROSO)	BDL	10
26B.	1,2-DIPHENYLHYDRAZINE (AZOBENZENE)	BDL	10
27B.	4-BROMOPHENYL PHENYL ETHER	BDL	10
28B.	HEXACHLOROBENZENE	BDL	10

(Continued)

ł,

-

SAMPLE IDENTIFIER: 18612 COMPUCHEM® SAMPLE NUMBER: 84915

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
29B	PHENANTHRENE	BDL	10
30B	ANTHRACENE	BDL	10
31B.	DI-N-BUTYLPHTHALATE	BDL	10
32B	FLUORANTHENE	BDL	10
338	PYRENE	BDL	10
34R.	BENZIDINE	BDL	50
35B.	BUTYI BENZYLPHTHALATE	BDL	10
36B.	3. 3'-DICHLOROBENZIDINE	BDL	20
37B	BEN70(A)ANTHRACENE	BDL	10
38B	RIS(2-ETHYLHEXYL)PHTHALATE	BDL	10
39B	CHRYSENE	BDL	10
408	DI-N-OCTYLPHTHALATE	BDL	10
41B.	BENZO(B)FLUORANTHENE	BDL	10
42B	BENZO(K)FLUORANTHENE	BDL	10
43B.	BENZO(A)PYRENE	BDL	10
44B.	INDENO(1.2.3-C.D)PYRENE	BDL	10
45B.	DIBENZO(A, H)ANTHRACENE	BDL	10
46B.	BENZO(G,H,I)PERYLENE	BDL	10

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	Control Range%
D5-Nitrobenzene	78	(41-120)
2-Fluorobiphenyl	79	(44-119)
D ₁₄ -Terphenyl	118	(33-128)
D ₁₀ -Pyrene*	116	*

BDL=BELOW DETECTION LIMIT *Advisory Surrogate; therefore no control range

SAMPLE IDENTIFIER: 18612 COMPUCHEM® SAMPLE NUMBER: 84915

15 PEAK IDENTIFICATION - Base/Neutral

Exclusive of any priority pollutants (specific to this analysis), surrogate standard, and internal standard peaks, no compounds greater than 10% of the closest internal standard were tentatively identified by mass spectral library search.

- -

*

SAMPLE IDENTIFIER: 18617 COMPUCHEM® SAMPLE NUMBER: 84918

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
1B.	N-NITROSODIMETHYLAMINE	BDL	10
2B.	BIS (2-CHLOROETHYL) ETHER	BDL	10
3B.	1,3-DICHLOROBENZENE	BDL	10
4B.	1,4-DICHLOROBENZENE	BDL	10
5B.	1,2-DICHLOROBENZENE	BDL	10
6B.	BIS (2-CHLOROISOPROPYL) ETHER	BDL	10
/B.	N-NITROSODI-N-PROPYLAMINE	BDL	10
88.	HEXACHLOROETHANE	BDL	10
9B.	NITRUBENZENE	BDL	10
108.		BDL	10
IIB.	BIS(2-CHLURUETHUXY) METHANE	BDL	10
120.	1, 2, 4-IRICHLURUBENZENE	BDL	10
140		BDL	10
140.		BDL	10
100.		BDL	10
170.			10
198			10
100.			10
20B	ACENADUTUENE		10
21B		BOL	10
22B		BDL	10
23B		BDL	10
24R	FLUORENE	BDI	10
25B.	DIPHENYLAMINE (N-NITROSO)	BDL	10
26B.	1.2-DIPHENYLHYDRAZINE (AZOBENZENE)	BDI	10
27B.	4-BROMOPHENYL PHENYL ETHER	BDL	ĩŏ
28B.	HEXACHLOROBENZENE	BDL	10

(Continued)

f

1

SAMPLE IDENTIFIER: 18617 COMPUCHEM® SAMPLE NUMBER: 84918

		CONCENTRATION (UG/L)	LIMIT (UG/L)
29B.	PHENANTHRENE	BDL	10
30B.	ANTHRACENE	BDL	10
318.	DI-N-BUTYLPHTHALATE	BDL	10
32B.	FLUORANTHENE	BDL	10
33B.	PYRENE	BDL	10
34B.	BENZIDINE	BDL	50
35B.	BUTYLBENZYLPHTHALATE	BDL	10
36B.	3,3'-DICHLOROBENZIDINE	BDL	20
37B.	BENZO(A)ANTHRACENE	BDL	10
38B.	BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10
39B.	CHRYSENE	BDL	10
40B.	DI-N-OCTYLPHTHALATE	BDL	10
41B.	BENZO(B)FLUORANTHENE	BDL	10
42B.	BENZO(K)FLUORANTHENE	BDL	10
43B.	BENZO(A)PYRENE	BDL	10
44B.	INDENO(1,2,3-C,D)PYRENE	BDL	10
45B.	DIBENZO(A,H)ANTHRACENE	BDL	10
468.	BENZO(G,H,I)PERYLENE	BDL	10

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	Control Range%
D5-Nitrobenzene	85	(41-120)
2-Fluorobiphenyl	83	(44-119)
D ₁₄ -Terphenyl	116	(33-128)
D ₁₀ -Pyrene*	116	*

BDL=BELOW DETECTION LIMIT

H

*Advisory Surrogate; therefore no control range.

SAMPLE IDENTIFIER: 18617 COMPUCHEM® SAMPLE NUMBER: 84918

- -

.

15 PEAK IDENTIFICATION - Base/Neutral

Exclusive of any priority pollutants (specific to this analysis), surrogate standard, and internal standard peaks, no compounds greater than 10% of the closest internal standard were tentatively identified by mass spectral library search.

