Via Overnight Delivery

April 24, 2006

Department of Environmental Protection Western Regional Office 436 Dwight Street Suite 500 Springfield, Massachusetts 01103

RE: Phase I – Initial Site Investigation Sunoco Station 88-90 South Maple Street Westfield, Massachusetts DUNS: 0374-5593 MA DEP RTN: 1-15718 CEA File No. 5795-05

To Whom It May Concern:

On behalf of Sunoco, Inc. (R&M), Corporate Environmental Advisors, Inc. (CEA) presents this Phase I - Initial Site Investigation Report (Phase I) for the release identified at 88-90 South Maple Street in Westfield, Massachusetts (site).

CORPORATE ENVIRONMENTAL ADVISORS, INC.

This Phase I Report has been prepared following the 72-hour Reportable Condition identified on April 12, 2005 upon obtaining knowledge of tightness test results for dispenser piping associated with an underground storage tank (UST). Based on available information provided by Sunoco, the dispenser lines were placed under pressure for tightness testing on April 12, 2005 and the regular unleaded line failed the tightness test. This Threat of Release condition was verbally reported to the Massachusetts Department of Environmental Protection (MA DEP) at 9:40 a.m. on April 15, 2005 within 72-hours of obtaining knowledge of the reporting condition pursuant to 310 CMR 40.0314(2) of the MCP.

In accordance with 310 CMR 40.0400 of the MCP, this Phase I report has been prepared to document information in order to facilitate the evaluation of impact by oil and/or hazardous materials (OHM) at the site. In addition, the Phase I was prepared to sufficiently meet the requirements of the Numerical Ranking System and Tier Classification process described in 310 CMR 40.0500 of the Massachusetts Contingency Plan (MCP).

If you have any questions or comments, please do not hesitate to contact our office.

Sincerely, Corporate Environmental Advisors, Inc.

Patrick J. Brown Environmental Scientist I

Enclosure: Phase I Report

CC1

Scott E. VanderSea, LSP, LEP Principal Hydrogeologist

William J. Brochu, Sunoco, Inc. (R&M), 4 Bellows Rd., P.O. Box 1262, Westborough, MA 01581 Yvonne M. Monti, Sunoco, Inc. (R&M), 350 Eagleview Blvd., Suite 300, Exton, PA 19341

www.cea-inc.com

CORPORATE HEADQUARTERS: HARTWELL BUSINESS PARK # 127 HARTWELL STREET # WEST BOYLSTON, MA 01583 # PHONE: 508-835-8822 # FAX: 508-835-8812

Solutions Since 1985

PHASE I -INITIAL SITE INVESTIGATION Sunoco Station 88-90 South Maple Street Westfield, Massachusetts DUNS: 0374-5593 RTN 1-15718

April 24, 2006

Prepared for: Sunoco, Inc. (R & M) 4 Bellows Road P.O. Box 1262 Westborough, Massachusetts 01581

Prepared by: Corporate Environmental Advisors, Inc. 127 Hartwell Street West Boylston, Massachusetts 01583 (508) 835-8822

CEA File #5795-05

,

www.cea-inc.com

CORPORATE HEADQUARTERS: HARTWELL BUSINESS PARK • 127 HARTWELL STREET • WEST BOYLSTON, MA 01583 • PHONE: 50B-835-8822 • FAX: 50B-835-8812 Solutions Since 1985

TABLE OF CONTENTS

1.0 INT	RODUCTION1
2.0 REL	EVANT CONTACTS1
3.0 GEN	ERAL SITE INFORMATION2
3.1 SI	E DESCRIPTION
3.2 SU	RROUNDING LAND USE AND POTENTIAL RECEPTORS
4.0 ENV	IRONMENTAL RECORD REVIEW SUMMARY2
4.1 Un	IITED STATES ENVIRONMENTAL PROTECTION AGENCY
4.1.1	National Priorities List
4.1.2	Comprehensive Environmental Response, Compensation, and Liability Information System 3
4.1.3	Resource Conservation and Recovery Act
4.1.4	Emergency Response Notification System
4.2 M	ASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION
4.2.1	State Disposal Sites
4.2.2	State Spills
4.2.3	Registered Underground Storage Tanks4
4.2.4	Solid Waste Landfills
5.0 DISI	POSAL SITE HISTORY
5.1 Ov	VNER AND OPERATIONS HISTORY4
5.2 RE	LEASE HISTORY
5.2.1	RTN 1-0489
5.2.2	RTN 1-157186
5.2.3	120-day Reporting Condition
5.3 OI	L & HAZARDOUS MATERIAL USE AND STORAGE HISTORY
5.4 W.	ASTE MANAGEMENT HISTORY
6.0 IRA	ACTIVITIES
6.1 EL	EVATION SURVEY
6.2 GF	OUNDWATER GAUGING
6.3 GF	OUNDWATER FLOW DIRECTION
6.4 GF	OUNDWATER SAMPLING AND ANALYSIS
6.4.1	Groundwater Analytical Results: August 1, 20058
6.4.2	Groundwater Analytical Results: February 7, 20068
6.4.3	Groundwater Analytical Results: March 6, 20068
6.5 SO	IL EXCAVATION APRIL 2005
6.5.1	Post-Excavation Soil Sampling and Analysis

TABLE OF CONTENTS (cont'd)

.

ć

,

6.5.2 Soil analytical Results
6.6 DISPENSER PIPING REMOVAL
6.7 POST-EXCAVATION SOIL SAMPLING AND ANALYSIS
6.8 POST-EXCAVATION SOIL ANALYTICAL RESULTS
7.0 SITE HYDROGEOLOGIC CHARACTERISTICS
7.1 SITE GEOLOGY
7.2 GROUNDWATER HYDROGEOLOGY11
8.0 MCP REPORTING & METHOD I RISK CHARACTERIZATION CATEGORIES
8.1 MCP REPORTING CATEGORIES
8.1.1 Reporting Categories for Soil
8.1.2 Reporting Category for Groundwater
8.2 METHOD 1 RISK CHARACTERIZATION SOIL AND GROUNDWATER CATEGORIES
8.2.1 Applicable Method 1 Risk Characterization Soil Categories
8.2.2 Applicable Method 1 Risk Characterization Groundwater Categories
9.0 NATURE AND EXTENT OF CONTAMINATION14
9.1 EXTENT OF OHM IN SOIL
9.2 EXTENT OF OHM IN GROUNDWATER
10.0 MIGRATION PATHWAYS AND EXPOSURE POTENTIAL
10.1 Soil
10.2 GROUNDWATER AND SURFACE WATER15
10.3 AIR16
10.3 AIR
10.3 AIR
10.3AIR
10.3AIR
10.3AIR.1611.0IMMEDIATE RESPONSE ACTION EVALUATION.1611.12-HOUR AND 72-HOUR REPORTABLE CONDITIONS1611.2CONDITION OF SUBSTANTIAL RELEASE MIGRATION.1711.3IMMINENT HAZARD CONDITIONS.1712.0TIER CLASSIFICATION AND PHASE I OUTCOME17
10.3AIR
10.3AIR
10.3AIR

TABLE OF CONTENTS (cont'd)

FIGURES

Figure 1	Site Locus
Figure 2	Site Layout with Groundwater Contours
Figure 2A	Site Layout (April 2005 Excavation)
Figure 2B	Excavation Enlargement (11-12/2005 Excavation)
Figure 3	DEP Site Scoring Map

TABLES

Table 1	Summary of State Disposal Sites
Table 2	Summary of UST Storage
Table 3	Summary of Groundwater Analytical Results: VPH
Table 4	Summary of Groundwater Analytical Results: VOCs
Table 5	Summary of Groundwater Analytical Results: EPH
Table 6	Summary of Groundwater Analytical Results: Metals
Table 7	Summary of Soil Analytical Results: VPH
Table 8	Summary of Soil Analytical Results: PCBs

APPENDICES

- Appendix A: Site Photographs
- Appendix B: Environmental FirstSearch Report
- Appendix C: Sanborn Fire Insurance Maps
- Appendix D: Groundwater Gauging
- Appendix E: Groundwater Analytical Reports
- Appendix F: Soil Analytical Report
- Appendix G: Numerical Ranking System Scoresheet

.

Appendix H: Public Notification Letters

PHASE I -INITIAL SITE INVESTIGATION Sunoco Station 88-90 South Maple Street Westfield, Massachusetts DUNS: 0374-5593 RTN 1-15718

1.0 INTRODUCTION

On behalf of Sunoco, Inc. (R&M), Corporate Environmental Advisors, Inc. (CEA) presents this Phase I -Initial Site Investigation Report (Phase I) for the release identified at 88-90 South Maple Street in Westfield, Massachusetts (site). This Phase I Report has been prepared following the 72-hour Reportable Condition identified on April 12, 2005 upon obtaining knowledge of tightness test results for dispenser piping associated with an underground storage tank (UST). Based on available information provided by Sunoco, the dispenser lines were placed under pressure for tightness testing on April 12, 2005 and the regular unleaded line failed the tightness test. This Threat of Release condition was verbally reported to the Massachusetts Department of Environmental Protection (MA DEP) at 9:40 a.m. on April 15, 2005 within 72-hours of obtaining knowledge of the reporting condition pursuant to 310 CMR 40.0314(2) of the MCP.

In accordance with 310 CMR 40.0400 of the MCP, this Phase I report has been prepared to document information in order to facilitate the evaluation of impact by oil and/or hazardous materials (OHM) at the site. In addition, the Phase I was prepared to sufficiently meet the requirements of the Numerical Ranking System and Tier Classification process described in 310 CMR 40.0500 of the Massachusetts Contingency Plan (MCP).

2.0 RELEVANT CONTACTS

The entity assuming responsibility for evaluating the impact posed by oil and/or hazardous material (OHM) at the disposal site is:

Mr. William Brochu Sunoco, Inc. (R&M) 4 Bellows Road, P.O. Box 1262 Westborough, Massachusetts 01581 Telephone Number: (800) 777-6444 ext 1357

The Licensed Site Professional (LSP) for the site is:

Mr. Scott E. VanderSea, LEP, LSP #3978 Corporate Environmental Advisors, Inc. 127 Hartwell Street West Boylston, Massachusetts 01583 Telephone Number: (508) 835-8822

3.0 GENERAL SITE INFORMATION

3.1 Site Description

The site, located on South Maple Street in Westfield, Massachusetts, is occupied by a Sunoco retail gasoline sales station and a car wash. The property is 56,628 square feet and is identified by the Westfield Tax Assessor as Map 39, Lot 3. The site is developed by a 1,728-square foot, one story, concrete cinderblock building, built in 1988 and consisting of convenience store retail sales floor, offices, storage space, and restrooms. Also located to the rear of the site is a 3,120-square foot one story, concrete cinderblock building built in 1985 and consisting of an automated carwash. There are six gasoline dispenser islands at the station, piped to three 10,000-gallon underground storage tanks (USTs), located on the southern portion of the property behind the convenience store building.

Figure 1, Site Locus, illustrates the geographic location of the site relative to the surrounding topography and surface drainage area. Figure 2, Site Layout with Groundwater Contours, Figure 2A, Site Layout (April 2005 Excavation) and Figure 2B Excavation Enlargement (11-12/2005), depicts the approximate locations of existing site structures, and pertinent features.

Overhead telephone utilities enter the Site from South Maple Street. An underground electric line runs from the street to a transformer on the eastern side of the property then to the convenience store building. The station building is heated with natural gas. The Site and surrounding properties are supplied with municipal water and sewer service provided by the City of Westfield. Water service and the sewer line enter the site from South Maple Street. Stormwater runoff is managed through catch basins located in South Maple Street, which discharge to the municipal drain system. Utilities are shown on Figure 2, Site Layout with Groundwater Contours.

3.2 Surrounding Land Use and Potential Receptors

The site is located in a commercial and residential area of Westfield. Residential properties abut the site to the east and across South Maple Street to the north and northeast. A wooded area abuts the site to the south. Commercial properties are located along South Maple and Mill Street to the west of the site.

According to the MA DEP Site Scoring Map provided in Figure 3, dated Site Scoring Map, the site is not located within an Interim Wellhead Protection Area (IWPA), Approved Zone 2, Zone A of a Class A Surface Water Body, or within a Potential Drinking Water Source Area (PDWSA). No known private drinking water supply wells are located within 500 feet of the site. The site is supplied with municipal water by the City of Westfield.

The closest potential receptor is Little River located within approximately 200-feet south of the site. Protected Open Space is located within approximately 1,000-feet to the south, and within approximately a half-mile to the west and east of the site. The site is located within a FEMA 100-year floodplain, to the south and southeast. Site Photographs are included as **Appendix A**.

4.0 ENVIRONMENTAL RECORD REVIEW SUMMARY

A review of federal and state databases was performed using FirstSearch Technology Corporation's Environmental FirstSearch Report on March 22, 2006. The distances used to report the properties are the approximate minimum search distances established by American Society of Testing Materials (ASTM) guidelines. All sites identified within the corresponding search radii are provided in the FirstSearch report attached as **Appendix B**.

The potential for contamination from listed nearby sites to migrate to the subject property is contingent upon groundwater flow direction, distance, and contaminant characteristics. Inferred groundwater flow direction is south in the immediate vicinity of the property. References to upgradient and/or downgradient in the following sections are based on this groundwater flow determination. However, local groundwater flow direction may vary due to fluctuations in seasonal groundwater levels and sitespecific subsurface conditions.

4.1 United States Environmental Protection Agency

4.1.1 National Priorities List

The ASTM guideline recommends a one-mile search radius for National Priorities List (NPL) sites. The NPL is a listing of properties recorded with the MADEP and the U.S. Environmental Protection Agency (EPA) that are believed to pose a significant threat to public health and the environment and warrant remedial action under the Superfund laws. A review of the NPL database did not identify any properties within a one-mile radius.

4.1.2 Comprehensive Environmental Response, Compensation, and Liability Information System

A search radius of one-half mile is recommended for the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS). CERCLIS is the EPA's database of current and potential Superfund sites under investigation. A review of the CERCLIS database did not identify any properties within the one-half mile radius of the property.

4.1.3 Resource Conservation and Recovery Act

The Resource Conservation and Recovery Act (RCRA) was enacted to document hazardous materials during all stages of use, generation, and disposal. All facilities (collectively called "handlers") that treat, generate, dispose of, transport, and/or store specified quantities of hazardous materials must be permitted through the EPA RCRA program. Any violations and/or enforcement actions pertaining to the handlers are also documented in the database. The ASTM guidelines recommend a one-mile search radius for Corrective Actions (CORRACTS) Treatment, Storage and Disposal (TSD) facilities and a one-half mile radius for non-CORRACTS TSD facilities. The RCRA generator database was searched for the subject property and adjoining properties. The RCRA databases did not identify the site or any properties within the recommended search radii as a TSD facility or a CORRACTS facility however the site was identified as a RCRA generator.

4.1.4 Emergency Response Notification System

The Emergency Response Notification System (ERNS) is a database of EPA emergency response actions. Only the subject property is required to be reviewed for ERNS designation. The database did not identify the subject property an ERNS site.

4.2 Massachusetts Department of Environmental Protection

A limited review of MADEP files for surrounding sites was conducted as part of the FirstSearch database search. The lists of Confirmed Disposal Sites, State Spill Sites, and Registered USTs were reviewed for the purposes of this report. The Bureau of Waste Site Cleanup (BWSC) Searchable Site list on the MADEP website was also reviewed for surrounding sites.

4.2.1 State Disposal Sites

ASTM guidelines recommend a one-mile radius for the State Disposal Sites database search. The subject property was identified as a State Disposal Site. Ten previously or currently listed disposal sites were identified within a one-mile radius of the subject property. A summary of the State Disposal Sites within a one-mile radius of the subject property are presented in Table 1.

4.2.2 State Spills

ASTM guidelines recommend a one-half mile radius for the State Spill database search. The MADEP Database identified 20 spill sites located within a one-half mile radius of the property. The subject property was also identified as a Spill Site and is associated with RTN-1-0489. All of the sites except for the site are listed with a regulatory closed status.

4.2.3 Registered Underground Storage Tanks

A one-half mile search radius was utilized to research the presence of registered underground storage tanks (USTs) within the vicinity of the subject property. The subject property was identified as a registered UST site. Two additional properties were identified within a one-half mile radius. Pride Convenience Inc. is located at 97 South Maple Street, approximately 0.07 miles northwest (upgradient) to the site. Shell located at 27 Southwick Road, is approximately 0.13 miles southwest (downgradient) of the site.

4.2.4 Solid Waste Landfills

A search radius of one-half mile is recommended for solid waste landfills. No solid waste landfills were identified within a one-half mile of the subject property.

5.0 DISPOSAL SITE HISTORY

5.1 Owner and Operations History

The site is comprised of four parcels (1, 2, 3 and 29). Property ownership from the early 1960's to the present for each parcel is summarized in the tables below.

Property Ownership History

Parcel 1		
Grantor	Date of Purchase	
Gerald N. Sciarra	8-1-63	
Melrose Construction Company, Inc	7-2-64	
Burek Oil Company, Inc.	05-24-65	
F.L. Roberts Company, Inc.	11-11-74	
Sun Company, Inc.	6-24-1993	

Parcel 2			
Grantor	Date of Purchase		
Gerald N. Sciarra	8-1-63		
The Stephen Paper Mills, Inc.	3-24-64		
Bay Bank Valley Trust Company	1-16-81		
Paragon Paper Company, Inc.	1-16-81		
F.L. Roberts Company, Inc.	NA		
Sun Company, Inc.	6-24-1993		

Parcel 3		
Grantor	Date of Purchase	
F.L. Roberts Company, Inc.	11-11-74	
Sun Company, Inc.	6-24-1993	

Parcel 29		
Grantor	Date of Purchase	
The Stephen Paper Mills, Inc.	NA	
Robert J. Greeley	12-1-81	
F.L. Roberts Company, Inc.	NA	
Sun Company, Inc.	6-24-1993	

Sanborn Fire Insurance Maps, viewed online at the Boyden Public Library, show the subject property as vacant on maps dated 1910, 1917, 1924 and 1947. Sunoco purchased the property in June 1993. Sanborn Maps are included in Appendix C.

5.2 Release History

5.2.1 RTN 1-0489

The DEP issued a Notice of Responsibility (NOR) to F.L. Roberts on June 21, 1988 as a result of a PID reading of over 100 ppm in a soil sample collected during UST removal activities in June 1988. The DEP requested a Phase I – Limited Site Assessment be conducted on the site. The site was first listed as a Location To Be Investigated (LTBI) on January 15, 1989. On behalf of F.L. Roberts, Environmental Compliance Services, Inc. (ECS) of Agawam, Massachusetts submitted the Phase I and Class A-2 Response Action Outcome (RAO) for the site, on August 2, 1995.

In the Phase I and RAO, ECS used information from a Site Investigation Report by Handex of New England, Inc of Marlborough, Massachusetts dated April 28, 1993 and a Phase I Limited Site

Investigation conducted by Cold Spring Environmental of Belchertown, Massachusetts on April 27, 1990. No work was performed at the site between April 27, 1990 and April 28, 1993.

5.2.2 RTN 1-15718

On April 12, 2005, tightness testing results performed on the UST piping indicated the regular unleaded UST dispenser line failed when placed under pressure for tightness testing. Therefore, a Threat of Release (TOR requiring DEP notification within 72-hours of obtaining knowledge was identified at approximately 2:30 p.m. on April 12, 2005, in accordance with 310 CMR 40.0314(2) of the MCP. A copy of the April 12, 2005 and April 13, 2005 tightness testing results were previously submitted in the IRA Plan on June 22, 2005.

On April 15, 2005 at 9:40 p.m., verbal notification was provided to the MA DEP-Western Region (WERO) by Sunoco for the 72-hour reportable condition in accordance with 310 CMR 40.0314(2) of the MCP. The DEP issued Release Tracking Number (RTN) 1-15718 and provided verbal authorization to repair the dispenser line, excavate up to 100 yards of petroleum contaminated soils during the repairs, and conduct assessment activities as necessary to determine the extent of release to the environment.

On April 19, 2005, MA DEP issued a *Notice of Responsibility (NOR)* to Sunoco, Inc. (R&M). The NOR established an Interim Deadline that the approved IRA assessment actions must be completed at the subject site within one (1) year (by April 15, 2006) of the notification date.

On June 14, 2005, a Release Notification Form (RNF), Bureau of Waste Site Cleanup Form (BWSC-103) was submitted to MA DEP for RTN 1-15718 on behalf of Sunoco.

5.2.3 120-day Reporting Condition

On December 8, 2005, Polychlorinated biphenyls (PCBs) were detected above reporting category RCS-1 *Reportable Concentrations* in composite soil sample T1 collected onsite during a UST piping project being conducted under an Immediate Response Action (IRA) for RTN 1-15718. The PCB concentration represented a *120-day Reporting Condition*. The DEP was notified in writing of the *120-day Reporting Condition* on February 8, 2006 with the submittal of a Release Notification Form (RNF).

5.3 Oil & Hazardous Material Use and Storage History

Since the inception of the service station in the late-1940's gasoline, motor oil (used), and other automotive supplies have been stored at the site. Currently 8,000, 10,000 and 12,000-gallon gasoline single-walled composite (steel and fiberglass) buffide USTs are located onsite. All other USTs have since been removed. Table 2 - UST History summarizes the UST history of the site.

5.4 Waste Management History

All hazardous wastes used by the service business were handled as directed under an environmental permit (#MA5000000729) as issued by the Environmental Protection Agency (EPA).

6.0 IRA ACTIVITIES

The following section summarizes the results of IRA Activities that were conducted at the site to obtain the hydrogeologic, soil, and groundwater quality information necessary to characterize current subsurface conditions.

6.1 Elevation Survey

To determine groundwater elevations and establish groundwater flow direction, existing monitoring wells were surveyed on August 1, 2005, using an electronic theodolite accurate to 0.01 foot. An on-site spot elevation using USGS mean sea level (MSL) was selected and assigned an elevation of 100.00 feet above MSL, and referenced as a bench mark. The bench mark elevation is located at the northern corner of the building. The elevations of the existing groundwater monitoring wells, measured to the top of PVC well casing, were surveyed referencing this benchmark.

6.2 Groundwater Gauging

On August 1, 2005, depth to groundwater in existing monitoring wells MW-1, MW-3B, MW-4, MW-5, and MW-6 were gauged using an electronic interface probe accurate to within 0.01 feet. Depth to groundwater ranged from 11.91 feet below surface grade from the top of PVC well casing in monitoring well MW-6 to 12.91 feet below surface grade in MW-5.

On February 7, 2006, depth to groundwater in existing monitoring wells MW-1, MW-3B, MW-5, and MW-6 were gauged using an electronic interface probe accurate to within 0.01 feet. Depth to groundwater ranged from 9.8 feet below surface grade from the top of PVC well casing in monitoring well MW-6 to 10.44 feet below surface grade in MW-3B.

On March 6, 2006, depth to groundwater in monitoring well MW-3B was gauged using an electronic interface probe accurate to within 0.01 feet. Depth to groundwater was 13.25 feet below surface grade in MW-3B.

During each event, no NAPL was detected in any wells gauged. The results of groundwater gauging are summarized in Appendix D.

6.3 Groundwater Flow Direction

As previously documented, referring to the historic site plan dated March 30, 1990, groundwater contours indicated groundwater flow was in a southeasterly direction across the site. Groundwater gauging data obtained on August 1, 2005 was used to construct groundwater elevation contours. Based on the August 1, 2005 gauging data, the apparent groundwater flow direction is estimated to be southwesterly across the site. August 1, 2005 groundwater contours are depicted on Figure 2, Site Layout w/ Groundwater Contours.

6.4 Groundwater Sampling and Analysis

On August 1, 2005, groundwater samples were collected from existing monitoring wells MW-1, MW-4, MW-5, and MW-6. A groundwater sample was not available from monitoring well MW-3B. On February 7, 2006, groundwater samples were collected from existing monitoring wells MW-1, MW-3B, MW-5, and MW-6. Monitoring well MW-4 was destroyed during product piping upgrades in November 2005.

On March 6, 2006, a groundwater sample was collected from existing monitoring well MW-3B. Monitoring well MW-6 was beneath a snow-bank and was not available for sampling. Monitoring wells MW-1 and MW-5 were not sampled during the event. Prior to sampling, each well was purged of approximately three well volumes to ensure representative groundwater samples were obtained. Groundwater samples were collected using dedicated, disposable, polyethylene bailers. The groundwater samples were placed on ice and transported to Spectrum Analytical of Agawam, Massachusetts

(Spectrum) under Chain of Custody protocol for VPH analysis via the DEP method. On August 1, 2005, monitoring wells were also analyzed for extractable petroleum hydrocarbons (EPH) via the MADEP EPH methodology, RCRA Metals, and volatile organic compounds (VOCs) via EPA Method 8260B.

6.4.1 Groundwater Analytical Results: August 1, 2005

Groundwater analytical results for samples collected on August 1, 2005, reported all concentrations VPH, EPH, VOCs and Metals below laboratory reporting limits (RLs) in all samples, except concentrations of barium, methyl tert-butyl ether (MTBE) and naphthalene. Barium concentrations were reported above laboratory RLs in samples MW-4 and MW-6. MTBE concentrations were reported above laboratory RLs in sample MW-1. Naphthalene concentrations were reported above laboratory RLs in sample MW-1. Naphthalene concentrations were reported above laboratory RLs in sample MW-6. All concentrations of VPH, EPH, VOCs and Metals were detected below applicable RCGW-2 Reportable Concentrations and applicable Method 1 GW-2 and GW-3 standards. Groundwater analytical results are summarized in Tables 2, 3, 4 & 5. A copy of the August 2005 laboratory analytical report is provided in Appendix E.

6.4.2 Groundwater Analytical Results: February 7, 2006

Groundwater analytical results for samples collected on February 7, 2006, reported all VPH concentrations below laboratory reporting limits (RLs) in monitoring wells MW-1 and MW-5. Carbon Fractions C_5-C_8 Aliphatics and C_9-C_{12} Aliphatics concentrations were reported above M1RC GW-2 standards in sample MW-3B. All other concentrations of VPH were detected below applicable M1RC GW-2 and GW-3 standards. Groundwater analytical results are summarized in Tables 2, 3, 4 & 5. A copy of the February 7, 2006 laboratory analytical report is provided in Appendix E.

6.4.3 Groundwater Analytical Results: March 6, 2006

Groundwater analytical results for samples collected on March 7, 2006, reported carbon fractions C_5-C_8 Aliphatics were reported above M1RC GW-2 and C_9-C_{10} aromatics concentrations were reported above M1RC GW-3 standards in sample MW-3B. All other concentrations of VPH were detected below applicable M1RC GW-2 and GW-3 standards. Groundwater analytical results are summarized in **Tables** 2, 3, 4 & 5. A copy of the March 6, 2005 laboratory analytical report is provided in Appendix E.

6.5 Soil Excavation April 2005

Upon obtaining knowledge of the failed UST line tightness test result on April 12, 2005, Sunoco immediately removed the unleaded dispenser lines and USTs from service. The location of the line leak was identified through helium tracer testing on April 13 and 14, 2005, and the line was excavated and repaired on April 14 and 15, 2005.

On April 14 and 15, 2005, CEA supervised the excavation and repair of the dispenser piping. Soil was excavated from a trench that was approximately nine-feet long and three and a half feet wide. During the excavation of piping, soil samples were collected from the excavation and field screened using the DEP jar-headspace method and an HNU Model PI 101 photo-ionization detector (PID), calibrated to an isobutylene standard for total organic vapor (TOV) concentrations. Soil samples were collected from the limits of excavation to determine if a release of oil and/or hazardous materials (OHM) requiring notification under the MCP had occurred at the property. TOV concentrations measured in soil samples collected from the UST excavation were greater than 100 ppm. Approximately 2-cubic yards of petroleum-impacted soil were temporarily stockpiled on plastic on-site, pending confirmatory laboratory

analysis for off-site recycling. On April 21, 2005, CEA was onsite to supervise additional soil excavation with in the same area excavated on April 14, 2005, however no soil was excavated during the site visit.

On April 27, 2005, the excavation was lengthened and expanded to expose the regular and ultra gasoline dispenser lines, to check for potential leaks and to install cathodic protection. A total of approximately 5 cubic yards of petroleum impacted soil was generated between April 15 and 27, 2005. On April 28, 2005, the trench was backfilled clean material and finished to surface grade with a concrete pad.

6.5.1 Post-Excavation Soil Sampling and Analysis

On April 14 and April 27, 2005, post-excavation composite soil samples were obtained from the excavation limits for confirmatory laboratory analysis. Soil samples Sample-1 through Sample-4 were collected on April 14, 2005. On April 27, 2005, soil represented by Sample-1 and Sample-2 was excavated and soil sample "1 S-B-2" was collected. Sample-3 was excavated and "2 S-B-2" was collected. Soil samples 4 S-B-2' and 5 S-COMP-2' were also collected. Soil samples were field preserved, placed on ice and submitted to Accutest Laboratories, Inc. (Accutest) of Marlborough, Massachusetts under Chain of Custody Protocol. All confirmatory soil samples were analyzed for volatile petroleum hydrocarbon (VPH) fractions and target analytes via the DEP Method. Confirmatory soil sample locations are depicted on Figure 2A, Site Layout (April 2005 Excavation). The results of VPH analysis are summarized in Table 3 and discussed below.

Upon completion of soil excavation and sampling activities on April 28, 2005, the excavation was backfilled with clean fill material, compacted and restored to grade.

6.5.2 Soil analytical Results

Referring to Table 1, low detectable VPH concentrations were reported above applicable laboratory Reporting Limits (RL) in soil samples Sample 1, 2, 4, 1 S-B-2', 4 S-B-2' and 5 S-COMP-2'. VPH (C5-C8 aliphatics, C9-C10 aromatics), toluene and total xylenes were detected above Method 1 Risk Characterization (M1RC) S-1/GW-2 & 3 standards in soil samples Sample 3 and 2 S-B-2'. Postexcavation soil sample locations are depicted on Figure 2A, Site Layout (April 2005 Excavation). VPH laboratory analytical results are summarized in Table 3. A copy of the soil laboratory analytical report was previously submitted in the IRA Plan.

6.6 Dispenser Piping Removal

Between November 15 and November 18, 2005, the three USTs and dispenser piping were uncovered by Dixon Construction Inc. of Shrewsbury, Massachusetts on behalf of Sunoco to enable UST upgrades, dispenser piping removal and reinstallation.

PID screening results of petroleum-impacted soils revealed TIC concentrations ranging from 65 ppmv to 85 ppmv at a depth of three feet below surface grade (bsg) in the product piping excavation on the right side of the convenience store at the Site.

PID screening results of petroleum-impacted soils revealed TIC concentrations ranging from 55 ppmv at a depth of seven feet bsg to 200 ppmv at a depth of four feet bsg in the initial release area-product piping excavation, located on the left side of the convenience store. In the area of the initial release, the excavation was deepened based on soil PID screening results obtained at a depth of four feet. Petroleum impacted soil was removed and stockpiled on polyethylene sheeting. The excavation in the initial release area was terminated at an approximate depth of seven feet due to the physical constraints of the pump island mat and overhead canopy.

Approximately 10 cubic yards of petroleum-impacted soil were segregated and stored on polyethylene plastic on site. Groundwater was not encountered in the excavation and dewatering was not necessary. The excavations were backfilled with clean fill and re-paved with concrete.

6.7 Post-Excavation Soil Sampling and Analysis

Upon completion of the UST piping upgrade activities, confirmatory post-excavation soil samples were collected from the tank field of the excavation, (composite - Tank field) and the three product piping trenches (composite T1 through T6, and R-7) on November 16, 17, and 18 2005. The "Tank field" composite is comprised of grab soil samples taken at the four risers on each UST. The "T1 through T6" composites are comprised of grab soil samples taken roughly every four linear feet along the bottom of the product piping trenches. During the excavation events, soil samples represented by April 2005 samples "4 S-B-2" and "5 S-COMP-2" were excavated and soil sample composite T2 was collected. Sample "2 S-B-2" was excavated and samples RS-2', RS-3', R-3', R-7' and composite sample T5 were collected. Sample "1 S-B-2" and "Sample 4" were excavated and composite soil sample T6 was collected. Soil samples were analyzed for VPH.

The soil stockpile was sampled on November 17, 2005 and characterized for offsite disposal. The sample was analyzed for volatile organic compounds (VOCs) via EPA Method 8260B, polychlorinated biphenyls (PCBs) via EPA Method 8082, total metals via EPA Method 200 and 6000/7000 Series Methods, flashpoint, pH, Reactivity (sulfide and cyanide) and total petroleum hydrocarbons (TPH) via EPA Method 8100. The results of PCB analysis indicated a detected concentration of 2.31 ppm, above the reporting category RCS-1 threshold.

On December 19, 2005, additional soil samples were taken in the area of the additional release, (RS-2', RS-3', R-3') and in the trenching around the pump islands on the right side of the convenience store (T1-A, T1-B and T1-C) to evaluate VPH and PCB impacts. Refer to Figure 2A & 2B for soil sample locations. Soil samples were submitted to Spectrum Analytical, Inc. of Agawam, Massachusetts under chain of custody protocol for analysis of VPH and/or PCBs.

6.8 Post-Excavation Soil Analytical Results

Laboratory analytical results of the confirmatory post-excavation soil samples collected from the tank field and product piping trenches of the excavation were compared to the most stringent M1RC S-1/GW-2 and GW-3 Soil Standards for unrestricted future site uses. Referring to **Table 6**, VPH carbon fractions (C5-C8 aliphatics, C9-C10 aromatics), and naphthalene concentrations were detected above Method 1 Risk Characterization (M1RC) S-1/GW-2 and GW-3 standards in soil sample R-7'. PCBs were detected above Method 1 Risk Characterization (M1RC) S-1/GW-2 and GW-3 standards in soil samples T1, T1-A, T1-B and T1-C. The remaining soil analytical results were reported below the S-1/GW-2 and GW-3 standards. Soil analytical results for VPH and PCBs are summarized in **Tables 6** & 7, respectively. The limits of the UST removal area and post-excavation confirmatory soil sample locations are provided on **Figure 2B**, **Site Layout (11-12/2005 Excavation)**. Copies of the analytical reports are included in **Appendix F**.

The detection of PCBs above the RCS-1 threshold of 2 ppm reported a 120-day reporting condition. A Release Notification Form (RNF) was be submitted to the DEP on February 8, 2006.

Petroleum contaminated soils generated as part of IRA activities conducted for RTN 1-15718 were characterized using laboratory analysis. On August 8, 2005 approximately of 5-cubic yards of petroleum-impacted soil was transported under a Massachusetts BOL to Ted Ondrick Company, LLC. (Ondrick) of

Sunoco Station	Phase I - Initial Site Investigation
88-90 South Maple Street	April 24, 2006
DUNS: 0374-5593	<u>RTN 1-15718</u>

Chicopee, Massachusetts for asphalt batch recycling. The BOL documentation from the recycling facility has been previously submitted to the DEP.

On January 9, 2006, approximately 10-cubic yards of petroleum-impacted soil was transported under a Massachusetts Bill Of Lading (BOL) to Environmental Soil Management Inc. (ESMI) of Loudon, New Hampshire for thermal treatment. The BOL documentation will be forwarded to the DEP upon receipt from the facility and final signature by Sunoco.

7.0 SITE HYDROGEOLOGIC CHARACTERISTICS

7.1 Site Geology

Geology beneath the Site consists of mostly fine to coarse sand and gravel, with varying amounts of silt to approximately 9 feet below grade. Referring to the Bedrock Map of Massachusetts by E-An Zen, 1983, the Site is located in the New Haven Arkose at the site is listed as a part of the Upper Triassic and is composed of red pink and gray coarse-graveled, locally conglometric arkos interbedded with brick-red shaley siltstone and fine-grained arkosic sandstone.

7.2 Groundwater Hydrogeology

Groundwater gauging data obtained on August 1, 2005 was used to construct the groundwater elevation contours shown on Figure 2. Referring to Figure 2, the apparent groundwater flow direction is southwest, with an average hydraulic gradient of 0.006 feet per foot (ft/ft). Average depth to groundwater at the site is approximately 12.5 feet. The results of groundwater gauging are summarized in Appendix D.

8.0 MCP REPORTING & METHOD I RISK CHARACTERIZATION CATEGORIES

8.1 MCP Reporting Categories

For locations where a release of OHM has occurred, the MCP defines reporting requirements for 2-hour, 72-hour and 120-day notifications depending on site specific factors and conditions. A 2-hour notification condition is a sudden, continuous, or intermittent release to the environment as described in 310 CMR 40.0311(1) through (9) or threats of releases as described in 310 CMR 40.0312. A 72-hour notification condition is required when one of the criteria set forth in 310 CMR 40.0313 (1) through (5) is met. The MCP defines OHM-specific concentrations for soil and groundwater which, if identified, require that notification to the MADEP be made within 120 days pursuant to 310 CMR 40.0315 (1) through (3). Two Reporting Categories, one more stringent, have been established for both soil and groundwater. The applicable Reporting Category is dependent upon surrounding land use, potential receptors and the proximity of drinking water resource areas.

8.1.1 Reporting Categories for Soil

According to 310 CMR 40.0361 of the MCP, Reporting Category RCS-1 applies to all soil samples obtained:

- At or within 500 feet of a residential dwelling, residentially-zoned property, school, playground, recreational area or park; or
- Within the geographic boundaries of a Current or Potential Drinking Water Source Area.

Reporting Category RCS-2 shall apply to all other areas not categorized as RCS-1. Since there are residential properties located within 500 feet, Reporting Category RCS-1 Reportable Concentrations apply to the Site.

8.1.2 Reporting Category for Groundwater

According to 310 CMR 40.0362 of the MCP, Reporting Category RCGW-1 applies to all groundwater samples collected within a Current or Potential Drinking Water Source Area. Reporting Category RCGW-2 applies to all other areas outside of RCGW-1.

According to the Site Scoring Map obtained on August 1, 2005, the Site is not located in an Interim Wellhead Protection Area (IWPA), DEP Approved Zone II, Zone A of Class A Surface Water Body (reservoir) or Potentially Productive Aquifer. No public or private drinking water wells are located within 500 feet. Therefore, Reporting Category RCGW-2 applies to the Site.

8.2 Method 1 Risk Characterization Soil And Groundwater Categories

The MCP Method 1 Risk Characterization (M1RC) Soil and Groundwater Categories are considered general indicators of exposure potential in the risk characterization. Soils at the disposal site are categorized based on current and future potential receptors, frequency of use, intensity of activities, and accessibility of the soils. Groundwater is categorized based upon its potential for human consumption, potential to volatilize into indoor air, and its potential to discharge to surface water.

8.2.1 Applicable Method 1 Risk Characterization Soil Categories

Soils at the Site are grouped into three general categories:

- 1) Accessible soil surficial soil in unpaved areas and within three (3) feet of the surface;
- 2) Potentially accessible soil soil located at a depth of 3 to 15 feet below grade (with or without pavement), or if soil is located less than 3 feet from the surface in an area completely paved; and
- 3) Isolated subsurface soils soil beneath the footprint of a building or greater than 15 feet below ground surface.

Since the Site is currently a gasoline sales facility with a convenience store, children are present as frequent visitors. As frequent visitors, children's activities are <u>not</u> expected to include high intensity activities such as digging, gardening, or recreational sports, especially since the Site is mostly paved, except for the unpaved portions behind the station building and UST field to the south. Therefore, a child's presumed activity at the service station property for current Site use is considered high frequency and low intensity as defined by the MCP.

It is assumed adults work at the service station on a continuing basis (8 hour shifts per day) and an employee's frequency of use is characterized as high. As employees, adult activities are also not expected

to include high intensity activities such as digging, gardening, or recreational sports. Therefore, adult (employee) activity at the Site is defined as "high frequency and low intensity".

Given these considerations, soils at the Site have been categorized in accordance with 310 CMR 40.0933 of the MCP as presented below.

Arca	Soil Depth	MCP Method 1 Soil Categories
Unpaved areas	0-3 feet	S-2
	3-15 feet	S-3
Beneath paved surfaces	0-15 feet	S-3
Beneath building footprint or soil greater than 15	0-15 feet	S-3
feet below ground	> 15 feet	S-3

To determine whether the Site will achieve a Condition of No Significant Risk for unrestricted current and future Site uses, or if the implementation of an Activity and Use Limitation (AUL) is necessary, soil categories S-1/GW-2 & 3 are considered.

8.2.2 Applicable Method 1 Risk Characterization Groundwater Categories

M1RC Groundwater Category GW-1 standards apply to groundwater located within a current or potential drinking water area as defined in 310 CMR 40.0006 of the MCP. A Current Drinking Water Source Area is defined as any groundwater located:

- a) Within the Zone II for a public drinking water supply;
- b) Within the Interim Wellhead protection Area for a public water supply;
- c) Within the Zone A of a Class A surface water body used as a public water supply; or
- d) Within 500 feet of a private drinking water supply well.

A Potential Drinking Water Source Area is defined as groundwater located:

- a) Within 500 feet or more from a public water supply distribution pipeline,
- b) Within a area designated by a municipality specifically for the protection of groundwater quality to ensure its availability for use as a source of potable water supply, or
- c) Within a Potentially Productive Aquifer that has not been excluded as Non-Potential Drinking Water Source Area

Based upon a review of the August 1, 2005 BWSC Site Scoring Map provided as **Figure 3**, the Site is not located within an area designated as either a Current or Potential Drinking Water Source Area as defined above. Therefore, M1RC groundwater category GW-1 does not apply to the Site.

GW-2 standards consider groundwater as a potential source of vapors of oil and/or hazardous materials to the indoor air. Groundwater located within 30 feet of an occupied structure or a planned structure where the average annual depth to groundwater is less than 15 feet below surface grade is considered GW-2

pursuant to 310 CMR 40.0932(6). Therefore, M1RC groundwater category GW-2 applies to all groundwater located within 30 feet of the on-Site service station building.

The groundwater at the Site (and all of Massachusetts) is considered a potential source of discharge to surface water and, therefore, GW-3 standards also apply.

9.0 NATURE AND EXTENT OF CONTAMINATION

The spatial distribution and type of petroleum impacts present at the site were evaluated through the collection of soil and groundwater samples.

9.1 Extent of OHM in Soil

During the product piping activities soil screened for TICs over 100 ppmv was stored on site. During the November 2005 excavation activities, soil samples were retained from the excavated product piping trenches and the tankfield and were analyzed for VPH. Concentrations of Carbon Fractions C_5-C_8 Aliphatics and C_9-C_{10} Aromatics as well as Xylenes were detected above MIRC soil standards in soil sampled at 7-feet in the area of the initial release (R-7'). All other soil samples were below applicable standards. The extent of the gasoline contaminated soil is located with in the initial release.

The soil stockpile was sampled on November 17, 2005 and characterized for offsite disposal. The sample was analyzed for VOCs, PCBs, total metals and 6000/7000 Series Methods, flashpoint, pH, Reactivity (sulfide and cyanide) and TPH. The results of PCB analysis indicated a detected concentration of 2.31 ppm, above the reporting category RCS-1 threshold.

On December 19, 2005, additional soil samples were taken in the area of the additional release, (RS-2', RS-3', R-3') and in the trenching around the pump islands on the right side of the convenience store (T1-A, T1-B and T1-C) to evaluate VPH and PCB impacts. Refer to Figure 2A & 2B for soil sample locations.

PCBs were detected in soil samples T1-A, T1-B and T1-C and the detection of PCBs above the RCS-1 threshold of 2 ppm is a 120-day reporting condition. A RNF was submitted on February 8, 2006. Further soil sampling is needed to further delineate the PCB contaminated soil at the site.

9.2 Extent of OHM in Groundwater

Groundwater flows in a southwesterly direction based on the August 1, 2005 gauge data. Groundwater Contours generated from the August 1, 2005 groundwater gauging event are illustrated on Figure 2 – Site Layout. Groundwater gauge data are summarized in Appendix D.

Referring to Table 2, VPH analytical results from the August 1, 2005 indicate that VPH impacts are below applicable groundwater standards in monitoring wells MW-1, MW-4, MW-5 and MW-6. Monitoring well MW-3B was not sampled on August 1, 2005.

On February 2, 2006, and March 6, 2006 VPH analytical results indicate carbon fraction concentrations present at groundwater monitoring well MW-3 above applicable M1RC groundwater category GW-2 and/or GW-3 standards. In addition MTBE concentrations in monitoring well MW-6 increased from 1,570 ug/l on August 1, 2005 to 22,900 ug/l on February 7, 2006. Monitoring wells MW-3B and MW-6 are both located south and down-gradient of the existing gasoline USTs near the south east corner of the subject property. All VPH carbon fractions (C_5-C_8 aliphatics, C_9-C_{12} aliphatics and C_9-C_{10} aromatics) and

target analytes, including benzene, toluene, ethylbenzene, xylenes and MTBE) were detected in monitoring well MW-3B on both sampling dates.

Additional groundwater sampling will be conducted to further evaluate groundwater conditions.

10.0 MIGRATION PATHWAYS AND EXPOSURE POTENTIAL

The source of OHM impact appears to be the result of a release(s) from use of the property as a gasoline sales facility. Based on assessment activities conducted at the site, OHM has been detected in soil at the site, which may serve as media through which exposure may occur. Potential migration pathways at the site, including ambient and indoor air, groundwater and soil, were evaluated.

10.1 Soil

OHM released to the subsurface may migrate vertically downward to the water table and become adsorbed to soil particles. Impacted soil can present a direct exposure pathway for receptors. The site is approximately 50 percent asphalt paved. Unpaved areas are located to the south and west of the parking areas and tank fields on the site. The highest potential for human exposure involves individuals and workers associated with subsurface excavation or drilling activities. Therefore, there is little opportunity for direct contact with impacted soil beneath the paved areas for on site employees or visitors to the site.

OHM constituents in soil may also migrate through the environment and impact other media, creating the opportunity for secondary exposures. OHM may enter the groundwater through desorption from impacted soil during groundwater recharge or through dissolution at or below the water table. Groundwater is evaluated separately in Section 10.2.

OHM in soil may also be released to utility ways, indoor air, and/or ambient air via volatilization. Subsurface utilities have been identified at the site. Depth to OHM in soil ranges from 2 to 7 feet below grade, similar to the estimated depth of utility trenches (typically 2-8 feet below grade). However, sewer and water utilities both enter the front of the service station from South Maple Street, where no OHM impacts have been documented. OHM impact to utilities through soil is unlikely. Indoor air and/or ambient air are evaluated separately in Section 10.3.

10.2 Groundwater and Surface Water

Dissolved-phase OHM has been detected in the groundwater beneath the site. Impacted groundwater can present a direct exposure pathway for receptors. However, the site is serviced by municipal water supplies, and is not located within a present or future drinking water source area. Therefore, no ingestion pathway or exposure exists. Dermal exposure is limited to sampling events by qualified, trained personnel.

OHM constituents in groundwater may also migrate through the environment and impact other media, creating the opportunity for secondary exposures. The potential for groundwater-related OHM to discharge to nearby surface water bodies (and sediment) resulting in impacts could exist at the site. Nearby water bodies include the Little River (approximately 200 feet south) and Crane Pond (approximately 0.5 miles west). Groundwater at the site flows in a southeasterly direction so potential to impact the Little River is present. However, Crane Pond is up-gradient and therefore unlikely to impacted by the site.

OHM in groundwater may also be released to utility ways, indoor air, and/or ambient air via volatilization. Subsurface utilities identified at the site include water and sewer, which enters the Site

from South Maple Street. Depth to groundwater ranges from 10 to 12.5 feet below grade, which is below the estimated depth of utility trenches. Therefore, migration of OHM in groundwater to utilities is not likely. Indoor air and/or ambient air are evaluated below.

10.3 Air

VPH impacts to groundwater above GW-2 standards have been identified in groundwater monitoring well MW-3B. However, monitoring well MW-3B is located down-gradient and greater than 30 feet from the nearest occupied building. However, as a conservative measure, indoor air will be considered a potential migration pathway for current or future use, and will be further evaluated.

Subsurface utilities have been identified at the site. Depth to groundwater ranges from 10 to 12 feet below grade, which includes the depth of the utility trenches. Therefore, migration of OHM to utilities is possible.

The entire Site is paved. Therefore, impacts to ambient air, related to soil and/or groundwater impacts, are not likely. In addition, other sources of petroleum-related hydrocarbon impacts to ambient air (i.e. fuel dispensers, engine exhaust) are located at the Site. Migration pathways will be further evaluated during future assessment activities.

11.0 IMMEDIATE RESPONSE ACTION EVALUATION

Pursuant to MCP 310 CMR 40.0483(1)(g), this Phase I report must evaluate the need to conduct an Immediate Response Action (IRA). According to 310 CMR 40.0412, the need to conduct an IRA is based on specific reporting conditions, as outlined below.

11.1 2-Hour and 72-Hour Reportable Conditions

An IRA is required at sites or vessels where 2-hour or 72-hour release notification conditions exist. Sudden, continuous, or intermittent releases to the environment as described in 310 CMR 40.0311(1) through (9), or threats of releases as described in 310 CMR 40.0312 are **2-hour** reportable conditions. As set forth in 310 CMR 40.0313, a release or threat of a release that requires notification within **72-hours** is based on:

- a) A release having a measurable thickness of NAPL equal to or greater than ½ inch;
- b) A release having measurable headspace readings equal to or greater than 100 ppm within 10 feet of a UST at a depth of greater than two feet and during UST removal or closure activities;
- c) A release to the environment identified above reportable concentrations within a Zone I of a public water supply well or 500 feet of a private water supply well;
- d) A release to the environment where volatile organic compounds in groundwater are measured equal to or greater than 5 ppm within 30 feet of a school or residence and where the groundwater table is less than 15 feet below grade; or
- e) Substantial likelihood of leaks equal to or greater than 0.05 gallons per hour in a single-walled tank or the inner wall of a double walled tank or leaks from the outer wall of a double-walled tank, established via tank testing.

No conditions constituting 2-hour or 72-hour reporting conditions, and thereby an IRA requirement, have been identified at the site.

11.2 Condition of Substantial Release Migration

Pursuant to 310 CMR 40.0412(3), any site where a condition of Substantial Release Migration (SRM) has been identified constitutes a 72-hour reporting condition, requiring the implementation of an IRA. Conditions of SRM include:

- a) Releases that have resulted in the discharge of separate phase OHM to surface waters, subsurface structures, or underground utilities or conduits;
- b) Releases to ground surface or to the vadose zone that, if not promptly removed or contained, are likely to significantly impact the underlying groundwater, or significantly exacerbate an existing condition of groundwater pollution;
- c) Releases to groundwater that have migrated or are expected to migrate more than 200 feet per year;
- d) Releases to groundwater that have been or are within one year likely to be detected in a public or private water supply well;
- e) Releases to groundwater that have been or are within one year likely to be detected in a surface water body, wetland, or public water supply reservoir; or
- f) Releases to groundwater that have been or are within one year likely to result in the discharge of vapors into school buildings or occupied residential dwellings.

No conditions of SRM have been identified at the site. The site will continually be evaluated for conditions of SRM.

11.3 Imminent Hazard Conditions

Pursuant to 310 CMR 40.0322 of the MCP, an IRA shall be conducted at any site where an Imminent Hazard is present. Releases or threats of release that pose, or could pose, an Imminent Hazard are listed in 310 CMR 40.0321 of the MCP.

Based on information gathered during this Phase I investigation, no Imminent Hazard conditions have been identified at the site. Therefore, no IRA is required at the disposal site at this time.

12.0 TIER CLASSIFICATION AND PHASE I OUTCOME

In accordance with 301 CMR 40.1500, the Numerical Ranking System (NRS) Scoresheet was prepared for the purposes of Tier Classification under 310 CMR 40.0500. The site received a total score of 288. The site does not meet any DEP Tier I Inclusionary Criteria. Therefore, the site is classified as a Tier II Disposal Site. A copy of the NRS Scoresheet is included as Appendix G.

13.0 PUBLIC NOTIFICATION

Public Notification has been sent to the City of Westfield Health Department and the Chief Municipal Officer. The appropriate legal notice will be published in the *The Republican – Metro West Edition*. Copies of the public notification letters and the legal notice are included as **Appendix H**.

14.0 SUMMARY OF FINDINGS

A Phase I - Initial Site Investigation and Tier Classification has been performed for the Sunoco Service Station site located at 88-90 South Maple Street in Westfield, Massachusetts. The following summary of findings is presented below:

- The property is zoned for commercial use and currently operates as a gasoline retail sales facility. Since the mid-1950's, fuel oil, gasoline, motor oil, used oil and other automotive supplies have been stored at the site during service station operation.
- Municipal water and sewer service is provided to the site and surrounding area. The site is not located within a Current or Potential Drinking Water Source Area. Nearby water bodies include the Little River (approximately 75 feet south) and Crane Pond (approximately 0.5 miles west).
- Soil analytical results from the November 2005 post excavation sampling identified C₅-C₈ Aliphatics and C₉-C₁₀ Aromatics and xylenes concentrations above Method 1 S-1 & 3/GW 2 & 3 Soil Standards at the site of the initial release.
- Groundwater analytical results from the February and March 2006 sampling events identified C₅-C₈ aliphatics, C₉-C₁₂ aliphatics and C₉-C₁₀ aromatics above applicable Method 1 groundwater category GW-2 and/or GW-3 standards.
- Based on current site conditions, no 2-hour or 72-hour reporting conditions exist and no IRAs are required.
- The site has been Tier Classified as a Tier II Disposal Site with a Numerical Ranking Score of 288.
- The requirements of a Class A or Class B Response Action Outcome (RAO) have not yet been met. Further response actions are required at the site to achieve a condition of No Significant Risk in accordance with 310 CMR 40.0000.

15.0 PHASE II CONCEPTUAL SCOPE OF WORK

The following conceptual scope of work is presented pursuant to 310 CMR 40.0510(1)(e)2 of the MCP to further assess OHM at the Site, evaluate potential receptors (indoor air, utilities) and determine if Comprehensive Response Actions are necessary to achieve a condition of No Significant Risk.

The Conceptual Scope of Work is as follows:

- Install soil borings and additional monitoring wells and retain soil samples to be analyzed for VPH and PCBs to delineate the extent of OHM at the site.
- Periodic gauging and groundwater sampling events will be performed to further evaluate groundwater quality.
- The site will continue to be evaluated for the presence of conditions of Substantial Release Migration (SRM), Imminent Hazards and Critical Exposure Pathways.
- Conduct surface water and sediment sampling of the Little River.
- Evaluate Method 1 GW-2 and GW-3 exceedances using a Method 2 Approach, as outlined in the October 2002 VPH/EPH Approach.

It is expected that this work will be completed within 2 years following Tier Classification.

16.0 REFERENCES

310 CMR 40.0000 Massachusetts Contingency Plan, June 2003
Bedrock Geologic Map of Massachusetts by E-An Zen (1985)
City of Westfield Records
DataMap Technology Corporation Environmental FirstSearch Report (FSTC)
Massachusetts Natural Heritage and Endangered Species Program (NHESP) 2000-2001 Atlas.

FIGURES

0

.

Figure 1	Site Locus
Figure 2	Site Layout with Groundwater Contours
Figure 2A	Site Layout (April 2005 Excavation)
Figure 2B	Excavation Enlargement (11-12/2005 Excavation)
Figure 3	DEP Site Scoring Map

TABLES

Table 1 Summary of State Disposal Sites Table 2 Summary of UST Storage Summary of Groundwater Analytical Results: VPH Table 3 Summary of Groundwater Analytical Results: VOCs Table 4 Summary of Groundwater Analytical Results: EPH Table 5 Summary of Groundwater Analytical Results: Metals Table 6 Table 7 Summary of Soil Analytical Results: VPH Table 8 Summary of Soil Analytical Results: PCBs

Table 1 State Disposal Sites Sunoco Station 88-90 South Maple Street Westfield, MA

Sita	Distancs (miles) and Direction	Sita Status	Releass Tracking Number	Site Description
Sunoco Service Station 88-90 South Maple Street Westfield, MA	0.00 (Site)	Tier II / Phase I	1-15718	Product Piping Release
Bobs Automotive 97 South Maple Street Westfield, MA	0.07 NW Upgradient	RAO	1-0485	UST release to soil and groundwater
Residence 32 Noble Avenue Westfield, MA	0.58 NE Crossgradient	Tier ID	1-14537	Residential UST
No Location Aid 5-7 High Street Westfield, MA	0.60 NE Crossgradient	Tier IB	1-12355	Residential UST
Day Lumber Company South Broad St. Westfield, MA	0.80 SE Downgradient	RAO	1-0918	Industrial waste oil and virgin product release
Madden Residence 7 Washington Street Westfield, MA	0.84 NE Crossgradient	Tier II	1-14166	Petroleum Based
Terrance Flahive Residence 34 Tekoa Terrace Westfield, MA	0.84 NE Crossgradient	RAO	1-11881	Residential UST
Fire Station 34 Broad Street Westfield, MA	0.91 NE Crossgradient	Tier II	I-1 227 7	Municipal UST
Former Westfield Woodworking 6 Coleman Ave Westfield, MA	0.91 NE Crossgradient	Tier ID	1-15540	TCE, Lead, Ethane
Bay Bank 30 Elm Street Westfield, MA	0.99 NE Crossgradient	Tier II	1-10788	Commercial UST

Table 2 UST Sunoco Station 88-90 South Maple Street Westfield, MA

UST Capacity (gallons)	Contents	Tank Construction	Installation Date	Removal Date		
85	Waste Oil	Double-Walled Steel	1994	Current		
12,000	Gasoline	Single-Walled Composite (steel and fiberglass) Buffide	1988	Силтепt		
10,000	Gasoline	Single-Walled Composite (steel and fiberglass) Buffide	1988	Current		
8,000	Gasoline	Single-Walted Composite (steel and fiberglass) Buffide	1988	Current		
10,000	Gasoline	Single-Walled Steel	1974	1988		
10,000	Gasoline	Single-Walled Steel	1974	1988		
10,000	Gasoline	Single-Walled Steel	1974	1988		
1,000	Gasoline	Single-Walled Steel	Unknown	1988		
4,000	Gasoline	Single-Walled Steel	1948	1974		
2,000	Gasoline	Single-Walled Steel	1948	1974		
2,000	Gasoline	Single Walled Steel	1948	1974		

•

Table 3 Summary of Groundwater Analytical Data - VPH and Target Analytes Sunoco Station 88-90 South Maple Street Westfield, Massachusetts RTN 1-15718

Well ID	Sample Date	C5-C8 Aliphatics (ug/l)	C9-C12 Aliphatics (ug/l)	C9-C10 Aromatics (ug/l)	Benzene (ug/l)	Toluene (ug/l)	Ethylbenzene (ug/l)	Total Xylenes (ug/l)	Naphthalene (ug/l)	MTBE (ug/l)
M1RC Stand	ards GW-2	1,000	1,000	5,000	2,000	8,000	30,000	9,000	1,000	50,000
M1RC Standards GW-3		4,000	20,000	4,000	10,000	4,000	4,000	500	20,000	50,000
RCGW-2		1,000	1,000	4,000	2,000	4,000	4,000	6,000	1,000	50,000
MW-1	08/01/05	<75	<25	<25	<5.0	<5.0	<5.0	<15	5.0	<5.0
	02/07/06	<50	<50	<50	<2.0	<2.0	<2.0	<2.0	<3.0	<2.0
MW-3B	02/07/06	2,920	1,070	2,520	252	2,060	676	2,238	95.4	2,320
	03/06/06	2,100	478	4,880	77.2	536	585	1,166	103	637
MW-4	08/01/05	<75	<25	<25	<5.0	<5.0	<5.0	<15	<5.0	<5.0
MW-5	08/01/05	<75	<25	<25	<5.0	<5.0	<5.0	<15	<5.0	<5.0
	02/07/06	<50	<50	<50	<2.0	<2.0	<2.0	<2.0	<3.0	<2.0
MW-6	08/01/05	<150	<50	<50	<10	<5.0	<5.0	<15	<5.0	1,570
	02/07/06	<50	<50	<50	446	12.3	<2.0	9.5	6.70	22,900

Notes:

N/A = Not Applicable and/or Not Analyzed

ND = Not detected above laboratory method detection limits.

