

SCANNED

REPORT ON PHASE III REMEDIAL ACTION PLAN FORMER MALDEN MGP SITE – UPLAND PORTION MALDEN, MASSACHUSETTS RTN 3-0362 TIER IB PERMIT 7378

> RECEIVED Commonwealth of Massachusotte

> > JUL 0 2 2003

DEP/BOSTON 2nd floor Reception

VOLUME III OF III

by

Haley & Aldrich, Inc. Boston, Massachusetts

for

Massachusetts Electric Company Northborough, Massachusetts

File No. 06558-634 June 2003

TABLE OF CONTENTS

SCANNED

Page

VOLUME I OF III

I

ł

ł

LIST	OF TAL	BLES		v
LIST	OF FIG	URES		vii
I.	INTR	ODUC	TION	1
	1.01	Site I	Background Information	1
	1.02	Site I	Description and Location	1
	1.03	Phase	e III Purpose and RAP Overview	3
	1.04	Sum	mary of Disposal Site History and Regulatory Status	4
	i	Α.	MGP Processes Used at the Site	4
	ÿ	В.	Land Use and History	4
	t	C.	Historic Re-routing of Surface Water Bodies on the Site	5
	ì	D.	Current Regulatory Status	6
II.	DISP	OSAL	SITE CONDITIONS	8
	2.01	Sum	mary of Site Geology and Hydrogeology	8
	1	Α.	Subsurface Stratigraphy	8
	i	B .	Hydrogeology	9
	2.02	Site 1	Physical Conditions and Current Use	10
	i	Α.	Structures and Current Use	11
		В.	Utilities	11
	4	C.	Below-grade Structures	12
	2.03	New	Disposal Site Information	12
	1	Α.	Results of Soil Sampling Conducted at 51 Commercial Street	13
	1	В.	Results of Supplemental Investigations at 129 Commercial Street	13
	2.04	Natu	re and Extent of Contamination: Conceptual Site Model Summary	14
	1	Α.	TSM	15
	{	В.	Shallow DNAPL	15
	(C.	Deep DNAPL	16
	î	D.	LNAPL	17
	1	E.	BTEXSN in Soil and Groundwater	18
		F.	Petroleum-impacted Soil	19
	2 05	Risk	Characterization Summary	20
	4	Α.	General	20
	1	в.	Human Health Risk Characterization	21
	4	C.	Risk to Public Welfare	24
		D.	Environmental Risk	24
	í	E.	Substantial Hazard Evaluation	24
	1	F.	Conclusions Based on Risk Characterization Results	26
	2.06		edial Action Alternative Areas	26
		Α.	Area 1, Northern Portion of Parcel E	28

i

TABLE OF CONTENTS (Continued)

	ł			Page
		B. /	Area 2, Southern Portion of Parcel E	30
			Area 3, Northern Portion of Parcel A	32
	1	D. /	Area 4, Southern Portion of Parcel A	33
		E. /	Area 5, Parcel B	35
ш.	REMI	DIAL O	BJECTIVES	38
	3.01	Phase III	I Approach	38
	3.02	Remedia	I Objectives to Achieve a Permanent Solution	39
	1	A. 1	Elimination of Potential Exposure to Contaminated Soil	39
	1	B . 1	Elimination of Potential Exposure to Indoor Air	40
			Elimination of soil UCL Exceedences.	40
	i		Elimination of the presence of NAPL	41
	1		Groundwater Quality	41
	3.03		al Objectives for a Temporary Solution	41
	3.04		al Objectives for Area 1	42
	3.05		al Objectives for Area 2	42
	3.06		al Objectives for Area 3	42
	3.07		al Objectives for Area 4	43
	3.08	Remedia	al Objectives for Area 5	43
IV.	REM	EDIAL A	CTION ALTERNATIVE EVALUATION PROCESS	45
	4.01	Initial So	creening Process	45
	ł		Initial Screening	45
	F		Elimination of Remedial Technologies Based on Site Charac	teristics45
	4.02		ment of Remedial Action Alternatives	46
	4.03		Evaluation Process	46
	1	A	Evaluation Criteria	46
	1	B .	Weighting of the Evaluation Criteria	47
	4.04	Selected	Remedial Action Alternatives for the Site	48
v.	EVAL	UATION	OF REMEDIAL ALTERNATIVES FOR AREA 1	49
	5.01	Introduc	tion	49
	5.02	Summar	ry of Area 1 Conditions	49
	5.03	Summar	ry of Area 1 Remedial Objectives	49
	5.04		creening of Remedial Technologies for Area 1	50
	1		Shallow DNAPL	50
	1		Soil	51
	1		Elimination of Remedial Technologies Based on Site Charac	
	5.05	•	ment of Remedial Action Alternatives for Area 1	52
	5.06		Evaluation of Remedial Action Alternatives for Area 1	56
15	5.07	Selected	Remedial Action Alternative for Area 1	61

N

I

ii

TABLE OF CONTENTS (Continued)

	1		Page
VI.	EVAL	UATION OF REMEDIAL ALTERNATIVES FOR AREA 2	63
	6.01	Introduction	63
	6.02	Summary of Area 2 Conditions	63
	6.03	Summary of Area 2 Remedial Objectives	63
	6.04	Initial Screening of Remedial Technologies for Area 2	64
	1	A. DNAPL	64
	i	B. LNAPL	65
	5	C. Soil	65
	1	D. Elimination of Remedial Technologies Based on Site Charac	teristics66
	6.05	Development of Remedial Action Alternatives for Area 2	67
	6.06	Detailed Evaluation of Remedial Action Alternatives for Area 2	69
	6.07	Selected Remedial Action Alternative for Area 2	71
vп.	ÈVAL	UATION OF REMEDIAL ALTERNATIVES FOR AREA 3	73
	2.01	Introduction	73
	7.02	Summary of Area 3 Conditions	73
	7.03	Summary of Area 3 Remedial Objectives	73
	7.04	Initial Screening of Remedial Technologies for Area 3	74
	1	A. DNAPL	74
	ĩ	B. Soil	75
	ł	C. Elimination of Remedial Technologies Based on Site Charac	
	7.05	Development of Remedial Action Alternatives for Area 3	76
	7.06	Detailed Evaluation of Remedial Action Alternatives for Area 3	78
	7.07	Selected Remedial Action Alternative for Area 3	80
VIII.	EVAL	LUATION OF REMEDIAL ALTERNATIVES FOR AREA 4	81
	3.01	Introduction	81
	3.02	Summary of Area 4 Conditions	81
	3.03	Summary of Area 4 Remedial Objectives	81
	3.04	Initial Screening of Remedial Technologies for Area 4	82
	1	A. LNAPL	82
	1	B. Soil	82
	1	C. Elimination of Remedial Technologies Based on Site Chara	
	3.05	Development of Remedial Action Alternatives for Area 4	84
	3.06	Detailed Evaluation of Remedial Action Alternatives for Area 4	85
	3.07	Selected Remedial Action Alternative for Area 4	87
IX.	EVAI	LUATION OF REMEDIAL ALTERNATIVES FOR AREA 5	89
	9.01	Introduction	89
	9.02	Remedial Action Objectives	89
		A. Risk Characterization Summary	89

.

DHAIRS &

I

iii

TABLE OF CONTENTS

(Continued)

L

I

l

R

Page

	1			
	1	В.	Remedial Action Objectives	89
	9.03	Identi	fication, Initial Screening, and Development of Remedial Action	
	1	Alterr	natives	89
	i.	Α.	Identification and Screening of Technologies	89
	¥.	В.	Development of Remedial Action Alternatives	90
	9.04	Detai	led Evaluation of Remedial Alternatives	91
	9.05	Select	tion of a Remedial Action Alternative	92
	1	Α.	Comparison of Alternatives	92
		В.	Feasibility of Implementing a Permanent Solution	92
	1	C.	Feasibility of Achieving or Approaching Background	93
	1	D.	Feasibility of Reducing Concentrations in Soil to Below UCLs	93
	1	E.	Selection of Alternatives	93
X.	SUMN	IARY	OF SELECTED REMEDIAL ACTION ALTERNATIVES	95
	10.01	Phase	III RAP Overview	95
	10.02	Feasi	bility of Achieving a Permanent Solution or Background Concentra	tions96
	· · · · · · · · · · · · · · · · · · ·		ted Remedial Action Alternative	98
	1 A	Α.	Selected Remedial Solution Components	98
	i	В.	Definitive and Enterprising Steps	99
	1	C.	Anticipated Remedial Implementation Approach	100
	*	D.	Estimated Net Present Value of the Selected Remedial Alternativ	ve 101
	10.04	Justif	ication of Temporary Solution	101
REF	ERENCE	s		102
TAB	LES			
	URES			
	1	· · · · · · · · · · · · · · · · · · ·	py of Transmittal Form BWSC-108 and Public Notification of ailability Letters	
APP	ENDIX I		vised AMEC Risk Characterization	
voi	LUMEI	OF III		
ADD	ENDIN	- Ro	ring Logs, Monitoring Well Installation Reports, and Soil, Ground	water
,			I Indoor Air Data Sheets	water
VOI	LUMĖ III	OF II	I	
APP	ENDIX) - Co	st Estimate Tables and Supporting Calculations	
			own and Caldwell Focused Area 5 Feasibility Study	
	1			
		-	1	

ł.

ï

iv

		-
Table No.	Title	
1	Site Structures and Current Property Use	11
п	Summary of Supplemental Soil Sampling Results, Commercial Street	
ш	Summary of Supplemental Soil Sampling Results, Commercial Street	
IV	Summary of Supplemental Groundwater Sampling Results, 129 Commercial Street	
v	Summary of Supplemental Indoor Air Sampling Results, Commercial Street	
VI	Summary of Properties Included in Risk Characterization	21
VII	Summary of Human Health Risk Characterization, Future Exposure Pathways	23
VIII	Summary of Public Welfare Risk Characterization Results	24
IX	Summary of Remedial Action Alternative Areas and Associated Impacted Media	27
x	Summary of Soil Exposure Pathways Requiring Remediation	39
xi	Initial Screening of Remedial Technologies, Area 1	
XII	Remedial Technologies Eliminated Based on Site Characteristics, Area 1	51
хш	Detailed Evaluation of Remedial Action Alternatives, Area 1	
XIV	Initial Screening of Remedial Technologies, Area 2	
XV	Remedial Technologies Eliminated Based on Site Characteristics, Area 2	66

v

Page

LIST OF TABLES (Continued)

1

I

1		Page
XVI	Detailed Evaluation of Remedial Action Alternatives, Area 2	
xvII	Initial Screening of Remedial Technologies, Area 3	
xIII	Remedial Technologies Eliminated Based on Site Characteristics, Area 3	75
XIX	Detailed Evaluation of Remedial Action Alternatives, Area 3	
xx	Initial Screening of Remedial Technologies, Area 4	
XXI	Remedial Technologies Eliminated Based on Site Characteristics, Area 4	83
XXII	Detailed Evaluation of Remedial Action Alternatives, Area 4	
ххш	Summary of Remedial Action Alternative Areas and Associated Impacted Media	95
XXIV	Summary of Estimated Net Present Value for the Selected Remedial Alternative	

.

:

•

vi

D

LIST OF FIGURES

Figure No.	Title
1	Project Locus
2	Parcel Designations
3	Disposal Site Boundary
4	MADEP Site Natural Resources Map
5	Historic MGP Operational Features
6	Subsurface Profiles (Figures 6A through 6G)
7	Top of Organic Deposit Contour Plan
8	Subsurface Exploration Plan
9	Shallow Groundwater Elevation Contours, December 2000
10	Deep Groundwater Elevations, August 2001
11	Phase III Supplemental Soil Sample Locations, 51 Commercial Street
12	Phase III Supplemental Investigation, 129 Commercial Street
13	Nature and Extent of Observed Contamination
14	Maximum BTEXSN Concentrations Observed in Groundwater, 129 Commercial Street
15	Remedial Action Alternative Areas
16	Locations of Proposed Remedial Components, Area 1
17	Locations of Proposed Remedial Components, Area 2
18	Locations of Proposed Remedial Components, Area 3
19	Locations of Proposed Remedial Components, Area 4
20	Locations of Selected Remedial Alternative Components

.

ł

1

I

l

APPENDIX D

ŗ

Cost Estimate Tables and Supporting Calculations

1. Means: RS Means Environmental Remediation Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003 2. Soit weight equals 1.6 tons per cubic yard.

Assume 30 years monitoring

1,725

4,923,214

Net Present Value Project Cost \$

Based on current H&A costs

1,500

-

ş

**

m

A

Monitoring (Assume 3 days/year)

DNAPL MONITORING

Subtotal Estimated Annual Monitoring 5

Contingency (15%) \$

Fotal Estimated Annual Monitoring \$

Net Present Value \$

638,806

Contingency (15%) \$ Total Estimated Capital for 1-1: \$

Based on engineer's experience for limited production/handling; assume enclosure required and level B PPE

Based on engineer's experience Based on engineer's experience Based on engineer's experience Based on engineer's experience

111.750 74,500 37,250

55,875

Based on recent contractor (ESMI) quote; assume 20% of total volume Based on recent contractor (ESMI) quote; assume 75% of total volume

Based on engineer's experience; assume 5% of total volume

Veans 18 02 0301; Asphatt pavement

268,254

Subtotal

23.61

+ 8

298

Based on engineer's experience

Means 02250-400-1200; 15' deep excavation 20' long sheets

28,890 226,500 107,280

290,550 104,300 4,000 44,859

8 8

350

Means craw B-69, assume 3 crew-days per move

assume 10,000 gallons/day; unit cost based on engineer's experience

17,500 35,000 130,000

15 5 30 5 20 5 500 5 500 5 130,002 5 9,630 5 15,10

175,000

8 -

3,725 3,725

Clean Off-site Borrow, placed, compacted

Excavation of Impacted Soil

Excavation of Clean Soli

EXCAVATION OF TSM

MOBILIZATION

Re-use Clean soil, placed, compacted

Temporary Dewstering

Water Treatment Sprung Structure

3,725

3 15,000

STORMER STREET

1,192 4.470

Soil T&D (Thermal Desorption), benzene Haz,

Sprung Structure-relocation

Shoring

Soil T&D (Thermal Desorption), Non-Haz.

Soil T&D, benzene & Pb, Haz.

Replace monitoring wells

Reparing

Based on engineer's experience for small barrier (Waterloo or similar); 15" deep

52.000

2,578,492

Subtotal

23.61

52,000 3,998,746

Subtotal

8

000

3

SHALLOW DNAPL MIGRATION CONTROL

Assume 20 weeks construction

Assume 3% of capital costs

119,962 140,000

**

119,962

-

- 8

VEEK

Design/MCP Compliance

ENGINEERING

Engineering Oversight

7,000

Capital Subtotal (not including angineering) \$

259,952 4,258,708 1,897,515

Subtotal Engineering 5

Subtotal \$

Based on recent contractor (ESMI) quole; assume 95% of total volume

211,400 1,264,640 358,400

500 0.2 15.10 65 350 40,000

14,000

SY TON SY SY

1,024 3,200

-

Maintenance garage demolition and disposal

Repaying

Sol T&D (Thermal Desorption), Non-Haz.

Soil T&D, benzene & Pb, Haz.

35

Based on engineer's experience; assume 5% of total volume

Means 18 02 0301; Asphalt pavement

Based on engineer's experience

40,000 75,552

assume 10,000 galtons/day; unit cost based on engineer's experience

Means 02250-400-1200; 15' deep excavation; 20' long sheets

Based on engineer's experience: 3,200 cy. 12' deep excavation

Sased on engineer's experience Based on engineer's experience

320,000

2 2

12,800

EXCAVATION OF PETROLEUM IMPACTED SOIL

Clean Off-sile Borrow, placed, compacted

Temporary Dewatering

Water Treatment

Shoring

Excavation of Impacted Soil

17,500 35,000

Based on engineer's experience; 1,900 cy. 12' deep excavation, top 6' of soil not impacted

Unit price is combined mobilization for excavation and barrier installation

100,000

100,000 \$

-

5

PRICE UNIT

ESTIMATED QUANTITY

UNITS

ITEM

ESTIMATED COST

EXCAVATION OF DWAPL, LWAPL, TSM AND PETROLEUM IMPACTED SOIL, SHALLOW DWAPL MIGRATION CONTROL AND AUL

ALTERNATIVE 1-1

AREA 1

COST ESTIMATE

TABLE D-1

NOTES

HALEY & ALDRICH, INC.

Net Present Value based on 5% interest, 0% initiation.

i.

TABLE D-2 COST ESTIMATE ALTERNATIVE 1-2 EXCAVATION OF DNAPL, IN-SITU CHEMICAL OXIDATION OF PETROLEUM IMPACTED SOIL, SHALLOW DNAPL MIGRATION CONTROL AND AUL AREA 1

						212
MOBILIZATION	S	-		100,000 \$	100,000	Unit price is combined mobilization for excerdion, chemical oxidation and barrier installation
EXCAVATION OF 15M	2	367.6		14	A5 874	Read on antitiaatic avrantaries (QCD no 12) daan avravalien inn 61 of anti en lonavant
Excavation of Impacted Sol	5	3775			111 750	Based on engineer's experience, there up, is book extension, up to be an intermediate Based on engineer's experience for fimited production/handling: assume engineering por intermed and level 8 PDE
Clean Off-site Borrow, placed, correlation	5	3725		8	74 500	Based on ancinent's experience and annual processory and and a second required and rates of a rate.
Re-use Clean soil, placed, compacted	5	3,725	•	10	37,250	Based on engineer's reperience
Temporary Dematering	DAY	32		009	17,500	Based on engineer's experience
Water Treatment	GAL	175,000	•	0.2	35,000	assume 10,000 galions(day, unit cost based on engineer's experience
Sprung Structure	SJ	-		130,000	130,000	Based on engineer's experience
Sprung Structure-relocation	3	•	•	9,630	28,890	Mearls crew 8-69; assume 3 crow-coys per move
Shoring	5	15,000	*	15.10	226,500	Means 02250-400-1200; 15' deep excavation, 20' long sheets
Soil T&D (Thermal Desorption), benzene Haz.	TON	1,192	•	8	107,280	Based on recent contractor (ESMI) quolis; assume 20% of total volume
Soil T&D (Themai Desorption), Non-Haz.	TON	4,470	•	65	290,550	Based on recent contractor (ESMI) quote; assume 75% of total volume
Solt T&D, thenzene & Pb, Haz,	TON	298	•	360	104,300	Based on engineer's experience; assume 5% of total volume
Replace monitoring wells	3	•	•	1,000	4,000	Based on engineer's experience
Reparent	SY	006'1	•	Subtotal	44,650	Moaris 18 02 0301; Asphall pavement
CHEMICAL OXIDATION IN PETROLEUM IMPACTED SOIL						
Pilot Test	5	-	••	75,000	15,000	Based on engineer's experience
Injection Wall Installation	3	58	**	600	27,000	Based on engineer's experience, wells spaced 20' on center
Hydrogen Peroxide Releasing Compound and Catalyst	GAL	47500	•	3.15	149,625	Based on angineer's experience; based on 3 injections/well, total volume 500 ga/well
Equipment and injection labor	LS L	-	••	•	112,219	Based on engineer's experience, 75% of oxidant cost
Monitoring & Data Interpretation	SJ	-	*		60,000	Besed on engineer's experience
				Subtolar	318,844	
SHALLOW DWAP, MIGRATION CONTROL	5	909	*	55 Subtotal	52,000	Based on engineer's experience for entail borrior (Notestoo or similar). 15' deep
	Capital Subl	Subtotal (not including engineering) \$	us Bugu	ineering)	850'SEL'I	
ENGINE FRIMO						
Design/MCP Consigned				86.965	88,955	Assume 3% of canital costs
	WEEK	10		7 000	70.000	Assume 10 weeks creation
			btotal Er	Subtotal Engineering \$	5	
L				Cubiched C	1 000 000	
			Conting	Contingency (15%) \$		
		Total Estimated Capital for 1-2: \$	ted Cap	al for 1-2: 1	2,180,481	
DNAPL MONITORING						
MonNoring (Assume 3 dayarhaar)	DAY	•	•	905	1,500	Based on current H&A costs
		Substati Statulut Jupit Manuality	Contraction of the	-	5	
		a state of the sta	Conting	Contingency (15%)		
		and the second s	Net Dre	Wet Breast Value	10/ 10	Accounts "O under monthly for
			ALLION			Banding Error of allinger
MAINTENANCE OF DRECT CONTACT BARRIER (payment)	9	-	•	2,500		Based on engineer's estimate: annual cost derived from expected repaying/maniferance every 5 years
	เกิ	Subfolal Estimated Annuel Maintenance	Vunual N	aintenance.		
	3	A his Solitanian A	Contrud	Controgency (15%)	516	
			Net Pre	Not Present Value	44,196	Assume 30 years
				Concernance.		
		Not Prosent Value Project Cost \$	Value P	oject Cost	\$ 2,248,454	

TABLE D-3 COST ESTIMATE ALTERNATIVE 1-3 ALTERNATIVE 1-3 ADDREPRED BARRIER, SHALLOW DHARPL RECOVERY, SHALLOW DHARPL MIGRATION, AUL ADDR.4