SAMPLE IDENTIFIER: 18607 COMPUCHEM® SAMPLE NUMBER: 84911

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
18.	N-NITROSODIMETHYLAMINE	BDL	10
28.	BIS (2-CHLOROETHYL) ETHER	BDL	-10
3B.	1,3-DICHLOROBENZENE	BDL	10
4B.	1,4-DICHLOROBENZENE	BDL	10
5B.	1,2-DICHLOROBENZENE	BDL	10
6B.	BIS (2-CHLOROISOPROPYL) ETHER	BDL	10
7B.	N-NITROSODI-N-PROPYLAMINE	BDL	10
8B.	HEXACHLOROETHANE	BDL	10
9B.	NITROBENZENE	BDL	10
108.	ISOPHORONE	BDL	10
11B.	BIS(2-CHLOROETHOXY) METHANE	BDL	10
128.	1,2,4-TRICHLOROBENZENE	BDL	10
13B.	NAPHTHALENE	BDL	10
148.	HEXACHLOROBUTADIENE	BDL	10
15B.	HEXACHLOROCYCLOPENTADIENE	BDL	10
168.	2-CHLORONAPHTHALENE	BDL	10
17B.	DIMETHYLPHTHALATE	BDL	10
18B.	ACENAPHTHYLENE	BDL	10
198.	2,6-DINITROTOLUENE	BDL	10
208.	ACENAPHTHENE	BDL	10
218.	2,4-DINITROTOLUENE	BDL	10
22B.	DIETHYLPHTHALATE	BDL	10
23B.	4-CHLOROPHENYL PHENYL ETHER	BDL	10
248.	FLUORENE	BDL	10
25B.	DIPHENYLAMINE (N-NITROSO)	BDL	10
26B.	1,2-DIPHENYLHYDRAZINE (AZOBENZENE)	BDL	10
278.	4-BROMOPHENYL PHENYL ETHER	BDL	10
28B.	HEXACHLOROBENZENE	BDL	10

(Continued)

R

B

.

SAMPLE IDENTIFIER: 18607 COMPUCHEM® SAMPLE NUMBER: 84911

29B.PHENANTHRENEBDL1030B.ANTHRACENEBDL1031B.DI-N-BUTYLPHTHALATEBDL1032B.FLUORANTHENEBDL1033B.PYRENEBDL1034B.PENZIDINEBDL50			CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
30B.ANTHRACENEDDL1031B.DI-N-BUTYLPHTHALATEBDL1032B.FLUORANTHENEBDL1033B.PYRENEBDL1034B.PENTIDINEBDL50	29B.	PHENANTHRENE	BDL BDI	10 10
31B.DI-N-BUTYLPHTHALATEBDL1032B.FLUORANTHENEBDL1033B.PYRENEBDL1034B.PENZIDINEBDL50	30B.	ANTHRACENE	BDI	10
32B.FLUORANTHENEBDL1033B.PYRENEBDL50	31B.	DI-N-BUTYLPHTHALATE	BDL	10
33B. PYRENE BDL 50	32B.	FLUORANTHENE	BDL	10
	33B.	PYRENE	BDL	50
34B. BENZIDINE BDI 10	34B.	BENZIDINE	BDL	10
35B. BUTYLBENZTLPHTHALATE BDL 20	35B.	BULYLBENZYLPHINALAIC	BDL	20
36B. 3,3'-DICHLOROBENZIDINE BDL 10	368.	3, 3'-DICHLURUDENZIDINE	BDL	10
3/B. BENZU (A) ANTIRACENE BDL 10	3/8.		BDL	10
38B. BIS(Z-EIHTLHEATL)PHINALATL BDL 10	388.	BIS(2-EINTLNEXTL)PHINALAIL	BDL	10
39B. CHRYSENE BDL 10	398.		BDL	10
40B. DI-N-OUTTLPHTRALATE BDL 10	408.		BDL	10
41B. BENZO(B)FLOORANTHENE BDL 10	418.	BENZO(K)FLUORANTHENE	BDL	10
42B. BENZU(K)FLUOKANTILAL BDL 10	428.		BDL	10
43B. BENZULA/PTRENC BDL 10	438.	BENZULA/PIKENC	BDL	10
44B. INDENO(1,2,5-C,D) FIGURE BDL 10	448.	DIDENJO(1,2,3-C,D)PINCHE	BDL	10
ACP RENZOIC H TIDERYI ENE BDL 10	450.	RENTOLC H TOPERVIENE	BDL	10

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	Control Range%
D5-Nitrobenzene	78	(41-120)
2-Fluorobiphenyl	74	(44-119)
D ₁₄ -Terphenyl	111	(33-128)
D10-Pyrene*	112	*

BDL=BELOW DETECTION LIMIT

*Advisory Surrogate; therefore no control range.

SAMPLE IDENTIFIER: 18607 COMPUCHEM® SAMPLE NUMBER: 84911

.

•

15 PEAK IDENTIFICATION - Base/Neutral

ł

l

H

Exclusive of any priority pollutants (specific to this analysis), surrogate standard, and internal standard peaks, no compounds greater than 10% of the closest internal standard were tentatively identified by mass spectral library search.

.