Bold = Concentration greater than GW-2 Standards

Shaded = Concentration greater than GW-3 Standards

Table 4 Summary of Groundwater Analytical Data - VOCs Sunoco Station 88-90 South Maple Street Westfield, Massachusetts RTN 1-15718

Date Collected	8/1/05	8/1/05	Concentrations	GW-2	GW-3
			RCGW-2	Standards	Standards
Volatile Organic Compounds (ug/l)					
Acetone	<10.0	<50.0	50,000	50,000	50,000
Acrylonitrile	<1.0	<5.0	<u>N/A</u>	N/A	N/A
Bromobenzene	<1.0	<5.0	2,000	2,000	10,000 N/A
Bromochloromethane	<1.0	<5.0	N/A	N/A	N/A
Bromodichloromethane	<1.0	<5.0	6	6	50,000
Bromoform	<1.0	<5.0	700	700	50,000
Bromomethane	<20	<10.0	2	2	50,000
n-Butvibenzene	<1.0	<5.0	N/A	N/A	N/A
sec-Butylbenzene	<1.0	<5.0	N/A	N/A	N/A
tert-Butylbenzene	<1.0	<5.0	N/A	N/A	N/A
Carbon Disulfide	<5.0	<25.0	<u>N/A</u>	N/A	N/A
Chlorobenzene	<1.0	<5.0	200	200	1.000
Chloroethane	<2.0	<10.0	N/A	N/A	N/A
Chloroform	<1.0	<5.0	400	400	10,000
Chloromethane	<2.0	<10.0	<u>N/A</u>	N/A	N/A
4-Chlorotoluene	<1.0	<5.0	<u>N/A</u>	N/A N/A	N/A
1,2-Dibromo-3-chloropropane	<2.0	<10.0	N/A	N/A	N/A
Dibromochloromethane	<1.0	<5.0	20	20	50000
1.2-Dibromoethane (EDB)	<1.0	<5.0	20	3	50000
1.2-Dichlorobenzene	<1.0	<5.0	2,000	2,000	2,000
1.4-Dichlorobenzene	<1.0	<50	200	2000	8,000
Dichlorodifluoromethane	<2.0	<10.0	N/A	N/A	N/A
1,1-Dichloroethane	<1.0	<5.0	1,000	1,000	20,000
1,2-Dichloroethane	<1.0	<5.0	5	5	20,000
1,1-Dichloroethene	<1.0	<5.0	80	80	30,000
trans-1.2-Dichloroethene	<1.0	<.0	90	90	50,000
1,2-Dichloropropane	<1.0	<5.0	3	3	50,000
1,3-Dichloropropane	<1.0	<5.0	5	5	2000
2.2-Dichloropropane	<1.0	<5.0	N/A	N/A	<u>N/A</u>
cis-1.3-Dichloropropene	<1.0	<5.0	N/A	N/A 5	2 000
trans-1,3-Dichloropropene	<1.0	<5:0	5	5	2,000
Ethylbenzene	<1.0	<5.0	4,000	30,000	4,000
Hexachlorobutadiene	<1.0	<5.0	1	1	3000
2-Hexanone Isonronyiherrene	<10.0	<50.0	N/A N/A	N/A N/A	N/A
4-Isopropyltohuene	<1.0	<5.0	N/A	N/A	N/A
мтве	1,690	<5.0	50,000	50,000	50,000
4-Methyl-2-Pentanone (MIBK)	<10.0	<50.0	50,000	50,000	50,000
Methylene Chloride	<1.0	<50.0	N/A 1000	N/A	N/A
n-Propylbenzene	<1.0	<5.0	N/A	N/A	N/A
Styrene	<1.0	<5.0	900	100	6,000
1,1,1,2-Tetrachloroethane	<1.0	<5.0	10	10	50,000
1,1,2,2-Tetrachloroethane	<1.0	<5.0	9	9	50,000
Toluene	<1.0	<5.0	4.000	8.000	40,000
1,2,3-Trichlorobenzene	<1.0	<5.0	N/A	N/A	N/A
1.2.4-Trichlorobenzene	<1.0	<5.0	2,000	2,000	50,000
1,1,1-Trichloroethane	<1.0	<5.0	4,000	4,000	20,000
Trichlomethene	<1.0	<5.0	30	30	5,000
Trichlorofluoromethane	<1.0	<5.0	N/A	N/A	N/A
1.2.3-Trichloropropane	<1.0	<5.0	N/A	N/A	N/A
1,2,4-Trimethylbenzene	<1.0	<5.0	N/A	N/A	N/A
1,3,3-1 rimethylbenzene Vinyl Chloride	<1.0	<5.0	<u>N/A</u>	N/A	N/A
Total Xylenes	<3.0	<15.0	500	9,000	500
Tetrahydrofuran	<10.0	<50.0	N/A	N/A	N/A
Ethyl ether	<1.0	<5.0	N/A	N/A	N/A
Tert-amyl methyl ether	<1.0	<5.0	N/A	N/A	N/A
Di-isonropyl ether	<1.0	<5.0	N/A N/A		N/A
butyl alcohol	<10.0	<50.0	N/A	N/A	N/A
14 Dimente	<20.0	<100	NIA	N1/ A	NI/A

NA - Not Available

Tabla £	Summary of Groundwater Analytical Results: EPH	Suucco Station	88-90 South Maple Street	Westfield, Massachusetts	RTN 1-15718
---------	--	----------------	--------------------------	--------------------------	-------------

		_	_		_	_	_	
CI1-C22 Aromatics	200	30,000	100,000	<200		<200		
C19-C36 Aliphatics	14,000	50,000	100,000	<200		<200		
esinadaila 810-92	1,000	1,000	100,000	<200		<200		
Pyrene	20	20	800	≤5.1		<5.26		
Γρεκαπέριεμε	50	50	3,000	<5.1		<5.26		
Mapththalene	140	1,000	100,000	<5.1		<5.26		
2-Methyl napthihalene	10	3,000	100,000	<5.1		<5.26		
эпэтүq (bэ-£,2,1) олэbпI	0.5	100	1,000	<5.1		<5.26		
Fluorenc	300	3,000	30,000	<5.1		<5.26		
Fluorantene	60	200	2,000	<5.1		<5.26		
Dibenz(a,b)anthracene	0.5	40	400	<5.1		<5.26		
Chrysene	2	3,000	30,000	€.1		<5.26		
Benzo(k) fluoranthene	-	100	1,000	<5.1		<5.26		
Benzo(g,h,i) perylene	300	3,000	30,000	<5.1		<5.26		
ອເລກາດເອການເອັດເອັດເອັດເອັດເອັດເອັດເອັດເອັດເອັດເອັດ	1	400	4,000	<5.1		<5.26		
Benzo(a) pyrene	0.2	500	5,000	<5.1		<5.26		
Benzo(a) anthracene	1	1,000	10,000	<5.1		<5.26		
Anthracene	2,000	3,000	30,000	<5.1		<5.26		
Accessphihylene	300	3,000	30,000	\$.1		≤5.26		
Accasphthene	20	5,000	50,000	≤5.1		<5.26		
Date Sampled			Intration Limits	8/1/2005		8/1/2005		
Sample ID	RCGW-1	RCGW-2	Upper Conce	MW-4		9-WW		Notes:

Bold values indicate concentrations above MIRC GW-3 Standards. Shaded values indicate concentrations above MCP Reportable Concentrations. N/A Indicates not applicable '= = Not analyzed

.
Table 6 Summary of Groundwater Analytical Results: Metals Sunoco Station 88-90 South Maple Street Westfield, Massachusetts RTN 1-15718

								_		
Sample ID	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	
RCGW-2		900	50,000	4	300	10	20	100	7	
GW-2		NA	NA	NA	NA	NA	NA	NA	NA	
GW-3		900	50,000	4	300	10	20	100	7	
MW-4 (G#-2 & 3)	8/1/2005	<4	134	<1.2	<2.5	<3.8	<0.2	<7.5	<5	
MW-6 (GW-2 & 3)	8/1/2005	<4	109	<1.2	<2.5	<3.8	<0.2	<7.5	<5	
Notes:	Notes: RCGW-2 = MCP Reportable Concentrations Bold = Exceeds Method 1 GW-2 Standards Italicized = Exceeds Method 1 GW-3 Standards NSVD = Well casing elevation not surveyed NA = Not applicable									

Table 7 Summary of Soil Analytical Data - VPH and Target Analytes Sunoco Station 88-90 South Maple Street Westfield, Massachusetts RTN 1-15718

Sample ID	Sample Date	Sample Depth (feet)	Screening Result (ppmv)	CS-C8 Aliphatics (mg/kg)	C9-C12 Aliphatics (mg/kg)	C9-C10. Aromatics (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Naphthalene (ng/kg)	MTBE (mg/kg)
MIRC Standards S-1	/GW-2		_	100	1,000	100	30	300	500	300	40	100
M1RC Standards S-1	/ GW-3		-	100	1,000	100	30	500	500	300	500	1,00
M1RC Standards S-3	/GW-2			500	5,000	500	700	3,00	2,500	300	40	100
M1RC Standards S-3	/GW-3		_	500	5,000	500	900	1,000	500	300	3,000	500
Upper Concentration	Limits			5,000	20,000	5,000	9,000	10,000	10,000	10,000	10,000	\$,000
Sample 1 **	4/14/2005*	2'	2	4.9	<2.4	<2.4	<0.12	0.64	0.12	0.48	<0.12	3.79
Sample 2 **	4/14/2005*	2'	100	9.7	4.3	8.4	<0.11	0.90	0.30	1.63	<0.11	2.89
Sample 3 **	4/14/2005*	2'	140	3,410	1,300	1,040	28.6	545	124	421	19.9	205
Sample 4 ***	4/14/2005*	2'	10	4.5	2.4	<2.1	<0.11	0.38	⊲0.11	0.39	<0.11	0.62
1 S-B-2' ***	4/27/2005	2'	104	9.63	<3.1	<3.1	<0.15	0.20	<0.15	0.17	0.17	7.35
2 S-B-2' ***	4/27/2005	2'	144	4,790	2,190	2,380	30.3	1,050	416	1,454	40.1	204
4 S-B-2' ***	4/27/2005	2'	53	8.2	<3.0	<3.0	<0.15	0.8	0.15	0.64	0.17	3.1
5 S-COMP-2' ***	4/27/2005	2'	235	4.75	<3.6	<3.6	<0.18	<0.18	<0.18	0.18	<0.18	0.21
Piping Upgrade				_								
Tank Field	11/16/2005	1' - 5'	-	41.7	26.6	70,6	0.16	7.52	4.19	21.2	3.62	10,5
R-7'	11/18/2005	7	55	1,870	935	1,650	5.76	291	132	539	32.9	23.8
T1	11/17/2005	3'	-	8.95	3.45	9.89	0.23	0.75	0.34	1.71	0.72	0.27
T2	11/17/2005	3'		3.2	0.61	0.98	0.071	0.24	0.074	0.26	0,1	<0.64
T3	11/18/2005	3'	_	1.23	<0.31	0.48	<0.06	0.134	<0.06	0.16	<0.06	<0.06
T4	11/18/2005	3'	-	2.9	0.96	<0.82	<0.16	<0.16	<0.16	<0.49	<0.16	<0.16
T5	11/18/2005	3'	-	30.1	24.6	58.2	<0.11	3.47	1.92	14.36	1.83	0.53
T6	11/18/2005	3'	-	21.7	27.7	52.9	<0.17	1.24	1.1	8.2	1.05	<0.17
Piping Upgrade - Add	itional Sampling											
R-3'	12/19/2005	3'	_	36.9	64.4	77.9	<0.161	1.71	0.37	8.34	2.6	<0.161
RS-2'	12/19/2005	2'	-	<1.38	0.65	0.77	0.094	0.13	<0.092	<0,28	<0.092	0.12
RN-2'	12/19/2005	2'	-	1.58	1.48	1.16	<0,07	0.1	<0.07	<0.22	<0.07	<0.07
Notes: Shaded values indica	te concentrations	above M1R(C S-1 Standard	ls.								

Bold values indicate concentrations above M1RC S-3 Standards.

* All Soil Samples taken on 4-14-2005 were not analyzed for % solids ** Soil samples taken on 4-14-2005 were excavated on 4-27-2005 *** Soil samples taken on 4-14-2005 and 4-27-2005 were excavated on 11-18-2005

Table 8 Summary of Soil Analytical Data - PCBs Sunoco Station 88-90 South Maple Street Westfield, Massachusetts RTN 1-15718

Sample ID	Sample Date	Sample Depth (feet)	PCB 1016 (mg/kg)	PCB 1221 (mg/kg)	PCB 1232 (mg/kg)	PCB 1242 '(mg/kg)	PCB 1248 (mg/kg)	PCB 1254 (mg/kg)	PCB 1260 (mg/kg)	PCB 1262 (mg/kg)	PCB 1268 (mg/kg)
M1RC Standards S	-1		2	2	2	2	2	2	2	2	2
M1RC Standards S	-2		2	2	2	2	2	2	2	.2	2
Upper Concentration	on Limits	-	100	100	100	100	100	100	100	100	100
StockPile	11/17/2005	_	<0.031	<0.031	< 0.031	<0.031	231 4	<0.031	<0.031	<0.031	<0.031
	·										
Tank Field	11/16/2005	3' - 5'	< 0.028	<0.028	< 0.028	<0.028	1.32	<0.028	0.046	<0.028	<0.028
T1	11/17/2005	3'	<0.61	<0.61	<0.61	<0.61	.31.7	<0.61	0.35	<0.03	< 0.03
T2	11/17/2005	3'	< 0.031	<0.031	<0.031	<0.031	0.098	<0.031	0.11	<0.031	<0.031
T5	11/18/2005	3'	<0.03	<0.03	< 0.03	<0.03	0.07	<0.03	0.065	<0.03	<0.03
T1-A	12/19/2005	2'	<0.03	<0.03	<0.03	< 0.03	2.97	<0.03	< 0.03	<0.03	<0.03
П-В	12/19/2005	2'	<0.03	< 0.03	<0.03	< 0.03	, 3:42	<0.03	<0.03	< 0.03	<0.03
TI-C	12/19/2005	2'.	<0.15	<0.15	<0.15	<0.15	8.33	<0.03	<0.03	<0.03	<0.03

Notes:

Bold values indicate concentrations above M1RC S-3 Standards. Shaded values indicate concentrations above M1RC S-1 Standards.

NA = Not Analyzed

APPENDIX A

۰.

Site Photographs

1

Station facing southwest

Facing west

R

Failed product piping line

Facing south

1

.

.

1

.

1

Facing north - Initial Release

Piping upgrade facing north

8

1

1

Tank field facing northwest

Tank field facing southwest

APPENDIX B

Environmental FirstSearch Report

FirstSearch Technology Corporation

Environmental FirstSearch[™] Report

TARGET PROPERTY:

88 SOUTH MAPLE ST

WESTFIELD MA 01085

Job Number: 5795-05

PREPARED FOR:

Corporate Environmental Advisors, Inc.

127 Hartwell Street

West Boylston, MA 01583

03-22-06

Tel: (781) 551-0470

Fax: (781) 551-0471

Environmental FirstSearch is a registered trademark of FirstSearch Technology Corporation. All rights reserved.

1 0

Target Site: 88 SOUTH MAPLE ST

TP! (O

WESTFIELD MA 01085

Database	Sel	Updated	Radius	Site	1/8	1/4	1/2	1/2>	ZIP	TOTALS
NPL	v	01-13-06	1.00	0	n	Ω	0	0	0	0
CERCLIS	Ŷ	01-13-06	0.50	Ő	õ	ŏ	õ	-	Ő	õ
NFRAP	Ŷ	01-13-06	0.25	Ŭ	õ	Õ	-	-	Ō	Ō
RCRA TSD	Ŷ	02-16-06	0.50	0	Ó	Ō	0	-	0	0
RCRA COR	Ŷ	02-16-06	1.00	0	0	0	0	0	0	0
RCRA GEN	۰Y	02-16-06	0.25	0	1	0	-	-	0	1
ERNS	Y	12-31-05	0.25	0	0	0	-	-	6	6
State Sites	Y	01-10-06	1.00	0	1	0	1	8	0	10
Spills-1990	Y	01-10-06	0.50	0	3	5	13	-	19	40
SWL	Y	01-01-06	0.50	0	0	0	0	-	2	2
REG UST/AST	Y .	01-23-06	0.25	0	2	1	-	-	1	- 4
- TOTALS -				0	7	6	14	8	28	63

Notice of Disclaimer

Due to the limitations, constraints, inaccuracies and incompleteness of government information and computer mapping data currently available to FirstSearch Technology Corp., certain conventions have been utilized in preparing the locations of all federal, state and local agency sites residing in FirstSearch Technology Corp.'s databases. All EPA NPL and state landfill sites are depicted by a rectangle approximating their location and size. The boundaries of the rectangles represent the eastern and western most longitudes; the northern and southern most latitudes. As such, the mapped areas may exceed the actual areas and do not represent the actual boundaries of these properties. All other sites are depicted by a point representing their approximate address location and make no attempt to represent the actual areas of the associated property. Actual boundaries and locations of individual properties can be found in the files residing at the agency responsible for such information.

Waiver of Liability

Although FirstSearch Technology Corp. uses its best efforts to research the actual location of each site, FirstSearch Technology Corp. does not and can not warrant the accuracy of these sites with regard to exact location and size. All authorized users of FirstSearch Technology Corp.'s services proceeding are signifying an understanding of FirstSearch Technology Corp.'s searching and mapping conventions, and agree to waive any and all liability claims associated with search and map results showing incomplete and or inaccurate site locations.

Environmental FirstSearch Site Information Report

Request Date: Requestor Name: Standard: 03-22-06 Patrick Brown ASTM

Search Type: COORD Job Number: 5795-05

TARGET ADDRESS: 88 SOUTH MAPLE ST WESTFIELD MA 01085

	Demographics								
Sites:	63	Non-Geocoded:	28	Population:	4444				
Radon:	0.4 - 6.4 PCI/L								

Site Location									
	Degrees (Decimal)	Degrees (Min/Sec)		UTMs	,				
Longitude:	-72.76262	-72:45:45	Easting:	684981.085					
Latitude:	42.111331	42:6:41	Northing:	4664346.158					
			Zone:	18					

Comment

Comment:

Additional Requests/Services

Adjacent ZIP Codes: 0 N	file(s)	Services:				
ZIP Code City Name	ST Dist/Dir Sel		Requested?	Date		
		Sanborns	No			
		Aerial Photographs	No			
		Historical Topos	No	1		
		City Directories	No			
		Title Search	No			
		Municipal Reports	No			
		Online Topos	No			

SELECTED:

Page No.

1

2

4

5

7

9

11

35

TAF	RGET SITE	88 SOUTH MAPLE ST WESTFIELD MA 01085	JOB:	5795-05	
TOTAL:	63	GEOCODED: 35	NON GEOCODED:	28 SEL	
Map ID	DB Туре	Site Name/ID/Status	Address	Dist/Dir	
2	RCRAGN	SUNOCO SERVICE STA MAS000000729/VGN	88-90 MAPLE ST WESTFIELD MA 01085	0.05 SW	
2	SPILLS	BP STATION 1-0000489/RAO	88 SOUTH MAPLE ST WESTFIELD MA 01085	0.05 SW	
2	SPILLS	NO LOCATION AID 1-001571&/UNCLSS	88-90 MAPLE ST WESTFIELD MA 01085	0.05 SW	
2	UST	SUNOCO #0374-5593 0-007892	88-90 MAPLE ST WESTFIELD MA 01085	0.05 SW	
4	SPILLS	BOBS AUTOMOTIVE 1-0000485/RAO	97 SOUTH MAPLE ST WESTFIELD MA 01085	0.07 NW	
4	STATE	BOBS AUTOMOTIVE 1-0000485/TIER 2	97 SOUTH MAPLE ST WESTFIELD MA 01085	0.07 NW	
4	UST.	PRIDE CONVENIENCE INC 0-007912	97 S MAPLE ST WESTFIELD MA 01085	0.07 NW	
17	SPILLS	FORMER TEXACO STATION 1-0015400/RAO	27 SOUTHWICK ST WESTFIELD MA 01085	0.13 SW	
17	SPILLS	MOBIL GAS I-0000230/DEPNFA	27 SOUTHWICK RD WESTFIELD MA 01085	0.13 SW	
17	UST	SHELL 0-007910	27 SOUTHWICK RD WESTFIELD MA 01085	0.13 SW	
22	SPILLS	THE MILL AT CRANE POND 1-0011455/RAO	77 MILL ST WESTFIELD MA 01085	0.15 NW	
22	SPILLS	ROCKWELL INDUSTRIES W90-0190	77 MILL STREET WESTFIELD MA 01085	0.15 NW	
18	SPILLS	GENESIS SPIRITUAL CENTER 1-0011040/RAO	53 MILL ST WESTFIELD MA 01085	0.22 NW	
19	SPILLS	MOTOR OIL	LITTLE RIVER	0.27 SE	

8

8

14

21

B

13

16

0.13 SW 13 0.13 SW 14 0.13 SW 15 0.15 NW 18 0.15 NW 20 0.22 NW 21 LITTLE RIVER MOTOR OIL 22 SPILLS 0.27 SE WESTFIELD MA 01085 ₩93-0317 SPILLS FOWLER FARMS SOUTHWICK RD 0.30 SW 23 1-0000650/PENNFA WESTFIELD MA SOUTHWICK RD. FOWLER FARMS 0.30 SW 24 STATE 1-0000650/PENDING NFA WESTFIELD MA 01085 100 ACRES ROAD CASCO FARMS 25 SPILLS 0.33 SE WESTFIELD MA 01085 ₩92-0147 **RESIDENTIAL UST** 28 MILL ST 0.35 NE 26 SPILLS 1-0015284/RAO WESTFIELD MA 01085 **SPILLS** FORMER BEMBEN GREENHOUSES 17 BROOKLINE AVE 0.37 NE 27 1-0015805/UNCLSS WESTFIELD MA 01085 BEMBEN NURSERIES 17 BROOKLINE AVE 0.37 NE **SPILLS** 28 1-0012768/RAO WESTFIELD MA 01085 FORMER MOORE CONTRACTORS MATHER ST 0.40 NE 30 SPILLS W93-0411 WESTFIELD MA 01085

TAF	RGET SITE	2: 88 SOUTH MAPLE ST WESTFIELD MA 01085	JOB: 579	95-05	
TOTAL:	63	GEOCODED: 35	NON GEOCODED: 28	SELECTED: 35	
Map ID	DB Type	Site Name/ID/Status	Address	Dist/Dir Page No.	
16	SPILLS	FORMER WM. MOORE EXCAVATING W91-0594	MATHER STREET WESTFIELD MA 01085	0.40 NE 31	
20	SPILLS	PUNDERSON OIL W90-0193	152 VALLEY VIEW DRIVE WESTFIELD MA 01085	0.41 SW 32	
15	SPILLS	CORNER OF MILL AND W. SILVER STREE 1-0014502/RAO	120 WEST SILVER ST WESTFIELD MA	0.47 NE 33	
Ι	SPILLS	NOBLE HOSPITAL W90-0655	115 W. SILVER STREET WESTFIELD MA 01085	0.47 NE 35	
1	SPILLS	NOBLE HOSPITAL W90-0066	115 W. SILVER STREET WESTFIELD MA 01085	0.47 NE 36	
1	SPILLS	NOBLE HOSPITAL LAB W92-0027	115 WEST SILVER STREET WESTFIELD MA 01085	0.47 NE 37	
11	STATE	RESIDENCE 1-0014537/TIER1D	32 NOBLE AVE WESTFIELD MA	0.58 NE 38	
10	STATE	NO LOCATION AID I-0012355/DEF TIER 1B	5 TO 7 HIGH ST WESTFIELD MA 01085	0.60 NE 39	
5	STATE	DAY LUMBER COMPANY 1-0000918/RAO	SOUTH BROAD ST PO BOX 9 WESTFIELD MA 01085	0.80 SE 40	
9	STATE	MADDEN RESIDENCE 1-0014166/TIERII	7 WASHINGTON ST WESTFIELD MA 01085	0.84 NE 41	
12	STATE	TERRANCE FLAHIVE RESIDENCE 1-0011881/RAO	34 TEKOA TER WESTFIELD MA 01085	0.87 NW 43	
б	STATE	FIRE STATION 1-0012277/TIERII	34 BROAD ST WESTFIELD MA 01085	0.91 NE 45	
7	STATE	FORMER WESTFIELD WOODWORKING 1-0015540/TIER1D	6 COLEMAN AVE WESTFIELD MA 01085	0.91 NE 47	
3	STATE	BA YBANK 1-001078&/TIERII	30 ELM ST WESTFIELD MA 01085	0.99 NE 48	

TARGET SITE: 88 SOUTH MAPL WESTFIELD MA		: 88 SOUTH MAPLE ST WESTFIELD MA 01085	JOB: 579	5-05
TOTAL:	63	GEOCODED: 35	NON GEOCODED: 28	SELECTED: 35
Map ID	DB Туре	Site Name/ID/Status	Address	Dist/Dir Page No.
	ERNS	CROSS STREET PLAYGROUND / LITTLE L NRC-527526/FIXED	CROSS STREET PLAYGROUND WESTFIELD MA 01085	NON GC N/A
	ERNS	D31131/UNKNOWN	WESTFIELD MA 01085	NON GC N/A
	ERNS	WESTFIELD WATER DEPT. 424330/FIXED FACILITY	MUNICIPAL WELL NUMBER 4 WESTFIELD MA 01085	NON GC N/A
	ERNS	SONS TRANSPORTATION CO 255785/HIGHWAY RELATED	MASS TURNPIKE RTE 90 WESTFIELD MA	NON GC N/A
	ERNS	SLADERS TRANSPORTATION, CO. 166108/FIXED FACILITY	PO BOX 8013 WESTFIELD MA	NON GC N/A
	ERNS	S20580/HIGHWAY	66 ATLAS STREET WESTFIELD MA 01085	NON GC N/A
	SPILLS	W90-0180	BROAD STREET WESTFIELD MA 01085	NON GC N/A
	SPILLS	INTERSECTION WITH DEEP WOODS DRIVI 1-0014417/RAO	E HOLYOKE RD WESTFIELD MA	NON GC N/A
	SPILLS	MILE MARKER 43.5 1-0013224/RAO	MASSACHUSETTS TPKE WESTFIELD MA 01085	NON GC N/A
	SPILLS	W90-0615	NECK ROAD WESTFIELD MA 01085	NON GC N/A
	SPILLS	MM 41 EASTBOUND 1-0014692/RAO	MÁSSACHUSETTS TPKE WESTFIELD MA	NON GC N/A
	SPILLS	MILE MARKER 33 1-0015091/RAO	MASSPIKE WESTBOUND WESTFIELD MA	NON GC N/A
	SPILLS	BUILDING WASTE DUMPING W92-0603	EAST MAIN ST WESTFIELD MA 01085	NON GC N/A
	SPILLS	POLE #13/17- RESERVOIR W92-0152	TEKOA ROAD MONTGOMERY MA 01085	NON GC N/À
	SPILLS	POLE 5/150 1-0015269/RAO	MAIN RD MONTGOMERY MA 01085	NON GC N/A
	SPILLS	POLE 592 W91-0173	RUSSELL ROAD WESTFIELD MA 01085	NON GC N/A
	SPILLS	INTERCHANGE 3 1-0012565/RAO	RTE 90 WESTFIELD MA 01085	NOŃ GC N/A
. •	SPILLS	ONE MILE WEST OF WEST ROAD W92-0098	RESERVOIR ROAD WESTFIELD MA 01085	NON GC N/A
	SPILLS	RESIDENTIAL 1-0014539/RAO	BETWEEN 58 AND 64 DEBORAH L WESTFIELD MA	NON GC N/A
	SPILLS	WESTIFELD GAS & ELECTRIC W90-0149	POLE #50, UNION STREET WESTFIELD MA 01085	NON GC N/A

TARGET SITE: 88 SOUTH MAPLE STWESTFIELDMA 01085		JOB: 57	95-05	
TOTAL:	63	GEOČODED: 35	NON GEOCODED: 28	SELECTED: 35
Map ID	DB Туре	Site Name/ID/Status	Address	Dist/Dir Page No.
	SPILLS	COLUMBIA MANUFACTURING 1-0013432/ADQREG	SOUTH MEADOW RD WESTFIELD MA	NON GC N/A
	SPILLS	CROSS STREET PLAYGROUND 1-0013417/RAO	22 ASHLEY ST WESTFIELD MA	NON GC N/A
	SPILLS	DETENTION BASIN 1-0012094/RAO	TANK DESTROYER BLVD WESTFIELD MA 01085	NON GC N/A
	SPILLS	FLIGHT LINE BAKER 3 1-0014105/RAO	1759 FALCON DR WESTFIELD MA	NON GC N/A
	SPILLS	POOLE TRANSPORT W93-0047	RTE 20 WESTFIELD MA 01085	NON GC N/A
	SWL	GREEN WING CONSTRUCTION COMPOST CO0329.010/ACTIVE	NORTH RD WESTFIELD MA	NON GC N/A
	SWL	WESTERN MA HOSPITAL DUMP SL0329.008/CLOSED	31 EAST MOUNTAIN RD WESTFIELD MA	NON GC N/A
	UST	SNOW REMOVAL BUILDING 0-004510	SOUTHAMPTON RD WESTFIELD MA 01085	NON GC N/A

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

. . . .

RCRA GENERATOR SITE									
SEARCH ID: 1	I	DIST/DIR:	0.05 SW	MAP ID:	2				
NAME: SUNOCO SERVICE STA ADDRESS: 88-90 MAPLE ST WESTFIELD MA 01085			REV: ID1: ID2: STATUS:	6/13/05 MA5000000729 VGN					
CONTACT: DIANNE ROBINSON			PHONE:	.2152468577					
SITE INFORMATION									
CONTACT INFORMATION:	DIANNE ROBIN 1801 MARKET S PHILADELPHIA	SON T PA 191031699							
PHONE:	2152468577								
UNIVERSE INFORMATION:									
SNC: BOYSNC: GPRA PERMIT: GPRA POSTCLOSURE: GPRA CA: GPRA CME: PERM PROG: PREM WR NAIC INFORMATION	N - NO N - NO N - NO N - NO N - NO N - NO	N		~					
HANDLER INFORMATION:									
SECOND ID: ACCESSIBILITY: FED WSTE GEN OWNER: STATE WSTE GEN OWNER:	HQ	OI CC FE ST	FF SITE RECEIPT: DUNTY OWNER: D WASTE GEN: ATE WSTE GEN:	U - UNKNOWN 3					
ENFORCEMENT INFORMATION:									
VIOLATION INFORMATION:									
HAZARDOUS WASTE INFORMATION	1:								
Benzene Ignitable waste				-					
r.									

TARGET SIT	E: 88 SOUTH MAPLE WESTFIELD MA	2 ST 01085		JOB: 5	795-05				
STATE SPILLS SITE									
SEARCH ID: 14		DIST/DIR:	0.05 SW		MAP ID:	2			
NAME: BP STATION ADDRESS: BP STATION 88 SOUTH M WESTFIELD CONTACT:	APLE ST MA 01085		REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-000048 RAO	9				
SITE INFORMATION									
STATUS: RAO - (Response were sufficient to achieve a lo	e Action Outcome): a site/release evel of no significant risk or at le	where an RAO stat ast ensure that all su	tement was submitted. ubstantial hazards were	An RAO State eliminated.	ment asserts that r	esponse actions			
LTBI: DELETED:	1/15/1989	CONFIRM REMOVE	IED: D:						
LOCATION TYPE: SOURCE: SITE DESCRIPTION:									
CHEMICALS									
UNKNOWN CHEMICAL O	F UNKNOWN TYPE								
SITE ACTIONS									
TS DATE: AUL RESTRICTION: LSP: RA STATUS: RAS TYPE: RAO CLASS:	8/9/1995 KEVIN SHEEHAN LSP-RAOEQ								
TS DATE: AUL RESTRICTION: LSP: RA STATUS: RAS TYPE: RAO CLASS:	8/9/1995 KEVIN SHEEHAN COMPLETION STATEMENT PHASE 1	RECEIVED							
ACT DATE: ACT USE LIMITATION:	6/21/1988								
ACT STATUS: ACT TYPE: RAO CLASS:	VALID TRANSITION SITE RELEASE DISPOSITION								
ACT DATE: ACT USE LIMITATION: LSP:	8/9/1995								
ACT STATUS: ACT TYPE: BAO CLASS:	COMPLETION STATEMENT	RECEIVED							
NAO (LA30;			-	Continued of	on next page -				

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

•

1

STATE SPILLS SITE								
SEARCH	ID: 14	DIST/DIR:	0.05 SW		MAP ID:	2		
NAME: ADDRESS: CONTACT:	BP STATION 88 SOUTH MAPLE ST WESTFIELD MA 01085		REV: 101: 102: STATUS: PHONE:	01/10/06 1-0000489 RAO				
•								
-								
			-					

ļ

Ì

Ĵ

l

TARGET SITE	WESTFIELD MA 01085		JOB: 5795-0	> 					
STATE SPILLS SITE									
SEARCH ID: 25	DIST/DIR:	0.05 SW	МА	P ID: 2					
NAME: NO LOCATIO ADDRESS: 88-90 MAPLE WESTFIELD M	N AID ST MA	REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0015718 UNCLSS						
SITE INFORMATION									
STATUS: UNCLASSIFIED Statement, DPS Submittal, or	 A release that has not reached its Tier Classificat. Tier Classification Submittal has not been received 	ion deadline (usually on by DEP.	e year after it was rep	orted), and where an R/	AO				
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	PIPE;								
CHEMICALS									
GASOLINE 150 PPM									
SITE ACTIONS									
ACT DATE: ACT USE LIMITATION: LSP:	6/14/2005								
ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE NOTIFICATION								
ACT DATE: ACT USE LIMITATION: I SP-	4/15/2005								
ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE DISPOSITION								
ACT DATE:	8/16/2005								
LSP: ACT STATUS: ACT TYPE: RAO CLASS:	SCOTT VANDER TECHNICAL SCREEN AUDIT IMMEDIATE RESPONSE ACTION								
		·							

TARGET SITE: 88 SOUTH MAPLE ST WESTFIELD MA 01085

.

JOB: 5795-05

REGISTERED UNDERGROUND STORAGE TANKS SEARCH ID: 35 **DIST/DIR:** 0.05 SW MAP ID: 2 SUNOCO #0374-5593 NAME: **REV:** 01/13/06 ADDRESS: 88-90 MAPLE ST ID1: 0-007892 WESTFIELD MA 01085 13329 **TD2:** STATUS: CONTACT: PHONE: TOTAL NUMBER OF TANKS: 4 OWNER INFORMATION **OWNER NAME:** SUNOCO INC (R & M) **OWNER ADDRESS:** 1735 MARKET ST, 12TH FL PHILADELPHIA PA 19103 FACILITY TYPE: GAS STATION WORK PHONE: (215) 246-8513 TANK INFORMATION TANK NUMBER: 1 TANK STATUS: IN USE SERIAL NUMBER: **ABOVE GROUND:** Ν 8000 CAPACITY(GAL): **CONTENTS:** GASOLINE USE: MV CATHODIC TANK MATERIAL: TANK TYPE: 2 WALLS LEAK DETECTION: Interstitial Monitoring PIPE MATERIAL: CATHODIC PIPE TYPE: **I WALL LEAK DETECTION:** Product Line Leak Detector TANK NUMBER: 2 TANK STATUS: IN USE SERIAL NUMBER: **ABOVE GROUND:** N CAPACITY(GAL): 10000 GASOLINE **CONTENTS:** USE: MV TANK MATERIAL: CATHODIC TANK TYPE: 2 WALLS LEAK DETECTION: Interstitial Monitoring PIPE MATERIAL: CATHODIC PIPE TYPE: 1 WALL LEAK DETECTION: Product Line Leak Detector TANK NUMBER: 3 TANK STATUS: IN USE SERIAL NUMBER: **ABOVE GROUND:** N CAPACITY(GAL): 12000 - Continued on next page -GASOLINE CONTENTS:

Site Details Page - 5

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

REGISTERED UNDERGROUND STORAGE TANKS						
SEARCH ID: 35	DIST/DIR:	0.05 SW	MAP ID: 2			
NAME: SUNOCO #0374-5593 ADDRESS: 88-90 MAPLE ST WESTFIELD MA 01085 CONTACT:		REV: 01/13/06 ID1: 0-00789 ID2: 13329 STATUS: PHONE:	2			
USE: TANK MATERIAL: TANK TYPE: LEAK DETECTION: PIPE MATERIAL: PIPE TYPE: LEAK DETECTION:	MV CATHODIC 2 WALLS Interstitial Monitoring CATHODIC 1 WALL Product Line Leak Detector					
TANK NUMBER: TANK STATUS: SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL): CONTENTS: USE: TANK MATERIAL: TANK TYPE: LEAK DETECTION: PIPE MATERIAL: PIPE TYPE: LEAK DETECTION:	4 IN USE Y 85 WASTE OIL STEEL 2 WALLS					

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

		STATE S	PÍLLS SITE	······································	
SEARCH ID: 13		DIST/DIR:	0.07 NW	MAP ID:	4
NAME: BOBS AUTO ADDRESS: 97 SOUTH M WESTFIELD	MOTIVE APLE ST MA 01085		REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0000485 RAO	
					£112
SITE INFORMATION			·····		
were sufficient to achieve a le	e Action Outcome): a site/releas evel of no significant risk or at l	east ensure that all su	ement was submitted. A obstantial hazards were el	n RAO Statement asserts that re liminated.	esponse actions
LTBI: DELETED:	1/15/1989	CONFIRM REMOVEI	ED: 10/1/1993):		
LOCATION TYPE: SOURCE: SITE DESCRIPTION: GASOLINE PRESENT;	GASSTATION, UST; GAS STATION; R	ELEASE TO SOIL;	CONTAINED IN A LU	ST; GROUNDWATER RELE	ASE;
OTHER CONTAMINATIC OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE:	DN:				
CHEMICALS					
UNKNOWN CHEMICAL O	F UNKNOWN TYPE				
SITE ACTIONS					
TS DATE: AUL RESTRICTION: LSP: RA STATUS: RAS TYPE: RAO CLASS: BACKROUND	10/23/1995 NON STEVEN MIGRIDICHIAN RESPONSE ACTION OUTC A2 - A PERMANENT SOLU	OME - RAO ITION HAS BEEN A	CHIEVED: CONTAMI	NATION HAS NOT BEEN RE	DUCED TO
ACT DATE: ACT USE LIMITATION:	6/20/1988				
ACT STATUS: ACT TYPE: RAO CLASS:	VALID TRANSITION SITE RELEASE DISPOSITION				
ACT DATE: ACT USE LIMITATION: LSP:	10/23/1995 NONE				
ACT STATUS: ACT TYPE: TRAO CLASS:	RAO STATEMENT RECEIV RESPONSE ACTION OUTO A2 - A PERMANENT SOLU	/ED XOME - RAO JTION HAS BEEN A	CHIEVED: CONTAMI	NATION HAS NOT BEEN RE	DUCED TO
BACKROUND	<u>.</u>	۰.	- (Continued on next page -	

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

Í

JOB: 5795-05

	STATE S	PILLS SITE	-	
SEARCH ID: 13	DIST/DIR:	0.07 NW	MAP ID:	4
NAME: BOBS AUTOMOTIVE ADDRESS: 97 SOUTH MAPLE ST WESTFIELD MA 01085 CONTACT:		REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0000485 RAQ	
		, \		
				a

TARGET SITE: 88 SOUTH MAPLE ST WESTFIELD MA 01085

· · · ·

STATE SITE								
SEARCH ID: 3	DI	ST/DIR: 0.	07 NW	M	AP ID:	4		
NAME: BOBS AUTO ADDRESS: 97 SOUTH M WESTFIELD CONTACT:	MOTIVE IAPLE ST MA 01085		REV: ID1: ID2: STATUS: PHONE:	1/16/02 1-0000485 TIER 2				
SITE INFORMATION								
LTBI: DELETED:	1/15/89	CONFIRMED: REMOVED:	10/1/93					
CATEGORY: DATE: PHASE:	NONE 6/20/88	21E STATUS: 21E DATE: HAZMAT TYP	TIER 2 10/23/95 E:					
RAO CLASS: BACKROUND	A2 - A PERMANENT SOLUTION F	HAS BEEN ACHIE	VED: CONTAMIN	ATION HAS NO	T BEEN REDU	ICED TO		
LOCATION TYPE: SOURCE: SITE DESCRIPTION: GASOLINE PRESENT;	GASSTATION, UST; RELEASE TO SOIL; GRO	OUNDWATER RE	LEASE; GAS STA	tion; contai	ned in a'lu:	ST;		
OTHER CONTAMINATIO OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE:	DN:							
CHEMICALS UNKNOWN CHEMICAL O	F UNKNOWN TYPE							
SITE ACTIONS								
TS DATE: AUL RESTRICTION: LSP: RA STATUS: RAS TYPE: RAO CLASS: BACKROUND	10/23/1995 NON STEVEN MIGRIDICHIAN RAO: RESPONSE ACTION OUTCOME A2 - A PERMANENT SOLUTION HAS BEEN ACHIEVED: CONTAMINATION HAS NOT BEEN REDUCED TO							
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO TYPE: BACKROUND	10/23/1995 NONE RAO STATEMENT RECEIVED RAO: RESPONSE ACTION OUTCO A2 - A PERMANENT SOLUTION F	OME IAS BEEN ACHIE	EVED: CONTAMIN	ATION HAS NO	T BEEN REDI	JCED TO		
ACT DATE: ACT USE LIMITATION:	06/20/1988	. ,	- Ca	ontinued on n	ext page -			

	TARGET SITE:	88 SOUTH MAPLE WESTFIELD MA	E ST 01085	J	OB: 5795-05			
	STATE SITE							
	SEARCH ID: 3		DIST/DIR:	0.07 NW	MAP ID:	4		
	NAME: BOBS AUTOMOT ADDRESS: 97 SOUTH MAPLI WESTFIELD MAC	IVE 5 ST 91085		REV: ID1: ID2: STATUS: PHONE:	1/16/02 1-0000485 TIER 2			
	LSP: ACT STATUS: TC ACT TYPE: RE RAO TYPE:	TRNS L						
,								

TARGET SITE: 88 SOUTH MAPLE ST WESTFIELD MA 01085

JOB: 5795-05

REGISTERED UNDERGROUND STORAGE TANKS SEARCH ID: 33 **DIST/DIR:** 0.07 NW MAP ID: 4 NAME: PRIDE CONVENIENCE INC **REV:** 01/13/06 97 S MAPLE ST ADDRESS: 0-007912 ID1: WESTFIELD MA 01085 **ID2**: 13329 STATUS: CONTACT: PHONE: TOTAL NUMBER OF TANKS: 4 OWNER INFORMATION **OWNER NAME:** PRIDE CONVENIENCE INC **OWNER ADDRESS:** 246 COTTAGE ST SPRINGFIELD MA 01104 FACILITY TYPE: GAS STATION WORK PHONE: (413) 737-6992 TANK INFORMATION TANK NUMBER: TANK STATUS: REMOVED SERIAL NUMBER: ABOVE GROUND: N 10000 CAPACITY(GAL): CONTENTS: GASOLINE USE: TANK MATERIAL: REINFORCED TANK TYPE: LEAK DETECTION: Inventory Record-Keeping PIPE MATERIAL: REINFORCED PIPE TYPE: LEAK DETECTION: Product Line Leak Detector TANK NUMBER: 2 TANK STATUS: REMOVED SERIAL NUMBER: **ABOVE GROUND:** Ν CAPACITY(GAL): 10000 GASOLINE CONTENTS: USE: TANK MATERIAL: REINFORCED TANK TYPE: LEAK DETECTION: Inventory Record-Keeping REINFORCED PIPE MATERIAL: PIPE TYPE: LEAK DETECTION: Product Line Leak Detector TANK NUMBER: 3 TANK STATUS: REMOVED SERIAL NUMBER: ABOVE GROUND: Ν 10000 CAPACITY(GAL): - Continued on next page -CONTENTS: GASOLINE

e. -

Site Details Page - 11

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

Î

Ι,

ľ

REGISTERED UNDERGROUND STORAGE TANKS						
SEARCH ID: 33	DIST/DIR:	0.07 NW	MAP ID;	4		
NAME: PRIDE CONVENIENCE IN ADDRESS: 97 S MAPLE ST WESTFIELD MA 01085 CONTACT:	c	REV: ID1: ID2: STATUS: PHONE:	01/13/06 0-007912 13329			
USE: TANK MATERIAL: TANK TYPE:	REINFORCED					
LEAK DETECTION: PIPE MATERIAL:	Inventory Record-Keeping					
PIPE TYPE: LEAK DETECTION:	Product Line Leak Detector					
TANK NUMBER: TANK STATUS: SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL): CONTENTS: USE: TANK MATERIAL: TANK TYPE: LEAK DETECTION: PIPE MATERIAL: PIPE TYPE: LEAK DETECTION:	4 REMOVED N 10000 DIESEL REINFORCED Inventory Record-Keeping REINFORCED Product Line Leak Detector					

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

JOB: 5795-05

٦

SEARCH ID: 19 DIST/DIR: 0.13 SW MAP ID: 17 AME: FORMER TEXACO STATION DDRESS: 27.001/10/06 DDFS: 27.001/10/07 DDFS: 27.001/10/0	STATE SPILLS SITE							
NAME: CORMER TEXACO STATION ADDRESS: 73 SOUTHWICK ST WESTFIELD MA WESTFIELD MA WES	SEARCH ID: 19	DIST/DIR:	0.13 SW	MAP ID: 17				
CONTACT: PHONE: PHONE: PHONE: PHONE: Phone: STE INFORMATION STE INFORMATION STE INFORMATION STE INFORMATION STE INFORMATION: COMMERCIAL, SOURCE: UST, SOURCE: UST, SOURCE: UST, STE DESCRIPTION: COMMERCIAL, SOURCE: UST, STE DESCRIPTION: CHEMICALS SASOLINE 350 PPM SITE ACTIONS ACT DATE: 8/5/2004 ACT DATE: 8/5/2004 ACT DATE: 2/17/2005 ACT DATE: DEBORAH WOIC ACT TYPE: RELEASE DEPONED ACTION OUTCOME - RAO ACT DATE: 1/2/10/2004 ACT DATE: 1/2/10/2004	NAME: FORMER TE ADDRESS: 27 SOUTHW WESTFIELD	XACO STATION ICK ST MA	REV: IDI: ID2: STATUS.	01/10/06 1-0015400				
STATUS: RAO - (Response Action Outcome): a site/release where an RAO statement was submitted. An RAO Statement asserts that response actions were sufficient to achieve a ievel of no significant risk or at least ensure that all subtantial hazards were eliminated. LOCATION TYPE: COMMERCIAL, SOURCE: UST; STEE DESCRIPTION: CHEMICALS ASSOLINE 350 PPM STEE ACTIONS STEE ACTIONS STEE ACTIONS STEE ACTIONS ACT DATE: 8/5/2004 ACT USE LIMITATION: SP: CELEASE UNDER MGL 21E ACT TYPE: RELEASE DISPOSITION ACT DATE: 2/17/2005 ACT DATE: DEBORAH WOIC ACT STATUS: TECHNICAL SCREEN AUDIT ACT TYPE: RESPONSE ACTION OUTCOME - RAO RAO CLASS: ACT DATE: 2/10/2004 ACT USE LIMITATION: SP: DEBORAH WOIC ACT STATUS: TECHNICAL SCREEN AUDIT ACT TYPE: RESPONSE ACTION OUTCOME - RAO RAO CLASS: ACT DATE: 1/10/2004	CONTACT:		PHONE:	KAU				
STATUS: RAO - (Response Action Outcome): a site/release where an RAO statement was submitted. An RAO Statement asserts that response actions were sufficient to achieve a level of no significant risk or at least ensure that all substantial hazards were eliminated. LOCATION TYPE: COMMERCIAL, SOURCE: UST; STEE DESCRIPTION: CHEMICALS SASOLINE 350 PPM STEE ACTIONS ACT DATE: 8/5/2004 ACT DATE: 8/5/2004 ACT DATE: 2/17/2005 ACT DATE: 2/17/2005 ACT DATE: 2/17/2005 ACT DATE: RELEASE UNDER MGL 21E ACT TYPE: RESPONSE ACTION OUTCOME - RAO ACT DATE: 4.2 - A PERMANENT SOLUTION HAS BEEN ACHIEVED: CONTAMENATION HAS NOT BEEN REDUCED TO SACKROUND ACT DATE: 12/10/2004 ACT	SITE INFORMATION							
LOCATION TYPE: COMMERCIAL, UST; SOURCE: UST; CHEMICALS UST; GASOLINE 350 PPM STEACTIONS INTE ACTIONS S/2004 ACT DATE: S/5/2004 LSP: REFORTABLE RELEASE UNDER MGL 21E KACT DATE: 2/17/2005 NONE NONE LSP: NONE ACT DATE: 2/17/2005 NONE NONE LSP: NONE ACT DATE: 2/17/2005 NONE NONE LSP: NONE NONE NONE LSP: NONE NONE NONE SP: NONE NONE NONE SP: NONE SP: NONE SP: NONE SP: TECHNICAL SCREEN AUDIT ACT DATE: 1/10/2004 LSP: DEBORAH WO/C CACT DATE: 1/10/2004 LSP: MEED/ALE RESPONSE ACTION RACT DATE: 1/10/2004 LSP: MEED/ALE RESPONSE ACTION </td <td>STATUS: RAO - (Respons were sufficient to achieve a l</td> <td>e Action Outcome): a site/release where an RAO stat evel of no significant risk or at least ensure that all st</td> <td>tement was submitted. A ubstantial hazards were el</td> <td>n RAO Statement asserts that response actions iminated.</td>	STATUS: RAO - (Respons were sufficient to achieve a l	e Action Outcome): a site/release where an RAO stat evel of no significant risk or at least ensure that all st	tement was submitted. A ubstantial hazards were el	n RAO Statement asserts that response actions iminated.				
CHEMICALS SASOLINE 350 PPM SITE ACTIONS SITE ACTIONS ACT DATE: S/S/2004 ACT DATE: S/S/2004 ACT TATE: S/S/2004 ACT TYPE: REPORTABLE RELEASE UNDER MGL 21E ACT DATE: 2/17/2005 ACT DATE: 2/17/2005 ACT TYPE: RESPONSE ACTION OUTCOME - RAO ACT DATE: A2 - A PERMANENT SOLUTION HAS BEEN ACHIEVED: CONTAMINATION HAS NOT BEEN REDUCED TO ACT DATE: 12/10/2004 ACT TYPE: DEBORAH WOIC ACT TYPE: DEBORAH WOIC ACT TYPE: DEBORAH WOIC ACT DATE: 12/10/2004 ACT DATE: DEBORAH WOIC ACT TYPE: DEBORAH WOIC	LOCATION TYPE: SOURCE: SITE DESCRIPTION:	COMMERCIAL, UST;						
GASOLINE 350 PPM STE ACTIONS ACT DATE: ACT DATE: LSP: ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E ACT TYPE: REOLEASE DISPOSITION ACT DATE: 2/17/2005 NONFE DEBORAH WOIC ACT TYPE: RESPONSE ACTION OUTCOME - RAO RACT USE LIMITATION: DEBORAH WOIC ACT DATE: ACT DATE: LSP: DEBORAH WOIC ACT USE LIMITATION: DEBORAH WOIC ACT TYPE: RACT USE LIMITATION: DEBORAH WOIC ACT TYPE: MACT USE LIMITATION: DEBORAH WOIC ACT TYPE: MACT USE LIMITATION: DEBORAH WOIC ACT TYPE: MACT DATE: MACT DATE: NONE DEBORAH WOIC ACT TYPE: MACT TYPE: MACT DASE RACT TYPE: MACT TYPE: MACT TYPE:	<u>CHEMICALS</u>							
SITE ACTIONSACT DATE:8/5/2004ACT USE LIMITATION:SEPORTABLE RELEASE UNDER MGL 21EACT STATUS:REPORTABLE RELEASE UNDER MGL 21EACT TYPE:RELEASE DISPOSITIONRAO CLASS:2/17/2005ACT DATE:2/17/2005ACT DATE:2/17/2005ACT DATE:DEBORAH WOICACT STATUS:TECHNICAL SCREEN AUDITACT TYPE:RESPONSE ACTION OUTCOME - RAORAO CLASS:A2 - A PERMANENT SOLUTION HAS BEEN ACHIEVED: CONTAMINATION HAS NOT BEEN REDUCED TOBACK DUNDDEBORAH WOICACT DATE:12/10/2004ACT DATE:DEBORAH WOICACT DATE:DEBORAH WOICACT DATE:DEBORAH WOICACT DATE:10/8/2004ACT DATE:IMMEDIATE RESPONSE ACTIONACT DATE:I/0/8/2004ACT DATE:I/0/8/2004ACT DATE:REPORTABLE RELEASE UNDER MGL 21EISP:REPORTABLE RELEASE UNDER MGL 21EACT TYPE:REPORTABLE RELEASE UNDER MGL 21ERACT TYPE:REPORTABLE RELEASE UNDER MGL 21ERAO CLASS:REPORTABLE RELEASE UNDER MGL 21E	GÁSOLINE 350 PPM							
ACT DATE: 8/5/2004 ACT USE LIMITATION: ISP: ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E ACT TYPE: RELEASE DISPOSITION RAO CLASS: ACT DATE: 2/17/2005 ACT DATE: 2/17/2005 ACT USE LIMITATION: NONE UEBORAH WOIC ACT STATUS: RESPONSE ACTION OUTCOME - RAO RAO CLASS: A2 - A PERMANENT SOLUTION HAS BEEN ACHIEVED: CONTAMINATION HAS NOT BEEN REDUCED TO BACKROUND ACT DATE: 12/10/2004 ACT DATE: 12/10/2004 ACT STATUS: TECHNICAL SCREEN AUDIT ACT STATUS: TECHNICAL SCREEN AUDIT ACT STATUS: TECHNICAL SCREEN AUDIT ACT STATUS: TECHNICAL SCREEN AUDIT ACT TYPE: DEBORAH WOIC ACT STATUS: TECHNICAL SCREEN AUDIT ACT TYPE: DEBORAH WOIC ACT STATUS: TECHNICAL SCREEN AUDIT ACT TYPE: NMMEDIATE RESPONSE ACTION RAO CLASS: ACT DATE: N/MAEDIATE RESPONSE ACTION RAO CLASS: REPORTABLE RELEASE UNDER MGL 21E ACT TYPE: REPORTABLE RELEASE UNDER MGL 21E RACT STATUS: REPORTABLE RELEASE UNDER MGL 21E RACT STATUS: REPORTABLE RELEASE UNDER MGL 21E RELEASE NOTIFICATION	SITE ACTIONS							
ACT DATE: 2/17/2005 ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E ACT TYPE: RELEASE DISPOSITION RAO CLASS: ACT DATE: 2/17/2005 ACT USE LIMITATION: NONE LSP: DEBORAH WOIC ACT STATUS: TECHNICAL SCREEN AUDIT ACT TYPE: RESPONSE ACTION OUTCOME - RAO RAO CLASS; A2 - A PERMANENT SOLUTION HAS BEEN ACHIEVED: CONTAMINATION HAS NOT BEEN REDUCED TO BACKROUND ACT DATE: 12/10/2004 ACT USE LIMITATION: LSP: DEBORAH WOIC ACT TYPE: INMEDIATE RESPONSE ACTION RAO CLASS: ACT DATE: 10/8/2004 ACT DATE: 10/8/2004 ACT USE LIMITATION: LSP: REPORTABLE RELEASE UNDER MGL 21E ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E RAO CLASS:	ACT DATE:	8/5/2004						
ACT DATE:2/17/2005ACT USE LIMITATION:NONELSP:DEBORAH WOJCACT TYPE:RESPONSE ACTION OUTCOME - RAORAO CLASS:A2 - A PERMANENT SOLUTION HAS BEEN ACHIEVED: CONTAMINATION HAS NOT BEEN REDUCED TOBACKROUNDL2/10/2004ACT DATE:DEBORAH WOJCACT TYPE:DEBORAH WOJCACT TYPE:DEBORAH WOJCACT TYPE:DEBORAH WOJCACT TYPE:DEBORAH WOJCACT TYPE:MMEDIATE RESPONSE ACTIONRAO CLASS:I0/8/2004ACT STATUS:I0/8/2004ACT STATUS:REPORTABLE RELEASE UNDER MGL 21EACT STATUS:REPORTABLE RELEASE UNDER MGL 21ERAO CLASS:RELEASE NOTIFICATION	ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE DISPOSITION						
ACT DATE: 12/10/2004 ACT USE LIMITATION: LSP: DEBORAH WOJC ACT STATUS: TECHNICAL SCREEN AUDIT ACT TYPE: IMMEDIATE RESPONSE ACTION RAO CLASS: ACT DATE: 10/8/2004 ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E ACT TYPE: RELEASE NOTIFICATION RAO CLASS:	ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLÁSS: BACKROUND	2/17/2005 NONE DEBORAH WOJC TECHNICAL SCREEN AUDIT RESPONSE ACTION OUTCOME - RAO A2 - A PERMANENT SOLUTION HAS BEEN A	CHIEVED: CONTAMI	NATION HAS NOT BEEN REDUCED TO				
ACT USE LIMITATION: LSP: DEBORAH WOJC ACT STATUS: TECHNICAL SCREEN AUDIT ACT TYPE: IMMEDIATE RESPONSE ACTION RAO CLASS: ACT DATE: 10/8/2004 ACT USE LIMITATION: LSP: ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E ACT TYPE: RELEASE NOTIFICATION RAO CLASS:	ACT DATE:	12/10/2004						
ACT DATE: 10/8/2004 ACT USE LIMITATION: LSP: ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E ACT TYPE: RELEASE NOTIFICATION RAO CLASS:	ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	DEBORAH WOJC TECHNICAL SCREEN AUDIT IMMEDIATE RESPONSE ACTION	-					
LSP: ACT STATUS: REPORTABLE RELEASE UNDER MGL 21E ACT TYPE: RELEASE NOTIFICATION RAO CLASS:	ACT DATE: ACT USE LIMITATION:	10/8/2004						
	LSP: ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE NOTIFICATION						

TARGET SITE:	88 SOUTH MAPL WESTFIELD MA	E ST 01085		J	IOB: 57	95-05			
STATE SPILLS SITE									
SEARCH ID: 23		DIST/DIR:	0.13 \$	SW		MAP ID:	17		
NAME: MOBIL GAS ADDRESS: 27 SOUTHWIC WESTFIELD M CONTACT:	K RD (A 01085			REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0000230 DEPNFA				
SITE INFORMATION	o Further Action means that a	CRORCE BUTORS USTR	conducte	d and DEP date	mined that n	o further action a	mr peopled to the		
site.	Turura Action means that h	esponse actions were	CONducto						
LTBI: DELETED:		CONFIRM REMOVED	ED:):	1/15/1987 10/15/1987					
LOCATION TYPE: SOURCE: SITE DESCRIPTION: OTHER CONTAMINATION OTHER RELEASES:	GASSTATION, UST; GAS STATION; G	ROUNDWATER RE	LEASE;	CONTAINED	IN A LUST,	RELEASE TO S	SOIL;		
OTHER PROBLEMS: OTHER TYPE OF SITE:									
UNKNOWN CHEMICAL OF U	UNKNOWN TYPE								
STEL ACTIONS									
ACT DATE: ACT USE LIMITATION:	1/15/1987								
LSP: ACT STATUS: ACT TYPE: RAO CLASS:	VALID TRANSITION SITE RELEASE DISPOSITION								
	••								

Ĵ

Í

TARGET SITE: **88 SOUTH MAPLE ST** WESTFIELD MA 01085

JOB: 5795-05

REGISTERED UNDERGROUND STORAGE TANKS							
SEARCH ID: 34	DIST/DIR:	0.13 SW	MAP ID:	17			
NAME: SHELL ADDRESS: 27 SOUTHWICK RD WESTFIELD MA 01085 CONTACT:		REV: ID1: ID2: STATUS: PHONE:	01/13/06 0-007910 13329				
TOTAL NUMBER OF TANKS:	8						
OWNER INFORMATION OWNER NAME: OWNER ADDRESS:	MHEID-KOBEISSI INC 43 NANIGIAN RD PAXTON MÁ 01612						
FACILITY TYPE: WORK PHONE:	GAS STATION (508) 868-2909		-				
TANK INFORMATION							
TANK NUMBER: TANK STATUS: SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL): CONTENTS: USE:	1 REMOVED N 4000 GASOLINE						
TANK MATERIAL: TANK TYPE: LEAK DETECTION:	STEEL						
PIPE MATERIAL: PIPE TYPE: LEAK DETECTION:	STEEL						
TANK NUMBER: TANK STATUS: SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL): CONTENTS: USE: TANK MATERIAL: TANK MATERIAL: TANK TYPE: LEAK DETECTION:	2 REMOVED N 5000 GASOLINE STEEL			-			
PIPE MATERIAL: PIPE TYPE: LEAK DETECTION:	STEEL						
TANK NUMBER: TANK STATUS: SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL): CONTENTS:	3 REMOVED N 5000 GASOLINE	- C	ontinued on next page -				

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

`,

REGISTERED UNDERGROUND STORAGE TANKS				
SEARCH ID: 34	DIST/DIR:	0.13 SW	MAP ID:	17
NAME: SHELL ADDRESS: 27 SOUTHWICK RD WESTFIELD MA 01085 CONTACT:	. *	REV: ID1: ID2: STATUS: PHONE:	01/13/06 0-007910 13329	
USE: TANK MATERIAL: TANK TYPE: LEAK DETECTION:	OTHER STEEL			
PIPE MATERIAL: PIPE TYPE: LEAK DETECTION:	STEEL			
TANK NUMBER: TANK STATUS: SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL): CONTENTS: USE: TANK MATERIAL: TANK TYPE: LEAK DETECTION:	4 REMOVED N 10000 GASOLINE CATHODIC I WALL Approved In-Tank Monitor			
PIPE MATERIAL: PIPE TYPE: LEAK DETECTION:	REINFORCED 1 WALL Interstitial Space Monitor			
TANK NUMBER: TANK STATUS: SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL): CONTENTS: USE: TANK MATERIAL: TANK TYPE: LEAK DETECTION:	5 REMOVED N 10000 GASOLINE CATHODIC 1 WALL Approved In-Tank Monitor			
PIPE MATERIAL: PIPE TYPE: LEAK DETECTION:	REINFORCED 1 WALL Interstitial Space Monitor			
TANK NUMBER: TANK STATUS: SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAĹ): CONTENTS: USE: TANK MATERIAL: TANK MATERIAL: TANK TYPE: LEAK DETECTION:	6 REMOVED N 10000 GASOLINE MV REINFORCED 2 WALLS Interstitial Monitoring		·	
·		- C	ontinued on next page -	
TARGET SITE: 88 SOUTH MAPLE ST W

VESTFIELD MA 01085

SEARCH ID: 34	DIST/DIR:	0.13 SW		MAP ID:	17
NAME: SHELL ADDRESS: 27 SOUTHWICK RD WESTFIELD MA 01085 CONTACT:		REV: ID1: ID2: STATUS: PHONE:	01/13/06 0-007910 13329		
PIPE MATERIAL:	REINFORCED				
PIPE TYPE:	I WALL				
LEAK DETECTION:	Interstitial Space Monitor				
ANK NUMBER:	7				
TANK STATUS:	IN USE				
SERIAL NUMBER:					
BOVE GROUND:	N				
APAULI Y (GAL); CONTENTS:	GASOLINE				~
JON LEA IS; ISF.	MV				
FANK MATERIAL:	REINFORCED				
ANK TYPE:	2 WALLS				
EAK DETECTION:	Interstitial Monitoring				
IPE MATERIAL:	FLEXIBLE				
IPE TYPE:	2 WALLS				
EAK DETECTION:	Product Line Leak Detector				
TANK NUMBER:	8				
FANK STATUS:	IN USE				
SERIAL NÜMBÉR:	Split 10K/5K				
BOVE GROUND:	N				
CAPACITY(GAL):	15000				
UNIENIS:	GASOLINE/D				
TANK MATERIAL	REINFORCED				
TANK TYPE:	2 WALLS			•	
EAK DETECTION:	Interstitial Monitoring				
PIPE MATERIAL:	FLEXIBLE				
PIPE TYPE:	2 WALLS				

TARGET SIT	E: 88 SOUTH MAPLE ST WESTFIELD MA 01085	J	OB: 5795-05	
	STATE S	PILLS SITE		
SEARCH ID: 32	DIST/DIR:	0.15 NW	MAP ID:	22
NAME: THE MILL A ADDRESS: 77 MILL ST WESTFIELD	T CRANE POND MA 01085	REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0011455 RAO	
		THOME.		
STATUS: RAO - (Response were sufficient to achieve a le	e Action Outcome): a site/release where an RAO stat	tement was submitted. At	n RAO Statement asserts that n iminated	esponse actions
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	INDUSTRIAL, UST;			
<u>CHEMICALS</u> FUEL OIL #6 FUEL OIL #4				
SITE ACTIONS ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	12/20/1996 ALAN WEISS COMPLETION STATEMENT RECEIVED RELEASE ABATEMENT MEASURE			
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS: BACKROUND AND AN AC	8/6/1997 NOTICE ALAN WEISS FEE RECEIVED-FMCRA USE ONLY RESPONSE ACTION OUTCOME - RAO A3 - A PERMANENT SOLUTION HAS BEEN A CITVITY AND USE LIMITATION (AUL) HAS BEE	CHIEVED: CONTAMIN EN IMPLÉMENTED	ATION HAS NOT BEEN RE	DUCED TO
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	7/30/1996 REPORTABLE RELEASE UNDER MGL 21E RELEASE DISPOSITION			
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: DAO CLASS	10/8/1996 REPORTABLE RELEASE UNDER MGL 21E RELEASE NOTIFICATION			
ACT DATE:	4/6/2004	- C	ontinued on next page -	

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

·, · ·

JOB: 5795-05

	STATE S	PILLS SITE		
SEARCH ID: 32	DIST/DIR:	0.15 NW	MAP ID:	22
NAME: THE MILL A ADDRESS: 77 MILL ST WESTFIELD CONTACT:	T CRANE POND MA 01085	REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0011455 RAO	
ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	ALAN WEISS AMENDMENT RECEIVED ACTIVITY AND USE LIMITATION			
1				

.

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

JOB: 5795-05

.

	STAT	TE SPILLS SITE		
SEARCH ID: 31	DIST/DI	R: 0.15 NW	MAP ID:	22
NAME: ADDRESS: 77 MILL STREET WESTFIELD MA 0 HAMPDEN CONTACT: TERENZI, R	STRIES 1085	REV: ID1: ID2: Status: Phone:	W90-0190 0000	
CASE CLOSED? SPILL DATE: DATE REPORTED: SPILL NOTIFIER:	YES 19900328 19900329 RON CRAIG, GEN. MANAGER	SPILL TIME; REPORT TIME: NOTIFIER PHONE:	11:00AM	
SPILL DESCRIPTION: INCIDENT: MATERIAL SPILLED: AMT RPTD SPILLED: SOURCE OF SPILL: PET/HAZ: PCB LEVEL:	SPILL DIESEL FUEL 1-10 GALLONS VEH. FUEL TANK PETROLEUM NONE	ACTUAL AMT SPILLED: VIR/WASTE:	I-10 GALLONS VIRGIN	
ENVIRONMENTAL IMPACT:				
LUST?: CONTRACTOR: DAYS/CLOSE:	NO NOT USED 1	SOIL CONTAMINATED?: PREPARE REPORT:		-

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

·

JOB: 5795-05

.