IS 1 3 10000 10000 10000 VTON (FETROCEM MEL) CY 500 5 2 10000 CY 100 5 20 5 200 5 CY 100 5 200 5 200 5 200 CY 100 1 100 1 200 200 200 CY 100 1 1 200 1 200 200 CY 100 1 1 200 1 200 200 CY 100 1 1 200 1 200 200 CY 100 1 1 200	ITEM	UNITS	CETIMATED		PRICE	ESTIMATED	NOTES
El Nel TALMON (PETROCENA MEIX) CY 600 5 2 1 1000 Control of the co		5	-	-	100,000	100,000	Unit orice is combined mobilization for evo. barrier, DNAP, recovery and barrier installation
C/ 600 5	MCAREERED DADORD NOTALL ATION (RETRONE) MEAN	Î					
Refit SY 261 5 200 5 500 500	Exervition of impacted solis	5	6,000		-	150,000	Based on angineer's experience
Inter SY 2301 5 2301 230	BARRIER COMPONENTS						
Inter 57 51,00 5 10 50,00 50,00	Drived Texts	15	23.61	•••	3,200 \$	75,552	Means 18.02.0301; Asphalt pavement
Interce City 1,100 5 1,000 5 0,000 Mode bare SP 6,500 1 1 2,000 2,000 Overspring, Non-har. TON 1,000 1 2 2,000 2,000 Overspring, Non-har. TON 1,000 1 2 2,000 2,000 Overspring, Non-har. TON 1 3 2,000 1 2,000 Overspring, Non-har. TON 1 3 2 2,000 2,000 Overspring, Non-har. TON 2 2 2,000 2,000 Overspring, Non-har. TON 2 2 2,000 2,000 Mode and TON 2 2 2 2 2 Mode and TON 2 2 2 2 2 2 Mode and TON 2 2 2 2 2 2 2 2 2 2 2 2 2 <td>17 Send</td> <td>52</td> <td>100/1</td> <td>• •</td> <td>8 8</td> <td>000'80</td> <td>Based on engineer's expension</td>	17 Send	52	100/1	• •	8 8	000'80	Based on engineer's expension
Open byte 5 6,500 1 1 5 0,000 Cyr 1,000 1 1 1 1 1 1,000 Chemoliton in of disposa 10 1 1 1 1 1,000 Concretive in of disposa 1 1 1 1 1 1,000 Concretive in of disposa 1 1 1 1 1 1 1 1 Concretive in of disposa 1	Stendard protection rating		MUL +	• •			Reset on approximate summary
Ministry City Link Link <thlink< th=""> Link Link</thlink<>	Ter connection destructs former	5 5	15 200	• •	-	and the	Description a superstance a superstance Measure 13 08 0512
Operation, Non-Neur C/1 1,700 3 3 3,4000 Description, Non-Neur 1 9 <t< td=""><td></td><td>5 35</td><td>45,900</td><td>-</td><td></td><td>100</td><td></td></t<>		5 35	45,900	-		100	
Occurption, Non-Net. TON 6,000 5 5 6 0 0 of continue of deports 15 1 5 1 5 0	LC Sano	2	1,700	-	8	34,000	Based on mycheer's experience
of enclose of dependent 1.5 1 5 6.000 5 0.000 CONERY (TSM) E.M. 5	Sol T&D (Thermal Desorption), Non-Haz	TON	0,000			624,000	Based on recerk contractor (ESMI) quole: assume 100% moterial treated by effishe thermal desorption
Subtrat EA 5 5 5 5 7<	Maintenance garage demotition and disposal	L5	-	*	\$ 000'0+	40,000	Based on engineer's experience, assume no hazardovas materials
CONFERV (TSM) EA 5					Subjetal 3	196,761,1	
elicit E.A. 5	HALLOW ONAPL RECOVERY (TSM)						
Middle building EA 5 5 2000 5 0000 00000 00000 00000 00000 00000 00000 00000 00000 0000000 000000000 <	Recordery Well Installation	EA	*0	-	\$ 000'S	25,000	Based on engineer's experience; stainints steel acreen, 8" diameter 10-18 test deep
Midded SHED 1 5 200 <t< td=""><td>Weil Vault</td><td>4</td><td>s</td><td>•</td><td>2,000 \$</td><td>10,000</td><td>Based on engineer's experience</td></t<>	Weil Vault	4	s	•	2,000 \$	10,000	Based on engineer's experience
Mitterin (RTU) L/F 300 5 2,001 5 0,000 Mitterin (RTU) E/A 1 5 5 5,000	EquipmentStorage building	SHED	-	*	10,200 \$	10,200	Means 33 43 0104; 10 x 5.5 x 8.33' Hazardous material storage building
erkin E.N 1 5 2000 5 2000 5 2000 evi (FTU) E.N 1 5 </td <td>Collection Pipe Instaltation</td> <td>5</td> <td>300</td> <td></td> <td>21.01 \$</td> <td>6,303</td> <td>Means 33 26 0021; PVC double-wail piping with fittings</td>	Collection Pipe Instaltation	5	300		21.01 \$	6,303	Means 33 26 0021; PVC double-wail piping with fittings
One (RTU) EA 1 5 5 5.000 5	Product Recovery Tark	3	-	*	2,000 \$	2,000	Based on engineer's esperience for 200 galon tank
ent instantanon L3 1 3 5,000	Remote Telemetry Unit (RTU)	5	-	**	\$ 000'S	5,000	Based on engineer's experience
EA 5	Electrical & Equipment Instattation	LS	-		15,000 \$	15,000	Based on engineer's experience
SATION CONTROL Sr B00 S S2000 Capital Subtoolal (not including engineering) 1,387,364 1,387,364 1,387,364 Bandoolal LS 1 3,200 5,200 Bandoolal LS 1 3,200 5,200 Bandoolal LS 1 1,387,364 1,387,364 Bandoolal LS 1 2 2,200 Bandoolal NEEK 1 2 3,400 MIELUANCE (DMMPL Recorreny) NEEK 1 3,400 3,400 Bandoolal Contragenery (15%) 2,150 3,41,560 3,41,560 Bandoolal Contragenery (15%) 1,500 3,41,560 3,41,560 Bandoolal Contragenery (15%) 1,500 3,41,560 3,41,560 Bandoolal Extimated Capital for 1:3. 1,500 3,41,560 3,41,560 Bandoolal Contragenery (15%) 1,500 3,41,560 3,41,560 Bandoolal Extimated Capital for 1:3. 1,500 1,500 3,41,560 <	Punpa	đ	80	•	5,000 \$ Subtotal 1	25,000	Based on engineer's experience
Arriton Contrition State B00 State)		ä			
Capital Subtodal (not including wepwering) 1,367,364 Barce LS 1 5 1,307,364 MEEK LS 1 5 0,000 MEEW LS 1 5 0,000 MELWALE WEEK 1 5 0,000 MELWALE MEEK 1 5 0,000 MELWALE MELWALE 1 1,000 2 Submoth Contragency (15%) 1,000 2,000 Summ 35 galmonth) CM 3 5 1,000 MELWALE Contragency (15%) 1,000 2,000 Submoth CM 3 5 2,000 MELWALE Contragency (15%) 1,000 2,000 Submoth Contragency (15%) 1,000 2,000 Submote 2 5 1,000 2,000 Not Merework unin 1 1,000 1,000 Submote 3 3 3 2,000 Submote 1 3 1,000 1,000 Submote 1 3 1,000 1,000 Submote 1 3 1,000 1,000 Submote 1 3 3 2,000	WITOW DRAPH MIGRATION CONTROL	10	80	•	Subnotal \$	52,000	Based on engineers experience for small barrier (Watertoo or similar); 15' deep
Bit Column LS 1 2 130,166		Capt	al Subtotal (not in	e Bulphi	Igineering) \$	1,207,864	
Bacce LS 1 3 130,786							
Prime VEEX 12 2 7,000 5 64,000 Subtroat Subtroat Subtroat 5 1,510,550 22,786 22,786 22,786 22,786 22,786 22,786 245,550 22,756 22,756 244,553 1,510,550 244,553 1,510,550 244,553 241,550 244,553 241,550 </td <td>IGINEERING DetimMCP Condisers</td> <td>51</td> <td>-</td> <td></td> <td>136,786 \$</td> <td>136.766</td> <td>Assume 10% of capital costs</td>	IGINEERING DetimMCP Condisers	51	-		136,786 \$	136.766	Assume 10% of capital costs
Subtool Engineering 1 222,766 Subtool Engineering 1 222,766 Subtool Engineering 1 222,766 Subtool Engineering 1 24,000 Subtool Engineering 1 2,000 Subtool Engineering 2 2,000 Subtool Estimated Arrunal Monitoring 2 2,000 RECT CONTACT BARBIER (parement) 1,3 3,000 Activat Estimated Arrunal Monitoring 2 2,000 Subtool Estimated Arrunal Monitoring 2 2,000 Subtool Estimated Arrunal Manuarance 2 2,000 RECT CONTACT BARBIER (parement) 1,3 3,000 Subtool Estimated Arrunal Manuarance 2 2,000 Subtool Estimated Arrunal Manuarance 2 2,000 Subtool Estimated Arrunal Manuarance 2 2,000 Activat Estimated Arrunal Manuarance 2 2,000 Subtool Estinmated Arrunal Manuara	Endraetha Oversith	WEEK	12	•	7,000 \$	84,000	
NTELWACE (DWAPL Recovery) Subtroat 1,610,660 RELAVICE (DWAPL Recovery) Contropercy (15%) 2,153,35 Statema 35 galfmoth) CML 35 5 1,000 2,245 Statematic function) CML 35 5 1,000 2,245 Contropercy (15%) Contropercy (15%) 2,205 2,000 2,225 Contropercy (15%) Contropercy (15%) 2,225 2,000 2,225 Contropercy (15%) Contropercy (15%) 2,225 2,000 2,226 Contropercy (15%) Contropercy (15%) 2,225 2,000 2,000 Contropercy (15%) Contropercy (15%) 2,000 2,000 2,000 Contropercy (15%) Contropercy (15%) 2,000 2,000 2,000 Contropercy (15%) Contropercy (15%) 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,00				ubtotal E	ngineering \$	322,786	
MTELNANCE (DNAPL Recovery) Contigency (15%) 241,560 MTELNANCE (DNAPL Recovery) Contigency (15%) 241,560 Saure 35 gained) CAL 35 5 7 35 Saure 35 gained) CAL 35 5 7 35 Saure 35 gained) CAL 35 5 7 35 Saure 35 gained) CAL 35 5 7 2265 Contigency (15%) CAL 35 5 200 Saure 35 gained) CAL 3 5 500 2265 Total Estimated Annual Cut 1 Contigency (15%) 2365 Total Estimated Annual Cut 1 200 200 Satistic Estimated Annual Cut 1 300 1 500 Satistic Estimated Annual Cut 1 200 2365 Total Estimated Annual Cut 1 1 5 250 RECT CONTACT BARRIER (parement) LS 1 3 2500 RECT CONTACT BARRIER (parement) LS 1 3 2500 Rect CONTACT BARRIER (parement) LS 1 3 2500 Rect CONTACT BARRIER (parement) LS 1 2 Rect CONTACT BARRIER (parement) LS 1 2					Subjected \$	1,610,650	
Total Estimated Capital for 13: 5 1,552,365 MTELWAICE (DNM*) CAL 35 5 7 3 245 Astrone 35 galinos DAY Suboul Estimated Monthy OM 2,255 245 Total Estimated Monthy OM 2,245 246 246 Total Estimated Monthy OM 2,245 246 Total Estimated Monthy OM 2,245 Total Estimated Montal Monthy OM 2,245 Total Estimated Annual OM 2,000 Applyment) DAY 3 5 200 . DAY 3 5 200 1,500 . DAY 3 5 200 1,500 . DAY 3 5 200 1,500 . Subourd Estimated Annual Monthong 1,500 2,500 2,500 . Contragenet Value 1,500 2,500 2,500 . Contragenet Annual Maintenance 2,500 2,500 2,500 </td <td></td> <td></td> <td></td> <td>Conting</td> <td>Ency (15%) \$</td> <td>241,596</td> <td></td>				Conting	Ency (15%) \$	241,596	
MTELWANCE (DNMPL Recovery) Submet 35 galme) as 2 deyelmoeth) as 2 deyelmoeth) as 2 deyelmoeth) as 2 deyelmoeth) as 2 deyelmoeth) as 2 deyelmoethy (0.00 1 2 200 Total Estimated Annual Montehing 1 1500 Submet Estimated Annual Maintenance 1 2500 Submet Estimated An			Total Estin	uted Cap	Ital for 1-3: \$	1,852,246	
GAL 35 5 1 2 <th2< th=""> 2 2 2</th2<>	CONTRACT AND ADDRESS CONTRACT CONTRACT Descent						
RECT CONTACT SARPHER (parement) Advance Standard Averal Monitory 000 5 200 Contropercy (15%) 5 220 Total Estimated Averal Monitory 2 25 Total Estimated Averal Monitory 2 100 Contropercy (15%) 5 200 Contropercy (15%) 5 230 Contropercy (15%) 5 230 Contropercy (15%) 5 230 RECT CONTACT SARPHER (parement) LS 1 3 2 200 Contropercy (15%) 5 250 Contropercy (15%) 5 2	PERATION AND MAINTERANCE (JURNEL REDWERY)	GAU	36		1 1	245	Researd on a series MLA constra
Subtrain Estimated Monthly OMI 2,245 Total Estimated Monthly OMI 2,245 Total Estimated Annual OMI 2,245 Total Estimated Annual OMI 2,245 Subplyman 3 \$ 2,245 Subplyman 3 \$ 2,245 Subplyman DAY 3 \$ 2,245 Subplyman DAY 3 \$ 2,500 Subplyman DAY 3 \$ 5,000 Subplyman DAY 3 \$ 5,000 Subplyman DAY 3 \$ 5,000 Rect CONTACT BulkRiteR (parement) LG 1 \$ 2,500 Rect COUNTACT BulkRiteR (parement) LG Contrigenty Maintervance 2,500 Rect COUNTACT BulkRiteR (parement) LG SubbulkeR (maintervance) 2,500		AND		-	1 000	2 000	Receiption Contract MLA mode
Contrigency (15%) 5 337 Total Estimated Could 5 30281 Net Prevent Value 5 179,288 Net Prevent Value 5 179,288 Net Prevent Value 5 250 Total Estimated Annual Montolning 1 1,500 Subtrait Estimated Annual Montolning 1 1,500 Net Prevent Value 5 2500 Subtrait Estimated Annual Maintenance 1 2,500 Net Prevent Value 5 2,500 Net Prevent	france includes to support of the set		Summary Fe	Emated M	WIRE DAM S	2245	
Total Estimated Arrural Monitoria 2562 13 dayoyear) DAV 3 \$ 500 173,268 13 dayoyear) DAV 3 \$ 500 10501 14 Adoroyear) DAV 3 \$ 500 10501 15 dayoyear) DAV 3 \$ 500 10501 16 Ectimated Arrural Monitoring 1,500 255 16 Ectimated Arrural Monitoring 1,500 173 ReCT CONTACT SARRIER (parement) LS 1 \$ 2500 16 Ectimated Arrural Maintenance 2500 2500 173 Net Present Value 2500 2500 174 Stranded Arrural Maintenance 2500 2500 175 Not Present Value 2500 2500 176 Not Present Value 2500 2500 <				Confin	S LINE COM	AN	
Total Estimated Arrund Colu 3091 13 daysysar) DAY 3 \$ 500 179,284 13 daysysar) DAY 3 \$ 500 1 500 14 Present Value 1 5 500 1 500 13 daysysar) DAY 3 \$ 500 1 500 14 Mat Present Value 1,500 225 15 data Estimated Arrund Monitoring 1,500 225 16 dat Estimated Arrund Monitoring 1,500 2500 16 data Estimated Arrund Manthameret 2,500 2,500 16 data Estimated Arrund Manthameret 2,500 2,500 16 data Estimated Arrund Manthameret 2,500 2,500 17 Asta Manthameret 2,500 2,500 18 data Estimated Arrund Manthameret 2,500 2,500 19 Anternation 1,500 2,500 10 Anternation 2,500 2,500 10 Anterna			20	Total Eat	Trated OAM	0250	
Nat Present Value 1 170,208 13 dayoyrear) DAY 3 \$ 500 1 1500 23 dayoyrear) DAY 3 \$ 500 1 1500 24 dayoyrear) DAY 3 \$ 500 1 1500 25 Todal Estimated Annual Montoring 1 2500 2250 70 Cold Estimated Annual Montoring 1 2500 2500 RECT CONTACT BARRIER (parement) LS 1 3 2500 70 cold Estimated Annual Mantenance 2500 2500			Total	limited	S NO DAW	1agor	
Controperation Contrope				Net Pr	sent Value 5	179,268	Assume 7 years to remove DNAPL
(3 dayo/rear) DAV 3 \$ 500 1 1.500 Subtopic Estimated Ammal Monitoring 1.500 2.500 Total Estimated Ammal Monitoring 1.253 Total Estimated Ammal Monitoring 1.253 RECT CONTACT BARRIER (parement) LS 1 \$ 2.500 Rect CONTACT BARRIER (parement) LS 2.500 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
Subtrate Estimated Arrual Monitoring 1,500 Total Estimated Arrual Monitoring 1,255 Total Estimated Arrual Monitoring 1,225 LS 1 3,2500 Subtrat Estimated Arrual Maintenance 2,500 Total Estimated Arrual Maintenance 2,500	Modeling (Accessing 1 december)	DAV			\$ 005	1,500	Based on current M&A costs
Contigency (15%) 5 225 Total Estimuted Annual Mentlooting 1 1,235 Net Present Value 5 26,517 Subocal Estimated Annual Ministrumore 1 2,500 Subocal Estimated Annual Ministrumore 1 2,500 Total Estimated Annual Ministrumore 1 2,350 Net Present Value 3 44,195		1000	Subtotal Estima	ed Arrua	Monitoring \$	1,500	
Total Estimated Annual Monitoring 1 1,728 Net Present Value 5 25,00 Suboral Estimated Annual Maintenance 5 2500 Total Estimated Annual Maintenance 1 2,200 Net Present Value 1 44,196				Continu	ency (15%) \$	-	
Net Present Value 5 26,517 LS 1 5 2500 5 2500 Subboard Estimated Annual Maintenance 5 2,500 Total Estimated Annual Maintenance 3 2,875 Total Estimated Annual Maintenance 3 2,875 Mel Present Value 3 44,164			Total Estimate	Annual	Monttoring \$	1.725	
LS 1 3 2500 5 2500 Sublocal Estimated Annual Maintenance 5 2500 Controllectionated Annual Maintenance 3 2500 Total Estimated Annual Maintenance 3 2,875 Met Present Value 3 44,164				Net Pr	Sent Value 5	24,817	Assume 30 years morehoring
Subscrift Estimated Annual Maintenance 5 2,500 Controlled Annual Maintenance 1 2,875 Total Estimated Annual Maintenance 1 2,875 Net Present Value 3 44,164	UNTENNICE OF DIRECT CONTACT BARRIER (Devenent)	SJ	5	•	2,500 \$	2,500	Based on engineer's estimate, annual cost derived from expected repare of maintenance every 5 years
500 State		l	Suctoral Estimated	Amount	laintenance \$	2500	
2,075				Contine	ency (15%) \$	375	
HI'H			Total Estimated	Minute M	aintenance 1	2,075	
				Net Pri	sent Value \$	44,196	Assume 30 years
			Mail Brense	Value B			

Means: R5 Means Environmental Ramodiation Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003, 3. Soil weight equals 1.6 tors per cubic yard.
 Met Present Value based on 5% Interst, OK Inflation.

TABLE D-COST ESTIMATE ALTERMITVE 1-SHALLOW DWARL RECOVERY, SHALLOW DWARL MIGRATION, IN SITU CHEMICAL OXIDATION OF TSM AND PETROLEUM MPACTED SOILS, AUL AREA 1

ITEM	UNITS	GUANTITY	8≻	PRICE	COST	NOTES
MOBILIZATION	SJ	-	-	75,000 \$	75,000	Unit price is combined mobilization for DNAPL recovery system, chemical oxidation and sheeting installation
SHALLOW DNAPL RECOVERY (IN TSM)						
Recovery Well Installation	1	-		\$ 000 \$	25,000	Unit cost based on expineer's expertence, stainless steel screen. 8" dameter 10-18 feet deep
Well Vaun	3	9	*	2,000 \$	10,000	Unit cost based on engineer's experience
Equipment/Storage building	SHED	-		10,200 \$	10,200	Means 33 43 0104; 10' x 5.5' x 8.33' Hazardous material storage building
Collection Pipe Installation	5	300	*	21.01 \$	6,303	Means 33 26 0621; PVC double-wall piping with fittings
Product Recovery Tank	3	-	**	2,000 \$	2,000	Unit cost based on engineer's experience for 200 gallon tank
Remote Televnetry Unit (RTU)	EA	-		\$ 000 \$	5,000	Unit cost based on engineer's experience
Electrical & Equipment Installation	5	-	*	15,000 \$	15,000	Unit cost based on angineers experience
Pumps	3	*0	-	5,000 \$ Subiotal \$	25,000	Unit cost based on angineer's experience
CHEMICAL OXIDATION (15M & PETROLEUM ANEA)		,			1000	
Procession (A) and the second se	3 2		• •	* 000	nin's	Dased on engineers expensions
representation and interestion Community and Catched	5 8	TRANK			Car are	Deserved on surgererer & experience, were spacedo zu on center
rightingen returne rotating uprigning and unreger	5	nune i	•••	-	an 111	parant on engineers expensive, besed on 3 injections/with, total votame buo gal/wes
Monthoriso & Data Internetation	3 9		• •		80.000	based on sniperiors a styleniones, row or undant cust Resad on anotheride avriationes
		23	8	Subtotal S	638,438	
			A TON	Not Prosent Value 3	021,26P	Assumo implemented in year 0
SHALLOW DWAPL MIGRATION CONTROL	5	900	•	CS 5 Subtotal 5	52,000	Based on angineer's experience for small barrier (Waterloo or similar), 15 deep
	Capit	Capital Subtotal (not including engineering) \$	nchuding	inglneoring) \$	657,623	
ENCINEERING						
DesignMCP Compliance	SJ	- :		\$ 000'58	85,000	Assume MCP Compliance \$30%, Design \$55%
Engineering Oversight	WEEK	2		\$ 000'	000'02	
		10 10	Subtotal	Subtotal Engineering \$	123,000	
				Subiolari \$	812,623	
	3	Total Est	Contri mated Ca	Contingency (15%) 5 Total Estimated Capital for 1-4: 5	121,893	
OBERATION AND MAINTENANCE (THIAD) BACTION ON						
DNAPL Disposal (Assume 35 galmo)	W	35	**	1 5	245	Based on ourmini M&A costs
Maintenance (Assume 2 days/month)	DAY	2	-	1,000 \$	2,000	Based on current MSA costs
		Subtotal	istimated	Subtotal Estimated Monthly O&M \$	2,245	
			Conte	Contingency (15%) 5	LEE	
		Total E	etimated	Total Estimated Annual O&M \$	10.02	
			Net P	Net Present Value 5	179,260	Assume 7 years to remove DNAPL
DIAMPL MONITORING						
(nearlayed 6 minutes) (principal in the second seco	DAY		-	**	005°	Bustant on runned MUA routs
		Sublotal Estin	unted Ann	Sublotal Estimated Annual Monitoring \$	1,500	
			Conti	Contrigency (15%) \$	522	
		Total Estimated Annual Monitoring Nat Present Value	Net P	Vinual Monitoring 3	1,725	Accurrent 10 second modeling
	1000	3	1			
MUNTENANCE OF DIRECT CONTACT MANUER (PRIMINAL)	2	Substate Estimated Amount Malatanana	3	2,500 5	2 500	Based on engineer's estimate; asmual cost derived from expected repriving/maintenance every 5 years
			Cont	Contingency (15%) \$	375	
		Total Estimated Annual Maintenance	Annual b	Maintenance 5	2,875	
			1100	VIEL PRESENT VANUE 3		tainty on summer
					and the second	

l Notes: Notes: RS Meane Environmental Remodation Cost Data - Assembles and Unit Price 2003 or Means Heavy Construction Cost Data 2003. 2 Net Present Value based on "K enterest, DM wild bon

and the second

L

2. Not Present Value based on 5% Interest, 0% inflation.

Based on engineer's estimate; annual cost derived from expected reparving/maintenance every 5 years Based on engineer's experience for small barrier (Watertoo or similar); 15' deep Maans 33 43 0104 10' × 5 V × 8 33' Hazardoug maladal atomgo building Unit cost based on engineer's experience for 200 gallon tank Means 33 26 0621; PVC double-wall piping with fittings Assume MCP compliance \$30k, Design \$35k Unit cost based on engineer's experience Unit cost based on angineer's experience Unit cost based on engineer's experience Assume 5 years to remove DNAPL Assume 30 years monitoring Based on current H&A costs Based on current H&A costs Based on current H&A costs Assume 30 years , Means: RS Means Environmental Remediation Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003 25,000 6,303 2.000 65,000 44,025 245 2,000 2,245 10.200 5,000 15,000 98,503 52.000 52,000 28,000 93,000 337,528 1,500 26,517 2,500 44,196 542,373 293.503 2,582 134,132 1.725 2,500 2,875 200,503 337 30,981 1,500 225 375 Net Present Value \$ Nat Present Value Project Cost \$ 5,000 2,000 10,200 2,000 5,000 15,000 5,000 Capital Subtotal (not including angineering) Contingency (15%) Total Estimated Capital for 1-5: 21.01 Subtotal Subtotal 7,000 Subtotal Engineering Subtotal 1,000 Subtotal Estimated Monthly O&M Contingency (15%) **Fotal Estimated Annual O&M** Net Present Value 2,500 Subtotal Estimated Annual Maintenance Contingency (15%) **Total Estimated Annual Maintenance** Net Present Value 59 Total Estimated O&M 005 Subtotal Estimated Annual Monitoring Contingency (15%) **Total Estimated Annual Monitoring** 65,000 -• 300 80 38 w) -3 • SHED WEEK DAY DAY 5555 NS. 2 2 MAINTENANCE OF DIRECT CONTACT BARRIER (pavement) OPERATION AND MAINTENANCE (DNAPL RECOVERY) SHALLOW DNAPL MIGRATION CONTROL DNAPL Disposal (Assume 35 galimo) Maintenance (Assume 2 days/month) Remote Telemetry Unit (RTU) Electrical & Equipment Installation Monitoring (Assume 3 days/year) Equipment/Storage building Collection Pipe Installation DesignMCP Compliance Product Recovery Tank Engineering Oversight DNAPL MONITORING ENGINEERING Pumps

SHALLOW DNAPL RECOVERY, SHALLOW DNAPL MIGRATION. AULS ALTERNATIVE 1-5 COST ESTIMATE TABLE D-5 AREA 1 Unit cost based on engineer's experience; stainless steel screen, 8ª diameter 10-18 feel deep

Unit cost based on engineer's experience

25,000

Unit price is combined mobilization for DNAPL recovery system and sheeting installation

50,000

\$ 0000 \$

-

-

S

55

SHALLOW DNAPL RECOVERY (IN TSM)

MOBILIZATION

Recovery Well Installation

Well Vault

ESTIMATED COST

PRICE

ESTIMATED QUANTITY

UNITS

ITEM

NOTES

HALEY & ALDRICH, INC.

TABLE D-6 COST ESTIMATE ALTERNATIVE 1-6 LNAPL and Deep DNAPL Monitoring, AULs AREA 1

	1000	ESTIMATED		UNIT	ESTIMATED	
ITEM	UNITS	QUANTITY	PR -	PRICE	COST	NOTES
ENGINEERING						
MCP compliance	rs	•	•	30,000 \$	30,000	
		Sut	ototal Eng	Subtotal Engineering \$	30,000	
			ł	Subtotal \$	30,000	
			Continger	Contingency (15%) \$	4,500	
		Total Estimated Capital for 1-8:	ed Capita	I for 1-8: \$	34,500	
DNAPL MONITORING						
Monitoring (Assume 3 days/year)	DAY	69	*	\$ 009	1,500	Based on current H&A costs
	ū	Subtotal Estimated Annual Monitoring	Annual N	Aonitoring \$	1,500	
			Continger	Contingency (15%) \$	225	
	Ŧ	Total Estimated /	ted Annual Monitoring	pnitoring \$	1,725	1. Course distance of the second s
			Net Prese	Net Present Value	28,517	Assume 30 years monitoring
MAINTENANCE OF DIRECT CONTACT BARRIER (pavement)	SJ	•	*	2,500	2,500	Based on engineer's estimate; annual cost derived from expected repaving/maintenance eve
	Sub	Subtotal Estimated Annual Maintenance	unual Mai	intenance 1	2,500	
			Continger	Contingency (15%) \$	375	
	Tot	Total Estimated Annual Maintenance	nual Male	atenance 1	2,875	
			Net Pres	Net Present Value	44,196	Assume 30 years
		Net Present Value Project Cost \$	Value Pro	lect Cost	105,213	
Nolae:						
 Means: RS Means Environmental Remediation Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003. 	semblies and	Unit Price 2003 c	or Means I	Heavy Cons	Inction Cost Data 2	2003.
2. Net Present Value based on 5% interest, 0% inflation.						

1

EV & AND HIN HIN

TABLE 0-7 COST ESTIMATE ALTERNATIVE 2-1 SHALLOW AND DEEP DNAPL RECOVERY, LNAFL EXTRACTION USING MPE, IN-SITU CHEMICAL OXIDATION OF TSM AND LNAPL SOLLS, DNAPL MIGRATION CONTROL, AUL

ITEM UNITS QUANTITY MOBILIZATION LS 1 MOBILIZATION LS 1 SHALLOW AND DEEP DMAPL RECOVERY EA 13 Recovery Well Installation EA 13 Wer Vault EA 13 Ver Vault EA 13 Product Recovery Tank EA 1 Recovery Tank EA 1 Product Recovery Tank EA 1 Recovery Tank EA 1		PRICE 150,000 \$ 5,000 \$ 2,000 \$ 21,01 \$ 21,01 \$ 2,000 \$ 5,000 \$	COST 150,000	NOTES
ន ខ្មុ ^{ដ្} ទីភ្ជនន្ថ ១១		150,000 \$ 5,000 \$ 2,000 \$ 71,01 \$ 2,000 \$ 5,000 \$ 15,000 \$	150,000	
ភ្មេ <u>ម</u> ិះភ្នេង ភ្ន		5,000 \$ 2,000 \$ 21,01 \$ 21,01 \$ 5,000 \$ 5,000 \$		Unit price is combined mobilization for DNAPL recovery system, MPE, chemical oxidation and sheeting installation
22 22 23 23 23 23 23 23 23 23 23 23 23 2		5,000 5 2,000 5 21,01 5 21,01 5 5,000 5 5,000 5		
រ ^{ដ្} ងភ្នេង		21.01 5 21.01 5 2,000 5 5,000 5	65,000	Based on engineer's experience, stainless steel screen, 8" chameter 10-18 feet deep
ក្លភនភ		21.01 5 2,000 5 5,000 5	20,000	uased on engineer's expensive
- ភ ឌ ឌ ឌ ឌ ឌ ឌ		2,000 \$ 5,000 \$ 5,000 \$	007'01	Means 33 43 0104, 10 X 5.5 X 8.33 Hazarobus material storage building
5555 555 555 555 555 555 555 555 555 5		5,000 5 5,000 5 15,000 5	15,758	Means 33 26 0621; PVC double-wall ploing with filings
21 21 21 21 21 21 21 21 21 21 21 21 21 2		5,000 5	2,000	Based on engineer's experience for 200 gallon tank
ిచ చచ		15.000 \$	5,000	Based on engineer's experience
ង ដង	•		15,000	Based on engineer's experience
చ చ		5.000 \$ Subtotal \$	55,000 203,958	Based on engineer's experience
đ đ				
4	•	1,500 \$	18,000	Based on engineer's experience; 20' radius of influence
i	••	\$ 005	6,000	Unit cost based on engineer's experience
Well Vault (MPE) EA 12	*	2,000 \$	24,000	Based on engineer's experience
Distribution Pipe Installation (trench, pipe, bedding) LF 300	•	4123 \$	12,369	Means 33 26 0624; 4", 6" double-wall piping with fittings
Multiphase skid 50 HP blower EA 1	*	60,000 \$	60,000	Unit cost based on engineer's experience
Electrical LS 1	•	15,000 \$	15,000	Unit cost based on engineer's experience
OliWhater Separator LS 1	•	13,717 \$	13,717	Means 19 04 0412; 50 GPM
r vapor treatment	•	30,000 \$	30,000	Unit cost based on engineer's experience
Treatment Endosure LS 1	•	28,135 \$	26,135	Means 33 43 0108; 20' x 20', heated, insulated
RTU/Controls LS 1	•	5,000 \$	5,000	Unit cost based on engineer's experience
Filter Housings EA 2	\$	1,500 \$	3,000	Unit cost based on engineer's experience
sets	•	5,000 \$	10,000	Unit cost based on engineer's experience; 2 x 500 lb vessels
MPE skid shipping/set-up	5	15,000 \$	15,000	Unit cost based on engineer's experience
System assembly LS 1	*	30,000 \$	30,000	Unit cost based on engineer's experience
		Subtotal \$	268,221	
CHEMICAL OXIDATION (TSM & LMAPL AREA)				
	•	75,000 \$	75,000	Based on engineer's experience
Injection Well Installation 245	•	600 \$	147,000	Based on engineer's experience; wells spaced 20° on center
Hydrogen Peroxide Reteasing Compound and Calafyst GAL 122500	\$	3.15 \$	385,875	Based on engineer's experience; based on 3 injections/well
Equipment and injection labor 1		•	289,406	Based on engineer's experience: 75% of oxidant cost
Monitoring & Data Interpretation 1	5		60,000	Based on engineer's experience
	v	Subtotal \$	957,281	
	Net Present Value	it Value \$	559,703	Assume anglemented in year 11
10	•	\$ 59	68,250	Based on engineer's experience for small barrier (Waterloo or similar), 15' deep
Chemical Grouting beneath curvert CF 300		138 \$	41,400	Means 02250 050 0400
	90	Subtotal \$	109,650	
	And a state of the			

t

HALEY & ALDRICH, INC.