-

SAMPLE IDENTIFIER: 18614 COMPUCHEM® SAMPLE NUMBER: 84916

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
18.	N-NITROSODIMETHYLAMINE	BDL	10
2B.	BIS (2-CHLOROETHYL) ETHER	BDL	10
3B.	1,3-DICHLOROBENZENE	BDL	10
4B.	1,4-DICHLOROBENZENE	BDL	10
5B.	1,2-DICHLOROBENZENE	BDL	10
6B.	BIS (2-CHLOROISOPROPYL) ETHER	BDL	10
78.	N-NITROSODI-N-PROPYLAMINE	BUL	10
8B.	HEXACHLOROETHANE	BUL	10
98.	NITROBENZENE	BDL	10
108.	ISOPHORONE	BDL	10
118.	BIS(2-CHLUROETHUXY) METHANE	BUL	10
128.	1,2,4-TRICHLOROBENZENE	BDL	10
138.		BUL	10
140.		BDL	10
158.		BDL	10
100.		BDL	10
1/D. 100		BDL	10
100.		BOL	10
208	ACENADUTHENE	BDI	10
210.		BDI	10
228		BDL	10
23R	A_CHLOROPHENYL PHENYL FTHER	BDL	10
24B	FLUORENE	BDL	10
25B.	DIPHENYLAMINE (N-NITROSO)	BDL	10
26B	1.2-DIPHENYLHYDRAZINE (AZOBENZENE)	BDL	10
27B-	4-BROMOPHENYL PHENYL ETHER	BDL	10
28B.	HEXACHLOROBENZENE	BDL	10

(Continued)

(Page Two)

SAMPLE IDENTIFIER: 18614 COMPUCHEM® SAMPLE NUMBER: 84916

	X	CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
298. 308. 318. 328. 338. 358. 368. 358. 368. 378. 388. 398. 408. 418. 428. 438. 448. 458.	PHENANTHRENE ANTHRACENE DI-N-BUTYLPHTHALATE FLUORANTHENE PYRENE BENZIDINE BUTYLBENZYLPHTHALATE 3,3'-DICHLOROBENZIDINE BENZO(A)ANTHRACENE BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE DI-N-OCTYLPHTHALATE BENZO(B)FLUORANTHENE BENZO(A)PYRENE INDENO(1,2,3-C,D)PYRENE DIBENZO(A,H)ANTHRACENE	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	10 10 10 10 10 50 10 20 10 10 10 10 10 10 10 10 10 10 10
468.	DENLU(0, 1, 1) CENTERIE		

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	Control Range%
D ₅ -Nitrobenzene	78	(41-120)
2-Fluorobiphenyl	78	(44-119)
D ₁₄ -Terphenyl	119	(33-128)
D ₁₀ -Pyrene*	115	*

BDL=BELOW DETECTION LIMIT *Advisory Surrogate; therefore no control range.

			1 1	
8	4/9/1		35.	
	н н Ц	ta ta		1 h
	SAMP	ASSESSM RS 01	<u>হি</u>	they are
	SOND	RITY	2.7	DATE .
8	COMPOI	Pul	бĭ	ECTROS
	SHEET S PEAKO NT I F I EC			Ъ
	IS_DAIA			
	BASE1			
8	RESULTS RESULTS NOF TI	1.1	ידאן-	
ß	ICHEN DE SEARCH INTRATIO	IND NAME	DE, N-BI	
	LIBRARY D CONCE ANALYT	COMPOL	LFONAMI	
	STIMATE		NZENESL	
8	21 21		B	,0
	BC084916(CAS #	3622-84-2	1.94
	ILENAME	SCAN NUMBER	1034	. 888
ŝ	JATA F	ITEM		1

- - - •

ι.,

.....

.

CONTION, RETENTION TIME COMPATIBILITY (*) RS - REAS 01 - ISOM UK - UNKN

•

.

45

-.

•

SAMPLE IDENTIFIER: 18611 COMPUCHEM® SAMPLE NUMBER: 84914

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
18.	N-NITROSODIMETHYLAMINE	BDL	10
2B.	BIS (2-CHLOROETHYL) ETHER	BDL	10
3B.	1,3-DICHLOROBENZENE	BDL	10
4B.	1,4-DICHLOROBENZENE	BDL	10
5B.	1,2-DICHLOROBENZENE	BDL	10
68.	BIS (2-CHLOROISOPROPYL) ETHER	BDL	10
7B.	N-NITROSODI-N-PROPYLAMINE	BDL	10
88.	HEXACHLOROETHANE	BDL	. 10
9B.	NITROBENZENE	BDL	10
108.	ISOPHORONE	BDL	10
11B.	BIS(2-CHLOROETHOXY) METHANE	BDL	10
12B.	1,2,4-TRICHLOROBENZENE	BDL	10
13B.	NAPHTHALENE	BDL	10
148.	HEXACHLOROBUTADIENE	BDL	10
15B.	HEXACHLOROCYCLOPENTADIENE	BDL	10
16B.	2-CHLORONAPHTHALENE	BDL	10
17B.	DIMETHYLPHTHALATE	BDL	10
18B.	ACENAPHTHYLENE	BDL	10
19B.	2,6-DINITROTOLUENE	BDL	10
20B.	ACENAPHTHENE	BDL	10
21B.	2,4-DINITROTOLUENE	BDL	10
22B.	DIETHYLPHTHALATE	BDL	10
23B.	4-CHLOROPHENYL PHENYL ETHER	BDL	10
24B.	FLUORENE	BDL	10
25B.	DIPHENYLAMINE (N-NITROSO)	BDL	10
268.	1,2-DIPHENYLHYDRAZINE (AZOBENZENE)	BDL	10
27B.	4-BROMOPHENYL PHENYL ETHER	BDL	10
288.	HEXACHLOROBENZENE	BDL	10

(Continued)

ľ

BDL=BELOW DETECTION LIMIT

.