•	STATE S	PILLS SITE	
SEARCH ID: 22	DIST/DIR:	0.22 NW	MAP ID: 18
NAME: GENESIS SPI ADDRESS: 53 MILL ST WESTFIELD	RITUAL CENTER MA	REV: D1: D2: STATUS:	01/10/06 1-0011040 RAO
CONTACT:		PHONE:	· · · · · · · · · · · · · · · · · · ·
SITE INFORMATION			
STATUS: RAO - (Response were sufficient to achieve a le	e Action Outcome): a site/release where an RAO stat evel of no significant risk or at least ensure that all su	ement was submitted. Ar abstantial hazards were eli	n RAO Statement asserts that response actions iminated.
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	COMMERCIAL, UST,		
CHEMICALS			
FUEL OIL #2 100 PPM			
SITE ACTIONS			
ACT DATE: ACT USE LIMITATION:	10/5/1995		
ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE NOTIFICATION		
ACT DATE: ACT USE LIMITATION:	1/10/1996		
ACT TYPE: RAO CLASS:	COMPLETION STATEMENT RECEIVED IMMEDIATE RESPONSE ACTION		
ACT DATE: ACT USE LIMITATION:	1/10/1996		
ACT STATUS: ACT TYPE: RAO CLASS: BACKROUND OR A THRE	RAO STATEMENT RECEIVED RESPONSE ACTION OUTCOME - RAO A1 - A PERMANENT SOLUTION HAS BEEN A AT OF A RELEASE HAS BEEN ELIMINATED	CHIEVED: CONTAMIN	ATION HAS BEEN REDUCED TO
ACT DATE: ACT USE LIMITATION:	9/13/1995		
LSP: ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE DISPOSITION		

TARGET SITE:	88 SOUTH MAPLE ST WESTFIELD MA 01085	J	DB: 5795-05	
	STAT	TE SPILLS SITE		
SEARCH ID: 24	DIST/DI	R: 0.27 SE	MAP ID:	19
NAME: MOTOR OIL ADDRESS: LITTLE RIVER WESTFIELD MA C HAMPDEN CONTACT: GIVENS, C	01085	REV: ID1: ID2: STATUS: PHONE:	W93-0317 0000	
CASE CLOSED? SPILL DATE: DATE REPORTED: SPILL NOTIFIER:	YES 19930620 19930620 TED GILLIGAN/CITIZEN	SPILL TIME: REPORT TIME: NOTIFIER PHONE:	08:00AM 10:45AM	
SPILL DESCRIPTION: INCIDENT: MATERIAL SPILLED: AMT RPTD SPILLED: SOURCE OF SPILL: PET/HAZ: PCB LEVEL:	DUMPING OTHER MATERIAL> 1-10 GALLONS BOTH NONE	ACTUAL AMT SPILLED: VIR/WASTE:	UNKNOWN WASTE	
ENVIRONMENTAL IMPACT: LUST?: CONTRACTOR: DAYS/CLOSE:	NO NOT USED O	SOIL CONTAMINATED?: PREPARE REPORT:		

JOB: 5795-05

TARGET SITE: 88 SOUTH MAPLE ST

	WESTFIELD MA	01085				
		STATE S	PILLS SITE			
SEARCH ID: 21		DIST/DIR:	0.30 SW		MAP ID:	8
NAME: FOWLER FA ADDRESS: SOUTHWICH WESTFIELD	RMS K RD MA 01085		REV: ID1: ID2: STATUS PHONE	01/10/06 1-0000650 S: PENNFA		
			FHONE	·		
STATUS: PENNFA - Pend further action was required.	ling No Further Action means a These submittals are considered	document was submi pending until DEP a	tted to DEP asserting audits them.	; that a site assess	nent had determin	ned that no
LTBI: DELETED:	1/15/1990	CONFIRM REMOVE	ED:):			
LOCATION TYPE: SOURCE: SITE DESCRIPTION:						
<u>CHEMICALS</u>		N				
UNKNOWN CHEMICAL O	F UNKNOWN TYPE					
SITE ACTIONS						
TS DATE: AUL RESTRICTION:	3/22/1996					
LSP: RA STATUS:	PHILIP WARNER					
RAS TYPE: RAO CLASS:	CON-NFA					
ACT DATE: ACT USE LIMITATION:	1/15/1990					
ACT STATUS: ACT TYPE: - RAO CLASS:	VALID TRANSITION SITE RELEASE DISPOSITION					

TARGET SIT	E: 88 SOUTH MAN WESTFIELD M	PLE ST 1A 01085		J	OB: 5795-05	
		STAT	E SITI	3		
SEARCH ID: 7		DIST/DIR:	0.30 \$	SW	MAP ID:	8
NAME: FOWLER FA ADDRESS: SOUTHWIC WESTFIELD CONTACT:	ARMS K RD. D MA			REV: ID1: ID2: STATUS: PHONE:	1/29/01 1-0000650 PENDING NFA	
SITE INFORMATION						
LTBI: DELETED:	1/15/90	CONFIRM REMOVED	ED:):			
CATEGORY: DATE: PHASE:	1/15/90 NO PHASE	21E STATU 21E DATE: HAZMAT	JS: : FYPE:	PENDING NF 3/22/96	A	
RAO CLASS:						
LOCATION TYPE: SOURCE: SITE DESCRIPTION:						
SITE ACTIONS						
TS DATE: AUL RESTRICTION:	19960322 00:00:00					
LSP: RA STATUS: RAS TYPÉ: RAO CLASS:	PHILIP WARNER CON-NFA					
					-	
	he		- *** <u>*</u>			

TARGET SITE: **88 SOUTH MAPLE ST** WESTFIELD MA 01085

JOB: 5795-05

	STAT	E SPILLS SITE		
SEARCH ID: 15	DIST/DI	R: 0.33 SE	MAP ID: 14	1
NAME: CASCO FARMS ADDRESS: 100 ACRES ROAD WESTFIELD MA 0 HAMPDEN CONTACT: FISH, B		REV: ID1: ID2: STATUS: PHONE:	W92-0147 0000	
CASE CLOSED? SPILL DATE: DATE REPORTED: SPILL NOTIFIER:	YES 19920402 19920402 WILLIAM PHELON- WESTFIELD FIL	SPILL TIME: REPORT TIME: RE	11:40AM NOTIFIER PHONE:	
SPILL DESCRIPTION: INCIDENT: MATERIAL SPILLED: AMT RPTD SPILLED: SOURCE OF SPILL: PET/HAZ: PCB LEVEL:	TANK REMOVAL GASOLINE UNKNOWN GALLONS U.S.T. PETROLEUM NONE	ACTUAL AMT SPILLED: VIR/WASTE:	UNKNOWN GALLONS VIRGIN	
ENVIRONMENTAL IMPACT:	SOIL			
LUST?: CONTRACTOR: DAYS/CLOSE:	YES NOT USED 0	SOIL CONTAMINATED? PREPARE REPORT:		

STATE S DIST/DIR: ST	PILLS SITE 0.35 NE REV:		MAP ID:	
DIST/DIR:	0.35 NE	,	MAP ID:	
ST	REV:			21
	ID1: ID2: STATUS: PHONE:	01/10/06 1-0015284 RAO		
tion Outcome): a site/release where an RAO stat of no significant risk or at least ensure that all su RESIDNTIAL, UST;	ement was submitted. A ibstantial hazards were e	n RAO Staten liminated.	nent asserts that r	esponse actions
27/2004				
CHNICAL SCREEN AUDIT SPONSE ACTION OUTCOME - RAO - A PERMANENT SOLUTION HAS BEEN A OF A RELEASE HAS BEEN ELIMINATED	CHIEVED: CONTAME	IATION HAS	BEEN REDUCE	D TO
12/2004				
EPORTABLE RELEASE UNDER MGL 21E ELEASE DISPOSITION				
6/2004				
PORTABLE RELEASE UNDER MGL 21E ELEASE NOTIFICATION				
2/2004 RAL APPROVAL OF PLAN IMEDIATE RESPONSE ACTION				
	tion Outcome): a site/release where an RAO stat of no significant risk or at least ensure that all su RESIDNTIAL, UST; 27/2004 27/2004 20/2004 20/2004 22/2004 22/2004 22/2004 22/2004 29/2004 29/2004 29/2004 20/2004	tion Outcome): a site/release where an RAO statement was submitted. A of no significant risk or at least ensure that all substantial hazards were el RESIDNTIAL, UST; 27/2004 2014 2015 2015 2015 2015 2015 2015 2015 2015	tion Outcome): a site/release where an RAO statement was submitted. An RAO Statem of no significant risk or at least ensure that all substantial hazards were eliminated. RESIDNTIAL, UST; 27/2004 SCHNICAL SCREEN AUDIT SSPONSE ACTION OUTCOME - RAO - A PERMANENT SOLUTION HAS BEEN ACHIEVED: CONTAMINATION HAS DF A RELEASE HAS BEEN ELIMINATED 2/2004 SPORTABLE RELEASE UNDER MGL 21E ELEASE DISPOSITION 2/2004 SPORTABLE RELEASE UNDER MGL 21E ELEASE DISPOSITION 2/2004 2/2004 2/2004	tion Outcome): a site/release where an RAO statement was submitted. An RAO Statement asserts that r of no significant risk or at least ensure that all substantial hazards were eliminated. RESIDNITAL, UST; 27/2004 20/20/20/20/20/20/20/20/20/20/20/20/20/2

.

.

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

JOB: 5795-05

	WESTFIELD MA 01065					
STATE SPILLS SITE						
SEARCH ID: 17	· ·	DIST/DIR:	0.37 NE	MAP ID:	13	
NAME: FORMER BE ADDRESS: 17 BROOKLI WESTFIELD	MBEN GREENHOUSES NE AVE MA		REV: ID1: ID2: STATUS:	01/10/06 1-0015805 UNCLSS		
CONTACT:		<u></u>	PHONE:			
<u>SITE INFORMATION</u>						
STATUS: UNCLASSIFIED Statement, DPS Submittal, or	- A release that has not reacher Tier Classification Submittal I	d its Tier Classification has not been received	on deadline (usually one by DEP	year after it was reported), and	where an RAO	
LOCATION TYPE: SOURCE: SITE DESCRIPTION:						
CHEMICALS						
ARSENIC 39 MG/KG LEAD 450 MG/KG UNKNOWN CHEMICAL OI UNKNOWN CHEMICAL OI	F UNKNOWN TYPE 1800 MC F UNKNOWN TYPE 4000 MC	G/KG G/KG				
SITE ACTIONS						
ACT DATE: ACT USE LIMITATION: LSP:	6/23/2005					
ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE U RELEASE NOTIFICATION	JNDER MGL 21E				
ACT DATE: ACT USE LIMITATION: LSP:	10/25/2005					
ACT STATUS: ACT TYPE: RAO CLASS:	STATUS REPORT RECEIV RELEASE ABATEMENT M	ED ŒASURE				
•						

.

TARGET SITE	E: 88 SOUTH MAPLE ST WESTFIELD MA 01085		JOB: 5795-05		
STATE SPILLS SITE					
SEARCH ID: 12	DIST/DIR:	0.37 NE	MAP ID: 13		
NAME: BEMBEN NU ADDRESS: 17 BROOKLI WESTFIELD CONTACT:	RSERIES NE AVE MA	REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0012768 RAO		
<u>SITE INFORMATION</u>					
STATUS: RAO - (Response were sufficient to achieve a le	e Action Outcome): a site/release where an RAO stat wel of no significant risk or at least ensure that all so	tement was submitted. ubstantial hazards were	An RAO Statement asserts that response actions eliminated.		
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	COMMERCIAL, UST;				
CHEMICALS FUEL ÒIL #2 125 PPM					
SITE ACTIONS					
ACT DATE: ACT USE LIMITATION: LSP:	1/29/1999				
ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE DISPOSITION				
ACT DATE: ACT USE LIMITATION: LSP:	1/29/1999				
ACT STATUS: ACT TYPE: RAO CLASS:	ORAL APPROVAL OF PLAN IMMEDIATE RESPONSE ACTION				
ACT DATE: ACT USE LIMITATION: LSP:	12/29/1998		· · · ·		
ACT STATUS: ACT TYPE: RAO CLASS:	LESS RELEASE DISPOSITION				
ACT DATE: ACT USE LIMITATION: LSP:	2/8/1999				
ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE NOTIFICATION				
ACT DATE: ACT USE LIMITATION: LSP:	6/4/1999	• 1	Continued on next page -		

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

STATE SPILLS SITE					
SEARCH ID: 12		DIST/DIR:	0.37 NE	MAP ID:	13
NAME: BEMBEN NU ADDRESS: 17 BROOKLI WESTFIELD CONTACT:	IRSERIES NE AVE MA		REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0012768 RAO	
ACT STATUS: ACT TYPE: RAO CLASS: BACKROUND	RAO STATEMENT RECE RESPONSE ACTION OUT A2 - A PERMANENT SOL	IVED COME - RAO UTION HAS BEEN A	CHIEVED: CONTAMIN	JATION HAS NOT BEEN RE	EDUCED TO

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

		STATE S	PILLS SITE		
SEARCH ID: 18	D	IST/DIR:	0.40 NE	MAP ID:	16
NAME: FORMER MOORE ADDRESS: MATHER ST WESTFIELD MA 0	CONTRACTORS		REV: ID1: ID2: STATUS: PHONE:	W93-0411 0000	
CASE CLOSED? SPILL DATE: DATE REPORTED: SPILL NOTIFIER: SPILL DESCRIPTION:	YES 19930728 KARL KUEHNER/SOUTH/	SPI REF AMPTON SANI	LL TIME: PORT TIME: TARY	NOTIFIËR PHONE:	
INCIDENT: MATERIAL SPILLED: AMT RPTD SPILLED: SOURCE OF SPILL: PET/HAZ: PCB LEVEL:	LEAK MISCELLANEOUS OIL UNKNOWN GALLONS PETROLEUM NONE	AC1 VIR	TUAL AMT SPILLED: /WASTE:	VIRGIN	
ENVIRONMENTAL IMPACT:	SOIL				
LUST?: CONTRACTOR: DAYS/CLOSE:	NO NOT USED 0	SOI PRI	L CONTAMINATED?: PARE REPORT:		

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

STATE SPILLS SITE					
SEARCH ID: 20	DIST/DI	R: 0.40 NE	MAP ID: 16		
NAME: ADDRESS: WESTFIELD MA 0 HAMPDEN CONTACT: SLOWICK, D	ORE EXCAVATING	REV: ID1: ID2: STATUS: PHONE:	W91-0594 0000		
CASE CLOSED? SPILL DATE: DATE REPORTED: SPILL NOTIFIER:	YES 19911022 19911022 DEPUTY CHIEF TOM KANE- WEST	SPILL TIME: REPORT TIME: FIELD FIRE	01:15PM NOTIFIER PHONE:		
SPILL DESCRIPTION: INCIDENT: MATERIAL SPILLED: AMT RPTD SPILLED: SOURCE OF SPILL: PET/HAZ: PCB LEVEL:	LEAK DIESEL FUEL UNKNOWN GALLONS U.S.T. PETROLEUM NONE	ACTUAL AMT SPILLED: VIR/WASTE:	UNKNOWN GALLONS VIRGIN		
ENVIRONMENTAL IMPACT:	SOIL				
LUST?: CONTRACTOR: DAYS/CLOSE:	YES NOT USED 87	SOIL CONTAMINATED?: PREPARE REPORT:			
	•. •.				

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

STATE SPILLS SITE					
SEARCH ID: 29	DIST/D	DIR: 0.41 SW	MAP ID:	20	
NAME: PUNDERSON OIL ADDRESS: 152 VALLEY VIEW WESTFIELD MA 01 HAMPDEN CONTACT: FISH, B	7 DRIVE 1085	REV: ID1: ID2: STATUS: PHONE:	W90-0193 0000		
CASE CLOSED? SPILL DATE: DATE REPORTED: SPILL NOTIFIER:	YES 19900402 19900331 ROB PAQUETTE	SPILL TIME: REPORT TIME: NOTIFIER PHONE:	09:45AM 11:00AM		
SPILL DESCRIPTION: INCIDENT: MATERIAL SPILLED: AMT RPTD SPILLED: SOURCE OF SPILL: PET/HAZ: PCB LEVEL:	RUPTURE #2 FUEL OIL LESS THAN 1 GALLONS TANKER TRUCK PETROLEUM NONE	ACTUAL AMT SPILLED: VIR/WASTE:	1-10 GALLONS VIRGIN		
ENVIRONMENTAL IMPACT: LUST?: CONTRACTOR: DAYS/CLOSE:	SOIL NOT USED 1	SOIL CONTAMINATED?: PREPARE REPORT:			
	19 ⁰		<u></u>		

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

STATE SPILLS SITE					
SEARCH ID: 16	DIST/DIR:	0.47 NE	MAP ID: 15		
NAME: CORNER OF ADDRESS: 120 WEST SII WESTFIELD	MILL AND W. SILVER STREET LVER ST MA	REV: ID1: ID2: STATUS:	01/10/06 1-0014502 RAO		
CONTACT:		PHONE:			
SITE INFORMATION					
STATUS: RAO - (Response were sufficient to achieve a le	e Action Outcome): a site/release where an RAO stat evel of no significant risk or at least ensure that all su	ement was submitted. Ar ibstantial hazards were eli	n RAO Statement asserts that response actions iminated.		
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	RESIDNTIAL, UST;				
CHEMICALS					
FUEL OIL #2 69 PPMV					
SITE ACTIONS					
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	12/12/2002 TECHNICAL SCREEN AUDIT IMMEDIATE RESPONSE ACTION				
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	7/25/2002 LESS RELEASE DISPOSITION				
ACT DATE: ACT USE LIMITATION: LSP: ACT.STATUS: ACT TYPE: RAO CLASS: BACKROUND	3/20/2003 NONE KEVIN SHEEHA TECHNICAL SCREEN AUDIT RESPONSE ACTION OUTCOME - RAO A2 - A PERMANENT SOLUTION HAS BEEN A	CHIEVED: CONTAMIN	ATIÓN HAS NOT BEEN REDUCED TO		
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	11/25/2002 REPORTABLE RELEASE UNDER MGL 21E RELEASE NOTIFICATION				
ACT DATE: ACT USE LIMITATION:	9/18/2002	- C	ontinued on next page -		

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

	STATE S	PILLS SITE			
SEARCH ID: 16	DIST/DIR:	0.47 NE	MAP ID:	15	
NAME: CORNER OF MILL AND W. SILVER STREE ADDRESS: 120 WEST SILVER ST WESTFIELD MA CONTACT:	ET	REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0014502 RAO		
LSP: ACT STATUS: REPORTABLE RELEASE UN ACT TYPE: RELEASE DISPOSITION RAO CLASS:	NDER MGL 21E				
<u>_</u>	<u> </u>				

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

	STATE SPILLS SITE					
SEARCH ID: 27	Γ)IST/DIR: ().47 NE	MAP ID:	1	
NAME: NOBLE HOSPITAL ADDRESS: 115 W. SILVER ST. WESTFIELD MA 0 HAMPDEN CONTACT: SLOWICK, D	REET 1085		REV: ID1: ID2: STATUS: PHONE:	W90-0655 0000		
CASE CLOSED? SPILL DATE: DATE REPORTED: SPILL NOTIFIER:	YES 19901018 19901018 BILL PHELON, WESTFIEI	SPILL Repoi LD Fire Dept.	TIME: RT TIME:	10:30AM NOTIFIER PHONE:		
SPILL DESCRIPTION: INCIDENT: MATERIAL SPILLED: AMT RPTD SPILLED: SOURCE OF SPILL: PET/HAZ: PCB LEVEL:	LEAK DIESEL FUEL UNKNOWN U.S.T. PETROLEUM NONE	ACTU. VIR/W	AL AMT SPILLED: ASTE:	10-50 GALLONS VIRGIN		
ENVIRONMENTAL IMPACT: LUST?: CONTRACTOR: DAYS/CLOSE:	SOIL YES NOT USED 46	SOIL (PREPA	CONTAMINATED?: RE REPORT:			
· •						
:						
	. .					

TARGET SITE:	88 SOUTH MAPLE ST WESTFIELD MA 01085	JO	DB: 5795-05				
STATE SPILLS SITE							
SEARCH ID: 26	DIST/DI	R: 0.47 NE	MAP ID:	1			
NAME: NOBLE HOSPITAL ADDRESS: 115 W. SILVER ST WESTFIELD MA (HAMPDEN CONTACT: CARPENTER, C	L REET)1085	REV: DJ: D2: STATUS: PHONE:	W90-0066 0000				
CASE CLOSED? SPILL DATE: DATE REPORTED: SPILL NOTIFIER:	YES 19900207 19900207 FRANCIS MURREY - ENG.	SPILL TIME: REPORT TIME: NOTIFIER PHONE:	09:00AM 09:45AM				
SPILL DESCRIPTION:							
INCIDENT: MATERIAL SPILLED; AMT RPTD SPILLED; SOURCE OF SPILL: PET/HAZ: PCB LEVEL:	LEAK DIESEL FUEL U.S.T. PETROLEUM NONE	ACTUAL AMT SPILLED: VIR/WASTE:					
ENVIRONMENTAL IMPACT:							
LUST?: CONTRACTOR: DAYS/CLOSE:	NO NOT USED -1	SOIL CONTAMINATED?: PREPARE REPORT:					

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

	STAT	E SPILLS SITE		
SEARCH ID: 28	DIST/DIF	8: 0.47 NE	MAP ID:	1
NAME: ADDRESS: NOBLE HOSPIT. 115 WEST SILVI WESTFIELD MA HAMPDEN CONTACT: SLOWICK, D	AL LAB ER STREET 1 01085	REV: ID1: ID2: STATUS: PHONE:	W92-0027 0000	
CASE CLOSED? SPILL DATE: DATE REPORTED: SPILL NOTIFIER:	YES 19920121 19920121 BILL VERDONE -EPA/KATHY POTT	SPILL TIME: REPORT TIME: TER- NOBLE	01:00PM NOTIFIER PHONE:	
SPILL DESCRIPTION: INCIDENT: MATERIAL SPILLED: AMT RPTD SPILLED: SOURCE OF SPILL: PET/HAZ: PCB LEVEL:	LEAK OTHER MATERIAL -> 1-10 GALLONS OTHER SOURCE > SMALL CONTA HAZARDOUS NONE	ÀCTUAL AMT SPÌLLED; INER VIR/WASTE:	1-10 GALLONS VIRGIN	
ENVIRONMENTAL IMPACT LUST?: CONTRACTOR: DAYS/CLOSE:	NO NOT USED 1	SOIL CONTAMINATED?: PREPARE REPORT:		

TARGET SITE	88 SOUTH MAPLE ST WESTFIELD MA 01085		JOB: 5795-05			
STATE SITE						
SEARCH ID: 10	DIST/DIR:	0.58 NE	MAP ID:	11		
NAME: RESIDENCE ADDRESS: 32 NOBLE AV WESTFIELD N CONTACT:	E AA	REV: ID1: D2: STATUS: PHONE:	01/10/06 1-0014537 TIER1D			
SITE INFORMATION						
STATUS: - Tjer ID, a releas	e where the responsible party fails to provide a requ	uired submittal to DEP b	y a specified deadline.			
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	RESIDNTIAL, UST;					
CHEMICALS FUEL OIL #2 1000 PPMV						
SITE ACTIONS						
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS:	8/19/2002					
ACT TYPE: RAO CLASS:	RELEASE DISPOSITION					
ACT DATE: ACT USE LIMITATION: LSP:	10/18/2002					
ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE NOTIFICATION					
ACT DATE: ACT USE LIMITATION:	8/30/2002					
LSP: ACT STATUS: ACT TYPE: RAO CLASS:	PAUL HATCH ORAL APPROVAL OF PLAN IMMEDIATE RESPONSE ACTION					

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

STATE SITE						
SEARCH ID: 9	DI	ST/DIR:	0.60 NE	M	AP ID:	10
NAME: NO LOCATIO ADDRESS: 5 TO 7 HIGH WESTFIELD	DN AID ST MA 01085		REV: ID1: ID2: STATU PHON	5/10/01 1-0012355 JS: DEF TIER 1B E:		
SITE INFORMATION						
CATEGORY: DATE: PHASE:	72 HR 5/21/98 NO PHASE	21E STATUS 21E DATE: HAZMAT T	5: DEF TL 5/28/99 YPE: OIL	ER 1B		
RAO CLASS:						
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	RESIDNTIAL, UST;					
CHEMICALS						
FUEL OIL #2						
SITE ACTIONS						
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO TYPE:	11/30/1998 BRUCE NICKELSEN STATUS REPORT RECEIVED IRA: IMMEDIATE RESPONSE AC	TION				~
	×					
t						
				,		
	\$					
	· · · ·			<u></u>	,	

SEARCH ID: 4 DIST/DIR: 0.80 SE MAP ID: 5 NAME: DAY LUMBER COMPANY ADDRESS: SOUTH BROAD STO BOOLS 9 WESTFIELD MA ID: 1/29/01 CONTACT: DIS: 1/2000918 DIS: 1/2000918 SITE INFORMATION IDI: 1/2000918 DIS: SITE INFORMATION ITSI: 7/15/93 CONFIRMED: REMOVED: CATEGORY: 21E STATUS: RAO DATE: 7/15/93 ZIE DATE: 1/1/6/95 PHASE: PHASE II HAZMAT TYPE: OL SOURCE: STE DESCRIPTION: INDUSTRIAL SITE; GROUNDWATER RELEASE; VIRGIN OIL PRESENT; CONTAINED IN A LUST; RELEASE TOSTAR PHASE INSTITUTE: CONTAINED IN A LUST; RELEASE TO SOL, PETROLUMPRESENT; WASTE OIL PRESENT; ONTAINED IN A LUST; RELEASE TO SOL, PETROLUMPRESENT; WASTE OIL PRESENT; CONTAINED IN A LUST; OTHER ROMEMENS: OTHER ROMEMPRESENT; WASTER OTHER ROMEMENS: OTHER ROMEMPRESENT; CONTAINED IN A LUST; STE ACTIONS ISPS1116 00:00:00 AUL RESTRICTION: LSP: LSP-RAOEQ KEVIN SHEEHAN RAS TYPE: LSP-RAOEQ RAS TYPE: SHEEMAN RAS TYPE: FASE: ISP KEVIN SHEEHAN			STAT	E SITI	Е			
NAME: DAY LIMBER COMPANY MDRESS: SOUTH BROAD ST PO BOX 9 WESTFIELD MA WESTFIELD MA STATUS: RAO PHONE: CONTACT: NTE DEVEMMENT STATUS: RAO PHONE: TB: 7/15/93 CONFIRMED: CATEGORY	SEARCH ID: 4		DIST/DIR:	0.80	SE		MAP ID:	5
NTE INFORMATION LTBI: 7/15/93 CNFTRMED: DATE: 7/15/93 21 E STATUS: RAO DATE: 7/15/93 21 E STATUS: RAO DATE: 7/15/93 21 E DATE: 11/16/95 PHASE II HAZMAT TYPE: OL RAO CLASS: INDUSTRIAL SITE; GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN A LUST; RECATION TYPE: INDUSTRIAL SITE; GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN A LUST; RELEASE TO SOL; PETOLEUM PRESENT; WASTE OL PRESENT; WASTE OL PRESENT; CONTAINA INALINE; DTHER RELEASES: INDUSTRIAL SITE; GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN A LUST; RELEASE TO SOL; PETOLEUM PRESENT; WASTE OL PRESENT; VIRGIN OL PRESENT; CONTAINED IN A LUST; RELEASE TO SOL; PETOLEUM PRESENT; WASTE OL PRESENT; VIRGIN OL PRESENT; CONTAINED IN A LUST; RELEASE TO SOL; PETOLEUM PRESENT; WASTE OL PRESENT; VIRGIN OL PRESENT; CONTAINED IN A LUST; RELEASE TO SOL; PETOLEUM PRESENT; VIRGIN OL PRESENT; CONTAINED IN A LUST; RELEASE TO SOL; PETOLEUM PRESENT; VIRGIN OL PRESENT; CONTAINED IN A LUST; RELEASE TYPE: ISPATIE: ISPATIE: KAS TATUS: SPS1116 00:00:00 MAL RESTRICTION: ISPATIE: <th>NAME: DAY LUME ADDRESS: SOUTH BR WESTFIEL</th> <th>BER COMPANY OAD ST PO BOX 9 D MA</th> <th>、</th> <th></th> <th>REV: ID1: ID2: STATUS: PHONE:</th> <th>1/29/01 1-0000918 RAO</th> <th></th> <th></th>	NAME: DAY LUME ADDRESS: SOUTH BR WESTFIEL	BER COMPANY OAD ST PO BOX 9 D MA	、		REV: ID1: ID2: STATUS: PHONE:	1/29/01 1-0000918 RAO		
TIBI: 7/15/93 CONFIRMED: DELETED: 7/15/93 ZIE STATUS: RAO DATE: 7/15/93 ZIE DATE: 11/16/95 PHASE: PHASE I 11/16/95 HAZMAT TYPE: OL RAO CLASS: INDUSTRIAL SITE: GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN ALUST; RELEASE TO SOL; INDUSTRIAL SITE: GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN ALUST; RELEASE TO SOL; INDUSTRIAL SITE: GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN ALUST; OTHER CONTAMINATION: INDUSTRIAL SITE: GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN ALUST; OTHER CONTAMINATION: INDUSTRIAL SITE: GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN ALUST; OTHER PROBLEMS: INDUSTRIAL SITE: GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN ALUST; STEE ACTIONS INDUSTRIAL SITE: GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN ALUST; STER ACTIONS INDUSTRIAL SITE: GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN ALUST; STEE ACTIONS INDUSTRIAL SITE; GROUNDWATER RELEASE; VIRGIN OL PRESENT; CONTAINED IN ALUST; RAO CLASS: IPS1116 00:00:00 RAO STATUS: ISP-RAOEQ RAO CLASS: IPS1116 00:00:00 RAN TATUS: ISP-RAOEQ <td< td=""><td>SITE INFORMATION</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	SITE INFORMATION							
CATEGORY: DATE:7/15/93 PHASE IIZIE STATUS: RAO JIE DATE:RAO 11/16/95 OLRAO CLASS:DOCATION TYPE: SOURCE: SOURCE: SITE DESCRIPTION:INDUSTRIAL SITE; GROUNDWATER RELEASE; VIRGIN OIL PRESENT; CONTAINED IN A LUST; RELEASE TO SOL, PETROLEUM PRESENT, WASTE OIL PRESENT;OTHER CONTAMINATION: OTHER ROBLEMS: OTHER RYDE OF SITE:INDUSTRIAL SITE; GROUNDWATER RELEASE; VIRGIN OIL PRESENT; CONTAINED IN A LUST; RELEASE TO SOL, PETROLEUM PRESENT, WASTE OIL PRESENT;STEE ACTIONS OTHER RYDE OF SITE:SITE ACTIONS COTHER ROBLEMS: OTHER RYDE OF SITE:STEE ACTIONS ALU RESTRICTION: LSP: NO CLASS:SIP-RAOEQ RAO CLASS:TS DATE: LSP: RAS TYPE; LSP: RAS TYPE; LSP: RADIES19951116 00:00:00 RAO CLASS:TS DATE: LSP: RANGEL RAS TYPE; LSP: RAS TYPE; HASEL PHASE I RASTYPE; PHASE I RASTYPE; PHASE I PHASE I RASTYPE; PHASE I PHASE I RASTYPE; PHASE I PHASE I RASTYPE; RASTYPE;19951116 00:00:00 RADIES	LTBI: DELETED:	7/15/93	CONFIRM REMOVEI	ED: D:				
LOCATION TYPE: SOURCE: STE DESCRIPTION: INDUSTRIAL SITE; GROUNDWATER RELEASE; VIRGIN OIL PRESENT; CONTAINED IN A LUST; RELEASE TO SOIL; PETROLEUM PRESENT; WASTE OIL PRESENT; OTHER CONTAMINATION: OTHER RELEASES: OTHER REDATE: SITE ACTIONS TS DATE: 19951116 00:00:00 AUL RESTRICTION: LSP: KEVIN SHEEHAN RAS TYPE: LSP-RAOEQ RAO CLASS: TS DATE: 19951116 00:00:00 AUL RESTRICTION: LSP: KEVIN SHEEHAN RA STATUS: LSP: KEVIN SHEEHAN RA	CATEGORY: DATE: PHASE: RAO CLASS:	7/15/93 PHASE II	21E STATU 21E DATE: HAZMAT	US: : TYPE:	RAO 11/16/95 OIL			
SITE ACTIONS TS DATE: 19951116 00:00:00 AUL RESTRICTION: KEVIN SHEEHAN LSP: KEVIN SHEEHAN RAS TYPE: LSP-RAOEQ RAO CLASS: 19951116 00:00:00 AUL RESTRICTION: LSP-RAOEQ RAS TYPE: 19951116 00:00:00 AUL RESTRICTION: LSP: LSP: KEVIN SHEEHAN RAS TATUS: COMPLETION STATEMENT RECEIVED RAS TYPE: PHASEI: PHASE I RAO CLASS: PHASEI: PHASE I	SITE DESCRIPTION: RELEASE TO SOIL; PET	INDUSTRIAL SIT ROLEUM PRESENT; WAST	E; GROUNDWATE E OIL PRESENT;	R RELEA	LSE; VIRGIN	OIL PRESENT	; CONTAINE	D IN A LUST;
TS DATE: 19951116 00:00:00 AUL RESTRICTION: LSP: KEVIN SHEEHAN RAS TATUS: RAS TYPE: LSP-RAOEQ RAO CLASS: TS DATE: 19951116 00:00:00 AUL RESTRICTION: LSP: KEVIN SHEEHAN RAS TATUS: COMPLETION STATEMENT RECEIVED RAS TYPE: PHASE I RAO CLASS:	SITE DESCRIPTION: RELEASE TO SOIL; PET OTHER CONTAMINATI OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE:	INDUSTRIAL SIT ROLEUM PRESENT; WAST	E; GROUNDWATE E OIL PRESENT;	R RELEA	lse; Virgin (OIL PRESENT	; CONTAINE	D IN A LUST;
LSP: KEVIN SHEEHAN RA STATUS: RAS TYPE: LSP-RAOEQ RAO CLASS: TS DATE: 19951116 00:00:00 AUL RESTRICTION: LSP: KEVIN SHEEHAN RA STATUS: COMPLETION STATEMENT RECEIVED RAS TYPE: PHASEI: PHASE I RAO CLASS:	SITE DESCRIPTION: RELEASE TO SOIL; PET OTHER CONTAMINATI OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE: SITE ACTIONS	INDUSTRIAL SIT ROLEUM PRESENT; WAST	E; GROUNDWATE E OIL PRESENT;	R RELEA	lse; Virgin (OIL PRESENT	; CONTAINE	D IN A LUST;
RAS TYPE: LSP-RAOEQ RAO CLASS: 19951116 00:00:00 AUL RESTRICTION: 19951116 00:00:00 LSP: KEVIN SHEEHAN RAS TATUS: COMPLETION STATEMENT RECEIVED RAS TYPE: PHASEI: PHASE I RAO CLASS: France	SITE DESCRIPTION: RELEASE TO SOIL; PET OTHER CONTAMINATI OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE: <u>SITE ACTIONS</u> TS DATE: AUL RESTRICTION:	INDUSTRIAL SIT ROLEUM PRESENT; WAST ION: 19951116 00:00:00	E; GROUNDWATE E OIL PRESENT;	R RELEA	lse; virgin (OIL PRESENT	; CONTAINE	D IN A LUST;
TS DATE: 19951116 00:00:00 AUL RESTRICTION: LSP: KEVIN SHEEHAN RA STATUS: COMPLETION STATEMENT RECEIVED RAS TYPE: PHASEI: PHASE I RAO CLASS:	SITE DESCRIPTION: RELEASE TO SOIL; PET OTHER CONTAMINAT OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE: SITE ACTIONS SITE ACTIONS TS DATE: AUL RESTRICTION: LSP: RA STATUS:	INDUSTRIAL SIT ROLEUM PRESENT; WAST ION: 19951116 00:00:00 KEVIN SHEEHAN	E; GROUNDWATE E OIL PRESENT;	R RELEA	lse; Virgin (OIL PRESENT	; CONTAINE	D IN A LUST;
LSP: KEVIN SHEEHAN RA STATUS: COMPLETION STATEMENT RECEIVED RAS TYPE: PHASEI: PHASE I RAO CLASS:	SITE DESCRIPTION: RELEASE TO SOIL; PET OTHER CONTAMINATI OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE: SITE ACTIONS IS DATE: AUL RESTRICTION: LSP: RA STATUS: RAS TYPE: RAO CLASS:	INDUSTRIAL SIT ROLEUM PRESENT; WAST ION: 19951116 00:00:00 KEVIN SHEEHAN LSP-RAOEQ	E; GROUNDWATE E OIL PRESENT;	R RELEA	lse; Virgin (OIL PRESENT	; CONTAINE	D IN A LUST;
RAS TYPE: PHASE: PHASE I RAO CLASS:	SITE DESCRIPTION: RELEASE TO SOIL; PET OTHER CONTAMINATI OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE: SITE ACTIONS TS DATE: AUL RESTRICTION: LSP; RA STATUS: RAS TYPE: RAO CLASS: TS DATE: AUL RESTRICTION:	INDUSTRIAL SIT ROLEUM PRESENT; WAST ION: 19951116 00:00:00 KEVIN SHEEHAN LSP-RAOEQ 19951116 00:00:00	E; GROUNDWATE E OIL PRESENT;	R RELEA	lse; Virgin (OIL PRESENT	; CONTAINE	D IN A LUST;
	SITE DESCRIPTION: RELEASE TO SOIL; PET OTHER CONTAMINATI OTHER RELEASES: OTHER PROBLEMS: OTHER PROBLEMS: OTHER TYPE OF SITE: SITE ACTIONS IS DATE: AUL RESTRICTION: LSP: RAO CLASS: TS DATE: AUL RESTRICTION: LSP: PA STATUS:	INDUSTRIAL SIT ROLEUM PRESENT; WAST ION: 19951116 00:00:00 KEVIN SHEEHAN LSP-RAOEQ 19951116 00:00:00 KEVIN SHEEHAN COMPLETION STATEMEN	E; GROUNDWATE E OIL PRESENT;	R RELEA	lse; virgin (OIL PRESENT	; CONTAINE	D IN A LUST;
	SITE DESCRIPTION: RELEASE TO SOIL; PET OTHER CONTAMINATI OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE: SITE ACTIONS TS DATE: AUL RESTRICTION: LSP: RAO CLASS: TS DATE: AUL RESTRICTION: LSP: RAO CLASS: RAS TYPE: RAS TYPE: RAS TYPE: RAS TYPE: RAO CLASS:	INDUSTRIAL SIT ROLEUM PRESENT; WAST ION: 19951116 00:00:00 KEVIN SHEEHAN LSP-RAOEQ 19951116 00:00:00 KEVIN SHEEHAN COMPLETION STATEMEI PHASEI: PHASE I	E; GROUNDWATE E OIL PRESENT; NT RECEIVED	R RELEA	lse; Virgin (OIL PRESENT	; CONTAINE	D IN A LUST;
	SITE DESCRIPTION: RELEASE TO SOIL; PET OTHER CONTAMINATI OTHER RELEASES: OTHER PROBLEMS: OTHER PROBLEMS: OTHER TYPE OF SITE: SITE ACTIONS IS DATE: AUL RESTRICTION: LSP: RAS TYPE: RAO CLASS: RAS TYPE: RAS TYPE: RAS TYPE: RAS TYPE: RAS TYPE: RAO CLASS:	INDUSTRIAL SIT ROLEUM PRESENT; WAST ION: 19951116 00:00:00 KEVIN SHEEHAN LSP-RAOEQ 19951116 00:00:00 KEVIN SHEEHAN COMPLETION STATEMEI PHASEI: PHASE I	E; GROUNDWATE E OIL PRESENT; NT RECEIVED	R RELEA	SE; VIRGIN	OIL PRESENT	; CONTAINE	D IN A LUST;

-

TARGET SITE: 88 SOUTH MAPLE ST

JOB: 5795-05

	WESTFIELD MA	01085	•				
	STATE SITE						
SEARCH ID: 8		DIST/DIR:	0.84 NE	MAP ID:	9		
NAME: MADDEN RE ADDRESS: 7 WASHINGT WESTFIELD	SIDENCE FON ST MA		REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0014166 TTERII			
SITE INFORMATION							
STATUS: TIER 2 - A site/ri 40.0520(2)(a)). Permits are n DEP approval. All pre-1993	elease receiving a total NRS scon not required at Tier 2 sites/release transition sites that have accepte	re less than 350, unl es and response acti ed waivers are catego	ess the site meets any of t ons may be performed un oricallyTier 2 sites.	he Tier 1 Inclusionary Criteria (der the supervision of an LSP w	CMR ithout prior		
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	RESIDNTIAL, AST,						
CHEMICALS PETROLEUM BASED OIL							
SITE ACTIONS							
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	10/30/2001 LESS RELEASE DISPOSITION						
ACT DATE: ACT USE LIMITATION:	8/13/2003						
ACT STATUS: ACT TYPE; RAO CLASS:	REPORTÀBLE RELEASE UN RELEASE DISPOSITION	NDER MGL 21E					
ACT DATE: ACT USE LIMITATION: LSP:	2/23/2004						
ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UT RELEASE NOTIFICATION	NDER MGL 21E					
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	8/20/2004 KEVIN SHEEHA TIER 2 CLASSIFICATION TIER CLASSIFICATION						
ACT DATE: ACT USE LIMITATION:	10/27/2005		- 6	Continued on next page -			

• • •

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

STATE SITE						
SEARCH ID: 8	DIST/DIR:	0.84 NE	MAP ID:	9		
NAME: MADDEN RE ADDRESS: 7 WASHING WESTFIELD CONTACT:	ESIDENCE FON ST MA	REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0014166 TIERII			
LSP: ACT STATUS: ACT TYPE: RAO CLASS:	KEVIN SHEEHA COMPLETION STATEMENT RECEIVED RELEASE ABATEMENT MEASURE					
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	8/20/2004 KEVIN SHEEHA COMPLETION STATEMENT RECEIVED PHASE 1					
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	4/29/2005 KEVIN SHEEHA SCOPE OF WORK RECEIVED PHASE 2					
•						

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

JOB: 5795-05

STATE SITE								
SEARCH ID: 11	DIS	ST/DIR:	0.871	NW		MAP ID:	12	
NAME: TERRANCE F ADDRESS: 34 TEKOA TE WESTFIELD CONTACT:	FLAHIVE RESIDENCE ER MA 01085			REV: D1: ID2: STATUS: PHONE:	1/29/01 [-0011881 RAO			
							-	
LTBI: DELETED:		CONFIRM REMOVED	ED:):	v				
CATEGORY: DATE: PHASE:	72 HR 6/16/97 PHASE II	21E STATU 21E DATE: HAZMAT 1	is: Type:	RAO 1/4/99 OIL				
RAO CLASS: BACKROUND	A2 - A PERMANENT SOLUTION H	IAS BEEN AO	CHIEVEI	D: CONTAMIN	IATION HAS	NOT BEEN REI	DUCED TO	
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	RESIDNTIAL, UST;							
SITE ACTIONS								
TS DATE: AUL RESTRICTION: LSP: RA STATUS: RAS TYPE: RAO CLASS:	19980623 00:00:00 KEVIN SHEEHAN RELATED TO A TRANSITION SIT FEND	E (NOT TIER	CLASSI	FIED)				
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO TYPE:	06/23/1998 KEVIN SHEEHAN TIER 2 CLASSIFICATION TCLASS: TIER CLASSIFICATION							
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO TYPE:	06/23/1998 KEVIN SHEEHAN COMPLETION STATEMENT REC PHASEI: PHASE I	eived						
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: DAO TYPE:	01/04/1999 KEVIN SHEEHAN COMPLETION STATEMENT REC IRA: IMMEDIATE RESPONSE AC	EIVED TION						
KAUTIER:	, • •		`	- C	ontinued o	n next page -		

Site Details Page - 43

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

STATE SITE				
SEARCH ID: 11	DIST/DIR:	0.87 NW	MAP ID: 12	
NAME: TERRANCE F ADDRESS: 34 TEKOA TE WESTFIELD CONTACT:	LAHIVE RESIDENCE ER MA 01085	REV: ID1: ID2: STATUS: PHONE:	1/29/01 1-0011881 RAO	
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO TYPE: BACKROUND	01/04/1999 KEVIN SHEEHAN RAO STATEMENT RECEIVED RAO: RESPONSE ACTION OUTCOME A2 - A PERMANENT SOLUTION HAS BEEN A	CHIEVED: CONTAMIN	ATION HAS NOT BEEN REDUCED TO	

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

JOB: 5795-05

STATE SITE						
SEARCH ID: 5	DIST/DIR:	0.91 NE	MAP ID: 6			
NAME: FIRE STATIC ADDRESS: 34 BROAD S WESTFIELD	DN T MA 01085	REV: D1: D2: STATUS:	01/10/06 1-0012277 TIERJI			
CONTACT:		PHONE:				
SITE INFORMATION						
STATUS: TIER 2 - A site/r 40.0520(2)(a)). Permits are r DEP approval. All pre-1993	elease receiving a total NRS score less than 350, unlinot required at Tier 2 sites/releases and response activitransition sites that have accepted waivers are categories.	ess the site meets any of floors may be performed uno pricallyTier 2 sites.	he Tier 1 Inclusionary Criteria (CMR ler the supervision of an LSP without prior			
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	MUNICIPAL, UST;					
CHEMICALS						
PETROLEUM BASED OIL						
SITE ACTIONS						
ACT DATE: ACT USE LIMITATION:	12/22/2000					
ACT STATUS: ACT TYPE: RAO CLASS:	MODIFIED REVISED OR UPDATED PLAN REG RELEASE ABATEMENT MEASURE	CEIVED				
ACT DATE; ACT USE LIMITATION:	11/1/2001					
LSP: ACT STATUS: ACT TYPE: RAO CLASS:	EVAN JOHNSON COMPLETION STATEMENT RECEIVED PHASE 2					
ACT DATE: ACT USE LIMITATION:	5/12/1998					
ACT STATUS: ACT TYPE: RAO CLASS:	REPORTABLE RELEASE UNDER MGL 21E RELEASE NOTIFICATION					
ACT DATE: ACT USE LIMITATION:	3/16/2005					
LSP:	4589					
ACT TYPE: RAO CLASS:	TIER 2 EXTENSION TIER CLASSIFICATION					
ACT DATE: ACT USE LIMITATION:	· 12/2/2005 · ·	- C	ontinued on next page -			

.

TARGET SITE: 88 SOUTH MAPLE ST WESTFIELD MA 01085

STATE SITE					
SEARCH ID: 5	DIST/DIR:	0.91 NE	MAP ID:	6	
NAME: FIRE STATIO ADDRESS: 34 BROAD S WESTFIELD CONTACT:	DN T MA 01085	REV: ID1: ID2: STATUS: PHONE:	01/10/06 1-0012277 TIERII		
LSP: ACT STATUS: ACT TYPE; RAO CLASS:	EVAN JOHNSON COMPLETION STATEMENT RECEIVED IMMEDIATE RESPONSE ACTION				
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO-CLASS:	11/1/2001 EVAN JOHNSON COMPLETION STATEMENT RECEIVED PHASE 3				
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	4/6/1998 REPORTABLE RELEASE UNDER MGL 21E RELEASE DISPOSITION				
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	4/6/1999 EVAN JOHNSON COMPLETION STATEMENT RECEIVED PHASE 1				
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	12/30/2004 WRITTEN PLAN RECEIVED PHASE 4	,			

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

EARCH ID: 6					
	I	DIŚT/DIR:	0.91 NE	MAP ID:	7
AME: FORMER WI DDRESS: 6 COLEMAN WESTFIELD	ESTFIELD WOODWORKING I AVE MA		REV: D1: D2: STATUS:	01/10/06 1-0015540	
CONTACT:			PHONE:		
ITE INFORMATION					
TATUS: - Tier1D, a relea	ase where the responsible party fails	to provide a requ	ired submittal to DEP by	a specified deadline.	
OCATION TYPE:					
OURCE: ITE DESCRIPTION:					
HEMICALS					
THENE, TRICHLORO- 59	0 PPB				
EAD 1200 PPM THANE, 1,1-DICHLORO-	710 PPB				
ITE ACTIONS					
CT DATE: CT USÉ LIMITATION:	11/16/2004				
SP: CT STATUS:	REPORTABLE RELEASE UND	ER MGL 21E			
AO CLASS:	RELEASE NOTIFICATION				
*					

TARGET SITI	E: 88 SOUTH MAPLE ST WESTFIELD MA 01085	JOB: 5795-05
	STA	TE SITE
SEARCH ID: 2	DIST/DIR:	0.99 NE MAP ID: 3
NAME: BAYBANK ADDRESS: 30 ELM ST WESTFIELD CONTACT:	MA 01085	REV: 6/10/04 ID1: 1-0010788 ID2: STATUS: TIERII PHONE:
<u>SITE INFORMATION</u> STATUS: TIER 2 - A site/m	elease receiving a total NRS score less than 350, u	nless the site meets any of the Tier 1 Inclusionary Criteria (CMR
40.0520(2)(a)). Permits are n DEP approval. All pre-1993	ot required at Tier 2 sites/releases and response ac transition sites that have accepted waivers are cate;	tions may be performed under the supervision of an LSP without prior goricallyTier 2 sites.
LTBI: DELETED:	CONFIR REMOVI	MED; ED:
LOCATION TYPE: SOURCE: SITE DESCRIPTION:	COMMERCIAL, UST;	
CHEMICALS		
FUEL OIL #2 1000 PPMV FUEL OIL #2		
SITE ACTIONS		
TS DATE: AUL RESTRICTION:	3/14/1997	
RA STATUS: RAS TYPE: RAO CLASS:	LINKED TO A TRANSITION SITE - OBSOLET FEND	TE STATUS
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	4/3/2001 KEVIN OREILL AS-BUILT CONSTRUCTION REPORT RECEI PHASE 4	VED
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE: RAO CLASS:	9/13/2000 KEVIN OREILL TIER 2 TRANSFER TIER CLASSIFICATION	
ACT DATE: ACT USE LIMITATION: LSP: ACT STATUS: ACT TYPE:	4/3/1996 KEVIN OREILL COMPLETION STATEMENT RECEIVED PHASE 1	- Continued on next page -

88 SOUTH MAPLE ST TARGET SITE: WESTFIELD MA 01085

· . ·

JOB: 5795-05

STATE SITE SEARCH ID: 2 DIST/DIR: 0.99 NE MAP ID: 3 NAME: BAYBANK **REV:** 6/10/04 ADDRESS: 30 ELM ST **D1:** 1-0010788 WESTFIELD MA 01085 **D2**: STATUS: TIERII CONTACT: PHÓNE: RAO CLASS: ACT DATE: 5/25/1995 ACT USE LIMITATION: LSP: ACT STATUS: **REPORTABLE RELEASE UNDER MGL 21E** ACT TYPE: **RELEASE NOTIFICATION** RAO CLASS: ACT DATE: 5/5/1999 ACT USE LIMITATION: KEVIN OREILL LSP: ACT STATUS: COMPLETION STATEMENT RECEIVED ACT TYPE: PHASE 2 **RAO CLASS:** ACT DATE: 11/7/2003 ACT USE LIMITATION: **KEVIN OREILL** LSP: ACT STATUS: IMRCD ACT TYPE: PHASE 5 RAO CLASS: ACT DATE: 8/21/1995 ACT USE LIMITATION: LSP: ACT STATUS: **REPORTABLE RELEASE UNDER MGL 21E** ACT TYPE: RELEASE NOTIFICATION RAO CLASS: ACT DATE: 3/28/1995 ACT USE LIMITATION: LSP: ACT STATUS: **REPORTABLE RELEASE UNDER MGL 21E** ACT TYPE: RELEASE DISPOSITION RAO CLASS: ACT DATE: 5/5/1999 ACT USE LIMITATION: LSP: ACT STATUS: COMPLETION STATEMENT RECEIVED ACT TYPE: PHASE 3 **RAO CLASS:** 4/3/2001 ACT DATE: . - Continued on next page -ACT USE LIMITATION:

TARGET SITE:88 SOUTH MAPLE ST
WESTFIELD MA 01085

	STAT	TE SITE		
SEARCH ID: 2	DIST/DIR:	0.99 NE	MAP ID:	3
NAME: BAYBANK ADDRESS: 30 ELM ST WESTFIELD MA 01085 CONTACT:		REV: ID1: ID2: STATUS: PHONE:	6/10/04 1-0010788 TIERJI	
LSP: KEVIN OREI ACT STATUS: COMPLETIO ACT TYPE: IMMEDIATE RAO CLASS:	LL N STATEMENT RECEIVED RESPONSE ACTION			

Environmental FirstSearch Street Name Report for Streets within .25 Mile(s) of Target Property

TARGET SITE:	88 SOUTH MAPLE ST WESTFIELD MA 01085	JOB: 5795-	05
Street Name	Dist/Dir	Street Name	Dist/Dir
Alice St	0.19 SE		
Benham St	0.17 NE		
City View Rd	0.10 SW		
Crane Ave	0.13 NW	~	
Dewey Ave	0.12 NE		
Fairview St	0.11 NE		
Hundred Acres Rd	0.17 SW		
Lois St	0.17 NE		
Manlewood Ave	0.22 NE		
Margerie St	0.24 NE		
Mill St	0.06 NW		
Oak Ave	0.22 NE		
Oak St	0.16 NE		
Paper St	0.11 NE		
S Ashley St	0.20 SE		
S Maple St	0.03 NW		
SOUTH Ashley St	0.20 SE		
SOUTH Maple St	0.03 NW		
Southwick Rd	0.06 NW		
Vadnais St	0.16 NW		

Source: 2002 U.S. Census TIGER Files

Target Site (Latitude: 42.111331 Longitude: -72.76262) Identified Site, Multiple Sites, Receptor NPL, Brownfield, Solid Waste Landfill (SWL) or Hazardous Waste Railroads

Black Rings Represent 1/4 Mile Radius; Red Ring Represents 500 ft, Radius

. .

Source: 2002 U.S. Census TIGER Files
Target Site (Latitude: 42.111331 Longitude: -72.76262)
Brownfield......
Railroads

Black Rings Represent 1/4 Mile Radius; Red Ring Represents 500 ft. Radius

Source: 2002 U.S. Census TIGER Files

Target Site (Latitude: 42.111331 Longitude: -72.76262) Fed. Land Use: Wilderness Areas, Wildlife Preserves

Fed. Land Use: Amer. Indian Sacred Sites, End. Species' Habitats... Raibroads

Black	Rines	Represent	1/4 Mile	Radius	Red Ring	Rencesents	500 ft	Radius
DIGUA	TOTHER	represent	1/4 141110	s reactions,	weer wink	Represents	200.15	reading a

⊕

🖾 🆽 🗔

Source: 2002 U.S. Census TIGER Files				
Target Site (Latitude: 42.111331 Longitude: -72.76262)	¢			
Identified Site, Multiple Sites, Receptor	×	\times		
NPL, Brownfield, Solid Waste Landfill (SWL) or Hazardous Waste	\otimes			
National Historic Sites and Landmark Sites	H	fit:		
Railroads				

Black Rings Represent 1/4 Mile Radius; Red Ring Represents 500 ft. Radius

APPENDIX C

ľ

ļ

Sanborn Fire Insurance Maps

...

APPENDIX D

.

Groundwater Gauging Data

Groundwater Gauging Data Sunoco Station 88-90 South Maple Street Westfield, Massachusetts RTN 1-15718

Well ID	Monitoring Date	Casing Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Groundwater Elevation (feet)
MW-1	08/01/05	98.86	12.55		86.31
	02/07/06		10.25		88.61
MW-3B	08/01/05	98.72	12.90	—	85.82
	02/07/06		10.44		88.28
	03/06/06		13.25		85.47
MW-4	08/01/05	98.46	12.51		85.95
MW-5	08/01/05	99.02	12.41		86.61
	02/07/06	ĺ	10.15		88.87
MW-6	08/01/05	97.20	11.91		85.29
	02/07/06		9.80		87.40
lotes:					

Benchmark is white mark at southwest corner and is assigned an elevation of 100'.

NM = Not Measured.

DRY = No measureable amount of water in well.

APPENDIX E

0

.

٠

٥

.

Groundwater Analytical Reports

Report Date: 05-Aug-05 15:32

Final Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Laboratory Report

CEA, Inc. 127 Hartwell Street West Boylston, MA 01583 Attn: Scott Vandersea

Project: Sunoco Inc (M&M)-88 S. Maple St-Westfield Project #: CEA#5795-05-02

Laboratory ID	<u>Client Sample ID</u>	Matrix	Date Sampled	Date Received
SA31813-01	MW-1	Ground Water	01-Aug-05 11:15	02-Aug-05 16:46
SA31813-02	MW-4	Ground Water	01-Aug-05 11:45	02-Aug-05 16:46
SA31813-03	MW-5	Ground Water	01-Aug-05 11:30	02-Aug-05 16:46
SA31813-04	MW-6	Ground Water	01-Aug-05 12:00	02-Aug-05 16:46

1 attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met.

Please note that this report contains 23 pages of analytical data including Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972

New York # 11393/11840

Rhode Island # 98 USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

CASE NARRATIVE:

The data set for work order SA31813 complies with internal QC criteria for the methods performed. The samples were received @ 4.0 degrees Celsius. An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method.

According to WSC-CAM 5/2004 Rev.4, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although recovery may still be within the recommended 70%-130% range, the analytical range has been set based on historical control limits. Please refer to "Notes and Definitions" for all sample/analyte qualifiers. Qualifiers will note any exceedance levels and items specific to sample analysis/matrix.

Sample Identification MW-1 SA31813-01			<u>Client Project #</u> CEA#5795-05-02 Gr		<u>ix Co</u> Water (Collection Date/Time 01-Aug-05 11:15		<u>Received</u> 02-Aug-05		
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Volatile	Organic Compounds									
<u>VPH Alij</u>	phatic/Aromatic Carbon Ranges		Prepared by method	VPH						
	C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l	1	+MADEP 5/2004 Rev. 1.1	04-Aug-05	04-Aug-05	5080318	KS	
	C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l	1	-	-	n	-	Π	
	C9-C10 Aromatic Hydrocarbons	BRL	0.0250 mg/l	1	-	"	*	"	۳	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l	1	-	•		•	-	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l	1	-	-	м	•	-	
<u>VPH Tar</u>	<u>get Analytes</u>		Prepared by method	VPH						
71-43-2	Benzene	BRL	5.0 μg/l	1		-	-	•		
100-41-4	Ethylbenzene	BRL	5.0 μg/l	1	*	•	м	•	7	
1634-04-4	Methyl tert-butyl ether	BRL	5.0 µg/l	I	٩	-	"	•	•	
91-20-3	Naphthalene	5.0	5.0 μg/l	1	*		-	•	•	
108-88-3	Toluene	BRL	5.0 μg/l	1		•	•	-		
1330-20-7	m,p-Xylene	BRL	10.0 μg/l	1		•	-	•	•	
95-47-6	o-Xylene	BRL	5.0 μg/l	I	-	-	7	•	•	
Surrogate	recoveries:									
615-59-B	2,5-Dibromotoluene (FID)	105	70-130 %		-	-		-	-	
615-59-8	2,5-Dibromotoluene (PID)	98. 4	70-130 %		•	•	•	•	•	

~

This laboratory report is not valid without an authorized signature on the cover page.