TABLE D-7 COST ESTIMATE

ALTERNATIVE 2-1 SHALLOW AND DEEP DWAPL RECOVERY, LWAPL EXTRACTION USING MPE, IN-SITU CHEMICAL OXIDATION OF TSM AND LWAPL SOILS, DWAPL MIGRATION CONTROL, AUL AREA 2

		ESTIMATED			ESTIMATED	
ITEM	UNITS	QUANTITY	•	PRICE	COST	NOTES
ENGINEERING						
DesignMCP Compliance	S	-	**	129,153 \$	129,153	Assume 10% of capital costs
Engineering Oversight	WEEK		•	7,000 \$	140,000	
		ซี	thtotal En	Subtotal Engineering \$	269,153	
				Subtotal S	1,560,684	
			Continge	Contingency (15%) \$	234,103	
_	1	Total Estimated	ted Capi	Capital for 2-1: 5	1,794,787	
OPERATION AND MAINTENANCE (DNAPL Recovery)						
DNAPL Disposal (Assume 30 galimo)	GAL	8	\$	1 5	630	Based on current H&A costs
Maintenance (Assume 2 days/month)	DAY	2	•	1,000 \$	2,000	Based on current H&A costs
		Subtotal Estimated Monthly O&M	mated Mo	Thiy OSM \$	2,630	
			Continge	Contingency (15%) \$	395	
		F	Total Estim	Estimaled O&M \$	3.025	
		Total Es	imated Au	Total Estimated Annual O&M \$	36,294	
			Net Pres	Net Present Value \$	280,253	Assume 10 years to remove DNAPL.
OPERATION AND MAINTENANCE (MPE)						
Electrical	HWX	25000	•	0.15 \$	3,750	Based on engineer's experience
Labor	Ħ	20	•	80 5	1.600	Based on current H&A costs
LNAPL Disposed (Assume 25 patimo)	GAL	22	-	2 2	175	Based on engineer's experience
Miss. Exnereses fournament/weste discretations)	S	-	-	\$ 005	500	Based on entities's extensions
Matured are substantian				- 000	unc	
Liouid Treatment]					
Cathor Channel and	-	•		* 000 ¥	4 000	Research on annuments of surranteering
			• •	-		
	5				2	reeven on sugarcal a aspenance
		Sublotal Estimated Monthly OaM	Contract Michael	Trated Monthly USM \$	10,221	
		•	Total College	Colored Core a	****	
		Total Co	Distant Ar	Total Celevated Annual Other 6	10/11	
		100	Net Pres	Net Present Value 5	262.423	Assume 2 wears to remove I NAPI
MAINTENANCE OF DIRECT CONTACT BARRIER (pavement)	SI	-	*	3,000 \$	3,000	Based on engineer's estimate; annual cost derived from expected repairing/maintenance every 5 years
		Subsolal Estimated Annual Mainlenance	Annual M	vinlenance \$	3,000	
			Continge	Contingency (15%) \$	450	
		Tolei Estimated Annual Maintenance	and income	intenance \$	C17'5	
			Net Pre	Net Present Value 5	53,035	Assume 30 years
	ł	Part Barren	Welling De	these Parts 4	and not c	
	1120	MIDSBILL YON	A ANTA	+ TEOD IDAGUL ANTRA TUBERLI TON	004'000'7	

003

E

l

I

l

l

l

I

2

1

DAIL WALL

ĺ

HALEY & ALDRICH, INC.

Means: RS Means Environmental Remodiation Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003.
 Net Present Value based on 5% internat, D% initiation.

		ESTIMATED		UNIT	ESTIMATED	
ITEM	UNITS	QUANTITY O		PRICE	COST	NOTES
OBILIZATION	LS.	-	•	70,000	\$ 70,000	Unit price is combined mobilization for DNAPU/UNAPL recovery system and sheeting installation
SHALLOW DNAPL RECOVERY						
Recovery Well Installation were vower	55	2 2		5,000	5 265,000	Based on engineer's experience, stainless steel screen, 5' diameter 10-18 feet deep Based on engineer's experience
Equipment/Storage building	SHED		-	10,200	\$ 10,200	
Collection Pipe Installation	5		**	21 01	15,758	
Product Recovery Tark Barrets Talemetry (1nt (RTL))	5 5		* **	2,000	5,000	elased on engineer's expension ar wourgaron uww. Bused on engineer's experience
Electrical & Equipment Installation	5	- :		15,000	15,000	Based on cogineer's experience
Purios			Î	Subtotal	201,958	This is a subscript of a subscript of the subscript of th
UNPL RECOVERY		2	3			
Recovery Weit Instattation	1			2500	12,000	Based on engineer's expensioner, stankess steel screen, IT drameter 10-16 leet deep
Well Vaul	SHED		• •	10200	10,200	9.63
Contection Place Installation	5	-	-	2101	\$ 8,303	
Product Recovery Tark	5	-	**	2,000	2,000	Based on engineer's experience for 200 gallon tark.
Remote Telemetry Unil (RTU)	5			2,000	800's	Based on engineer's experience
Electrical & Equipment Instatton Pumps	3 5	- 2	• •	000's	\$ 65,000	uased on engineer's experience Based on engineer's experience
				Subtotal	130,503	
SHALLOW DHAPL MIGRATION CONTROL	35	10501	**	8	\$ 68,250	Based on engineer's experience for small barrier (Waterico or similar); 15' deep
Chemical Grouting beneath culvert	5	8		Subtotal	5 109,450 5 109,450	Memna 02250 050 0400
	Capil	Capital Subtotal (not including angineering)	- Bulging	(gineering)	111,412 1	
ENCINEERING						
DesignMCP Compleme	5	-	•	100,000	100,000	Assume MCP complance \$30k, Design \$70k.
Engineering Oversight	WEEK	=	s ubtotal	5 7,000 Subtotal Engineering	000'11 \$	
				Subiotal	111.100 2	
			Contr	Contingency (15%) \$		
_		Total Estim	tated Ca	pital for 2-2:	111'942 1	
OPERATION AND MAINTENANCE (DNAPL Recovery)	10	8	•		1000	Bushed for research 148.2 pearly
ONAPL Disposal (Assume 90 galmo) Materiana (Assume 2 descinonth)	NA	8 ~	• ••	1,000	2,000	
		Subotal Es	timated l	Subbotal Estimated Monthly O&M	2,630	
		22	Confi	Contingency (15%)	300	
		Total E	total Es	Total Estimated Annual OAM	102.92	
			Net P	Net Present Value	550'323	Assume 10 years to remove DINAPL.
OPERATION AND MAINTENANCE (LNAPL RECOVER)						•
LNAPL Disposal (Assume 25 galmo)	3	R •		-	541 5	Based on current MGA costs
Mantenance (Assume 2 days/month)	IND	Subbotal Ex	finned 1	Subintial Estimated Monthly OSM	2.175	
			Contin	Contingency (15%)	1 226	
		1	Total Es	Total Estimated 0&M	1 2,501	
		Total E	Net PI	Total Estimated Arrual OAM Net Present Value	\$ 30,015 \$ 152,347	Assume 5 years to remove LUAPL
WANTENANCE OF DIRECT CONTACT BARRIER (proment)	5	-	•	3,000	3,000	Based on angineer's estimate, arrual cost derived from expected right-righmanearance every 5 years
		Sublocal Estimated Amual Maintenance	Among a	Configuration (15%)	3,000	
		Total Estimated Annual Maintenance	Innual	(aintenance	5 3,450	
	1		Net	Net Present Value	100,00	stead of summer

I

6/27/200h

TABLE D-9 COST ESTIMATE ALTERNATIVE 2-3 LINAPL and DNAPL Monitoring, AULs AREA 2

		ESTIMATED	2	UNIT	ESTIMATED	
ITEM	UNITS	QUANTITY	ā	PRICE	COST	NOTES
ENGINEERING MCP compliance	L.S.	1 Sub	\$ total Eng	\$ 30,000 \$ Subtotal Engineering \$	30,000	
		Subtotal Contingency (15%) Total Estimated Capital for 1-5:	Continger ed Capita	Subfolal \$ Contingency (15%) \$ ted Capital for 1-5: \$	4,500 34,500	
DNAPL MONITORING Montoning (Assume 3 days/vear)	DAY			500 5	1.500	Based on current M&A costs
		Subtotal Estimated Annual Monitoring	Annual A	Annual Monitoring 5	1,500	
		Total Estimated Annual Monitoring	W lenner	initoring	1,725	
		-	Not Pres	Net Present Value \$	5 26,517	Assume 30 years monitoring
MAINTENANCE OF DIRECT CONTACT BARRIER (pavement)	SI	1	5	3,000	3,000	Based on engineer's estimate; annuel cost derived from expected repeving/maintenance every 5 years
	Suc	Subtotal tastmattid Annual Maintenance Contingency (15%)	Continger	Contingency (15%) \$	450	
	To	Total Estimated An	Net Presi	Annual Maintenance S Net Present Value 5	5,450	Assume 30 years
		Not Present V	aha Pro	of Value Project Cost 5	114.052	

Means: RS Means Environmental Remodiction Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003.
 Net Present Value based on 5% interest. 0% inflation.

E

ſ

E

I

l

1

l

l 1

ſ

1

h

TABLE D-10 COST ESTIMATE ALTERNATIVE 3-1 SHALLOW DNAPL RECOVERY, IN-SITU CHEMICAL OXIDATION OF TSM SOIL, SHALLOW DNAPL MIGRATION, AUL AREA 3

3

j

]

]

I

I

ITEM	UNITS	GUANTITY		PRICE	ESTIMATED COST	NOTES
MOBILIZATION	S	-	*	100,000	100,000	Unit price is combined mobilization for DNAPIL recovery system, chemical oxidation and sheeting installation
SHALLOW DNAPL RECOVERY						
Recovery Well Instellation	a	12	*	5,000	80,000	Based on engineer's experience; stainless steel screen, 8" diameter 10-18 feet deep
Well Vault	5	12	*	2,000	24,000	Based on engineer's experience
Equipment/Storage building	SHED	-	*	10,200	\$ 10,200	Means 33 43 0104; 10' x 5.5' x 8.33' Hazardous material storage building
Collection Pipe Installation	5	300	**	21.01	6,303	Means 33 26 0621; PVC double-wall piping with fittings
Product Recovery Tank	5	-	**	2,000 1	2,000	Based on engineer's experience for 200 gation tank
Ramoia Telenerity Unit (RTU)	E	1	-	5,000	5,000	Based on engineer's experience
Electrical & Equipment Installation	SJ	F	•	15,000	15,000	Based on engineer's experience
Pumps	3	12	*	5,000	80,000	Based on engineer's experience
				Subtotal \$	182,503	
CHEMICAL OXIDATION						
Plot Test	SI	-	•	75,000 \$	15,000	Based on engineer's experience
Injection Well Installation	EA	180		600 \$	108,000	Based on engineer's experience; wells spaced 20' on center
Hydrogen Peroxide Releasing Compound and Catalyst	GAL	00006	*	3.15 \$	5 263,500	Based on engineer's experience, based on 3 injections/well, total volume 500 gal/well
Equipment and injection labor	SI	-	*		212,625	Based on engineer's experience, 75% of oxidant cost
Monitoring & Data Interpretation	LS I	-	-		60,000	Based on engineer's experience
				Subtotal S	139,125	
			Net Pr.	Net Present Value 5	551,546	Assume implemented in year 6
SHALLOW DHAPL MIGRATION CONTROL	3	2700	**	18	175,500	Based on engineer's experience for small barrier (Watertoo or similar): 15' deep
Chemical Grouting beneath culvert	2	300	-	138 5	41.400	Means 02500 050 0400
	8			Subtotal 5	216,900	
	Capital	Capital Subtotal (not including anglneering)	e Dulpa	alneering) \$	1.050,949	
		•				
Design/MCP Convitance	2	÷		105.095 \$	105 045	Accurate 10%, of results control
Environmentan Description	uncer .	- :	• •	00012	BA DOO	
	HEEN		thetal E	Subtrati Engineering	500.001	
		222		Subhotal \$	1,240,044	
			Contro	Contingency (15%) 3	100,001	
		Total Estimated Capital for 1-4:	ated Ca	Ital for 1-4	1426,031	
OPERATION AND MAINTENANCE (DNAPL Recovery)						
DNAPL Disposal (Assume 50 galimo)	GAL	8	**	2 2	350	Based on current H&A costs
Maintenance (Assume 2 days/month)	DAY	2	**	1,000 5	2.000	Based on current M&A costs
		Subtotal Estimated Monthly O&M	mated M	politry O&M \$	2,350	
			Contine	Contingency (15%) \$	353	
		-	otal Esti	Total Estimated O&M S	2.703	
		Total Es	imated a	Total Estimated Annual O&M S	32,430	
			Net Pre	Net Present Value 5	140,405	Assume 5 years to remove DNAPL
MAINTENANCE OF DIRECT CONTACT BARRIED (MANAGED)	0	•		003 0	005 0	Rossel in antimatic administration from the first from the second statements of the second second second second
		Subtrait Entended Annual Maintenance	Amound		2500	המקור היו היות ובכבי ב בפוו הוווי מוויחסו הכו הביו היו והיו היאברובה ובאהוות ווויבו ווביו וביו או או הווביו בגבול ה לבחום
	5		Contra	Confinement (15%) \$	375	
	÷	Total Failmated A	A laura	Annual Maintenance 5	2.875	
			Net Pri	Net Present Value 5	44,196	Assume 30 years
		Nat Present	Walnut D	And Value Banlant Cost &	1.610.652	

Meant: RS Means Environmental Remediation Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003.
 Net Present Value based on 5% interest, 0% initiation.

HALEY & ALDRICH, INC.

.

Bused on engineer's estimate; annual cost derived from expected repeving/maintenance every 5 years Unit cost based on engineer's experience; stainless steel screen, 8° diameter 10-18 feet deep Unit price is combined mobilization for DNAPL recovery system and sheeting installation Based on engineer's experience for small berrier (Welertoo or similar), 15' deep Means 33 43 0104; 10 x 5.5 x 8.33 Hazardous material storage building NOTES Means 33 26 0621; PVC double-wall piping with fittings Assume MCP compliance \$30k, Design \$50k Unit cost based on angineer's experience Unit cost based on engineer's experience Assume 5 years to remove DNAPL Based on current H&A costs Based on current H&A costs Means 02250 050 0400 Assume 30 years 864,714 80,000 32,430 44,196 1. Means: RS Means Environmental Remediation Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003, 2. Net Present Value based on 5% inferest, 0% inflation. 70,000 88,710 680,113 350 2,350 2,703 2.500 2,500 2,875 60,000 24,000 10,200 2,000 5,000 15,000 60,000 175,500 41,400 353 375 6,303 216,900 122,000 591,403 469,403 ESTIMATED COST \$ 000'08 7,000 \$ Subtotal Engineering \$ Contingency (15%) \$ Total Estimated Capital for 1-4: \$ 70,000 \$ Not Present Vatue \$ Subtotal \$ Capital Subtotal (not including angineering) 5 Subtotal Estimated Monthly O&M \$ Contingency (15%) \$ Total Estimated 0&M \$ Subtotal \$ Total Estimated Annual O&M Net Present Value Sublotal Estimated Annual Maintenance Contingency (15%) **Total Estimated Annual Maintenance** 1,000 2 500 Net Present Value Project Cost 21.01 2,000 5,000 5,000 2,000 10,200 15,000 5,000 Subtotal 8 138 ~ PRICE --ESTIMATED QUANTITY 2700 300 SN •• -2 2 --- - 2 - 0 UNITS SHED EA LS DAY 13 555 3 35 5 5 MAINTENANCE OF DIRECT CONTACT BARFRIEK (povement) OPERATION AND MAINTENANCE (DNAPL Recovery) SHALLOW DNAPL MIGRATION CONTROL DNAPL Disposal (Assume 50 gal/mo) Maintenance (Assume 2 days/month) Chemical Grouting beneath cuivert Electrical & Equipment Installation Pumps METI Remote Telemetry Unit (RTU) SHALLOW DNAPL RECOVERY Equipment/Storage building Collection Pipe Installation Recovery Well Installation DesignMCP Compliance Product Recovery Tank Engineering Oversight ENGINEERING MOBILIZATION Well Vault

SHALLOW DNAPL RECOVERY, SHALLOW DNAPL MIGRATION, AUL

ALTERNATIVE 3-2 COST ESTIMATE

AREA 3

TABLE D-11

ľ

-

-

-

- DA

57 8 A

E007

1

TABLE D-12 COST ESTIMATE ALTERNATIVE 3-3 DNAPL Moniloring, AULs AREA 3

3

3

]

]

]

1

		ESTIMATED	UNIT	ESTIMATED	
ITEM	UNITS	QUANTITY	PRICE	COST	NOTES
ENGINEERING MCP compliance	LS.	1 Subt	\$ 30,000 1 Subtotal Engineering	30,000 5 30,000	
		c	Subtatal \$	30,000	
		Total Estimated	Total Estimated Capital for 1-5: 1		
DNAPL MONITORING					
Monitoring (Assume 3 days/year)	DAY		\$ 500	1,500	Based on current M&A costs
		Subjolal Estimated Annual Monitoring	nnual Monitoring	1,500	
		ð	Contingency (15%) 4	\$ 225	
		Total Estimated An	Annual Monitoring 1	1,725	
		ž	Net Present Value	\$ 26,517	Assume 30 years monitoring
MAINTENANCE OF DIRECT CONTACT BARRIER (pavement)	SI	-	\$ 2,500	2,500	Based on engineer's estimate: annual cost derived from expected repaying/mainterance every 5 years
		Subtotal Estimated Annual Maintenance	ual Maintenance	\$ 2,500	
		ð	Contingency (15%) 1	375	
	Ŧ	Total Estimated Annual Maintenance	tal Maintenance	\$ 2,875	
		ž	Net, Present Value	\$ 44,196	Assume 30 years
		Net Present Va	Value Project Cost \$	\$ 105,213	

Means: RS Means Environmental Remodiation Cost Data 2. Net Present Value based on 5% interest, 0% inflation.

ł,

6/27/2003

ITEN	UNITS	CUANTITY	a ≿	PRICE	COST	NOTES
MOBILIZATION	SJ	-	-	\$ 000,001	100,000	Unit price is combined mobilitation for MPE and chemical origitation
MPE SYSTEM INSTALLATION						
Well Installation (12 MPE Wells)	3	8	**	1,500 \$	30,000	Based on ergineer's experience, 20 radius of influence
Well Head (MPE)	5	8		\$ 005	10,000	Unit cost hased on engineer's experience
Well Vaul (MPL)	3 :	R	•••	2,000	40,000	Based on engineer's appelence
the sector of the sector is the sector is a sector balance and the sector of the secto	5		•••		000,200	
Electrical and average and the second	5 9		• •	15,000	15,000	uns usst onset un engineer's expension Unit cost haded on environer's enserverse
OWWater Separator	S	-		13.717 \$	11,717	Means 18 OM ON 25 SO GPVA
Catalytic Oxidizer for vacor treatment	A	-	-	30,000 \$	30,000	Unit cost tased on engineer's experience
Treatment Enclosure	SI	-	**	26,135	26,135	Mears 33 43 0100; 20 x 20, heated, travated
RTUIControls	5	-		5,000 \$	2,000	Unit cost tassed on engineer's experience
Film Housings	2	2	*	1,500 \$	3,000	Unit cost based on ergineer's popertence
Liquid GAC weakes	5	~	*	\$ 000'9	10,000	Unit cost based on ergineer's experience, 2 x 500 lb vessels
MPE stud stapping set-up	9 :		•	15,000	15,000	Unit cost based on engineer's experience
Accusate set in sector and	3	-	•	Subtotal 5	216,076	Unit cost based on engineers superience
CHEMICAL OXDATION						
Pluot Test	57	-	-	75.000 \$	75,000	Based on engineer's experience
Injection Well Installation	a	2	-	8 009	21,000	Based on engineer's experience, wells apaced 20 on center
Hydrogen Perturide Releasing Compound and Catalyst	B	17500	*	3.15 \$	521,255	Based on progreen's experience; based on 3 injections/well
Equipment and injection lation	51	-	*	•	41,344	Based on engineer's experience, 75% of oxidant cost
Mornoring & Deta Interpretation	S	-	*		000'00	Based on engineer's experience
				Subtotal \$	252,469	
			Not	Not Prosent Value \$	218,092	Assume implemented in year 3
	Capit	Capital Subsocial (not including angineering)	and a state	5 (grineerigne	101,000	
ENGINEERING						
DesignMCP Compliance	5		*	100,000 \$	100,000	Assume MCP compliance \$30%, Dissign \$70%
Engineering Oversight	WEBK	2	-	\$ 000'L	100,000	
			Suthtota	Subtotal Engineering \$	200'502	
			Cont	Contrigency (15%) \$		
		1001 EN	D Delimited	I OLAR ESTUTIONED LADIAL TOP 1-4: 8	CLV/IM/L	
OPERATION AND MAINTENANCE (MPE)			4			
Electrical	HANN	25000	* •	0.15	3,750	Based on engineer's experience
I NAC' Discover (Assessment Styl) and dates	E a	8 8		8 -	and't	
Misc. Expenses (nump multichaste discostalistic)	5 53	- 1		2005	805	Based on engineer's estatement
Natural gas consumption	5	-		200	200	Based on engineer's experience
Liquid Treatment						
Carbon Change-out	12				7 000	Brand on Angleser's anteletics
Bug Niers	5	2	5		2 Cartes	Based on strgtneer's experience
					Jerui	
			Total P	Total Estimated Ottal &	200.0	
		Total	Estmale	Tola Estimated Annual OLM 3	148.378	
			Net I	Net Present Value	275,015	Assume 2 years to remove LNAPL.
MANTENANCE OF DIRECT CONTACT BARRIER (pavement)	51	-	•	2,000 \$	2,000	Based on ergineer's estimate, annual cost domed from expected reparing/maintenance every 5 years
		Subbtal Estimated Annual Maintenance	Annual bar	Maintenance \$	100172	
		Contrigency (15%)	Con	Contrigency (15%) 5	8	
			Not	Not Present Value \$	LISE'SE	Assume 30 years
			-			
The state of the second s		Net Pros	And Value	Net Present Value Protect Cost \$	1 2.27 8.64	

TABLE D-13 COST ESTIMATE ALTERNATIVE 4-1 LIVATE ENTRACTION USING MPE, IN-SITU CHEMICAL OXIDATION OF TSM AND LVAR. SOLS, AUL AREA.

1. Morra: AS Moora Environmental Remoderion Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003. 2. Net Present Value based on SN Interest. ON Indexion
V & N.
V & N.