COMPOUND LIST -- BASE-NEUTRAL EXTRACTABLES -- (Page Two)

SAMPLE IDENTIFIER: 18611 COMPUCHEM® SAMPLE NUMBER: 84914

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
29B.	PHENANTHRENE	BDL	10
30B.	ANTHRACENE	BDL	10
31B.	DI-N-BUTYLPHTHALATE	BDL	10
32B.	FLUORANTHENE	BDL	10
33B.	PYRENE	BDL	10
34B.	BENZIDINE	BDL	50
35B.	BUTYLBENZYLPHTHALATE	BDL	10
36B.	3,3'-DICHLOROBENZIDINE	BDL	20
37B.	BENZO(A)ANTHRACENE	BDL	10
38B.	BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10
39B.	CHRYSENE	BDL	10
40B.	DI-N-OCTYLPHTHALATE	BDL	10
41B.	BENZO(B)FLUORANTHENE	BDL	10
42B.	BENZO(K)FLUORANTHENE	BDL	10
43B.	BENZO(A)PYRENE	BDL	10
44B.	INDENO(1,2,3-C,D)PYRENE	BDL	10
45B.	DIBENZO(A,H)ANTHRACENE	BDL	10
46B.	BENZO(G,H,I)PERYLENE	BDL	10

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	<u>Control Range</u> %
D5-Nitrobenzene	75	(41-120)
2-Fluorobiphenyl	76	(44-119)
D ₁₄ -Terphenyl	108	(33-128)
D ₁₀ -Pyrene*		*

BDL=BELOW DETECTION LIMIT

*Advisory Surrogate; therefore no control range

COMPUCHEM ORGANICS ANALYSIS DATA SHEET - -LIBRARY SEARCH RESULTS OF EXTRANEOUS PEAKS & ESTIMATED CONCENTRATION OF TENTATIVELY IDENTIFIED COMPOUNDS ANALYTICAL FRACTION: _____ Base/Neutral

-

DATA F	ILENAME:	BC084914C21				SAM	IPLE :	# 84914
	SCAN	1999-1990 - 1990 - 1990 -		%	ASS	ESSM	ENT*	ESTIMATED
ITEM	NUMBER	CAS #	COMPOUND NAME	PURITY	RS	10	UK	CONC.(ug/1)
1	1034	3622-84-2	Benzenesulfonamide, N-Butyl-	93.8		<u>x</u>		11
	1.000	40.00						

SPECTROSCOPIST EB

DATE 5/14/86

1

(*) RS - REASONABLE IDENTIFICATION, RETENTION TIME COMPATIBILITY

- OI ISOMER OR SIMILAR COMPOUND UK UNKNOWN, NOT IN NBS LIBRARY

.....

. .

SAMPLE IDENTIFIER: 18619 COMPUCHEM® SAMPLE NUMBER: 84919

			CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
1B.	N-NITROSODIMETHYLAMINE		BDL	10
2B.	BIS (2-CHLOROETHYL) ETHER		BDL	10
3B.	1,3-DICHLOROBENZENE		BDL	10
4B.	1,4-DICHLOROBENZENE		BDL	10
5B.	1,2-DICHLOROBENZENE		BDL	10
6B.	BIS (2-CHLOROISOPROPYL) ETHER		BDL	10
7B.	HEXACHLOROETHANE		BDL	10
8B.	N-NITROSODI-N-PROPYLAMINE		BDL	10
9B.	NITROBENZENE		BDL	10
10B.	ISOPHORONE		BDL	10
11B.	BIS(2-CHLOROETHOXY) METHANE		BDL	10
12B.	1,2,4-TRICHLOROBENZENE		BDL	10
13B.	NAPHTHALENE		BDL	10
14B.	HEXACHLOROBUTADIENE		. BDL	10
15B.	HEXACHLOROCYCLOPENTADIENE		BDL	10
16B.	2-CHLORONAPHTHALENE		BDL	10
17B.	DIMETHYLPHTHALATE		BDL	10
18B.	ACENAPHTHYLENE		BDL	10
19B.	2,6-DINITROTOLUENE		BDL	10
20B.	ACENAPHTHENE		BDL	10
218.	2,4-DINITROTOLUENE		BDL	10
22B.	DIETHYLPHTHALATE		BDL	10
23B.	FLUORENE		BDL	10
24B.	4-CHLOROPHENYL PHENYL ETHER		BDL	10
25B.	DIPHENYLAMINE (N-NITROSO)		BDL	10
26B.	1,2-DIPHENYLHYDRAZINE (AZOBENZENE)		BDL	10
278.	4-BROMOPHENYL PHENYL ETHER		BDL	10
288.	HEXACHLOROBENZENE		BDL	10

(Continued)

ł

1

-

43

- -

SAMPLE IDENTIFIER: 18619 COMPUCHEM® SAMPLE NUMBER: 84919

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)	, ,
29B.	PHENANTHRENE	BDL	10	
30B.	ANTHRACENE	BDL	10	
31B.	DI-N-BUTYLPHTHALATE	BDL	10	
32B.	FLUORANTHENE	BDL	10	
33B.	BENZIDINE	BDL	50	
34B.	PYRENE	BDL	10	
35B.	BUTYLBENZYLPHTHALATE	BDL	10	
36B.	BENZO(A)ANTHRACENE	BDL	10	
37B.	3,3'-DICHLOROBENZIDINE	BDL	20	
38B.	CHRYSENE	BDL	10	
39B.	BIS(2-ETHYLHEXYL)PHTHALATE	BDL	、 10	
40B.	DI-N-OCTYLPHTHALATE	BDL	10	
41B.	BENZO(B)FLUORANTHENE	BDL	10	
42B.	BENZO(K)FLUORANTHENE	BDL	10	
43B.	BENZO(A)PYRENE	BDL	10	
44B.	INDENO(1,2,3-C,D)PYRENE	BDL	10	
45B.	DIBENZO(A,H)ANTHRACENE	BDL	10	
468.	BENZO(G,H,I)PERYLENE	BDL	10	

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	Control Range%
d5-Nitrobenzene	76	(41-120)
2-Fluorobiphenyl	69	(44-119)
d _{l4} -Terphenyl	115	(33-128)
d ₁₀ -Pyrene	106	(40-130)

BDL=BELOW DETECTION LIMIT

, RETENTION TIME COMPATIBILITY (*) 820 111 111 111 111

. .