,

<u>Sample I</u> MW-4 SA31813	-02		Client Project # CEA#5795-05-02	<u>Matr</u> Ground	<u>ix C</u> o Water (llection Da)1-Aug-05	<u>te/Time</u> 11:45	<u>F</u> 02	Received 2-Aug-05	i
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Volatile	Organic Compounds									
Volatile (Organic Compounds		Prepared by metho	d Volat	iles					
67-64-1	Acetope	BRI	10.0 µc/	1	SW 846 8260B	03-Aug-05	03-Aug-05	5080209	tim	
107-13-1	Acrylonitrile	BRI.	10.ug/l	-	*	"	"			
71-43-2	Benzene	BRI.	10 µg/l	1						
108-86-1	Bromobenzene	BRL	10 µg/l	-		-		-	-	
74-97-5	Bromochloromethane	BRL	10 µg/	1		-				
75-27-4	Bromodichloromethane	BRL	10 µg/l	1			•		-	
75-25-2	Bromoform	BRI.	10 µg/l	1	۹	*	· •		*	
74-83-9	Bromomethane	BRL	2.0 µg/l	-	-		-	-	-	
78-93-3	2-Butanone (MFK)	BRI	10.0 µg/l	1	۳					
104-51-8	p-Butylbenzené	BRL	10.0 µg/	1	-		•	-		
135-98-8	sec-Butylbenzene	BRL	10 µg/l	1	-			-	-	
98-06-6	tert-Butylberizene	BRL	10 µg/l	1		-	"		*	
75-15-0	Carbon disulfide	BRL	50 µg/l	1	-	.м	-	-	-	
56-23-5	Carbon tetrachloride	BRL	1.0 µg/l	1	7	*	"	-		
108-90-7	Chlorobenzene	BRL	1.0 µg/l	1		•				
75-00-3	Chlomethane	BRL	2.0 µg/l	1		-		-		
67-66-3	Chloreform	BRL	1.0 µg/l	1			*	н		
74-87-3	Chloromethane	BRL	2.0 µg/l	1		-	•			
95-49-8	2-Chlorotoluene	BRL	1.0 µg/l	1	14	*	-	-	-	
106-43-4	4-Chlorotoluene	BRL	1.0 µg/l	1	-	•	"		-	
96-12-8	1.2-Dibromo-3-chloropropane	BRL	2.0 це/1	1			•		-	
124-48-1	Dibromochloromethane	BRL	1.0 це/1	1	м	-	"		*	
106-93-4	1.2-Dibromoethane (EDB)	BRL	1.0 µg/l	1	-	•		-	-	
74-95-3	Dibromomethane	BRL	1.0 µg/l	1		•	-		-	
95-50-1	1,2-Dichlorobenzene	BRL	1.0 µg/l	1		-	*			
541-73-1	1.3-Dichlorobenzene	BRL	1.0 µg/i	1	"	*	-	-	-	
106-46-7	1,4-Dichlorobenzene	BRL	1.0 µg/l	1		•	-	-		
75-71-8	Dichlorodifluoromethane	BRL	2.0 μg/l	1	*	-	*	-		
	(Freon12)									
75-34-3	1,1-Dichloroethane	BRL	1.0 μg/l	1	-	•	-		۳	
107-06-2	1,2-Dichloroethane	BRL	1.0 µg/l	1			•	•	-	
75-35-4	1,1-Dichloroethene	BRL	1.0 µg/l	1			*	-	-	
156-59-2	cis-1,2-Dichloroethene	BRL	1.0 µg/i	I	*		Ħ			
156-60-5	trans-1,2-Dichloroethene	BRL	1.0 µg/l	1	*	*	-	-	-	
78-87-5	1,2-Dichloropropane	BRL	1.0 µg/l	1	M	-	-	~	-	
142-28-9	1,3-Dichloropropane	BRL	1.0 µg/1	1	*	Ħ	•	-	-	
594-20-7	2,2-Dichloropropane	BRL	1.0 µg/i	1	*	-	-	-	-	
563-58-6	1,1-Dichloropropene	BRL	1.0 µg/l	1	Ħ			-	Π	
10061-01-5	cis-1,3-Dichloropropene	BRL	1.0 µg/l	1	*	*	-	-	-	
10061-02-6	trans-1,3-Dichloropropene	BRL	1.0 µg/l	1	-	-	-	"	*1	
100-41-4	Ethylbenzene	BRL	1.0 µg/1	1			۳			
87-68-3	Hexachlorobutadiene	BRL	1.0 µg/l	1	*		-	•	"	
591-78-6	2-Hexanone (MBK)	BRL	10.0 µg/l	1	м	м	*		۳	
98-82-8	Isopropylbenzene	BRL	1.0 µg/1	1	۳	×	•	•	"	
99-87-6	4-Isopropyltoluene	BRL	1.0 µg/l	1	H	-	-		-	
1634-04-4	Methyl tert-butyl ether	BRL	1.0 µg/l	1		*	-		•	

Sample Identification MW-4 SA31813-02			<u>Client Project #</u> CEA#5795-05-02	<u>Matr</u> Ground V	<u>ix Co</u> Water (Collection Date/Time 01-Aug-05 11:45		Received 02-Aug-05		5
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Volatile	Organic Compounds									
Volatile (Organic Compounds		Prepared by method	Volati	iles					
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL	10.0 µg/l	1	SW 846 8260B	03-Aug-05	03-Aug-05	5080209	tim	
75-09-2	Methylene chloride	BRL	1000 µg/l	1	"	н	"			
91-20-3	Naphthalene	BRL	1.0 µg/l	1	*	19				
103-65-1	n-Propylbenzene	BRL	1.0 µg/l	1	.8	*	-			
100-42-5	Styrene	BRL	1.0 цg/l	1	-		-	•	-	
630-20-6	1.1.1.2-Tetrachloroethane	BRL	1.0 µg/l	1	π	-			-	
79-34-5	1,1,2,2-Tetrachloroethane	BRL	1.0 це/I	1	-		re,		-	
127-18-4	Tetrachloroethene	BRL	1.0 ц <u>г</u> /1	1			**		*	
108-68-3	Toluene	BRL	1.0 µg/l	1			*		-	
87-61-6	1.2.3-Trichlorobenzene	BRL	1.0 µg/l	1	-			"		
120-82-1	1,2,4-Trichlorobenzene	BRL	1.0 μg/l	1	۳	*	-		-	
71-55-6	1.1.1-Trichloroethane	BRL	1.0 µg/l	1		•	*		-	
79-00-5	1,1,2-Trichloroethane	BRL	1.0 μg/l	1	н	*	*			
79-01-6	Trichloroethene	BRL	1.0 μg/l	1	**		-	•	-	
75-69-4	Trichlorofluoromethane (Freon 11)	BRL	1.0 μg/l	1	76	Ŧ		•	*	
96-18-4	1,2,3-Trichloropropane	BRL	1.0 μg/I	1	H	•	*	-		
95-63-6	1,2,4-Trimethylbenzene	BRL	1.0 μg/l	1	*	*	-	-		
108-67-8	1,3,5-Trimethylbenzene	BRL	1.0 µg/I	1	π	-		۳	-	
75-01-4	Vinyl chloride	BRL	1.0 μg/l	1	-	-	*	•		
1330-20-7	m,p-Xylene	BRL	2.0 µg/l	1	7	π	-	۳	14	
95-47-6	o-Xylene	BRL	1.0 μg/l	1	-	-	*	-		
1 09-99-9	Tetrahydrofuran	BRL	10.0 µg/l	I	*	•	*	-	•	
60-29-7	Ethyl ether	BRL	1.0 μg/l	1	*	-	-	•	-	
994-05-8	Tert-amyl methyl ether	BRL	1.0 μg/l	1	*	"	-	•		
637-92-3	Ethyl tert-butyl ether	BRL	1.0 μg/l	1		•		•	**	
108-20-3	Di-isopropyl ether	BRL	1.0 μg/l	1	•	-	-		-	
75-65-0	Tert-Butanol / butyl alcohol	BRL	10.0 μ g /l	1	*	-	7	4		
123-91-1	1,4-Dioxane	BRL	20.0 µg/l	1	M	•	-		-	
Surrogate	recoveries:	-								
460-00-4	4-Bromofluorobenzene	98.0	70-130 %		•	•				
2037-26-5	Toluene-d8	96.6	70-130 %		•		*	•	*	
17060-07-0	l,2-Dichloroethane-d4	108	70-130 %		*	•	*		-	
1868-53-7	Dibromofluoromethane	102	70-130 %		•	•	-	•	•	
VPH Alin	phatic/Aromatic Carbon Ranges		Prepared by method	VPH						
	C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l	5	+MADEP 5/2004 Rev. 1.1	04-Aug-05	04-Aug-05	5080318	KS	
	C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l	5	*	•	、 •	•	•	
	C9-C10 Aromatic Hydrocarbons	BRL	0.0250 mg/l	5	*	•			•	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l	5	•	*	•	•		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l	5	*	π	-	4		
<u>VPH Tar</u>	get Analytes		Prepared by method	VPH						
71-43-2	Benzene	BRL	5.0`µg/l	5	-	'n	•		•	

Sample I MW-4 SA31813	Sample Identification MW-4 SA31813-02		<u>Client Project #</u> CEA#5795-05-02 Gr		<u>ix Co</u> Wate r (Collection Date/Time 01-Aug-05 11:45			Received 02-Aug-05		
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag	
Volatile	Organic Compounds										
VPH Tar	get Analytes		Prepared by metho	d VPH							
100-41-4	Ethylbenzene	BRL	5.0 µg/l	5	+MADEP 5/2004 Rev. 1.1	04-Aug-05	04-Aug-05	5080318	KS		
1 634-04-4	Methyl tert-butyl ether	BRL	5.0 μg/l	5		•	•				
91-20-3	Naphthalene	BRL	5.0 µg/1	5	•	•	•		•		
108-88-3	Toluene	BRL	5.0 μg/l	5	n,		•	•	*		
1330-20-7	m,p-Xylene	BRL	10.0 μg/l	5	-	•	•	•	-		
95-47-6	o-Xylene	BRL	5.0 μg/1	.5	м	-	-	•	•		
Surrogate	recoveries:										
615-59-8	2,5-Dibromotoluene (FID)	93.6	70-130 %			•	•	۳	•		
615-59-8	2,5-Dibromotoluene (PID)	<i>87.2</i>	70-130 %			•	•	۳	-		
Soluble 1	Metals by EPA 6000/7000 Ser	ries Methods									
7440-22-4	Silver	BRL	0.0050 mg/l	1	SW846 6010B	03-Aug-05	04-Aug-05	5080281	RE		
7440-38-2	Arsenic	BRL	0.0040 mg/l	1	-	•	•	×	-		
7440-39-3	Barium	0.134	0.0025 mg/l	1	-	-	ų	•	۹		
7:440-43-9	Cadmium	BRL	0.0012 mg/l	1	"		•	•			
7440-47-3	Chromium	BRL	0.0025 mg/l	1		-	•		•		
7439-92-1	Lead	BRL	0.0038 mg/l	1	-	•	•	۳	•		
7782-49-2	Selenium	BRL	0.0075 mg/l	1	•		۳		-		
Soluble	Metals by EPA 200 Series Me	ethods									
	Filtration	Lab Filtered	N/A	1	EPA 200.7/3005A	03-Aug-05	03-Aug-05	5080244	YP		
7439-97-6	Mercury	BRL	0.00020 mg/l	1	EPA 245.2/7470A	04-Aug-05	04-Aug-05	5080282			

Ì

..

Sample Identification MW-5 SA31813-03			<u>Client Project #</u> CEA#5795-05-02	<u>Matrix</u> Ground Water		<u>Collection Date/Time</u> 01-Aug-05 11:30		<u>Received</u> 02-Aug-05		5
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Volatile	Organic Compounds									
<u>VPH Alij</u>	ohatic/Aromatic Carbon Ranges		Prepared by method	VPH						
	C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l	1	+MADEP 5/2004 Rev. 1.1	04-Aug-05	04-Aug-05	5080318	KS	
	C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l	1	*	Ť	~	•	•	
	C9-C10 Aromatic Hydrocarbons	BRL	0.0250 mg/l	1	•	9	*	•	•	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l	1	-	"	*	-	•	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l	1	-	77	*	-	-	
<u>VPH Tar</u>	get Analytes		Prepared by method	VPH						
71-43-2	Benzene	BRL	5.0 µg/l	1	*		7	-	•	
100-41-4	Ethylbenzene	BRL	5.0 µg/1	1	*	*	*	•	•	
1634-04-4	Methyl tert-butyl ether	BRL	5.0 μg/l	L	•	•	=	•	•	
91-20-3	Naphthalene .	BRL	5.0 µg/1	1	*	м	"	•	•	
108-88-3	Toluene	BRL	5.0 µg/l	1	*	"	"	۳	-	
1330-20-7	m,p-Xylene	BRL	10.0 µ g/l	1	•	•	*	•		
95-47-6	o-Xylene	BRL	5.0 µg/l	1	*	4	*	*	ŕ	
Surrogate	recoveries:									
615-59-8	2,5-Dibromotoluene (FID)	89.6	70-130 %		*	•	n	٠	•	
615-59-8	2,5-Dibromotoluene (PID)	82.4	70-130 %		*		M		N	

,

<u>Sample I</u> MW-6 SA31813	Sample Identification MW-6 SA31813-04		<u>Client Project #</u> CEA#5795-05-02 Gro		<u>Matrix Co</u> Ground Water (<u>collection Date/Time</u> 01-Aug-05 12:00			Received 02-Aug-05		
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag		
Volatile	Organic Compounds											
Volatile (Organic Compounds		Prepared by meth	od Volat	iles							
67-64-1	Acetone	BRI	50 0 µg/]	5	SW 846 8260B	03-Aug-05	03-Aug-05	5080209	`tim			
107-13-1	Acrylonitrile	BRL	50 µg/t	5		н	,					
71-43-2	Benzene	BRL	5.0 µg/l	5		"	•					
108-86-1	Bromobenzene	BRL	5.0 μg/l	5	"		-					
74-97-5	Bromochloromethane	BRL	5.0 μg/l	5	•	-	"					
75-27-4	Bromodichloromethane	BRL	5.0 µg/l	5			•		-			
75-25-2	Bromoform	BRL	5.0 μg/l	5	•	н	-		π			
74-83-9	Bromomethane	BRL	10.0 це/і	5	•	-	и		-			
78-93-3	2-Butanone (MEK)	BRL	50.0 цg/l	5.	*	-	-		-			
104-51-8	n-Butylbenzéne	BRL	5.0 μg/l	5		-	-		-			
135-98-8	sec-Butylbenzene	BRL	5.0 μg/l	5	•	•		*	-			
98-06-6	tert-Butylbenzene	BRL	5.0 μg/l	5	•		-					
75-15-0	Carbon disulfide	BRL	25.0 µg/l	5		-			-			
56-23-5	Carbon tetrachloride	BRL	5.0 µg/l	5	*		-		•			
108-90-7	Chlorobenzene	BRL	5.0 µg/l	5	•	-	-					
75-00-3	Chloroethane	BRL	10.0 µg/l	5	•		,	-	-			
67-66-3	Chloroform	BRL	5.0 µg/l	5	•	*			*			
74-87-3	Chloromethane	BRL	10.0 µg/I	5	۳							
95-49-8	2-Chlorotoluene	BRL	5.0 µg/l	5	"							
106-43-4	4-Chlorotoluene	BRL	5.0 μg/l	5	"	-	*	۳	-			
96-12-8	1,2-Dibromo-3-chloropropane	BRL	10.0 µg/l	5	•	*	-					
124-48-1	Dibromochloromethane	BRL	5.0 μg/l	5	-		-		-			
106-93-4	1,2-Dibromoethane (EDB)	BRL	5.0 µg/l	5	•		-	-	-			
74-95-3	Dibromomethane	BRL	5.0 μg/l	5	•		-	-	-			
95-50-1	1,2-Dichlorobenzene	BRL	5.0 μg/l	5	•	-	"	,*	*			
541-73-1	1,3-Dichlorobenzene	BRL	5.0 μg/l	5		•	"	-	-			
106-46-7	1,4-Dichlorobenzene	BRL	5.0 µg/l	5	۳	4	-	•				
75-71-8	Dichlorodifluoromethane	BRL	10.0 µg/l	5	*	-	•	•	-			
	(Freon12)			_		_		-	_			
75-34-3	1,1-Dichloroethane	BRL	5.0 μg/l	5					-			
107-06-2	1,2-Dichloroethane	BRL	5.0 μg/l	5	-		-	-				
75-35-4	1,1-Dichloroethene	BRL	5.0 μg/l	3		-						
156-59-2	cis-1,2-Dichloroethene	BRL	5.0 μg/l	\$ •	"	-			-			
156-60-5	trans-1,2-Dichloroethene	BKL	5.0 μg/l					-	-			
78-87-3	1,2-Dichloropropane	BRL	5.0 μg/l	3					-			
142-28-9	1,3-Dichloropropane	BKL	5.0 μg/l	3			-					
394-20-7	2,2-Dichloropropane	BKL	5.0 µg/l	5								
202-20-0	1,1-Dichloropropene	BKL	5.0 μg/l	5								
10061 02 6	trans 1.2 Disblass sector	DRL	5.0 µg/l	, K		-	,					
100-41-4	the second s	DKL	5.0 μg/i	5	-	-		-	-			
87.68.3	Havashlarabutadiana		5.0 μg/i	, K		я						
501,78.4		DAT	5.0 µg/1	, K	*		н					
99-87-8	Isoprom/henzene	DAL	50.0 µg/i	*					-			
99-87-6	4. Isopropy rocited inc	RPI	5.0 µg/i 5.0 µg/i	5					#			
1634-04-4	Methyl tert-butul ether	1 600	5.0 µg/i	5	-	•	-	-				
1034-0444	Medial reli-parat enter	1,090	2.0 H&I	5								

Sample Identification MW-6			Client Project #	<u>Matrix Co</u> Ground Water (Collection Date/Time		<u>Received</u> 02-Aug-05		
SA31813	-04		CEA#5795-05-02	Jround	Water	JI-Aug-05	12:00	0.	-Aug-05	,
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Volatile	Organic Compounds									
<u>Volatile (</u>	Organic Compounds		Prepared by method	Volat	iles					
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL	50.0 ug/l	5	SW 846 8260B	03-Aug-05	03-Aug-05	5080209	tim	
75-09-2	Methylene chloride	BRL	50.0 це/I	5	-	"				
91-20-3	Naphthalene	BRL	5.0 це/I	5		7	7			
103-65-1	n-Propylbenzene	BRL	5.0 µg/l	5		M				
100-42-5	Styrene	BRL	5.0 µg/l	5						
630-20-6	1,1,1,2-Tetrachloroethane	BRL	5.0 µg/l	5	•		•			
79-34-5	1,1,2,2-Tetrachloroethane	BRL	5.0 µg/l	5	•		۳			
127-18-4	Tetrachloroethene	BRL	5.0 µg/l	5	•	•	•			
108-86-3	Toluene	BRL	5.0 µg/l	5	M	•		,	-	
87-61-6	1,2,3-Trichlorobenzene	BRL	5.0 µg/l	5	•		-	-	•	
120-82-1	1,2,4-Trichlorobenzene	BRL	5.0 µg/I	5	•	*	Ħ	n	-	
71-55-6	1,1,1-Trichloroethane	BRL	5.0 µg/l	5			*	*	•	
79-00-5	1,1,2-Trichloroethane	BRL	5.0 μg/l	5		*1	4	٠		
79-01-6	Trichloroethene	BRL	5.0 µg/l	5	-	-	7		-	
7 5-69-4	Trichlorofluoromethane (Freon 11)	BRL	5.0 µg/1	5	•	-				
95-18-4	1,2,3-Trichloropropane	BRL	5.0 µg/l	5	•	۳	π	-	Ħ.	
95-63-6	1,2,4-Trimethylbenzene	BRL	5.0 µg/l	5	•	*	*		-	
108-67-8	1,3,5-Trimethylbenzene	BRL	5.0 µg/l	5	*	π	π	-	-	
75-01-4	Vinyl chloride	BRL	5.0 μg/l	5		•	*	۳		
1330-20-7	m,p-Xylene	BRL	10.0 µg/I	5		*	*		41	
95-47-6	o-Xylene	BRL	5.0 µg/I	5	*	*	*			
109-99-9	Tetrahydrofuran	BRL	50.0 µg/l	5	"		*			
60-29-7	Ethyl ether	BRL	5.0 µg/I	5		-	-		*	
994-05-8	Tert-amyl methyl ether	BRL	5.0 μg/l	5	*	•	•	-		
637-92-3	Ethyl tert-butyl ether	BRL	5.0 µg/l	5	*	•	•	*	**	
108-20-3	Di-isopropyl ether	BRL	.5.0 μg/l	5		W	•	-	-	
75-65-0	Tert-Butanol / butyl alcohol	BRL	50.0 µg/l	5	•	M	-	-		
123-91-1	1,4-Dioxane	BRL	100 µg/l	5	•	M	•	π	*	
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	98.2	70-130 %		M		7	Ħ		
2037-26-5	Toluene-d8	98.8	70-130 %		"	*	•		-	
17060-07-0	1,2-Dichloroethane-d4	102	70-130 %		•	-	-		•	
1868-53-7	Dibromofluoromethane	95.8	70-130 %		Ħ				*	
<u>VPH Alip</u>	phatic/Aromatic Carbon Ranges		Prepared by method	VPH						
	Ć5-C8 Aliphatic Hydrocarbons	BRL	0.150 mg/l	10	+MADEP 5/2004 Rev. 1.1	04-Aug-05	04-Aug-05	5080318	KS	
	C9-C12 Aliphatic Hydrocarbons	BRL	0.0500 mg/l	10	۲	-	-	*	*	
	C9-C10 Aromatic Hydrocarbons	BRL	0.0500 mg/l	10	•	*	Ħ	•	π	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	1.11	0.150 mg/l	10	•	*	•	61		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL	0.0500 mg/l	10	*			۳	-	
VPH Tar	<u>get Analytes</u>		Prepared by method	VPH						
71-43-2	Benzene	BRL	10.0 цg/l	10	-			٠		
-		 								

<u>Sample I</u> MW-6 SA31813	Sample Identification MW-6 SA31813-04		Client Project # CEA#5795-05-02	<u>Matrix</u> Ground Water		Collection Date/Time 01-Aug-05 12:00		Received 02-Aug-05		5
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Volatile	Organic Compounds									
VPH Tar	get Analytes		Prepared by metho	d VPH						
100-41-4	Ethylbenzene	BRL	10.0 µg/1	10	+MADEP 5/2004 Rev. 1.1	04-Aug-05	04-Aug-05	5080318	KS	
1634-04-4	Methyl tert-butyl ether	1,570	10.0 μg/l	10	•	-	-		-	
91-20-3	Naphthalene	BRL	10.0 μg/l	10	•	•	•		•	
108-88-3	Toluene	BRL	10.0 μg/l	10	*	•	*			
1330-20-7	m,p-Xylene	BRL	20.0 μg/l	10			•	-	•	
95-47-6	o-Xylene	BRL	10.0 µg/l	10	*		•	e	*	
Surrogate	recoveries:									
615-59-8	2,5-Dibromotoluene (FID)	100	70-130 %		•	•	-	-	-	
615-59-B	2,5-Dibromotoluene (PID)	94.6	70-130 %		•	-	-	•	-	
Soluble	Metals by EPA 6000/7000 Ser	ries Methods								
7440-22-4	Silver	BRL	0.0050 mg/l	1	SW846 6010B	03-Aug-05	04-Aug-05	5080281	RĒ	
7440-38-2	Arsenic	BRL	0.0040 mg/l	1	"	•	•	*		
7440-39-3	Barium	0.109	0.0025 mg/l	1		•	"	*	-	
7440-43-9	Cadmium	BRL	0.0012 mg/l	1	•	•	-		•	
7440-47-3	Chromium	BRL	0.0025 mg/l	1	•	•	-	-	•	
7439-92-1	Lead	BRL	0.0038 mg/l	1	•	۳	•	-	-	
7782-49-2	Selenium	BRL	0.0075 mg/l	1		•	•	•		
Soluble	Metals by EPA 200 Series Me	thods								
	Filtration	Lab Filtered	N/A	1	EPA 200.7/3005A	03-Aug-05	03-Aug-05	5080244	YP	
7439-97-6	Mercury	BRL	0.00020 mg/l	1	EPA 245.2/7470A	04-Aug-05	04-Aug-05	5080282	-	

.

			Spike	Source		%REC		RPD	
Analyte(s)	Result	*RDL Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch 5080209 - Volatiles									
Blank (5080209-BLK1)			Prepared &	k Analyzed:	03-Aug-05				
Acetone	BRL	10.0 µg/1							
Acrylonitrile	BRL	1.0 μg/l							
Benzene	BRL	1.0 μg/l							
Bromobenzene	BRL	1.0 μg/l							
Bromochloromethane	BRL	1.0 μg/l							
Bromodichloromethane	BRL	1.0 μg/l							
Bromoform	BRL	1.0 μg/l							
Bromomethane	BRL	2.0 μg/l							
2-Butanone (MEK)	BRL	10.0 µg/l							
n-Butylbenzene	BRL	1.0 µg/1							
sec-Butylbenzene	BRL	1.0 μg/1							
tert-Butylbenzene	BRL	1.0 μg/l							
Carbon disulfide	BRL	5.0 µg/l							
Carbon tetrachloride	BRL	1.0 µg/l							
Chlorobenzene	BRL	10 µg/l							
Chloroethane	BRL	2.0 µg/l							
Chloroform	BRL	10 µg/l							
Chloromethane	BRI	20 µg/l							
2-Chlomtohume	BRL	10 µg/1							
4-Chloratohume	BRI	10 µg/1							
	BRL	20 µg/l							
Dibromochloromethane	BRL	10 µg/							
2-Dibromosthene (EDB)	BRI	1.0 µg/l							
Dibromomethene	BRI	10 µg/l							
1 2-Dichloroheurene	BRI	1.0 µg/l							
1.2-Dichlorobenzene	BRL	1.0 µg/l							
	DRL	1.0 µg/1							
Dishlondifluonmethere (Erron 12)	BRE	2.0 µg/1							
La Dishlamathana	DAL	2.0 μg/l							
1.2-Dichlomethese	BRE	1.0 µg/1							
1.1. Dichlemethere	DRL	1.0 µg/1							
i. 1.2 Dichlamathana	BRL	1.0 μg/1							
	DAL	1.0 μg/1							
12 Disklorensen	BRL	1.0 μg/1							
1.2 Dichlosopopane	DRL	1.0 µg/1							
2 - Dichleroproprine	BRL	1.0 µg/1							
		1.0 µg/1							
	DAL	1.0 µg/1							
trans_1 3 Dichlomonopen	BAL .	1.0 µg/1							
Ethulhenvens	DAL	1.0 µg/1							
Havachlomhutadiana	DKL	1.0 µg/1							
2-Hermone (MBK)	DAL	1.0 µg/1 10.0 µm/1							
	זעמ	10							
4-Isopprovitalization	DAL	1.0 µg/1							
Anthul test-hutul ethan	DRL	1.0 µg/1							
A Methyl 2-nentenone (MTEK)	DRL	1.0 µg/1							
- menyi-z-penanone (MIDK)	סגר	10.0 µg/1							
viculyicilic calloride.	DRL	10.0 µg/1							
	BRL	1.0 µg/1							
n-riopyloenzene	BKL	1.0 μg/1							
Styrene	BKL,	1.0 μg/1							
	BRL.	1.0 μg/1							
1,1,2,2-1 etrachioroethane	BRL	1.0 μg/1							
I curachioroethene	BRL,	1.0 μg/l							
lomene	BRL	1.0 μg/l							

,

	Decide	anni tinin	Spike	Source	expec	%REC	DDD	RPD Limit	Flee
Analyte(s)	Result	*KDL UNIS	Level	Result	%REU		KPD	Lunit	ring
Batch 5080209 - Volatiles									
Blank (5080209-BLK1)			Prepared &	analyzed:	03-Aug-05				
1,2,3-Trichlorobenzene	BRL	1.0 μg/l							
1,2,4-Trichlorobenzene	BRL	1.0 μg/l							
1,1,1-Trichloroethane	BRL	1.0 μg/l							
1,1,2-Trichloroethane	BRL	1.0 μg/l							
Trichloroethene	BRL	1.0 μg/1							
Trichlorofluoromethane (Freon 11)	BRL	ì.0 µg/l							
1,2,3-Trichloropropane	BRL	1.0 μg/l							
1,2,4-Trimethylbenzene	BRL	1.0 μg/l							
1,3,5-Trimethylbenzene	BRL	1.0 μg/l							
Vinyl chloride	BRL	1.0 μg/l							
m,p-Xylene	BRL	2.0 μg/l							
o-Xylene	BRL	1.0 µg/1							
Tetrahydrofuran	BRL	10.0 μg/l							
Ethyl ether	BRL	1.0 µg/1							
Tert-amyl methyl ether	BRL	1.0 µg∕l							
Ethyl tert-butyl ether	BRL	1,0 µg/1							
Di-isopropyl ether	BRL	1.0 μg/l							
Tert-Butanol / buryl alcohol	BRL	10.0 μg/l							
1,4-Dioxane	BRL	20.0 µg/1		_					
Surrogate: 4-Bromofluorobenzene	49.3	µg/1	50.0		98.6	70-130			
Surrogate: Toluene-d8	48.7	μg/l	50.0		97.4	70-130			
Surrogate: 1,2-Dichlcroethane-d4	48.2	μg/1	50.0		96.4	70-130			
Surrogate: Dibromofluoromethane	46.5	μg/l	50.0		93.0	70-130			
LCS (5080209-BS1)			Prepared 8	Analyzed:	03-Aug-05	5			
Acetone	13.5	μεЛ	20.0	-	67.5	25-189		-	
Acrylonitrile	17.7	цв/1	20.0		88.5	70-130			
Benzene	19.1	μg/1	20.0		95.5	70-130			
Bromobenzene	19.8	μg/1	20.0		99.0	70-130			
Bromochloromethane	19.7	μg/I	20.0		98.5	70-130			
Bromodichloromethane	19.8	μg/I	20.0		99.0	70-130			
Bromoform	17.6	μ g/]	20.0		88,0	70-130			
Bromomethane	23.0	μg/1	20.0		115	60,9-149			
2-Butanone (MEK)	13.2	μ <u>α</u> /]	20.0		66,0	24.9-149			
n-Butylbenzene	19.4	µg/I	20.0		97.0	70-130			
sec-Butylbenzene	19.6	μ g/ Ι	20.0		98,0	70-130			
tert-Butylbenzene	19.8	рац	20.0		99.0	70-130			
Carbon disulfide	18.7	μg/l	20.0		93.5	70-130			
Carbon tetrachloride	18.2	μ g/ Ι	20.0		91.0	70-130			
Chiorobenzene	19.4	μg/1	20.0		97.0	70-130			
Chloroethane	21.4	µg/1	20.0		107	70-135			
Chloroform	19.0	μg/1	20.0		95.0	70-130			
Chloromethane	24.2	μg/l	20.0		121	70-130			
2-Chlorotohene	19,6	цд/1	20.0		98.0	70-130			
4-Chlorotoluene	19:0	, - µg/l	20.0		95.0	70-130			
1,2-Dibromo-3-chloropropane	17.4	μ g/ Ι	20.0		87.0	70-130			
Dibromochloromethane	19.8	μ g/ Ι	20,0		99.0	66.3-145			
1,2-Dibromoethane (EDB)	19.0	μ π/ Ι	20.0		95.0	70-130			
Dibromomethane	19.2	μ π/ Ι	20.0		96.0	70-130			
1.2-Dichlorobenzene	20.2	ив/	20.0		101	70-130			
1.3-Dichlorobenzene	21.0	ц <u>я</u> /	20.0		105	70-130			
1.4-Dichlorobenzene	20.4	μ <u>α</u> /Ι	20.0		102	70-130			
Dichlorodifluoromethane (Freen12)	26.3	ug/l	20.0		132	61.3-157			
1.1-Dichloroethane	19:3	ue/l	20.0		96.5	70-130			
1.2-Dichloroethane	19.3	μα/l	20.0		96.5	70-130			
-,		-9-							

			Spike	Source		%REC		RPD	
Analyte(s)	Result	*RDL Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch 5080209 - Volatiles									
LCS (5080209-BS1)			Prepared &	Analyzed:	03-Aug-0	5			
1,1-Dichloroethene	19.6	це/1	20.0		98.0	70-130			
cis-1,2-Dichloroethene	19.2	µ8/1	20.0		96.0	70-130			
trans-1,2-Dichloroethene	18.9	µg/1	20.0		94.5	70-130			
1.2-Dichloromonane	19.7	μ ε/1	20.0		98.5	70-130			
1.3-Dichloropropage	19.6	ц е/ 1	20.0		98.0	70-130			
2 2-Dichlomoronane	23.8	не/I	20.0		119	70-130			
1 1-Dichloromoene	20.0	494 197	20.0		100	70-130			
cis-1 3-Dichloroproprie	20.1	µg/1	20.0		103	70-130			
trans-1 3-Dichloropropene	20.0	-94 197	20.0		102	70-130			
Ethylbenzene	19.2	μ ₀ /1	20.0		96.0	70-130			
Herachlombutadiene	21.6	1997 1997	20.0		108	70-141			
	21.0	μg/1 11-0	20.0		106	70-141			
	25.5	μμ/1	20.0		01.0	70-130			
	16.2	μg/1 	20.0		91.0	70-130			
4-isopropyitoluene	20.5	µg/I	20.0		102	70-130			
	19.2	μg/1 -	20.0		96.0	70-130			
4-Methyl-2-pentanone (MIBK)	13.6	μg/1 -	20.0		78.0	54.2-133			
Methylene chloride	20.8	μ <u>g</u> /1	20.0		104	70-130			
Naphihalene	19.7	μg/1	20.0		98.5	70-130			
n-Propylbenzene	19.1	µg/1	20.0		95.5	70-130			
Styrene	18.8	µg/1	20.0		94.0	70-130			
1,1,1,2-Tetrachloroethane	19.5	µg/]	20.0		97.5	70-130			
1,1,2,2-Tetrachioroethane	19.1	µg/]	20.0		95.5	70-130			
Tetrachloroethene	20.6	μ g/ Ι	20,0		103	70-130			
Toluene	19.2	µg/1	20.0		96.0	70-130			
1,2,3-Trichlorobenzene	20.0	μg/l	20.0		100	70-130	-		
1,2,4-Trichlorobenzene	19.9	μg/l	20.0		.99.5	70-130			
1,1,1-Trichloroethane	19.0	μg/1	20.0		95.0	70-130			
1,1,2-Trichloroethane	20.4	μg/1	20.0		102	70-130			
Trichloroethene	18.6	μg/l	20.0		93.0	70-130			
Trichlorofluoromethane (Freon 11)	19.9	μg/ 1	20.0		99.5	69-143			
1,2,3-Trichloropropane	17.9	μ g /1	20.0		89.5	70-130			
1,2,4-Trimethylbenzene	19.0	μg/1	20.0		95.0	70-130			
1,3,5-Trimethylbenzene	18.8	μg/1	20.0		94.0	70-130		•	
Vinyl chloride	20.8	μ g/]	20.0		104	70-130			
m,p-Xylene	39.2	μ g/]	40.0		98.0	70-130			
o-Xylene	19.4	µ я/ 1	20.0		97.0	70-130			
Tetrahydrofuran	20.5	μg/]	20.0		102	70-130			
Ethyl ether	20.2	μg/1	20.0		101	70-132			
Text-anyl methyl ether	22.9	μg/1	20.0		114	70-130			
Ethyl tert-butyl ether	19.1	μg/1	20,0		95.5	70-130			
Di-isopropyl ether	18.2	μ <u>g</u> /1	20.0		91.0	70-130			
Tert-Butanol / butyl alcohol	190	μ g/ Ι	200		95.0 °	70-130			
1,4-Dioxane	247	μд/1	200		124	38.4-132			
Surragate: 4-Bromofluorobenzene	48.8	ng/	50.0	_	97.6	70-130			
Surragate: Toluene-d8	48.8	ue/l	50.0		97.6	70-110			
Surroyate: 1.2-Dichlomethane_14	50.6	ر ب ھی	50,0		101	70_120			
Surronte: Dibromoflyonomethome	4R R	μ _θ /1 υσ/1	50.0		07.6	70,170			
I CS Dan (\$090700 DCD1)	40.0	hB/1	D	Anabard	02 4				
Actors	38.3		Prepared &	Analyzed:	03-Aug-0	26.280	70.6	6 0	00.1
Account	28.2	h8/1	20.0		141	20-189	/0.5	20	QC-2
	18.7	μg/1 -	20.0		93,5	/0-130	5.49	23	
Benzene	19.6	μg/l -	20.0		98.0	70-130	2.58	25	
Bromobenzene	20.7	μg/l	20,0		104	70-130	4.93	25	
Bromochloromethane	20.2	µg/I	20.0		101	70-130	2.51	25	
Bromodichloromethane	. 20.4	. µg/1	20.0		102	70-130	2.99	. 25	

This laboratory report is not valid without an authorized signature on the cover page.

* Reportable Detection Limit

			Spike	Source		%REC		RPD	
Analyte(s)	Result	*RDL Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch 5080209 - Volatiles									
LCS Dup (5080209-BSD1)			Prepared &	Analyzed:	03-Aug-03	5			
Bromoform	18.6	μg/l	20,0		93.0	70-130	5,52	25	
Bromomethane	22.7	μg/l	20.0		114	60.9-149	0,873	50	
2-Butanone (MEK)	27.2	μg/l	20.0		136	24.9-149	69.3	50	QC-2
n-Butylbenzene	20.1	μg/l	20.0		100	70-130	3.05	25	
sec-Butylbenzene	20.2	μg/l	20.0		101	70-130	3.02	25	
tert-Butylbenzene	20.6	μg/l	20.0		103	70-130	3.96	25	
Carbon disulfide	18.6	μg/l	20.0		93.0	70-130	0,536	25	
Carbon tetrachloride	18.5	μg/l	20.0		92.5	70-130	1.63	25	
Chlorobenzene	19.8	µg/І	20.0		99.0	70-130	2.04	25	
Chloroethane	21.7	μ g /l	20.0		108	70-135	0.930	50	
Chloroform	19.6	μ g /l	20.0		98.0	70-130	3.11	25	
Chloromethane	24.9	μg/l	20.0		124	70-130	2.45	25	
2-Chlorotoluene	19.8	μg/ 1	20.0		99.0	70-130	1.02	25	
4-Chlarotoluene	20.0	µg/І	20.0		100	70-130	5.13	25	
1,2-Dibromo-3-chloropropane	17.2	μg/ 1	20.0		86.0	70-130	1.16	25	
Dibromochloromethane	20.4	μg/ 1	20.0		102	66,3-145	2.99	50	
1,2-Dibromoethane (EDB)	19.6	μg/I	20.0		98.0	70-130	3,11	25	
Dibromomethane	19.5	μg/I	20.0		97.5	70-130	1.55	25	
1,2-Dichlorobenzene	20.4	μg/l	20.0		102	70-130	0.985	25	
1,3-Dichlorobenzene	22.0	μ g /l	20,0		110	70-130	4.65	25	
1,4-Dichlorobenzene	20.8	µg/l	20.0		104	70-130	1.94	25	
Dichlorodifluoromethane (Freon12)	26.9	μg/Ι	20.0		134	61.3-157	.1.50	50	
1,1-Dichloroethane	19.6	μg/l	20.0		98.0	70-130	1.54	25	
1,2-Dichloroethane	19.6	μg/l	20.0		98.0	70-130	L.54	25	
1,1-Dichloroethene	20.0	μg/1	20.0		100	70-130	2.02	.25	
cis-1,2-Dichloroethene	19.6	µg/І	20.0		98.0	70-130	2.06	25	
trans-1,2-Dichloroethene	19.2	μg/l	20.0		96.0	70-130	1.57	25	
1,2-Dichloropropane	20.l	μg/l	20.0		100	70-130	1.51	25	
1,3-Dichloropropane	20.4	μg/l	20.0		102	70-130	4.00	25	
2,2-Dichloropropane	23.4	μg/l	20.0		117	70-130	1.69	25	
1,1-Dichloropropene	20,4	μg/l	20,0		102	70-130	1.98	25	
	20.7	μg/1	20.0		104	70-130	0.900	25	
trans-1,3-Dichioropropene	21.3	μg/I	20.0		100	70-130	3.85	25	
Etnylbenzene	19.0	μg/1 	20.0		98.0	70-130	2.00	25	
	22.4	μg/1	20.0		112	70-120	3.04	50	00.0
2-Hexalione (MBK)	30.5 18 8	μg/1 μg/1	20,0		94.0	70-130	20,9	25	QC-2
A-leonomy/tolume	20.9	µg/1	20.0		104	70-130	1 04	25	
Methol tert-battol ether	20.9	P8/1	20.0		100	70-130	4.08	25	
4-Methyl-2-pentanone (MTBK)	17.5	ra/1	20.0		87.5	54.2-133	11.5	50	
Methylene chloride	21.1	ng/1	20.0		106	70-130	1.90	25	
Naphthalene	19.8	µ	20.0		99.0	70-130	0.506	25	
n-Propylbenzene	20.2	ng/1	20.0		101	70-130	5:60	25	
Styrene	19.7	µg/]	20.0		98.5	70-130	4.68	25	
1.1.1.2-Tetrachloroethane	20.2	μg/]	20.0		101	70-130	3.53	25	•
1.1.2.2-Tetrachloroethane	19.9	μg/]	20,0		99.5	70-130	4.10	25	
Tetrachloroethene	21.1	μg/l	20.0		106	70-130	2.87	25	
Toluene	20.6	μg/l	20.0		103	70-130	7,04	25	
1,2,3-Trichlorobenzene	20.6	µg/]	20.0		103	70-130	2.96	25	
1,2,4-Trichlorobenzene	20.5	μg/l	20.0		102	70-130	2.48	25	
1,1,1-Trichloroethane	19.0	μgЛ	20,0		95.0	70-130	0.00	25	
1,1,2-Trichloroethane	21.3	μg/l	20.0		106	70-130	3.85	25	
Trichloroethene	19.4	μg/l	20.0		97.0	70-130	4.21	25	
Trichlorofluoromethane (Freon 11)	20.2	µg/]	20,0		101	69-143	1.50	50	

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 5080209 - Volatiles									
LCS Dup (5080209-BSD1)			Prepared &	2 Analyzed:	03-Aug-05	;			
1,2,3-Trichloropropane	18.8	μg/1	20.0		94.0	70-130	4.90	25	
1,2,4-Trimethylbenzene	19.8	μg/l	20.0		99.0	70-130	4.12	25	
1,3,5-Trimethylbenzene	19.8	μ g/ 1	20.0		99.0	70-130	5.18	25	
Vinyl chloride	21.8	μ g /1	20.0		109	70-130	4.69	25	
m,p-Xylene	41.0	μ g/ 1	40.0		102	70-130	4.00	25	
o-Xylene	20.0	μ g /1	20.0		100	70-130	3.05	25	
Tetrahydrofuran	21.4	μ g /1	20.0		107	70-130	4.78	25	
Ethyl ether	21.1	μg/1	20.0		106	70-132	4.83	50	
Tert-amyl methyl ether	24.0	μg/1	20.0		120	70-130	5.13	25	
Ethyl tert-butyl ether	19.4	μg/1	20.0		97.0	70-130	1.56	25	
Di-isopropyl ether	19.1	µg/1	20.0		95.5	70-130	4.83	25	
Tert-Butanol / butyl alcohol	185	μ <u>α</u> /Ι	200		92.5	70-130	2.67	25	
1,4-Dioxane	228	μg/1	200		1]4	38,4-132	8.40	25	
Surrogate: 4-Bromollyorobenzene	48.8	ng/]	50.0		97.6	70-130			
Surrogate: Toluene-d8	49.4	не/1	50.0		QR R	70-130			
Surrogate: 1.2-Dichloroethane-d4	50.8		50.0		102	70-130			
Surrogate: Dibromofluoromethane	48.4	are/1	50.0		96.8	70-130			
Matrix Spike (5080209-MS1)	Sour		Prenared &	Analuzed	03-410-04				
Benzene	19.2	ng/l	20.0	BRL	96.0	70-130			
Chlorobenzene	19.9	19/1	20.0	BRL	99.5	70-130			
1 1-Dichloroethene	18.4	197	20.0	BRL	92.0	70-130			
Toluene	19.8	10/1	20.0	BRL	99.0	70-130			
Trichlomethene	20.3	µg/]	20.0	2.30	90.0	70-130			
Sumagate: A Bramofluaraberrane	48.5		50.0		97.0	70-130		·	
Surrogate: Toluene dR	40.5	µg/1 ug/1	50.0		00.2	70-130			
Surrogate: 12-Diabloraethane_de	49.0 51.3	µg/1 µс/1	30.0		103	70-130			
Surrogate: Dibromofluoromethone	49.0	н <u>в</u> л	50.0		08.0	70-130			
Matrix Snike Dun (5080209-MSD1)	Sour		Prepared &	Analuzed	03_4.05_05				
	10.9		20.0	bot	00-748-02	70.120	2 0.0	30	
Chlombergen	20.2	µg/1	20.0	DRL	33.0	70-130	1.60	30	
1 h Dichlemethere	20.2	μg/1 	20.0	DRL	101	70-130	1.50	30	
Tohene	20.5	<u>д</u> ду1 ца 1	20.0	DRL	114	70-130	12.2	30	
Trichlomothere	23.3	µg/1 µg/1	20.0	2 10	110 90.6	70-130	12.8	30	
	20,2	μ <u>β</u> /1	20.0	2.30	89.5	70-130	0.337		
Surrogate: 4-Bromojluoroberzene	48.8	μg/l	50.0		97.0	70-130			
Surrogate: Toluene-d8	49.0	µg/l	50.0		98.0	70-130			
Surrogate: 1,2-Dichioroethane-a4	34.3	μ <u>β</u> /1	50.0		109	70-130			
Surrogale: Dioromojiuoromeinane	51.6	µg/1	30.Q		104	70-130			
					,				
Blank (5080318-BLK1)			Prepared &	t Analyzed	04-Aug-05	5			
C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l							
C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l							
C9-C10 Aromatic Hydrocarbons	BRL	0.0250 mg/l							
Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l							
Unadjusted C9-C12 Aliphatic	BRL	0.0250 mg/l							
Hydrocarbons		5							
Benzene	BRL	5.0 µg/l							
Ethylbenzene	BRL	5.0 µg/l							
Methyl tert-butyl ether	BRL	5.0 μg/l							
Naphthaleno	BRL	5.0 μg/l							
Tolucus	BRL	5.0 µg/1							
m,p-Xylene	BRL	10.0 µg/1							
o-Xylene	BRL	5.0 µg/l							

This laboratory report is not valid without an authorized signature on the cover page.

* Reportable Detection Limit

. .

BRL = Below Reporting Limit

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 5080318 - VPH							-		
Blank (5080318-BLK1)			Prepared 8	Analyzed:	04-Aug-05				
Surrogate: 2,5-Dibromotoluene (FID)	51.5	μg/l	50.0	x	103	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	47.8	µg/I	50.0		95.6	70-130			
LCS (5080318-BS1)			Prepared &	Analyzed:	04-Aug-05				
C5-C8 Aliphatic Hydrocarbons	122	mg/l	140		87.1	70-130			
C9-C12 Aliphatic Hydrocarbons	63.0	mg/l	55.0		115	70-130			
C9-C10 Aromatic Hydrocarbons	33.2	mg/l	40.0		83.0	70-130			
Unadjusted C5-C8 Aliphatic Hydrocarbons	246	mg/l	280		87.9	70-130			
Unadjusted C9-C12 Aliphatic Hydrocarbons	96.2	mg/l	85.0		113	70-130			*
Benzene	16.8	µg/1	20.0		84.0	70-130			
Ethylbenzene	17.7	µg/I	20:0		88.5	70-130			
Methyl tent-butyl ether	19.4	μg/l	20.0		97.0	70-130			
Naphthalene	24.4	µg/l	20.0		122	70-130			
Toluene	17.6	µg/l	20.0		88.0	70-130			
m,p-Xylene	35.1	μg/l	40.0		87.8	70-130			
o-Xylene	17.7	μg/1	20.0		88.5	70-130			
2-Methylpentane	21.3	μ <u></u> β/Ι	20.0		106	70-130			
n-Nonane	19.3	μg/Ι	20.0		90.2	70-130			
1.2.4. Trimetry lberrane	23.4	μ <u>α</u> /Ι	20.0		127	70-130			
2.2.4-Trimetryberzene	18.5	µg/1	20.0		102	70-130			
n-Butyleveloherane	20.5	µg/1	20.0		102	70-130			
n-Decane	25.3	ц е/ 1	20.0		126	70-130			
Surragate: 2 5-Dibromotolyene (EID)	54.8		50.0		110	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	51.4	µg/1	50.0		103	70-130			
1 CS Dup (5080318 BSD1)		P8-	Droppered 8	Amplumed	04 Aug 05	1.0-150			
	178		Prepared a	analyzed:	04-Aug-05	70.100		~	
C9-C12 Aliphatic Hydrocarbons	118 \$1.0	mg/l	140		84.3 03.7	70-130	3.27	25	
CuC10 Ammatic Hydrocarbons	31.0	mg/l	40.0		77.5	70-130	6.85	25	
Linediusted C5-C8 Aliphatic	229	mg/l	280		81 8 [,]	70-130	7 19	25	
Hydrocarbons			200		01.0	10-100		20	
Unadjusted C9-C12 Aliphatic Hydrocarbons	82.0	mg/l	85.0		96.5	70-130	15.8	25	
Benzene	15.5	µg/1	20.0		77.5	70-130	8,05	25	
Ethylbenzene	15.5	μg/1	20.0		77.5	70-130	13.3	25	
Methyl tert-butyl ether	19.5	µg/l	20.0		97.5	70-130	0.514	25	
Naphthalene	19.9	µg/l	20.0		99.5	70-130	20.3	25	
Toluene	15.4	μg/l	20.0		77.0	70-130	13.3	25	
m,p-Xylene	29.9	μg/l	40.0		74.8	70-130	16.0	25	
o-Xylene	15.1	μg/I	20.0		75.5	70-130	15.9	25	•
2-Mennypenane	20.1	μg/1 	20.0		96.0	70-130	5.85	25	
n-Nonzale	24.0	μg/1 μg/1	20.0		120	70-130	11.5	25	
1.2.4-Trimethylbenzene	15.4	μg/1 μg/1	20.0		77.0	70-130	17.2	25	
2.2.4-Trimethylpentane	18.8	μ <u>ε</u> /	20.0		94.0	70-130	8.16	25	
n-Butylevelobezme	21.0	це/1	20.0		105	70-130	15.0	25	
n-Decane	18.6	µg/1	20.0		93.0	70-130	30.1	25	OR-02
Surrogale: 2.5-Dibromotolyene (FID)	48.0	µa/	50.0		96.0	70-130			
Surrogate: 2,5-Dibromotoluène (PID)	43.4	рд/1	50.0		86.8	70-130			
Duplicate (5080318-DUP1)	Sour	ce: SA31813-01	Prepared &	Analyzed:	04-Aug-05				
C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l		0.00952			6,90	50	
C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/1		0.00357			0.837	50	

			Spike	Source		%REC		RPD	
Analyte(s)	Result	*RDL Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch 5080318 - VPH									
Duplicate (5080318-DUP1)	Sour	re: SA31813-01	Prepared &	Analyzed:	04-Aug-05	;			
C9-C10 Aromatic Hydrocarbons	BRL	0.0250 mg/l		0.00190			0.528	50	
Unadjusted C5-C8 Aliphatic	BRL	0.0750 mg/l		0.0103			0.976	50	
Hydrocarbons									
Unadjusted C9-C12 Aliphatic	BRL	0.0250 mg/l		0.00546			0.730	50	
Hydrocarbons									
Benzene	BRL	5.0 μg/l		BRL				50	
Ethylbenzene	BRL	5.0 μg/l		BRL				50	
Methyl tert-butyl ether	BRL	5.0 µg/l		BRL				50	
Naphthalene	BRL	5.0 μg/l		5.0			27.3	50	
Toluene	BRL	5.0 μ g /l		BRL				50	
m,p-Xylene	BRL	10.0 μ g/ 1		BRL				50	
o-Xylene	BRL	5.0 μg/l		BRL				50	
Surrogate: 2,5-Dibromotoluene (FID)	54.2	μ g /1	50.0		108	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	50.2	µ g ⁄l	50.0		100	70-130			
Matrix Spike (5080318-MS1)	Sour	te: SA31813-01	Prepared &	Analyzed	04-Aug-05	5			
Benzene	16.6	µg/1	20.0	BRL	83.0	70-130			
Ethylbenzene	17.2	µg/l	20.0	BRL	86.0	70-130			
Methyl tert-butyl ether	21.1	μ g /1	20.0	BRL	106	70-130			
Naphthalene	17.0	μ g /l	20.0	5,00	60.0	70-130			QM-07
Tohuene	17.2	μg/1	20.0	BRL	86.0	70-130			
m,p-Xylens	33.3	μg/l	40.0	BRL	83.2	70-130			
o-Xylene	17.0	µg/l	20.0	BRL	85.0	70-130			
2-Methylpentane	20.0	μg/1	20.0	BRL	100	70-130			
n-Nonane	15.9	μg/1	20.0	BRL	79.5	70-130			
n-Pentane	23.9	μg/1	20.0	BRL	120	70-130			
1,2,4-Trimethylbenzene	16.7	μg/l	20.0	BRL	83.5	70-130			
2,2,4-Trimethylpentane	18.6	μg/1	20.0	BRL	93.0	70-130			
n-Butylcyclohexane	19.9	μg/1	20.0	1.10	94.0	70-130			
n-Decane	23.0	μ g /l	20.0	0.0	115	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	49.8	μдЛ	50.0		99.6	70-130			
Surrogate: 2.5-Dibromotoluene (PID)	45.8	ug/1	50.0		91.6	70-130			

. . .

.

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

			P-il	S		M/DEC		סחת	
Analyte(s)	Result	*RDL Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch 5080281 - SW846 3005A		*							
Blank (5080281-BLK1)			Prepared &	Analyzed:	04-Aug-05				
Lead	BRI	0.0038 mg/l		,,	т В тт				
Selenium	BRI	0.0075 mg/l							
Cedmin	BRI	0.0012 mg/l							
Barium	BRL	0.0025 mg/l							
Chomium	BRL	0.0025 mg/l							
Arenic	BRI	0.0040 mg/l							
Silver	BRL	0.0050 mg/l							
LCS (5080281-BS1)			Prenared &	Analyzed	04-Ang-05				
	0.0006	0.0038	0 100	- miny 2001.	00.6	96 116			
Selector	0.0960	0.0038 mg/l	0.100		90.0	82 112			
A mania	0.0904	0.0075 mg/l	0.100		20.4 07.2	95.115			
Silver	0.0473	0.0040 mg/l	0.100		0/.J 96.9	85-115			
	0.0008	0.0035 mg/l	0.0500		00.0	95 115			
Chemping	0.0903	0.0025 mg/l	0.100		20.0 99.1	05-115			
Codmium	0.0882	0.0012 mg/l	0.100		00.2 04 7	85 115			
	0.0947		0.100 Decessed 0		39.7				
	0.110	0.0076	Prepareo o	Analyzeo:	04-Aug-03	96.116	12.3	20	
Lead	0.110	0.0073 mg/l	0.100		110	85-115	12.2	20	
City_	0.102	0.0058 mg/	0.100		104	05-115	11.0	20	
Chamium	0.0490	0.0005 mg/l	0.0500		90.V	05-115	12.1	20	
	0.0994	0.0023 mg/	0.100		22.4	85-115	11.9	20	
Carinium Presi-m	0.107	0.0012 mg/l	0.100		107	85-115	12.2	20	
	0.102	0.0023 mg/l	0.100		00.9	85 115	11.0	20	
	0.0990 Source	0.0040 mg/l	0.100 Decessed 6	- Ameliumedu	77.0 04 Aug 05	65-115	15.4	20	
Dupneure (5080281-DUP1)	Sour	te: 5A51813-02		Z Analyzed:	04-Aug-03				
	BKL	0.0038 mg/l		BKL DDI				20	
Seichum	BKL	0.00/5 mg/l		BKL				20	
	0.148	0.0025 mg/l		0.134			9.93	20	
	BKL	0.0012 mg/1		BKL				20	
Arsenic	DRL	0.0040 mg/l		DKL				20	
	DRL DDI	0.0036		DRL				20	
	DRL	0.0023 mg/l	D 10	BKL				20	
Matrix Spike (5080281-MS1)	Sour	te: 5A31813-04	гтерагео а	Z Analyzeo:	04-Aug-03				
Lead	0.0878	0.0038 mg/l	0,100	BRL	87.8	75-125			
Selenium	0.0985	.0.0075 mg/l	0.100	BRL	98.5	75-125			
Silver	0.0446	0.0050 mg/l	0.0500	BRL	89.2	75-125			
Arsenic	0.100	0.0040 mg/l	0.100	BRL	100	75-125			
Berum	0.202	0.0023 mg/l	0,100	0.109	93.0	75-125			
	0.0964	0.0012 mg/l	0.100	BKL,	96,4	75-125			
	0.0910	0.0025 mg/1	0,100	BRL	91.0	/3-125			
Matrix Spike Dup (5080281-MSD1)	Sour	ce: SA31813-04	Prepared &	Analyzed:	04-Aug-05			- 2	
Selenium	0.102	0.0075 mg/l	0.100	BRL	102	75-125	3.49	20	
	0.0906	0.0038 mg/l	0.100	BRL	90.6	75-125	3.14	20	
	0.0969	0.0012 mg/l	0.100	BRL	96.9	75-125	0.517	20	
Silver	0.0452	0.0050 mg/l	0.0500	BRL	90.4	75-125	1.34	20	
Banum	0.205	0.0025 mg/l	0.100	0.109	96,0	75-125	1.47	20	
Chromium	0.0914	0.0025 mg/l	0.100	BRL	91.4	75-125	0.439	20	
Arsenic	0,0979	0.0040 mg/l	0.100	BRL	97.9	75-125	2.12	20	

Soluble Metals by EPA 200 Series Methods - Quality Control

			Spike	Source		%REC		RPD	
Analyte(s)	Result	*RDL Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch 5080244 - General Prep-Metal									
Blank (5080244-BLK1)			Prepared &	Analyzed:	03-Aug-05				
Filtration	0.00	N/A							
Batch 5080282 - EPA200/SW7000 Series									
Blank (5080282-BLK1)			Prepared &	Analyzed:	04-Aug-05				
Mercury	BRL	0.00020 mg/l							
LCS (5080282-BS1)			Prepared &	Analyzed:	04-Aug-05				
Mercury	0.00228	0.00020 mg/l	0.00250		91.2	75-125			
Duplicate (5080282-DUP1)	Sou	rce: SA31813-02	Prepared &	Analyzed:	04-Aug-05				
Mercury	BRL	0.00020 mg/l		0.00009			20.0	20	
Matrix Spike (5080282-MS1)	Sou	rce: SA31813-04	Prepared &	Analyzed:	04-Aug-05				
Mercury	0.00236	0.00020 mg/l	0.00250	0.00010	90.4	75-125			
Matrix Spike Dup (5080282-MSD1)	Sou	rce: SA31813-04	Prepared &	Analyzed:	04-Aug-05	;			
Mercury	0.00245	0.00020 mg/l	0.00250	0.00010	94.0	75-125	3.74	20	

•

.

Notes and Definitions

LF	Lab Filtered
QC-2	Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QR-02	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
BRL	Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis
NR	Not Reported
RPD	Relative Percent Difference
A plus sig	n (+) in the Method Reference column indicates the method is not accredited by NELAC.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

Surrogate: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C. Tayeh, Ph.D. June O'Connor Nicole Brown

The following outlines the condition	of all VPH samples contained	d within this report u	pon laboratory	receipt.
	1			

Matrix	Aqueous	🗖 Soil	□ Sediment	□ Other	
Containers	□ Satisfacto	ory 🛛 Broken	Leaking		
Samala	Aqueous (acid-preserved)	□ N/A □ pH≤2	□ pH>2	Comment:	
Preservative	Soit or	□ N/A □ Samples not	received in Methan	ol or air-tight container	ml Methanol/g soil
	Sediment	□ Samples received in M	ethanol: 🛛 co	overing soil/sediment	□ 1:1 +/-25% □ Other:
				ot covering soil/sediment	
		□ Samples received in air	r-tight container.		
Temperature		on ice 🛛 Received at 4	1±2℃ □ Oth	ег. °С	

Were all QA/QC procedures followed as required by the VPH method? Yes_____ No_____ Were any significant modifications made to the VPH method as specified in section 11.3? No *see below

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes <u>No</u>

* Yes, if PID and FID surrogate recoveries are listed as n/a, then that sample was run via GCMS using all QC criteria specified in the method

. 162 и г.р. анд г.р. андобие јегодалез ате пакел аз ње шен пак заприе маз топ ме делого зап8 ин 66 силота збестион и ше шеноо

The following outlines the condition of all EPH samples contained within this report upon laboratory receipt.

Matrix		lucous	D So	il	□ Sediment	Other		
Containers	🗖 Sa	tisfactory	🗖 Br	oken	Leaking			
Aqueous Preserva	tive	D N/A	□ pH≤2	□ pH>2	🗖 pH adjust	æd to <2 in lab	Comment:	
Temperature		eceived on ice	🗖 Re	eived at 4	±2°C □ Oth	ег.	°C	

Were all QA/QC procedures followed as required by the EPH method? Yes No Were any significant modifications made to the EPH method as specified in Section 11.3? No Were all performance/acceptance standards for required QA/QC procedures achieved? Yes No

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

MADEP MCP ANALYTICAL METHOD REPORT CERTIFICATION FORM

	EDDTML												
MAD	form arrest	antificatio-s for the f	allowing Santa	Analutical Inc	ark and an #+ CA2191	2							
1 015				Analyucai, Inc. W	Duinting Water								
Matri													
мср	SW-846												
Meth	ods Used			ПЕРЦ		П 7196 л							
I List 2 M - 3 S - S	Release Tracking SW-846 Method 9 SW-846 Methods 7	Number (RTN), if known 014 ar MADEP Physiologi /000 Series List individua	cally Available Cyanida method and analyte	e (PAC) Method	//////								
		An affirmative respo	nse to questions A	, B, C and D is req	uired for "Presumpt	ive Certainty" statu	s						
A	Were all sa Chain of C	1: ides certifications for the following Spectrum Analytical, Inc. work order #: SA31813 Groundwater B 2560B B 220C B 8081 B 8082 B 10 Q//QC procedures requirement to net and discuss in a narrative QC data that did not meet nrintate performance standards or guidelines? B 11 QA/QC procedures requirement to net and discuss in a				🗆 No							
B	Were all Q. followed, in appropriate	A/QC procedures required and the required performance standard	ired for the specifient to note and discussion of the specifient to note and discussion of guidelines?	ied analytical metho cuss in a narrative (od(s) included in this QC data that did not r	report neet	🗆 Yes	D No					
Ĉ	Doës the da Certainty", "Quality As Analytical	ta included in this rep as described in Sectio ssurance and Quality (Data"?	ort meet all the an n 2.0 (a), (b), (c) a Control Guidelines	alytical requiremen nd (d) of the MAD for the Acquisitior	ts for "Presumptive EP document CAM V and Reporting of	/П А,	🗆 Yes	🗆 No					
D	<u>VPH and E</u> modificatio	CPH methods only: W	as the VPH or EPH f respective metho	H method conducte ods)?	d without significant		🛛 Yes	□ No					
•		A response to	questions E and F	below is required	for "Presumptive Ce	rtainty" status							
E	Were all an achieved?	alytical QC performation	nce standards and 1	recommendations for	or the specified meth	ods	O Yes	🗆 No					
F	Were result	s for all analyte-list c	mpounds/element	s for the specified i	method(s) reported?		🗅 Yes	D No					
		All negative res	po nses are addres	sed in a case narra	tive on the cover pag	e of this repart.	•						
I, the respo know	undersigned, onsible for obt vledge and bel	attest under the pair aining the informatic ief, accurate and com	s and penalties of n, tbe material co plete.	perjury that, base ntained in this and	ed upon my persona alytical report is, to t	l inquiry of those the best of my							
1 List Release Tradeing Number (RTN), if known 2 Arristic Projection 2 Arristic Projection 2 Arristic Projection 1 List Release Tradeing Number (RTN), if known 2 Arristic Projection 2 Arristic Projection 2 Arristic Projection 2 M - SW 456 Methods 001 at MADEP Physiologically Available Cyanide (PAC) Method 3 S - SW 456 Methods 7000 Series List individual method and analyte A Mere all samples received by the laboratory in a condition consistent with that described on the 2 Yes 2 A Were all QA/QC procedures required for the specified analytical method(s) included in this report 6 If New 4, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines? 2 Yes 2 D Does the data included in this report meet all the analytical requirements for "Presumptive Certainty", as described in Section 2.0 (a), (b), (c) and (d) of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? 2 Yes 2 D <i>VPH and EPH methods only</i> : Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective methods)? 2 Yes 2 <i>A response to questions E and F below is required for "Presumptive Certainty" status</i> 2 Yes 2 <i>B</i> Were results for all analyte-list compounds/elements for the specified method(s) reported?													

	···	` \	· , '			•.		×.		··· .				а, , , ,	rada y Sila a s	er de la				-	· · · ·				
If Almgeen Dd	Constitution upon receipted D local D Ambtent Tree	EDD Format	RE-mail to dzulcauslicas macca	Eax results when available to (Sto)				The second s		V Mm- 6 V	₩122 - MM 201	1 - 03 MU - 4	51813-01 MW-1 8-1-05	Lob (dt. 2014) Sample Id:	Grab C=Composie	0=011 SW= Surface Water S0=Soi1 SL= X1= X2= X2= 3	DW=Drinking Water (GW=Croundwater W	1=Na, \$20, C=1(C) 3=11, \$0, 4=11N0; 5=	Project Mar: 1104 11-04- 500	West Brilston, Mr. 0	Report To: CAA Inc	SPECTRUM-AVAIATICAL INC.			
Ker vc• Agawam, Mass			inc. Con	1188	 		••• •• •• ••			12.00	11:30	1.45	- 11:15-			Sludge A=Air (3=	W=Wastewater	NaOH 6=Ascorb	Po N	23	Invoice		CHAIN		
achosetts 01001 • 413-782		Sec las	CATHON IN	。 建築 · · · · · · · · · · · · ·						444	2		6603/2	Type Matri Press	x =rvati /OA	ve Vials		ic Acid	0	A CONTRACTOR OF A CONTRACT	To CUA in	Page	OF CUST		
9.9018 • Fax 413-789-4		Ê Î		d by A Barris See				síril, else, mr 3 jec		Y		= I ∕s ≥ X.		# of (# of (# of (lear lastic	Glass		ontainers:	ÖN:			of	FODY RE		
076 • www.spectrum-an		Vacus non	1 (hora	Received by:						X X = X				ACR WC	A - 4, 5	.8 C		here and the set	Sampler(s)	Location: Co	Project No.: (UA		CORD		
alyucal.com		1/2/1-10/2	17/						1 Lab	Paul III				As per M	Rece II	1000	State sp	A second s	1 + KG16	Moole St	4+10 ×	Samples disposed of a otherwise instructed.	All TAT's subject	Special Standard TAT - 7	ીશરાસ્ટ
		05-1640	L101 50	e: A Time:					Filler ed	いんろく	(h,A - S		10 is 21 T	The Low CAM Section 2.02	e MCP CAM Report	trankle, polecuse Ast deskour.	chick (fneeded)	Reporting Notes	Brack .	State: Ma	5-02	after 60 days unless	Needed: 2.4.20	Handling 0	North International Contraction
								e li stri Statistica Statistica																	ج ,

This laboratory report is not valid without an authorized signature on the cover page.