-

TABLE D-14 COST ESTIMATE ALTERNATIVE 4-2 LNAPL RECOVERY, AULS AREA 4

5

]

)

l

ſ

J

1

MCBLIZATION LNAPL RECOVERY (Beit skinnners) Recovery Well Installation Wel Vault Recovery Well Installation Wel Vault Equipment/Storage building Collection Pipe Installation Product Recovery Tank Remote Teternetry Unit (RTU) Electrical & Equipment Installation Remote Teternetry Unit (RTU) Remote Teternetry Unit (RT	 \$ 50,000 \$ 2,500 \$ 2,000 \$ 2,000 \$ 2,000 \$ 5,000 \$ 5,000	50,000 32,500 28,000 6,303 5,000 5,000 5,000 55,000 55,000 55,000 55,000 55,000 55,000 55,000 55,000	Unit price is mobilization for LNAPL recovery system Based on engineer's experience; stainless steel screen, 6° diameter 10-18 feet deep Based on engineer's experience Means 33 26 0621; PVC double-wall piping with fittings Based on engineer's experience Based on engineer's experience
ERY (Bet skimmers) al Installation be installation wery Tank metry Unit (RTU) quipment installation Gongliance Densight	 2,500 5 2,500 5 2,000 5 2,1,01 5 2,1,01 5 5,000 5 5,000 5 5,000 5 5,000 5 5,000 5 15,000 5 15,000 5 15,000 5 15,000 5 15,000 5 	32,500 26,000 6,303 5,000 5,000 65,000 65,000 65,000 5,000 55,000 65,000 65,000 65,000 65,000 65,000	Based on engineer's experience; stainless steel screen, 6" diameter 10-18 feet deep Based on engineer's experience maaars 20.43 0104 101 x 5.33 Hiszardous material storage building Means 33 56 0021; PVC double-wall piping with fittings Based on engineer's experience Based on engineer's experience
al Installation be installation wery Tank metry Unit (RTU) quipment installation Compliance Dversight	 2,500 5 2,000 5 2,000 5 2,000 5 5,000 5 5,000 5 5,000 5 9 englneering 5 1,000 5 1,000 5 1,000 5 	32,500 26,000 6,303 6,303 5,000 15,000 15,000 15,000 35,000 35,000 35,000	Based on engineer's experience; stainless steel screen, å' diameter 10-18 feet deep Based on engineer's experience Means 33 26 0621; PVC double-wall piping with fittings Based on engineer's experience Based on engineer's experience
corage building ee instatilation wery Tank metry Unit (RTU) quipment installation Compliance Dversight	 2,000 5 2,000 5 2,1,01 5 2,1,01 5 2,000 5 5,000 5 5,000 5 9 engineering 5 15,000 5 15,000 5 	26.000 10,2000 6,303 2,000 5,000 15,000 162,000 162,000 50,000 35,000 35,000	Based on engineer's experience Access 30 40 0104% for x 5.57 x 8 335 Hazardous maneñal storage building Means 33 26 0021; PVC double-wall piping with fittings Based on engineer's experience Based on engineer's experience
conget building be installation wery Tank metry Unit (RTU) quipment installation Compliance Dversight	 9,200,5 21,01 2,000 5,000 <l< td=""><td>2,000 6,303 5,000 5,000 65,000 15,000 152,003 212,003 50,000 35,000</td><td>Alexans 03 45 0104%10 x 0.5% x 6.33 Hazardous manenal storage building Means 33 26 0621; PVC double-wall piping with fittings Based on engineer's experience Based on engineer's experience Based on engineer's experience Based on engineer's experience Assume MCP compliance \$30k, Design \$20k</td></l<>	2,000 6,303 5,000 5,000 65,000 15,000 152,003 212,003 50,000 35,000	Alexans 03 45 0104%10 x 0.5% x 6.33 Hazardous manenal storage building Means 33 26 0621; PVC double-wall piping with fittings Based on engineer's experience Based on engineer's experience Based on engineer's experience Based on engineer's experience Assume MCP compliance \$30k, Design \$20k
be installation svery Tank metry Unit (RTU) quipment installation Compliance Deersight	21.01 5 2 2,000 5 5 5,000 5 5 5,000 5 5 5,000 5 5 5,000 5 5 5,000 5 9 9hbtotat 5 9 90,000 5 1 7,000 5 1 7,000 5 1 7,000 5 1 7,000 5 1 7,000 5 1 7,000 5	6,303 2,000 5,000 65,000 65,000 15,000 152,003 212,003 50,000 35,000	Means 33 28 0621; PVC double-wall piping with fittings Based on engineer's experience Based on engineer's experience Based on engineer's experience Assume MCP compliance \$30k, Design \$20k
very Tank metry Unit (RTU) quipment installation Compliance Dversight	\$ 2,000 \$ \$ 5,000 \$ \$ 5,000 \$ \$ 5,000 \$ \$ 5,000 \$ \$ 5,000 \$ \$ 9ngIneering \$ \$ 7,000 \$ \$ 50,000 \$	2,000 5,000 15,000 65,000 162,003 162,003 212,003 35,000 35,000	Based on engineer's experience Based on engineer's experience Based on engineer's experience Based on engineer's experience Assume MCP compliance \$30k, Design \$20k
reity Unit (RTU) quipment installation Compliance Densight	 \$ 5,000 \$ 15,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 9 angineering \$ 7,000 \$ 2 isl Engineering 	5,000 15,000 65,000 162,003 212,003 212,003 50,000 35,000	Based on engineer's experience Based on engineer's experience Based on engineer's experience Assume MCP compliance \$30k, Design \$20k
quipment installation Compliance Oversight	\$ 15,000 \$ \$ 5,000 \$ \$ 5,000 \$ \$ 5,000 \$ \$ 90,000 \$ \$ 50,000 \$ \$ 50,000 \$ \$ 50,000 \$ \$ 50,000 \$ \$ 50,000 \$ \$ 50,000 \$ \$ 50,000 \$ \$ 50,000 \$ \$ 50,000 \$ \$ 50,000 \$	15,000 65,000 162,003 212,003 212,003 50,000 35,000	Based on engineer's experience Based on engineer's experience Assume MCP compliance \$30k, Design \$20k
Compliance	s 5,000 S Subtotai S angineering) E 5 7,000 S tal Engineering S	65,000 162,003 212,003 212,003 50,000 35,000	Based on engineer's experience Assume MCP compliance \$30k, Design \$20k
Compliance	Subtotal 5 gengineering) 5 5 7,000 5 b1 Engineering 5	162,003 212,003 50,000 35,000	Assume MCP compliance \$30k, Design \$20k
Compliance	g engineering) \$ 5 50,000 \$ 5 7,000 \$ bal Engineering \$	212,003 50,000 35,000	Assume MCP compliance \$30k, Design \$20k
Compliance LS 1 Densight WEEK 5 Suit	50,000 5 7,000 5 tal Engineering 5	50,000 35,000	Assume MCP compliance \$30k, Design \$20k
LS 1 WEEK 5 Sul Total Estimat	5 50,000 5 7,000 5 tal Engineering 5	35,000	Assume MCP compliance \$30k, Design \$20k
WEEK 5 Sut Total Estimat	s 7,000 s tal Engineering s	35,000	
Sut Total Estimat	tal Engineering \$		
Con Total Estimated (a cogneering a		
Corr Total Estimated (analan	
Con Total Estimated (Subintal S	207.003	
Total Estimated (Postinoance (1681) 6	AA KED	
Total Estimated C	+ local Anushing	000'44	
	Capital for 1-5: \$	341,553	
OPERATION AND MAINTENANCE (LNAPL RECOVERY)			
LNAPL Disposal (Assume 40 gal/mo) GAL 40 \$	5 1 5	280	Based on current M&A costs
Maintenance (Assume 2 days/month) DAY 2 \$	\$ 1,000 \$	2,000	Based on current H&A costs
Subtotal Estimated Monthly O&M	d Monthly O&M \$	2,280	
Con	Contingency (15%) \$	342	
Total E	Total Estimated O&M \$	2,822	
Total Estimate	Total Estimated Annual O&M \$	31,484	
Net	Net Present Value 5	135,223	Assume 5 years to remove LNAPL
MAINTENANCE OF DIRECT CONTACT BARRIER (pawiment) LS 1 5	2,000 \$	2,000	Based on engineer's estimate: annual cost derived from expected repaving/mainterance every 5 veramed
	val Maintenance S	2.000	
Con	Continuency (15%) \$	300	
Total Failmated Annual	ted Annual Maintenance S	0000 6	
	Net Present Value 5	35,357	Assume 30 years
Net Present Value Project Cost S	e Prolect Cost S	513.133	

1. Means: RS Means Environmental Remediation Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003. 2. Net Present Value based on 5% interest, 0% inflation.

TABLE D-15 COST ESTIMATE ALTERNATIVE 4-3 LUNAPL Monitoring, AUJLs AREA 4

ITEM	UNITS	ESTIMATED QUANTITY		UNIT	ESTIMATED	NOTES
ENGINEERING MCP complance	LS LS	-	s ubtotal Er	\$ 30,000 \$ Subtotal Engineering \$	30,000	
		Subtotari Contingency (15%) Total Estimated Capital for 1-5:	Conting ated Capi	Subtotal \$ Contingency (15%) \$ ted Capital for 1-5: \$	4,500	
DMAPL MONITORING Monitoring (Assume 3 days/year)	DAY	e	•	500	1,500	Besed on current H&A costs
		Subtotal Estimated Annual Monitoring Contingency (15%) Total Estimated Annual Monitoring	Conting Conting	Contingency (15%) and Annual Monitoring 3 Contingency (15%) and Annual Monitoring 3	5 1,500 5 225 6 1,725	
			Net Pro	Net Prosent Value 3	\$ 26,517	Assume 30 years monitoring
MAINTENANCE OF DIRECT CONTACT BARRIER (pavement)	¥ کې ۲	1 \$ 2,000 Subicial Estimated Annual Maintenance Contingency (15%)	S I Annual M Conting	S 2,000 S d Annual Maintenance S Contingency (15%) S Anotol Maintenance	2,000 5 2,000 5 300	Based on engineer's estimate; annual cost derived from expected repaying/maintenance every 5 years
			Net Pro	Net Present Value	35,357	Assume 30 years
		Net Preser	t Value Pr	Nat Present Value Project Cost \$	A 86,374	

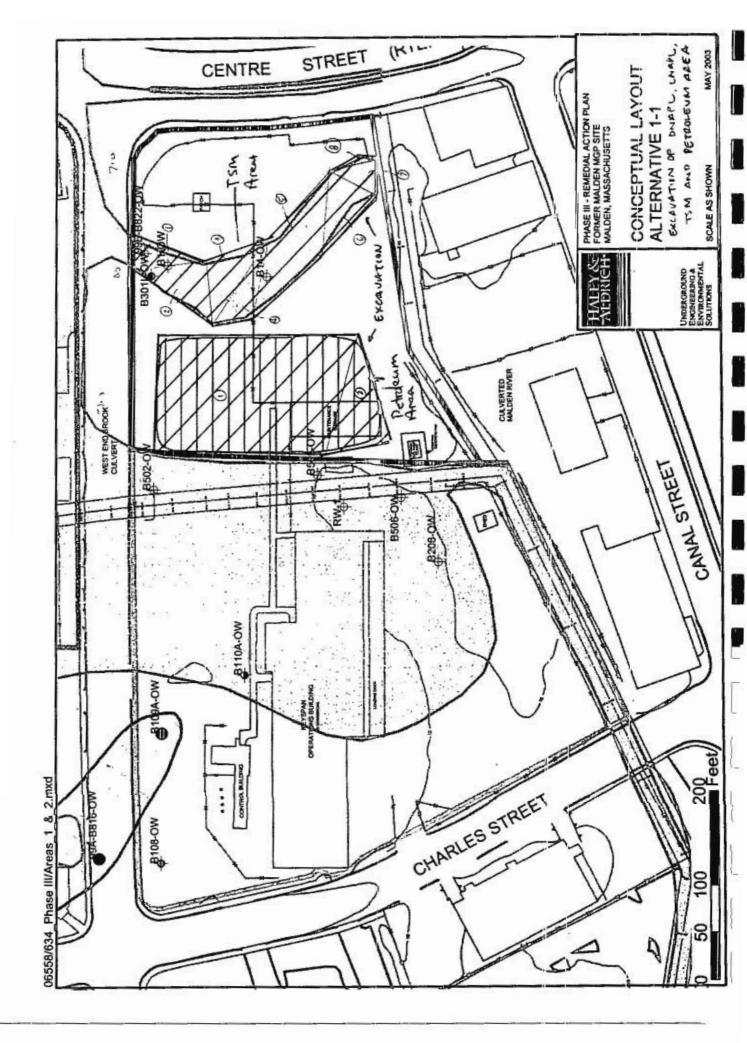
Means: RS Means Environmental Remediation Cost Data - Assemblies and Unit Price 2003 or Means Heavy Construction Cost Data 2003.
 Met Present Value based on 5% interest, 0% initiation.

LANU NC

ľ

_

000


HALFY & File No. 29847-000 CALCULATIONS 3 Sheet of Client MEC 05-14.03 Date MALDEN MGP Project JCP Computed By SOIL ACEL/VOLUME : ALTECNATIVE Subject 1 - 1 Checked By IMPACTED - DREA (APL) PETHILEUM Apr = 1/2 (210 + 180') (125') + 1/2 (70') (120') = 28,575 f1~ - 3,175 yd 14 3,200 , 27 C (ATSM) ACTA A. + A2 + A, + A4 + A5 + A6 + A7 + A8 A = 1/2 (80')(37') = 1480 C12 12 (100') (50') : 2500 f12 A2 = A3 = 1/2 (110') (42') > 2310 112 A4 12 (110) (31') = 1705 112 1/2 (95'+95') (55') = 5225 fi 3 A A6 12 (85') (55') = 2338 11 A+ 1: 1/2 (38')(50') : 950 IF Ag= 1/2 (50') (10') = 250 f1 1001 20 November 1862 482 ATSM 16,758 L12 = CAL02AFH.FRP

HALFY &	CALCULATIONS	File No.	29847-00
Client	mec	Sheet Date	2 of 5-14-03
Project	MALDEN MGP	Computed By	JCP
Subject	SOIL HEER /VILUME . OLTECNATIVE 1-1	Checked By	
	DEPTH OF CONTAMINATION	4	35
			15
	PETROLEUM IMPALTED		
-		Ø	
	BOKING DEPTU TPU (MS/kg)	FILL DEPTH	4
	BITA 4-6' 2,400,000	0-9	
a	B154-53 7.5-9 B10,000	0-9	
		" 0 - "l'z"	2 (42)
	NOTES: O BORING DATA	OBTAINED FRIM GEVL	0610
· ·*		45 DATED NOVEMBER	
		DATA FROM TABLE	
- 1	DEC 2.001	A IN WHIL PLATE I	I DATES
е е <u>к</u> естор	Vec 2.001	a a second	0. D. T.
an a	BASEN IN LEONE DATA, ASSUME		
	i) TUTAL DEPTH OF EXCAVATION IS	12' THE ARADIE	
	INPACTED ORGENIC MATERIC SEL		
		10	
	VOLUME TANK FORM = VTP	= (4 yd) (3,200	402)
	and a second	- 12,000 ,63	
iper 4		- 12,000 40	·
• • • • • • • • • • • • • • • • • • •	2) IMPACTED ZONE : - 4' -1	12' BGS (BASE)	IN BURING L
	Howeved Basen AN POSSENCE OF STORAG	en maller in init	
	ANTA ASSUME THAT A	LE MATEKIN IS IMP	ACTED
	(0'- 12' 845.)		
r -+	EXCONATIONS TOTAL PETRO ALEA	a and a mean deriver of	
- +			
	12,800 Yd3 (1.1 tons/q1) =	20,480 tans	· · · · · · · · · · · · · · · · · · ·
<u>i 1</u>		DAN 20 CTU TON	
· <u>· · · · ·</u> · · · · · · · · · · · · ·			
1			1
	and another many statement and and a set of the	ware reaction or many reaction with the second	**** ** *** *** **********************

HALFY& ALDRICH	i	CALCULATIONS	Contraction of the second s	29847-00 3 of 3
Olivert	MEC		Sheet	5-14-03
Client			and the state	JCP
Project _	Maroen 1	K/VOLUME : ALTERNATIVE 1-1	Computed By Checked By	001
			Checked by	
285 - 8 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		16.64 (Marcola 1997) 16. 16. 16. 16. 16. 16. 16. 16. 16. 16.		3 2
	PENTIL OF	CINTEMINATION CONTINUED	9 V	
2 I	a sa a		a (j	5
	TSM	AREA	08	
	-0)			
• • • • • •	BORING	45-10.51		a a s
	97E- 8623		2.5	• • • •
	998- 8822	8.5 - 13.5'		
- 10 - 10 - 1		and the state of the	÷	
- 14 - 17 -	NUTE	g =	S DATED.	1. 1. see
	+ • • • • •	JULY 97 AND JULY '99		a: 12
	24 6 6 M		1	
			4	
	BASED UN	ABOVE PATA ASSUME		
40 A A A			······································	······································
	D TOTAL	ANERAGE OFTH OF EXCANALISM 15 12	18.00 1 1 16.8 	
		() () () () () () () () () ()	· · · · · · ·	a
	10 V 0	HUME TSM = VTSM = $(4 y \delta)(1862 y \delta^2)$	/	
		1		· · · · · · · · · · · · · · · · · · ·
		= 7.448 yd3		
	· · · · · · · · · · · · ·	SAY 7450 yor -	; a a	
	2) IMPA	ETED ZONE ON AVERAGE : 6-12' 7	(THICK)	
	······································		ana a sere e	al
		ASSUME 51% RE-USE OF ESCAVA-	TED MATE	ciaz
			and the second	in a second
	1 	1	- 1 1	1 1 1 1 1
		······································		
	· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·			

]

I

HALFY	С. Н	CALCULATIONS	File No.	29847-0	-
Client	MEC		Date	05 . 15-	-
Project	MADEN MG		Computed By	Jar	-
Subject	ALTERNAT		Checked By		
_	** ****				
			8 S		5
	EXCAVATION			5 3 5 8 8	
	VOLU	ME OF EXCOUNTION = 7.450 y63	FROM	45 1-1	CA
		ASSUME SUL RE-USE		8	r = K
	· · · · · · · · · · · · · · · · · · ·			• •	- 73 - 44 1 1 1 1
			20 - 10 - 10 20	1977 12	5.65
1.4.54.4		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tí	- •	8
			2 12 2		10
	CHEMICAL OX	OFTIM AREA (PETROLEUM IMPACTED)	800 m 8	4 N N	
****		rear a second			
	NO. OF	NJECTION WELLS ASSUME 20' SPACING	•	2	
• ••• • (m)		ENGINEER'S EVPELIE	wce		
		$A = TR^2 = Tr(10)^2 = 314 fr^2$	40 (A)	1 AF - 71	
1				·	
400 H	(a (a t)) a the state of the state	= 34.9 yd2	te tota		
	····	TAL ARED TO BE TREATED = 3200 yd2	(FROM	A ALT. 1-1	CAI
	· · · · · · · · · · · · · · · · · · ·		- X		
_ i					
		NO. of wens = 3,200/34.9 yol2 = 9	2 weils	• • • • • • • • •	- 1 +
	i i i i i i i i i i i i i i i i i i i	S44	95 WELL	<u>ر او </u>	
	OXIDANT	lure		F	-
			(1977 m 1977)		
	As	SUME STO GAL INJECTION PUMT NEED	EP TO		-
	name and at the set of	REMERATE (BASED UN ENGINEERS EX	EKIENCE	<u>), i i i</u>	. (
1					
		UNE 3 INJECTIONS NEEDED TO DELIVER	50.00	LINU OKIP	-
··· = = = = = = = = = = = = = = = = =		Sole S TASECTORY NEEDED TO GUIDE	- 200 cm	CITO OK D	-1-
		······································			1
1	TOTAL	OKIDANT_	· · ·	+ 	1
+ 1	3]			+	-+
		(95 weus) (500 600/wen) = 47,500	GALLON'	E.	
		1 I	i i i		
11			· · · · · · · · · · · · · · · · · · ·		1
			1	1 1	-
			1		

1

ł

ł

File No. 29847.000 HALFY & CALCULATIONS Sheet 1 of z MIC 05-29-07 Client Date NhP JET Computed By **F**'roject MALPEN Checked By Subject ALTERNATIE 1-1 ENGINEEVED BALRIER ALES CALCULATIONS SEE FIGULE 17) BARRIEN: IN ALEM BATED OVEN -SM F-INK FL. IL FILA ENGINEENCED 3,200 . . 0 ERUM ELT. 1-1 CLUIVLATIN TPL T. 1 900 402 SEON FEEL 1.1 CLLL ATOTAL = 1 5,100. 40 EXCALITION VOLUME (ENG BARRIER (3.5') (40/34) = 5,950 + 82 1 = (5,100 yd2) 544 6000 yd3 - ----TOP SOIL VOLUMB 5,100 yd2) (6" torson) (124/12.) (yd/31) = 850 yd3 5012 VE SEND 12" LIFT VOLUME . Form No. HA-080-Metric V= (5,100 402) (12" SANO) (11/12) (40/3) = 1 700 yd 5AND GEO-COMPOSITE & HOPE CAYER AREA (5,100 yd2)/ 3/40) (3/10) 45,900 ft2 A

.

and the second se		CALCULATIONS	File No. 29847-000
			Sheet 2 of 2
lient	MEL		Date 05-29-03
Project	MALDEN	MGP	Computed By JCP
Subject	ALTERN	TIVE 1-3	Checked By
		2	and proper second a linear and an and a second s
	DNAPL 1	2FCovely	· · · · · · · · · · · · · · · · · · ·
	- ASSUN	NE 3200 GAL ONAPL IN DEEA 1	(SEE ATTACTED DNAPL
	·		VULUME TABLE FOR
			ESTIMATE)
·····	- BASE	O ON CULRENT PUMPING/RECIVERY P.	ATE OF
	GYI	STING DNAPL WECCON-SITE	
		CULLENT RATE = 0.74 gal	10-7
		ASSUME LONG TERM RATE =	035 20/10
			a construction of the second sec
	TUTOL	DNAPL RECIVERY RATE	
	5	PROPUSED ONAPL WELLS : (SEE	FIG 17)
1			
		AL DNAPL REMOVEL RATE = 15 WELL	-1) (a 35 g 2/day)
	*** = ===		
			gil / day
			· ··· ································
	- 1		
	ESTIMA	TED RECOVERY TIME	
+		T - 3200 and /	
		T = 3,250 gel/ 1.75 gel/deg	
		T = 3,250 gl/1.75 gl/de7	
		/1.75 9 /de 7	
		/1.75 9 /de 7	ars
		/1.75 9 /de 7	
		- 1828 DAYS = 5 YE	a.c.s
		- 1828 DAYS = 5 YE	
		- 1828 DAYS = 5 YE	a.c.s
		- 1828 DAYS = 5 YE	a.c.s
		- 1828 DAYS = 5 YE	a.c.s
		- 1828 DAYS = 5 YE	a.c.s
		- 1828 DAYS = 5 YE	a.c.s
		- 1828 DAYS = 5 YE	a.c.s
		- 1828 DAYS = 5 YE	a.c.s

F

1

Table 1 DANPL Volume Estimate Summary Malden, Massachuschs

Column Number	-	2	1			2	Contraction of the local data	•		-			Î
Formula								- Ix2x4x5x7.48gablcf	alld	- 1x3x4x5x7.48gal/cf x(ast-res)	palief s(ast-res)		
Area Designation	99	Residuel DNAPL Asrumed thickness (ft)	Mobile DNAPL Assumed Thickness (ft)	Porosity	10	DNAPL Secondon	Reducercion	Tar Volume (Callore)	(mm)	Mobile Tar Volume (Gallone)	die (Gallone)	Average Mobile Ter Volume (Gallone)	-
Formula				H .	MOT	H	TOW	HI -	LOW	н	TOW		
1A	1,200			0.40	0.25	0.21	0.10	1,814	995	3		8	
IA	7,200		1	0.40	0.25	0.85	0.70	509	180	1.943	1.080	1462	Cere
8	8,250	•		0.40	0.25	0.21	0.10	2.079	619				3151900
8	8,250		-	0.40	570	0.85	0.70	669	ž	2,112	1,238	1675 5	
YZ	28,125	2		0.40	0.25	0.21	0.10	\$775	1,406				
2A	28,125		2	0,40	0.25	0.85	0.70	4,725	1,406	14,400	8,438	11419	
82	10,400	2		0.40	0.25	0.21	0.10	1,747	520				
20	6,500	-		0.40	0.25	0.21	0.10	B&L	238	•	•		
M	18,000	m	2	0.40	0.25	0.21	0.10	4,536	055.1	•	•		
YE	18,000		-	0.40	57.0	0.85	0.70	1,512	88	4,608	2,700	3654	
R	006'6	-		0.40	0.25	0.21	0.10	832	248	•			
•	6,400		1	55.0	0.25	0.85	0.70	ĩ	320	2,867	1,920	162	
Totals								- 918,01	5,936	- 518,112	13,058	9994'LI	ĺ

Noces and Anturaptions: 1. Residual pore tar starration from Cohen and Mercer, 1995 2. Pornetity from Holts and Kornes, 1981 and Islary & Adricks soil descriptions and since analysis, 3. For purpose of this estimate, it was assembled that only a NAPL residual and NAPL entertained are east in the autourface. 4. Mobile DNAPL defined are increase of DNAPL data takes in powe spaces above the assumed resideal solution.

1001

E

l

Į

White Samer Sp

I

HALEY &		CALCULATIONS	le No.	29847-000
			neet	_ 1 or 2
Client	MEC	Da	ate	05-37-03
Project	MALDEN MI	bp c	Computed By	
Subject	LUTEFNET	VE 1-4	hecked By	
÷		······································	· · · · · · · · · · · · · · · · · · ·	
	DNAOL RECO			
	DNF C Rete			
	ASSUME	3,200 GEL ONFOLIN AREA 1.	Exon A	67 1-2.1)

	- BASED	IN CULCENT PUMPING RECOVER T RATE OF E	×1571~6	
		PL WELL ON SITE		<u> </u>
		callent remained Pale = 0.74 Gal / Day		
1			· · · · · · · · · · · · · · · · · · ·	
	14 SSGME	L'ONG TERM RATE = 0.35 gAN/DAY	<u> </u>	
1.				
				· · · · · ·
	=>> 5 I	VELUS (SEE PIGURE IF)		
+	TUTAL	DNARL ERMOVAL = (Swells) (0.35gal	1004	
+				
		= 1.75 gal/day		
	······			+++++
	·····			
	i i i i i i i i i i i i i i i i i i i	TIME TO EXTRACT DARK		
	ESTIM	TIME TO EXTRACT DNOT		
		(3.20) 64 ()		
			5	
		(3.20) 64 ()	5	
		(3,200 60)/ (1.753 P/041) = 1828 724	5	
		(3.20) 64 ()	5	
		(3,200 60)/ (1.753 P/041) = 1828 724	S i	
		(13,200 60)/ (1753 2/00) = 1828 DEY (1753 2/00) = 1828 DEY = 5 YES 5 AY 5 YEARS T	5 1 0 12E MU 7 1/26-5	
		(13,200 60)/ (17532 /041) = 1828 724 (17532 /041) = 1828 724 5 yes 5 yes 5 yes 7 yeses t 7 yeses t	11	
		(13,200 60)/ (1353 2/00) = 1828 DEY (1353 2/00) = 1828 DEY = 5 YES = 5 YES = 5 YES	11	
		(13,200 60)/ (17532 /041) = 1828 724 (17532 /041) = 1828 724 5 yes 5 yes 5 yes 7 yeses t 7 yeses t	111	
		(13,200 60)/ (17532 /041) = 1828 724 (17532 /041) = 1828 724 5 yes 5 yes 5 yes 7 yeses t 7 yeses t	111	
		(13,200 60)/ (17532 /041) = 1828 724 (17532 /041) = 1828 724 5 yes 5 yes 5 yes 7 yeses t 7 yeses t	111	
		(13,200 60)/ (17532 /041) = 1828 724 (17532 /041) = 1828 724 5 yes 5 yes 5 yes 7 yeses t 7 yeses t	111	
		(13,200,60)/(13532/001) = 1828 DEY $(13532/001) = 1828 DEY 5 yes5 yes7 yescs tA space 5 t$	111	
		(13,200,60)/(13532/001) = 1828 DEY $(13532/001) = 1828 DEY 5 yes5 yes7 yescs tA space 5 t$	111	
		(13,200,60)/(13532/001) = 1828 DEY $(13532/001) = 1828 DEY 5 yes5 yes7 yescs tA space 5 t$	111	
		(13,200,60)/(13532/001) = 1828 DEY $(13532/001) = 1828 DEY 5 yes5 yes7 yescs tA specifie 5 the A s$	111	