SAMPLE IDENTIFIER: 18622 COMPUCHEM® SAMPLE NUMBER: 84921

		CONCEN	ITRATION	DETECTION LIMIT (UG/L)	
1B.	N-NITROSODIMETHYLAMINE		BDL	10	
2B.	BIS (2-CHLOROETHYL) ETHER		BDL	10	
3B.	1,3-DICHLOROBENZENE		BDL	10	
4B.	1,4-DICHLOROBENZENE		BDL	10	
5B.	1,2-DICHLOROBENZENE		BDL	10	
6B.	BIS (2-CHLOROISOPROPYL) ETHER		BDL	10	
7B.	HEXACHLOROETHANE	22		10	
8B.	N-NITROSODI-N-PROPYLAMINE		BDL	10	
9B.	NITROBENZENE		BDL	10	
10B.	ISOPHORONE		BDL	10	
118.	BIS(2-CHLOROETHOXY) METHANE		BDL	10	
12B.	1,2,4-TRICHLOROBENZENE		BDL	10	
13B.	NAPHTHALENE	50	100100	10	
14B.	HEXACHLOROBUTADIENE		BDL	10	
15B.	HEXACHLOROCYCLOPENTADIENE		BDL	10	
168.	2-CHLORONAPHTHALENE		BDL	10	
17B.	DIMETHYLPHTHALATE		BDL	10	
18B.	ACENAPHTHYLENE		BDL	10	
19B.	2,6-DINITROTOLUENE		BDL	10	
20B.	ACENAPHTHENE	73		10	
21B.	2,4-DINITROTOLUENE		BDL	10	
22B.	DIETHYLPHTHALATE	(a)(1)(1)	BDL	10	
23B.	FLUORENE	47	120.00000	10	
24B.	4-CHLOROPHENYL PHENYL ETHER		BDL	10	
25B.	DIPHENYLAMINE (N-NITROSO)		BDL	10	
26B.	1,2-DIPHENYLHYDRAZINE (AZOBENZENE)		BDL	10	
27B.	4-BROMOPHENYL PHENYL ETHER		BDL	10	
28B.	HEXACHLOROBENZENE		BDL	10	

(Continued)

19

BDL=BELOW DETECTION LIMIT

. .

SAMP	LE	IDE	NTIF	IER:	18622
COMPUCHEM®	SAN	MPLE	NUM	BER:	84921

		CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
29B.	PHENANTHRENE	33	10
30B.	ANTHRACENE	BDL	10
31B.	DI-N-BUTYLPHTHALATE	BDL	10
32B.	FLUORANTHENE	BDL	10
33B.	PYRENE	BDL	10
34B.	BENZIDINE	BDL	50
35B.	BUTYLBENZYLPHTHALATE	BDL	10
36B.	3,3'-DICHLOROBENZIDINE	BDL	20
37B.	BENZO(A)ANTHRACENE	BDL	10
38B.	BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10
39B.	CHRYSENE	BDL	10
40B.	DI-N-OCTYLPHTHALATE	BDL	10
41B.	BENZO(B)FLUORANTHENE	BDL	10
42B.	BENZO(K)FLUORANTHENE	BDL	10
43B.	BENZO(A)PYRENE	BDL	10
44B.	INDENO(1,2,3-C,D)PYRENE	BDL	10
45B.	DIBENZO(A,H)ANTHRACENE	BDL	10
46B.	BENZO(G,H,I)PERYLENE	BDL	10

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	Control Range%
D5-Nitrobenzene	67	(41-120)
2-Fluorobiphenyl	54	(44-119)
D ₁₄ -Terphenyl	67	(33-128)
D ₁₀ -Pyrene*	62	*

BDL=BELOW DETECTION LIMIT

.

*Advisory Surrogate; therefore no control range

COMPUCHEM ORGANICS ANALYSIS DATA SHEET LIBRARY SEARCH RESULTS OF EXTRANEOUS PEAKS & ESTIMATED CONCENTRATION OF TENTATIVELY IDENTIFIED COMPOUNDS ANALYTICAL FRACTION: Base/Neutral____

SAMPLE # 84921 DATA FILENAME: BC84921C21 % ASSESSMENT* ESTIMATED SCAN RS OI UK CONC. (ug/1) PURITY COMPOUND NAME ITEM NUMBER CAS # 53 90.3 X 523 62-53-3 Benzenamine 1 1

	2	617	1758-88-9	Benzene,2-Ethy1-1,4-Dimethy1-	87.6	<u> </u>	110
n	3	644	1758-88-9	Benzene,2-Ethy1-1,4-Dimethy1-	87.6	<u> </u>	82
1	4	768	91-57-6	Naphthalene,2-Methyl-	83.7	<u> </u>	420
	5	779	91-57-6	Naphthalene,2-Methyl-	88.5	<u> </u>	110
	6	821	92-52-4	l,l'-Biphenyl	83.7	<u> </u>	340
	7	862	629-78-7	Heptadecane	83.6	<u> </u>	63
	8	883	629-78-7	Heptadecane	70.9	<u> </u>	230
	9	902	132-64-9	Dibenzofuran	79.4	<u> </u>	50
ľ	10	937	629-78-7	Heptadecane	72.5	<u> </u>	120
	11	988	629-78-7	Heptadecane	73.5	<u> </u>	150
	12	1118	19314-74-0	4,2-Cresoticacid,6-Methoxy-,Bimol.	43.3	<u> </u>	450
	13	1136	713-46-2	Ester, Methylester, Ethanol, 2-[4-(1, 1-Dimethylethyl)	68.2	<u> </u>	250
	14	1234	27193-86-8	Phenol,Dodecyl-	36.4	<u> </u>	200
ľ	15	1280	57-11-4	Octadecanoicacid	57.0	X	360

1.000	40.00	SPECTROSCOPIST	ESB
		DATE	05/14/86

(*) RS - REASONABLE IDENTIFICATION, RETENTION TIME COMPATIBILITY

OI - ISOMER OR SIMILAR COMPOUND

UK - UNKNOWN, NOT IN NBS LIBRARY

COMPOUND LIST -- BASE-NEUTRAL EXTRACTABLES

5**4**.)