* Reportable Detection Limit

.

BRL = Below Reporting Limit

Condition upon	EDD Format	G-mail to (C Fax results				a state and a second		1- cy	- Q.	- C2	51813-01	Lab Id:		DW=Drinking O=Oil SW= S XI=	1=Na3S20;	Project Mgr.:			Report To:	HAX		76	
receipt: Direct		Tzukausligs	when available to (•				Mr- 6	mix - 5	MU-H	MW - 1	Sample Id:	Gona C=(Water (GW≐Grou Surface Water SO X2=	NaHSO4	Scott Und	1 68-83	miletin St	CGA nc.	Foundate Foundation	UISEANALY FIGAL, INC.		2
mbient Dec		acea - in	R - 550 (93						¢			2-1-05-	Date:	Composite	ndivater W/W=V =Soil SL=Sludy X3=	I=HNO; 5=NaOI	ar Les	1-1822					С С	
No.		(Cov	5					-	17.00 4	11:30	11:45	11:15-6	Time		Vastewater ₂e A=Air	A 6=Ascorbic A	P.O. No.			Invoice To			HAIN	
	Ed Va	CATHORN TO	Relinqui						· - - - - - - - - - - - - -	4		8 15 m	Matri Presi	x erveti VOA	ve Vials	ćić				CUA			DFCUS	
	and a		shed by		· · ·						4		# of # # of (# of I	Ambe Cléar Plastic	r Glass Glass	Containers:	RQN:			20			STODY	
	(mai	261							X X X	×	XXX		VP	μ Α-	8 (m	hals)	Sample	Locatio	Silte Na	Project			RECC	
	un nom	three 2	Received by:		UTHERDOX	89. Juli									260-1	Anutyses:	r(s): 120505	1. C	me: Java Co	No. (1994) - EN)RD	
	600-19/2	×12					0	14	ne.				/Resp	X Pro			1	1-pic >+.	NG UT		otherwise instructe	Min. 24-hour notif Samples disposed	Rush TAT - Da All TATs subjec	Special Mandard TAT
	105-16	105 101	Date: Y Th	(8	n which we		alle	F.Hered	ds to be	JUCHA-8		site is a	TANDEY CAN See	all field QC requirement	schecilie echoring star. priesilie, please fit de	A Reporting Note (clieck if needed)	MARS OF CAL	State:	04.200 /m	() / のみ		icution needed for m of after 60 days unlet	te Needed: 0.4	il Handling.
	46	3	me:	Solh1	×							4	(vepdarl)		rs lands	ß				100		NS TO A		*>
Report Date: 04-Aug-05 15:31

Final Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

CEA, Inc. I27 Hartwell Street West Boylston, MA 01583 Attn: Scott Vandersea

Project: Sunoco Inc (M&M)-88 S. Maple St-Westfield Project #: CEA#5795-05-02

Laboratory ID	<u>Client Sample ID</u>	<u>Matrix</u>	Date Sampled	Date Received
SA31815-01	MW-4	Ground Water	01-Aug-05 11:45	02-Aug-05 16:43
SA31815-02	MW-6	Ground Water	01-Aug-05 12:00	02-Aug-05 16:43

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met. Please note that this report contains 11 pages of analytical data including Chain of Custody document(s). This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110

Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New York # 11393/11840 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

CASE NARRATIVE:

The data set for work order SA31844 complies with internal QC criteria for the methods performed. The samples were received @ 4.0 degrees Celsius. An infrared thermometer with a tolerance of +/-2.0 degrees Celsius was used immediately upon receipt of the samples.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method.

According to WSC-CAM 5/2004 Rev.4, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although recovery may still be within the recommended 70%-130% range, the analytical range has been set based on historical control limits. Please refer to "Notes and Definitions" for all sample/analyte qualifiers. Qualifiers will note any exceedance levels and items specific to sample analysis/matrix.

Sample I MW-4 SA31815	dentification 5-01		<u>Client Project #</u> CEA#5795-05-02	<u>Matr</u> Ground	<u>ix C</u> Water	ollection Da 01-Aug-05	<u>te/Time</u> 11:45	Received 02-Aug-05			
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag	
Extracta	ble Petroleum Hydrocarbons										
EPH Alij	phatic/Aromatic Ranges		Prepared by metho	d SW84	6 3510C						
	C9-C18 Aliphatic Hydrocarbons	BRL	0.2 mg/l	1	+MADEP 5/2004 R	03-Aug-05	03-Aug-05	5080189	D		
	C19-C36 Aliphatic Hydrocarbons	BRL	0.2 mg/l	1		~	×	•	-		
	C11-C22 Aromatic Hydrocarbons	BRL	0.2 mg/l	I		-		•			
	Unadjusted C11-C22 Aromatic Hydrocarbons	BRL	0:2 mg/l	1	×	n	-	*	•		
	Total Petroleum Hydrocarbons	BRL	0.2 mg/l	1		*	π.	۳	*		
	Unadjusted Total Petroleum Hydrocarbons	BRL	0.2 mg/l	1	•	*	-	٠	*		
<u>EPH Tar</u>	get PAH Analytes		Prepared by metho	1 SW84	6 3510C						
91-20-3	Naphthalene	BRL	5.10 μg/l	1		*	Ħ	•			
91-57-6	2-Methylnaphthalene	BRL	5.10 μg/l	1	•	*	-	•	14		
208-96-8	Acenaphthylene	BRL	5.10 μg/l	1	Ħ	-	#	•			
83-32-9	Acenaphthene	BRL	5.10 µg/l	1	-		-	-			
86-73-7	Fluorene	BRL	5.10 μg/l	1	*	■,	-	•			
85-01-8	Phenanthrene	BRL	5.10 μg/l	1		-	-	•			
120-12-7	Anthracene	BRL	5.10 μ g/ 1	1	•	*	-	-	-		
206-44-0	Fluoranthene	BRL	5.10 μg/l	1		"		•	*		
129-00-0	Pyrene	BRL	5.10 μg/l	1.	H,	*	*	•	*		
56-55-3	Benzo (a) anthracene	BRL	5.10 μg/l	1	"	*	*	-			
218-01-9	Chrysene	BRL	5.10 µg/l	1		*	•	•			
205-99-2	Benzo (b) fluoranthene	BRL	5.10 µg/l	1	*		-	*	-		
207-08-9	Benzo (k) fluoranthene	BRL	5.10 µg/l	1	*		-	-	*		
50-32-8	Benzo (a) pyrene	BRL	5.10 μg/l	ì	•	-	*	-	*		
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	5.10 μg/l	1		-	*	-	-		
53-70-3	Dibenzo (a,h) anthracene	BRL	5.10 μ g/ 1	1		*		-			
191-24-2	Benzo (g,h,i) perylene	BRL	5.10 μg/l	1	m		*	,M			
Surrogate	recoveries:		······································								
3386-33-2	I-Chlorooctadecane	47.5	40-140 %		*		-	*			
84-15-1	Ortho-Terphenyl	49.2	40-140 %			-		•			
580-13-2	2-Bromonaphthalene	63.7	40-140 %			*	۳	•	*		
321-60-8	2-Fluorobiphenyl	71.1	40-140 %		*	*		•			

•

•

Sample I MW-6 SA31815	dentification 5-02		<u>Client Project #</u> CEA#5795-05-02	<u>Matr</u> Ground V	<u>ix Co</u> Water (ollection Da 01-Aug-05	<u>te/Time</u> 12:00	<u>Received</u> 02-Aug-05				
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag		
Extracta	ble Petroleum Hydrocarbons											
<u>EPH Ali</u> j	phatic/Aromatic Ranges		Prepared by metho	d SW84	6 3510C							
	C9-C18 Aliphatic Hydrocarbons	BRL	0.2 mg/l	1	+MADEP 5/2004 R	03-Aug-05	03-Aug-05	5080189	'n			
	C19-C36 Aliphatic	BRL	0.2 mg/l	1	91	-	*	•	-			
	C11-C22 Aromatic	BRĹ	0.2 mg/l	1	-	"	*	*	-			
	Unadjusted C11-C22 Aromatic Hydrocarbons	BRL	0.2 mg/l	1	•	-	H	-	•			
	Total Petroleum Hydrocarbons	BRL	0.2 mg/l	1	*							
	Unadjusted Total Petroleum Hydrocarbons	BRL	0.2 mg/l	1	*	-	7	•	۳			
EPH Tar	get PAH Analytes		Prepared by metho	d SW84	46 3510C							
91-20-3	Nanhthalene	BRI	5 26 ug/	1	-	-	-		-			
91-57-6	2-Methylnanhthalene	BRL	5.26 µg/l	1					#			
208-96-8	Acenanhthylene	BRL	5.26 µg/l	1	"	-		-				
83-32-9	Acenaphthene	BRL	5.26 µg/l	1		-	*					
86-73-7	Fluorene	BRL	5.26 µg/l	1	H		•					
85-01-8	Phenanthrene	BRL	5.26 µg/l	1		*		-				
120-12-7	Anthracene	BRL	5.26 µg/l	1								
206-44-0	Fluoranthene	BRL	5.26 µg/l	1					-			
129-00-0	Pyrene	BRL	5.26 ug/l	1	Ħ			#				
56-55-3	Benzo (a) anthracene	BRL	5.26 µg/l	1		-		*				
218-01-9	Chrysene	BRL	5.26 μg/l	1	*	-	•	"				
205-99-2	Benzo (b) fluoranthene	BRL	5.26 µg/l	1	н	*						
207-08-9	Benzo (k) fluoranthene	BRL	5.26 µg/l	1	•	*	•					
50-32-8	Benzo (a) pyrene	BRL	5.26 µg/l	1	•	-	-	-				
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	5.26 µg/l	1	•	"	•	•	-			
53-70-3	Dibenzo (a,h) anthracene	BRL	5.26 µg/l	1		-		*	-			
191-24-2	Benzo (g,h,i) perylene	BRL	5.26 µg/l	1	*	-	-	Ħ	-			
Surrogate	recoveries:											
3386-33-2	I-Chlorooctadecane	55.7	40-140 %		m	*	-	м	"			
84-15-i	Ortho-Terphenyl	52.5	40-140 %		•		-	*	•			
580-13-2	2-Bromonaphthalene	54.2	40-140 %		•	-			•			
321-60-8	2-Fluorobiphenvl	67.9	40-140 %			-		*	-			

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 0508024 - 5080189									
Calibration Check (0508024-CCV1)			Prepared &	Analyzed:	03-Aug-05				
C9-C18 Aliphatic Hydrocarbons	0,508	me/l	0.600		84.7	75-125			
C19-C36 Aliphatic Hydrocarbons	0.743	me/l	0.800		92.9	75-125			
C11-C22 Aromatic Hydrocarbons	2.04	mg/l	1.70		120	75-125			
Naphthalene	117	g- ug/l	100		117	80-120			
2-Methylnaphthalene	115	µg/]	100		115	80-120			
Acenaphthylene	118	н е /	100		118	80-120			
Accempthene	116	н а /	100		116	80-120			
Fhorens	114	н е /	100		114	80-120			
Phenanthrene	113	ре/1 110/	100		113	80-120			
Anthracene	110	µg/1	100		110	80-120			
Florentheme	- 112		100		112	80-120			
Pyrene	112	μ σ /	100		112	80-120			
Renzo (a) anthracene	112	μg/1 μg/1	100		108	80-120			
Chrysens	103	μg/1 μg/1	100		112	80-120			
Benzo (h) fluorenthene	100	μg/1 41g/1	100		100	80-120			
Benzo (c) fuorantiene	108	μ8/1	100		100	80-120			
	108	μg/1 11.2	100		108	80-120			
Indeno (1,2,3,-cd) mamo	108	μg/1 μg/1	100		100	80-120			
Dihenzo (a.b.) anthracena	108	μg/1 (197	100		100	80-120			
Benen (a, h. i) perulana	117	μg/1 	100		117	80-120			
Datab 5090190 - SW846 2510C	117	μĘ/I	100		117	80-120			
Datcu 3000109 - 5 + 640 3310C									
Blank (5080189-BLK1)			Prepared &	Analyzed:	03-Aug-05				
C9-C18 Aliphatic Hydrocarbons	BRL	0.2 mg/l							
C19-C36 Aliphatic Hydrocarbons	BRL	0.2 mg/l							
C11-C22 Aromatic Hydrocarbons	BRL	0.2 mg/l							
Unadjusted C11-C22 Aromatic	BRL	0.2 mg/l							
Hydrocarbons									
Total Petroleum Hydrocarbons	BRL	0.2 mg/l							
Unadjusted Total Petroleum Hydrocarbons	BRL	0.2 mg/l							
Naphthalene	BRL	2,50 μg/l							
2-Methylnaphthalene	BRL	2.50 µg/1							
Acenaphthylene	BRL	2.50 μg/l							
Acenaphthene	BRL	2.50 μg/l							
Fluorene	BRL	2.50 μg/l							
Phenenthreno	BRL	2,50 μg/l							
Anthracene	BRL	2.50 μg/l							
Fluoranthene	BRL	2.50 μg/l							
Pyrene	BRL	2.50 µg/1							
Benzo (a) anthracene	BRL	2.50 μg/l							
Chrysene	BRL	2.50 μg/l							
Benzo (b) fluoranthene	BRL	2.50 μg/l							
Benzo (k) fluoranthene	BRL	2.50 µg/1							
Benzo (a) pyrcno	BRL	2,50 μg/l							
Indeno (1,2,3-cd) pyrene	BRL	2.50 μg/l							
Dibenzo (a,h) anthracene	BRL	2.50 μg/l							
Benzo (g,b,i) perylene	BRL	2.50 µg/l							
Surrogate: 1-Chlorooctadecane	21.9	μgЛ	50.0		43.8 °	40-140			
Surrogate: Ortho-Terphenyl	23.7	μgЛ	50,0		47.4	40-140			
Surrogate: 2-Bromonaphthalene	24.7	μ g /Ι	40.0		61.8	40-140			
Surrogate: 2-Fluorobiphenyl	26.6	μgЛ	40.0		66.5	40-140			
LCS (5080189-BS1)			Prepared &	Analyzed:	03-Aug-05				
C9-C18 Aliphatic Hydrocarbons	0.242	0.2 mg/l	0.600		40.3	40-140			
C19-C36 Aliphatic Hydrocarbons	0.472	0.2 mg/l	0.800		59.0	40-140			

This laboratory report is not valid without an authorized signature on the cover page.

* Reportable Detection Limit BRL = Below Reporting Limit

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 5080189 - SW846 3510C									
LCS (5080189-BS1)			Prepared &	z Analyzed:	03-Aug-05				
C11-C22 Aromatic Hydrocarbons	1.14	0.2 mg/l	1.70		67.1	40-140			
Naphthalene	45.9	2.50 µg/l	100		45.9	40-140			
2-Methylnaphthalene	47.0	2.50 μg/l	100		47.0	40-140			
Acenaphthylene	54.9	2.50 µg/l	100		54.9	40-140			
Acenaphthene	53.4	2.50 μg/l	100		53.4	40-140			
Fluorene	57.0	2.50 µg/l	100		57.0	40-140			
Phenanthrene	60.3	2.50 μg/l	100		60.3	40-140			
Anthracene	63.1	2.50 µg/l	100		63.1	40-140			
Fluoranthene	60.1	2.50 µg/l	100		60.1	40-140			
Pyrene	59.1	2,50 µg/l	100		59.1	40-140			
Benzo (a) anthracene	52,7	2.50 µg/l	100		52.7	40-140			
Chrysene	57.2	2.50 µg/l	100		57.2	40-140			
Benzo (b) fluoranthene	51.7	2,50 μg/l	100		51.7	40-140			
Benzo (k) fluoranthene	52.4	2.50 µg/l	100		52.4	40-140			
Benzo (a) pyrene	51.7	2.50 µg/1	100		51.7	40-140			
Indeno (1,2,3-cd) pyrene	52.5	2.50 μg/l	100		52.5	40-140			
Dibenzo (a,h) anthracene	54.0	2.50 μg/l	100		54,0	40-140			
Benzo (g,h,i) perylene	52.0	2.50 μg/l	100		52.0	40-140			
Naphthalene (aliphatic fraction)	0.000100	μg/l	100		0.000100	0-200			
2-Methylnaphthalene (aliphatic fraction)	0.000100	µg/1	100		0.000100	0-200		· · · · · ·	
Surrogate: 1-Chlorooctodecane	29.5	µg/Ì	50.0		59.0	40-140			
Surrogate: Ortho-Terphenyl	25.2	μg/l	50.0		50.4	40-140			
Surrogate: 2-Bromonaphthalene	22.8	μg/l	40.0		57.0	40-140			
Surrogate: 2-Fluorobiphenyl	29.5	μg/l	40.0		73.8	40-140			
Naphthalene Breakthrough	0.00	%				0-5			
2-Methylnaphthalene Breakthrough	0.00	%				0-5			
Fractionation Check Standard (5080189-	BS2)		Prepared 8	k Analyzed:	03-Aug-05				
C9-C18 Aliphatic Hydrocarbons	0.318	0.2 mg/l	0.600		53.0	40-140			
C19-C36 Aliphatic Hydrocarbons	0.517	0.2 mg/l	0.800		64.6	40-140			
C11-C22 Aromatic Hydrocarbons	1.38	0.2 mg/l	1.70		81.2	40-140			
Naphthalene	61.1	2.50 μg/l	100		61.1	40-140			
2-Methylnaphthalene	65.5	2.50 μg/l	100		65,5	40-140			
Acenaphthylene	73.2	2.50 μg/l	100		73.2	40-140			
Acensphthene	71.4	2.50 µg/l	100		71.4	40-140			
Fluorene	72.3	2.50 μg/l	100		72.3	40-140			
Phenanthrene	73.4	2.50 μg/l	100		73.4	40-140			
Anthracene	76.6	2.50 μg/l	100		76.6	40-140			
Fluoranthene	70.0	2.50 μg/l	100		70.0	40-140			
Pyrene	70.5	2.50 μg/l	100		70.5	40-140			
Benzo (a) anthracene	64.7	2.50 μg/l	100		64.7	40-140			
Chrysene	65.4	2.50 μg/l	100		65.4	40-140			
Benzo (b) fluoranthene	62.2	2,50 μg/l	100		62.2	40-140			
Benzo (k) fluoranthene	58.5	2.50 μg/l	100		58.5	40-140			
Benzo (a) pyrene	59.0	2.50 μg/l	100		59.0	40-140			
Indeno (1,2,3-cd) pyrene	59.2	2.50 µg/l	100		59.2	40-140			
Digenzo (a,h) anthracené	61.5	2.50 µg/l	100		61.5	40-140			
Benzo (g,h,i) perylene	58.5	2.50 μg/l	100		58.5	40-140			
Naphthalene (aliphatic fraction)	0.000100	μg/l -	100		0.000100	0-200			
2-Methylnaphthalene (aliphatic fraction)	0.000100	µg/l	100		0.000100	0-200			
Surrogate: 1-Chlorooctadecane	31.0	µg∕1	50.0		62.0	40-140			
Surrogate: Ortho-Terphenyl	30.6	µg/1	50.0		61.2	40-140			
Surrogate: 2-Bromonaphthalene	24.5	μg/1	40.0		61.2	40-140			
Surrogate: 2-Fluorobiphenyl	30.5	µg/l	40.0		76.2	40-140			

This laboratory report is not valid without an authorized signature on the cover page.

.

Extractable Petroleum Hydrocarbons - Quality Contr
--

			Spike	Source		%REC		RPD	
Analyte(s)	Result	*RDL Units	Level	Result	%REC	Limits.	RPD	Limit	Flag
Batch 5080189 - SW846 3510C									
LCS Dup (5080189-BSD1)			Prepared &	Analyzed: (03-Aug-05				
C9-C18 Aliphatic Hydrocarbons	0.283	0.2 mg/l	0.600		47.2	40-140	15.8	25	
C19-C36 Aliphatic Hydrocarbona	0.420	0.2 mg/l	0,800		52.5	40-140	11.7	25	
C11-C22 Aromatic Hydrocarbons	1.26	0.2 mg/l	.1.70		74.1	40-140	9.92	25	
Naphthalene	42.9	2.50 µg/l	100		42.9	40-140	6.76	20	
2-Methylnaphthalene	49.0	2.50 µg/l	100		49.0	40-140	4.17	20	
Acenaphthylene	55,5	2.50 µg/l	100		55.5	40-140	1.09	20	
Acenaphthene	55.7	2.50 μ <u>g</u> /l	100		55.7	40-140	4.22	20	
Fluorene	59.6	2.50 μg/l	100		59.6	40-140	4.46	20	
Phenanthrene	64,0	2.50 μg/l	100		64.0	40-140	5.95	20	
Anthracene	66.4	2.50 µg/]	100		66.4	40-140	5.10	20	
Fluoranthene	66.0	2.50 µg/l	100		66.0	40-140	9.36	20	
Pyrene	66.0	2.50 µg/l	100		66.0	40-140	11.0	20	
Benzo (a) anthracene	63.2	2.50 µg/l	100		63.2	40-140	18.1	20	
Chrysene	68.2	2.50 μg/l	100		68.2	40-140	17.5	20	
Benzo (b) fluoranthene	63.6	2.50 μg/l	100		63.6	40-140	20.6	20	QR-02
Benzo (k) fluoranthene	63.4	2.50 μg/l	100		63.4	40-140	19.0	20	
Benzo (a) pyrene	61.8	2.50 μg/l	100		61.8	40-140	17.8	20	
Indeno (1,2,3-cd) pyrene	63.0	2.50 μg/l	100		63.0	40-140	18.2	20	
Dibenzo (a,h) anthracene	64.8	2.50 µg/]	100		64.8	40-140	18.2	20	
Benzo (g,h,i) perylene	62.4	2.50 µg/l	100		62.4	40-140	18.2	20	
Naphthalene (aliphatic fraction)	0,000100	μ g /l	100		0.000100	0-200	0.00	200	
2-Methylnaphthalene (aliphatic fraction)	0.000100	μgЛ	100		0.000100	0-200	0.00	200	
Surrogate: 1-Chlorooctadecane	26.5	μgЛ	50.0		53.0	40-140			
Surrogate: Ortho-Terphenyl	25.8	µg/1	50.0		51.6	40-140			
Surrogate: 2-Bromonaphthalene	26.5	μ g /l	40.0		66.2	40-140			
Surrogate: 2-Fluorobiphenyl	32.5	µg/1	40.0		81.2	40-140			
Naphthalene Breakthrough	0.00	%				0-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
2-Methylnaphthalene Breakthrough	0.00	%				0-5			

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

	Average			
Analyte	RF	CCRF	% D	Limit
Batch 0508024				
Calibration Check (0508024-CCV1)				
C9-C18 Aliphatic Hydrocarbons	1.87539E+08	1.58655E+08	-15.4	25.00
C19-C36 Aliphatic Hydrocarbons	1.4791E+08	1.37303E+08	-7.17	25.00
C11-C22 Aromatic Hydrocarbons	18269.7	19.3145	-99.9	25.00
Naphthalene	8.21924	9.60121	16.8	20.00
2-Methylnaphthalene	5.20969	5.975	14.7	20.00
Acenaphthylene	7.12596	8.40432	17.9	20.00
Acenaphthene	4.92981	5.71317	15.9	20.00
Fluorene	5.22537	5.93362	13.6	20,00
Phenanthrene	6.58189	7.46975	13.5	20.00
Anthracene	7,1002	7.81987	10.1	20.00
Fluoranthene	6.78953	7.59024	11.8	20.00
Pyrene	7.00701	7.85114	12.0	20.00
Benzo (a) anthracene	5,86729	6,36039	8.40	20.00
Chrysene	5.98057	6.69626	12.0	20.00
Benzo (b) fluoranthene	5.08862	5.10503	0.322	20.00
Benzo (k) fluoranthene	5.53875	5.99855	8.30	20.00
Benzo (a) pyreno	4.82661	5,58604	15.7	20.00
Indeno (1,2,3-cd) pyrene	4.93162	5.32144	7.90	20.00
Dibenzo (a,h) anthracene	3.86699	4.60797	19.2	20,00
Benzo (g,h.i) perylene	4.05765	4.73273	16.6	20.00

Notes and Definitions

- QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown The following outlines the condition of all EPH samples contained within this report upon laboratory receipt.

Matrix	🗖 Ag	lueous	🗆 So	il		Sediment D C	Other	
Containers	🗆 Sat	tisfactory	🗖 Вл	oken		Leaking		
Aqueous Preserva	tive	D N/A	□ pH≤2	□ pH>2	,	□ pH adjusted to <2 in	ı lab	Comment
Temperature	🗖 Re	ceived on ice		wived at 4	± 2 '	°C 🛛 Other:	0	с

Were all QA/QC procedures followed as required by the EPH method? Yes <u>No</u> Were any significant modifications made to the EPH method as specified in Section 11.3? No Were all performance/acceptance standards for required QA/QC procedures achieved? Yes <u>No</u>

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

•.

MADEP RTN ¹ :													
This	This form provides certifications for the following Spectrum Analytical, Inc. work order #: SA31815												
Matri	x	Groundwater	🗖 Soil/	Sediment	Drinking Water	D Other							
		B 8260B	🗖 8151A	□ 8330	6010B	7470A/1A							
MCP Meth	SW-846 ods Lised	8270 C	0 8081A	□ VPH	6020	□ _{9014M} ²							
		8082	B 8021B	C EPH	□ _{7000S} ³	7196A							
List Release Tracking Number (RTN), if known M - SW-846 Method 9014 or MADEP Physiologically Available Cyanide (PAC) Method SW-846 Methods 7000. Series List individual method and analyte													
An affirmative response to questions A, B, C and D is required for "Presumptive Certainty" status													
A Were all samples received by the laboratory in a condition consistent with that described on the Chain of Custody documentation for the data set?													
B Were all QA/QC procedures required for the specified analytical method(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet I Yes appropriate performance standards or guidelines? I Yes													
с	Does the da Certainty", "Quality As Analytical	ta included in this rep as described in Section ssurance and Quality (Data"?	ort meet all the an n 2.0 (a), (b), (c) a Control Guidelines	alytical requirem nd (d) of the MA for the Acquisiti	ents for "Presumptive DEP document CAM V ion and Reporting of	/П А,	🛛 Yes	D No					
D	<u>VPH and E</u> modificatio	EPH methods only: Wons (see Section 11.3 c	as the VPH or EPI	H method conduc ods)?	ted without significant		□ Yes	□ No					
		A response to	questions E and F	below is require	ed for "Presumptive Ce	rtainty" status	-						
Е	Were all an achieved?	alytical QC performa	nce ständards and i	recommendations	s for the specified meth	ods	🗆 Yes	🛛 No					
F	Were result	s for all analyte-list c	ompounds/element	ts for the specifie	d method(s) reported?		🖬 Yes	🗖 No					
		All negative res	ponses are addres	sed in a case nar	rative on the cover pag	e of this report.							
I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete. Hanibal C. Taych, Ph.D.													
	President/Laboratory Director Date: 8/4/2005												

MADEP MCP ANALYTICAL METHOD REPORT CERTIFICATION FORM

.

		· · · ·	:•	. : .						·: .	· · · .			С <u>1</u>			1.			. "L & . 			· · · · ·			
	Condition upon	EDD Format	E-mail to (🗆 Fax results		and the approximation			A CALL AND A CALL	د - دوری محمد از شده می میروند به محمد از شده می مرب			0-1/	31812-01	Lab Id:		DW=Drinking O=Oil SW= XI=	1=Na3S2O1	Project Mgr.:	Trin.	Keport To:	HA.		76	À	
	receipt: Dioed		2 uk auste	when available to									MW-6	ろで・ト	- Sample Id:	Gomb c	Water GW=Gn Surface Winter \$ X2=	HCI:3=H-SO4	Scott Vad	Carlin	Harrivell	SIBAL TECHNOLOGY	ARM ANALYTICAL INC.	<i>"</i>)		
11 Almgren Drive	Ambient C		s Ocea -	608 035-1	- - - -	•					•		8.1.07	8-1-05	Date:	-Composite	oundwater WW O=Soil SL=Sh X3=	1=HN0; 5=N4	3- 5 64	10, M	<1.					
• Agawam, Massa	States and		In C. COM	1188				· · ·					00:21	11:45	Time:		=Wastewater idge A=Air *	OH 6= Ascorbi "10=	P.O. N	<u>8</u>		•	-	HAIN		
chuseus		n		2		· · ·		· · ·			а а С ал _{и с}		e 0	6.6	Туре		l.	c Acid				• • •		Q.		
10010		R	Ø	Rel		 		• •.			, F A	· · ·	2	لح	Prese	rvati	ve]	· · · · · · · · · · · · · · · · · · ·		140	0.0.7 	D	Q	•	
•413		J.		Sinburg						·.				·	# of ∖	'OA	Vials					- : -	-	S		
789-90	N	5	X	hed by	<u> </u>								-	1	# of ♪	mbe	r Glass	Cont	RQN		ľ	\ · ≘	2 1	D	·. 3	1
15 1		E.	1		•			· .							#of(lear	Glass	amers					÷.,	Ĕ		· · · ·
ах 4 13												•	 	. 	F 01 P	lasin	2 · · · ·							R		
789-	 	2							· · · ·	· ·:: '			X	4	F	PI	4	100				·		R		<i>t</i> ,
, bro		R	N						чц.			. •.							San	Loc	Site	P		(\mathbf{H})	* ;	
N.W.	·	Rec	R						a"	; ;	1	•.		i.		1			pler(s	alion:	Name		" : <u>`</u>			
shertu			D	nceive												:		Analy		A	اري	L		G		
Gin-an		10	X.	d hy:			-		: :		4,4 1, 4							Ses -			no c			<u> </u>		
alytica		Na	7.		: <u>·</u> .	 .					- 								2	- M	0		Ali	⊇⊠ ≊≂≊		
l.com		S			<u> </u>						· · ·			 						the	10.	anvise	nles di	andare Ish.T/ TA'ta		
		3	8	2			:	14	 	1.1				V.	(Rej	Wa	<u>لا د</u>		6	12	(int	instruc	Second Including	JTAT VT - D	Spec	公
4.0800		5	2/2	Date		-							:	s V	NN IS	rovide 3 real1 fie	and a shoc	NO I	The		31		d of aff	an Date N	ial H	<u>(i)</u>
		\mathbb{R}^{k}	7		:	:							:	r.	A A C	ACP C	the rep	teport beek if	Sec	Sint		Į.	er fil d	ccded labor	Indli	3
	:	4	6	• <u>*</u>										ەت		AAI Rej	oning s nave fisi	ing N	F	ند ان الراق	5	25	ded for	Norv Sintes	1)
		64	Ň	lime		1					а а 14-1		-	27	rtion 2.0 Marynau	yon	helou:	otcs .		a	F	<u>ון</u> א	nushes	-D	N	Ż
		0.0				.					1			M	3 -3	2	d Gafe					Pi o			<u></u>	
					* * **			1											E.e.			Y				
			1.11									. ?: . ?:											100			ALC: N
44											all's					. 14	1		P	174	1.12				Liety	1

This laboratory report is not valid without an authorized signature on the cover page.

Reportable Detection Limit BRL = Below Reporting Limit

e-Hardcopy 2.0 Automated Report

02/21/06

Technical Report for

Corporate Environmental Advisors

IT'S ALL IN THE CHENISTRY

Sunoco, 88 South Maple St., Westfield MA

5795-05-005

Accutest Job Number: M54470

Sampling Date: 02/07/06

Report to:

Corporate Environmental Advisors, Inc. 127 Hartwell Street West Boylston, MA 01583 dazukauskas@cea-inc.com

ATTN: Debbie Zukauskas

Total number of pages in report: 14

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Reza Pand

Lab Director

Certifications: MA (M-MA136) CT (PH-0109) NH (250204) RI (00071) ME (MA136) FL (E87579) NY (23346) NJ (MA926) NAVY USACE This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Sections:

5

ц С

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: M54470-1: MW-1	5
2.2: M54470-2: MW-3B	6
2.3: M54470-3: MW-5	7
2.4: M54470-4: MW-6	8
Section 3: Misc. Forms	9
3.1: Chain of Custody	10
3.2: VPH Form	11

Sample Summary

Sunoco, 88 Project No:	South M 5795-0	aple St., W 5-005	estfield N	ИA		Job No: M54470
Sample Number	Collected Date	Time By	Received	Matr Code	іх Туре	Client Sample ID
M54470-1	02/07/06	08:40 MB	02/09/06	AQ	Ground Water	MW-1
M54470-2	02/07/06	09:20 MB	02/09/06	AQ	Ground Water	MW-38
M54470-3	02/07/06	09:00 MB	02/09/06	AQ	Ground Water	MW-5
M54470-4	02/07/06	10:10 MB	02/09/06	AQ	Ground Water	MW-6

Corporate Environmental Advisors

Sample Results

Report of Analysis

	Report of Analysis													
Client Sam Lab Sampl Matrix: Method: Project:	pple ID: MW-1 le ID: M54470- AQ - Gro MADEP Sunoco, 8	1 ound Wate VPH RE 38 South 1	er V 1.1 Maple St., Wes	stfield MA	Date Sampled Date Received Percent Solid	l: 02/07/06 d: 02/09/06 s: n/a								
Run #1 Run #2	File ID AB25740.D	DF 1	Analyzed 02/15/06	By CH	Prep Date n/a	Prep Batch n/a	Analytical Batch GAB1348							
Run #1 Run #2	Purge Volume 5.0 ml													
MA-VPH I	List													
CAS No.	Compound		Result	RL	Units Q									
71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-47-6	Benzene Ethylbenzene Methyl Tert Buty Naphthalene Toluene m, p-Xylene o-Xylene C5- C8 Aliphatic C9- C12 Aliphati	yl Ether es (Unadj. ics (Unadj.	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.0 2.0 3.0 2.0 2.0 2.0 2.0 50 50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l									
CAS No.	C9- C10 Aromat C5- C8 Aliphatic C9- C12 Aliphati Surrogate Recov	ics (Unad iss ics ve ries	j.) ND ND ND Run# 1	50 50 50 Run# 2	ug/l ug/l ug/l Limits									
615-59-8 615-59-8	2, 5-Dibromotolu 2, 5-Dibromotolu	ene ene	84% 84%	5	70-130% 70-130%									

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $\mathbf{B} =$ Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2.1

N

Report of Analysis

1	of	I
	1	l of I

2.2

2

Client Sam Lab Sampi Matrix: Method: Project:	aple ID; MW-3 le ID: M544 AQ - (MAD) Sunoc	B 70-2 Ground Wates EP VPH REV 6, 88 South M	7 1.1 Maple St., We	estfield MA	Date Sampled Date Received Percent Solids	: 02/07/06 : 02/09/06 : п/а	
	File ID .	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AB25741.D	1	02/15/06	CH	n/a	n/a	GAB1348
Run #2	AB25762.D	10	02/16/06	CH	n/a	n/a	GAB1349
	Purge Volume	e				<u> </u>	
Run #1	5.0 ml						
Run #2	5.0 ml		(
MA-VPH	List		·				
CAS No.	Compound		Result	RL	Units Q		
71-43-2	Benzene		252	2.0	ug/l		
100-41-4	Ethylbenzene		676	2.0	ug/l		
1634-04-4	Methyl Tert H	Butyl Ether 🖉	2320 ª	20	ug/l		
91-20-3	Naphthalene		95.4	3.0	ug/l		
108-88-3	Toluene		2060	20	ug/l		
	m, p-Xylene		1250	2.0	ug/l		
95-47-6	o-Xylene		988	2.0	ug/l		
	C5- C8 Aliph	atics (Unadj.)	7550 *	500	ug/l		
	C9- C12 Alip	hatics (Unadj	.) 6500	50	ug/l		
	C9- C10 Aron	matics (Unadj	.) 2520	50	ug/1		
	C5- C8 Aliph	atics	2920	50	ug/l		
	C9- C12 Alip	hatics	1070	50	ug/l		
CAS No.	Surrogate Re	ecoveries	Run# 1	'Run# 2	Limits		
615-59-8	2, 5-Dibromot	toluene	65%	93%	70-130%		
615-59-8	2,5-Dibromot	toluene	66%	94%	70-130%		

(a) Result is from Run# 2

ND = Not detected

,

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

- -

.

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

2.3

N

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-5 e ID: M54470-3 AQ - Ground Water MADEP VPH REV Sunoco, 88 South M	1.1 Iaple St., We	stfield MA	Date Sampled: Date Received: Percent Solids:	02/07/06 02/09/06 n/a	
Run #1 Run #2	File ID DF AB25742.D 1	Analyzed 02/15/06	By CH	Prep Date n/a	Prep Batch n/a	Analytical Batch GAB1348
Run #1 Run #2	Purge Volume 5.0 ml					
MA-VPH I	List					
CAS No.	Compound	Result	RL	Units Q		
71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-47-6	Benzene Ethylbenzene Methyl Tert Butyl Ether Naphthalene Toluene m, p-Xylene o-Xylene C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	ND ND ND ND ND ND ND ND ND ND ND ND	2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 50 50 50 50 50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
615-59-8 61 5-5 9-8	2,5-Dibromotoluene 2,5-Dibromotoluene	76% 76%		70-130% 70-130%		

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

2.4

N

Client Sa Lab Sam	mple ID: ple ID:	MW-6 M544	5 70-4			Date Sampled:	02/07/06	
Matrix: Method: Project:		AQ - Q MADI Sunoc	Ground Wa EP VPH R o, 88 South	uter EV 1.1 1 Maple St., We	estfield M	Date Received: Percent Solids: A	02/09/06 n/a	
	File ID		DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AB25743	3.D	1	02/15/06	СН	n/a	n/a	GAB1348
Run #2	AB2576	3.D	100	02/16/06	CH	n/a	n/a	GAB1349
	Purge V	olume						

Run #1 5.0 ml Run #2 5.0 ml

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	446	2.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	22900	200	ug/1
91-20-3	Naphthalene	6.71	3.0	ug/l
108-88-3	Toluene	12:3	2.0	ug/1
	m, p-Xylene	4.0	2.0	ug/1
95-47-6	o-Xylene	5.5	2.0	ug/1
	C5- C8 Aliphatics (Unadj.)	16300 ª	5000	ug/l
	C9- C12 Aliphatics (Unadj.)	54.2	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND.	50	ug/1
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	86%	79%	70-130%
615-59-8	2, 5-Dibromotoluene	86%	81%	📑 70-130%

(a) Result is from Run# 2

ND = Not detected

•

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3 3

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- VPH Form

		ST.		CH	CHAIN OF CUST 485 TECHNOLOGY CENTER WEST * BUILDING MARIBOROUGH, MA 01738 TEL: 508-481-6200 * FAX: 508-481-7753						CO Danig (Y		ACCUTERT DOB 8: M54470				>			
1. 2. W. 1971	CLIENT INFO	RMATION			FAC	ILITY INF	ORIMA	TION						- 1	ANA	LYTIC	L INF	ORMAT	ION	in top 20	MATRIX COD	ES
ADDRESS LAT	inc. Huttwell. 21 By/	51, (b, Mu, 0) STATE	<u>1 r 7 3</u>	PROJECT LOCATION PROJECT	SURGEO TAL ECT NAME STON LOSSIFIELD, Ma ECT NO. (EA # 57.95 - 05 - 05												DW - DRWRUP WATER DW - GROUN WATER WW - WASTE WATER SO - SOL EL - SLIDCI OT - OL LUG - CTHER HERDE	E				
ACCUTEST	551 D (D (D		<u> </u>	C	LLECTION		PRESERVATION				Hd/								BOL - OTHER BOLID			
SAMPLE #	FIELD ID / P	DANT OF COLLECT	ION	DATE	TIME	BAMPLED BY:	1	•	2]3	Here	1280		2						1		LAB USE ON	LY I
-1	MW-1			2.7.06	8:40	mB	w	2	X.			Ħ	Χ	+	1	+-		+-				-
-2	MN-3	5B		1	9:20		1	i	11-	t	1	1	<u></u>	+	┽	-f	\vdash					
-3	MLI- J	5			9:00				₩-	Н	-	┼╌╂	╂╆╌	╉	+	+	┝─┼				╁───-	~
- 4	MU = U	6			10:0		5	J	₩	Н		┼╂	++-	╋		+	┞╌╀		\vdash		<u> </u>	
	1110 - 1	0		-	10.10	–		-	H			┼╌╂	<u>-</u>	╉	+-		┝╼╋		-			_
				l					┢╌╽╴	1-1	+	┢	+	-				_			Į	
					<u> </u>	⊢			\square	\square	+	\square		+	_			_				
						<u> </u>			1.	\square		Ц		_				_				
														ľ								
										Π	_			T	1-					-		1
							_			+ +	+	H	-	$^{+}$	╈						l	-
1		-	1												_							_
DATA	TURNAROUN	APPROXIMATION	<u>合著集 (学) (学)</u>		DATA DELI	VERABLE	INFO	RMA	TION		10 10 10 10 10 10 10 10 10 10 10 10 10 1						COMM	ENTS/R	EMA	RKS		<u>ية (</u>
O 7 DAYS RUS	нодно И .	APPHOVED BT;	_		ERCIAL "B	-							-	S	ik.	<u>``</u>		21.		5		_[
C: 48 HOUR EMI OTHER	ERGENCY .		-		ELIVERAB	LE ,							~			<u>f 1</u>						
14 DAY TURNAROLE	D HARDCOPY.	EMERGENCY ON IRLI	SH B FAX	OTHER	(SPECIFY) <u> </u>	M.1		\$		_								ЗĤ	2		
DATA UNLESS PREY	AOUSLY APPRO	WED		duzu	kayeka	<u>25 @ (c</u>	·n -	- 1	۱ <u>د</u> .	(O	m_	_										
RELINGUEDING SAL	States S	AMPLE CUSTODY	MUST BE	DOCUMENTE	DIELOW	EACH TIM	E SAN		S CH	1 9	E POS	SES	ion, i	+CL	UDING	COU	RIER D	ELIVER	۲	1		<u>d s</u>
1. HUPON		2/9/06 07:45	1.	Ard D	and	2. 0	Z	رصر	Þ	h	5	4	7/06	10		2	4	al	1			
RELINCUIDED BY:	!	dafe/fime:	ASCEIVED UT	a :		NEL INC	A SHEL	ant.				9 41	TRACE			ECENE	Par:					7
RELINQUISHED BY:		GATE TIME	NECEWED &	N:		HEALT						L	PREM		WHERE		ABLE	-	ON	KE/	TENPERATUR	
5.			Б.												D					i i	3.0 (à

I

,

M54470: Chain of Custody Page 1 of 1

MADEP VPH FORM

Matrix	Aqueous 🖌	Soil	Sediment	Other	\square	
Containers	Satisfactory	Broken	Leaking			
Aqueous Preservatives	N/A 🗍 p	H <= 2 🖌	pH > 2			······································
Temperature	Received on Ice	Receiv	ved at 4 Deq. C	Other	Rec'd at 3	deg C
Methanol	N/A					
Method for Ranges:	MADEP VPH REV 1.1	Client ID:	MW-1	Lab I	D: M54470-1	
Method for Terget Analytes:	MADEP VPH REV 1.1	Dete Collected:	2/7/2008	Date Receive	:d: 2/9/2006	
VPH Surrogate Standards		Date Extracted	f: First Da	ate Run:	Last Date	Run:
PID: 2,5-Dibromotoluene	1	N/A	2/15	/2006	N/A	1
FID: 2,5-Dibromotoluene) ,	% Solids:	Low D)ilution:	High Dilu	ution:
		N/A		1	N/A	
Unadjusted Ranges	<u>CAS #</u>	Elution Rang	<u>le Units</u>	Result	<u>RDL</u>	Q
C5- C8 Aliphatics (Unadj.)		N/A	ug/	ND *	50	
C9- C10 Aromatics (Unadj.)	N/A	'ug/	ND*	50	
C9- C12 Aliphatics (Unadj.))	N/A	ugЛ	ND *	50	
Target Analytes						
Ethylbenzene	1 00-41 -4	4 <u>C9-C12</u>	ugЛ	ND	2	
Toluèné	108-88-3	3 C5-C6	ugЛ	ND	2	
Methyl Tert Butyl Ethar	1634-04-	4 C5-C8	ug/l	ND	2	
Benzene	71-43-2	C5-C8	ugЛ	ND	2	
Naphthálene	91-20-3	N/A	ug/l	ND	3	
o-Xylene	95-47-6	C9-C12	ug/l	ND	2	
m,p-Xylene		C9-C12	ug/l	ND	2	
Adjusted Ranges						
C5- C8 Aliphatics		N/A	ug/l	ND*	50	
C9- C12 Aliphatics		N/A	ug/l	ND °	50	
Surrogate Recoveries					Acceptance Rang	ge
FID:2,5-Dibromotoluene			%	84	70-130 %	
PID:2,5-Dibromotoluene			%	84	70-130 %	

Footnotes

A Hydrocerbon Range data exclude concentrations of any surrogate(s) and/or internal standards cluding in that range

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. CS-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytea eluting in that range. в

Hydrocarbon Range data exclude concentrations: of any surrogate(s) and/or internal standards eluting in that range. C9-C12 aliphatic Hydrocarbons exclude conc of Targat Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons. с

Z A 'J' qualifier indicates an estimated value

Were all QA/QC procedures REQUIRED by the VPH Method followed?

🗹 Yes 🗖 🗹 Yes 🗌

No-Details Attatched No- Details Attatched

No 💭 Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature

Postition Date

Laboratory Director

Printed Name

Reza Tand

Were all performance/acceptance standards for required QA/QC procedures achieved?

Were any significant modifications made to the VPH method, as specified in Sect. 11.3?

2/21/2006

.

3 2

MADEP VPH FORM											
Matrix	Aqueous 🔽	Soil 🗌	Sediment	Other							
Containers	Satisfactory 🖌 🛛 E	Broken	Leaking								
Aqueous Preservatives	<u>N/A</u> p	H<=2 ₹	pH > 2	<u> </u>							
Temperature 4446	Received on Ice	Recei	ved at 4 Deg. C	Other	Rec'd at 3 d	eg C					
Methanol	<u>N/A</u>										
Method for Ranges:	MADEP VPH REV 1.1	Client ID:	MVV-38	Lab II	D: M54470-2						
Method for Terget Analytes:	MADEP VPH REV 1.1	Date Collected:	2///2008	Late Receive	0; 2/9/2008						
VPH Surrogate Standarda		Date Extracted	d: First Da	ite Run:	Last Date	Run:					
PID: 2,5-Dibromotoluene	I	N/A	2/15/	2006	02/16/0	6					
FID: 2,5-Dibromotoluene	I	% Solids:	Low Di	ilution:	High Dilut	ion:					
		180	1	1	10						
Unadjusted Ranges	CAS #	Elution Rang	<u>ae Units</u>	<u>Result</u>	RDL	Q					
C5- C8 Aliphatics (Unadj.)		N/A	ugЛ	7550 ^	500						
C9- C10 Aromatics (Unad).)	N/A	ug/l	2520 *	50						
C9- C12 Aliphatics (Unadj.))	N/A	ug/l	6500 ^	50						
Terget Analytes											
Toluene	108-88-	3 C5-C8	ugЛ	2060	20						
Methyl Tert Butyl Ether	1634-04-	4 C5-C8	ug/l	2320	20						
Ethylbenzene	100-41-4	4 C9-C12	ug/l	676	2						
Benzene	71-43-2	C5-C8	ngv	252	2						
Naphthelane	91-20-3	N/A	ugA	95.4	3						
o-Xylana	95-47-6	C9-C12	ug/l	988	2						
m,p-Xylene		C9-C12	ug/I	1250	2						
Adjusted Ranges											
C5- C8 Aliphatics		N/A	ugЛ	2920 *	50						
C9- C12 Aliphatics		N/A	ug/I	1070 ^{°c}	50						
Surrogate Recoveries				~	Acceptance Rang	e					
PID:2,5-Dibromotoluene			9%b 04	83	70-130 %						
FID:2,5-Dibromotoluene			70	94 85	70-130 %						
PID:2,5-Dibromotoluene			%	66	70-130 %						

Footnotes

A Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

Hydrocarbon Range data.exclude concentrations of any surrogate(s) end/or internal standards eluting in that range. CS-C8 Aliphatic Hydrocarbon's exclude the concentration of Target Analytes eluting in that range. B

С Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C9-C12 eliphatic Hydrocarbons exclude conc of Targal Analytiss eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons.

z A 'J' qualifier indicates an estimated value

Were all QA/QC procedures REQUIRED by the VPH Method followed?

Were all performance/acceptance standards for required QA/QC procedures achieved? Were any significant modifications made to the VPH method, as specified in Sect. 11.3?

🗹 Yes 🗌 🗹 Yeş 🗌 🗹 No

No-Details Attatched No- Details Attatched Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

1 0 Signature

Printed Name

~

Postition Date Laboratory Director

2/21/2006

3.2

Reza Tand

MADEP VPH FORM

Matrix	Aqueous 🔽	Soil	Sediment	Other		
Containers	Satisfactory B	Broken 🗌	Leaking			
Aqueous Preservatives	N/A p	H<=2 ∠	pH > 2			
Temperature	Received on Ice	Receiv	ed at 4 Deq. C	Other	Rec'd at 3	deg C
Methanol	N/A			÷		
Method for Ranges:	MADEP VPH REV 1.1	Client ID: N	MVV-5 5/7/2006	Lab.I	D: M54470-3	
Method for Target Analytes:	MADEP VPH REV 1.1	Date Collected: 4	2/12006	Date Receive	sa: 2/9/2006	
VPH Surrogate Standards		Date Extracted	: First Da	ate Run:	Last Date	Run:
PID: 2,5-Dibromotoluene	1	N/A	2/15	/2008	N/A	
FID: 2,5-Dibromotoluene	1	% Solids:	Low D	Dilution:	High Dill	ition:
		NVA		1	N/A	
Unadjusted Ranges	<u>CAS #</u>	Elution Range	e <u>Units</u>	Result	<u>RDL</u>	Q
C5- C8 Aliphatics (Unadj.)		N/A	ug/l	ND*	50	
C9- C10 Aromatics (Unadj.)	N/A	· ug/l	ND *	50	
C9- C12 Aliphatics (Unadj.)	ł	N/A	ug/l	ND *	50	
Target Analytes						
Ethylbenzene	100-41-4	C9-C12	ug/l	ND	2	
Toluene	108-88-3	C5-C8	ug/l	ND	2	
Methyl Tert Butyl Ether	1634-04-4	4 C5-C8	ug/l	ND	2	
Benzana	71-43-2	C5-C6	µg/l	ND	2	
Naphthalene	91-20-3	N/A	ug/l	ND	3	
o-Xylene	95-47-8	C9-C12	ug/l	ND	2	
m,p-Xylene		C9-C12	ug/l	ND	2	
Adjusted Ranges						
C5-C6 Aliphatics		N/A	ug/l	ND *	50	
C9- C12 Allphatics		N/A	ug/l	ND °	50	
Surrogate Recoveries					Acceptance Ran	ge
FID:2,5-Dibromotoluene			%	76	70-130 %	
PID:2,5-Dibromotoluene			%	76	70-130 %	

Footnotes

A Hydrocarbon Range data exclude concentrations of any surrogale(s) and/or internal standards cluting in that range

B Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards etuding in that range. CS-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes etuding in that range.

C Hydrocarbon Range data exclude concentrations of any surrog Bio(s) and/or internal standards eluting in that range. C9-C12 aliphetic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons.

Z A 'J' qualifier indicates an estimated value

Were all QA/QC procedures REQUIRED by the VPH Method followed?

IVes □ IVes □ INo □

No- Details Attatched No- Details Attatched Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Signature

Postition

Laboratory_Director 2/21/2006

Printed Name

<u>Reza Tand</u>

fred

Were all performance/acceptiance standards for required QA/QC procedures achieved?

Were any significant modifications made to the VPH method, as specified in Sect. 11.3?

Date

Ň

	MA	DEP VPF	FORM			
Matrix	Aqueous 🖌	Soil 🗌	Sediment	Other	7	
Containers	Satisfactory Z E	Broken 🗌	Leaking			
Aqueous Preservatives	N/A 🛛 p	H<=2 🔽	pH > 2			
Temperature	Received on Ice	Receiv	ed at 4 Deg. C	Other	Recidiat 3 d	eg C
Methanol	N/A					
Method for Ranges:	MADEP VPH REV 1.1	Client ID: 1	MW-6	Lab ID:	M54470-4	
Method for Target Analytes:	MADEP VPH REV 1.1	Date Collected: 2	2/7/2006	Date Received:	2/9/2006	
VPH Surrogate Standards		Date Extracted	: First Da	te Run:	Last Date	Run:
PID: 2,5-Dibromotoluene	1	N/A	2/15/	2006	02/16/0	6
FID: 2,5-Dibromotoluene	1	% Solids:	Low Di	lution:	High Dilut	ion:
		N/A	1		1.00	
Unadjusted Ranges	CAS #	Elution Range	e <u>Units</u>	Result	RDL	Q
C5- C6 Aliphatics (Unadj.)		N/A	ug/t	16300*	5000	
C9- C10 Aromatics (Unadj.))	N/A	ug/t	ND ^	50	
C9- C12 Aliphatics (Unadj.)	I	N/A	ug/t	54.2 *	50	
Target Analytes						
Methyl Tert Butyl Ether	1634-04-	4 C5-C6	ug/t	22900	200	
Ethylbenzene	100-41-4	C9-C12	ug/î	ND	2	
Toluene	108-66-3	S C5-C8	ug/l	12.3	2	
Benzane	71-43-2	C5-C8	ug/î	448	2	
Naphthalene	91-20-3	N/A	ug/t	6.7	3	
o-Xylana	95-47-6	C9-C12	ug/t	5.5	2	
m,p-Xylene		C9-C12	ug/l	4	2	
Adjusted Ranges						
C5- C8 Aliphatics		N/A	ug/l	ND	50	
C9- C12 Aliphatics		N/A	ug/t	ND°	50	
Surrogate Recoveries				A	cceptance Rang	ė
FID:2,5-Dibromotoluene			%	79	70-130 %	
PID:2,5-Dibromotoluene			%	81	70-130 %	
FID:2,5-Dibromotoluene			%	66	70-130 %	
PID:2.5-Dibromotoluena			%	86	70-130 %	

Footnotes

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or infernal standards eluting in the range ٨

в

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in the range. C3-C8 Aliphatic, Hydrocarbons exclude the concentration of Target Analytes eluting in that range. Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in the range. C3-C8 Aliphatic, Hydrocarbons exclude the concentration of Target Analytes eluting in that range. с

A U qualifier indicates an estimated value z

Were all QA/QC procedures REQUIRED by the VPH Method followed? Were all performence/acceptance standards for required QA/QC procedures achieved? Were any significant modifications made to the VPH method, as specified in Sect. 11.3?

✓ Yes	No- Det
🗹 Yes	No- Det
🖌 No	Yes- De

tails Attatched tails Attatched

tails Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and ballef, accurate and complete.

fred 2-Signature .

Printed Name

. . . Reza Tand Postition Date Laboratory Director 2/21/2006

e-Hardcopy 2.0 Automated Report

Corporate Environmental Advisors Sunoco, 88 South Maple St., Westfield MA

5795-05

Accutest Job Number: M54984

Sampling Date: 03/06/06

Technical Report for

Report to:

Corporate Environmental Advisors, Inc. 127 Hartwell Street West Boylston, MA 01583 dazukauskas@cea-inc.com

ATTN: Debbie Zukauskas

Total number of pages in report: 8

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

to al Reza Fand

Lab Director

Certifications: MA (M-MA136) CT (PH-0109) NH (250204) RI (00071) ME (MA136) FL (E87579) NY (23346) NJ (MA926) NAVY USACE This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

New England + 495 Tech Center West + Bullifung 1 + Marlborough, MA 01752 + tel: 508-481-6200 + fax: 508-481-7753 + http://www.accutest.com

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: M54984-1: MW-3B	5
Section 3: Misc. Forms	6
3.1: Chain of Custody	7
3.2: VPH Form	8

Sample Summary

Corporate Environmental Advisors

Job No: M54984

Sunoco, 88 South Maple St., Westfield MA Project No: 5795-05

Sample Number	Collecter Date	Time By	Received	Matr Code	іх - Туре	Client Sample ID
M54984-1	03/06/06	12:45 BF	03/07/06	AQ	Ground Water	MW-3B

Sample Results

Report of Analysis

Report of Analysis						Page 1 of 1	
Client Sam Lab Samp Matrix: Method: Project:	ple ID: MW-3B le ID: M54984-1 AQ - Ground Water MADEP VPH REV Sunoco, 88 South Ma	1.1 aple St., Westi	field MA	Date Sampled Date Received Percent Solid	l: 03/06/06 l: 03/07/06 s: n/a		
Run #1 Run #2	File ID DF BD4187.D 1	Analyzed 1 03/13/06	By Af	Prep Date n/a	Prep Batch n/a	Analytical Batch GBD180	
Run #1 Run #2	Purge Volume 5.0 ml						
MA-VPH	List						
CAS No.	Compound	Result	RL	Units Q			
71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-47-6	Benzene Ethylbenzene Methyl Tert Butyl Ether Naphthalene Toluene m, p-Xylene o-Xylene C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	77.2 585 637 103 536 734 432 3350 4880 2650 2100 478	2.0 2.0 3.0 2.0 2.0 2.0 2.0 50 50 50 50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits			
615-59-8	2.5-Dibromotoluene	93%		70-130%			

ND = Not detected

615-59-8

RL = Reporting Limit

E = Indicates value exceeds calibration range

2, 5-Dibromotoluene

97%

 \dot{J} = Indicates an estimated value

70-130%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2.1

N

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

-

Chain of CustodyVPH Form

·. -

	CHAIN OF CUSTOD 495 TECTINOLOGY CENTER WIGT * BULLING MARI AGROCUCH, MA 01752 TEL: 508-481-6720 * KAX: 506-481-7753	NE ACCOUNT AND MS4984
Client / Reporting Information	Project information	Requested Analysis Matrix Codes
Севралу Илле	Project Name;	Dev Denne Varer
Aldress	Sunoco vvestneto	COPP- Growed Vision and
127 Hartwel Street	88-90 South Manle Street	
City Stata Zip	Cety Stata	Bộ lind 🤤
West Boyfston MA 1583	Westfield MA	
Project Contact E-mail	Project #	LID Olive Made
Mr. Scott VanderSea <u>SVanderSea@Cea-Inc.com</u>	5795-05	
508-835-8822	508-635-6812 Cleat Purchasa Order #	
Accusest 5, 1 Flood	Collection Number of preserved Bottles	BOL-Ober Steld WP-Mpr
Sample # Field 1D / Point of SUMMA # Date	Time Sampled by Matrix bottom P 2 5 5 5 2 2 2	E. LAB USE ORLY
- MW-38 3-6	R:458:11FGW 2 X	
B.F. 3.6-06		
Turnscord Time (Bueness days)		Commenta / Renarts
10 Day ALCOY 0 Day	Commercial "B" Commercial "B" Diek Delivorable () Stats Forme () Stats Forme () Othur	Krusil lab reports to: SvanderSca@cus-inc.com and Phrown@cos-inc.com
Emergency T/A data available VIA Labiink	<u> </u>	
A starting and a starting a starting a constraint of design and the design and th	and balow acch time samples charge possibility of the country of 26 (545) 1 Month Jon Clark Martin Br. 26 (545) 1 Month Jon Clark Martin Br. 26 (545) 1 Month Jone Clark Martin Br. 26 (545) 1 Month Martin Br. 27 (545) 1 Month Martin Br. 28 (545) 1 Month Martin Br. 28 (545) 1 Month Martin Br. 29 (545) 1 Month Martin Br. 20 (545) 1 Month Martin Br.	erner 3/7/06 1620 2 Maan M Jon Bener
Residund by Dury Tese.	Praceinval By Cushing Kag E	Presarrego where gassional Onice Code Trap B 3./ C

M54984: Chain of Custody Page 1 of 1

MADEP VPH FORM							
Matrix 2	Aqueous 🖌 😒	Soil 📋	Sediment	Other	Π		
Containers	Satisfactory Br	oken 🗌	Leaking				
Aqueous Preservatives	N/A 🗍 p.H	<= 2 🖌	pH > 2				
Temperature Course	Received on Ice	Receive	ed at 4 Deg. C	Other	Rec'd at 3.	1 deg C	
Methanol	N/A						
Method for Ranges:	MADEP VPH REV 1.1	Client ID: N	IW-3B	Lab IC); M54984-1		
Method for Target Analytes:	MADEP VPH REV 1.1	ate Collected: 3	/6/2006	Date Receive	1: 3/7/2006		
VPH Surrogate Standards		Date Extracted:	First Da	te Run:	Lest Date	Run:	
PID: 2,5-Dibromotoluena		N/A	3/13/	2006	N/A		
FID: 2,5-Dibromotoluene		% Solids:	Low Di	lution:	High Dilu	ition:	
		N/A	1	l .	N/A	i	
Unadjusted Ranges	CAS #	Elution Range	<u>Units</u>	Result	RDL	Q	
C5- C6 Aliphatics (Unadj.)		N/A	ug/l	3350 *	50		
C9- C10 Aromatics (Unadj.)	1	N/A	ug/l	2650*	50		
C9- C12 Aliphatics (Unadj.)		N/A	ug/l	4680 *	50		
Target Analytes							
Ethylbenzene	100-41-4	C9-C12	ug/l	585	2		
Toluene	108-88-3	C5-C8	ug/l	538	2		
Methyl Tert Butyl Ether	163 4 -0 4-4	C5-C8	ug/l	637	2		
Benzane	71-43-2	C5-C6	ug/l	77.2	2		
Naphthalene	91-20-3	N/A	ug/l	103	3		
o-Xylene	95-4 7-8	C9-C12	ug/l	432	2		
m,p-Xylena		C9-C12	ug/l	734	2		
Adjusted Ranges							
C5-C8 Aliphatics		N/A	ug/l	2100*	50		
C9- C12 Aliphatics		N/A	ug/l	476 ^c	50		
Surrogate Recoveries					Acceptance Ran	<u>ae</u>	
FID:2,5-Dibromotoluene			%	93	70-130 %		
PID:2,5-Dibromotoluane			%	97	70-130 %		

Footnotes

A Hydrocarbon Range data exclude concantrations of any surrogate(s) and/or internal standards eluting in that range

B Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range.

C Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards sluting in that range. C9-C12 aliphatic Hydrocarbons exclude conc of Tanget Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons.

Z A 'J'qualifier indicates an estimated value

Were all QA/QC procedures REQUIRED by the VPH Method followed? Were all performance/acceptance standards for required QA/QC procedures achieved? Were any significant modifications made to the VPH method, as specifiad in Sect. 11.3?

⊉ Yes	No- E
Yes	No- E
∠ No	Yes-

No- Details Attatched No- Details Attatched

Yes-Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate end complete.