HALFY &						
Client	MEC Date					
Project	MEC Date 05-29- MALDEN M6P DOM DUTED BY JCP					
Subject	ALTEENATIVE 1-4	Checked By				
	CLEMICAL OXIDATION					
	INJECTION WELL INFLUENCE = 35 you	(<u></u> EI	CALCUL			
	PREA TO BE TREATED					
<u>i</u>						
	ATOTAL = ATSM + ATI					
T	· · · · · · · · · · · · · · · · · · ·					
1	= 1,900 yd2 + 3,200 yd2 (FIDM ALT. 1 CALC					
			······································			
	= 5,100 yd2					
and Cased Mar.						
	NO OF INJECTION WELLS					
	Nh to result = 5 Wordt /	weirs				
	NO. OF WELLS = 5,110 ydz/35 yd2 = 146	- <u></u>				
	NA AE WEIAS = 5 UNUDE/	ISTO WE	из			
	NO. OF WELLS = 5,110 ydz/35 ydz = 146 $\therefore SAY$	- <u></u>	и.5			
	NO. OF WELLS = 5,110 ydz/35 yd2 = 146 .: SAY	- <u></u>	и.з			
	NO. OF WELLS = 5,110 ydz/35 ydz = 146 $\therefore SAY$	- <u></u>	и. 5			
	AMOUNT OF OXIDANT REQUIRED	(57) WE				
	NO. OF WELLS = 5,110 ydz/35 yd2 = 146 $\therefore SAY$	(57) WE	N.S			
	AMOUNT OF OXIDANT REQUIRED	(57) WE				
	AMOUNT OF OXIDANT REQUIRED DESSUME 3 INSECTIONS/WELL TO DELIVER 50 (146)	(57) WE	SIGNT			
	AMOUNT OF OXIDANT REQUIRED	(57) WE	SIGNT			
	NO. OF WELLS = 5,110 yd²/35 yd? = 146 $\therefore SAY$ AMOUNT OF OXIDANT REQUILED DSSUME 3 INSECTIONS/WELL TO DELIVER SO SOTAL OXIDANT = (150 WELLS) (500 4 ^{AL} /WELL)	(57) WE	SANT I			
	AMOUNT OF OXIDANT REQUIRED DESSUME 3 INSECTIONS/WELL TO DELIVER 50 (146)	(57) WE	SANT I			
	$\frac{NO. OF WELLS = 5,110 yd^{2}/35 yd^{2} = 146}{SMy}$ $\frac{AMOUNT OP OXIDANT REQUIRED}{AMOUNT OP OXIDANT REQUIRED}$ $\frac{ASSUME 3 INSECTIONS/WELL TO DELIVER ST TOTAL OXIDANT = (150 WELC))(1500 4M/WELL)}{STAL OXIDANT = (150 WELC))(1500 4M/WELL)}$	(57) WE	SANT I			
	NO. OF WELLS = 5,110 yd²/35 yd? = 146 $\therefore SAY$ AMOUNT OF OXIDANT REQUILED DSSUME 3 INSECTIONS/WELL TO DELIVER SO SOTAL OXIDANT = (150 WELLS) (500 4 ^{AL} /WELL)	(57) WE	SANT I			
	$\frac{NO. OF WELLS = 5,110 yd^{2}/35 yd^{2} = 146}{SMy}$ $\frac{AMOUNT OP OXIDANT REQUIRED}{AMOUNT OP OXIDANT REQUIRED}$ $\frac{ASSUME 3 INSECTIONS/WELL TO DELIVER ST TOTAL OXIDANT = (150 WELC))(1500 4M/WELL)}{STAL OXIDANT = (150 WELC))(1500 4M/WELL)}$	(57) WE	SANT I			

HALFY &		CALCULATIONS	File No.	29847-000
	3		Sheet	of
lient	ner		Date	05-15-03
roject	MALDEN	map	Computed By	JUP
Subject	ALTERNA	1.02 1-5	Checked By	a
	· · · · · · · · · · · · · · · · · · ·			the start weather
1010			2	10 20 201
+ - 48	DNOPU	[RECIVORY	81 - 15	11.12 · ····
2 2		the second se		
	er ee ++	SET ALL 1-3 FOR ASSUMPTIONS	8 8	5 5 10723
1	· · · · · · · · · · · · · · · ·			····
	and the second standard and			
+ +++		terre a contra de la		
An		te constant and a second se		
	··· Jos - and - and - and a data			
				*
		🕐 the close of a second	·· · ··	
(181 (44) (Nanta hannanan yana azarta da arayan etti zazarta etti a	1997 F 7	· · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·	one a sectoria ta da
1 -1-1			4 	
	······································			
		gamping meneral production and the second		-1 ·
· · · · · · · · · ·			******* ·** · * · * · **** * ·	
minime		And a second and a second s	1	
		The second		i
1		n (n) and y can be seen as a set of the South in a set of the se		
-	1			
	- 1			
	······································			
		<u>↓ · · · · · · · · · · · · · · · · · · ·</u>		
				ter tra-se transformed to
		······································	4	
1999 (1999) (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999				1
			* . 4 — (- kenst case),	1
1 1 	i			
	<u> </u>			
and Berthans				
T I				

1

Ì

1

ł

C

.

$\frac{1}{12} = \frac{1}{12} $	Che: 79 37 CC-C/PA-1 1-0- 37 CC-C/PA-1 1-0- 4(C = 16 - 4) 	ked By	от то о с, то о с, с, о с, о
Subject $1 = 1 = 1 = 1 = 1$ $p_{12} = 1 = 1 = 1 = 1$ $p_{12} = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = $	Che: 79 37 CC-C/PA-1 1-0- 37 CC-C/PA-1 1-0- 4(C = 16 - 4) 	ked By	E. E. A. Tai LE
Subject \underline{I}	Che: 79 37 CC-C/PA-1 1-0- 37 CC-C/PA-1 1-0- 4(C = 16 - 4) 	ked By	E. E. A. 131' CE
$\frac{p_{NC}r_{L} \text{ at cave Cl}}{p_{NC}r_{L} \text{ at cave Cl}}$ $\frac{p_{NC}r_{L} \text{ at cave Cl}}{p_{NC}r_{L} \text{ at cave Cl}}$ $\frac{p_{NC}r_{L} \text{ at cave Cl}}{p_{NC}r_{L} \text{ at cave Cl}} \text{ bese } r_{L} \text{ could reduce Cl} \text{ at cave Cl}}$ $\frac{p_{NC}r_{L} \text{ at cave Cl}}{p_{NC}r_{L} \text{ at cave Cl}} \text{ bese } r_{L} \text{ could reduce Cl} \text{ at cave Cl}}$ $\frac{p_{NC}r_{L} \text{ at cave Cl}}{p_{NC}r_{L} \text{ at cave Cl}} \text{ at cave Cl}}$ $\frac{p_{NC}r_{L} \text{ at cave Cl}}{p_{NC}r_{L} \text{ at cave Cl}} \text{ at cave Cl}}$ $\frac{p_{NC}r_{L} \text{ at cave Cl}}{p_{NC}r_{L} \text{ at cave Cl}} \text{ at cave Cl}}$ $\frac{p_{NC}r_{L} \text{ at cave Cl}}{p_{NC}r_{L} \text{ at cave Cl}} \text{ at cave Cl}}$	3+ 100 / PA-1 / - 0-	<u>,,.</u>	131 VE
- 25.4225	3+ 100 / PA-1 / - 0-	<u>,,.</u>	131 VE
$\frac{1}{12} = \frac{1}{12} \sum_{i=1}^{n} \sum_{i=1}^$	3+ 100 / PA-1 / - 0-	<u>,,.</u>	131 VE
$\frac{1}{12} = \frac{1}{12} \sum_{i=1}^{n} \sum_{i=1}^$	3+ 100 / PA-1 / - 0-	<u>,,.</u>	131 VE
$\frac{1}{12} + \frac{1}{12} $	41. 0. 41 = 16 - 19) 		
$\frac{1}{12} \frac{1}{12} \frac$	41. 0. 41 = 16 - 19) 	·····	
$= \frac{12}{12} $		· · · · · · · · · · · · · · · · · · ·	
$= \frac{12}{12} $		·	
$= \frac{1}{2} $		r=-1)	
$= \frac{1}{2} $			
$= \frac{1}{2} $		r=-)	
- 4. (<u>n</u> 5 34. v 4 5. <u>v</u> 1. <u>v</u> 1. <u>v</u> m 3	2 leay	~	
Stor 4	+		
Stor 4	+		
ETT MAPTED KACINEN 1. T.M.S	tops - fam. a man in		Law Long La
	144		
T- 11,500 6hc/4-5-441/124		. 1	
T- 11,500 GAL / A.S. GAL/1024			
1.			
			111
1-1-1-7-YEEC			
1	SANAVE ON BY-		
╆╁╪╧╂┢┷╼╆╓╪╪┾╆┢╼╼╍╢┊┊┯╝╬┍╴╼╍┥		1.11	
		1	+
		4 6 6 6	

HALFY &: ALDRICH	CALCULATIONS	File No.	29697-00
		Sheet	of
Client	iλ€ C	Date	0 = 70-05
Project	MACHEN 11-1	Computed By	1042
Subject	1.16.027.22 2-1	Checked By	
+ 1 + 1			
+			
	רוייזיזיאיש שיקוריזיוט		
+ +			+++++
1			+++
	+ M.B 14 65 - 12 - 25 - 5 - (20) (12)	·····	
·	······································		
1 1 1	3010-21-5-1-5		
1			1
+	WIENVEULI ANGLINE INFLIGUCE		
	LI I A ASSAULT 20 CAPIN IN WEINEN W		1 1
+			
1		1 1	
			++-++
	NO. OF WELLS	1	
	NU UN WONT 2 2001-11/		
1			
	┽╧┽┰┫┼╿┥┽┨╎┽┙┊╿╻┼╍┊┧╶╷╸┥┤╵┨┊┊╋		
1	the prove of the second		
111	SEVI In Mid Weins		
111			
111			
TI			
Hi		++++	
	┝┲╦╪╋╋╋╪╋╋╋╋╋╋╋╋╋╋		
	<u>┝┼┽╏┝╊┼┽╎┟╊┼┾┾╎╊┽┼┾╫┨┼┿┽┾╊┥┾┼</u> ╋	+++++	
	╞╊┿┼┝╋╪┿┟┝╋┥┥┙┙┙	+++++	
	┝╫╎┼╎╫╫╫╖╗╗		

Ì

Ì

Ì

Ì

ľ

1

Ĩ

1

•

 \mathbf{x}

HALFY &		CA	LCULATIONS	52	File No.	2934200
						- of
Client	NEC	• • • •		1. 1. 140	Date	
Project _	MALDEN				Computed I	
Subject	ALTERNO	HTING 3-1			Checked By	
	1 1		······································	· · · · · · · · · · · · · · · · · · ·	·····	
····· •	Silver.	LOW DNAPL	MIGANTION			n y contrastante provinsion and an and k
- 1.000000000000000000000000000000000000			and the second s	·		••••••••••••••••••••••••••••••••••••••
		clust Valve	NE UNDER CULTE	ent 7		1
				· • 		1
		+ ASSUME	10'LUNG x. 25	10105 + 3	DEEP	
1 1	11.1				1	
					andersy sty warmen i besadiasis i statistica mare i	1 •
+	1.1.1.	V- (10') (20	(3) = 750-1			
		- ATSUMG	0.4 PURUSUTY			1
					· · · ·	<u> </u>
		<u>الج</u>	(750-11)(2.0		+ 1	+++++++++++++++++++++++++++++++++++++++
	+		<u> </u>	1		
				· · · · · · · · · · · · · · · · · · ·		
		+++++++++++++++++++++++++++++++++++++++	300-113			
						11,11
+	- - 					
1:11	1111				1	
					+++++	
1 1					+	
					+	
					111	
+					+++++	+ + + + + + + + + + + + + + + + + + +
++++						
	+++++					++++++
till						
111						
++++			-+			
In the local division in the local divisione			and the state of t			
			+++++++++++++++++++++++++++++++++++++++			

.....

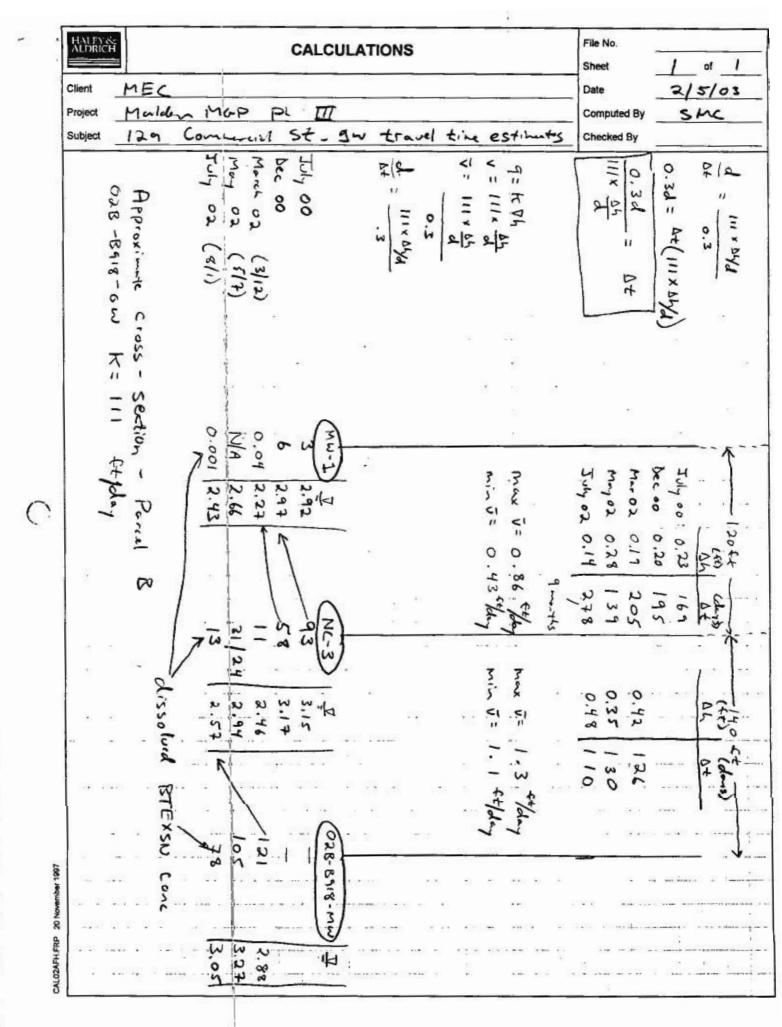
HALFY &			CALC	JLATIO	NS				File No.		1	of _ 1
Client	MEC	1					2		Date		05-3	0- 03
Project	MALDEN	m67		-					Compu	ted By	19	·
Subject	ALTERNA	tive 3.	2		_				Checke	d By		
		1		• 0804		··						
	-	1					and the second second second					
	DWAPL E	EL .VERY	-					n				
		1						- men				1
		1	· · · · ·	÷				rd 1				
	- 12	PEUPISED	RECOVE	RY WE	ius	C	SEE	FIG :	19)			
	a na mang manganan ang pangkan dan sa	1										
* * * * ****	FCT	MATE	3 74	S VE	VI TO	REMO	100 -	2 700-	CAL C	NAC	<u>.</u>	
		1			1	November 2	-					1
							BASE	ho c	ALT.	3-1	CALC	ULATI
				++				<u> </u>		1		<u> </u>
1					1	1 -				· · ·		<u> </u>
	 			1 . 1					. 1 1	+		
			1	1			1			4.1.4		1
	<u> </u>	1 iii					++++		+			· · ·
			11.1	1	· [.		t I :	i			1 1 1	
	L P C	1:1	1		1						<u> </u>	
					- 7 1		1 .	+ + + +			1 1	
	1	1		1			1 .				-11	1
				· • • • • • • • • • • • • • • • • • • •			-					
1		11		i i	Í		1				11	
-+	+ + + + + + + + + + + + + + + + + + + +	++++	+++	111	+++						+++	
- <u></u>	++++++					1				1 1	111	
		11:1								1 1		
	++++++				- 1	1 1	1,1			11		and the second de
			111			1	1			4		
+		++++		1 1	+++	- 1	1-1-1					
			11.1				1 1	1	i 1 1			
			++++				1-1-1		+++	-i-l-		
		0171	111:				111					
		21-1-		11.1			+++	11	41	111		
				+++		+++	1 11	111	++++			
										1		
	+						+++		+++	++-		
		hi II						1				
			++++									
+++	+++++			11-		11		1	1	T		
			111									
				+++				-		++-		
						11		1	111	11		
		1 1 1 4	4 1 1 1 1 P									

29 847-000 File No. HALFY & CALCULATIONS I of Z Sheet 05-30-03 Client MEL Date MALDEN MEP Computed By JGP Project Checked By Subject ALTERMATIVE 4-1 MULTIPHISE EXTRACTION (LNAR AREA) SEE FIGURE 20 FUR UNAPL CONTAMINATION ALEA A= ,5,070 -EVES N'T "NELLI'S FILL BENERTL SUILDING) (ALQUUNTED UTA , ANCHEW) NO. OF MPE WELLS ASSUME MPE PADIUS OF INFLUENCE = 20 EROM AUT. CALL.) AREA INFLUENCED = 314 112 This wells . . SAY 20 MPE WEILS CHEMILAL OXIDATION Form No. HA-080-Metric TSM AREA + 4 TO RE TREATED = LNAIL HREA' TIMA ALLA CALCULATES USING AG 50-0 112 4,430 .41 ; 1 -SUFTAR 9530 100 * 10556.102 3 : SAY 1100 V

++ 1++ --

18.000 19

HALFY &	1	-	CALCU	LATIONS		an	File She		2	- of
Client _	MEC						Date	e	and the second second	5-320
Project	MALDEN M	42					Con	nputed By	-)cr
Subject	ALTERNATI	ve 4-	1				Che	cked By		
+	······	·				ning a galakanan tara I		-		
		•								
	CUEMU	12 OXI	DATION	s cont.						
	עו לאו	ECTION	wen	INFLUENC	E OREA	= 35	syde		(\$0	CALL
)			RUI	= 20'				Chu
		[··········			
										·····
ananan ananyi	NO. 05	WELLS	· · · · · · · · ·	11 40 402	· / · · · · · · · · · · · · · · · · · ·	i				
	ISV 04	(/	35482				1.	
·		<u> </u>		/			•	- <u>ii</u> i-		
 				ده د مدهده مدرود وي مد						
			· · · · ·	31.4	y.u.				1	
				- 54.4	35	ection-	wei	J	i	
		····· ··· ··· ··· ·		3.59	35 .INJE					· · · · ·
	··	<u> </u> ,,		· · · · · · · · · · · · · · · · · · ·					1	
10.1000 - 0.000 - 0.000 - 0.000						and the second se				
							a			
	TETAL	07 (0		BUILED	·····					
	τυται	0210		BUILED			an and anapports 			
			ONT RE		WEENED TI	0 REM	EDIATE			
	TOTAL ASS				Neened Ti	 Total and a second secon	EDIATE			
			ONT RE		NEENED T	 Total and a second secon	EOIATE Baseo		ING C	XPCPIE
			ONT RE		Neened Ti	 Total and a second secon	Baseo	on e	NG C	XPCZIE
			ONT RE		WEENED T	 Total and a second secon	Baseo	on e		xpcpu
			STO CA			 Total and a second secon	Baseo	on e	nG c	×PCPIE
	A.55 0	ME	STO CA	AC/JELL		 Total and a second secon	Baseo	on e	NG C	×PCPIE
	A.55 0	(35	ENT RE STO CA	A C/JELL) (500 900	/wen)_	 Total and a second secon	Baseo	on e	n6 c	×PCPIE
	A.S.S. Vol. =	(35	STO CA	A C/JELL) (500 900		 Total and a second secon	Baseo	on e	NG C	XPCZIE
	A.S.S. Vol. =	(35	ENT RE STO CA	A C/JELL) (500 900	/wen.)_	 Total and a second secon	Baseo	on e	nG c	×PCPIE
	A.S.S. Vol. =	(35	ENT RE STO CA	A C/JELL) (500 900	/wen.)_	 Total and a second secon	Baseo	on e	NG C	xpCette
	A.S.S. Vol. =	(35	ENT RE STO CA	A C/JELL) (500 900	/wen.)_	 Total and a second secon	Baseo	01 E		
	A.S.S. Vol. =	(35	ENT RE STO CA	A C/JELL) (500 900	/wen.)_	 Total and a second secon	Baseo	01 E		
	A.S.S. Vol. =	(35	ENT RE STO CA	A C/JELL) (500 900	/wen.)_	 Total and a second secon	Baseo	01 E	5nG 6	
	A.S.S. Vol. =	(35	ENT RE STO CA	A C/JELL) (500 900	/wen.)_	 Total and a second secon	Baseo	01 E		
	A.S.S. Vol. =	(35	ENT RE STO CA	A C/JELL) (500 900	/wen.)_	 Total and a second secon	Baseo	01 E		
	A.S.S. Vol. =	(35	ENT RE STO CA	A C/JELL) (500 900	(wen)	 Total and a second secon	Baseo	01 E		
	A.S.S. Vol. =	(35	2NT 20 500 4	A C/JELL) (500 900	(wen)		Baseo	01 E		
	A-55 4	(35	2NT 20 500 4	A C/JELL) (500 900	(wen)		Baseo	01 E		
	A-55 4	(35	2NT 20 500 4	A C/JELL) (500 900	(wen)		Baseo	07 E		
	A-55 4	(35	2NT 20 500 4	AC/JELL)(500 900 (41 0)	(wen)		Baseo	07 E		


15/1

r

HALFY &	CALCULATIONS File No. 2:9.947 -0.00 Sheet 1 of 2:
Client _	MEC Date 05-30-03
F'roject	MALDEN MGP Computed By JCV
Subject	ALTERNATIVE 4-2- Chesked By
	LNAPE EXTRACTION (Belt-Skinimers)
aganati a - 1911) agan ar ar - 1913	
	LNAPL THICKNESS = 0.35 (BOSED ON ALT 2-2 CALC.)
	UNAPL VALUME
	V = (0.35') (5070 f12) = 1,715 ff UNAP-
	- ASSUME 0.4 POROS-TY
	V= (5-1-42) (0.4) = 710 [1] LNUPL
	(710 (1) (1.46 set/c1)
	· · · · · · · · · · · · · · · · · · ·
,	
+	
<u> </u>	= SAY 5300 GAL WAPL
	LNAPL RECOVERY RATE
1	
++	= 13 PROPOSED CNAPL EXTERCTION WOULS (SEE FIG. 20)
++++	
	- ASSUME O25 LOU/DAY EXTRACTION (BASED IN ENG. EXPERIENCE)
$\left\{ + + \right\}$	TOTAL ILNAPL REMOVAL PATES = (13 WELLS) (U.25 WAL/DAY)
	3.25 3m/pay
+	
1	
÷	
Y	and here the second

File No. 29847-000 1ALEY & CALCULATIONS Sheet 2 of 2 Client MEC Date 6-12-03 Malden MGP Project Computed By SMC Subject Checked By Alternative 5-2 SIRCO, cont Estimated impacted groundwater volume: (450,000 ft3) (0.3 porosity) (28.31 /ft3)= 3,821,850 Liters Estimated mass of contaminant in groundwater: (3, 822,000 L) (80 ms/L) = 306 Kg BTEXSN Estimated groundwater flow velocity: => Refer to 4/14/03 summary sheet for estimated groundwater flow rates based on site observations. Flow vate ranges from 0.4 to 1.3 ft/days overase velocity. Assume 0.8 ft/day => Approx. Distance from injection wells to downgradient plume end is 270 ft (Refer to fig. 21). " Groundwater travel time is estimated as approx 270 ft = 337 Days, or approx. O. & filday 1 year Rate of descedation is not known. Assume 3 pere Volume flustes required to reach remedial goals. . Time to complete = 3 years Note: Contractor estimate is 12 to 18 months. Additional time includes potential additional remediation sequired for contaminated soil. Installation Time : Assume 1 well por day, + trenching + clean-up => Indoor work duration = 1 to 2 weeks, Assume 2 weeks of 5-day weeks, Sthe days.

Fle No. HALEY & ALDRICH CALCULATIONS 1 of 1 Siheet 4/14/03 MEC Client Clate Malden Former MGP Phase III Computed By Project SMC 129 Commercial St - Summery of you flow estimates Checked By Subject This sheet provides a summary of the 2/5/03 Calculations of groundwater flow rates at the 129 Commercial St. Property. Refer to the attached figure for locations. Durcy groundwater flow equation : 9= Kth K= hydraulic conductivity (assume K= 111 ft/day, as The hydraulic gradient estimated from slug tests in \$918. q = Darcy velocity Average velocity: V= I where n= porosity ; use 0.3 For the distance between MW-1 and NC-3: Estimated V. ranges from 0.43 ft/day to 0.86 ft/day Estimated travel time ranges from 139 to 278 days. For the distance between NC-3 and 02B-B918-MW ! Estimated & Fanges from 1.1 to 1.3. ft/day. Estimated travel time ranges from 110 to 126 days ... Estimated travel time to groundwater flowing beneath the building, from the location of 028-Baisme to MW-1 near the property boundary is approximatly 249 to 404 days. Note that spatial variability in to may be significant due to high- It seams, etc. The reform considerable uncer tainty in This estimete. the second secon a sea en segurir com a se se como com com we have the a statement of the measurement of 20 November والمستعمل والمستعلي والمستعد المستعد المنافع والمستعلم والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد in a sum over remaining and that was a set of a sign or even which have even a di nanana sa manana na mangana m is a company and a company of the second second

. ..

ALDRICH	CAL	CULATION	IS		l'ile She	et	of
Client		100.000			Date		
Project					Dom	aputed By	
Subject				-	the	cked By	
2 2 2 2 4	8 8 8 8 9						
							. N
. Impart	d. Aren;	130 f	not m	ide x	240	futlo-	-3.
an in the second	· · ·		0.0410				
2 2 2 4 4 4 1 4	. pore s	Pace =	130	>: 24	0 X 17	r X 0.3	= 112
	24) D.R.A. R.	20		12			23
A	+ flow r	nte of	200	. 13	/min,	1 00	ra u
	pursed i	A 112	320	573	1~1.	1 100	
and a set of the set o					= 26	1 min,	or '
			200 9	inin			
		1004	14	101 1	20 N 10		19-4
50	pore vol	umes .	would	be	remoneo	in.	4700
و تدخل الم	, seles e		41	or	~	196 0	lays.
i m	· 1 · · · · ·	2.5			15.2 85%		÷ .
	C 18 3	1.15		3 Q	\rightarrow		1.00
				12	28 - 25		
			83	±3	a 100 es	* *	a 1.50 1
an the second second second second			82		* ·	2020	1.4
		29	+0				10
		1.5%			14		
-					0 7		
	a presidente en la compañía de la co		5. 18				
		1.1	10	1111	· · · · ·		
- 			8	ti i iz			
	en por sin e les	2			с э. с. î	** -	 • • • • • • • • • • • • • • • • • • •
	· · · · · · ·	449 m · ·	5353	2 5 37	2 2 3 9		
- +		** * ** *	1.1.4	+ + + +	· · · -	1-	r
			S. 192	1999 (A. 189	5 46 (F. m.)		
	1				· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·						
4				S2N 2.2			i t
·····	• • • • • • • •	ara e a			·		
					100 t t		
				1 - 17 A - 1 - 1			
	a and				· · · · · · · · · · · · · · · · · · ·		
			53 6 - S	···· ···			
	· · · · · · · · · · · · · · · · · · ·	- 4 ** 19.1	14 43 S			all lampioners	· · · · · · · · · · · · · · · · · · ·
	* k · · ·		1	*****		· · · · · · · · · · · · · · · · · · ·	
	1					i y	
							+

(88)

HALEY &		C	ALCULA	TIONS				File No. Sheet	29847-01
Client	FACE						100	Date	6-12-03
Project	MALDEN	MGP		1005 - 201			sit da s G	Computed By	Jer
Subject		T.VG 5-1					1. T.	Checked By	
	TAACING	INJECTION	contin	wil					
									• • 0
	AMO	1 1 0 1 0x10	PNT REO	UNZED				-	
		ASSUME	7 (1)6	HUNNS PI	- 71	DELI	VER 1	STU GALONI	PANT
	an	12130210		/.PN	1 <u>2,</u>	1		300_97200	
		·							
		TITAL OCIDAN	7(50 -POIN	71)(5	-Gm/F			
		1			1	a frank an also			
				-25,000	_44.66	U.NI .OX	CPANT.		
	···· • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·							ene il in tala -
		· · · · · · · · · · · · · · · · · · ·							
	**		ate						
	•	······································		mai					
						1			
t	••••••••••••••••••••••••••••••••••••••					(· · · · · · · · · · · · · · · · · · ·
	· ··· · · · · · · · · · · · · · · · ·		,			++			,
	· ····		·····						
	· · · · · · · · · · · · · · · · · · ·			-i		-	+	<u> </u>	
	!			<u> </u>					
	1	111		1 1					
	· <u> </u>						+	+	
									1.1.1.
+	· · · · · · · · · · · · · · · · · · ·								<u></u>
1				1 1				i	1 1 1 1 1
1									
	+						+		
	1.1				111	-	1 3 7		
+	11:::						<u>i</u>		
+ : :	+++++++++++++++++++++++++++++++++++++++		in the			+++			
	<u> </u>	┿╂┿╂┿╸		-+			1		
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			1 1 1						
						+++	tit		
1 - 4				111					
						+			
				· · · ·					

ŧ.