-

-

SAMPLE IDENTIFIER: 18627 COMPUCHEM® SAMPLE NUMBER: 84910

-

		CONCENTRATION (UG/KG)	DETECTION† LIMIT (UG/KG)
1B.	N-NITROSODIMETHYLAMINE	BDL	3300
2B.	BIS (2-CHLOROETHYL) ETHER	BDL	3300
3B.	1,3-DICHLOROBENZENE	BDL	3300
4B.	1,4-DICHLOROBENZENE	BDL	3300
5B.	1,2-DICHLOROBENZENE	BDL	3300
6B.	BIS (2-CHLOROISOPROPYL) ETHER	BDL	3300
7B.	N-NITROSODI-N-PROPYLAMINE	BDL	3300
8B.	HEXACHLOROETHANE	BDL	3300
9B.	NITROBENZENE	BDL	3300
10B.	ISOPHORONE	BDL	3300
11B.	BIS(2-CHLOROETHOXY) METHANE	BDL	3300
12B.	1,2,4-TRICHLOROBENZENE	16000	3300
13B.	NAPHTHALENE	10000	3300
14B.	HEXACHLOROBUTADIENE	BDL	3300
158.	HEXACHLOROCYCLOPENTADIENE	BDL	3300
16B.	2-CHLORONAPHTHALENE	BDL	3300
17B.	DIMETHYLPHTHALATE	BDL	3300
188.	ACENAPHTHYLENE	BDL	3300
19B.	2,6-DINITROTOLUENE	BDL	3300
208.	ACENAPHTHENE	8600	3300
21B.	2,4-DINITROTOLUENE	BDL	3300
22B.	DIETHYLPHTHALATE	BDL	3300
23B.	4-CHLOROPHENYL PHENYL ETHER	BDL	3300
24B.	FLUORENE	3400	3300
25B.	DIPHENYLAMINE (N-NITROSO)	BDL	3300
268.	1,2-DIPHENYLHYDRAZINE (AZOBENZENE)	BDL	3300
27B.	4-BROMOPHENYL PHENYL ETHER	BDL	3300
28B.	HEXACHLOROBENZENE	BDL	3300

(Continued)

BDL=BELOW DETECTION LIMIT tSee Quality Assurance Notice - #1

COMPOUND LIST -- BASE-NEUTRAL EXTRACTABLES

- -

SAMPLE IDENTIFIER: 18627 COMPUCHEM® SAMPLE NUMBER: 84910

		CONCENTRATION (UG/KG)	DETECTION† LIMIT (UG/KG)
298.	PHENANTHRENE	BDL	3300
30B	ANTHRACENE	BDL	3300
318.	DI-N-BUTYLPHTHALATE	BDL	3300
32B	FLUORANTHENE	BDL	3300
33B.	PYRENE	BDL	3300
34B.	BENZIDINE	BDL	17000
35B.	BUTYLBENZYLPHTHALATE	BDL	3300
36B.	3.3'-DICHLOROBENZIDINE	BDL	6600
378.	BENZO(A)ANTHRACENE	BDL	3300
38B.	BIS(2-ETHYLHEXYL)PHTHALATE	BDL	3300
39B.	CHRYSENE	BDL	3300
40B.	DI-N-OCTYLPHTHALATE	BDL	3300
41B.	BENZO(B)FLUORANTHENE	BDL	3300
42B.	BENZO(K)FLUORANTHENE	BDL	3300
43B.	BENZO(A)PYRENE	BDL	3300
44B.	INDENO(1,2,3-C,D)PYRENE	BDL	3300
45B.	DIBENZO(A, H)ANTHRACENE	BDL	3300
46B.	BENZO(G,H,I)PERYLENE	BDL	3300

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	<u>Control Range</u> %
D5-Nitrobenzene	BDL†	(20-140)
2-Fluorobiphenyl	BDLt	(20-140)
D ₁₄ -Terphenyl	BDL†	(20-150)
D ₁₀ -Pyrene*	BDLt	*

BDL=BELOW DETECTION LIMIT *Advisory Surrogate; therefore no control range. †See Quality Assurance Notice - #1

<u>Suffio</u>		7700.	11000.	3366.	2200.	1400.	16000.	6500.	23000.	1560.	1300.	2166.	4766.	7600.	7000.	10000.	
SAMPLE #	ASSESSMENT* RS 01 UK				ي ا ا					口 図 口		ם 		 			TE
TED COMPOUNDS	PURITY	78.0	84.7	86.8	70.1	83.5	86.4	90.1	88.9	7.97	83.6	84.1	81.5	75.3	76.8	71.3	SPECTR0SC0P1S DAT
CDMPUCHEM_DRGANICS_ANALYSIS_DATA_SUE LIBRARY SEARCH RESULTS OF EXTRANEOUS PE ESTIMATED CONCENTRATION OF TENTATIVELY IDENTIF ANALYTICAL FRACTION: BASEI	COMPOUND NAME	BENZENE, 2-ETHYL-1, 4-DIMETHYL-	BENZENE, 2-ETHYL-1, 4-DIMETHYL-	BENZENE, 2-ETHYL-1,4-DIMETHYL-	1,4-CYCLOHEXADIENE,3-ETHENYL-1,2-DIMETHYL-	ISOQUINCLINE C (1) -)	NAPHTHALENE, 2-METHYL-	NAPHTHALENE, 2-METHYL-	1,1'-BIPHENYL	HEPTADECANE	NAPHTHALENE, 2, 3-DIMETHYL-	NAPHTHALENE, 1, 2-DIMETHYL-	DIBENZOFURAN	HEPTADECANE	HEPTADECANE	PHENOL, 4-NONYL-	
BD084910A21	CAS #	1758-88-9	1758-88-9	1758-88-9	62338-57-2	119-65-3	91-57-6	91-57-6	92-52-4	629-78-7	581-40-8	573-98-8	132-64-9	629-78-7	629-78-7	104-40-5	40.09
FILENAME:	SCAN	607	613	640	664 (724	764	275	816	822	832	841	858	533	984	396	3.888
DATA	ITEM		3	ო	4	S	ە	~	00	თ	10	11	12	13	14	15	33