4 7 Signature 2

Printed Name Re

2

Postition Date Laboratory Director

Reza Tand

<u>3/15/2006</u>

APPENDIX F

Soil Analytical Report

e-Hardcopy 2.0 Automated Report

04/30/05

Technical Report for

Corporate Environmental Advisors

Sunoco, 88 South Maple St., Westfield MA

5795-05-001

Accutest Job Number: M46536

Sampling Date: 04/14/05

Report to:

Corporate Environmental Advisors, Inc. 127 Hartwell Street West Boylston, MA 01583 dazukauskas@cea-inc.com

ATTN: Debbie Zukauskas

Total number of pages in report: 13

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

tool Reza Fand

Lab Director

Certifications: MA (M-MA136) CT (PH-0109) NH (250204) RI (00071) ME (MA136) FL (E87579) NY (23346) NJ (MA926) NAVY USACE This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Sections:

-

N

ېپ

Table of Contents

-1-

Section 1: Sample Summary 3 Section 2: Sample Results 4 2.1: M46536-1: SAMPLE 1 4 2.2: M46536-2: SAMPLE 2 4 2.3: M46536-3: SAMPLE 3 6 2.4: M46536-4: SAMPLE 4 6 Section 3: Misc. Forms 6 3.1: Chain of Custody 6	3 4 5 6 7 8 9
3.1: Chain of Custody	9 10

Sample Summary

Corporate Environmental Advisors

Job No: M46536

Sunoco, 88 South Maple St., Westfield MA Project No: 5795-05-001

Sample Number	Collected Date	Time By	Received	Matri Code	іх Туре	Client Sample ID
M46536-1	04/14/05	17:00 PB	04/15/05	SO	Soil	SAMPLE I
M46536-2	804/14/05	17:05 PB	04/15/05	SO	Soil	SAMPLE 2
M46536-3	ê 04/14/05	17:15 PB	04/15/05	SO	Soil	SAMPLE 3
M46536-4	a 04/14/05	17:30 PB	04/15/05	SO	Soil	SAMPLE 4

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

-

Report of Analysis

21

N

Client Sar Lab Sam	mple ID: S ple ID: 1	SAMPL M46536	.E 1 5-1				Date Sampled	: 04/14/05	
Matrix: Method: Project:	1	MADEl Sunoco,	P VPH R 88 South	EV 1.1 1 Maple	St., We	estfield MA	Date Received Percent Solids	: 04/15/05 : n/a ^a	
Run #1 ^b Run #2	File ID QR31733	.D	DF 1	Ana 04/2	lyzed 25/05	By AP	Prep Date n/a	Prep Batch n/a	Analytical Batch GQR1622
Run #1	Initial W 33.8 g	eight	Final V 16.0 ml	olume	Meth 100 1	hanol Aliq ı ul	uot		

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	120	ug/kg
100-41-4	Ethylbenzene	124	120	ug/kg
1634-04-4	Methyl Tert Butyl Ether	3790	47	ug/kg
91-20-3	Naphthalene	NI)	120	ug/kg
108-88-3	Toluene	639	120	ug/kg
	m, p-Xylene	33(5)	120	ug/kg
95-47-6	o-Xylene	148	120	ug/kg
	C5-C8 Aliphatics (Unadj.)	9410	2400	ug/kg
	C9- C12 Aliphatics (Unadj.)	3520	2400	ug/kg
	C9- C10 Aromatics (Unadj.)	ND	2400	ug/kg
	C5- C8 Aliphatics	4900	2400	ug/kg
	C9- C12 Aliphatics	ND	2400	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2, 5-Dibromotoluene	100%		70-130%
615-59-8	2, 5-Dibromotoluene	99%		70-130%

(a) Percent solids not analyzed due to sample matrix. Results reported on wet weight basis.(b) Soil to methanol ratio greater than 1.25 to 1.

ND = Not detected

•

RL = Reporting Limit

E = Indicates value exceeds calibration range

,

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

2.2

N

Client San Lab Samp Matrix: Method: Project:	nple ID: le ID:	SAMPI M46530 SO - So MADE Sunoco,	LE 2 5-2 vil P VPH RE , 88 South	V 1.1 Maple	St., Wes	stfield MA	Date S Date F Percer	Sampled Received at Solids	: 04/14/05 : 04/15/05 : n/a ^a	
Run #1 ^b Run #2	File ID QR317	34.D	DF 1	An: 04/	alyzed 25/05	By AP	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GQR1622
Run #1 Run #2	Initial 35.1 g	Weight	Final Vo 16.0 ml	lume	Meth 100 u	anol Aliq i	uot			
MA-VPH	List									
CAS No.	Comp	ound			Result	RL	Units	Q		

71-43-2	Benzene	ND	110	ug/kg
100-41-4	Ethylbenzene	300	110	ug/kg
1634-04-4	Methyl Tert Butyl Ether	2890	46	ug/kg
91-20-3	Naphthalene	ND	110	ug/kg
108-88-3	Toluene	902	110	ug/kg
	m, p-Xylene	1080	110	ug/kg
95-47-6	o-Xylene	549	110	ug/kg
	C5- C8 Aliphatics (Unadj.)	13600	2300	ug/kg
	C9- C12 Aliphatics (Unadj.)	14600	2300	ug/kg
	C9- C10 Aromatics (Unadj.)	8410	2300	ug/kg
	C5- C8 Aliphatics	9690	2300	ug/kg
	C9- C12 Aliphatics	4280	2300	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2, 5-Dibromotoluene	98%		70-130%
615-59-8	2,5-Dibromotoluene	98%		70-130%

(a) Percent solids not analyzed due to sample matrix. Results reported on wet weight basis.

(b) Soil to methanol ratio greater than 1.25 to 1.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page	1	of	1	

Client San Lab Samp Matrix: Method: Project:	nple ID: SAMPI Sole ID: M46530 SO - So MADE Sunoco	LE 3 5-3 51 P VPH RE , 88 South 1	V 1.1 Maple St., W	estfield M	Date Sample Date Receive Percent Solie	ed: 04/14/05 ed: 04/15/05 dis: n/a ^a	
Run #1 ^b Run #2 ^b	File ID QR31735.D QR31775.D	DF Analyze 5.D 1 04/25/05 5.D 1 04/27/05		By AP AP	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GQR1622 GQR1624
Run #1 Run #2	Initial Weight 38.9 g 38.9 g	Final Vo 16.0 ml 16.0 ml	lume Met 10.0 2.0 u	hanol Alio ul 1	quot		

MA-VPH List

CAS No.	Compound	Result	RL	Units	Q
71-43-2	Benzene	28600	0001	ug/kg	
100-41-4	Ethylbenzene	124000	1000	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	205000	410	ug/kg	
91-20-3	Naphthalene	19900	1000	ug/kg	
108-88-3	Toluene	545000 °	5100	ug/kg	
	m.p-Xylene	295000	1000	ug/kg	
95-47-6	o-Xylene	136000	1000	ug/kg	
	C5- C8 Aliphatics (Unadi.)	4190000 C	100000	ug/kg	
	C9- C12 Aliphatics (Unadi.)	2900000	21000	ug/kg	
	C9- C10 Aromatics (Unadj.)	1040000	21000	ug/kg	
	C5- C8 Aliphatics	3410000	21000	ug/kg	
	C9- C12 Aliphatics	1300000	21000	ug/kg	
CAS No.	Surrogate Recoveries	Ruo# 1	Run# 2	Limi	ts
615-59-8	2,5-Dibromotoluene	118%	250% d	70-13	30%
615-59-8	2.5-Dibromotoluene	113%	344% d	70-13	30%

(a) Percent solids not analyzed due to sample matrix. Results reported on wet weight basis.

(b) Soil to methanol ratio greater than 1.25 to 1.

(c) Result is from Run# 2

(d) Outside control limits due to dilution.

ND = Not detected

RL = Reporting Limit

.

.

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2.3

N

Report of Analysis

Page 1 of 1

2.4

N

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: SAMPI e ID: M46530 SO - So MADE Sunoco	.E 4 5-4 51 P VPH REV , 88 South M	/ 1.1 Maple St., We	estfield MA	Date Sampled Date Received Percent Solid	l: 04/14/05 d: 04/15/05 s: n/a ^a	
Run #1 ^b Run #2	File ID QR31736.D	DF 1	Analyzed 04/25/05	By AP	Prep Date n/a	Prep Batch n/a	Analytical Batch GQR1622
Run #1 Run #2	Initial Weight 37.8 g	Final Vol 16.0 ml	ume Meth 100 u	anol Aliqu	ot		
MA-VPH I	List						
CAS No.	Compound		Result	RL	Units Q		
71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-47-6	Benzene Ethylbenzene Methyl Tert Bu Naphthalene Toluene m,p-Xylene o-Xylene C5- C8 Alipha C9- C12 Alipha C9- C10 Arom C5- C8 Alipha	ityl Ether tics (Unadj.) atics (Unadj atics (Unadj tics	ND 622 ND 381 273 117 5620 .) 4610 .) ND 4580	110 110 42 110 110 110 110 2100 2100 210	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg		
	C9- C12 Aliph	atics	2370	2100	ug/kg		

CAS No.Surrogate RecoveriesRun# 1Run# 2Limits615-59-82,5-Dibromotoluene104%70-130%615-59-82,5-Dibromotoluene94%70-130%

(a) Percent solids not analyzed due to sample matrix. Results reported on wet weight basis.

(b) Soil to methanol ratio greater than 1.25 to 1.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of CustodyVPH Form

	CUTEST.	CH	TEL: S		F NTER ROUGH DD • F	CU MEST	JS 01750	1-772	O NG C		Y		COUT	ERT JO	DB #:	M46 *	53,	6	Hasaware colored		
CEA HAAVE ADDAESS	DAWEIIST			pluSt., 95-0	W23	101	:ld,	, M]										MATHIA CODES DW - ORDOUNG WATER GW - OROGOD WATER WW - WASTE WATER SO - BOL SL - SOL SL - SOL SL - BOL OL - DR		3.1
SEND REPORT V PHONE	5011 Under (201835-8822	FAX #	LLECTION	3356	381 1 #	2	PRE	SER	ATTC	م ا									BOL-OTHER SOL-OTHER		
SAMPLE /	FIELD ID / POINT OF COLLECTION	DATE	TIME	SAMPLED		° E	Ŧ			3									LAB USE ONLY]	
-1	_Somple 1	OHINIOS	5:00	PB	\mathcal{S}			Π		XX							ŀ				1
-2	Samplez	04/14/05	5:05	PB	3	T				XIX											
-3	Sample 3	CHINIDS	5:15	PB	3	1				XX											
	Jample 4	04/14/05	530	PВ	3	1		Ш		ЦХ											
	Trip Blook EP	04/4/05				1		Ц		XIX											
							1		\square	Ľ	Ц										
	·····							\square	\bot												
\vdash	-							\square	\square			-	_	1							
						_	4	\square	\square	╇	\square	-	\perp		<u> </u>						
						4		\square	11	4		\rightarrow	_ I.	1-							
															1						
D	ATA TURNAROUND INFORMATION		DATA DEL	VERABLE	INFO	RĽAŤ	XON			5 (S)				CD	MNEN	TS/REM	ARICS				
6 14 OAYS 7 DAYS 48 HOUR OTKER	STANDARD APPROVED BY: RUSH EMERGENCY	AS STAND	ARD ERCIAL "B ELIVERAS	- 1.E						-	Lo	c.l	<u>B4</u>								
14 DAY TURNAL DATA UNLESS	ROUND HARDCOPY. EMERGENCY OR RUSH IS FAX		(SPECIFY						-	_											
	SAMPLE CUSTODY MUST BE	DOCUMENTE	D BELOW	EACH TIM	E SAN	PLES	CHA	NĢĒ	POS	SESIOI	I, INCL	ĻDI	ia co	URBER	I DEL	WEAY					
1. Catro F	Dun 04/058:00 1.5/	ha All	to	2		a	A	U	ę	4/15	105	مر:	ALCEN		1	int	He	_			
ALINGUISHED I	BATE TAKE: 10:10 3	H	1.	RELING	UCHIED				\neg	DATE TH		_	MECÈN	Teo pre	V	/		_			
RELINGUISHOO IT	IV: DATE MAR: RECEIVED	net fl	-	-							1. Carloria		E APPL	JCÅBL I	2	-	- <u>5</u> 1.		TEMPERATURE		
-	b								_			E	,				<u>^</u>		<u>/ </u>		

a da anti-

M46536: Chain of Custody Page 1 of 1

	MA	DEP	VPH	FORM					
Matrix	Aqueous	Soil		Sediment		Other			
Containers 🙀 🖉	Satisfactory 🗹	Broken	<u> </u>	Leaking					
Aqueous Preservatives	N/A 🔽	pH <= 2		pH > 2					
Temperature 2000	Received on Ice]	Received	at 4 Deg. C		Other		Rec'd at 1.7	/ deg C
Methanol	Methanol Covering	Soil. (m	L Methan	ol/g soil: Oth	ier) N	OTE: R	atio >	1.25 to 1	·
Method for Ranges:	MADEP VPH REV 1.1	Cli	ent ID: SAI		_	Lab	ID: M4	6536-1	
Method for Target Analytes:	MADEP VPH REV 1.1	Date Coll	ected: 4/14	1/2005	Da	a Receiv	ed: 4/1	5/2005	
VPH Surrogate Standards		Date E	xtracted:	First Da	ste Run:	r		Last Date	Run:
PID: 2,5-Dibromotoluene		M	UA .	4/25	/2005			N/A	
FID: 2,5-Dibromotoluene		* 5		Low D	lution:			High Dilu	tion:
		I	00		1			N/A	
Unadjusted Ranges	CAS #	Elutio	n Renge	<u>Units</u>		Result		<u>RDL</u>	9
C5- C8 Aliphetics (Unadj.)			N/A	uġ/kg		9410*		2400	
C9- C10 Aromatics (Unadj.))		N/A	ug/kg		ND*		2400	
C9- C12 Aliphatics (Unadj.)			N/A	ug/kg		3520*		2400	
Target Analytes									
Ethylbenzene	100-41-	4 Ci	9-C12	ug/kg		124		120	
Toluene	108-88-	-3 C	5-C8	ug/kg		639		120	
Methyl Tert Butyl Ether	1634-04	-4 C	5-C8	ug/kg		3790		47	
Benzene	71-43-2	2 Ç	5-C8	ug/kg		ND		120	
Naphthalene	91-20-3	3	N/A	ug/kg		ND		120	
o-Xylene	95-47-1	6 C(9-C12	ug/kg		148		120	
m,p-Xylene		Ci	-C12	ug/kg		338		120	
Adjusted Ranges									
C5- C8 Aliphatics			N/A	ug/kg		4900 "		2400	
C9- C12 Allphatics			N/A	ug/kg		ND°		2400	
Surrogate Recoveries							Accer	stance Reng	<u>10</u>
FID:2,5-Dibromotoluene				%		100		70-130 %	
PID:2,5-Dibromotoluene				%		99		70-130 %	

Footnotes

Hydrocarbon Range data exclude concentrations of any surrogete(s) and/or internal standards sluting in that range A

Hydrocarbon reinge that exclude concentrations of any surrogeness makes internal standards entiting in that range. CS-CS Alphatic Hydrocarbons exclude the concentration of Target Analytas shring in the range. a

Hydrocarbon Range data exclude concentrations of any surrogata(s) and/or internal standarde eluting in that range. C9-C12 aliphatic Hydrocarbons exclude conc of Target Analytas eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons. lc

A'J' qualifier indicates an estimated value

Were ell QA/QC procedures REQUIRED by the VPH Method followed?
Were all performance/ecceptence standerds for required QA/QC procedures echleved?
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?
fotost under the polen and possibles of posture that have due to under under all these loss

⊻Yes □ No- Details Attatched Yes 🗋 No- Details Attatched

🗹 No 🗆 Yes- Details Attatched

I attest under the peins and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

R -Signature 7

Postition

Laboratory Director

4/29/2005

Printed Name

Reza Tand

Date

3.2

Matrix	Aqueous	Soil	V Se	diment	Other		
Containers	Satisfactory	Broken		eaking			
Aqueous Preservatives	N/A 🔽	pH <= 2	F	oH>2 [
Temperature	Received on Ice] R	eceived at 4	Deg. C	Other	Rec'd at 1	.7 deg C
Methanol	Methanol Covering	Soil. (mL	Methanol/g	soil: Othe	r) NOTE: Ra	<u>atio > 1.25 to </u>	1
Method for Ranges:	MADEP VPH REV 1.1	Clie	nt ID: SAMPLE	2	Labi	D: M46538-2	
Method for Target Analytes:	MADEP VPH REV 1.1	Dats Colle	cted: 4/14/200	5	Date Receive	ed: 4/15/2005	
VPH Surrogate Standards		Date Ext	tracted:	First Date	e Run:	Last Dat	te Run:
PID: 2,5-Dibromotoluene		N/	A	4/25/2	005	N/	A
FID: 2,5-Dibromotoluene		% So	lids:	Low Dil	ution:	High Di	lution:
		10	10	1		N/	A
Unadjusted Ranges	CAS	Elution	n Range U	<u>Jnita</u>	<u>Result</u>	RDL	g
C5- C6 Aliphatics (Unadj.)		N	I/A u	ıg/kg	13600 *	2300	
C9- C10 Aromatics (Unadj.)		N	l/A u	ıg/kg	8410 *	2300	
C9- C12 Aliphatics (Unadj.)		N	I/A u	ig/kg	14600 *	2300	
Target Analytes						·	
Ethylbenzene	100-41	-4 C9	-C12 u	ig/kg	300	110	
Тошеле	108-88	-3 C5	-C8 U	ig/kg	902	110	
Methyl Tert Butyl Ether	1634-04	4-4 C5	-C8 U	ig/kg	2890	46	
Benzene	71-43-	2 C5	-C8 u	ıg/kg	ND	110	
Naphthalene	91-20-	-3 N	I/A u	ıg/kg	ND	110	
o-Xylene	95-47-	6 C9	-Č12 u	ıg/kg	549	110	
m,p-Xylene		C9	-C12 U	ıg/k g	1080	110	
Adjusted Ranges							
C5- C8 Aliphatics		N	I/A u	ıg/kg	9690 *	2300	
C9- C12 Aliphatics		N	I/A u	ıg/kg	4280 °	2300	
Surrogate Recoveries						Acceptance Ra	nge
FID:2,5-Dibromotoluene				%	98	70-130 %	i -
PID:2,5-Dibromotoluene				%	98	70-130 %	
Footnotes							

Hydrocarbon Range data exclude concentrations of any exprogate(a) and/or internal standards eluting in that range A 8

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards sluting in that range. CS-C8 Alighetic Hydrocarbons exclude the concentration of Target Analytes sluting in thet range.

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C9-C12 allphatic Hydrocarbons exclude conc of Target Analytes shating in that range AND concentration of C9-C19 Aromatic Hydrocarbons.

A 'J' qualifier indicates an estimated value

C

z

Were all QA/QC procedures REQUIRED by the VPH Method followed?
Were all performance/acceptance stendards for required QA/QC procedures achieved?
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?

√ Yes	No
√ Yes	No
Mo No	Ye

- Details Attatched - Details Attatched Yes- Details Attatched

I atteat under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material conteined in this report is, to the best of my knowledge and belief, accurate and complete.

ford L 0 Signature 🧹

Printed Name

Reza Tand

Postition

Date

Laboratory Director

4/29/2005

3.2

THE REPORT OF A DESCRIPTION OF A DESCRIP						
Matrix	Aqueous	Soll 🔽	Sediment	Other		
Containers	Satisfactory	Broken	Leaking			
Aqueous Preservatives	N/A 🗸	pH <= 2	<u>pH > 2</u>			
Temperature	Received on Ice	Receive	ad at 4 Deg. C	Other	Rec'd at 1.7	deg C
Methanol	Methanol Covering	Soil. (mL Metha	nol/g soil: Ot	her NOTE: Ra	<u>atio > 1.25 to 1,</u>	
Method for Ranges:	MADEP VPH REV 1.1	Client ID: S	AMPLE 3	Lab I	D: M46536-3	
Method for Target Analytes:	MADEP VPH REV 1.1	Date Conected; 4/	14/2003	Date Receive	30: 4/15/2005	
VPH Surrogate Standarda		Date Extracted:	First D	ate Run:	Last Date F	Run:
PID: 2,5-Dibromotoluei	18	N/A	4/2	5/2005	04/27/0	5
FID: 2,5-Dibromotoluer	1e	% Solids:	Low I	Dilution:	High Dilut	lo n:
		100		1	N/A	
Unadjusted Ranges	CAS #	Elution Renge	<u>Units</u>	Result	RDL	g
C5- C8 Aliphatics (Unadj.)	N/A	ug/kg	4190000 *	100000	
C9- C10 Aromatics (Unad	ij.)	N/A	ug/kg	1040000 *	21000	
C9- C12 Aliphatics (Unad	l.)	N/A	ug/kg	2900000 *	21000	
Target Analytes						
Toluene	106-88-	-3 C5-C8	ug/kg	545000	5100	
Ethylbenzene	100-41-	4 C9-C12	ug/kg	124000	1000	
Methyl Tert Butyl Ether	1634-04	-4 C5-C8	ug/kg	205000	410	
Benzene	71-43-3	2 C5-C8	ug/kg	26600	1000	
Naphthalene	81-20-3	3 N/A	ug/kg	19900	1000	
o-Xylene	95-47-4	6 C9-C12	ug/kg	136000	1000	
m,p-Xylene		C9-C12	ug/kg	295000	1.000	
Adjusted Ranges						
C5- C8 Aliphetics		N/A	ug/kg	3410000	21000	
C9- C12 Aliphatics		N/A	ug/kg	1300000 °	21000	
Surrogate Recoverles					Acceptance Renge	<u>b</u>
FID:2,5-Dibromotoluene			%	250 °	70-130 %	
PID:2,5-Dibromotoluene			%	344 ^D	70-130 %	
FID:2,5-Dibromotoluene			%	118	70-130 %	
PID:2,5-Dibromotoluene			%	113	70-130 %	

Footnotes

Hydrocarbon Range data exclude concentrations of any surrogete(s) and/or internal standards eluting in that range

Hydrocerbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C5-C8 Allphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range. в

Hydrocarbon Range data activitie concentration of any surrogata(s) and/or internal standards eluting in that range. C9-C12 sliphetic Hydrocarbons exclude conc of Tergiet Analytee eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons. c

Þ Outaida control limits due to dilution.

Printed Name

z A 'J' qualifier indicates an estimated value

Were ell QA/QC procedures REQUIRED by the VPH Method followed?

Were ell performance/acceptance standards for required QA/QC procedures achieved?

⊻Yes □ No- Details Attatched 🗆 Yee 🗹 **√**No □

No- Details Attatched Yes- Details Attatched

Were any significant modifications mede to the VPH method, as specified in Sect. 11.3?

Reza Tand

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report le, to the best of my knowledge and ballef, accurate and complete.

m 2 Ľ Signature 🍃

Postition

Laboratory Director 4/29/2005

ω 2

ώ

Date

Strik Aqueous Soll Sediment Other intainers Satisfactory Broken	MADEP VPH FORM									
Ontainers Satisfactory iz Broken Leaking Queous Preservatives N/A in pH <= 2 pH > 2 in pH > 2 eithanol Methanol Covering Soil. (mL Methanol/g soil: Other) NOTE: Ratio > 1.25 to 1. client 10: SAMPLE 4 Lab ID: M465364 eithod for Ranges: MADEP VPH REV 1.1 MADEP VPH REV 1.1 Client ID: SAMPLE 4 Lab ID: M465364 PH surrogate Standards MADEP VPH REV 1.1 MADEP VPH REV 1.1 Date Scale celved 4.1472005 Date Received 4.1472005 PH surrogate Standards 2.5-Dibromotoluene V/A 4/25/2005 N/A PID: 2.5-Dibromotoluene V/A 4/25/2005 N/A radjusted Ranges CAS # Elution Range Units Result RDL 9 c5- C8 Aliphatics (Unadj.) N/A ug/kg 5620 ⁴ 2100 10 c6- C12 Aliphatics (Unadj.) N/A ug/kg 3851 110 roduene 100-41-4 C9-C12 ug/kg 3851 110 roduene 100-41-4 C9-C12 ug/kg 110 10 roduene 100-41-4 C9-C12 ug/kg <td< th=""><th>Matrix</th><th>Aqueous</th><th>Soil 🗸</th><th>Sediment</th><th>Other</th><th></th><th></th></td<>	Matrix	Aqueous	Soil 🗸	Sediment	Other					
Difference N/A ✓ pH < 2	Containers	Satisfactory	Broken	Leaking						
Perceived at 4 Deg. C Other Other <th< td=""><td>Aqueous Preservatives</td><td><u>Ń/A 🗹 </u>r</td><td>oH <= 2 □</td><td>pH > 2</td><td></td><td></td><td></td></th<>	Aqueous Preservatives	<u>Ń/A 🗹 </u> r	oH <= 2 □	pH > 2						
Impact Accesses I Methanol Covering Soll, (mL Methanol/g soll: Other I NOTE: Ratio > 1.25 to 1. ethod for Ranges: MADEP VPH REV 1.1 Clientito: SAMPLE 4 Lab lb: MA658344 brob for Target Analytes: MADEP VPH REV 1.1 Date Collected: 4/14/2005 Date Received: 4/15/2005 PID: 2.5-Dibromotoluene NA 4/25/2005 N/A PID: 2.5-Dibromotoluene NA 4/25/2005 N/A nadlusted Rances CAS.# Elution Range Units Result RDL Q CS- C8 Aliphatics (Unadj.) N/A ug/kg 5620 ⁴ 2100 V/A C6- C12 Aliphatics (Unadj.) N/A ug/kg ND 110 V/A Toluene 108-88-3 CS-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1934-04-4 CS-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 Aug/kg CS-C8 ug/kg ND 110 0 Aug/kg 91-20-3	Temperature	Received on Ice	Receive	ed at 4 Deg. C	Other	Rec'd at 1.7 de	g C			
ethod for Ranges: MADEP VPH REV 1.1 Last Dir Mr8030-4 Pt Surrogats Standards MADEP VPH REV 1.1 Date Collected: 4/14/2005 Date Received: 4/15/2005 PD: 2,5-Dibromotoluene N/A 4/25/2005 N/A FID: 2,5-Dibromotoluene N/A 4/25/2005 N/A nadiusted Ranges CAS.# Elution Range Umits Result RDL Q C5-C8 Aliphatics (Unadj.) N/A ug/kg 5620.4 2100 C9-C10 Anomatics (Unadj.) N/A ug/kg ND 110 C9-C12 Aliphatics (Unadj.) N/A ug/kg 381 110 reat Analytes 100-41-4 C9-C12 ug/kg ND 110 reat Analytes 100-41-4 C9-C12 ug/kg ND 110 reat Analytes 100-41-4 C9-C12 ug/kg ND 110 reat Analytes 100-41-4 C9-C12 ug/kg 110 110 reat Analytes <t< td=""><td>Methanol</td><td>Methanol Covering</td><td>Soil. (mL Metha</td><td>anol/g soil: Oth</td><td><u>ner]_NOTE: Rat</u></td><td>tio > 1.25 to 1.</td><td></td></t<>	Methanol	Methanol Covering	Soil. (mL Metha	anol/g soil: Oth	<u>ner]_NOTE: Rat</u>	tio > 1.25 to 1.				
ethod for Target Analytes: MADEP VPH REV 1.1 PH Surrogate Standards PH Surrogate Standards FID: 2,5-Dibromotoluene FID: 2,5-Dibromotoluene FID: 2,5-Dibromotoluene FID: 2,5-Dibromotoluene FID: 2,5-Dibromotoluene FID: 2,5-Dibromotoluene CS- C8 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C9- C10 Aromatics (Unadj.) C9- C12 Aliphatics (Unadj.) N/A Units Ethylbenzene 100-41-4 C9- C12 Units Ethylbenzene 100-41-4 C9- C12 Units Ethylbenzene Ethyl	Method for Ranges:	MADEP VPH REV 1.1	Date Collected: 4	AMPLE 4 /14/2005	Lab IL	J: M40030-4				
PH Surrogate Standards Date Extracted: N/A First State Run: 4/25/2005 Lest Date Run: N/A FID: 2,5-Dibromotoluene N/A 4/25/2005 N/A FID: 2,5-Dibromotoluene N/A 4/25/2005 N/A nadiuated Ranges CAS # Elution Range Low Dilution: N/A N/A nadiuated Ranges CAS # Elution Range Units Result RDL Q C5-C8 Aliphatics (Unadj.) N/A ug/kg 5620 ^ 2100 C6-C10 Aromatics (Unadj.) N/A ug/kg A610 ^ 2100 C6-C12 Aliphatics (Unadj.) N/A ug/kg 881 110 arast Analytes Ethylbenzene 100-41-4 C9-C12 ug/kg ND 110 Toluene 108-88-3 C5-C8 ug/kg 821 110 Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg 110 110 o-Xylene 95-47-8 C9-C12 ug/kg 110 110 o-Xylene 55-47-8 C9-C12 ug/kg 2100 2100 C5-C8 Aliphatics N/A ug/kg 2560 ° 2100	Method for Target Analytes:	MADEP VPH REV 1.1		14/2003	Date Received	J. 4/10/2000				
PriD. 2,5-Dibromotoluene NA NA FID: 2,5-Dibromotoluene % Solids: 100 Low Dilution: 100 High Dilution: N/A nadjusted Ranges CAS # Elution Range Units Result RDL g C5- C8 Aliphatics (Unadj.) N/A ug/kg 5520 ^ 2 2100 C9- C10 Anomatics (Unadj.) N/A ug/kg MD ^ 2100 C9- C12 Aliphatics (Unadj.) N/A ug/kg 4610 ^ 2100 areat Analytes Ethylbenzene 100-41-4 C9-C12 ug/kg ND 110 Toluene 108-88-3 C5-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1684-04-4 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-8 C9-C12 ug/kg 110 0 dusted Ranges C9-C12 ug/kg 2100 2100 0 C5-C6 Aliphatics N/A ug/kg 2560 * 2100 0 C9-C12 Aliphatics N/A ug/kg 2370	VPH Surrogate Standards		Date Extracted:	First Da	te Run:	Last Date Ru	n:			
Inc. 2,9-bit of obtaining NO 100 1 N/A 100 1 N/A N/A N/A N/A nadjusted Ranges CAS.# Elution Range Units Result RDL G CS-C8 Aliphatics (Unadj.) N/A ug/kg 5620 ^ 2100 C C C C C Anomatics (Unadj.) N/A ug/kg ND ^ 2100 C C C C C C Anomatics (Unadj.) N/A ug/kg A610 ^ 2100 Analytes E E E D 110 N/A ug/kg 381 110 D </td <td>PID: 2,5-Dipromotoluene</td> <td></td> <td>% Solids:</td> <td>4/25</td> <td>/2005</td> <td>N/A</td> <td></td>	PID: 2,5-Dipromotoluene		% Solids:	4/25	/2005	N/A				
nadjusted Ranges CAS.# Elution Range Units Result RDL Q CS- C8 Allphatics (Unadj.) N/A ug/kg 5620 ⁴ 2100 C9- C10 Aromatics (Unadj.) N/A ug/kg MD ^A 2100 C9- C12 Aliphatics (Unadj.) N/A ug/kg 4610 ^A 2100 C9- C12 Aliphatics (Unadj.) N/A ug/kg 4810 ^A 2100 arrast Analytes Ethylbenzene 100-41-4 C9-C12 ug/kg ND 110 Toluene 108-88-3 C5-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-8 C9-C12 ug/kg 117 110 m.p.Xylene C9-C12 ug/kg 2100 2100 2100 c5-C6 Aliphatics N/A ug/kg 2370 ° 2100 2100 c5-C12 Aliphatics N/A<	FID. 2,5-Dibiomotoluene		100	LOW D	1	N/A	1;			
madluated Ranges CAS # Elution Range Units Result RDL Q CS- C3 Aliphatics (Unadj.) N/A ug/kg 5620 ⁴ 2100 C9- C10 Aromatics (Unadj.) N/A ug/kg ND ^A 2100 C9- C12 Aliphatics (Unadj.) N/A ug/kg A610 ⁴ 2100 aroat Analytes N/A ug/kg ND 110 Ethylbenzene 100-41-4 C9-C12 ug/kg ND 110 Toluene 108-88-3 C5-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg ND 110 Naphthalene 91-2C-3 N/A ug/kg ND 110 o-Xylene 85-47-8 C9-C12 ug/kg 110 m.p-Xylene C9-C12 ug/kg 2100 C9-C12 Aliphatics N/A ug/kg										
C5- C8 Aliphatics (Unadj.) N/A ug/kg 5620 A 2100 C9- C10 Aromatics (Unadj.) N/A ug/kg ND A 2100 C9- C12 Aliphatics (Unadj.) N/A ug/kg AD A 2100 arraet Analytes N/A ug/kg A610 A 2100 arraet Analytes N/A ug/kg ND 110 arraet Analytes 100-41-4 C9-C12 ug/kg ND 110 Toluene 108-88-3 C5-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg 110 110 o-Xylene 95-47-8 C9-C12 ug/kg 110 110 m.p-Xylene C9-C12 ug/kg 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 <	Unadjusted Ranges	CAS #	Elution Range	<u>Units</u>	<u>Result</u>	RDL	g			
C9- C10 Aromatics (Unadj.) N/A ug/kg ND ^A 2100 C9- C12 Aliphatics (Unadj.) N/A ug/kg 4610 ^A 2100 arraet Analytes v ug/kg ND 110 arraet Analytes 100-41-4 C9-C12 ug/kg ND 110 Toluene 108-88-3 C5-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-8 C9-C12 ug/kg 117 110 m,p-Xylene C9-C12 ug/kg 273 110 djusted Ranges V/A ug/kg 2560* 2100 C9- C12 Aliphatics N/A ug/kg 2370* 2100 <i>irrogate Recoveries</i> N/A ug/kg 2370* 2100 irrogate Recoveries % <td>C5- C8 Aliphatics (Unadj.)</td> <td></td> <td>N/A</td> <td>ug/kg</td> <td>5620 [*]</td> <td>2100</td> <td></td>	C5- C8 Aliphatics (Unadj.)		N/A	ug/kg	5620 [*]	2100				
C9- C12 Aliphatics (Unadj.) N/A ug/kg 4610 ^A 2100 arraet Analytes Ethylbenzene 100-41-4 C9-C12 ug/kg ND 110 Toluene 108-88-3 C5-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg 622 42 Benzene 71-43-2 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-8 C9-C12 ug/kg 117 110 m,p-Xylene C9-C12 ug/kg 273 110 djusted Ranges V/A ug/kg 2560 ^b 2100 C9- C12 Aliphatics N/A ug/kg 2370 ^c 2100 Imogate Recoveries N/A ug/kg 2370 ^c 2100 Imogate Recoveries N/A ug/kg 2370 ^c 2100 Imogate Recoveries % 104 70-130 % 70-130 %	C9- C10 Aromatics (Unadj.)	1	N/A	ug/kg	ND*	2100				
Analytes Ethylbenzene 100-41-4 C9-C12 ug/kg ND 110 Toluene 108-88-3 C5-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg 622 42 Benzene 71-43-2 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-8 C9-C12 ug/kg 117 110 m,p-Xylene C8-C12 ug/kg 273 110 dlusted Ranges N/A ug/kg 4560* 2100 C9-C12 Aliphatics N/A ug/kg 2370* 2100 Imogate Recoveries N/A ug/kg 2370* 2100 Imogate Recoveries N/A ug/kg 4560* 2100 Imogate Recoveries N/A ug/kg 2370* 2100 Imogate Recoveries % 104 70-130 % 70-130 %	C9- C12 Aliphatics (Unadj.)		N/A	ug/kg	4610*	2100				
Ethylbenzene 100-41-4 C9-C12 ug/kg ND 110 Toluene 108-88-3 C5-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg 622 42 Benzene 71-43-2 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-8 C9-C12 ug/kg 117 110 m,p-Xylene C9-C12 ug/kg 273 110 clusted Ranges V/A ug/kg 4560* 2100 C9-C12 Allphatics N/A ug/kg 2370* 2100 Immogate Recoveries N/A ug/kg 2370* 2100 Immogate Recoveries % 104 70-130 % 70-130 % PID:2,5-Dibromotoluene % 94 70-130 %	Target Analytes									
Toluene 108-88-3 C5-C8 ug/kg 381 110 Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg 622 42 Benzene 71-43-2 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-6 C9-C12 ug/kg 117 110 m,p-Xylene C9-C12 ug/kg 273 110 djusted Ranges V/A ug/kg 4560* 2100 C9-C12 Aliphatics N/A ug/kg 2370° 2100 zmogate Recoveries N/A ug/kg 2370° 2100 mogate Recoveries % 104 70-130 % 70-130 %	Ethylbenzene	100-41-	4 C9-C12	ug/kg	ND	110				
Methyl Tert Butyl Ether 1634-04-4 C5-C8 ug/kg 622 42 Benzene 71-43-2 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-8 C9-C12 ug/kg 117 110 m,p-Xylene C9-C12 ug/kg 273 110 dlusted Ranges V C9-C12 ug/kg 2370° 2100 C9-C12 Aliphatics N/A ug/kg 2370° 2100 zmogate Recoveries % 104 70-130 % 70-130 % PID:2,5-Dibromotoluene % 94 70-130 % 94 70-130 %	Toluene	108-88-	3 C5-C8	ug/kg	381	110				
Benzene 71-43-2 C5-C8 ug/kg ND 110 Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-8 C9-C12 ug/kg 117 110 m,p-Xylene C9-C12 ug/kg 273 110 djusted Ranges V C9-C12 ug/kg 2370° 2100 C9-C12 Aliphatics N/A ug/kg 2370° 2100 Imogate Recoveries N/A ug/kg 2370° 2100 FID:2,5-Dibromotoluene % 104 70-130 % 94 PID:2,5-Dibromotoluene % 94 70-130 %	Methyl Tert Butyl Ether	1634-04	-4 C5-C8	ug/kg	622	42				
Naphthalene 91-20-3 N/A ug/kg ND 110 o-Xylene 95-47-8 C9-C12 ug/kg 117 110 m,p-Xylene C9-C12 ug/kg 273 110 djusted Ranges C9-C12 ug/kg 273 110 C5- C6 Aliphatics N/A ug/kg 4560 * 2100 C9- C12 Aliphatics N/A ug/kg 2370 ° 2100 Jmogate Recoveries N/A ug/kg 2370 ° 2100 Jmogate Recoveries % 104 70-130 % 94 PID:2,5-Dibromotoluene % 94 70-130 %	Benzene	71-43-2	2 C5-C8	ug/kg	ND	110				
o-Xylene 95-47-8 C9-C12 ug/kg 117 110 m,p-Xylene C9-C12 ug/kg 273 110 dlusted Ranges C5-C68 Aliphatics N/A ug/kg 4560 ° 2100 C9-C12 Aliphatics N/A ug/kg 2370 ° 2100 urrogate Recoveries N/A ug/kg 2370 ° 2100 FID:2,5-Dibromotoluene % 104 70-130 % PID:2,5-Dibromotoluene % 94 70-130 %	Naphthalene	91-20-3	3 N/A	ug/kg	ND	110				
m.p-Xylene C9-C12 ug/kg 273 110 djusted Ranges C5- C6 Aliphatics N/A ug/kg 4560 * 2100 C6- C12 Aliphatics N/A ug/kg 2370 ° 2100 Image the Recoveries N/A ug/kg 2370 ° 2100 Image the Recoveries N/A ug/kg 2370 ° 2100 Image the Recoveries Acceptance Range Acceptance Range PUD:2,5-Dibromotoluene % 104 70-130 %	o-Xylene	95-47-6	3 C9-C12	ug/kg	117	110				
djusted Ranges CS- C6 Aliphatics N/A ug/kg 4560 ° 2100 C9- C12 Aliphatics N/A ug/kg 2370 ° 2100 urrogate Recoveries Acceptance Range FID:2,5-Dibromotoluene % 104 70-130 % PID:2,5-Dibromotoluene % 94 70-130 %	m,p-Xylene		C9-C12	ug/kg	273	110				
C5- C6 Aliphatics N/A ug/kg 4560 ° 2100 C9- C12 Aliphatics N/A ug/kg 2370 ° 2100 Image Recoveries Acceptance Range Acceptance Range Provide Recoveries Acceptance Range FID:2,5-Dibromotoluene % 104 70-130 % 94 70-130 %	Adjusted Ranges									
CB- C12 Aliphatics N/A ug/kg 2370 ° 2100 urrogate Recoveries Acceptance Range FID:2,5-Dibromotoluene % 104 70-130 % PID:2,5-Dibromotoluene % 94 70-130 %	C5- C6 Aliphatics		N/A	ug/kg	4560 °	2100				
urrogate Recoveries Acceptance Range FID:2,5-Dibromotoluene % 104 70-130 % PID:2,5-Dibromotoluene % 94 70-130 %	C9- C12 Aliphatics	·	N/A	ug/kg	2370 °	2100				
FID:2,5-Dibromatoluene % 104 70-130 % PID:2,5-Dibromatoluene % 94 70-130 %	Surrogate Recoveries					Acceptance Range				
PID:2,5-Dibromotoluene % 94 70-130 %	FID:2,5-Dibromotoluene			%	104	70-130 %				
	PID:2,5-Dibromotoluene		- · 1-	%	94	70-130 %				
<u>)ODIOTOES</u>	FOOTNOTES) and/or internal standard	- aluting in that make						
Hydrocarbon Range deta exclude concentrations of any surrogate(s) and/or internal dandards sluting in that range. C5-C8 Allphatic Hydrocarbons exclude	B Hydrocarbon Range data exclude o	concentrations of any surrogate(s) and/or internal standard	s eluting in that range.	C5-C8 Allphatic Hydroc	arbona exclude				

3.2 3.2

.

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C9-C12 aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons.

2

A'J' qualifier indicates en estimated value

Were all QA/QC procedures REQUIRED by the VPH Method followed?
Were all performance/acceptance standards for required QA/QC procedures schleved?
Were any significant modifications made to the VPH method, as specified in Sect. 11.37

⊻ Yes □	No- Details Attatched
⊻ Yes □	No- Details Attatched
Mo 🗋	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately reaponsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, eccurste and complate.

fred m r Signature

Postition

Laboratory Director

Printed Name

Date

ACCUTEST. M45536 Laboratories

e-Hardcopy 2.0 Automated Report

05/13/05

Technical Report for

Corporate Environmental Advisors

Sunoco, 88 South Maple St., Westfield MA

5795-05-001

Accutest Job Number: M46919

Sampling Date: 04/27/05

Report to:

Corporate Environmental Advisors, Inc. 127 Hartwell Street West Boylston, MA 01583 dazukauskas@cea-inc.com

ATTN: Debbie Zukauskas

Total number of pages in report: 13

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

- tal Reza Fand

Lab Director

Certifications: MA (M-MA136) CT (PH-0109) NH (250204) RI (00071) ME (MA136) FL (E87579) NY (23346) NJ (MA926) NAVY USACE This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

New England + 495 Tech Center West + Building 1 + Mariborough, MA 01752 + tel: 508-481-6200 + fax: 508-481-7753 + http://www.accutest.com

Sections:

<u>د</u>

دی

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: M46919-1: 1 S-B-2'	4
2.2: M46919-2: 2 S-B-2'	5
2.3: M46919-3: 4 S-B-2'	6
2.4: M46919-4: 5 S-COMP-2'	7
Section 3: Misc. Forms	8
3.1: Chain of Custody	9
3.2: VPH Form	10

,

.

~

Sample Summary

Job No:

M46919

Corporate Environmental Advisors

Sunoco, 88 South Maple St., Westfield MA Project No: 5795-05-001

Sample Number	Collected Date	Time By	Received	Matri Code	х Туре	Client Sample ID
M46919-1	04/27/05	12:00 PB	04/29/05	SO	Soil	1 S-B-2
M46919-2	04/27/05	12:10 P B	04/29/05	SO	Soil	2 S-B-2
M46919-3	04/27/05	12:20 P B	04/29/05	so	Soil	4 S-B-2
M46919-4	04/27/05	00:00.PB	04/29/05	SO	Soil	5 S-COMP-2

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

•

-

-

Report of Analysis

Page	1	of 1	

21

N

Client Sar	nple ID:	1 S-B-	2'				Data famil	4. 07/27/06		
Matrix: SC			M46919-1 SO - Soil				Date Sample Date Receive	Date Sampled: 04/27/05 Date Received: 04/29/05		
Method: Project:		MADEP VPH REV 1.1 Sunoco, 88 South Maple St., Westfield MA			Percent Solids: 95.2					
	File ID		DF	Апа	lyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1 * Run #2	QR3188	\$4.D	1	05/0	6/05	AP	n/a	<u>n</u> /a	GQR1632	
	Initial	Weight	Final V	olume	Meth	hanol Alio	guot			
Run #1	29.7 g		16.0 m	1	100 u	u l				

Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	150	ug/kg
100-41-4	Ethylbenzene	ND	150	ug/kg
1634-04-4	Methyl Tert Butyl Ether	7350	62	ug/kg
91-20-3	Naphthalene	171	150	ug/kg
108-88-3	Toluene	197	150	ug/kg
	m,p-Xylene	171	150	ug/kg
95-47-6	o-Xylene	ND	150	ug/kg
	C5- C8 Aliphatics (Unadj.)	9630	3100	ug/kg
	C9- C12 Aliphatics (Unadj.)	ND	3100	ug/kg
	C9- C10 Aromatics (Unadj.)	ND	3100	ug/kg
	C5- C8 Aliphatics	ND	3100	ug/kg
	C9- C12 Aliphatics	ND	3100	ug/kg
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	101%		70-130%
615-59-8	2, 5-Dibromotoluene	102%		70-130%

(a) Soil to methanol ratio greater than 1.25 to 1.

ND = Not detected

.

RL = Reporting Limit

.

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

]	Repo	rt of A	Analysis		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	nple ID: le ID:	2 S-B-2 M4691 SO - So MADE Sunoco	!' 9-2 bil P VPH R , 88 South	EV 1.1 1 Maple S	51., We	estfield M	Date Sample Date Receiv Percent Soli A	ed: 04/27/05 ed: 04/29/05 ds: 94.4	
Run #1 ^a Run #2	File ID QR319	05.D	DF 1	Anal 05/0	yzed 9/05	By AP	Prep Date n/a	Prep Batch n/a	Analytical Batch GQR1633
Run #1 Run #2	Initial 32.8 g	Weight	Final V 16.0 ml	olume	Meth 2.0 u	anol Alio l	quot		

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	30300	7200	ug/kg
100-41-4	Ethylbenzene	416000	7200	ug/kg
1634-04-4	Methyl Tert Butyl Ether	204000	2900	ug/kg
91-20-3	Naphthalene	40100	7200	ug/kg
108-88-3	Toluene	1050000	7200	ug/kg
	m,p-Xylene	1010000	7200	ug/kg
95-47-6	o-Xylene	444000	7200	ug/kg
	C5- C8 Aliphatics (Unadj.)	6080000	140000	ug/kg
	C9- C12 Aliphatics (Unadj.)	6430000	140000	ug/kg
	C9- C10 Aromatics (Unadj.)	2380000	140000	ug/kg
	C5- C8 Aliphatics	4790000	140000	ug/kg
	C9- C12 Aliphatics	2180000	140000	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	0% b		70-130%
615-59-8	2,5-Dibromotoluene	0% b		70-130%

(a) Soil to methanol ratio greater than 1.25 to 1.

(b) Outside control limits due to dilution.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST. 5 of 13

2.2 N

Page 1 of 1

.

Report of Analysis

2.3

Client San Lab Sam Matrix: Method: Project:	mple ID: 4 S-B-2 ple ID: M4691 SO - So MADE Sunoco	!' 9-3 bil P VPH R , 88 Soutl	EV 1.1 n Maple	St., We	estfield M	Date Sample Date Receive Percent Solid A	d: 04/27/05 cd: 04/29/05 ls: 95.3	
Run #1 ª Run #2	File ID QR31886.D	DF 1	Ana 05/0	a lyzed 06/05	By AP	Prep Date n/a	Prep Batch n/a	Analytical Batch GQR1632
Run #1 Run #2	Initial Weight 31.0 g	Final V 16.0 m	olume l	Meth 100 1	anol Alic 1	luot		
МА-УРН	List	_						-

CAS No.	Compound	Result	RL	Units	Q
71-43-2	Benzene	ND	150	ug/kg	
100-41-4	Ethylbenzene	151 2	150	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	3100	59	ug/kg	
91-20-3	Naphthalene	174	150	ug/kg	
108-88-3	Toluene	798	150	ug/kg	
	m, p-Xylene	429	150	ug/kg	
95-47-6	o-Xylene	213	150	ug/kg	
	C5- C8 Aliphatics (Unadj.)	12100	3000	ug/kg	
	C9- C12 Aliphatics (Unadj.)	4090	3000	ug/kg	
	C9- C10 Aromatics (Unadj.)	ND	3000	ug/kg	
	C5- C8 Aliphatics	8210	3000	ug/kg	
	C9- C12 Aliphatics	ND	3000	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	5
615-59-8	2,5-Dibromotoluene	96%		70-13	0%
615-59-8	2,5-Dibromotoluene	92%		70-13	0%

(a) Soil to methanol ratio greater than 1.25 to 1.

ND = Not detected

• -

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $\mathbf{B} =$ Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

			Page 1 of 1				
Client San Lab Samp Matrix: Method: Project:	nple ID: 5 S-CC ble ID: M4691 SO - S MADE Sunocc	0MP-2' 9-4 0il 2P VPH REN 0, 88 South N	/ 1.1 Иарle St., We	stfield MA	Date Sampl Date Receiv Percent Sol	ed: 04/27/05 red: 04/29/05 ids: 92.6	
Run #1 ^a Run #2	File ID QR31887.D	DF 1	Analyzed 05/06/05	By AP	Prep Date n/a	Prep Batch n/a	Analytical Batch GQR1632
Run #1 Run #2	Initial Weight 27.3 g	Final Vol 16.0 ml	ume Meth 100 u	anol Alique	ot		
MA-VPH	List						
CAS No.	Compound		Result	RL	Units Q		

		THE PARTY AND ADDRESS OF		
71-43-2	Benzene	ND	180	ug/kg
100-41-4	Ethylbenzene	ND	180	ug/kg
1634-04-4	Methyl Tert Butyl Ether	212	71	ug/kg
91-20-3	Naphthalene	ND	180	ug/kg
108-88-3	Toluene	ND	180	ug/kg
	m, p-Xylene	184	180	ug/kg
95-47 - 6	o-Xylene	ND	180	ug/kg
	C5- C8 Aliphatics (Unadj.)	4750	3600	ug/kg
	C9- C12 Aliphatics (Unadj.)	ND.	3600	ug/kg
	C9- C10 Aromatics (Unadj.)	ND	3600	ug/kg
	C5- C8 Aliphatics	4390	3600	ug/kg
	C9- C12 Aliphatics	ND	3600	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
615-59-8	2,5-Dibromotoluene	97%		70-130%
615-59-8	2,5-Dibromotoluene	95%		70-130%

(a) Soil to methanol ratio greater than 1.25 to 1.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2.4 2

Page 1 of 1

Misc: Forms

Custody Documents and Other Forms

Includes the following where applicable:

Chain of CustodyVPH Form

				CHAIN OF CUSTODY 465 TECHAOLOGY CENTER WEST • BUILDING ONE MARLEDOROUGH, MA 01752 TEL: 500 451 4200 • FAX: 500 451-7753							COUTE	ST JOI	D ¢: OTE ¢:	<u>ا</u> مر	169	19						
	CLIENT INFO			Sec.	FAC	LITY DO	ORMA	TION	200		ana - I	÷. 4		AN	LYTIC	AL 11	FORM	NUTA	P.E.S	200	MATRIX CODES	
	ocio S. Made stfield	st	712		attald	tatic MA	m					-									CW - DRUCCHG WATER GW - GROUND WATER WW - WASTE WATER 60 - 60L 61 - 60L	9.1
	"Scott Vand	er Sea			579	5-0	<u>ک</u>										ÍÍ				OL- CAL LIQ- OTHER LIQUED BOL- OTHER	
ACCUTEST BANPLE #	FIELD ID / F	ODIT OF COLLE	CTION	DATE	TIME	BAMPLE:	THE C	₽Ë	PRE	BERN BERN			× 2								LAB USE ONLY	
allow	1 c.A.			Illonlar	12:00	DR	50	7		- 1		1 ,				+		+-	+			
<u>-167/17</u>		<u>-)</u> /		7/27/05	12140	On.	20	2		H		1 5		\vdash	+	+	\vdash	+	+			
	45 - R	21		412/105	12:20	00	100	2		\vdash	₽₽	ll y	17			┼─	\square	+-	┉	[]		
-1/	55-0	<u>~~</u>		7[~/105	10.90	20	20	3	- <u> </u> -	H		1		+	+	╀	┠─┼		+-	1-1		
-7	53-00	Darle - 4-				TD.			+	┝╀	₩₩	Чř	-		-+-	+	┝┼╴	-†-	┼╾	┼╌┨		
							┢╌		+	┝┼╴	╋	╋	┿╌	-	+-	┿╾		+	+	╞╾┨		
							┟╾┈	┝╍┨		┝┼	╋	╈	<u> ·</u>	+	+	┢	\vdash	┼	┢	┝┈╏		
		-							+	H	╉╋	+	╆┯		-+-	┢			┼			
							f—	$\left \right $	+	\vdash	++	╋	\vdash			†		-+-				
							<u> </u>	\square	+	H	╂╂	+-				┢	\vdash	+	+	┝╌┦		
							⊢	\vdash	+	┝╋	╂╋	╋	$\left - \right $	+-		┟╍╍	┝╍╍╉╸	+-	+			
NAME AND DESCRIPTION																		ļ				
14 DAYS 7 DAYS 48 HOUR OTHER_ 14 DAY TURNA DATA UNLESS	ATA TÜRNAROUN STANDARD RUSH EMERGENCY ROUND HARDCOPY PREVIOURLY APPRI	APPROVED I	I KIRK SA	C STAND COMIN D COMIN DISK D STATE OTHER	DATA DELI ARD ERCIAL "B ELIVERAB FORMS (SPECIFY)	VERABI. 	E INFC	RMA					San	ples		00	A VE			Lc:	E	
RELATIONS OF		BAMPLE CUSTO DATE THE CUSTO	ALCENTED S	Cotff	D BELOW I	ACH TI		iPLE Carrier Carrier	S CHA		P058	2580 1471 7 1/24	N, INC	LUDI) 0:/0	RECEIV	ARDE A			1/_	34) -		
RELINGUESHED T	DV:	DATE TIME:	RACEIVED B	¥:		RAL	•									CABLE		-		:	0.7 C	

> M46919: Chain of Custody Page 1 of 1

	MA	DEP VPH	FORM			
Matrix	Aqueous	Soll 🗸	Sediment	Other		
Containers	Satisfactory 🗸 📃	Broken	Leaking			
Aqueous Preservatives	N/A 🔽 🛛	<u>oH <= 2_ □</u>	pH > 2			
Temperature Association	Received on Ice	Receive	d at 4 Deg. C	Other	Rec'd at 0.9	deg C
Methanol	Methanol Covering	Soil. (mL Metha	nol/g soil: Ot	her) NOTE: Ra	<u>itio > 1.25 to 1.</u>	
Method for Ranges:	MADEP VPH REV 1.1	Client ID: 1	S-B-2'	Lab I	D: M46919-1	
Method for Target Analytes:	MADEP VPH REV 1.1	Date Collected; 4/	2//2005	Date Receive	0; 4/20/2003	
VPH Surrogate Standards		Date Extracted:	First D	ate Run:	Laat Date	Run:
PID: 2,5-Dibromotoluene		NVA Solida:	5/6	/2005	N/A	·
FID: 2,5-Dibromotoluene		95.2	Low			1001
				1	N/A	
Unadjusted Ranges	CAS #	Elution Range	<u>Units</u>	Result	RDL	9
C5- C8 Aliphatics (Unadj.)		N/A	· ug/kg	9630 *	3100	
C9- C10 Aromatics (Unadj.)	1	N/A	ug/kg	ND*	3100	
C9- C12 Aliphatics (Unadj.)		N/A	ug/kg	ND*	3100	
Target Analytes						
Ethylbenzene	100-41-	4 C9-C12	ug/kg	ND	150	
Toluene	108-88-	-3 C5-C8	ug/kg	197	150	
Methyl Tert Butyl Ether	1634-04	-4 C5-C8	ug/kg	7350	62	
Benzene	71-43-2	2 C5-C8	ug/kg	ND	150	
Naphthalene	91-20-3	3 N/A	ug/kg	171	150	
o-Xylens	95-47-6	6 C9-C12	ug/kg	ND	150	
m,p-Xylens		C9-C12	ug/kg	171	150	
Adjusted Ranges						
C5- C8 Aliphatics		N/A	ug/kg	ND ^B	3100	
C9- C12 Aliphatics		N/A	ug/kg	ND °	3100	
Surrogate Recoveries					Acceptance Rang	10
FID:2,5-Dibromotoluene			%	101	70-130 %	
PID:2,5-Dibromotoluene	<u>.</u>		%	102	70-130 %	

Footnotes

Hydrocarbon Range data exclude concentrations of sny surrogate(s) and/or internal standards eluting in that range

Hydrocarbon Range data exclude concentrations of any surrogate(s) analor internal standards eluting in that range. C5-C8 Allphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range. Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. C5-C8 Allphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range. C9-C12 sliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C8-C10 Aromatic Hydrocarbons. c

z A 'J' qualifier indicates an estimated value

Were ell QA/QC procedures REQUIRED by the VPH Method followed?	Yes	No- Details Attatched
Were all performance/acceptance standards for required QAVQC procedures achieved?	Y Yes	No- Details Attatched
Were any eignificant modifications made to the VPH method, as apecified in Sect. 11.3?	⊻No ∐	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

to 2 r Signature 0

Postition

Laboratory Director 5/13/2005

M46919 Laboratories

3.2

Printed Name

Reza Tand

Date

Watrix	Aqueous	Soil 🔽	Sedime	nt 🗀 Othe	ər 🗌	
Containers	Satisfactory 🗸	Broken	Leaking	1		
Aqueous Preservatives	N/A	pH <= 2 🗌	pH > 2			
Temperature	Received on Ice	Re	ceived at 4 Deg.	C 🗌 Othe	er 🔽 Rec'd at ().9 deg C
Methanol	Methanol Covering	Soil. (mL N	<u>lethanol/g soil: (</u>	Other) NOTE:	Ratio > 1.25 to	<u>1.</u>
Method for Ranges:	MADEP VPH REV 1.1	Client Date Collect	ID: 2 5-8-2 ad: 4/27/2005	Data Pac	AD ID: M46919-2	
Nethod for Targat Analytes:	MADEP VPH REV 1.1	Date Conect	eu. 4/2//2005		EIVEU. 4/20/2000	
/PH Surrogate Standards		Date Extra	acted: Firs	t Date Run:	Last Da	te Run:
PID: 2,5-Dibromotoluene		NVA % Soli	4a	5/8/2005	N/	A
FID. 2,5-Dibromowidene		94.4	L0	w Dilution:	High Di	lution:
					NU	<u> </u>
Jnadjusted Ranges	CAS t	Elution F	Range <u>Units</u>	Resul	t <u>RDL</u>	9
C5- C8 Aliphatics (Unadj.)		N/A	ug/kg	606000	0^ 140000	
C9- C10 Aromatics (Unadj.)		N/A	ug/kg	236000	0 140000	
C9- C12 Aliphatics (Unadj.)		N/A	ug/kg	643000	0^ 140000	
Target Analytes						
Ethylbenzena	100-41-	-4 C9-C	12 ug/kg	41800	0 7200	
Toluene	108-88-	-3 C5-C	3 ug/kg	105000	0 7200	
Methyl Tert Butyl Ether	1634-04	L4 C5-C	38 ug/kg	20400	0 2000	
Benzene	71-43-	2 C5-C	3 ug/kg	3030	0 7200	
Naphthalene	91-20-3	3 N/A	ug/kg	4010	0 7200	
o-Xylene	95-47-	6 C9-C	12 ug/kg	44400	0 7200	
m,p-Xylene		C9-C	12 [°] ug/kg	101000	0 7200	
Adjusted Ranges						
C5- C8 Aliphatics		N/A	ug/kg	479000	0 140000	
C9- C12 Aliphatics		N/A	ug/kg	216000	0° 140000	
Surrogate Recoveries					Acceptance Ra	nge
FID:2,5-Dibromotoluene			%		0 [°] 70-130 %)
PID:2,5-Dibromotoluene			%		0° 70-130 %	,

nge data exclude conce пу аштода

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards aluting in that range. C5-C8 Alphatic Hydrocarbons exclude the concentration of Target Analytas eluting in that range.

Hydrocarbon Renge data azclude concentratione of eny surrogata(s) and/or internal standards eluting in that range. C9-C12 eliphetic Hydrocarbone exclude conc of Target Analytas eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbone. Þ

Outside control limits due to dilution. z

A 'J' qualifier indicates an estimated value

Were all QA/QC procedures REQUIRED by the VPH Method followed? Were all performance/acceptance standarde for required QA/QC procedures achieved?

Yes		N
Yes	\checkmark	N
No		Y

o- Details Attatched o- Details Attatched es- Details Attatched

Were any significent modifications made to the VPH method, as specified in Sect. 11.3?

I atteet under the pains and penalties of perjury that, basad upon my inquiry of thosa individuals immediately responsible for obtaining the information, the material containad in this report is, to the beat of my knowledge and belief, eccurste end complete.

ford 2 Signature

Printed Name

<u>Reza Tand</u>

Postition

Date

Laboratory Director 5/13/2005

.

3.2

Mati	rix	Aqueous	Soil	\checkmark	Sedime	nt 🗌	Other			
Con	tainers	Satisfactory 🗸	Broken	ı 🗌	Leaking	1				
Aqu	eous Preservatives	N/A 🔽	pH <= 2		pH > 2					
Tem	perature in the second	Received on Ice		Receiv	<u>/ed at 4 Deg.</u>	<u>C</u>	Other	~	Rec'd at 0.9	deg C
Met	hanol	Methanol Coverin	g Soil. (r	nL Meth	anol/g soil:	Other	NOTE: R	<u>atio</u>	> 1.25 to 1.	
Meth	od for Ranges:	MADEP VPH REV 1.1	C C	ilent ID:	4 S-B-2'		Lab	ID:	M46919-3	
Meth	od for Target Analytes:	MADEP VPH REV 1.1	Date Co	ollected:	4/27/2005		Date Receiv	ed:	4/29/2005	
VPH	Surrogate Standards		Date	Extracted	i: Firs	t Date I	Run:		Last Date F	lun:
PID): 2,5-Dibromotoluene			N/A		5/6/200	5		N/A	
FiD	2,5-Dibromotoluene		- %	Solids:	Lo	w Diluti	on:		High Diluti	ion:
				95.3		1			N/A	
Unad	justed Ranges	CAS	<u>)# Elu</u>	tion Rang	e <u>Units</u>		Result		RDL	g
	C5- C8 Aliphatics (Unadj.)			N/A	ug/kg		12100*		3000	
	C9- C10 Aromatics (Unadj.)	I		N/A	uğ/kg		ND *		3000	
	C9- C12 Allphatics (Unadj.)			N/A	ug/kg		4090 *		3000	
Tarq	et Analytes									
	Ethylbenzene	100-4	1-4	C9-C12	uġ/kg		151		150	
	Toluene	108-6	8-3	C5-C8	ug/kg		798		150	
	Methyl Tert Butyl Ether	1634-4	04-4	C5-C8	ug/kg		3100		59	
	Benzene	71-43	3-2	C5-C8	ug/kg		ND		150	
	Naphthalene	91-2	0-3	N/A	ug/kg		174		150	
	o-Xyléne	95-4 7	7-8	C9-C12	ug/kg		213		150	
	m,p-Xylene			C9-C12	ug/kg		429		150	
Adju	sted Ranges									
	C5- C8 Allphatics			N/A	ug/kg		8210 ^B		3000	
-	C9- C12 Aliphatics			N/A	ug/kg		ND°		3000	
Surro	ogate Recoveries							<u>Ac</u>	ceptance Range	2
	FID:2,5-Dibromotoluene				%		96		70-130 %	
	PID:2,5-Dibromotoluene				%		92		70-130 %	

Footnotes

A Hydrocarbon Range data exclude-concentrations of any surrogate(e) and/or internal standards eluting in that range

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standarde aluting in that range. CS-CS Aliphatic Hydrocarbons exclude the concentration of Target Analytes aluting in that range. в

Hydrocarbon Range data exclude concentratione of any surrogete(e) and/or internel standarde eluting in that range. CQ-C12 alighetic Hydrocarbons exclude conc of Target Analytice eluting in that range AND concentration of C9-C10 Arometic Hydrocarbons. C

A 'J' qualifier indicates an estimated value 7

Were all QA/QC pro	cedures REQUIRED	by the VPH Method	d followed?
--------------------	------------------	-------------------	-------------

Were ell performance/ecceptance standards for required QA/QC procedures achieved?