I

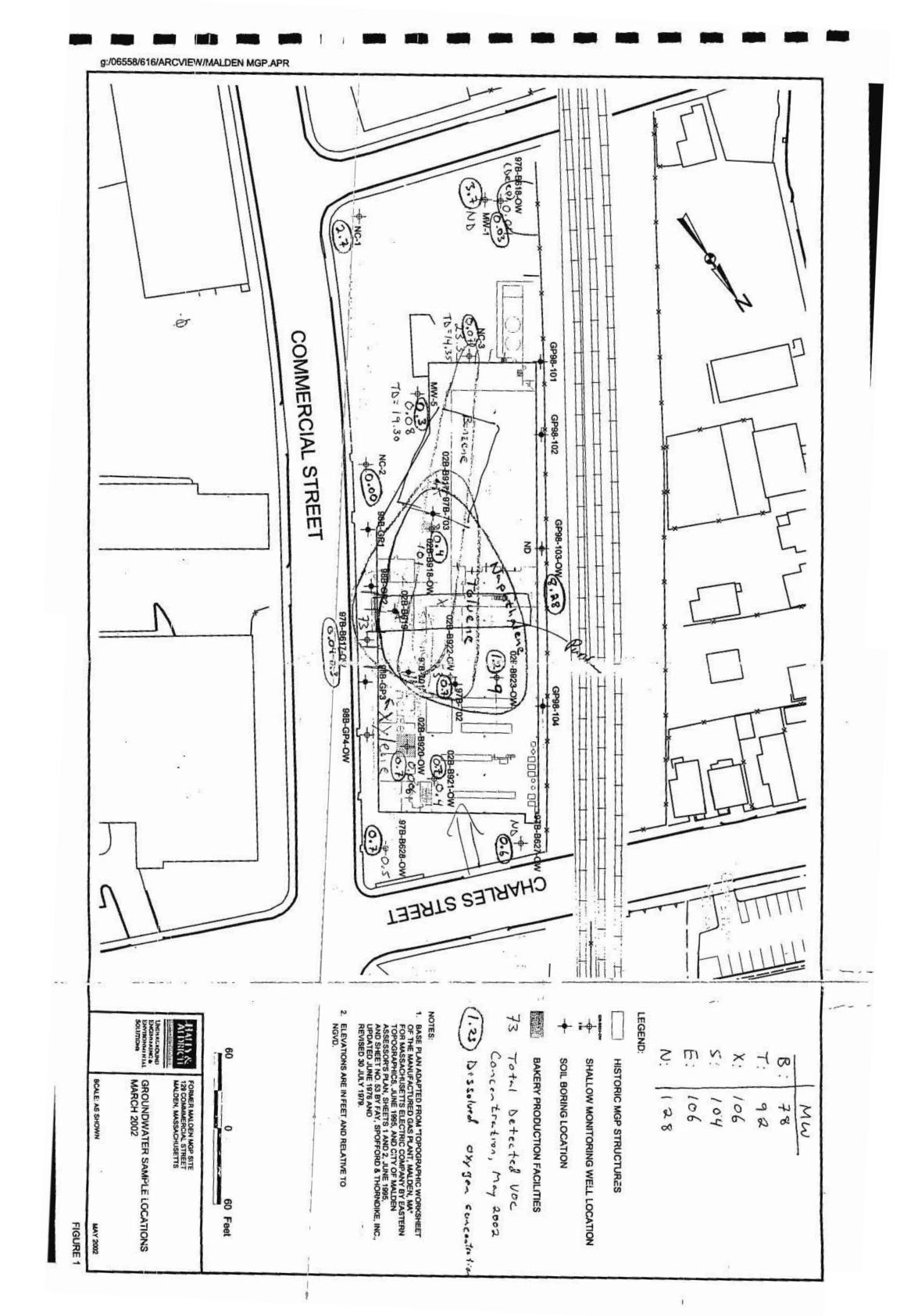
1

۲

HALPY &	CALCULATIONS	File N Sheel	
Client ME	EC	Cate	
	Iden MGP		cuted By SMC
	ternative 5-2	Check	ked By
			1== >
SLOW	- RELEASE CHEMICAL OXIDA	TION	(SRCO)
	ased on discussions with po		
P	courder (EBSI), system w	ill consi	st of the
4	ollowing :		
•	5 four-inch diameter . double-		
	=> Screen intervals approx. 23 to 30 feet bgs	3 40 8	ft and
	=> Radius of influence c.pp	Tox. So fe	et due to
	enhanced distribution (mounding (a well locati
	Vapor extraction system on	wellheads	to remain
	Vapors + reaction by-producits	from we	11
		2 R. 2	1. 1.1.1
t 0	Chemical oxidant holding to oxidant to wellheads.	vie a bile	Ding to dell
		in the second	•
JT	stallation costs : Estimated	at Hime	de Alisat
	us cost of well installation. A		
	72 NEVERSON REPORTS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8	
	Based on Previous experience in wells inside facility, Assume	\$ lok PER	4-inch WELL
	(Includes Driller, materialis, .	+ Support C	trew for
 (13) = (1) 	inside work)	• • •	14 • 14 ·
⇒⊤₀	ne to reach Remedial goals:		
		· • • · · ·	
	includes Several factors:	• • • • • • • • • •	······
	- Estimated contaminant ma		
a il san	· Approx max. average observe	A RTEN	N concentrat
	~ ~ 80 mall, (in a round wat	tre)	
	: Approx average impaction	area =). As	some 15 fra
	· Approx. impacted area = 23	So tt x lao	+t = _ 30,000
	a		· · · · · · · · · · · · · · · · · · ·
a	Approx. Volume of impacted ag	ULAR MIRA!	The second second second second
• • • • • • • • • • • • • • • • • • •	Approx. Volume of impacted ag	i	S. component and the st
	Approx Volume of impacted ag (30,000 ft2) (15 ft this	i	S. component and the st

HALFY & ALDRICH				CALCU	LATIONS	\$	-		File No. Sheet	-	2	47-00 of 2
Client	MEC	1							Date		05-3	5-07
Project	MADE	N NG	ρ						Compute	d By	10	p
Subject		ALTEANATIVE 4-2								By	- 200	
											• • · · · · · · · · · · · · · · · · · ·	
		·										
		TIM A	EO-	LNAPL	2FL AV	ERY TIM	e					
······································		1 1 10				1 1111						
		- 45	UME	50%	TATAL	LNAPL	VALUA	16 0	Genti	LED-		-(-15-
1		2.	V =	(53 10	gar)	(0.5)	=	2650	JAL .	NAPI	<u> </u>	
			· · · · · · · · · · · · · · · · · · ·					+ - (1)=0				
-i												
		· · · · ·								7	<u></u>	
		= 11	16509	3.2	5 201/044		815	4 04	YJ		-	
											·	
+	han 1					?	2.2	YRS				-
					- H.M. Ad	• • • • • • • • • • • • • •		***	······································		+	
						1. SA	7 3	To S	Ye	INS		
		:								1	1	
		aine nadio					`	··· ··· ···				
		1 1								1		
++++	<u> </u>					·····			;		11	
1		i li										
		+ +									<u> </u>	
		and the second sec							r -merananana dai mis		1	
	11.	1 1	where I					minter internet				1
										·		1
						i	+					
						· · · · · · · · · · · · · · · · · · ·						

ł


1

I

I

HALFY&	CALCULATIONS	File No. 23917.00 Sihee: 1 of
Client	MEC	Date 52-17
Project	KLEPEN KEV	Computed By
Subject	ALTERNATIVE 5-1	Checked By
		الم
+	SVE SYNTEM	1 1
1	ASSUME 8 WE'LLS (JEE FILG	21)
	ASSUME 235, HORIZUNTAL SNE PIPING	(1100 r16 21)
1111		
+	GEORDBE OXIDANT INJECTION!	
1		an a
1	OXIDANT INJECTION INFELIENCE = 35 -02	(FROMIALT! 1-2
		COLCULAT
	WILL ILLEEN PEODUCE ISAN	1. HWOVER, GEOPLOBE INJERT
	The second secon	
		·
	ALEA TO BE TREATED	
	ATOTAL = 1 16,500 [12	(FAINT AREVIEW AREA
	ATOTAL YA	ALCULATIO
		(EVELUDES ALLEO BENG
		BAILERY PRALESS C
	┽╆╪┼╊╪┟┊╪╁┟┝┊╏┊╎┊╴┠┊╺╍╍╺┥╴	
	NO OF INSECTION POINTS	
	NO OF POINTS = 1833 182/35.	
-	52.4) PO	INT I IIII
		TIDN POINTS

Ł

September 9, 2002

Malden, MA

Sean,

A

We can conduct a pilot demo within the building using the one inch diameter wells. We have available a programmable release process system that will slowly release a measured quantity of a dilute peroxide solution to the groundwater into a one inch well. The unit operates on a 110 volt, timed pumping system that pumps the dilute PRP solution into the well on a time and volume programmable interval.

What we need to know is the general geochemistry of the groundwater in the area we are to treat. I realize we have data on the dissolved oxygen; however, we also will need to know the concentrations of total and dissolved iron, the redox, pH, conductivity and alkalinity (total and bicarbonate alkalinity) of the groundwater to allow us to determine the optimal process to deploy. For example, if the dissolved iron is low, we may want to use the PRP system to initially diffuse a dilute iron solution into the well(s) to affect low level insitu Fenton Reagent reactions followed by a peroxide solution. If there is sufficient dissolved iron available, we would go directly to the diffusion of the peroxide solution.

What would be required is a restricted area, approximately 100 ft², at or near the wells to be treated to allow us to safely keep the PRP solution reservoir (55 gallon drum). This solution will be pumped into the impacted groundwater to: 1) modify the geochemistry of the groundwater to affect the desired insitu reactions, and to 2) modify the redox of the plume to promote aerobic degradation. Because we use dilute reagents, the reactions are mild although as the compounds are degraded, reaction products are formed. Intermediate vapors may therefore diffuse from the groundwater into the building. At PAH sites we have treated, we have noted the formation of intermediate product vapors (1 to 5 ppmv above background in treatment area well headspaces, 0 to 2 ppmv above background in the breathing zone). It would therefore be advisable to err on the side of safety and therefore keep the areas of the building being treated ventilated. This can be easily engineered using plastic curtains and a small blower to draw air from the treatment area to the exterior of the building.

In summary, I am confident we can use the existing wells to safely conduct a pilot demonstration at the Malden site. We need to learn more about the groundwater geochemistry as noted above and we would likely need to operate for a few months in order to determine effects of the PRP on the concentrations and distributions of the contaminants.

Call if you care to discuss in greater detail and if there is additional interest, we would be pleased to submit a proposal describing our specific technical approach and costs.

R. J. Scrudato. Ph.D.

.

Nexic

Clase

Previous Next From: Ron Adams To: Sean Carroll CC: Mark Vigneri; Rjscrudato@aol.com Date: 9/17/2002 1:18 PM Subject: Malden MGP Site

Sean - providing the following after talking over with Ron S:

-we expect to see measureable changes (e.g. greater than the normal sampling data fluctuations you may observe when sampling gw at the site - on the order of 25% to 50% change) in contaminant concentrations in groundwater at the two target wells.

-we expect to see the site gw DO and ORP shift such that the targeted area is clearly aerobic after 3 months; -we expect to see carbon dioxide levels increase in the targeted wells due to both oxidation and respiration;

Full-Scale

-Up to 3 to 4 more recirc wells would be needed to provide full coverage and sufficient overlap;

-they could operate off one feed system or dedicated feed systems;

operating time would likely be 12 to 18 months with monthly or quarterly visits needed to check system ops. -assumed H&A would install PVC wells, conduct periodic (weekly or monthly) site gw measurements, and all analytical;

Install cost is estimated at \$100k to \$150k with monthly EBSI costs of \$5000 to \$10,000 including chemis, labor, travel, and equip.

Hope this helps, let me know if you need anything else

Regards,

Ron Adams, P.E. Sr. VP Client Services EBSI, Inc. 830-13 A1A North, #371 Ponte Vedra, FL 32082 (904) 280-2596 Fax (904) 280-2597 (703) 282-4206 cell www.on-contact.com

file://\nexicBOS\users\SMCA_folders\Sean%20Carroll\Cabinet\Projects\Malden%20MGP\P 4/11/2003

Mail

Close

Previous Next From: Ron Adams To: Sean Carroll CC: Rjscrudato@aol.com; Mark Vigneri Date: 9/17/2002 2:07 PM Subject: Malden MGP - one last thing

Spoke to developer of RECORS technology (the recirc well with chem injection) and got he following input:

Nexic

well should be 4" diam, 30 ft deep
 -casing from 0 to 3, screen from 3 to 8 ft, casing from 8 to 23, screen from 23 to 30.

hope this helps, let me know if any questions

Ron Adams, P.E. Sr. VP Client Services EBSI, Inc. 830-13 A1A North, #371 Ponte Vedra, FL 32082 (904) 280-2596 Fax (904) 280-2597 (703) 282-4206 cell www.on-contact.com

file://\nexicBOS\users\SMCA_folders\Sean%20Carroll\Cabinet\Projects\Malden%20MGP\P 4/11/2003

Mail

14501014

Nexic

Close

Previous Next From: Ron Adams To: Sean Carroll CC: Date: 9/17/2002 4:34 PM Subject: Re: Malden MGP - one last thing

based on a couple of things

-upper screen has to intersect water table;

-ROI is influenced by the length of the spacing between upper and lower screens - selected 15 to maximize ROI; -lower screen length only needs to be 5 ft - I stretched it to make the numbers even at 30

Ron

Sean Carroll wrote:

Ron,

Thanks for the additional info. What is the depth of these wells based on? We haven't really nailed down the vertical extent of the contamination, but what we have seen has been generally about 4 to 6 feet of soil contamination along the water table - is it necessary to go down to 30 feet with the remediation well?

Sean

Ron Adams 09/17/02 02:07PM >>>

Spoke to developer of RECORS technology (the recirc well with chem injection) and got he following input:

well should be 4" diam, 30 ft deep
 casing from 0 to 3, screen from 3 to 8 ft, casing from 8 to 23, screen from 23 to 30.

hope this helps, let me know if any questions

Ron Adams, P.E. Sr. VP Client Services EBSI, Inc. 830-13 A1A North, #371 Ponte Vedra, FL 32082 (904) 280-2596 Fax (904) 280-2597 (703) 282-4206 cell www.on-contact.com

file://\nexicBOS\users\SMCA_folders\Sean%20Carroll\Cabinet\Projects\Malden%20MGP\P 4/11/2003

ENVIRONMENTAL BUSINESS SOLUTIONS INTERNATIONAL, INC. 1127 Crossing Way Wayne, NJ 07470 (973) 686-3701 Fax (973) 686-3702

September 13, 2002

(Pilot- scale SRCO Installation)

- To: Sean M. Carroll Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Boston, MA 02129-1400 617-886-7494 Fax 617-886-7794 smca@haleyaldrich.com
- From: Ron Adams, P.E. (904) 280-2596 Fax (904) 280-2597 radams@ebsi-inc.com
- RE: Engineering Estimate Former Malden MGP Site EBSI Proposal No. 05-0323-DR

Dear Mr. Carroll:

Environmental Business Solutions International, Inc. ("EBSI") is pleased to provide Haley and Aldrich, Inc. (H&A) via email, this proposal for applying the On-Contact Remediation Process® ("Process") at the Malden MGP site in Massachusetts. This proposal provides EBSI's general technical approach and associated costs for treatment of the site using the PRP Process®.

1.0 INTRODUCTION

The On-Contact Process® uses stages of proprietary physical and chemical application methods that are applied through injection points directly into the area of concern. EBSI is uniquely qualified to perform this work because:

 <u>Pay-For-Performance Contracting.</u> EBSI will commit to achieving the Responsible Party's project goals, putting a large portion of our proposed costs at risk if our techniques are not successful. This proposal has been developed to conduct treatments on a 'best-effort' basis. We will be glad to prepare a pay-for-performance estimate following initial demonstration studies.

05-0326-DRRS Malden MGP Eng ESt 1a

. . . .

 <u>Massachusetts Experience</u>. EBSI and our staff have conducted several in-situ remediation projects in Massachusetts. We have experience in closing LNAPL sites in Danvers, Watertown, and are completing a project in Newton. We have also closed a site in Framingham impacted with CVOC. A

- <u>Speed</u>. The Process treats contaminated soil and groundwater in-situ. Reductions in total VOC compounds are produced in a matter of weeks, as compared to many months or years required for conventional remediation technologies such as bioremediation or soil vapor extraction/air sparging;
- <u>Successful Chemical Applications</u> Our use of various remediation chemicals with our unique delivery system is a far safer approach than conventional methods since the delivery system allows us to quickly disperse oxidizers and other materials over a broad area, eliminating the localized heating and vapor production effects observed when these materials are injected into modified monitoring wells. EBSI's efficient chemical formulations also eliminate the need for injecting large quantities of highly concentrated material, allowing EBSI sites to receive much lower injection volumes at lower concentrations.
- Unique Delivery System. The injection point approach utilized by EBSI is capable of achieving radii of influence of up to 60 feet. Substantially fewer injection points are required to remediate the site, as opposed to the conventional in-situ oxidation injection well approach with typical radii of influence of only 10 to 20 feet.
- <u>Specialized Field-Monitoring</u>. EBSI conducts in-situ monitoring for groundwater parameters during the project to gage the progress of remediation, eliminating the need for costly interim sample collection and analysis costs;

2.0 REMEDIAL ACTION SCOPE OF WORK

2.1 Site Background

H&A is currently evaluating remedial alternatives at the Malden MGP site to address petroleum impacted site groundwater. The site is currently developed and operated as a commercial bakery. The site has previously been investigated to delineate the lateral and vertical extent of contaminants in soil and groundwater. Subsurface soils are described as fine to silty sands with a hydraulic conductivity in the range of 0.01 cm/s. Groundwater is encountered at approximately 7 feet bgs and flows to the west. The most severe impacts are below the bakery operations production area.

2.2 Treatment Program

EBSI's general approach for this pilot demonstration is to install a single four inch recirculation/injection well between wells MW-922 and MW-923 which will provide for a

> wide area coverage of continuously injected treatment chemicals. EBSI has assumed for this estimate that H&A would conduct the drilling and install the well to our specifications. The combination of patented techniques is available through licensing agreements EBSI maintains with the re-circulating well developers. The re-circulation well is expected to influence up to 50 ft radially – the two existing monitoring wells will each be approximately 25 feet from the recirculation/injection well. Following startup of the recirculation well, a chemical feed will be added to the system. The chemical feed will be from external 15 gallon tanks located outside of the building and connected to the well by tubing (piping) run along internal walls to minimize interference with the bakery operations. We believe this is the most efficient way to distribute treatment reagents over the broad area covered by the site building.

> EBSI would provide well installation specifications to H&A who will install the approximately 20 ft deep, double screened well (e.g. screened from 3 to 10 ft bgs, riser from 10 ft to 13 ft, screen from 13 to 20 – exact specification will be provided after an initial site visit). An air lift pump powered by an air compressor external to the building would circulate water in the subsurface. The well would be sealed and a vacuum drawn on the well head to remove vapors to the exterior of the building. A 15 gallon storage tank will be located outside the building and small volumes of reagents will be fed to the recirculating groundwater to produce dilute in-well concentrations of the catalyst, tracers and hydrogen peroxide. The in-well concentration of the peroxide solution will be maintained at less than three percent during the three month demonstration period.. EBSI will operate the system for 3 months and H&A will be responsible for the collection and analysis of samples before, during and after the demonstration to evaluate the effectiveness of the system in: 1) altering the site geochemistry over a wide areal; 2) initiating low-level Fenton Reagent -like reactions to degrade contaminants; and 3) to enhance biological degradation within in the demonstration area.

The design of this demonstration of the PRP technology will enable full scale deployment with minimal additional requirements.

2.3 Technical Information

The Peroxide Release Process (*patent pending*) involves the slow and continuous release of an admixture of a dilute H₂0₂ solution, an acid, natural, inert tracers and a catalyst into existing or specifically drilled monitoring and/or recharge wells. The process (PRP) consists of the slow and continuous release of a stoichiometrically balanced solution into contaminated groundwater to affect a three phased process including:

Phase 1. Insitu oxidative processes. In this phase, *insitu* Fenton Reagent reactions are generated to produce hydroxyl radicals to degrade dissolved and sorbed chlorinated and non-chlorinated organic contaminants.

Because Fenton Reagent reactions result in the production of iron hydroxides, dissolved trace metals are complexed with the hydroxides and bound to and/or trapped by the soils.

Phase 2. Plume Redox Modification. In this phase the introduced, dilute H_2O_2 solution, modifies the anaerobic regions of the plume through the slow and continuous release of oxygen as the H_2O_2 degrades creating a conducive environment for the propagation of aerobic bacteria.

The dilute H_2O_2 solution will be effective in modifying and maintaining the redox of the plume at about 1/3 the cost of existing oxygen release products.

Phase 3. Microbial Degradation. Because dilute concentrations of the H_20_2 solution are used in the PRP process, soil microbes are not destroyed enabling aerobic bacteria to flourish once aerobic conditions are restored in the aquifer.

Plume Tracer. The inert tracer will enable ready tracking of the rate and direction of groundwater migration by sampling and analyzing groundwater collected from downgradient monitoring wells. Inexpensive ICP/MS analysis readily detects the tracers at the part per trillion concentrations.

Because the PRP is inserted into existing wells, the insitu process can operate continuously for periods of two months or more in heavily trafficked or remote locations. Once the inserts are installed, there is no evidence of ongoing remediation.

A pilot scale demonstration conducted at an upstate New York petroleum spill site demonstrated the effectiveness of the process to degrade BTEX and MTBE within six months at a site that had used conventional pump and treat processes for more than nine years.

3.0 Remedial Action Estimated Costs

The following is a summary of the costs associated with the aforementioned services delineated in the above SOW to be provided by EBSI.

Summary of Services

Includes all labor, materials, and equipment costs recirculation devices, support equipment, vacuum extraction, and chemical treatment. Independent testing and derived waste disposal to be conducted by others.

- Conduct site visit to inspect work area for potential locations and installation details. Provide information and assistance for permitting as needed;
- Conduct initial charge of reagents followed by slow feed system set up and operation. Refill feed tank(s) and monitoring of the system on periodic basis.

05-0326-DRRS Malden MGP Eng ESt 1a

- Real-time monitoring of groundwater parameters during treatment while onsite;
- Provide data, technical assistance, and other information as needed for final reporting requirements;
- Interior work to be completed during non-production hours;
- Estimated time to complete -3 4 months (from permitting to reporting).

Lump Sum Cost: \$87,500 to 96,450

4.0 Confidentiality

All information in this quotation is confidential and may not be disclosed to third parties without written authorization from EBSI. All rights are reserved. By EBSI's submittal of this proposal, the recipient understands that all technical information provided by EBSI (whether in written, oral, or electronic form) regarding the On-Contact Remediation Process® and/or the PRP process technologies in the proposal itself, as well as during any follow-up response, is the proprietary and confidential property of EBSI. This information shall be mutually handled confidentially and not disclosed to third parties outside of the management or client for this project. In the event that EBSI is not awarded the work, all originals and copies of the proposal and other related technical information provided during the period of proposal preparation and consideration shall be promptly returned.

5.0 Assumptions

- Adequate facilities shall be available at the site for the unloading and storage of Process materials in or near the proposed treatment area.
- Potential injection points (MW, AS, or SVE wells) are accessible through roadboxes, or will be made accessible by H&A. EBSI did not include costs for exploration digging to locate and access subsurface injection points.
- Documentation shall be provided to EBSI that delineates the location of underground utilities including but not limited to, electrical, natural gas, telephone, communications, water supply, wastewater conveyance sewers, production or other product conveyance lines, etc.
- Utilities shall be made available at the site including a potable water supply and electrical service (120 V, 60 Hz, 15 amp electrical outlet) within 100 feet of the work areas.
- EBSI assumes that there are no other sources of contamination in the immediate vicinity of the treatment area, besides the contamination identified in data submitted to EBSI prior to this quotation. The presence of additional undocumented sources of contamination could diminish the effectiveness of the Process.
- · EBSI may perform sample collection, analysis, and data validation in addition to

05-0326-DRRS Malden MGP Eng ESt 1a

.

client and independent testing. Copies of the raw data, summary data tables, and the final laboratory report will be provided to EBSI. EBSI may elect to obtain and analyze split samples for data verification purposes.

l

- H&A will provide access to all work areas as needed to implement remedial actions. EBSI will be allowed to conduct additional treatment as needed to achieve contaminant concentration reduction goals.
- If this scope of work is contracted on a pay-for-performance basis, the H&A will
 collect post-treatment samples in a timely manner following treatment (within 2 to 6
 weeks).

6.0 Limitations

In preparing this proposal for performing the remediation using the Process, EBSI has relied upon the site characterization data provided. This existing site information may have included, without limitation, data regarding site history and the identification, location, concentration, quantity, and character of known or suspected soil and groundwater contamination. EBSI has relied upon the validity of this existing site information in designing and configuring the parameters of the specific Process application proposed for the site, without independent verification of the data provided in such information. The customer acknowledges that the effectiveness of the Process application proposed for this site depends upon the accuracy of the existing site information. If site conditions are found to differ from our proposal assumptions based on the information provided, thereby requiring an increase in the scope of work, EBSI will issue a change order for review and approval to modify the scope of work and contract price accordingly.