CATION, RETENTION TIME COMPATIBILITY COMPOUND (*) RS - REASONABLE 01 - ISOMER OR SI UK - UNKNOWN, NO

BASE-NEUTRAL EXTRACTABLES

- -

COMPOUND LIST

.

SAMPLE IDENTIFIER: 18623 COMPUCHEM® SAMPLE NUMBER: 84907

		CONCEN (UG,	FRATION /KG)	DETECTION† LIMIT (UG/KG)
1 B	N-NTTROSODIMETHYLAMINE		BDL	1700
2B.	BIS (2-CHLOROETHYL) ETHER		BDL	1700
3B.	1.3-DICHLOROBENZENE	3200		1700
4B.	1.4-DICHLOROBENZENE	9100		1700
58.	1.2-DICHLOROBENZENE	5700		1700
6B.	BIS (2-CHLOROISOPROPYL) ETHER		BDL	1700
7B.	N-NITROSODI-N-PROPYLAMINE		BDL	1700
8B.	HEXACHLOROETHANE		BDL	1700
9B.	NITROBENZENE		BDL	1700
10B.	ISOPHORONE		BDL	1700
118.	BIS(2-CHLOROETHOXY) METHANE		BDL	1700
12B.	1,2,4-TRICHLOROBENZENE	61000		1700
13B.	NAPHTHALENE	8700		1700
14B.	HEXACHLOROBUTADIENE		BDL	1700
15B.	HEXACHLOROCYCLOPENTADIENE		BDL	1700
16B.	2-CHLORONAPHTHALENE		BDL	1700
17B.	DIMETHYLPHTHALATE		BDL	1700
18B.	ACENAPHTHYLENE		BDL	1700
19B.	2,6-DINITROTOLUENE		BDL	1700
20B.	ACENAPHTHENE	5300		1700
21B.	2,4-DINITROTOLUENE		BDL	1700
22B.	DIETHYLPHTHALATE		BDL	1700
23B.	4-CHLOROPHENYL PHENYL ETHER		BDL	1700
24B.	FLUORENE		BDL	1700
25B.	DIPHENYLAMINE (N-NITROSO)		BDL	1700
26B.	1,2-DIPHENYLHYDRAZINE (AZOBENZENE)		BDL	1700
27B.	4-BROMOPHENYL PHENYL ETHER		BDL	1700
28B.	HEXACHLOROBENZENE	á:	BDL	1700

(Continued)

1

BDL=BELOW DETECTION LIMIT

tSample analyzed using a 5:1 dilution, thus the higher than normal detection limits.

(**1**2)

COMPOUND LIST -- BASE-NEUTRAL EXTRACTABLES

. .

SAMPLE IDENTIFIER: 18623 COMPUCHEM® SAMPLE NUMBER: 84907

		CONCENTRATION (UG/KG)	DETECTION† LIMIT (UG/KG)
20B	PHENANTHRENE	BDL	1700
208	ANTHRACENE	BDL	1700
218		BDL	1700
320.	FLUORANTHENE	BDL	1700
220.	DVDENE	BDL	1700
248	RENTIDINE	BDL	8300
34D.	BUTYI BENZYI PHTHALATE	BDL	1700
36B	3 3'-DICHLOROBENZIDINE	BDL	3300
378	BEN7O(A)ANTHRACENE	BDL	1700
328R	RIS(2-FTHYLHEXYL)PHTHALATE	BDL	1700
30D.	CHRYSENE	BDL	1700
10B	DI_N_OCTYL PHTHALATE	BDL	1700
40D.	BENZO(B)FLUORANTHENE	BDL	1700
41D.	BENZO(K) FLUORANTHENE	BDL	1700
43B.	BENZO(A)PYRENE	BDL	1700
44B	INDENO(1,2,3-C,D)PYRENE	BDL	1700
45B.	DIBENZO(A.H)ANTHRACENE	BDL	1700
46B.	BENZO(G.H.I)PERYLENE	BDL	1700

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

	%Recovery	Control Range%
D5-Nitrobenzene	74	(20-140)
2-Fluorobiphenyl	77	(20-140)
D ₁₄ -Terphenyl	85	(20-150)
D10-Pyrene*	82	*

BDL=BELOW DETECTION LIMIT *Advisory Surrogate; therefore no control range.

tSample analyzed using a 5:1 dilution, thus the higher than normal detection limits.