Y es	No- Dat
🖌 Yes	No- Det
🖌 No	Yes- De

ells Attatched talls Attatched etalls Attatched

Were eny significant modifications made to the VPH method, as specified in Sect. 11.3?

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately rasponsible for obtaining the information, the material conteined in this report ia, to the best of my knowledge end belief, eccurate and complete.

Signature /

Postition

Date

Laboratory Director

5/13/2005

3 2

Printed Name

Reza Tand

And the former design of the landstream of the second seco						
Matrix	Aqueous	Soll 🔽	Sediment	Other		
Containers	Satisfactory V	Broken	Leaking			
Aqueous Preservatives	N/A	<u>pH <= 2</u>	<u>pH > 2</u>		-	
I emperaturo	Received on Ice	Receive	d at 4 Deg. C	Other	Recidiat 0.9 deg C	
methanol	Methanol Covering	Soli. (ML Methal	101/g soll: Ut	ner NOIE: Ra	<u>Itio > 1.25 to 1.</u>	
Method for Ranges:	MADEP VPH REV 1.1	Date Collected: 4/2	7/2005	Date Receive	d 4/29/2005	
Method for Target Analytes:	MADEP VPR REV 1.1			Date Nevert		
VPH Surrogate Standards		Date Extracted:	First D	ate Run:	Last Date Run:	
FID: 2,5-Dibromotoluene	1	NVA % Solidar	5/6	/2005	N/A	
PID, 2,5-DIDIORDODD		92.6	Low	Dilution:	High Dilution:	
				1	N/A	
Unadjusted Ranges	CAS	# Elution Range	Units	Result	RDL Q	
C5- C6 Aliphatics (Unedj.)		N/A	ug/kg	4750 *	3600	
C9- C10 Aromatics (Unadj.))	N/A	ug/kg	ND *	3600	
C9- C12 Aliphatics (Unadj.)	I	N/A	ug/kg	. ND*	3600	
Target Analytes						
Ethylbenzene	100-41	-4 C9-C12	ug/kg	ND	180	
Тошеле	108-88	-3 C5-C6	ug/kg	ND	180	
Methyl Tert Butyl Ether	1634-04	L4 C5-C8	ug/kg	212	71	
Benzene	71-43-	2 C5-C8	ug/kg	ŇD	180	
Naphthaiene	91-20-	3 N/A	ug/kg	ND	180	
o-Xylene	95-47-	8 C9-C12	ug/kg	ND	180	
m,p-Xylene		C9-C12	ug/kg	184	180	
Adjusted Ranges						
C5- C8 Aliphatics		N/A	ug/kg	4390 ª	3600	
C9- C12 Aliphatics		N/A	ug/kg	ND°	3600	
Surrogate Recoveries					Acceptance Range	
FID:2,5-Dibromotoluene			%	97	70-130 %	
PID:2,5-Dibromotoluene			%	95	70-130 %	

Footnotes

z

A Hydrocarbon Range deta exclude concentrations of any aurrogate(s) and/or internal standards eluting in that range

b) Hydrocarbon Range data axclude concentrations of any surrogate(s) and/or internal standards sluting in their range. CS-C8 Allphetic Hydrocarbons exclude the concentration of Target Analytes sluting in their range.

C Hydrocarbon or regenerative autoing in that range conc of Target Analytis eluting in that range AND concentration of C9-C19 Aromatic Hydrocarbons.

A 'J' qualifier indicetse an astimated value

Were all QA/QC procedures REQUIRED by the VPH Method followed?
Were all performance/acceptance standards for required QA/QC procedures achieved?
Were any algoificant modifications made to the VPH method, as specified in Sect. 11.3?

✓ Yes	No- Datells Attatched
⊻ Yes	No- Details Attatched
√ No	Yes- Details Attatched

I stest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, eccurate and complete.

ford R. m Signature

Postition Date

5/13/2005

Laboratory Director

3.2

ω

Printed Name

Reza Tand

Report Date: 08-Dec-05 11:32

Final Report
 Re-Issued Report
 Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

CEA, Inc. 127 Hartwell Street West Boylston, MA 01583 Attn: Scott Vandersea

Project: Sunoco Station - Westfield, MA Project #: 5795-05

Laboratory ID	Client Sample ID	Matrix	Date Sampled	Date Received
SA37632-01	Tank Field	Soil	16-Nov-05 14:30	22-Nov-05 16:13
SA37632-02	ті	Soil	17-Nov-05 11:30	22-Nov-05 16:13
SA37632-03	R-7'	Soil	18-Nov-05 13:15	22-Nov-05 16:13
SA37632-04	Τ2	Soil	18-Nov-05 13:45	22-Nov-05 16:13
SA37632-05	тз	Soil	18-Nov-05 13:55	22-Nov-05 16:13
SA37632-06	Τ4	Soil	18-Nov-05 14:05	22-Nov-05 16:13
SA37632-07	T5	Soil	18-Nov-05 14:15	22-Nov-05 16:13
SA37632-08	Т6	Soil	18-Nov-05 14:25	22-Nov-05 16:13

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met.

Please note that this report contains 17 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New York # 11393/11840 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www spectrum-analytical com for a full listing of our current certifications.

ENVIRONMENTAL ANALYSES

<u>Sam</u> r	ble Identification		Client Project #			<u>Matrix</u>	Collection	n Date/I in	ne	Received		
SA3	7632-01		5	795-05		Soil	16-Nov-05 14:30			22-Nov-05		
		D			+001	(D.16)						
CAS NO.	Analyte(s)	Kesull	riag	Units	"KDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	
Volatile	Organic Compounds VOC Extraction	Field extr	acled	N/A		1	VOC	28-Nov-05	28-Nov-05	5111765	BD	
Prepared	by method VPH		40010									
	C5-C8 Aliphatic Hydrocarbons	41 7		mg/kg dry	0 998	100	+MADEP 5/2004 Rev 1.1	29-Nov-05	29-Nov-05	5111785	MaR	
	C9-C12 Aliphatic Hydrocarbons	26.6		mg/kg dry	0 333	100	•	•	•	•	•	
	C9-C10 Aromatic Hydrocarbons	70 6		mg/kg dry	0 333	100	•	•	•	•	•	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	85 3		mg/kg dry	0 998	100	•	•	•	•	•	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	97 2		mg/kg dry	0 333	100	•	•	•	٠	•	
VPH Targ	et Analytes		V0C10									
Prepared	by method VPH											
71-43-2	Benzene	163		µg/kg dry	66 5	100	•	•	•	•	•	
100-41-4	Ethylbenzene	4,190		µg/kg dry	66 5	100	•	•	•	•	•	
1634-04-4	Methyl tert-butyl ether	10,500		µg/kg dry	66.5	100	•	•	•	•	•	
91-20-3	Naphihalene	3.620		µg/kg dry	66.5	100	•	•	•	•	•	
108-88-3	Toluene	7.520		µa/ka dry	68 5	100	•		•	•		
1330-20-7	m.p-Xviene	15.000		ua/kā drv	133	100	•	•	•	•	•	
95-47-8	o-Xviene	6,240		µg/kg dry	66.5	100	•	•	•	•	•	
Surrooate r	ecovaries:	•										
615-59-8	2.5-Dibromotaluene (FID)	90.0		70-130 %				•	•	•		
615-59-8	2.5-Dibromotoluene (PID)	87 6		70-130 %	5		•	•		•		
Semivalı	tile Organic Compounds by G	c										
Polychlori Prepared I	nated Biphenyls by SW846 8082 by method SW846 3550B	-	H 02									
12674-11-2	PCB 1016	BRL		µg/kg dry	27 8	1	SW846 8082	06-Dec:05	07-Dec-05	5120300	SM	
11104-28-2	PCB 1221	BRL		µg/kg dry	27 8	1	•	•	•	•	•	
11141-16-5	PCB 1232	BRL		µg/kg dry	27.8	1	•	•	•	•	•	
53469-21-9	PCB 1242	BRL		µg/kg dry	27 8	1	•	•	•	•	•	
12672-29-6	PCB 1248	1,320		ug/kg dry	278	1	•	•	•	•	•	
11097-59-1	PCB 1254	BRL		µg/kg dry	27 8	1	•	•	•	•	•	
11095-82-S	PCB 1260	45 B		µg/kg dry	27.8	1	•	•	•	•	•	
37324-23-5	PCB 1262	BRL		µg/kg dry	27 8	1	•	•	•	•	•	
11100-14-4	PCB 1268	BRL		µg/kg dry	27 8	1	•	•	•	•	•	
Surrogale /	ecoveries.											
10386-84-2	4,4-DB-Octafluorobiphenvl (Sr)	84 9		30-150 %	i		•	•	•		•	
2051-24-3	Decachiorobiphenyl (Sr)	79 9		30-150 %			•	•	•	•	•	
General	Chemistry Parameters											
	% Solids	93 4		%		1	SM2540 G Mod	30-Nov-05	30-Nov-05	5111921	BD	

Sam	ole Identification		Clier	Client Project #			Collection	n Date/Tir	ne .	Received	
T1 542	7633 03		5795-05			Soil	17-Nov		22-Nov-05		
5A3-	(032-02										
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzea	Batch	Analy
Volatile	Organic Compounds										
	VOC Extraction	Field ext	racted	N/A		1	VOC	28-Nov-05	28-Nov-05	5111765	BD
VPH Aliph	natic/Aromatic Carbon Ranges										ŧ.
Prepared	by method VPH										
	C5-C8 Allphatic Hydrocarbons	8 95		ന്റു/kg dry	0 890	50	+MADEP 5/2004 Rev	29-Nov-05	29-Nov-05	5111785	MaR
	C9-C12 Aliphatic Hydrocarbons	3 45		mg/kg dry	0 297	50		•	•	•	•
	C9-C10 Aromatic Hydrocarbons	9 89		mg/kg dry	0 297	50			•		•
	Unadjusted C5-C8 Aliphatic Hydrocarbons	12 3		mg/kg dry	0 890	50	•	•	·	•	•
	Unadjusted C9-C12 Aliphatic	13 3		mg/kg dry	0 297	50	•	•	•	•	•
VPH Targ	et Analyles										
Prepared	by method VPH										
71-43-2	Benzene	228		µg/kg dry	59.3	50	•	•	•	•	•
100-41-4	Ethylbenzene	344		µg/kg dry	59 3	50	•	•	•	•	
1634-04-4	Methyl terl-bulyl ether	273		yg/kg dry	59 3	50	•	•	•	•	•
91-20-3	Naphthalene	722		µg/kg diy	59 3	50	•	•	•	•	•
108-88-3	Toluena	745		µg/kg dry	59 3	50	•	•	•	•	•
1330-20-7	m,p-Xylene	1,190		µg/kg dry	119	50	•	•	•	•	•
95-47-5	o-Xylene	524		µg/kg dry	59.3	50	•	•	•	•	•
Surrogale I	recoveries:										
615-59-8	2,5-Dibromotoluene (FID)	92 6		70-130	ž		•	•	•	•	•
61 5- 59-8	2,5-Dibromotoluene (PID)	<i>87 2</i>		70-130	26		•	•	•	•	•
Semivola	tile Organic Compounds by G	с									
Polychlori	nated Biphenvis by SW846 8082		1-02								
Prepared	by method SW846 3550B										
12574-11-2	PCB 1016	BRL		µg/kg diy	608	20	SW846 8082	06-Dec-05	07-Dec-05	5120300	SM
11104-28-2	PCB 1221	BRL		µg/kg dry	606	20	•	•	•	•	•
11141-16-5	PCB 1232	BRL		µg/kg dry	606	20	•	•	•	•	.0
53469-21-9	PCB 1242	6RL		µg/kg dry	606	20	•	•	•	•	k
12672-29-6	PCB 1248	31,700		µg/kg dry	606	20	-	•	•	•	•
11097-69-1	PCB 1254	BRL		µg/kg dry	606	20	•	•	•	•	•
11095-82-5	PCB 1260	346		µg/kg dry	30 3	1	•	•	•	•	•
37324-23-5	PCB 1262	BRL		µg/kg dry	30.3	1	•	•	•	•	•
11100-14-4	PCB 1268	BRL		µg/kg dry	30 3	1	•	•	•	•	
Surrogate i	recoveries.			•							
10385-84-2	4,4-DB-Oclafluorobiphenyl (Sr)	90.1		30-150 9	*		•		•	•	•
2051-24-3	Decachlorobiphenyl (Sr)	80.1		30-150	A.		•	.•	•	•	•
General	Chemistry Parameters										
	% Solids	90 3		%		١	SM2540 G Mod	30-Nov-05	30-Nov-05	5111921	BD

<u>Sam</u>	ple Identification		Clien	t Project #		<u>Matrix</u>	Collection	Date/T in	ne	Receiv	ed .
SA3	7632-03		5	795-05		Soil	18-Nov	-05 13:15		22-Nov-05	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
	VOC Extraction	Field extr	acted	N/A		1	VOC	28-Nov-05	28-Nov-05	5111765	BD
VPH Alip!	atic/Aromatic Carbon Ranges		VOC IO								
Prepared	by method VPH						·				
	C5-CB Aliphatic Hydrocarbons	1,870		mg/kg dry	14 1	1000	+MADEP 5/2004 Rev 1.1	29-Nov-05	29-Nov-05	5111785	MaR
	C9-C12 Aliphatic Hydrocarbons	935		mg/kg dry	4 69	1000	•	•	•	•	•
	C9-C10 Aromatic Hydrocarbons	1,650	E	mg/kg dry	4 69	1000	•	•	•	•	•
	Unadjusted C5-C8 Aliphatic Hydrocarbons	2,860	£	mg/kg dry	14 1	1000	•	•	•	•	•
	Unadjusted C9-C12 Aliphatic Hydrocarbons	2,590	E	mg/kg dry	4 69	1000	•	•	•	·	•
VPH Targ	et Analytes		VOC10								
Prepared	by method VPH										
71-43-2	Benzene	5,760		µg/kg dry	939	1000	•	•	•	•	•
100-41-4	Ethylbenzene	132,000		µg/kg dry	939	1000	•	•	•	•	•
1634-04-4	Methyl teri-butyl ether	23.800		ug/kg dry	939	1000	•	•	•	•	•
91-20-3	Naphihalene	32,900		µo/ko dry	939	1000	•	•	•	•	•
108-88-3	Toluene	291.000	E	µŋ/kŋ dry	939	1000	•	•	•	•	•
1330-20-7	m.o-Xviene	386.000	E	µa/ka dry	1660	1000	•	•	•	•	• '
95-47-6	o-Xvlene	153.000	*	ug/kg dry	939	1000	•	•	•	•	•
Sumpata	recoveries.				_						
615-59-8	2.5-Dibromotokiene (FID)	95.6		70-130 %			•	•	•	•	•
615-59-8	2,5-Dibromotokene (PID)	912		70-130 %			•		•	•	•
VPH Alinh	atic/Ammatic Carbon Bannes	51.L	VOC10								
Prepared	by method VPH								SA37632-	ISRET	
	C9-C10 Aromatic Hydrocarbons	1,400		mg/kg dry	23 5	5000	+MADEP 5/2004 Rev.	30-Nov-05	30-Nov-05	5111890	MaR
	Unadjusted C5-C8 Aliphatic Hydrocarbons	2,430		mg/kg dry	70 4	5000	•	•	•	·	•
	Unadjusted C9-C12 Aliphatic Hydrocarbons	2,270		mg/kg dry	23.5	5000	•	•	•	·	•
VPH Targ Prepared	et Analytes by method VPH		VOC10						SA 37632-0)3REJ	
108-88-3	Toluene	256 000		uo/ka div	4690	5000	•		•	•	
1330-20-7	m.p-Xylene	323,000		µg/kg dry	9390	5000	•	•	•	•	•
Surroaste	ecoveries.										
615-59-8	2.5-Dibromotoluene (FID)	97.6		70-130 %			•	•	•	•	•
615-59-8	2,5-Dibramotoluene (PID)	87.2		70-130 %			•	•	•	•	•
General	Chemistry Parameters					•			•		
	% Solids	B9 0		*		1	SM2540 G Mod	30-Nov-05	30-Nov-05	5111921	8D

Samp	le Identification		Clier	nt Project #	<u>¥</u>	<u>Matrix</u>	Collection	n Date/Tir	ne	Received		
SA37	SA37632-04		5	795-05		Soil	18-Nov-05 13:45			2-Nov	-05	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys	
Yolatile	Organic Compounds											
	VOC Extraction	Field ext	racled	N/A		1	VOC	28-Nov-05	28-Nov-05	5111765	BD	
VPH Aliph	atic/Aromatic Carbon Ranges											
Prepared	by method VPH											
	C5-C8 Aliphatic Hydrocarbons	3 20		mg/kg dry	0 964	50	+MADEP 5/2004 Rev 1 1	30-Nov-05	30-Nov-05	5111890	MaR	
	C9-C12 Aliphatic Hydrocarbons	0 608		mg/kg dry	0 321	50	•	•	•	•	•	
	C9-C10 Aromatic Hydrocarbons	0.977		mg/kg dry	0 321	50	•	•	•	•	•	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	3 84		mg/kg dry	0 964	50	•	•	•	•	•	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	1 59		mg/kg dry	0 321	50		•	•	•	•	
VPH Taro	el Analyles											
Prepared	by method VPH											
71-43-2	Senzene	71 2		pa/kg dry	64 3	5 0		•	•	•	•	
100-41-4	Ethylbenzene	74.4		ua/ka drv	64 3	50			•	•	•	
1634-04-4	Methyl tert-hulyl ether	BBL		ua/ka drv	64 3	50	•	•		•	•	
91-20-3	Nachihalene	104		uo/ka dry	64 3	50	•	•	•	•	•	
108-88-3	Тоцияле	237		uaka div	64.3	50		•		•	٠	
1330-20-7	m o-Yvlene	258		ua/ka drv	129	50	•	•	•	•	•	
95-47-6	o-Xviene	BRL		µg/kg dry	64 3	50	•	•		•	•	
Summeler												
615-59-8	2 5-Dibromotoluene (FID)	97.0		70-130	8			•	•	•	•	
615-5 9-8	2.5-Dibromotoluene (PID)	85.8		70-130	*		•	•	•	•	•	
Semival	tile Organic Compounds by Ci	r i										
Potychiori	nated Binbergyle by SWR46 8082	C	1-02									
Prenared	by method SW846 3550B											
12574-11-2		9DI		un/ka dav	30.1	1	SWR45 8082	08-Dec.05	07-Dec-05	5120300	SM	
11104.28.2	PCB 1021	801		unika dev	30.1	1	*	-		*	-	
11141-16-6	DCB 1222	RDI		unika day	30 1	1			•			
52469.21.9	PCB 12/2	BRI		un/in div	30.1	1						
12572-29-8	PCB 1242	97.7		un/kn dry	30 1	1	•			•	•	
11097-69-1	PCB 1254	BRI		un/ka dry	30.1	1	•			•		
11095-82-5	PCB 1260	110		ua/ka drv	30 1	1	•					
37324-23-5	PCB 1262	BRI		uo/ka dry	30 1	1		•		•	•	
11100-14-4	PCB 1268	BRL		µg/kg dry	30 1	1	•	•	•	•	•	
Surmoate (
10385-84-2	4 4-DB-Octalluombinhenvi (Sd	90.0		30-150	ž		•		•	•	•	
2051-24-3	Decachloroblohenvi (Sr)	85.0		30-150	24		•	•		-	•	
Constrai	Chamistry Racematam											
General	Chemistry Futameters	01 P		ч.		1	SM2540 G Mod	30-Nm-05	30-Nov-05	5111021	RD.	
	76 301105	310		10			SUM D VPCSMC	30-1404-03	90-1404-03	9111921	50	

,

.

Sample Identification T3 SA37632-05		<u>Client Project #</u> 5795-05			<u>Matrix</u> Soil	<u>Collection</u> 18-Nov	Collection Date/Time 18-Nov-05 13:55		<u>Received</u> 22-Nov-05		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
	VOC Extraction	Field extr	acted	N/A		1	VOC	28-Nov-05	28-Nov-05	5111765	BD
VPH Alloh	atic/Aromatic Carbon Ranges										
Prepared	bý method VPH										
	C5-C8 Aliphatic Hydrocarbons	1 23		mg/kg óry	0.932	50	+MADEP 5/2004 Rev 1.1	29-Nov-05	29-Nov-05	5111785	MaR
	C9-C12 Aliphatic Hydrocarbons	BRL		mg/kg dry	0.311	50	•	•	•	•	•
	C9-C10 Aromatic Hydrocarbons	0 475		mg/kg dry	0.311	50	•	•	•	•	•
	Unadjusted C5-C8 Aliphatic	1.67		mg/kg dry	0 932	50	•	b .	•	•	•
	Hydrocarbons									-	_
	Unadjusted C9-C12 Aliphatic	0.509		mg/kg dry	0.311	50	•	•	•	•	•
	Hydrocarbons										
VPH Larg	el Analytes										
Prepared	by method VPH							_	_		
71-43-2	Benzene	BRL		hðykð quà	62.1	50	•	•	•	•	•
100:41-4	Ethylbenzene	BRL		hðykð quà	62 1	50	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		µg∕kg dry	62.1	50	•	•	•	•	•
91-20-3	Naphthalene	BRL		hðykð quà	82.1	50	•	•	•	•	•
108-88-3	Toluene	134		hðykð quà	62 1	50	•	•	•	•	•
1330-20-7	m,p-Xylene	158		hðijkā quà	124	50	•	•		•	
95-47-6 /	o-Xylene	BRL		hâykê qih	62.1	50	·	•	•	•	·
Surrogate r	ecoveries										
615-59-8	2,5-Dibromololuene (FID)	104		70-130	%		•	•	•	•	•
615-59-8	2,5-Dibromotoluene (PID)	94,8		70-130	%		•	•	•	•	•
General	Chemistry Parameters										
	% Solids	93.6		%		1	SM2540 G Mod	30-Nov-05	30-Nov-05	5111921	BD

--

<u>Sam</u> T4 SA3	Sample Identification T4 SA37632-06		<u>Clier</u> 5	<u>Client Projecí #</u> 5795-05			Collection Date/Time 18-Nov-05 14:05			<u>Received</u> 22-Nov-05	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile <u>VPH Aliph</u> Prepared	Organic Compounds VOC Extraction halic/Aromatic Carbon Ranges by method VPH	Field extr	acled VOC10	N/A		1	VOC	28-Nov-05	28-Nov-05	5111765	BD
	C5-C8 Aliphatic Hydrocarbons	2 90		mg/kg dry	2.45	50	+MADEP 5/2004 Rev	29-Nov-05	29-Nov-05	5111785	MaR
	C9-C12 Aliobatic Hydrocarboos	0.962		mo/ka drv	0818	50	1.1 •		•		
	C9-C10 Aromalic Hydrocarbons	BRI		ma/ka div	0818	50	•	•		•	•
	Unadjusted C5-C8 Allphatic Hydrocarbons	3 28		mg/kg dry	2.45	50	•	•	·	•	•
	Unadjusted C9-C12 Aliphatic Hydrocarbons	1 47		mg/kg dry	0 818	50	•	•	•	•	•
<u>VPH Targ</u> Prepared	et Analytes by method VPH		VOC 10								
71-43-2	Benzene	BRL		µg/kg dry	164	50	•	•		•	•
100-41-4	Ethylbenzene	BRL		µg/kg dry	164	50	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		µg/kg dry	164	50	•	•	•	•	•
91-20-3	Naphthalene	BRL		µg/kg dry	164	50	•	•	•	•	•
108-88-3	Toluene	BRL		µg∕kg dry	164	50	•	•	•	-	•
1330-20-7	m,p-Xylene	BRL		µg/kg dry	327	50	•		•	•	•
95-47-6	o-Xylene	BRL		µg/kg dry	164	50	•	•	•	•	•
Sunogale	recoveries:										
615-59-8	2,5-Dibromotoluene (FID)	91.6		70-130	*		•	•	,		•
615-59-8	2,5-Dibromotoluene (PID)	84.6		70-130	2¢		•	•	•	•	•
General	Chemistry Parameters										
	% Solids	91 3		%		1	SM2540 G Mod.	30-Nov-05	30-Nov-05	5111921	BD

۰.

Sample Identification T5			Clier	nt Project #		Matrix	Collection	ne	Received		
			5795-05			Soil	18-Nov	2	22-Nov-05		
SA37	/632-07		_						_		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
	VOC Extraction	Field extr	acted	NA		1	VOC	28-Nov-05	28-Nov-05	5111765	BD
VPH Aliph	atic/Aromatic Carbon Ranges										
Prepared I	by method VPH										
	C5-CB Aliphatic Hydrocarbons	.30 1		mg/kg dry	1 69	100	+MADEP 5/2004 Rev	29-Nov-05	2 9-Nov- 05	5111785	MaR
	C9-C12 Aliphatic Hydrocarbons	24 6		mg/kg dry	0.565	100	•	•	•	•	•
	C9-C10 Aromatic Hydrocarbons	58 2		mg/kg dry	0 565	100	•	•	,	•	•
	Unadjusted C5-C8 Aliphatic Hydrocarbons	50,4		mg/kg dry	1 69	100	•	•	•	•	•
	Unadjusted C9-C12 Aliphatic Hydrocarbons	82 B		mg/kg dry	0.565	100	•	•	•	•	•
VPH Targe	et Analytes										
Prepared I	by method VPH										
71-43-2	Benzene	BRL		µg/kg diy	113	100	•	•	•	•	•
100-41-4	Ethvibenzene	1,920		µg/kg dry	113	100	•		•	•	•
1634-04-4	Methyl lerl-butyl ether	526		up/kg dry	113	100	•		•		•
91-20-3	Nachthalene	1.830		µg/kg dry	113	100	•	•	•		•
108-88-3	Toluene	3.470		µg/kg dry	113	100	•	•	•	•	
1330-20-7	m.p-Xviene	9,780		µq/kg dry	226	100		•	•	•	•
95-47-6	o-Xylene	4,580		µg/kg dry	113	100	•	•	•	•	•
Surrogate r	ecoveries		•								
615-59-8	2.5-Dibromotoluene (FID)	110		70-130 %			•	•	•	•	•
615-59-8	2,5-Dibromotoluene (PID)	100		70-130 %			•	•	•	•	•
Semivola	tile Organic Compounds by G	c									
Polychloria	nated Biphenvls by SW846 8082		1-02								
Prepared I	by method SW846 3550B										
- 12674-11-2	PCB 1016	BRL		µg/kg dry	30 2	1	SW846 8082	06-Dec-05	07-Dec-05	5120300	SM
11104-28-2	PCB 1221	BRL		µov/kg drý	30 2	1	•	•	•	•	•
11141-16-5	PCB 1232	BRL		µg/kg dry	30.2	1	•	•	•	•	
53469-21-9	PCB 1242	BRL		µg/kg dry	30-2	1	•	•	•	•	•
12672-29-8	PCB 1248	69 5		µg/kg dry	30 2	1	•	•	•	•	•
11097-69-1	PCB 1254	BRL		µg/kg dry	30.2	1	•	•	•	•	•
11096-82-5	PCB 1260	64 9		ug/kg dry	30.2	1	•	•	•	•	•
37324-23-5	PCB 1262	BRL		µg/kg dıy	30 2	1	•	•	•	٠	•
11100-14-4	PCB 1268	BRL		µg/kg dry	30 2	1	•		•	•	•
Surrogate r	ecoveries.										
10398-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90 1		30-150 %			•	•	•	•	•
2051-24-3	Decachlorobiphenyl (Sr)	95 O		30-150 %			•		•	•	•
General	Chemistry Parameters										
	% Solids	92 5		%		1	SM2540 G Mod	30-Nov-05	30-Nov-05	5111921	BD

Sample Identification T6 SA37632-08			<u>Client Project #</u> 5795-05			<u>Matrix</u> Soil	<u>Collection</u> 18-Nov	ne	<u>Received</u> 22-Nov-05		
CAS No. Ana	lyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile Organ	ic Compounds										
VOCT	Extraction	Field extr	acted	N/A		1	VDC	28-Nov-05	28-Nov-05	5111765	BD
VPH Aliphatic/Arc	matic Carbon Ranges		VOC10								
Prepared by meth	od VPH										
C5-C8	8 Aliphatic Hydrocarbons	21 7		mg/kg dry	2.55	100	+MADEP 5/2004 Rev 1 1	29-Nov-05	29-Nov-05	5111785	MaR
C9-C1	2 Aliphatic Hydrocarbons	27 7		mg/kg dry	0 851	100	•	•	•	•	•
C9-C1	0 Aromatic Hydrocarbons	52 9		mg/kg dry	0 851	100	•	•	•	٠	•
Unadji	usled C5-C8 Aliphatic	32.3		mg/kg dry	2.55	100	•	•	•	•	•
Hydro	carbons										
Unadji Hydro	usted C9-C12 Aliphatic carbons	80.6		mg/kg dry	0 851	100	•	•	•	•	•
VPH Target Analy	<u>des</u>		VOC10								
Prepared by meth	od VPH										
71-43-2 Benze	ne	BRL		pg/kg dry	170	100	•	•	•	•	•
100-41-4 Ethylb	enzené	1,100		µg/kg dry	170	100	•	•	•	•	•
1634-04-4 Methy	I tert-butyl ether	BRL		µg/kg diy	170	100	•	•	•	-	•
91-20-3 Naphi	halene	1,050		µg/kg dry	170	100		•	•	•	•
108-88-3	ne	1,240		µg/kg dry	170	100	•	•	•	•	•
1330-20-7 m,p-X	ylene	5,500		µg/kg dry	340	100		•	•	•	•
95-47-6 D-Xyle	ne	2,690		µg/kg đry	170	100	•	•	•	•	•
Surrogate recoverie	5:										
615-59-8 2,5-Di	bromotoluene (FID)	98 6		70-130	2		•	•	•	•	
615-59-8 2,5-DI	bromotoluene (PID)	90 4		70-130	ž		•	•	•	•	•
General Chemi	stry Parameters										
% Sol	ids	93.1		%		1	SM2540 G.Mod	3D-Nov-05	30-Nov-05	5111921	8D

.

•

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5111785 - VPH										
Blank (5111785-BLK1)										
Prepared & Analyzed: 29-Nov-05										
C5-C8 Aliphatic Hydrocarbons	BRL		mg/kg wet	0 750						
C9-C12 Aliphatic Hydrocarbons	BRL		mg/kg wet	0 250						
C9-C10 Arematic Hydrocarbons	BRL		mg/kg wet	0 250						
Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL		mg/kg wet	0 750						
Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL		mg/kg wet	0 250						
Banzana	BRL		µg/kg wet	50.0						
Elhylbenzene	BRL		µg/kg wet	50 0						
Methyl terl-butyl ether	BRL		µg/kg wet	50 0						
Naphinala'ne	BRL		hðykð mei	50 0						
Toluene	BRL		µg/kg wel	50 0						
m'b-Xàleue	BRL		µg/kg wat	100						
o-Xylene	BRL		µg/kg wet	50.0			-			
Surrogale: 2,5-Dibromotoluene (FID)	510		µg/kg wet		50 0		102	70-130		
Surrogate: 2,5 Dibromotoluene (PID)	510		µg/kg wet		50 O		102	70-130		
LCS (5111785-BS1)										
Prenared & Analyzed: 20-Nov-05										
C5-C8 Aliphatic Hydrocarbons	124		molecust		140		05.7	70 120		
C9-C12 Alinhatic Hydrocarbons	134		myrkg wei molke wei		140		93 /	70-130		
C9-C10 Ammatic Hydrocarbons	43 3		myrkg wei		55 0		62,4	70-130		
Linediated CS-CR Allohetic Hydrocenhons	49 8		ing/kg wet		400		125	70-130		
Unadjusted CO-CO Alphatic Hydrocarbons	2/1		mg/kg wet		260		96.8	70-130		
Renzane	352		ing/iig wei		250		112	70+130		
Ethylantage	19.3		µg/xg wet		200		97.5	70-130		
Mathul tod-burbi alber	20.3		hðvkð mer		20.0		102	70-130		
	1/ 0		hðivid mei		20 0		68 0	70-130		
Tohone	10 8		hðvirð mei		20.0		64.V	70-130		
n n-Yidena	19.7		hðykð mai		200		98 2	70-130		
A Yulana	40.2		hðvæð men		400		100	70-130		
	19.3		häved met		20.0		96.5	70-130		
-Noosoo	19.1		hâvkâ wet		20.0		955	70-130		
n-Pentene	18.0		pgrkg wei		200		93.0	70-130		
12 A-Trimelhuthen tone	18 2		hörkö met		200		910	70-130		
2.2.4.Trimethylacelane	20.5		hbykå met		200		102	70-130		
2.2.4-1 Million 19 Periode	200		µgyxg wet		20.0		100	70-130		
n Decano	21.5		hðukð mer		20.0		108	70-130		
	22.9		hðurð mei		20.0		114	70-130	\	
Sumgale: 2,5-Ditromolowene (FID)	488		pg/kg wet		500		97.0	70-130		
	433		իֆուդ ոս։		30.0		01.0	/0-130		
LCS Dup (5111785-BSD1)										
Prepared & Analyzed: 29-Nov-05										
C5-C8 Aliphatic Hydrocarbons	135		mg/kg wet		140		96 4	70-130	0 729	25
C9-C12 Aliphatic Hydrocarbons	46 6		mg/kg wet		55 0		847	70-130	2 75	25
C9-C10 Aromatic Hydrocarbons	49 4		mg/kg wet		40.0		124	70-130	0.803	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	270		mg/kg wet		280		96.4	70-130	0 414	25
Unadjusted C9-C12 Aliphetic Hydrocarbons	98 0		mg/kg wet		85,0		113	70-130	0 889	25
Benzena	18.5		µg/kg wet		20.0		92 5	70-130	5 26	25
Ethylbenzene	193		µg/kg wel		20 0		96 5	70-130	5 54	25
Methyl tert-butyl ether	19 0		µg/kg wet		200		95 0	70-130	7 65	25
Naphihalene	197		ug/kg wet		20 0		96.5	70-130	159	25
Toluena	199		µg/kg wet		20 0		99 5	70-130	1 01	25
m.p-Xylene	39 0		pg/kg wet		40.0		97 5	70-130	2 53	25
o-Xylene	198		µg/kg wet		200		9 9 0	70-130	2 56	25
2-Methylpeniane	18.7		µg/kg wel		20 0		93 5	70-130	2 12	25
n-Nonane	17 4		µg/kg wet		20 0		870	70-130	6 67	25
n-Pentane	17 2		µg/kg wet		20 0		86 0	70-130	5 65	25

Volatile Organic Compounds - Quality Control

This laboratory report is not valid without an authorized signature on the cover page

* Reportable Detection Limit

BRL = Below Reporting Limit

Velatile Organic Compounds - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5111785 - VPH										
LCS Due (5111785-BSD1)										
Prenared & Anabyzed: 29-Nov-05										
1 2 4-Trimelhylbenzene	21.5		unða wat		20.0		100	70.120	E 71	9E
2.2.4-Trimelbylaenlang	19.3		yyny nor uafar wat		200		01 5	70-130	971	23
n-Butvicvclohexane	20.4		un/im wet		200		102	70-130 70-130	5 71	25
n-Decane	22.3		un/ko wei		20.0		112	70-130	177	25
Sumpaste: 2 5-Dibromotokiena (FiD)	55.6		un/kn wel		50.0		111	70-130		
Sunogale: 2,5-Dibromololuene (PID)	514		hðyrð mel		50 0		103	70-130		
Dupficate (51)1785-DUP1) Source	: SA37671-01									
Prepared & Analyzed: 29-Nov-05										
C5-C8 Aliphatic Hydrocarbons	BRL		mg/kg dry	1.05		0 776			367	50
C9-C12 Aliphatic Hydrocarbons	BAL		mg/kg dry	0 351		BAL				50
C9-C10 Aromatic Hydrocarbons	BAL		mg/kg dry	0 351		0 201			3 54	50
Unadjusted C5-C8 Aliphalic Hydrocarbons	BRL		mg/kg dry	1 05		0 776			367	50
Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL		mg/kg dry	0 351		0 248			1.22	50
Benzene	BRL		µg/kg dry	70 1		BRL				50
Ethylbenzene	BAL		µg/kg dry	70.1		BAL				50
Methyl tert-butyl ether	BAL		µg/kg dry	70 1		BRL				50
Naphthalene	BAL		ug/kg dry	70 1		BRL				50
Toluana	BRL		µg/kg dry	70 1		BAL				50
m,p-Xytene	BRL		µo/ka dry	140		BRL				50
o-Xylena	BRL		ug/kg đry	70.1		BRL				50
Surrogate: 2,5-Dibromotoluene (FID)	527		ug/kg dry		50 0		105	70-130	*	
Surrogate: 2,5-Dibromotoluene (PID)	512		µg/kg dry		50 0		102	70-130		
Matrix Spike (5111785-MS1) Source:	SA37671-01									
Prepared & Analyzed: 29-Nov-05										
Benzene	192		µg/kg dry		20.0	BRL	96 0	70-130		
Ethylbenzene	19 9		µg/kg dry		20.0	BAL	995	70-130		
Methyl tert-butyl ether	18 0		µg/kg dry		20 0	BRL	90.0	70-130		
Naphihalene	16 9		µg/kg dry		20 0	BRL	64 5	70-130		
Toluane	19 9		µg/kg dry		20 0	BRL	99 5	70-130		
m.p-Xylene	41.0		µg/kg dry		40 0	BRL	102	70-130		
o-Xylene	192		µg/kg dry		20 0	BRL	96 0	70-130		
2-Melhylpentana	22 5		µg/kg dry		20.0	BRL	112	70-130		
n-Nonane	21 2		µg/kg dry		20.0	BRL	105	70-130		
n-Penlane	219		µg/kg dry		20.0	BRL	110	70-130		
1,2,4-Trimethylbenzene	217		µg/kg dry		20.0	BAL	108	70-130		
2.2.4-Trimethylpeniane	236		µg/kg dry		20.0	BRL	118	70-130		
n-Butylcyclohexane	23 8		µg/kg dry		20 0	00	119	70-130		
n-Decane	25.8		µg/kg dry		20.0	0.0	129	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	54 2		µg/kg dry		50 0		108	70-130		
Sunogate: 2,5-Dibromotoluene (PID)	49.7		µg/kg dry		50 0		99 4	70-130		
Batch 5111890 - VPH										
Blank (5111890-BLK1)										
Prepared & Anelyzed: 30-Nov-05										
C5-C8 Aliphalic Hydrocarbons	BAL		mg/kg wet	0 750						
C9-C12 Aliphatic Hydrocarbons	BRL		mg/kg wel	0.250						
C9-C10 Aromalic Hydrocarbons	BRL		mg/kg wet	0.250						
Unedjusted C5-C8 Aliphatic Hydrocarbons	BRL		mg/kg wel	0.750						
Unedjusted C9-C12 Aliphalic Hydrocarbons	BRL		mg/kg wet	0 250						
Banzene	BRL		µg/kg wet	50 0						
Ethylbenzene	BRL		µg/kg wet	50 0						
Melhyi tert-butyi ether	BRL		pg/kg wet	50 0						
Naphthalene	BRL		µg∕kg wet	50 0						
Toluena	BRL		µg∕kg wet	50 0						

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5111890 - VPH										
Blank (5111690-BLK1)										
Prepared & Analyzed: 30-Nov-05										
m,p-Xylene	BRL		µg/kg wel	100						
o-Xylene	BRL		µg/kg wet	50.0						
Surrogate: 2,5-Dibromotoluene (FID)	472		pg/kg wet		50 0		94 4	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	42 6		hðyrð mel		50 0		85 2	70-130		
LCS (5111890-BS1)										
Pronament & Analyzed: 30-Nov-05										
C5-C8 Alightatic Hydrocarboos	154				140		110	70 120		
C9.C12 Alightic Hydrocarbons	104		my/kg wei		140		100	70-130		
CP-C10 Aromatic Hydrocarbons	900		nuyny wei molie wei		550			70-130		
Unadivised C5-C8 Allohatic Hydronamo	30.0		nuprup wet		400		90.0	70 130		
Linadiasted C9-C12 Alighatic Hydrocarth	2/3		ng/ng wet		200		110	70 120		
Benzene	100		ngang wer		850		04.0	70-130		
Fibulanzene	10.0		pyrky wei		20.0		94 0	70-130		
Methyl terchubl other	17.4		hite mot		200		000	70-130		
Mouly Group ene	100		µg/xg wet		200		02 D 70 0	70-130		
Tokiana	130		pyrug wet		20 0		790	70-130		
	17 3		hilling wet		200		02 0	70 130		
~Yvkne	37 1		hitrid wat		40.0		0£.0	70-130		
2-Mathidoonlana	17.0		hð kð met		200		104	70-130		
n-Nonana	207		pyrky wat		200		0104	70 120		
n-Reolana	10 Z		hður kör men		200		91.0	70-130		
1.2 4 Trimelbythenzese	20.0		hðurð mer		200		104	70-130		
2.2.4-Trimelhybenase	10 0		hôv kô wat		20.0		930	70-130		
n-Rublerdébernes	10.2		pg/kg wet		20.0		100	70-130		
n-Decara	20.5		hðykä mer		200		102	70-130		
Comparing 25 Offerenciations (510)	23.4		pgrkg wet		20.0		11/	70-130		
Sumogele 2,5-Dibromololuene (PID)	514 A32		hôvy mai		500		100 86 A	70-130		
Surregala. 2,5-Distolitoto (1816 (170)	472		իֆոֆոսո		500		00 4	70-100		
LCS Dup (5111890-BSD1)										
Prepared & Analyzed: 30-Nov-05										
C5-C8 Aliphatic Hydrocarbons	152		mg/kg wet		140		109	70-130	0.913	25
C9-C12 Aliphetic Hydrocarbons	56.9		mg/kg wet		55 0		103	70-130	0 976	25
C9-C10 Aromatic Hydrocarbons	37 1		mg/kg wet		40 0		92 8	70-130	2 34	25
Unadjusted C5-C8 Aliphetic Hydrocarbo	ns 277		mg/kg wet		260		96 9	70-130	0 705	25
Unadjusted C9-C12 Aliphatic Hydrocarb	xons 94 0		mg/kg wet		B5 0		111	70-130	0 905	25
Benzene	19 0		µg/kg wet		20 0		95 0	70-130	1 06	25
Elhylbenzene	18.9		µg/kg wet		20 0		84 5	70-130	178	25
Methyl tert-butyl ether	177		µg/kg wat		20.0		88.5	70-130	7.02	25
Naphthalena	18.2		µg/kg wat		20 0		910	70-130	14 1	25
Toluene	16.3		µg/kg wet		20 0		91 5	70-130	221	25
m.p-Xylene	37 0		µg/kg wet		40 0		92.5	70-130	0 324	25
o-Xylene	16 9		pg/kg wet		20.0		84 5	70-130	0 590	25
2-Methylpentane	20 7		µg/kg wat		20 0		104	70-130	0 00	25
n-Nonana	17.9		µg/kg wet		20 0		89.5	70-130	1 66	25
n-Penlane	21 7		µg/kg wet		20 0		108	70-130	377	25
1,2,4-TrimeInylbenzene	21 5		hðyrð met		20.0		108	70-130	14 9	25
2,2.4-Trimelhypeniane	16 9		hðykå met		20 0		94.5	70-130	3.77	25
n-Bulyicycionexane	20 1		hâykê met		20 0		100	70-130	1.96	25
n-Decane	22 3		ug/kg wet		20.0		112	70-130	4.97	25
Surrogate: 2.5-Dibromotoluene (FiD)	53 6		hðykå mei		50 0		107	70-130		
Surrogate: Z 5-Dibromololuene (PID)	46 6		hðykð met		50 0		93 6	70-130		
Ouplicate (5111890-DUP1)	Source: SA37742-04									
Prepared & Analyzed: 30-Nov-05										
C5-C8 Aliphatic Hydrocarbons	BRL		ma/ka drv	0 850		0.826			3 56	50
-										-

Volatile Organic Compounds - Quality Control

This laboratory repart is not valid without an authorized signature on the cover page

* Reportable Detection Limit

BRL = Below Reporting Limit
Volatile	Organic	Compounds	- Quality	y Control
----------	---------	-----------	-----------	-----------

					Spike	Source		%REC		RPD
Analyte(5)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5111890 - VPH										
Duplesis (5111890-01191) Source	SA37742-04									
Prenared & Analyzed: 30-Nov-05										
CQ_C12 Alightig Hydrocarbons	RDI		molto dar	0.283		0 126			0 701	50
CQ-C10 Aromatic Hydrocarbons	BDI		mgrky dry	0.203		0 136			0733	50
Lipadiustad CS_CR Aliphatic Hydrocarbons	BDI		mgrky dry	0 200		0 829			3.56	50
Unadjusted COLC12 Alightitic Hydrocarbons	DIL.		mg/m div	0.083		0.962			0.361	50
Велара			un/ro dev	567		BRI			0.001	50
Filtytherizene	901		un/kg day	567		BRI				50
Methyl tert-hutyl ether	BRL		hilves quà hilves quà	567		BRI				50
Nanhihalane	901		yyr y dy	567		BRI				50
Tokene	901		pg/kg diy	567		RQI				50
m n-Xvlene	RDI		pging dry	112		BBI				50
o-Xviena	BRI		unden dev	56.7		BRI				50
Surgente: 2 5-Dibromololyana (EID)	48.5		ug/kg day		50.0		97.0	70-130		
Surrogale: 2,5-Dibromololuene (PID)	43 4		µg/kg dry		50 0		88.8	70-130		
Matrix Soike (5111890-MS1) Source:	: SA37742-04									
Prenated & Analyzed: 30-Nov-05										
Велина и нимурой, со ногос	16.7		uo/ka dav		20.0	BRI	835	70-130		
Fitybenzena	157		ug/kg day		20.0	BOI	78 5	70-130		
Methyl tert-butyl ether	18.1		up/kg or y		200	BRI	90.5	70-130		
Naphihalene	15 3		up/kg div		20.0	BBI	76.5	70-130		
Tohiane	16.7		un/ka div		20.0	BRI	R3 5	70-130		
m o Xviena	31.0		un/ka dev		40.0	BBI	77 5	70-130		
o-Xvlene	15.4		un/ka dry		20.0	BBL	77.0	70-130		
2-Methylpeniane	20.3		uq/ka drv		20.0	BRL	102	70-130		
n-Nonane	177		uo/ka drv		20.0	BRL	88.5	70-130		
n-Pentane	22 2		nayka giv		20 0	BRL	m	70-130		
1,2,4-Trimethyfbenzene	16 3		ua/ka drv		20 0	BRL	B1 5	70-130		
2,2.4-Trimethylpentane	20 2		ua/ka dry		20 0	BAL	101	70-130		
n-Butylcyclohexane	19.4		ua/ka div		20 0	00	97 0	70-130		
n-Decane	22.8		µa/ka dry		20.0	0.0	114	70-130		
Surrogate: 2.5-Dibromotoluene (FID)	410		vo/ka dry	**	50.0		82.0	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	35 6		µg/kg dry		50 0		712	70-130		

					Snike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5120300 - SW846 3550B										
Prepared & Analyzed: U6-Dec-D5										
	BRL		hāvkā met	28 6						
PCB 1221	BRL		hå/kå met	28 6						
PCB 1232	BRL		håvkå met	28 6						
PG8 1242	BRL		hðykð met	26 8						
PCB 1248	BRIL		µg/kg wet	288						
PCB 1254	BRL		µg/kg wet	28 6						
PCB 1250	BAL		µg/kg wet	28.6						
Surrogate 4,4-DB-Octalluorobiphenyl (Sr)	27 1		µg/kg wet		28 6		94 B	30-150		
Surrogate: Decachlorobiphenyl (Sr)	414		µg/kg wet		28 6		145	30-150		
LCS (5120300-BS1)										
Preneral & Analyzed: 06-Dec-05										
PCB 1016	401		under und	00 C	PC7		140	40.440		
PCB 1280	421		pg/kg wet	20.0	301		110	40-140		
Companies (1 DD Catelly and behaved (Cd	403		ugvikg wet	28.0	35/		12/	40-140		
Sumogala: 4,4-UB-OctanuoroDipnenyi (Sr) Sumosto: Decembra bishooud (Sr)	24 3		µg/kg wet		28.6		850	30-150		
Surugale. Decachioloophenyi (Sr)	30.0		ружу жет		200		. 133	30-150		
Duplicate (5120300-DUP1) Source:	SA37994-01									
Prepared: 06-Dec-05 Analyzed: 07-Dec-05										
PCB 1018	BRL		uc/ko drv	29 7		BRL				40
PCB 1221	BRL		ug/ko drv	29 7		BRL				40
PCB 1232	BRL		ua/ka dry	29 7		BAL				40
PCB 1242	BRL		uo/ka dry	29 7		BAL				40
PCB 1248	BRL		uo/ka drv	297		BRI				40
PCB 1254	BRI		un/ko div	29.7		BBI				40
PCB 1260	BRL		uo/ko dry	29.7		BRI				40
PCB 1262	BRI		ug/kg dry	29.7		RRI				40
PCB 1268	A RI		un/ka day	29.7		201				40
Sumate: 4 ADB-Ocielluomblohenvil (Sd	35.6	(un/ka day	20.7	29.6	DITE	120	30-150		
Sumpate: Decachlorobinhanyl (Sr)	32.6		ua/ka drv		296		110	30-150		
			10.00 -1							
Matrix Spike (5120300-MS1) Source:	SA37994-01									
Prepared: 06-Dac-05 Analyzed: 07-Dec-05										
PCB 1016	410		µg/kg dry	29,8	372	BRL	110	40-140		
PCB 1260	415		µg/kg dry	29.8	372	BRL	112	40-140		
Surrogate: 4,4-DB-Octalluorobiphenyl (Sr)	23 8		hâ\yê qiλ		297		80 1	30-150		
Surrogate: Decachiorobiphenyl (Sr)	31 2		µg/kg dry		297		105	30-150		
Matrix Spike Dup (5120300-MSD1) Source:	SA37994-01									
Prepared: 06-Dec-05 Analyzed: 07-Dec-05										
PCB 1016	407		แก่สิต ส่อง	20 P	972	501	121	40.140	17 4	50
PCB 1260	40/ SAS		uging day	200	373		131	40-140	10 6	50
	000	• ••		230	J(J	DAL	133	20 150		VC
Sumople, A,4-DB-Octaliteroophenyi (Sf) Sumople, Decechionhishead (Sd	<u>∠0</u> 0 <u>∕</u> ∩9		µg/kg ory ⊮g/kg dou		290		125	30-150		
ounogate Decautoroupnent (or)	40.6		hAnd on h		230		109	20-120		

General Chemistry Parameters - Quality Control

	.	~ 1		40.01	Spike	Source	-	%REC		RPD
Analyte(s)	Kesult	Flag	Units	•KDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5111921 - General Pr	eparation									
Duplicate (5111921-DUP1) Prepared & Analyzed: 30-Nov-05	Source: SA377B1-05									
% Solids	82 7		%			797			3.69	20
Duplicate (5111921-DUP2) Prepared & Analyzed: 30-Nov-05	Source: SA37781-06									
% Solids	82 3		%			62 9			0 726	20

Notes and Definitions

RE Reanalysis for data confirmation

- E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate (CLP E-flag)
- I-02 This result was analyzed outside of the EPA recommended holding time
- vext2 Field extracted
- VOC10 The VOC field preserved soil sample is not within the 1:1 weight to volume ratio as recommended by SW846 methods 5030 and 5035 but may be within the 1:1 volume to volume ratio
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C Tayeh, Ph D. Nicole Brown The following outlines the condition of all VPH samples contained within this report upon laboratory receipt.

Matrix		🖻 Soil	Sediment	D Other	
Containers	B Satisfact	ory 🛛 Broken	Leaking		
Samala	Aqueous (acid-preserved)	± N/A □ pH≤2	□ pH>2	Comment:	
Preservative	Soil or Sediment	mi Meihanol/g soil 1:1-4-25% Other:			
		Samples received in	air-tight containe	г:	
Temperature	C Received	on ice 🛛 Received a	t4±2℃ ⊡-Oil	ner: / °C	

Were all QA/QC procedures followed as required by the VPH method? Yes _____ No _____ No _____ Were any significant modifications made to the VPH method as specified in section 11.3? No *see below

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes _____No__

* Yes, if PID and FID surrogate recoveries are listed as n/a, then that sample was run via GCMS using all QC criteria specified in the method

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete

Authorized by:

f

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

0 _ 0 11 Almgren Drive • Agawam, Massachusetts 01001 • 413-789-9018 • Fax 413-789-40	Condition upon receipt: let ced Ambient Condition upon receipt: Con	EDD Format & BACCIUM W. CEA-TALLOM READERSON (AE-mail to Stander Spa @ CEA - Inc. Com Ulbar	The Fax results when available to (V - 6K 7 6 11/18/65 2:25 C 5079 2 1 X	1 - 01 T5 11/18/03 2:15 C SO 7/2 21 X	- a TY 11/18/05 2:05 C 50 2/9 2 1 X	05 T3 11/18/05 1:55 C 50 2/9 2 1 X	AI To 11/18/05 1:35 1 50/2/1/1 X	- 3 R-7' 11/18/601 1975 1C 50 7/1 21 1 X	-9 + 72 + 1/1/165 + 1.30 C S0 26 26 1	B7632-01 Tonkfield 11/16/05 2:30 C SO1/9 2 1 X	Lab Id: Sample Id: Type Matrix Prese # of V # of A # of C # of P	G=Grab C=Composite	DW=Drinking Water GW=Groundwater WW=Wastewater O=Oil SW= Surface Water SO=Soil SL=Sludge A=Air X1= X2= X3= ve Via Glass V1= X2= X3= ve Via Glass	i=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid Containers: 7=CH ₃ OH 8= NaHSO ₄ 9= Nbmp 10= Containers:	Project Mgr.: So Vandor Ser P.O. No.: P.O. No.: RON:	Report TO: CEA TWC Invoice To: CEA TWC	SPECTRUM ANALYTICALING France France	
176 • www.spectrum-analytical.com	Y	Dallal	Sameron /	Received by:	×		X				× Х	$\frac{\times}{X}$	% 801	\$; ; ; ; ;	olids 	Analyses:	Site Name: Slave CO - W Location: 82-90 S-MapleSt., L Sampler(s): Score	Project No.: $\frac{575-05}{575-05}$	CORD All TATs sub Min. 24-hour no Samples dispose	X.
		C1-2 1 24111	1/22/05 10 335	Date: Time:						(1)	Convick N	Derillart fresh	IS per MADEP CAM Section 2.0?	Provide MCP CAM Report	State specific reporting standards If applicable, please list below.	OA Reporting Notes: (check if needed)	Wastfre State: MA		cial Handling: T - (10)40 to the set of a set o	1 9 5 5 5 1 7 5 4

d ġ

チレド

Report Date: 04-Jan-06 14:43

Final Report Re-Issued Report Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

CEA, Inc. 127 Hartwell Street West Boylston, MA 01583 Attn: Scott Vandersea

Project: Sunoco Station - Westfield, MA Project #: 5795-05

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA38887-01	T1-A	Soil	19-Dec-05 09:30	22-Dec-05 15:00
SA38887-02	T1-B	Soil	19-Dec-05 09:35	22-Dec-05 15:00
SA38887-03	T1-C	Soil	19-Dec-05 09:45	22-Dec-05 15:00
SA38887-04	R-3'	Soil	19-Dec-05 10:00	22-Dec-05 15:00
SA38887-05	RS-2'	Soil	19-Dec-05 10:15	22-Dec-05 15:00
SA38887-06	RN-2'	Soil	19-Dec-05 10:30	22-Dec-05 15:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met

Please note that this report contains 14 pages of analytical data plus Chain of Custody documen(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110

Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New York # 11393/11840 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC lago however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications

ENVIRONMENTAL ANALYSES

Sample Identification TI-A SA38887-01		<u>Client Project #</u> 5795-05			<u>Matrix</u> Soil	Collection Date/Time 19-Dec-05 09:30			Received 22-Dec-05		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Semivola	itile Organic Compounds by G	C							-		
Polychiori	nated Biphenyls by SW846 8082										
Prepared	by method SW846 35508										
12674-11-2	PCB 1016	BAL		µg/kg dry	30.8	1	SW846 8082	29-Dec-05	29-Dec-05	5121623	MP
11104-28-2	PCB 1221	BRL		µg/kg dry	30,8	1	•	4		•	•
11141-16-5	PCB 1232	BRL		µg/kg dry	30.8	1	•		•	•	•
53469-21-9	PCB 1242	BAL		µg/kg dry	30.8	1	•	•		•	•
12672-29-6	PCB 1248	2,970		µg/kg dry	30.8	1	•	•	•	•	•
11097-69-1	PCB 1254	BRL		µg/kg dry	30 8	i	•	•	•	•	•
11098-82-5	PCB 1260	BRL		µg/kg dr <u>y</u>	30.8	1	•	•	•	•	•
37324-23-5	PCB 1262	BRL		µg/kg dry	30 8	1	•		•	•	•
11100-14-4	PCB 1268	BRL		µg/kg dry	30,8	1	•	•	•	•	•
Surrogate r	ecoveries:										
10385-84-2	4,4-DB-Octafluorobiphenyl (Sr)	59.9		30-150	%		•	•	•	•	•
2051-24-3	Decachlorobiphenyl (Sr)	90.2		30-150	%		•	•	•	•	•
Géneral	Chemistry Parameters										
	% Solids	93.7		%		1	SM2540 G Mod	27-Dec-05	27-Dec-05	5121496	BD

<u>Sam</u> T1-É SA3	Sample Identification T1-B SA38887-02		<u>Client Project #</u> 5795-05			<u>Matrix</u> Soil	Collection Date/Time 19-Dec-05 09:35			Received 22-Dec-05		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzea	Batch	Analyst	
Semivol <u>Polychlori</u> Prepared	atile Organic Compounds by Ge naled Biphenvis by SW846 8082 by method SW846 3550B	C						,				
12674-11-2	PCB 1016	BAL		µg/kg dry	31.2	1	SW846 8082	29-Dec-05	29-Dec-05	5121623	MP	
11104-28-2	PCB 1221	BRL		µg/kg dry	312	1	•	•	•	•	•	
11141-18-5	PCB 1232	BRL		µg/kg dry	312	1	•	•	•	•	•	
53469-21-9	PCB 1242	BRL		µg/kg dry	31 2	1	•	•	•	•	•	
12572-29-6	PCB 1248	3,420		µg/kg dry	31.2	1	•	•		•	•	
11097-69-1	PCB 1254	BRL		µg∕kg dry	312	1	•	•	٠	•	•	
11096-82-5	PCB 1260	BRL		µg/kg dry	31.2	1	•	•	•	•	•	
37324-23-5	PCB 1262	BRL		µg/kg dry	31.2	1	•	,	•	•	•	
11100-14-4	PCB 1268	BRL		µg/kg dry	31.2	1	•	•	•	•	•	
Surrogate i	ecoveries:						- <u></u>					
10385-84-2	4,4-DB-Ociafluorobiphenyl (Sr)	65.0		30-150 %			•	•	•		•	
2051-24-3	Decachlorobiphenyl (Sr)	60.1		30-150 %	ř.		•	•	• .	•	•	
General	Chemistry Parameters											
	% Solids	0.08		%		1	SM2540 G Mod	27-Dac-05	27-Dec-05	5121496	BD	

<u>Samr</u> TI-C SA38	<u>ble Identification</u> : :8887-03		<u>Clier</u> 5	n <u>t Project #</u> 795-05		<u>Matrix</u> Soil	<u>Collectio</u> 19-De	n <u>Date/Tir</u> c-05 09:45	ne	<u>Receive</u> 22-Dec-	<u>=d</u> 05
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Semivola Polychlori Prepared	ntile Organic Compounds by G naled Biphenyls by SWB46 8082 by method SW846 3550B	С									
12674-11-2	PCB 1016	BRL		µg/kg dry	152	5	SW845 8082	29-Dec-05	30-Dec-05	5121623	MP
11104-28-2	PCB 1221	BAL		µg/kg dry	152	5	•	•	•	•	
11141-16-5	PCB 1232	BRL		µg/kg dry	152	5	•	•	•	•	•
53469-21-9	PCB 1242	BRL		µg/kg dry	152	5	•.	•	•	•	
12672-29-6	PCB 1248	8,330		µg/kg dry	152	5	•	•	•	•	•
11097-69-1	PCB 1254	BAL		µg/kg dry	30 3	1	•	•	•	•	•
11096-82-5	PCB 1260	BRL		µg/kg dry	30.3	1	•	•	•	•	•
37324-23-5	PC8 1262	BR1.		µg/kg dry	30,3	1	, *	•	•	•	•
11100-14-4	PCB 1268	BRL		µg/kg dry	30.3	1	•	•	•	•	•
Surrogate (ecoveries										
10386-84-2	4,4-DB-Octalluorobiphenyl (Sr)	74 9		30-150 %			•	•	•	•	•
2051-24-3	Decachlorobiphenyl (Sr)	105		30-150 %				•	•	•	•
General	Chemistry Parameters										
	% Solids	90.3		%		1	SM2540 G Mod.	27-Dec-05	27-Dec-05	5121496	BD

<u>Sam</u> R-3' SA38	Sample Identification R-3' SA38887-04 CAS No. Analyte(s) Result		<u>Client Project #</u> 5795-05			<u>Matrix</u> Soil	<u>Collection Date/Time</u> 19-Dec-05 10:00			<u>Received</u> 22-Dec-05	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
	VOC Extraction	Field extr	acted	N/A		1	VOC	27-Dec-05	27-Dac-05	5121533	BD
VPH Alipi	natic/Aromatic Carbon Ranges										
Prepared	by method VPH										
	C5-C8 Aliphatic Hydrocarbons	36.9		mg/kg dry	2.41	100	+MADEP 5/2004 Rev 1.1	29-Dec-05	29-Dec-05	5121620	JRO
	C9-C12 Aliphatic Hydrocerbons	64.4		mg/kg dry	0.603	100	•	•	•	•	•
	C9-C10 Aromatic Hydrocarbons	77.9		mg/kg dry	0 803	100	•	•	•	•	•
	Unadjusted C5-C8 Aliphatic Hydrocarbons	47.4		mg/kg dry	2.41	100	•	•	•	•	•
	Unadjusted C9-C12 Aliphatic Hydrocarbons	142		mg/kg dry	0 803	100	•	•	•	•	•
VPH larg Prapared	<u>et Analyles</u> by method VPH										
71-43-2	Benzene	BRL		µg/kg dry	161	100	•	•	•	•	•
100-41-4	Ethylbenzene	372		µg/kg dry	161	100	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		µg/kg dry	161	100	•	•	•	•	.•
91-20-3	Naphthalene	2,600		µg/kg dry	161	100	•	•	•	•	•
108-88-3	Toluene	1,710		µg/kg dry	161	100	•	•	•	•	•
1330-20-7	m,p-Xylene	5,760		yg/kg dry	321	100	•	•	•	•	•
95-47-8	o-Xylene	2,580		µg/kg dry	161	100	•	•	•	•	•
Surrogale :	recoveries.										
615-59-8	2,5-Dibromotoluene (FID)	113		70-130 %	á		•	•	•	•	•
615-59-8	2,5-Dibromotoluene (PID)	97 2		70-130 %	6		•	•	•	•	•
General	Chemistry Parameters										
	% Solids	88.7		%		1	SM2540 G Mod	27-Dec-05	27-Dec-05	5121496	BD

. .