7.0 Payment Terms

For Pay-for-performance projects, EBSI proposes the following payment terms:

- 40% at contracting;
- 40% after start-up;
- 20% upon submitting technical information to H&A.

8.0 Schedule

EBSI can begin site work approximately one month following acceptance of this proposal. EBSI will schedule the site visit within two weeks of finalizing contracting procedures. Field work can begin within two weeks of the site visit and regulatory approval. EBSI has assumed that H&A will collect post-treatment samples between 2 to 3 weeks following treatment. Following receipt of analytical data, EBSI will prepare a letter report of our field activities and any recommendations or conclusions based on the

available data. Total project timeframe is approximately 3 months, depending on regulatory approval timeframes and laboratory analytical turnaround times.

9.0 Basic Ordering Agreement

EBSI will provide our Basic ordering Agreement upon request for review by H&A.

This proposal remains in effect for 90 days. EBSI looks forward to working with you on this Project. Please call me at (904) 280-2596 or Dr. Ron Scrudato at 315 312-2883 (day), 315 342-2487 (evening), 845 259-2413 (cell) if you need any additional information or have questions or comments regarding this proposal.

Sincerely,

Ron Adams

Ronald F. Adams, P.E. Sr. VP Client Services

05-0326-DRRS Malden MGP Eng ESt 1a

01-08-03 01:50PM	FROM-LAKE HVAC	7814368504	T-932 P.01	F-626
	AK	41 Ple Stoneham, Mass Telephone	Contractors easant Street achusetts 02180-3823 (781) 438-8814 81) 438-9504	
Fa		0	1	8
To: Ha Fase (From: P	ley & Aldrich 17-1 886-2600 Juddy Davis	Attn: Sean () Pages: 1 of 12 INCLUDING Date: 1803	COVER	-
Re: 129 Ma	I Commercial St Iden, MA 02141	Comment	Please Recycle	-
@ Commen				
f	lease revi-	ew attached.	۵ <u>ـــــ</u>	
	PLEASE CALL IF YOU HA	VE ANY PROBLEMS RECEIVING	This fax	

.

HVAC Contractors 41 Pleasant Street Stoneham, Massachusetts 02180-3823 Telephone (781) 438-8814

Fax (781) 438-9504

January 8, 2003

Mr. Bruce Wilkinson Haley & Aldrich 465 Medford Street Suite 2200 Boston, MA 02129-1400

RE: 129 Commercial Street Malden, MA 02148

Dear Mr. Wilkinson:

We propose to perform the following for the referenced project as per preliminary drawings dated 1/2/03 from R.J.C. Engineers. The following is the scope of work:

Base Make Up Air System

Furnish and install:

- (2) 10,000 cfm Gas Fired Electric Cooling Make-Up Air Unit with 100% outside air and return air dampers
- (2) Air distribution socks
- Seismic vibration curbs
- (1) Exhaust Fan for underslab exhaust
- (1) Exhaust Fan for general maintenance shop exhaust
- (1) Louver
- Electrical
- Roofing
- · Gas piping
- Controls
- Steel roof deck angles
 - · Rigging/Scissors lifts
 - Sheet metal material
 - · Starting, Testing & 1st Year warranty

23

i

A

Enhanced Ventilation System

Furnish and Install:

- (2) Canopy hood exhaust fans
- (2) General exhaust fans
- (9) Draft inducers fans
- (2) Turbine ventilators
- (4) Counterbalanced back draft dampers
- Exhaust fan starters
- · Type B Gas vents
- (9) Barometric dampers
- Roofing
- Rigging/scissor lifts
- Insulation
- Air balancing
- Electrical
- Controls

We do not include:

- Gas Service Upgrade
- · Bonding

Thank you for the opportunity to work with you on this project. We look forward to working with you on this and any other future projects.

Sincerely, Lake HVAC

B. Davis

Buddy Davis Vice President of Construction 01-08-03 01:51PM FROM-LAKE HYAL

1014368004

1-836 P. 04/16 P-060

Project: 129 Commercial Street HVAC Construction Budget Malden, MA

Description Of Work Cost Item MAKE UP AIR SYSTEM \$112,547 (2) 60 TON ELECTRIC COOLING/GAS HEATING UNITS 1 (2) SEISMIC VIBRATION CURBS \$8,200 2 \$2,362 3 (2) EXHAUST FANS \$420 4 (1) EXHAUST LOUVER (2) DUCT SOCK AIR DISTRIBUTION SYSTEMS \$4,900 5 6 SHEETMETAL MATERIAL \$15,680 7 SHEETMETAL SHOP & FIELD LABOR \$32,400 \$36,470 8 ELECTRICAL 9 \$13,400 GAS PIPING 10 **RIGGING/SCISSOR LIFTS** \$7,500 \$2,670 11 INSULATION 12 ROOFING \$11,250 13 \$8,670 CONTROLS 14 AIR BALANCING \$2,668 15 STARTING. TESTING & 1ST YEAR SERVICE \$6,000 SUBTOTAL \$265,137 LAKE HVAC PROJECT MANAGEMENT \$12,000 \$20,780 FINAL DESIGN DOCUMENTS TOTAL MAKE UP AIR SYSTEM TAX INCLUDED \$297.917 QUALIFICATION TO MAKE UP AIR SCOPE: BASED ON MONTHLY UTILITY BILLS, THE EXISTING LOAD DURING THE SUMMER MONTHS REACHES 80% OF THE RATING OF THE MAIN 12000 AMP CIRCUIT BREAKERS. WITH THE NEW MUA UNITS, AN ADDITIONAL 286 AMPS WILL BE ADDED TO THIS SERVICE. PER CODE, WE CANNOT LOAD AN OVER CURRENT DEVICE GREATER THAN 80% OF ITS RATING. BASED ON THIS INFORMATION, WE HAVE INCLUDED THE COST OF REPLACING THE MAIN SERVICE DISCONNECT WITH A 100% RATED, 1200 AMP CIRCUIT BREAKER. THIS SHOULD SOLVE THE PROBLEM, BUT WITHOUT FURTHER ENGINEERING CALCULATIONS, WE CANNOT RULE OUT THAT THE MAIN SWITCHBOARD MAY HAVE TO BE REPLACED WHICH WOULD COST UP TO AN ADDITIONAL \$30,000.00

Prepared By: Lake HVAC, Inc.

1/8/03

01-08-03 01:51PM FROM-LAKE HVAC

7814389504

HVAC Construction Budgat

1

Project: 129 Commercial Street Malden, MA

Item	Description Of Work	Cost
	ENHANCED VENTILATION SYSTEM	
1	EXHAUST FANS & STARTERS	\$7,81
2	DRAFT INDUCER FANS	\$6,56
3	TURBINE VENTILATORS	\$2,10
4	BACK DRAFT DAMPERS	\$78
5	TYPE B GAS VENTS	\$3,28
6	BAROMETRIC DAMPERS	\$1,57
7	SHEETMETAL MATERIAL	\$12,94
8	SHEETMETAL SHOP & FIELD LABOR	\$23,66
9	ELECTRICAL	\$8,75
10	INSULATION	\$5,05
11	ROOFING	\$19,3
12	CONTROLS	\$6,25
13	AIR BALANCING	\$1,2
14	RIGGING/SCISSOR LIFTS	\$4,1
15	STARTING, TESTING & 1ST YEAR SERVICE	\$3,2
	SUBTOTAL	\$106,72
	LAKE HVAC PROJECT MANAGEMENT	\$3,20
	FINAL DESIGN DOCUMENTS	\$8,5
	TOTAL MAKE UP AIR SYSTEM TAX INCLUDED	\$118,42
Prepar	ed By: Lake HVAC, Inc.	1/8/03

Prepared By: Lake HVAC, Inc.

7814389504 RICHARD J. COMEAU ENGINEERS, INC.

T-932 P.06/12 F-626

TEL (508) 255-7481 FAX (508) 255-5449

P.O. BOX 69, 34 WEST RD., ORLEANS, MASSACHUSETTS 02653 E-MAIL ric.eog aars@verizon.not

> RJC J.O. No. 49-402 January 05, 2003

Lake Industries, Inc. 41 Pleasant Street Stoneham, MA 02180

Attention: Reference: Mr Buddy Davis

129 Commercial Street - Malden, MA

Bakery Ventilation System Renovations

Gentlemen:

This letter is written in reference to the submission of revised air balance calculations for the bakery area of the facility based upon completion of the preliminary design work for the subject いし 小都 新聞 化高速的问题的 project. P 42

Specifically the purpose of this letter is to summarize the new air balance values for the facility based upon information received as part of the preliminary design work. The preliminary design work provided more detailed information relative to the bakery operation to insure that the proposed renovations would work. There are other bakery equipment considerations which impact the overall installation which should be addressed, but that alteration work is not considered part of the basic fix to the building to provide for pressurization during normal operations. The basic work has to address the potential of the bakery operation accomplishing the necessary renovations to their baking oven installation but should not include that actual work. We have also included a separate description, as an enhanced alteration approach, which also addresses the bakery equipment installation. In any event the following applies:

BASIC ALTERATIONS: A.

1. 1

The proposed makeup air equipment as part of the initial analysis was to consist of two 8,000 CFM conditioned makeup air units which would provide heated air during winter periods and conditioned air during summer occupied periods.) The original concept on how to deliver that makeup air to the bakery area was based upon single point delivery from each makeup air unit utilizing 'duct socks'. Based upon the preliminary design work this concept appears to be the correct approach and the location and orientation of that air delivery system has been more defined. The use of a 'duct sock' for supply air delivery to the space in this sort of application has FDA approval and the arrangement can be used for a low velocity delivery method. . In other words it provides a lot of makeup air within a relatively small area at low velocity so that the air supply does not upset desired local space/equipment ventilation system air patterns. Please note from the preliminary drawings the intent is to surround the baking area, just outside it, with the new supply air rather than try to drop this amount of air directly within the baking area. It is intended that the makeup air equipment is to be provided with return sir connections back to the space so that during highttime periods the equipment could be used for basic space heating on an on call basis.

2.

The provision of the 16,000 CFM, 50 ton, of makeup air amounts to approximately 0.4 CFNI/GSF over the entire building area. This amount of sir delivered directly into the bakery area amounts to about 1.42 CFM/GSF over that 11,258 GSF area or 3.55 air changes assuming a 24' roof deck height. The 24' roof deck height distorts the hourly air change rate and thus is inappropriate for comparative purposes. Using a:12' high space occupancy yields a 7.10 air change rate in the bottom half of the space yields more useful comparative information.

1:1:

HVAC SPECIALISTS IN SYSTEM CONCEPT, DESIGN & ANALYSIS: 4.

: 1

RJC J.O. No. 49-402 January 06, 2003 Page No. 2

- 3. The provision of cooling to the rooftop equipment is a modification based upon the results of the early testing accomplished to determine if the space could be pressurized. During that brief testing period, on a very warm day, the bakery area temperature exceeded 95°F and the space was too hot to carry on baking operations. At that point it was determined, by all involved, that the makeup air equipment would require cooling capability.
- 4. The existing main freezer underfloor duct system would be connected to its own above floor duct system and directly exhausted out of the building thus eliminating this duct system from the overall building air pressurization issue.
- 5. There are a number of inoperative roof exhaust fans above the second ficor mechanical room which would be removed with the roof openings/roofing sealed and patched. This inactive equipment impacts the ability to control overall space relative humidity during summer periods and allows uncontrollad air infiltration during winter periods.
- 6. The existing second floor air compressor outdoor ventilation system would remain as currently configured. This area is sufficiently isolated from the bakery area so that it should not have a significant impact on the bakery area humidity control.
- 7. The basic fix has to allow for the potential that the existing baking crea equipment would be retrofitted at some point in the future, but is not included in this scope of work. There are, however, several basic repairs which have to accomplished otherwise the proposed equipment eizing would be too small. This work is summarized as follows:
 - a. The existing first floor mechanical equipment room exhaust equipment has to be replaced as it draws 12,000 CFM from the facility. This fair would have to be eliminated and a smaller 2,000 CFM fan, manually controlled on a timer, installed if the scheme is to work at all.
 - b. The existing small baking area makeup air units/related air distribution system would be taken out of service, abandoned in place, permanently disabled from operation and the rooftop air inlets sealed. This has to be done as the untreated outdoor air supply would destroy any ability to control space relative humidity. The enhanced solution would include removal of the equipment/system totally to insure roof system integrity as abandoned equipment usually becomes a source of roof leaks in a relatively short period.
 - c. The existing skylight units would be closed and sealed shut! This equipment has exhibited the ability to also introduce outdoor air directly into the baking area thus would adversely impact summer space humidity control. The enhanced approach has this equipment being replaced with kief exhaust fans which could enhance the operation of the baking equipment temperature control as well as enhanced control of oven area baking pan oil mist.

1

.H. . .

The basic overall air flow balance would now look like the following scenaricit.

Makeup air supply:

2 rooftop units at 8,000 CFM each =

18,000 CFM

11.2

11 14.

RJC J.O. No. 49-402 January 06, 2003 Page No. 3

Baking oven ges furnace exhaust needs, estimated max. =	2,250 CFM
Baking oven direct exhaust needs, estimated max. =	2,000 CFM
Baking oven canopy exhaust needs, currently nonfunctional =	4,500 CFM
Proofing ovens furnace exhaust needs, variable - max. =	500 CFM
Hot water boiler exhaust needs, variable - max, =	
Baking area oven aisle roof exhaust fans, controllable =	O CFM
First floor mechanical room exhaust fan, intermittent - max. =	
Total Basic building exhaust =	
Net building pressurization =	4,750 CFM

The net building pressurization is theoretically 4,750 CFM which would be considered more than enough for a 40,000 GSF facility in this eituation. However, the exhaust flow rates are assuming the production area in full operation so there is real additional pressurization air capacity available at part loads. How much is subject to debate depending on what is going on in the building, but the above numbers are based upon projected worst case scenario. The rooftop equipment is provided with return air duct connections to the space thus there is the ability to adjust daytime actual outdoor air flows based upon utilizing a building pressurization controller, which previously has not been discussed, but may be a more effective energy control scenario than heat/energy recovery. Our office has looked at application of an energy saving exhaust scenario but the problem is that the most of the proposed exhausts would/should be picked up may contain grease which would quickly plug the desiccant wheels making them worthless. The best current approach appears to be controlling the operation of individual items.

B. ENHANCED RENOVATIONS:

8.

The preliminary design layout also reflects additional work believed to be required to enhance the operation of the bakery area equipment with particular emphasis of the baking oven vent systems. The work described under the basic alterations is included and then enhanced by the inclusion of the additional work perceived to be required under this approach. It is believed that this enhancement work will significantly improve the apparent existing baking oil misting now occurring in the baking area. There is also a perception that the existing baking area oven systems do not work well based upon on-site observations and running of the theoretical air flow numbers.

- 1. The various exhaust air points in and around the bakery area have now been more accurately defined for the bakery area with the help of the bakery operating personnel. The following description of the various exhaust points and their impact is described in some detail so that this writer can check his own logic by repeating it but also so that the bakery operation personnel can also follow along and double check our basic thinking. The various exhaust points in and around the bakery area can be summarized as follows:
 - The individual baking ovens actually consist of a gas fired hot air furnace which is equipped with an air-air heat exchanger which then heats the air in the oven section by means of its own circulation fan. This arrangement allows for some sophisticated baking techniques to be employed in the oven section which do not impact the actual furnace section. The net result is that you have to deal with two different processes which consist of the furnace section and then the oven section as they accomplish their individual functions. For the furnace section there is the need to provide for combustion air directly in the combustion chamber for burning and then there is the need to provide for control of the air pressure within the furnace section so that the combustion

and in a

b.

c.

7814389504

54

RJC J.O. No. 49-402 January 08, 2003 Page No. 4

can occur in a controlled manner and then be able to discharge the products of combustion out of the furnace through the roof in a regulated manner regardless of outside ambient conditions. For an individual oven this means that room air is drawn into each furnace, about 112 CFM. This air is burned with natural gas and the products of combustion then enter the furnace chimney. The furnace chimney is fitted with a mechanical draft inducer which insures an exhaust flow rate out of the oven under all atmospheric conditions. The flue from the furnace outlet to the draft inducer inlet is fitted with a barometric damper which automatically allows room air to enter the flue to maintain the furnace under its design negative pressure during operation. This setup is fairly common with all types of heating equipment. The existing draft inducers are sized for roughly 250 CFM which includes the products of combustion from the furnace and room induced air in order to regulate the furnace interior air pressure.

Currently the existing ovens have pairs of furnaces hocked up to a single chimney section up through the roof. That means that two draft inducers aro connected to the same flue which is unusual as normally draft inducers should be isolated to their own flue so that the fans do not fight each other. We would thus, recommend that each furnace section be individually vinted through the root to provide for more accurate individual firmace pressure control as well gut down on the amount of air being exhibited from the building, to priv that amount, required because that individual power is in operation. The total exhaust air from the ovens could be 9 parages at 250 CFM each or 2,250 CFM.

The baking oven actual baking section is totally separate operation from the furnace and relates to the preparation/cooking of a particular product. There are two separate vents out of the oven section which went heated air and vapor created as part of some of the baking process. These vents are more of a gravity release process versus the more vigorous combustion process, i.e. the expanded air from within the oven during the baking process as well as water vapor used during portions of the baking process. A mechanical exhaust of this portion of the oven would not work well in this situation; . In this case it is proposed to collect the various oven vents in each bankly and duct them through the roof with a gravity wind turbine vent for discharga to atmosphere. Each of the two exhaust systems would be fitted with duplexed barometric dampers to insure that excessive negative pressure was not created with the ovens during the baking process. The four barometric dampers could draw up to 250 CFMreach and oven doors left open could double that air flow rate for a total of 2,000 CFM. Each rooftop turbine ventilator unit would also be equipped with a motorized damper to isolate this equipment during facility shutdown periods. This revision is believed to be one of the key factors in controlling pan oil misting with the bakery area, but not the total correction.

d.

The baking ovens are equipped with 24" deep canopy exhaus phoods over each oven access door.' The objective obviously is to catch excess heat from the oven when the access door is opened. As demonstrated by bakery operation personnel the oven canopy exhaust hoods actually had air coming out of them rather than into them thus totally negating their function. We have analyzed their function together with the direct oven venting system. It is believed that if the oven venting system described above in item 18 can be rebuilt the canopy system would be effective in the overall processing of the product, i.o. 1

RUC J.O. No. 49-402 January 06, 2003 Page No. 6

...

٩.1 注意して

if at the end of the baking process the oven could be shut off or time out and the oven door opened. Between the oven interior gravity vent and the powered canopy vent the baked product may be able to achieve its initial cooling if the baking rack was simply moved 2' out of the oven, outer rack edge under the outer canopy edge, so as to be under the influence of the canopy vent. The canopy vents are not kitchen hood appliances and are evidently intended to function as low level exhausts. The canopy hoods are equipped with 8" connections which indicates an intent to only exhaust about 500 CFM per canopy for a total of 4,500 CFM. Each set/row of banked ovens with a continuous canopy setup would provide more local product cooling effect as the ovens are cycled. These exhaust fans, 1 @ 2,000 CFM and 1 @ 2,500 CFM, would be fitted up as standard 'kitchen' exhaust fans to catch what grease was being picked up from the canoples.

There are hot water boilers and proofing ovens in the baking area which are £. 1 gas fired and firred with individual flues. There are 4 such flues which we are rating at approximately 250 CFM each as far as space direct air exhaust is 1 concerned.

The baking area operates with rolling pallets of freshly baked goods emerging f. from the ovens on a regular basis which means that some amount of baking pan oil is still being emitted when the rolling pallets are being withdrawn from the ovens. This situation can be mitigated by the conversion of the existing skylight units to baking access aisle exhaust fans which are figured at about 2,500 CFM each. This approach would require increasing the size of the makeup air equipment from 8,000 CFM/50 tons to 10,000 CFM/60 tons each.

This approach would require increasing of the makeup air unit capacity from 8,000 2. CFM/50 ton capacity each, to 10,000 CFM/60ton capacity each, and then installing a pair of 2,500 CFM sisle area roof exhaust fans. It is believed that this equipment would be fairly effective in removing local space oil misting. There is a concern relative to the existing oil misting impact on the existing space environmental condition as our office is not qualified to evaluate same, however, there is a perceived problem that 13 probably requires addressing. .

1 ...

Assuming that all of the foregoing is accomplished the creation of local space misting 3. would be diminished but not totally eliminated, refer to the comment in 1f above. The objective of the current design is to mitigate the space negative pressure during bakery operations. It is not intended to provide total control of the space environment as that environment has been created by the setup of the bakery operations. The foregoing simply describes how to control mist creation in the baking area. The overall design is intended to deal with what to do with the residue, maybe a large amount of pan oil residue mist, that releases into the baking area. That problem is proposed to be addressed by roof exhaust fans located above the central oven access aisle area. As baking racks are extracted from the ovens slowly, i.e. the 2' mentioned above, and then pulled out into the central aisle for cooling the hest from these racks would create a small individual plume of heat and oil which then be picked up by the oven baking aisle central roof exhaust fans. Right now it is planned that these root exhaust fans would be sized at approximately 2,500 CFM each for a total of 5,000 CFM. These fune would be fitted up as standard "kitchen" exhaust fans to catch what grease was being picked up from the general area. 111: 2 ું છે. તો

•••			No. 49-402 ry 06, 2003 Page No. 6
The overall air flow balance now looks like the following	scenario:	-	
Makeup air supply:		та ., , н	
		10	
2 rooftop units at 10,000 CFM each =		· · · · · · · · · · · ·	20,000 CFM
Building - Bakery area exhaust:			
Baking oven gas furnace exhaust needs, estimated max.	=		2,250 CFM
Baking oven direct exhaust needs, estimated max. =			2,000 CFM
Baking oven canopy exhaust needs, continuous =			
Proofing ovens furnace exhaust needs, variable - max. =			
Hot water boiler exhaust needs, variable - max, =			
Baking area oven aisle roof exhaust fans, controllable =			
First floor mechanical room exhaust fan, intermittent =			
Total Besic building exhaust =	•••••		18,750 CFM
Not building prossurization =			3 250 CEM

The net building pressurization is theoretically 3,250 CFM which would be considered the minimum allowable for a 40,000 GSF facility in this situation. However, the exhaust flow rates are assuming the maximum number of ovens in operation so there is real additional pressurization air capacity available at part oven load usage. How much is subject to debate depending on what is going on in the building, but the above numbers are based upon projected worst case scenario. The rooftop equipment is provided with return air duct connections to the space thus there is the ability to adjust daytime actual outdoor air flows based upon utilizing a building pressurization controller, which previously has not been discussed, but may be a more effective energy control scenario than heat/energy recovery. Our office has looked at application of an energy saving exhaust scenario but the problem is that the most of the proposed exhausts would/should be picked up may contain grease which would quickly plug the desiccant wheels making them worthless. The best current approach appears to be controlling the operation of individual items.

The proposed control system for the facility mechanical system has evolved into the following scenario:

The rooftop makeup air equipment would work as follows:

- The rooftop equipment operation would be controlled by means of a programmable electronic time clock which is to be set to determine starting and stopping times as suits the bakery operation.
- 2. During occupied periods the rooftop makeup air units, AC-1 and AC-2, would start and provide treated outdoor air to the facility. During occupied periods each rooftop unit would run and its outdoor air damper open and the return air damper would be closed. Air would be discharged from the unit with an adjustable discharge temperature of 55°F, edjustable 55°F to 65°F. During summer periods, i.e. over 55°F, the mechanical cooling would be energized to maintain discharge setpoint and during periods below 55°F the heating section would be energized to maintain discharge setpoint.
- 3. During unoccupied periods the rooftop units, AC-1 and AC-2, shall shutdown, the outdoor air dampers close and the return air dampers shall open. A space heating/cooling thermostat would be provided to cycle the rooftop AC units on a call for space heating only. The space thermostate shall have a manual heating/cooling selector switch to enable unoccupied period

RJC J.O. No. 49-402 January D6, 2003 Page No. 7

space cooling.

Smoke/heat detectors shall be provided for each rooftop to disable the equipment in the event 4. of actuation.

The exhaust ventilation equipment shall operate as follows:

- 1. Oven operation would be controlled by means of the existing integral oven control equipment. The individual oven flue exhaust draft inducer would be interlocked with the respective oven combustion controls. This equipment would be able to operate independently of the makeup 1 2 air system operation. 1993
- The baking oven gravity exhaust system isolation damper located at each roof level turbine 2. vent inlet shall open for each oven bank. These two systems would be interlocked with the respective oven bank operation independent of the makeup air system operation
- nD The oven canopy hood exhaust fane for each bank of ovens, one exhaust fan forjeach oven 3. bank, shall be manually controlled from the oven area. These exhaust fans would be interlocked with the makeup air system operation so as to only be enabled during occupied cycles.
- · · · · · · · · · · i good the pass of the a The two oven area general exhaust fans shall be controlled by means of a local high limit 4. thermoster which shall energize the exhaust fans in the event that the space thermoster exceeds setpoint, i.e. 80°F adjustable. These exhaust fans would be interlocked with the makeup air system operation so as to only be enabled during occupied cycles.
- and a first star which the start of the second The exhaust fan serving the underground freezer frost control ventilation system would operate 5 and the server
- The first floor mechanical room local exhaust would be manually controlled by means of a local 8. wall switch equipped with a 1 hour timer switch.

And the state of the state 1. 18 di 1. 180 1 m In summary please review the foregoing and provide comments before weinclude the foregoing information on the preliminary drawings. If there are any questions please contact this writer. In submission of this letter together with the prior preliminary drawing our office assumes the preliminary design effort is complete.