SAMPLE # 24907	ESTIMATED CONC.	ASSESSMENT* IN UG PER RS 01 UK D PI D D D D D D D D D D D D D D D D D	386.	5480.						200 ⁶	200 7400.		 2 2		230. 230.	2380 2500		aluts -
COMPUCHER_ORGANICS_ANALYSIS_DBIA_SHEET LIBRARY SEARCH RESULTS OF EXTRANEOUS PEAKS & FSTIMATED CONFENTRATION OF TENTATIVELY IDENTIFIED COMPOUNDS	ANALYTICAL FRACTION: BASEI	COMPOUND NAME	BENZENE, 2-ETHYL-1, 4-DIMETHYL- 86.5	BENZENE,1,2,3,5-TETRAMETHYL- 82.8	BENZENE, 1, 2, 3-TRICHLORO- 85.9	NAPHTHALENE, 2-METHYL- 89.7	NAPHTHALENE, 2-METHYL- 88.3	1,1'-BIPHENYL 88.3	HEPTADECANE 75.8	PHENOL, 4-(2,2,3,3-TETRAMETHYLBUTYL)- 84.5	HEPTADECANE 72.1	PHENOL, 4-NONYL- 73.1	PHENOL, 4-(2,2,3,3-TETRAMETHYLBUTYL)- 62.9	DODECANE, 1, 2-DIBROMO- 42.6	PENTALENE, OCTAHYDRO-1-(2-OCTYLDECYL)-	PENTALENE, OCTAHYDR0-1-(2-OCTYLDECYL)- 50.5	PENTALENE, OCTAHYDRO-1-(2-OCTYLDECYL)-	SPECTROSCOPIS
BD084307A21		CAS #	1758-88-9	527-53-7	87-61-6	91-22-16	91-57-6	92-52-4	629-78-7	54932-78-4	629-78-7	104-40-5	54932-78-4	55334-42-4	55401-65-5	55401-65-5	55401-65-5	40.00
I FILENAME:		I NUMBER	610	5 638 ·	307 8	1 761	5 772	813	930	3 939	1981	993	1 1012	2 1076	3 1312	1 1380	5 1444	166.008
DATA		ITEM		2	(7)	4	כת	ω	~	ω	U	16	H	1		4		-

l

(CATION, RETENTION TIME COMPATIBILITY COMPOUND REASONABLE ID ISOMER OR SIM (*) RS - REASON 01 - ISOMER UK - UNKNOW

•

SAMPLE IDENTIFIER: 18630A COMPUCHEM® SAMPLE NUMBER: 84922 - -

.

.

			NTRATION	DETECTION LIMIT (UG/L)
1B. 2B. 3B. 4B. 5B. 6B. 7B. 8B. 9B. 10B. 11B. 12B. 13B. 14B. 15B. 16B. 17B.	N-NITROSODIMETHYLAMINE BIS (2-CHLOROETHYL) ETHER 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE BIS (2-CHLOROBENZENE BIS (2-CHLOROISOPROPYL) ETHER HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE NITROBENZENE ISOPHORONE BIS(2-CHLOROETHOXY) METHANE 1,2,4-TRICHLOROBENZENE NAPHTHALENE HEXACHLOROBUTADIENE HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE 2-CHLORONAPHTHALENE DIMETHYLPHTHALATE	<u>CONCEM</u> (UC 34	ITRATION BDL BDL BDL BDL BDL BDL BDL BDL	LIMIT (UG/L) 10 10 10 10 10 10 10 10 10 10 10 10 10
18B. 19B. 20B.	ACENAPHTHYLENE 2,6-DINITROTOLUENE ACENAPHTHENE 2.4-DINITROTOLUENE		BDL BDL BDL BDL	10 10 10 10
21B. 22B. 23B. 24B. 25B. 26B. 27B.	2,4-DINITROTOLOLNE DIETHYLPHTHALATE FLUORENE 4-CHLOROPHENYL PHENYL ETHER DIPHENYLAMINE (N-NITROSO) 1,2-DIPHENYLHYDRAZINE (AZOBENZENE) 4-BROMOPHENYL PHENYL ETHER		BDL BDL BDL BDL BDL BDL	10 10 10 10 10 10
28B.	HEXACHLOROBENZENE		BDL	10

(Continued)

B

.

.

BDL=BELOW DETECTION LIMIT

- -

SAMPLE IDENTIFIER: 18630A COMPUCHEM® SAMPLE NUMBER: 84922

			CONCENTRATION (UG/L)	DETECTION LIMIT (UG/L)
29B.	PHENANTHRENE		BDL	10
30B.	ANTHRACENE		BDL	10
31B.	DI-N-BUTYLPHTHALATE		BDL	10
32B.	FLUORANTHENE		BDL	10
33B.	PYRENE		BDL	10
34B.	BENZIDINE		BDL	50
35B.	BUTYLBENZYLPHTHALATE		BDL	10
368.	3,3'-DICHLOROBENZIDINE		BDL	20
37B.	BENZO(A)ANTHRACENE		BDL	10
38B.	BIS(2-ETHYLHEXYL)PHTHALATE		BDL	10
39B.	CHRYSENE		BDL	10
40B.	DI-N-OCTYLPHTHALATE	(.)	BDL	10
41B.	BENZO(B)FLUORANTHENE		BDL	10
42B.	BENZO(K)FLUORANTHENE		BDL	10
43B.	BENZO(A)PYRENE		BDL	10
44B.	INDENO(1,2,3-C,D)PYRENE		BDL	10
45B.	DIBENZO(A,H)ANTHRACENE		BDL	10
46B.	BENZO(G,H,I)PERYLENE		BDL	10

<u>Surrogates Recoveries</u> - Introduced at the beginning of the extraction, surrogate standards are deuterated and/or select compounds that analytically mimic the response of certain analytes. Known concentrations of these surrogates are added to the sample and a percent recovery is calculated. This recovery acts as a barometer of extraction efficiency and analytical response for the individual sample.

> 10 (10) 14 (10)

> > • • * * · ·

	%Recovery	Control Range%
D5-Nitrobenzene	71	(41-120)
2-Fluorobiphenyl	64	(44-119)
D ₁₄ -Terphenyl	76	(33-128)
D ₁₀ -Pyrene*	76	*

BDL=BELOW DETECTION LIMIT

I

.

*Advisory Surrogate; therefore no control range