.

<u>Sam</u> RS-2 SA38	ble Identification 19 1887-05		<u>Clier</u> 5	<u>nt Project #</u> 795-05	,	<u>Matrix</u> Soil	Collection 19-Dec	<u>Date/Tir</u> -05 10:15	<u>ne</u> 2	Received 22-Dec-05	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
	VOC Extraction	Field extr	acled	N/A		1	YOC	27-Dec-05	27-Dec-05	5121533	BD
VPH Aliph	alic/Aromalic Carbon Ranges		VOC10								
Prepared	by method VPH										
	C5-C8 Aliphatic Hydrocarbons	BRL		mg/kg dry	1.38	50	+MADEP 5/2004 Rev. 1.1	29-Dec-05	29-Dec-05	5121628	JRO
	C9-C12 Aliphatic Hydrocarbons	0 646		mg/kg dry	0 460	50	•	•	•	•	•
	C9-C10 Aromatic Hydrocarbons	0,773		mg/kg diy	0.460	50	,	•	•	•	•
	Unadjusted C5-C8 Aliphalic Hydrocarbons	1.39		mg/kg dry	1 38	50	•	•	•	•	•
	Unadjusted C9-C12 Aliphatic Hydrocarbons	1.42		mg/kg dry	0.460	50	•	•	•	•	•
VPH Taro	et Analytes		VOC10								
Prepared	by method VPH										
71-43-2	Benzene	94.2		µg/kg dry	92.0	50	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		µg/kg dry	92.0	50	•	•	•	•	•
1634-04-4	Methyl tert-bulyl ether	122		µg/kg dry	92 0	50	•	•	•	•	•
91-20-3	Naphthalene	BRL		µg/kg dry	92.0	50	•	•	•	•	•
108-88-3	Toluene	133		µg/kg dry	92.0	50	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		µg/kg dry	1B4	50	•	•.	•	•	•
95-47-6	o-Xylane	BRL		µg/kg dry	92.0	50		Ø.	•		•
Surrogate i	ecoveries										
615-59-8	2,5-Dibromotoluène (FID)	118		70-130 1	6		•	•	•	•	•
615-59-8	2,5-Dibromotoluene (PID)	102		70-130 %	é		•	•	•	•	•
General	Chemistry Parameters										
	% Solids	89 3		%		1	SM2540 G Mod	27-Dec-05	27-Dec-05	5121496	BD

<u>le Identification</u> • 887-06		<u>Clier</u> 5	<u>1t Project #</u> 795-0 5	£	<u>Matrix</u> Soil	Collection 19-Dec	<u>ne</u>	Received 22-Dec-05		
Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Organic Compounds										
VOC Extraction	Field extr	acled	N/A		1	VOC	27-Dac-05	27-Dec-05	5121533	8D
tic/Aromatic Carbon Banges		VOC10								
y method VPH										
C5-C8 Aliphatic Hydrocarbons	1.58		mg/kg dry	1 11	50	+MADEP 5/2004 Rev 1.1	28-Dec-05	28-Dec-05	5121556	JRO
C9-C12 Allphatic Hydrocarbons	1.48		mg/kg dry	0.369	50	•	•	•	•	٠
C9-C10 Aromatic Hydrocarbons	1.16		mg/kg dry	0 369	50	•		•	•	•
Unadjusted C5-C8 Aliphatic	177		mg/kg dry	1.11	50	•	•	•	•	•
Hydrocarbons										
Unadjusted C9-C12 Aliphatic	264		mg/kg dry	0 369	50	•	•	•	•	•
Hydrocarbons		VOC10								
(Analyles		40010								
	001		and the states	70.0	50					
Benzene	BHL		highing any	739	50					
Einyidenzene	BHL		hôw dian qua	73.5	50					
Meinyi ten-butyi etner	BRL		pgykg cry	739	50		,	.		
Taluasa	BRL		hôvô av	73.9	50	•			•	
	98.8		pgvig cay upšep dou	139	50	•				
m,p-xyiene	BRL		pgrog day	140	50					
D-Aylene	DHL		pgrig ory	13.5	50			·		
coveries:	100		-	_				-		
2,5-Dibromotoluena (FID)	102		70-130 5	5 ~		:				
2,5-Dibromoloiuene (PID)	90.2		70-130 5	70 70		-	-	-	-	-
Chemistry Parameters										
% Solids	95.7		%		1	SM2540 G Mod.	27-Dec-05	27-Dec-05	5121496	BD
	Identification 887-06 Analyte(s) Organic Compounds VOC Extraction Mic/Aromalic Carbon Banges y method VPH C5-C8 Aliphatic Hydrocarbons C9-C12 Aliphatic Hydrocarbons C9-C12 Aliphatic Hydrocarbons Unadjusted C5-C8 Aliphatic Hydrocarbons Unadjusted C9-C12 Aliphatic Hydrocarbons tAnalytes y method VPH Benzene Ethylbenzene Methyl terl-butyl ether Naphthalene Toluene m.p-Xylene o-Xylene coveries: 2,5-Dibromotoluene (FID) 2,5-Dibromotoluene (PID) Chemistry Parameters % Solids	Internation Image: International content in the end of t	Ite Identification Clier 887-06 5 Analyte(s) Result Flag Organic Compounds VOC Extraction Field extracted VOC Extraction Field extracted VOC10 ymethod VPH C5-C8 Aliphatic Hydrocarbons 1.58 C9-C12 Aliphatic Hydrocarbons 1.48 C9-C10 Aromatic Hydrocarbons 1.16 Unadjusted C5-C8 Aliphatic 1 77 Hydrocarbons 1.16 Unadjusted C9-C12 Aliphatic 2 64 Hydrocarbons 1.48 Unadjusted C9-C12 Aliphatic 2 64 Hydrocarbons 1.16 Unadjusted C9-C12 Aliphatic 9 8.1 1.16 1.16 Ethylbenzene BRL<	Ite Identification Client Project # 887-06 5795-05 Analyte(s) Result Flag Units Organic Compounds VOC Extraction Field extracted N/A VOC Extraction Field extracted N/A Mic/Aromalic Carbon Banges VOC10 VOC10 y method VPH C5-C8 Aliphatic Hydrocarbons 1.58 mg/kg dry C9-C12 Aliphatic Hydrocarbons 1.48 mg/kg dry C9-C12 Aliphatic Hydrocarbons 1.16 mg/kg dry Unadjusted C5-C8 Aliphatic 1 77 mg/kg dry Hydrocarbons 1.16 mg/kg dry Unadjusted C9-C12 Aliphatic 2 64 mg/kg dry Hydrocarbons Unadjusted C9-C12 Aliphatic 2 64 mg/kg dry Hydrocarbons Ethylbenzene BRL µg/kg dry Kanalytes VOC10 VOC10 Voc10 y method VPH Benzene BRL µg/kg dry Kanalytes VOC10 VOC10 Voc10 Ymethod VPH Benzene BRL µg/kg dry Naphthalene BRL µg/kg dry <td< td=""><td>Ic Identification Client Project # 5795-05 887-06 S795-05 Analyte(s) Result Flag Units *RDL Organic Compounds VOC Extraction Field extracted N/A VOC Extraction Field extracted N/A Mite/Aromalic Carbon Banges VOC10 VOC10 y method VPH C5-C8 Aliphatic Hydrocarbons 1.58 mg/kg dry 0.369 C9-C12 Aliphatic Hydrocarbons 1.48 mg/kg dry 0.369 C9-C10 Aromatic Hydrocarbons 1.16 mg/kg dry 0.369 Unadjusted C5-C8 Aliphatic 1.77 mg/kg dry 0.369 Unadjusted C9-C12 Aliphatic 1.77 mg/kg dry 0.369 Hydrocarbons 1.16 mg/kg dry 0.369 Unadjusted C9-C12 Aliphatic 2.64 mg/kg dry 0.369 Hydrocarbons Unatives VOC10 VOC10 VOC10 y method VPH Benzene BRL µg/kg dry 73.9 Ethylbenzene BRL µg/kg dry 73.9 Naphthalene BRL µg/kg dry 73.9 Toluene</td><td>In InternationClient Project # 5795-05Matrix Soil887-06SoilSoilAnalyte(s)ResultFlagUnits*RDLDilutionOrganic CompoundsVOC ExtractionField extractedN/A1VOC ExtractionField extractedN/A11attic/Aromatic Carbon BangesVOC10VOC1011150C9-C12 Aliphatic Hydrocarbons1.58mg/kg dry0.36950C9-C12 Aliphatic Hydrocarbons1.16mg/kg dry0.36950C9-C10 Aromatic Hydrocarbons1.16mg/kg dry0.36950Unadjusted C5-C8 Aliphatic1.77mg/kg dry0.36950Unadjusted C9-C12 Aliphatic2.64mg/kg dry0.36950HydrocarbonsUnadjusted C9-C12 Aliphatic2.64mg/kg dry73.950HydrocarbonsEthylbenzeneBRLµg/kg dry73.950Methyl terl-burlyl etherBRLµg/kg dry73.950NaphthaleneBRLµg/kg dry73.950NaphthaleneBRLµg/kg dry73.950NaphthaleneBRLµg/kg dry73.950coveries:2,5-Dibromotoluene (FID)10270-130 %2,5-Dibromotoluene (FID)90.270-130 %71Chemistry Parameters% Solids95.7%1</td><td>Identification Client Project # 5795-05 Matrix Collection 887-06 5795-05 Soil 19-Dec Analyte(s) Result Flag Units *RDL Dillution Method Ref. Organic Compounds VOC VOC VOC 1 VOC VOC Extraction Field extracted NA 1 VOC ymethod VPH VPH 111 50 +MADEP 5/2004 Rev. C9-C12 Aliphalic Hydrocarbons 1.48 mg/kg dry 0.369 50 1.1 C9-C10 Aromalic Hydrocarbons 1.16 mg/kg dry 0.369 50 1.1 Unadjusted C5-C8 Aliphalic 1.77 mg/kg dry 0.369 50 1.1 Hydrocarbons 1.16 mg/kg dry 0.369 50 1.1 Hydrocarbons 1.17 mg/kg dry 0.369 50 1.1 Hydrocarbons 1.17 mg/kg dry 73.9 50 1.1 Hydrocarbons 1.18 mg/kg dry 73.9 50 1 Kanalytes VOC10 ymethod VPH Benzene</td></td<> <td>Ic Identification AdditionClient Project # 5795-05Matrix SoilCollection Date/Tin Dec-05 10:30Analyte(s)ResultFlagUnits*RDLDilutionMethod Ref.PreparedOrganic CompoundsVOC ExtractionField extractedN/A1VOC 27-Dec-05VOC ExtractionField extractedN/A1VOC 27-Dec-05y method VPHVOC C3-C8 Aliphatic Hydrocarbons1.58mg/kg dry11150+MADEP 5/2004 Rev.28-Dec-05C9-C12 Aliphatic Hydrocarbons1.48mg/kg dry0.36950Unadjusted C3-C28 Aliphatic1.77mg/kg dry0.36950Unadjusted C3-C24 Aliphatic2.64mg/kg dry0.36950Hydrocarbons1.16mg/kg dry73.950Hydrocarbons1.6mg/kg dry73.950Hydrocarbons1.8mg/kg dry73.950Y method VPHBenzenaBRLµg/kg dry73.950BenzenaBRLµg/kg dry73.950Toluene98.8µg/kg dry73.950Covriesc2,5-Dibromotoluene (FID)10270-130 %<</td> <td>Le IdentificationClient Project # \$795-05Matrix SoilCollection Date/Time 19-Dec-05 10:30Analyte(s)ResultFlagUnits*RDLDilutionMethod Ref.PreparedAnalytedOrganic CompoundsVOC ExtractionField extractedNA1VOC27-Dec-0527-Dec-0527-Dec-05VOC ExtractionField extractedNA1VOC27-Dec-0527-Dec-0528-Dec-0528-Dec-0528-Dec-0528-Dec-0528-Dec-0528-Dec-0528-Dec-051.1<t< td=""><td>Le Identification Client Project # 5795-05 Matrix Soil Collection Date/Time 19-Dec-05 10:30 Receive 22-Dec-</br></br></br></td></t<></td>	Ic Identification Client Project # 5795-05 887-06 S795-05 Analyte(s) Result Flag Units *RDL Organic Compounds VOC Extraction Field extracted N/A VOC Extraction Field extracted N/A Mite/Aromalic Carbon Banges VOC10 VOC10 y method VPH C5-C8 Aliphatic Hydrocarbons 1.58 mg/kg dry 0.369 C9-C12 Aliphatic Hydrocarbons 1.48 mg/kg dry 0.369 C9-C10 Aromatic Hydrocarbons 1.16 mg/kg dry 0.369 Unadjusted C5-C8 Aliphatic 1.77 mg/kg dry 0.369 Unadjusted C9-C12 Aliphatic 1.77 mg/kg dry 0.369 Hydrocarbons 1.16 mg/kg dry 0.369 Unadjusted C9-C12 Aliphatic 2.64 mg/kg dry 0.369 Hydrocarbons Unatives VOC10 VOC10 VOC10 y method VPH Benzene BRL µg/kg dry 73.9 Ethylbenzene BRL µg/kg dry 73.9 Naphthalene BRL µg/kg dry 73.9 Toluene	In InternationClient Project # 5795-05Matrix Soil887-06SoilSoilAnalyte(s)ResultFlagUnits*RDLDilutionOrganic CompoundsVOC ExtractionField extractedN/A1VOC ExtractionField extractedN/A11attic/Aromatic Carbon BangesVOC10VOC1011150C9-C12 Aliphatic Hydrocarbons1.58mg/kg dry0.36950C9-C12 Aliphatic Hydrocarbons1.16mg/kg dry0.36950C9-C10 Aromatic Hydrocarbons1.16mg/kg dry0.36950Unadjusted C5-C8 Aliphatic1.77mg/kg dry0.36950Unadjusted C9-C12 Aliphatic2.64mg/kg dry0.36950HydrocarbonsUnadjusted C9-C12 Aliphatic2.64mg/kg dry73.950HydrocarbonsEthylbenzeneBRLµg/kg dry73.950Methyl terl-burlyl etherBRLµg/kg dry73.950NaphthaleneBRLµg/kg dry73.950NaphthaleneBRLµg/kg dry73.950NaphthaleneBRLµg/kg dry73.950coveries:2,5-Dibromotoluene (FID)10270-130 %2,5-Dibromotoluene (FID)90.270-130 %71Chemistry Parameters% Solids95.7%1	Identification Client Project # 5795-05 Matrix Collection 887-06 5795-05 Soil 19-Dec Analyte(s) Result Flag Units *RDL Dillution Method Ref. Organic Compounds VOC VOC VOC 1 VOC VOC Extraction Field extracted NA 1 VOC ymethod VPH VPH 111 50 +MADEP 5/2004 Rev. C9-C12 Aliphalic Hydrocarbons 1.48 mg/kg dry 0.369 50 1.1 C9-C10 Aromalic Hydrocarbons 1.16 mg/kg dry 0.369 50 1.1 Unadjusted C5-C8 Aliphalic 1.77 mg/kg dry 0.369 50 1.1 Hydrocarbons 1.16 mg/kg dry 0.369 50 1.1 Hydrocarbons 1.17 mg/kg dry 0.369 50 1.1 Hydrocarbons 1.17 mg/kg dry 73.9 50 1.1 Hydrocarbons 1.18 mg/kg dry 73.9 50 1 Kanalytes VOC10 ymethod VPH Benzene	Ic Identification AdditionClient Project # 5795-05Matrix SoilCollection Date/Tin Dec-05 10:30Analyte(s)ResultFlagUnits*RDLDilutionMethod Ref.PreparedOrganic CompoundsVOC ExtractionField extractedN/A1VOC 27-Dec-05VOC ExtractionField extractedN/A1VOC 27-Dec-05y method VPHVOC C3-C8 Aliphatic Hydrocarbons1.58mg/kg dry11150+MADEP 5/2004 Rev.28-Dec-05C9-C12 Aliphatic Hydrocarbons1.48mg/kg dry0.36950Unadjusted C3-C28 Aliphatic1.77mg/kg dry0.36950Unadjusted C3-C24 Aliphatic2.64mg/kg dry0.36950Hydrocarbons1.16mg/kg dry73.950Hydrocarbons1.6mg/kg dry73.950Hydrocarbons1.8mg/kg dry73.950Y method VPHBenzenaBRLµg/kg dry73.950BenzenaBRLµg/kg dry73.950Toluene98.8µg/kg dry73.950Covriesc2,5-Dibromotoluene (FID)10270-130 %<	Le IdentificationClient Project # \$795-05Matrix SoilCollection Date/Time 19-Dec-05 10:30Analyte(s)ResultFlagUnits*RDLDilutionMethod Ref.PreparedAnalytedOrganic CompoundsVOC ExtractionField extractedNA1VOC27-Dec-0527-Dec-0527-Dec-05VOC ExtractionField extractedNA1VOC27-Dec-0527-Dec-0528-Dec-0528-Dec-0528-Dec-0528-Dec-0528-Dec-0528-Dec-0528-Dec-051.1 <t< td=""><td>Le Identification Client Project # 5795-05 Matrix Soil Collection Date/Time 19-Dec-05 10:30 Receive 22-Dec-</br></br></br></td></t<>	Le Identification Client Project # 5795-05 Matrix Soil Collection Date/Time 19-Dec-05 10:30 Receive 22-Dec- 22-Dec- 22-Dec-

					Spike	Source		%REC	<u>.</u>	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5121556 - VPH										
Blank (5121556-BLK1)										
Prepared & Analyzed: 28-Dec-05										
C5-C8 Allohatic Hydrocarbons	BRI		mn/ka wei	0 750						
C9-C12 Alighatic Hydrocarbons	BRI		ma/ka wet	0 250						
C9-C10 Aromatic Hydrocarbons	BRL		ma/ka wet	0 250						
Unadjusted CS-C8 Aliphatic Hydrocarbons	BRL		ma/ka wet	0 750						
Unadjusted C9-C12 Aliphatic Hydrocarbons	BBL		ma/ka wet	0.250						
Benzena	BBL		uc/ko wet	50.0						
Ethylbenzene	BRL		uu/ka wel	50.0						
Methyl len-butyl ether	BRL		uo/ko wet	50.0						
Naphthalene	BRL		uo/ka wet	50.0						
Toluene	BRL		uo/ka wet	500						
m,p-Xytens	BRL		ua/ko wet	100						
o-Xylene	BRL		uo/ko wei	50.0						
Surrogate: 2.5-Dibromotoluene (FID)	58 8		µa/kg wel		50.0		118	70-130		
Surrogale: 2,5-Dibromotoluene (PID)	50.3		ug/kg wet		50 0		101	70-130		
100 (5101558 861)										
LUB (BIZIBBO-BBI)										
Prepareo a Aneryzeo: 28-DBC-05										
CS-C8 Aliphatic Hydrocarbons	160		mg/kg wet		140		114	70-130		
C9-C12 Alphatic Hydrocarbons	56.2		mg/kg wet		55 0		102	70-130		
C9-C10 Aromatic Hydrocarbons	43 8		mg/kg wet		40 0		110	70-130		
Unadjusted C5-OB Aliphatic Hydrocarbons	296		mg/kg wet		260		108	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	100		mg/kg wet		85.0		118	70-130		
Benzena	19 4		hävkä met		200		97 0	70-130		
Elhylbenzene	19.3		µg/kg wet		200		98.5	70-130		
Meltryl terl-butyl ether	20.0		hð\kå mer		20.0		100	70-130		
Naphthalene	18.7		µg/kg wet		20'0		93 5	70-130		
Toluêne	19.5		µg/kg wet		20.0		97 5	70-130		
ensitX-q,m	38.5		hð\kð mef		40 0		96.2	70-130		
0-Xylene	19.4		hā/kā met		20 0		97 0	70-130		
2-метлурентале	22.4		ug/kg wet		20 0		112	70-130		
	207		hðykð met		20.0		104	70-130		
	21.9		h0/kg wet		20.0		110	70-130		
1,2,4-Inmelnyibenzene	19.4		hôvkô mer		20 0		97.0	70-130		
2,2,4-1 metrygentane	23.5		haved met		20.0		118	70-130		
n-Bunyicycionexane	22 2		have wet		20.0		111	70-130		
n-Decane	20.6		hðyka met	······································	20.0		103	70-130		
Surrogate: 2,5-Dibromotoluana (FID)	50 6 42 0		µg/kg wet		500		101	70-130		
Sundale: 2,3-Divolitionale (FiD)	4310		how how how		50.0		000	10-150		
LCS Dup (5121556-BSD1)										
Prepared & Analyzed: 28-Dec-05										
C5-C8 Aliphatic Hydrocarbons	155		ing/kg wet		140		111	70-130	2 57	25
C9-C12 Aliphatic Hydrocarbons	53.2		mg/kg wet		55.0		96.7	70-130	5.33	25
C9-C10 Aromatic Hydrocarbons	43 1		mg/kg wet		40.0		108	70-130	1 83	25
Unedjusted C5-C8 Aliphatic Hydrocarbons	290		mg/kg wet		280		104	70-130	190	25
Unedjusted C9-C12 Aliphatic Hydrocarbons	96.3		mg/kg wet		85 0		113	70-130	4.33	25
Benzene	18.7		µg/kg wet		200		93.5	70-130	3 67	25
Ethylbenzene	19.2		µg∕kg wet		20 0		96.0	70-130	0 519	25
Mathyl tert-butyl other	19 2		µg/kg wet		20.0		96.0	70-130	4 08	25
Naphthalene	16 1		µg/kg wel		20 0		90 5	70-130	3 26	25
Toluene	198		µg/kg wet		20.0		99.0	70-130	1.53	25
m,p-Xylene	38,7		pg/kg wet		40 Q		96. B	70-130	0 622	25
o-Xytene	19.6		µg/kg wat		200		98.0	70-130	1 03	25
2-Melhylpentane	17 3	QR-02	µg/kg wet		20 0		86.5	70-130	25 7	25
n-Nonane	17.1		hð\kå met		20.0		85 5	70-130	19.5	25
n-Penlare	18.5		hðyrð mer		200		92,5	70-130	17.3	25

This laboratory report is not valid without an authorized signature on the cover page.

* Reportable Detection Limit

BRL = Below Reporting Limit

.

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5121556 - VPH										
LCS Dup (5121556-BSD1)										
Prepared & Analyzed: 28-Dec-05										
1 2 4-Trimelhvibenzene	19 3		unito wet		20.0		96-5	70-130	0.517	25
2 2 4-Trimelhylpeniana	185		unita wat		20.0		92.5	70-130	24.2	25
n-Butvirvchibexane	18.1		unition wat		20.0		90.5	70-130	20.3	25
n-Decane	18.2		porto vist		20.0		91 5	70-130	118	25
Sumania: 2.5. D/http://doi.org//SID)	63.0		up/rig wot		50.0		109	70-130	11.0	
Surrogate: 2,5-Dibromotoluene (PID)	46.0		hðykð met		50.0		92 0	70-130		
Duplicale (5121556-DUP1) Sources	SA36710-01									
Prepared & Analyzed: 28-Dec-05										
C5-C8 Aliphatic Hydrocarbons	1.05		ma/ka dry	1 02		0 946			10.4	50
C9-C12 Aliphatic Hydrocarbons	BAL		mg/kg dry	0.339		O 148			23.4	50
C9-C10 Aromatic Hydrocarbons	0.565		ma/ka drv	0.339		0.572			1 23	50
Unadjusted C5-C8 Aliphatic Hydrocarbons	1 08		ma/ka drv	1.02		1.02			5.71	50
Unadjustad C9-C12 Aliphatic Hydrocarbons	0.682		mo/kn drv	0.339		0.720			5.42	50
Benzene	BBI		unuña dav	67.7		BRL				50
Elhybenzene	BBI		un/ka day	57.7		881				50
Melhyl led-bull elher	BBI		unika day	67.7		BBL				50
NanMhalene	73 4		unim dry	67.7		60.3			19.6	50.
Tohene	BDI		uging day	67.7		43.8			21.5	50
m n-Xvlana	801		uoko dev	135		34.5			21.0	50
n, Friend	BOIL		µgrig diy µgrig doy	677		BBI				50
Cumpater 2.5-Ditempolehinga (510)	54.0		up kg dry	07.7	50.0	Ditte	1/09	7/1-130		
Surgeste: 2.5-Dibromolohiana (PID)	47.8		up/ing ony		50.0		95.6	70-130		
Sundans 2,3-Discontration (11D)	470		hână ell		00.0					
Matrix Splke (5121556-MS1) Source:	SA38710-01									
Prepared & Analyzed: 28-Dec-05										
Benzene	18.7		ug/kg dry		20.0	BRL	93 5	70-130		
Ethylbenzene	19.3		µp/kg dry		20.D	BRL	96.5	70-130		
Methyl tert-butyl ether	18.6		ua/ka drv		20.0	BRL	93.0	70-130		
Nephihalene	19.3		ua/ica drv		20.0	1 00	915	70-130		
Takiene	19.9		uo/ico drv		20.0	0.730	95.8	70-130		
m.o-Xviene	38.9		uo/ko drv		40.0	0 574	95.8	70-130		
o-Xviene	19.6		ura/ka drv		20.0	BRL	98.0	70-130		
2-Methyloentane	20.3		un kn dry		20.0	BBL	102	70-130		
o-Nonana	18.8		undica day		20.0	BBI	93.0	70-130		
n-Pentane	20.7		uaka do		20.0	BRI	104	70-130		
1 2 4-Trimethylhenzene	207		yging ury yging day		20.0	BRI	101	70-130		
2.2.4 Trimethymoniana	21.0		pgrag dry		20.0		110	70-130		
n-Rukimetohavana	219		pyry day		20.0	0.0	00.5	70-130		
n-Decano	19.9		how do		20.0	0.0	98.5 98.5	70-130		
Companies 2.5 Discrete Lang (ED)			pg/kg uly		20.0	0.0	100	70-130		·····
Surrogale: 2,5-Dibromotoluene (PiD) Surrogale: 2,5-Dibromotoluene (PiD)	24 J 45 1		ugang ary ugang day		50.0 50.0		90.2	70-130		
Batch 5121628 - VPH	141		իֆայ օւյ		50.0			10 100		
Blank (5121628-BLK1)										
Prenared & Analyzed: 29-Dec-05										
CS-C8 Aliobalic Hydrocathons	201		main wot	0.760						
CQ_C12 Alizhadir Hudiwashone	prot.		നവ്യപ്പെ യാ	0.7.50						
C9.C10 Annualie Hydrocarbone	DAL		moto wet	0.250						
Lingdiging C5.09 Alightlic Interventions			and wer	0.230						
Unadjusted Co-CP Alphalic Hydrocarbons	BHL		mg/kg wet	0.750						
Disaujusieu Co-C+2 Auphauc riyotocatoons	BHL		unting mot	0200						
Denzene Ethebaaren	BHL		HOW MAY	20.0						
Eurystenzene	BHL		hänkä mer	50.0						
Metry 1871-Duty Buler	BRL		hðurð met	500						
Telese	BHL		hðukð mei	0.00						
000800	BRL		uguikg wet	500						

This laboratory report is not valid without an authorized signature an the cover page.

BRL = Below Reporting Limit

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REÇ	Limits	RPD	Limit
			<u> </u>							
Batch 5121628 - VPH										
Rippk (5121628-RI X1)										
Denning 12 (20-00-00-00-00-00-00-00-00-00-00-00-00-0										
m o. Yvlana	0.01									
กนูกรรณช อ. Yulana	BRL		hðvæð mer	100						
Cumpate 25 Othermelatures (50)	0RL 42.4		hävä met	50.0	50.0		00.0	70 190		
Sumogale: 2,5-Dibromotoluene (FID) Sumogale: 2,5-Dibromotoluene (PID)	43.4		µgnog wet iug/kg wet		500		80 0 72 A	70-130 70-130		
Surogan. 2,5-Distonological (* 10)	50.5		hftw8 upr		500		/30	70-150		
LCS (5121628-BS1)										
Prepared & Analyzed: 29-Dec-05							L			
C5-C8 Aliphatic Hydrocarbons	157		mg/kg wel		140		112	70-130		
C9-C12 Aliphatic Hydrocarbons	596		mg/kg wet		55 0		108	70-130		
C9-C10 Aromatic Hydrocarbons	41.0		mg/kg wei		40 D		102	70-130		
Unadjusted C5-O3 Aliphatic Hydrocarbons	265		mg/kg wet		280		102	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	101		mg/kg.wei		85.0		119	70-130		
Benzens	17.5		µg/kg wet		20 0		87.5	70-130		
Ethylbenzene	18.6		µg/kg wet		200		93 0	70-130		
Methyl tert-butyl ether	18.6		µg/kg wet		20.0		93.0	70-130		
Naphthalene	18.4		µg/kg wet		20.0		92.0	70-130		
Toluana	18.5		µg/kg wet		20 0		92.5	70-130		
m.p-Xylene	36.9		µg/kg wet		40 0		92.2	70-130		
o-Xylana	18 8		µg/kg wet		20 0		94 0	70-130		
2-Methylpentane	17.5		µg/kg wet		20.0		87.5	70-130		
n-Nonane	19.4		µg/kg wel		20 0		97 0	70-130		
n-Pentane	164		µa/kg wet		200		82.0	70-130		
1,2,4 Trimethylbenzene	192		µg/kg wet		20.0		96 0	70-130		
2,2,4-Trimethylpentane	21.1		µa/ka wet		20 0		106	70-130		
n-Butylcyclohexane	21.0		µa/kg wet		20.0		105	70-130		
n-Decane	19,1		µg/kg wet		20.0		95.5	70-130		
Surroozte: 2,5-Dibromololuene (FID)	57 0		µg/kg wel		50 0		114	70-130		
Surrogale: 2,5-Dibromololuene (PID)	46.7		µg/kg wel		50 0		93 4	70-130		
LCS Dup (5121628-BSD1)										
Prepared & Analyzed: 20-Dec-05										
CEC9 Aliabatic Hudiocations					440			70 (00	0.74	25
CO-C12 Aliphatic Hydrogetheas	153		mgykg wet		140		109	70-130	271	23
CO-C10 Ammalic Hydrocarbons	0.00		mg/kg wet		550		109	70-130	1.00	20
Usadhigtad C5.09 Aliabatia Hudiocarboat	40.1		mg/kg wet		40.0		100	70-130	1 09	23
Linediusiad CO.CI2 Alinhatic Hydrocarbons	200		ingrig wet		200		410	70-130	0.044	23
Banzono	17.6		mgyxg wat		83 0		876	70-130	0.044	25
Fihribenzene	1/5		hðivirði Mer		200		01.0	70-130	9.79	25
Method fart-hubd either	10.1		hð ver nærei mer		20.0		90.5	70-130	2.12	23
Nonbihelene	19.0		hðivið mer		200		95,0	70-130	1 00	25
Тоцило	10 2		hôvô met		200		91.U	70-130	2.10	25
m n-Yylene	10.1		hðivði mer		20,0		90-3 90 E	70-130	2 13	25
~Yvlene	33.0		hðurð mar		40.0		09,0	70-130	2 3/	25
2-Methylantana	10.3		hðurð mar		20.0		905	70-130	8.93	23
n-Nonana	18.4		hBwei wer		200		02.0	70-130	6.20	25
n-Pentana	14 7		hite war		20.0		73 6	70-130	100	25
1 2 4-Trimethylbenzene	18.5		hðivið Mar		20.0		025	70-130	371	25
2.2.4-Trimethyloentane	18.2		hitu wa		200		015	70-130	14 7	25
n-Butvicyclobexane	20.3		hing wor		20.0		102	70-120	2 90	25
n-Decane	20.4 20 A		have more		20.0		104	70-120	8.52	25
Summate: 2.5-Ditromotohume /5/DI	57 2		Handra wat		50.0		115	70-130	0.06	
Sutrogate: 2,5-Dibromotoluene (PID)	46 5		up/kg wet		50 0		93.0	70-130		
			10.00							
Duplicate (5121628-DUP1) Source:	SA38710-07									
Prepared & Analyzed: 29-Dec-05	_		_							
Co-Ge Aliphatic Hydrocarbons	BAL		mg/kg drý	1.02		0 808			8.76	50

This laboratory report is not valid without an authorized signature on the cover page

* Reportable Detection Limit

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5121628 - VPH										
Duplicate (5121628-DUP1) Source:	SA38710-07									
Prepared & Analyzed: 29-Dec-05										
C9-C12 Aliphatic Hydrocarbons	BRL		ma/ko drv	0.342		0_0798			127	50
C9-C10 Aromatic Hydrocarbons	0 369		ma/ka drv	0.342		0.379			2 67	50
Unadjusted C5-C8 Aliphatic Hydrocarbons	BAL		ma/ka dry	1.02		0 843			4 52	50
Unadjusted C9-C12 Aliphatic Hydrocarbons	0.450		ma/ka dry	0.342		0.459			0218	50
Benzene	BRL		ua/ka drv	68.3		BRL				50
Ethylbenzene	BRL		ua/ka div	68.3		BAL				50
Methyl tert-butyl ether	BRL		uq/kg div	68 3		BRL				50
Naphthalene	BAL		µu/ka dry	68 3		BRL				50
Toluene	BRL		uo/ka dry	68.3		BAL				50
m,p-Xylene	BRL		μα/κα άιγ	137		34.6				50
o-Xylena	BRL		ug/kg dry	68.3		BAL				50
Surrogate: 2,5-Dibromololuene (FID)	53 4		µg/kg dry		50.0		107	70-130		
Surrogale: 2,5-Dibromotoluene (PID)	46.8		µg/kg dry		50 0		93.2	70-130		
Matrix Spike (5121628-MS1) Source:	SA38710-07									
Prepared & Analyzed: 29-Dec-05										
Benzene	17.4		µg/kg dry		20.0	BRL	87.0	70-130		
Ethylbenzene	18.5		µg/kg diy		20.0	BRL	92.5	70-130		
Methyl tent-butyl ether	18.4		µg/kg dry		20 0	BRL	92.0	70-130		
Naphihalene	18.1		ug/kg dry		20.0	BRL	90.5	70-130		
Toluene	18.4		µg/kg dry		20.0	BRL	92.0	70-130		
m,p-Xytana	36.7		µg/kg dry		40 D	0 579	90 3	70-130		
o-Xylene	18.6		µg/kg dry		20.0	BAL	93.0	70-130		
2-Methylpeniane	17 0		µg/kg dry		20.0	BRL	85.0	70-130		
п-Nолале	19.9		µg/kg dry		20.0	BRL	99.5	70-130		
n-Pentane	16.4		µg/kg dry		20.0	BRL	62.0	70-130		
1,2,4-TrimeByBenzene	19.1		µp/kg dry		20.0	BRL	95.5	70-130		
2,2,4-Trimethylpentane	20.0		µg/kg dry		20.0	BRL	100	70-130		
n-Butylcyclohexane	21.9		µg/kg.dry		200	0.0	110	70-130		
n-Decane	22.0		µg/kg dry		20.0	0.0	110	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	53.1		µg/kg dry		50.0		106	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	44 0		pg/kg dry		50.0		88 O	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5121623 - SW846 3550B										
Blank (5121623-BLK1)										
Prepared & Analyzed: 29-Dec-05										
PCB 1016	BRL		µg/kg wet	28.1						
PCB 1221	BAL		µg/kg wet	28 1						
PCB 1232	BRL		µg/kg wet	26 1						
PCB 1242	BRL		µg/kg wet	28.1						
PCB 1248	BRL		µg/kg wet	28 1						
PC8 1254	BAL		ug/kg wet	28,1						
PCB 1260	BRL		µg∕kg wet	28 1						
PCB 1262	BRL		µg/kg wet	28.1						
PCB 1268	BRL		µg/kg wet	28,1						
Surrogate: 4,4-DB-Octalluorobiphenyl (Sr)	23.8		µg/kg wet		28.1		847	30-150		
Surrogale: Decachlorobiphenyl(Sr)	30.9		µg/kg wet		28 1		110	30-150		
100 (6191692.901)										
LC3 (3)21023-031										
FTEP2ING & ANBIYZED: 29-UEC-US										
10.0	422		µg/kg wat	28.1	350		121	40-140		
PC8 1260	390	_	yg/kg wet	28.1	350		111	40-140		
Surrogate: 4,4-DB-Octaffuorobiphemyl (Sr)	238		hðykð met		28.0		85.0	30-150		
Surrogate: Decachkorobiphenyl(Sr)	26.6		pg/kg wet		28.0		95 O	30-150		
Duplicate (5121623-DUP1) Source:	SA38842-06									
Prepered & Analyzed: 29-Dec-05										
PCB 1016	001					0.04				10
DCB 1021	DIL		hðvið alð	28,1		BHL				40
	BHL		hôvið arð	291		BHL				40
	BHL		hðvæl av	29.1		BHL				40
	BHL		hðykā quà	29 1		BAL				40
	BRL		hð\kä quà	29.1		BRL				40
PCB 1204	BAL		hðykð quà	29.1		BRL				40
PCB 1200	BAL		hðykā quà	29.1		BRL				40
PCB 1262	BRL		hðykð quà	29.1		BAL				40
PCB 1268	BRL		µg/kg dry	29.1		BAL				40
Surrogate: 4,4-DB-Octafluoroblphenyl (Sr)	24 7		µg/kg dry		29.1		84.9	30-150		
Surrogate: Decachlorobiphenyl(Sr)	30.5		hðykð quð		29 1		105	30-150		
Matrix Spike (5121623-MS1) Source:	SA38842-05									
Prenared & Analyzed: 29-Dec-05										
PCB 1018	476		unika dari	20.7	974	801	100	40 140		
PCB 1260	470		Hyrky ally	28.7 00.7	371		120	40-140		
Comparing (4 DP Orte Republic Land (Cd	494		pg/kg ory	29.7	3/1	BHL	133	40-140		
Sumogala: 4,4-DB-Octaluorooipnenji (Sr) Sumorate: Decechlorobinhemi/Sri	20 / 32 B		ug/xg ary		29 G 20 S		90.2	30-150		
Surogata. Decacitorophicity(Cr)	32.0		hđưng cuộ		290		110	30-150		
Matrix Spike Dup (5121623-MSD1) Source:	SA38842-06									
Prepared & Analyzed; 29-Dec-05										
PCB 1016	442		µg/kg dry	28.0	349	BRL	127	40-140	0,784	50
PCB 1260	43B		uo/ka dry	28.0	349	BRL	125	40-140	6.20	50
Surrogate: 4,4-DB-Octafluorobiphem/ (Sr)	22.4		uo/ka drv		28 0		80.0	30-150	-	
Surrogate: Decachlorobiphenyl(Sr)	32 1		µg/kg dry		28.0		115	30-150		
	General	Cham	istry Para	meters .	Onality (Control				
	Octicial	Спещ	isti y 1 al 2	MICLCI 3 -	Quality	Concion				
					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 5121496 - General Preparation										
Duplicate (5121496-DUP1) Source:	SA38862-03									
Prepared & Analyzed: 27-Dec-05										
% Solids	04.7		e <u>r</u>			0/ 6			0.108	20
	34.1		70			940			0 100	20

Semivolatile Organic Compounds by GC - Quality Control

This laboratory report is not valid without an authorized signature on the cover page

* Reportable Detection Limit

BRL = Below Reporting Limit

The following outlines the condition of all VPH samples contained within this report upon laboratory receipt

				· · · · · · · · · · · · · · · · · · ·					
Matrix	Aqueous	: Er Soil	Sediment	• Other					
Containers	E Satisfact	ory 🔎 🗆 Broken	Leaking						
Samela	Aqueous (acid-preserved)	ØN/A □ pH≤	2 □ pH>2	Comment					
Preservative	Soil or Sediment	Soil or Sediment Sediment Samples received in Methanol or air-tight container not covering soil/sediment not covering soil/sediment							
		Samples received	in air-tight containe	er:					
Temperature	C Received	on ice Received	iat4±2℃ □ Ot	her: °C					

Were all QA/QC procedures followed as required by the VPH method? Yes_____No

Were any significant modifications made to the VPH method as specified in section 11.3? No *see below

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes____No__

* Yes, if PID and FID surrogate recoveries are listed as na, then that sample was run via GCMS using all QC criteria specified in the method

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Notes and Definitions

QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data

vext2 Field extracted

- VOC10 The VOC field preserved soil sample is not within the 1:1 weight to volume ratio as recommended by SW846 methods 5030 and 5035 but may be within the 1:1 volume to volume ratio.
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC

Laboratory Control Sample (LCS): A known matrix spiked with compound's) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analytes). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

	Condition upon Receipt:	C E-mail results when available to <u>SVandersea@cca-inc.c</u>	Fax results when available to (508) 835-8822					\forall UG RN-2, 12/19/05 10:	CSRS-2' 12/19/05 10:	<i>c</i> ₄ R-3, 12/19/05 10:	12/19/05 9:4:	[] - η2 [T1-B 12/19/05 9:3:	BBB 7-0 T1-A 12/19/05 9:30	Lab Id: Sample Id: Date:	G= Gmb C= Composite		0=0il SW= Surface Water SO=Soil SL=Slu X1=X2=X3=	DW=Drinking Water GW=Groundwater WW	1=Na ₂ S20 ₃ 2=HCI 3=H ₂ SO ₄ 4=HN0 ₃ 5=NaOH 7=CH ₃ 0H 8= NaHSO ₄ 9= <u>None</u> 10=	Project Manager: Scott VanderSca	W. Boylston, MA 01583	127 Hartwell Street	Corporate Environmental Advisors	Report To:	ENERTIAL AUMATTICAL, INC Robust HANDAA.TICINATION		
3rVl	 ^`\ 		K					30 C	15 IC)0 C	C	C	C	Time: Type	<u> </u>		dge A=Air	/=Wastewater	6=Ascorbic		W. Boylston, N	127 Hartwell S	Corporate Envi	Invoice To: Sp		CHAIN	
-			6					// OS	SO 7/	SO 7/	6 OS	6 OS	SO 9	Matrix	ntive	_	ļ		Acid		8510 AV	Ireel	ronments	ecial Spo	Page	OF	
		,	A	0	Relinqui			9 2	9 2	9 2				# of VC)AVia	ıts					3		al Advis	sctrum P		CUS	
				N	shed by			1	1	1	1	-		# of Ал	nber (ilass	;		Сол				SIO	កែញ់ពួ	<u>୍</u> କ	STC	
							_							# of Cle	ear Gl	855			tainer							DD	
					:						_			# of Pla	stic				<u>.</u>							YR	
			Ł		·. ·	<u> </u>					x	×	×	PCBs											8	EC	
			du	$\left\{ \right\}$				×	×	Х				VPH							Samp	West	98 So	Proje		OR	
			E	44,92	·																ler: Pa	field M	uth Ma	ct No.:	E	IJ	
			Ð	5	(cceive		_												Analys		trick B	A	iple St		$\tilde{\mathbf{E}}$		
		-	Ce	\$	d by:						_		\vdash								rown		rect	00		•••••	
			1010	SUMA																Ň					unless oth	Standard T Rush TAT All TATs Min. 24-h All semul	
			0	<u> </u>																						Spi AT - 7 - Date J subject our not	
			121 51/21/21	1 Julachel	Date														Notes:						instructed.	ecial Handling: to 10 business days Needed: Needed: t to laboratory approval. t inficution needed for rushes. lifencard of after 60 days	LI SUBS HS
			5	24	กี :																					5)	ふ

11 Almgren Drive • Agawam, Massachusetts 01001 • 413-789-9018 • Fax 413-789-4076 • www.spectrum-analytical.com

APPENDIX G

.

Ĩ

Nnmerical Ranking System Scoresheet

۰.

MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION Bureau of Waste Site Cleanup

NUMERICAL RANKING SYSTEM SCORESHEET (310 CMR 40.1511)

CLASSIFICATIO	N SUBMITTAL			DISPOSA	L SITE SCOR	Ε	
Initial Submittal	Re-Classification		Ш	IV	v	VI	TOTAL
		<u>80</u>	<u>68</u>	<u>30</u>	<u>110</u>	<u>0</u>	288
Disposal Site Tier Classifica	tion				1		11
Permit Category (Tier I Only	·)		A		В	С	
		*******	*****	***		11	!
I.		DISPOSAL SITE	INFORMA	ΓΙΟΝ			
DEP Release Tracking Number(s)		1-15718		UTM Coordin	ates	N: 53	13249
DEP Disposal Site Number(s)					-	E: 3	01780
Disposal Site Name:	Sunoco Sta	ation					
Disposal Site Address	88-90 Sout	h Maple Street					
	City: Wes	tfield MA Zip: 0	1085				
Is the Disposal Site classifier and groundwater concentrati 40.0520(2)(a)1.? Is the Disposal Site classifier CMR 40.0520(2)(a)2.?	d Tier I because it is located ions equal or exceed RCGW d Tier I because an Imminer	within the boundaries of -1 at the time of Tier Cla nt Hazard is present at the	f a Zone II or Inte ssification pursu time of Tier Cla	erim Wellhead ant to 310 Cl assification p	1 Protection Ar MR ursuant to 310	Yes Yes	No No
I attest under the pains and p familiar with the information based upon: (i) the standard the best of my knowledge in	enaltics of perjury that I have a contained in this submittal of care in 309 CMR 40.02(nformation and belief, this S benalties may result, includin	ve personally completed t l, including any and all d 1), (ii) the applicable pro coresheet was developed ag, but not limited to, pos	this Numerical F ocuments accom visions of 309 C in accordance v ssible fines and i	Ranking Syste panying this MR 4.02(2) a with the applic imprisonment	m Scoresheet, submittal, and nd (3), and (iii able provision if 1 submit inf	and have persona in my profession the provisions s of M.G.L. c. 21 formation which	ally examined and al opinion and jud of 309 CMR 4.03(E and 310 CMR 4 I know to be false,
I am aware that significant p inaccurate or materially inco	ompleto.	3978		_4/2	24/06		

VIR - 1751

No. 3978

40.1511 (Continued)

II. EXPOSURE PATHWAYS

11.	EXPOS	SURE PATHWAYS		
Scor	e according to 40.1512	- Exposure Pathway Designat	ion Criteria	
		DESIGNAT	ION	
MEDIA	NONE or NOT APPLICABLE	EVIDENCE OF CONTAMINATION	POTENTIAL EXPOSURE PATHWAY	LIKELY OR CONFIRMED EXPOSURE PATHWAY
A. SOIL (Includes Sediment)				
	0	<u>15</u>	100	150
B. GROUNDWATER				
	0	<u>20</u>	100	150
C. SURFACE WATER (Includes Wetlands)				
	0	<u>20</u>	100	150
D. AIR				
	<u>0</u>	15	100	200

Note: Score only the highest value for each media, i.e., score None or Not Applicable or Evidence of Contamination or Potential Exposure Pathway or Likely or Confirmed Exposure Pathway.

IL (A-D)	Summary Rationale for Section II A-D Values and Phase I Report References

П.Е.	OHM SOURCES						
Number of OHM Sources	1	2	≥3				
	Q	25	50				

SECTION II SCORE (A.+B.+C.+D.+E.)								
A.	B.	С.	D.	E.	TOTAL: (15-700)			
<u>15</u>	<u>20</u>	<u>20</u>	<u>0</u>	<u>25</u>	<u>80</u>			

Check here if Section VI has been used to amend the score for this Section of the NRS,

40.1511 (Continued)

III. DISPOSAL SITE CHARACTERISTICS

III.A	OHM TO	XICITY SCORE			
	Highest OHM Too From Table III.A. or Worksheet II	cicity Score I.A.I. on Following Pages.			
OHM Scored: <u>Methyl Tert Butyl Ether</u>		_	Toxicity Score ((1-80)	
Concentration and Media: 22,900 ug/l, i	n groundwater		<u>35</u>		
III.B.					
Marr Than One OUM With an OUM Tavi	ain Same of >20		No	Yes	
More Than One Orivi with an Orivi Toxi	chy score of 250		0	30	
III.C.	OHM MOBILITY and Score according to 40.1514 - OH	PERSISTENCE M Mobility and Persistence			
OHM Scored: Benzene		_	Score (0-50 <u>25</u>))	
III.D.	DISPOSAL SIT	E HYDROGEOLOGY			
	Score according to	40.1515 - Soil Permeability			
DEPTH TO GROUNDWATER SOIL PERMEABILITY Assumed Soil Permeability					
(in feet)	Low	Medium		High	
>25	2	4		8	
10.1 - 25	4	8		12	

SECTION III SCORE (A + B + C + D)							
A. 35	B. 0	C. 25	D. 8	TOTAL: (3 – 180) 68			
	<u> </u>		<u>×</u>	<u></u>			

.

12

16

8

12

Check here if Section VI has been used to amend the score for this Section of the NRS.

16

20

5.1 - 10

0-5

Table III.A. OHM TOXICITY SCORE								
	CONCENTRATION (soil/sediment: ug/g; surface/groundwater ug/l)							
ОНМ	≤99	100-999	1,000-9,999	10,000-100,000	>100,000 NAPL <0.5"	NAPL 0.5"-12"	NAPL >12"	
Aliphatics C5-C8	5	15	25	35	45	55	65	
C9-C12	1	10	$\frac{20}{20}$	30	40	50	60	
C19-C18	1	10	20	30	40	50	60	
Arsenic	20	30	40	50	60		00	
Aromatics C9-C10	5	15	25	35	45	55	65	
Benzene	15	25	35	45	55	65	65 75	
Bis(2-ethylhexyl)phthalate	10	20	30	40	50	60	70	
Cadmium	20	30	40	50	60			
Carbon Tetrachloride	20	30	40	50	60	70	80	
Chlorobenzene	5	15	25	35	45	55	65	
Chromium III	1	10	20	30	40			
Chromium VI	10	20	30	40	50			
Còal tar	10	20	30	40	50	60	70	
Cyanide	5	15	25	35	45			
1,1 Dichloroethane	10	20	30	40	50	60	70	
1,2 Dichloroethane	10	20	30	40	50	60	70	
Ethylbenzene	5	15	25	35	45	5.5	65	
Ethylene Dibromide	20	30	40	50	60	70	80	
#2 Fuel Oil (virgin product)	5	15	25	35	45	55	65	
used to score NAPL	10	20	30	40	50	60	70	
Land	20	20	40	4 0		00	,,,	
Lead	20	30	40	30	60			
Mercury	20	30	40	50	60	70	80	
Methylene Chloride	10	20	30	40	50	60	70	
Methyl Ethyl Ketone	1	10	20	30	40	50	60	
Methyl Tert Butyl Ether	5	15	25	<u>35</u>	45	55	65	
Nickel	5	15	25	35	45			
Phenol	1	10	20	30	40	50	60	
PAHs	10	20	30	40	50	60	70	
PCBs	20	30	40	50	60	70	80	
Tetrachloroethylene	10	20	30	40	50	60	70	
Toluene	1	10	20	30	40	50	60	
1,1,1 Trichloroethane	5	15	25	35	45	55	65	

Table III.A continued		OHM TOXICITY SCORE							
		CONCENTRATION (soil/sediment: ug/g; surface/groundwater ug/l)							
OHM	≤99	100-999	1,000-9,999	10,000-100,000	>100,000 NAPL <0.5"	NAPL 0.5"-12"	NAPL >12"		
Trichloroethylene	8	25	35	43	55	65	75		
Vinyl Chloride	15	25	35	45	55	65	75		
Xylmes		10	20	30	40	50	60		
Zinc	1	10	20	30	40				

Use Worksheet III.A.1 to determine the OHM Toxicity Score for OHM not listed in Table III.A. See 40.1513 for Human Health-Based Toxicity Values for each OHM.

Worksheet III.A.1	OHM TOXICITY SCORE								
HUMAN HEALTH-BASED	CONCENTRATION								
TOXICITY VALUE	≤99	100-999	1,000-9,999	10,000-100,000	>100,000 NAPL <0.5"	NAPL 0.5"-12"	NAPL >12"		
<5	1	10	20	30	40	50	60		
5-19	5	15	25	35	45	55	65		
20-29	10	20	30	40	50	60	70		
30-39	15	25	35	45	55	65	75		
40-50	20	30	40	50	60	70	80		

OHM and Concentrations Used in Section III.A.1.							
Human Health-Based Toxicity Value	Concentration (Soil ug/g)	Concentration (Water - ug/l)	OHM Toxicity Score				
-							
-							
			· · · · · · · · · · · · · · · · · · ·				
-	Human Health-Based Toxicity Value	OHM and Concentrations Us Human Health-Based Toxicity Value	OHM and Concentrations Used in Section III.A.1. Human Health-Based Toxicity Value Concentration (Soil ug/g) Concentration (Water - ug/l) Image: Section III.A.1. Image: Section III.A.1. Image: Section III.A.1.1. Image: Section III.1. Image: Section III.1.1.				

40.1511 (Continued)

IV. HUMAN POPULATION AND LAND USES

IV.A.		HUMAN POPULATION	l	
Residential Population Within 1/2 Mile	None	1-99	100-999	≥1,000
	0	5	10	<u>15</u>
Institutions Within 500 feet	No	None One or More		
		<u>D</u>	10	
On-Site Workers	None	1-99	100-999	≥1,000
	0	5	10	15
IV.B.		AQUIFERS		
Sole Source Aquifer			No	Yes
Name:			<u>0</u>	25
Potentially Productive Aquifer	· · ·		No	Medium or High
			0	15

IV.C.		WAT	ERUSE			
Proximity of Disposal Site to Public Drinking Water Supply Source	Not Applicable (NA)		Zone A	Zone II, IWPA, or SW Intake ≤400'		
			<u>0</u>		20	50
Persons Served by Public Drinking Water Supply	NA	25-999	1,000	- 4,999	5,000 - 49,999	≥50,000
	0	5	1	0	20	25
Private Water Supplies Within 500 Feet	None		Commercia	al Industrial	Agriculture Residential (Not Ingested)	Drinking Food Processing
		<u>0</u>	1	0	15	25
Alternative Public Water Supply Available (Viable Public Water Supply in Disposal Site Community and Public		Yes			No	
Water Connection ≤500 Feet from Site)		<u>0</u>			25	

SECTION IV SCORE (A + B + C)							
А.	B	C.	TOTAL: (0 – 205)				
<u>20</u>	<u>0</u>	<u>10</u>	<u>30</u>				

Check here if Section VI has been used to amend the score for this Section of the NRS.

п

40.1511 (Continued)

V. ECOLOGICAL POPULATION

V.A. ENVIRONMENTAL RESOURCE AREAS							
RESOURCE		LOCATION					
Area of Critical Environmental Concern	>500' from Site	≤500' from Site	On - Site				
	<u>0</u>	20	30				
Species of Special Concern, Threatened or Endangered Species Habitat	>500' from Site	On-Site or ≤500' f	rom Habitat				
	0	<u>30</u>					
Wetlands, Certified Vernal Pool, or Outstanding Resource Water	>100' from Site	≤100' from Site	On-Site				
	0	20	30				
Fish Habitat	>500' from Site	≤500' from Site	On-Site				
	0	20	30				
Protected Open Space (Local/State/Federal/Trustee)	>500' from Site	≤500' from Site	On-Site				
	0	20	30				

SCORE SECTION V.B. *ONLY* IF SECTION V.A. SCORE IS \geq 30.

	V.B. ENVIRONMENTAL TOXICITY SCORE				
Highest Environmental Toxicity Score From Table V.B. or Worksheet V.B.1. on Following Pages.					
	OHM Scored: N/A Concentration and Media:				
	<u> </u>				
	SECTION V. SCORE (A. + B.)				
	Α.	B.	TOTAL: (0-185)		
	<u>90</u>	<u>20</u>	<u>110</u>		

Check here if Section VI has been used to amend the score for this Section of the NRS.

40.1511 (Continued)

Table V.B.		ENVIRONMENTAL	TOXICITY SCORE		
ОНМ	CONCENTRATION (soil/sediment: ug/g: surface/groundwater ug/l)				
	<1	1-99	100-999	1,000-9,999	≥10,000
Arsenic	5	10	15	20	25
Benzene	0	1	5	10	15
Bis(2-ethylhexyl) phthalate*	5	10	15	20	25
Cadmium	10	15	20	25	30
Carbon tetrachloride	0	1	5	10	15
Chlorobenzene*	5	10	15	20	25
Chromium III	1	5	10	15	20
Chromium VI	5	10	15	20	25
Coal tar*	5	10	15	20	25
Cyanide	5	10	15	20	25
1,1 Dichloroethane*	5	10	15	20	25
1,2 Dichloroethane	0	1	5	10	15
Ethylbenzene	0	. 1	5	10	15
Ethylene Dibromide*	5	10	15	20	25
#2 Fuel Oil (virgin product) *	1	5	10	15	20
Gasoline (virgin product) *	5	10	15	20	25
Lead	5	10	15	20	25
Mercury	15	20	25	30	35
Methylene Chloride *	5	10	15	20	25
Methyl Ethyl Ketone *	5	10	15	20	25
Methyl Tert Butyl Ether*	1	5	10	15	20
Nickel	1	5	10	15	20
Phenol	0	1	5	10	15
PAHs•	5	10	15	20	25
PCBs	15	<u>20</u>	25	30	35
Tetrachlorethylene	0	1	5	10	15
Toluene	0	1	5	<u>10</u>	15
1,1,1 Trichloroethane	0	1	5	.10	15
Trichloroethylene	0	1	5	10	15

Table V.B.		ENVIRONMENTAL TOXICITY SCORE				
OHM		CONCENTRATION (soil/sediment: ug/g: surface/groundwater: ug/l)				
	<1	1-99	100-999	1,000-9,999	≥10,000	
Vinyl Chloride*	5	10	15	20	25	
Xylenes	5		15	20 	25	
Zinc	laneses and a survey of the second se	5	10	15	20	

*Score derived by default methods 40.1516(2).

Use Worksheet V.B.1. to determine Environmental Toxicity Scores for OHM not listed in Table V.B. See 40.1516 for Environmental Toxicity Values for each OHM.

Worksheet V.B. 1		ENVIRONMEN	TAL TOXICITY SCORE		· · · · ·	
ENVIRONMENTAL TOXICITY VALUE	CONCENTRATION Use ug/g for Soil and ug/l for Surface Water or Groundwater					
	<1	1-99	100-999	1,000-9,900	≥10,000	
10	0	1	5	10	15	
20	1	5	10	15	20	
30	5	10	15	20	25	
40	10	15	20	25	30	
50	15	20	25	30	35	

V.B.I.	OHM and Concentrations Used in Section V.B.1.				
ОНМ	Environmental Toxicity Value	Concentration (Soil - ug/g)	Concentration (Water - ug/l)	Environmental Toxicity Score	
N/A					
		_			

40.1511 (Continued)

VI. MITIGATING DISPOSAL SITE-SPECIFIC CONDITIONS

VI.	MITIGATING DISPOSAL SITE-SPECIFIC CONDITIONS	
Disposal site-spec than the relevant s exceed +50 Point	ific conditions that warrant amending the site score. Changes directly related to NRS Sections or Subsection scores may not re subsection value assigned for the disposal site in that subsection. Section VI must reference specific pages of the Phase 1. Sect s and may be scored only in 5-point increments. Attach additional pages as necessary.	duce the score more ion VI may not
exected. 100 t onle		
_		
Disposal Site Sco	ve Amendment (Not to Exceed + 50 Points)	-
Disposition one	<u>0</u>	

APPENDIX H

-

Public Notification Letters

0

CORPORATE ENVIRONMENTAL ADVISORS, INC.

Via U.S. Postal Service

April 24, 2006

· · · (1)

1. 1. 1

To Whom It May Concern:

Chief Municipal Officer Westfield City Hall 59 Court St. Westfield, MA 01085

RE: Notice of Availability: Phase I Report/Tier Classification Sunoco Station 88-90 South Maple Street Westfield, Massachusetts DUNS: 0374-5593 DEP RTN 1-15718

and the second

As promulgated within 310 CMR 40.1403(3)(e) of the Massachusetts Contingency Plan, this letter serves as official notification that a Phase I - Initial Site Investigation and Tier II Classification for the referenced site will be filed with the Massachusetts Department of Environmental Protection (MADEP). Please contact me if you wish to obtain a copy of the report. A copy of the Phase I/Tier Classification Report may also be obtained and/or viewed at the MADEP's Western Regional Office located at 436 Dwight Street, Suite 500, Springfield, Massachusetts 01103.

This Phase I Report has been prepared following the 72-hour Reportable Condition identified on April 12, 2005 upon obtaining knowledge of tightness test results for dispenser piping associated with an underground storage tank (UST). Based on available information provided by Sunoco, the dispenser lines were placed under pressure for tightness testing on April 12, 2005 and the regular unleaded line failed the tightness test. This Threat of Release condition was verbally reported to the Massachusetts Department of Environmental Protection (MA DEP) at 9:40 a.m. on April 15, 2005 within 72-hours of obtaining knowledge of the reporting condition pursuant to 310 CMR 40.0314(2) of the MCP. Based on current site conditions, no 2-hour or 72-hour reporting conditions exist and no IRAs are required.

Sincerely, CORPORATE ENVIRONMENTAL ADVISORS, INC.

Patrick J. Brown Environmental Scientist I

cc:

Westfield Health Department, Westfield City Hall, 59 Court St., Westfield, MA 01085 MA DEP Western Region, 436 Dwight Street, Suite 500 Springfield, Massachusetts 01103

www.cea-inc.com

CORPORATE HEADQUARTERS: HARTWELL BUSINESS PARK • 127 HARTWELL STREET • WEST BOYLSTON, MA 01583 • PHONE: 508-835-8822 • FAX: 508-835-8812

Solutions Since 1985

CORPORATE ENVIRONMENTAL ADVISORS, INC.

Via U.S. Postal Service

April 24, 2006

Health Department Westfield City Hall 59 Court St. Westfield, MA 01085

RE: Notice of Availability: Phase I Report/Tier Classification Sunoco Station 88-90 South Maple Street Westfield, Massachusetts DUNS: 0374-5593 DEP RTN 1-15718

To Whom It May Concern:

As promulgated within 310 CMR 40.1403(3)(e) of the Massachusetts Contingency Plan, this letter serves as official notification that a Phase 1 - Initial Site Investigation and Tier II Classification for the referenced site will be filed with the Massachusetts Department of Environmental Protection (MADEP). Please contact me if you wish to obtain a copy of the report. A copy of the Phase 1/Tier Classification Report may also be obtained and/or viewed at the MADEP's Western Regional Office located at 436 Dwight Street, Suite 500, Springfield, Massachusetts 01103.

This Phase I Report has been prepared following the 72-hour Reportable Condition identified on April 12, 2005 upon obtaining knowledge of tightness test results for dispenser piping associated with an underground storage tank (UST). Based on available information provided by Sunoco, the dispenser lines were placed under pressure for tightness testing on April 12, 2005 and the regular unleaded line failed the tightness test. This Threat of Release condition was verbally reported to the Massachusetts Department of Environmental Protection (MA DEP) at 9:40 a.m. on April 15, 2005 within 72-hours of obtaining knowledge of the reporting condition pursuant to 310 CMR 40.0314(2) of the MCP. Based on current site conditions, no 2-hour or 72-hour reporting conditions exist and no IRAs are required.

Sincerely, CORPORATE ENVIRONMENTAL ADVISORS, INC.

Patrick J. Brown

Environmental Scientist I

cc: Chief Municipal Officer, Westfield City Hall, 59 Court St., Westfield, MA 01085 MA DEP Western Region, 436 Dwight Street, Suite 500 Springfield, Massachusetts 01103

www.cea-inc.com

CORPORATE HEADQUARTERS: HARTWELL BUSINESS PARK • 127 HARTWELL STREET • WEST BOYLSTON, MA D1583 • PHONE: 508-835-8822 • FAX: 508-835-8812

Solutions Since 1985