All the plan is a second

10 020

1 1

9

in the particulation is

· • (1) and the second second

and a state in same ay - - the los

an an there are

W & Lotte of

A · · · ·

· · · ·····

A CALL AND A

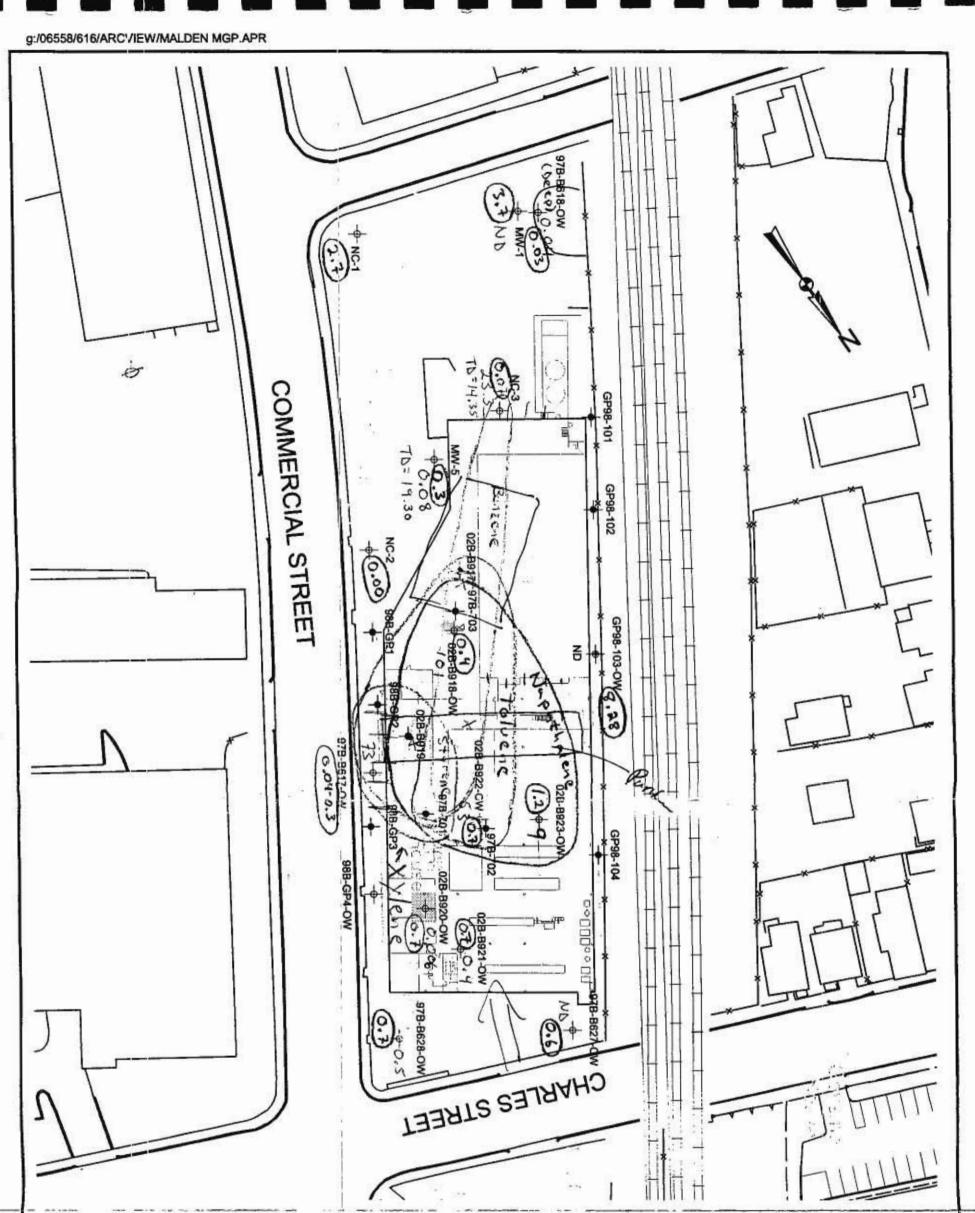
.

Very truly yours.

Richard J. Comeau .

1

enclosure: Preliminary Design Drawing dated 01-02-03

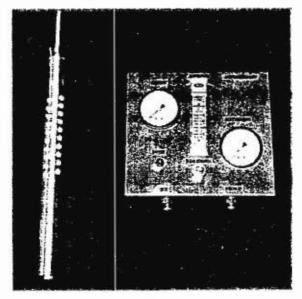

ALDRICH	CALCULATIONS	File No.	29847-
Client	ME	Date	of
1000	MEC Malden MGP		6-12-0. SMC
Subject	Alternative 5-4	Checked By	
· 5	VE - Same as Alternative 5-1.	CI.	
· .	Dxygen injection		
	=> Refor to 2/5/03 Calculations groundwater flux rates.	for esti-	mented
р 1 1 2	=> Approx. 1.8 1602/day would to main tain concentrations of injection wells.	be required 40 mg	i'r-d 1 e in
a Ka	=> From Alt. 5-2, estimated mass in groundwater = 306 H		
	=> System would rely on natur. flow to flush On through e soil + groundwater. From A travel time from Middle of end of plume is approximat	al ground ontamin- lt. 5-2, building cly I yea	trd estrato to down
	However, Oz will be depleted due to high concentration of System relies on biodes rac are unterown.	of contan	inants.
	=> Based on common rule of - >3 to 1 Oxident to Contamin. deliver requisite oxygin in	not Fortic	, can
"oxysen	Revisited", Contaminant mass = 300		
	and p.48 Required O2 mass = App forence	(2205.)	5°2
·····	Delivery rate = 1.8 15/day		•
	Deliving Time = 2205 15 1.8 15/d-7	= 1225 0	lays, or 1-years
	=> Assume additional time for dos contaminant mass on Soil Bra flushes of pores => Assume 10	ins + mul	tiple

HALEY &	CALCULATIONS	File No. <u>21847-00</u> Sheet 2 of 2
Client	MEC	Date 6-12-03
Project	Malden MGP	Computed By SMC
Subject	Alternative 5-4	Checked By
2	equired Number of Wells	2
3	Well spacing will be determined layout and other consider ations a "curtain" of oxygen inject attached references (oxygen R Influence ranges from 10 to 20 feet.	ion. According to levisited) Indius of
	Refer to Figure 21 for prop	posed well layout.
	Assume 15 injection wells within rows is approx. 20- between rows is approx. 40	- 25 ft, Spacing
	Assume piping to wells is Conduits, similar to Alter Slow-release chemical oxidat Brid- can combine SVE trenchi	native 5-2 for
	Based on attached reference, l' sufficient to deliver assumed	5 wells should be
I	Installation costs	· · · · · · · · · · · · · · · · · · ·
	Well installation : Will require	
Πž	Support crew. Based on previo be approx. #2,000 per well, (mobilization includes these).	us experimce, cost will
1		
I	nstellation Time	
AL 1923	Assume 2 wells installed P	er day 8- hr work
	days . Including dean up . s	ystem installation
	Assume 2 wells installed P days . Including dean up, s would require approximately	7 Days (Assume 2 wee
9. 12	Assume trenching for distribution	and a start a state of a state of the state
		· · · · · · · · · · · · · · · · · · ·
	13 17 (2	- •

-

HALEY & File No. CALCULATIONS 1 of 2 Sheet MEC 2/5/03 Client Date Malden Ph. II / 129 Commercial St Project Computed By SMC Oxygen Consister Cales Subject Checked By ISOC. 10 ft water, 1 ft/day flow rate, Isoc guide a achieve ~ 50 mg/2. 02 in well. Assume 40 Assumina myle Cross- section RR frett 12 4+ alley 18 54 C -14.7 120 ft Aren = 18 × 120 = 2160 ft2 9 = (111 ft/day) (.003) = 0.33 ft/day (dary flux) Q = 719.3 ft/day x 28.31 /ct = 20363 4/day of 40 ms/e, concentration maintain 40 mg 20363 L Oa /olay 814 350 (814 2000 22 1/3) = 1.8 16/ day 1997 20 November CALO2AFH FRP

HALFY & File No. CALCULATIONS Sheet 2 of 2 MEC Client Date 2/5/03 Malden Ph. II / 12n Com-Project Computed By SMC 02 Conister Cales Checked By Subject Estimate mass of BTEXSN in groundwater beneath 129 Commercial St building : -----Use max conc. BTEXSN . Detected trecently :. 922: 87 ms/2/ 923: 10 Average = 78 mg/2 918: 121 93 . NC-3: Approx. impacted area = 250x 120 forts 30,000 ft Approx. depth = 15 fret (?) Approx. Volume impacted aquifer media: 450,000 ft3 × 0.3 porosity = 135,000 ft water × 28.31443 = 3,821,850 l water => Est. total BTEXSN Mass = (3, 822,000 R) (78 m3/2) = 298 kg Assuming 300 kg contaminant mass in groundwater, approx. 900 kg of 02 will be required, assuming 3.1 ratio. Assume 0.8 kg 02 delivery per day => 900/0.8 = 1125 Days = 3 years => However, Significant uncertainty in mass of containing, Fate of brodegradation. Also, sorbid consentration on suit will desorb once aqueous iconcritation decrises likely to require tanger =) use ~ 10 yrs



		6	2. ELEVATIONS	1. BASE PLAN / OF THE MAN FOR MASSAA TOPOGRAPH ASSESSORS AND SHEET UPDATED JU REVISED 30	(<u>.</u>	73 7		+ ++		N:	m	S	× -	1 -	
-	- 16	-	ONS ARE	ULFAC	Dess	once	BAKERY	SOIL BO	HISTOR		••	••	× -	1 00	
	GROUNDWATER SAMPLE LOCATIONS	RMER MA	ARE IN FEET AND RELATIVE TO	TED FROM TURED C ETTS ELE JUNE 199 JUNE 199 JUNE 199 JUNE 199 JUNE 199 JUNE 199 JUNE 199 JUNE 199 JUNE 199	Solved	str.	T	SHALLOW MONITORING WELL SOIL BORING LOCATION	HISTORIC MGP STRUCTURES	8	~ ~ ~	104	106	s a	MC
	WATEF	DEN MOS	AND REL	AS PLAN SCTRIC C S 1 AND C S 1 AND C	Q	tec	RODUCTION FACILITIES	OCATI	STRU	Ø					3
	REFTS R SAMP	SITE	ATIVE TO	GRAPHIC T, MALD TY OF M 2. JUNE 1 2. JUNE 1	axy 3.	ted 1	N FACIL	ON	CTURE						
	LE LOC	g	1	: WORKSH EN, MA C BY EASTE WLDEN WLDEN 1995, ORNDIKE,	n	ny ac	ITIES	LOC							
	ATION	Feet		KSHEET	200	200		AION	*						

Your ultimate managed attenuation tool ...

ISOC™ with Single Control Panel

What is iSOC™?

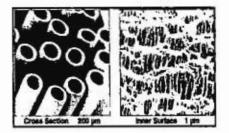
iSOCTM is an **ingenious** oxygen delivery technology, based on inVentures' **patented Gas** *inFusionTM* technology—a unique method of infusing supersaturated levels of dissolved gas into liquids. At the heart of *iSOCTM* is the **proprietary** structured polymer **mass transfer** device.

Microporous hollow fiber provides an enormous surface area for mass transfer— in excess of 7000 m² per m³—and is hydrophobic (will not pass water). Maintaining a gas pressure, less than the liquid pressure ensures that ultra efficient mass transfer takes place without the formation of bubbles.

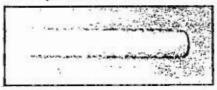
When suspended in existing monitoring wells, *iSOCTM* infuses high levels of oxygen into groundwater, without bubbles, and with a very low decay rate at atmospheric pressure.

iSOC[™] Bioremediation Enhancement

Supersaturates monitoring well with low decay dissolved oxygen (DO), typically 40-200 PPM depending on depth in groundwater


P Natural convection current fills well with uniform DO curtain

Supersaturated DO curtain of water disperses around the well into the adjacent groundwater

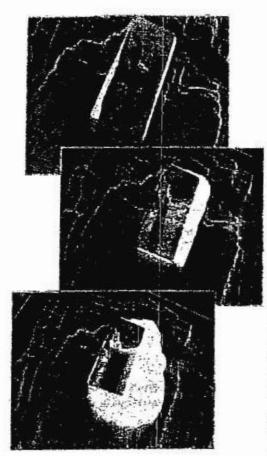

Enhanced bioremediation removes organics through natural attenuation

Placement of injection wells depends on site-specific conditions

Installed in a few hours and easily moved from well to well to optimize performance

Microporous Hollow Fiber

ISOC™ Mass Transfer Device


What do consultants say about iSOC™?

Several leading environmental firms have achieved significant reductions in MTBE, BTEX, and TBA, and have commented:

P "In less than 3 months since iSOC™ installation, MTBE & TBA have decreased by an order of magnitude, DO has increased in monitoring wells 30' away, and ferrous iron and BOD have dropped."

B[™] "Since installation of iSOC[™], MTBE has been reduced from 3500 to under 200 PPM in fractured bedrock in about 4 weeks."

"We established an effective barrier of DO in ~3 months with reductions of 84% MTBE, 31% TBA, 73% benzene down gradient of O₂ barrier."

Hydrocarbons and ISOCTM

The use of dissolved oxygen in hydrocarbon-contaminated groundwater to enhance natural attenuation of MTBE and BTEX has been growing as a remediation technology since the mid-1990s.

Most conventional technologies, however, waste most of their oxygen because the bubbles rise to the top of the groundwater table and escape before they have a chance to dissolve or to be utilized by naturally occurring hydrocarbon degrading microorganisms.

The result is an inadequate biodegradation response in aquifers with high ferrous iron, moderate BOD, and/or high concentrations of hydrocarbon constituents.

ISOCTM overcomes the conventional problems

ISOC™ Remediation Approach

Create oxygen barrier at leading edge of contaminant plume to avoid boundary litigation, and to protect off-site receptors.

Source treatment reduces contamination levels with supersaturated oxygen at heart of the plume.

Achieve rapid, localized remediation of low-level contamination and hot spots in existing monitoring wells.

Accelerate site closure through natural attenuation as a primary remediation strategy or as a polisher.

Maintain cost effective, passive enhancement of natural bioremediation for less than normal monitoring costs.

Where has *iSOC™* been used?

iSOCTM has been used or approved for remediation use in **21 US states** including Florida, Georgia, New Jersey, Delaware, Connecticut, Pennsylvania, New Hampshire, Vermont, Massachusetts, West Virginia, Maryland, Colorado, Wyoming, Montana, Washington, California, Arizona, Utah, New York, Indiana, and Michigan; several countries in Europe, Canada, and Brazil.

Gas Type	Wa	ter Colu	ımn Dej	pth in Fo	oet
	5'	10'	15'	20'	50
Oxygen	42	55	62	69	111
Methane	22	30	33	37	59
Propane	66	88	99	110	175
Hydrogen	2	2	3	3	5
Ethane	57	75	85	95	150

ISOC™ Dissolved Gas Concentrations in a Water Column

iSOC™ Oxygen Distribution

Mass transport laws govern oxygen dispersion and distribution.

The iSOC[™] supplies oxygen according to demand.

Case studies show the typical radius of influence to be 10 to 20 feet from the *iSOC™* well, although each site must be judged by its specific characteristics.

iSOC™ case studies show that a 2-well system can use as much as 32 pounds of oxygen over a 3 month period, and that a 3-well system can use as much as 64 pounds of oxygen over a 5 month period.

Can we use other gases with ISOC™?

Yes Consultants see the need to use other gases in their remediation approach, such as hydrogen, methane, and propane for remediation of chlorinated solvents.

iSOC[™] will transfer these gases into the groundwater as effectively as it transfers oxygen, as illustrated in the table to the left.

/SOC™ Brochure v.02.08 - Page 2

iSOC™ Quality Construction

iSOC™ is constructed of high quality **SS316 stainless** steel using the latest manufacturing equipment and a **proprietary** structured polymer **mass transfer** device.

iSOC™ is **1 5/8**" diameter and 15" long with a quick-connect swedge oxygen fitting for 0.25" polyflow tubing.

iSOC[™] has a lifting ring for connecting to a suspension line for insertion in 2" or larger monitoring **wells**.

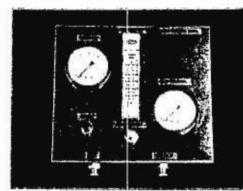
iSOC's[™] stainless steel case and polymer mass transfer device have a very high tolerance to most pure gas & contaminant environments

iSOC™ Advantages

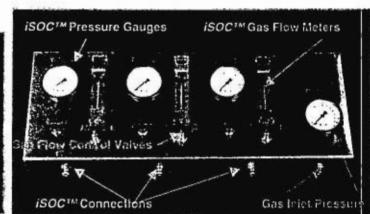
ISOC™ infuses 4 to 10 times more DO than any competitive technology

B iSOC™ delivers 40 to 200 PPM DO depending iSOC™ depth

B iSOC™ uses existing 2-inch monitoring wells used for installation


ISOCTM is not bothered by iron or other oxygen sinks

E iSOC[™] connects to standard oxygen cylinder using the iSOC[™] Control Panel


B iSOC[™] requires no power requirements, off-gases, pumps, hazardous by-products, or permits

/SOC™ Unit

Det iSOC™ is small, simple, efficient, predictable, easy to use, & very low in maintenance

iSOC™ 1-Unit Control Panel

ISOC™ 3-Unit Control Panel

The iSOC[™] Control Panel

B iSOC™ control panel comes in 1-unit and 3-unit models to control a single or three iSOCs™ B Panel is constructed of high quality SS304 stainless steel for use in most conditions or contaminant environments

High quality gas compatible pressure gauges indicate the gas pressures in both PSI and BAR

Cxygen cleaned components are used throughout and completely pressured tested prior to leaving manufacturing facilities

A unique flow control mechanism is utilized to accurately control flows and allow the iSOCs™ to be placed at different depths in the groundwater

P Quick-connect fittings allow the ISOC™ and the ISOC™ Control Panel to be connected by polyflow tubing in seconds

1-unit Control Panel is 3"X9"X8" and weighs 3 lbs.

3-unit Control Panel is 3"X21"X8" and weighs 8 lbs.

E Each Control Panel is shipped in a specially designed box for protection, and to arrive ready for quick connection.

Why use the iSOC™ Control Panel?

Design based on actual installation and operation experience of remediation contractors

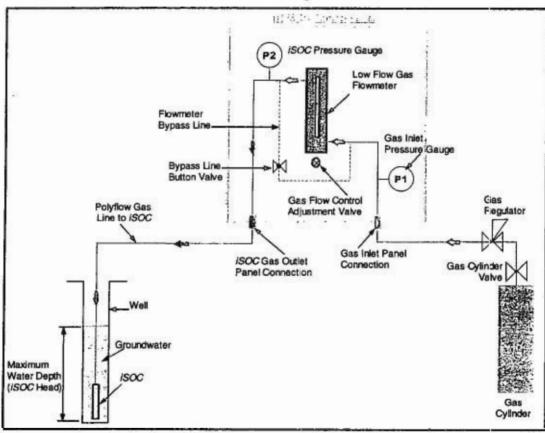
P Specially designed components eliminate typical system installation, start up and operation problems, provided iSOC™ User Guide instructions followed

High quality construction

Pressure tested from the manufacturer

Uses only oxygen cleaned components

All gas compatible components


Allows the iSOC™ to be hung at different depths in the groundwater while maintaining proper control of all units

E Costs less time and money than it takes to source, assemble and pressure test oxygen cleaned and gas compatible components

Allows for rapid installation and easy operation of the iSOCsTM

Provide the isoc™ when isoc™ and the isoc™ when isoc™ and the isoc™ control Panel are used together

What does an *iSOC™* System Look Like?

iSOC™ Equipment Setup Schematic

How much does iSOC™ and the Control Panel Cost?

The $iSOC^{TM}$ groundwater remediation technology is the **leading** and **most cost effective** solution in the marketplace today. Some state trust funds will not reimburse a capital purchase but will reimburse a rental charge plus consultant's installation and operation costs – $iSOCs^{TM}$ are available to rent for these situations.

Please contact your area representative for prices - they are listed in-

www.gasinfusion.com

Treatment Technology/

Oxygen Revisited

by Evan K. Nyer, J. Scott Davis, and Isabel King

In 1987, one of the most advanced in situ technologies for remediation of sites was oxygen. I remember representatives of FMC Corp. wandering around one of the early conferences on remediation and hawking hydrogen peroxide. They had high hopes that environmental applications were going to be the next big use of H_2O_2 . At that time, it was believed that in situ bacteria required O_2 to degrade petroleum hydrocarbons.

Of course, we all now know that it is the other, naturally occurring, electron acceptors that are responsible for the majority of the biochemical destruction of petroleum hydrocarbons. Every consultant worth his or her salt recommends a monitored natural attenuation (MNA) remediation strategy. MNA relies on the natural presence of alternate final electron acceptors to accomplish the remediation.

A funny thing has happened during the last couple of years. The importance of O_2 is making a comeback. It looks like a couple of compounds degrade only with bacteria that require O_2 . Bacteria that require O_2 for their final electron acceptor are referred to as "obligate aerobic bacteria." For some reason, these bacteria are not able to use nitrate, sulfate, iron, manganese, or CO_2 as part of their enzyme systems. On the other hand, these bacteria are able to degrade some important contaminants.

The strongest evidence for obligate aerobic degradation seems to exist for methyl tert butyl ether (MTBE) and long-chain alkanes (the type of hydrocarbons found in diesel, fuel, oil, and other low-end distillates). Several projects have found that when they add O_2 to sites that contain these compounds, they have had success in destroying them. Laboratory work has confirmed the ability of several obligate aerobes for these types of biodegradation.

All of this means that O_2 is back. It has been a long time for many of us since we designed an oxygen delivery system. I thought that it would be a good idea to review the different methods for in situ delivery of O_2 . While we are at it, we might as well discuss some economics. There have also been some new technologies introduced during the last 15 years, and we will include some of those. I have asked two engineers from our Tampa office to assist me with this article, Scott Davis and Isabel King.

Case Study

To provide a baseline for our discussion in applying the various O2 delivery techniques and comparing the economics, we must first develop a case study of a typical application site. Of course, we will pick a site within three hours of our office in sunny Daytona Beach, Florida. As shown in Figure 1, our study site is an existing retail gasoline service station where a release of diesel fuel occurred many years ago beneath a former fuel dispenser island. The release was not detected throughout the operation of these fuel dispensers until more than 10 years had passed, which has resulted in both adsorbedphase and dissolved-phase impacts. Freephase petroleum product has not been detected at the site.

The aquifer at the site comprises primarily medium- to fine-grained quartz sand with shell fragments increasing with depth. The depth to water at the site historically ranged from 5 to 6 feet below land surface (bls). However, a

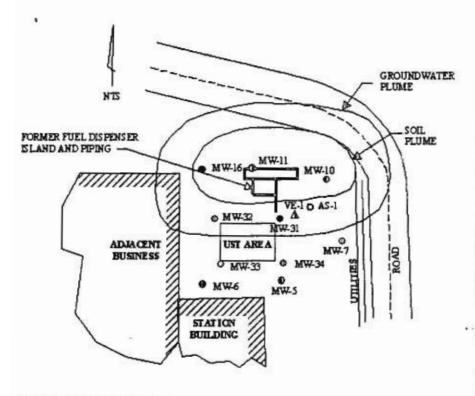


Figure 1. Case study site layout.

steady drought over the last two years has resulted in a depressed water table currently at a depth of 7 to 9 feet bls creating a 4-foot smear zone. Owing to the close proximity of the Atlantic Ocean and fresh water supply from tidal surges, the dissolved oxygen (D.O.) present in the ground water at the study site is naturally higher than inland Florida ground water with an average concentration of 3 mg/L. However, a biogeochemical evaluation conducted at the site showed that the D.O. was reduced to less than 1 mg/L within the dissolved hydrocarbon plume.

Because the origin of the release was the diesel fuel dispenser, the primary constituents of concern in the soil and ground water are the semivolatile polynuclear aromatic hydrocarbons (PAHs) and long-chain alkanes. These impacts are limited to the immediate vicinity of the former fuel dispenser island and extend vertically from 5 to 9 feet bls. For our study site, approximately 95% of the mass is adsorbed to the soils within the ground water fluctuation zone. Only 5% of the mass is in the dissolved phase because of the limited solubility of the PAHs and longchain alkanes. This results in 143 pounds of petroleum hydrocarbons adsorbed to the soil, and only 7 pounds are dissolved in the ground water.

Rationale for Oxygen Enhancements

As described previously, a dissolved hydrocarbon plume has been present at the site for more than 10 years. Although there are elevated concentrations of D.O. in the site ground water, the levels have been reduced to below 1 mg/L within the plume. At these reduced D.O. levels, the degradation pathways in an aqueous environment are susceptible to switching from aerobic to anaerobic. We all know that this results in much slower degradation rates, especially for the long-chain alkanes and high molecular weight PAH constituents, and that is the reason these constituents are still persistent in the ground water at the study site after abating the source of contamination many years ago.

One cost-effective alternative to remediate this site is to enhance the natural degradation processes by adding oxygen to switch the metabolic pathway from anaerobic conditions back to aerobic conditions. To design an effective, enhanced aerobic environment, we have already conducted a biogeochemical evaluation necessary to observe the ground water conditions both within and outside of the dissolved hydrocarbon plume. From this information, we can determine the mass of O_2 present in the

ground water for comparison to the amount of O2 required for degradation of the petroleum mass present. As discussed in many references and including my latest textbook, the second edition of In Situ Treatment Technology, the ratio of O2 required to completely degrade petroleum hydrocarbons is approximately 3:1 on a mass basis. Based on the mass of the adsorbed and dissolved-phase hydrocarbons detected at the study site, we will need to deliver a total of 450 pounds of O2 to aerobically degrade the diesel fuel constituents. This O2 requirement is far greater than the amount of oxygen present naturally in the ground water, and therefore oxygen enhancements are warranted.

Oxygen Delivery Methods

When thinking of oxygen delivery techniques, I like to classify the O2 delivery methods into three categories: Classics, Neo Classics, and New Stuff. The Classics include technologies such as air sparging, vacuum extraction system (VES), and vacuum enhanced recovery (VER), where mechanical equipment is used to deliver atmospheric oxygen to the subsurface. Although we might view the primary removal mechanism as volatilization, these technologies also provide a viable O2 source for aerobic degradation of less volatile compounds. The Neo Classics include technologies whereby chemicals such as hydrogen peroxide (H2O2) and oxygen-releasing materials (ORMs) are introduced into the subsurface to generate O2 upon contact with the ground water and soil moisture. Finally, I like to think of the New Stuff as the latest and greatest techniques in pure O2 delivery. These techniques can include but are not limited to pure O2 sparging, gas diffusion technologies, and electrolytic O2 generation processes. We will discuss the details of applying these technologies to the study site and later compare the per-pound cost of delivering O2.

Classics

Air sparging

This technology involves the injection of atmospheric oxygen into the subsurface using an injection well and an air compressor. Because the petroleum constituents of concern are semivolatiles

Ground Water Monitoring & Remediation 22, no. 3/ Summer 2002 45

and long-chain alkanes, the petroleum mass will be removed primarily through aerobic degradation processes and not volatilization. Therefore, this remedial strategy is commonly referred to as biosparging. The limited volatility of the contaminants at the site also precludes the need for a vacuum extraction system for recovery of sparged vapors, thus reducing costs. We must remember that air contains only approximately 21% oxygen, compared to the pure O2 delivery methods. Another limitation of air-phase delivery of O₂ into aqueous environments is that the oxygen-transfer efficiency is at most 2% (Kuo 1999). The remainder of the unused O, migrates to the unsaturated zone where it is available for use in aerobic degradation of the adsorbed-phase contaminants. In addition, O2 has a low solubility in water and the oxygen saturation is limited to roughly 8 mg/L when ground water is completely saturated with air (Nyer 2001). Some aquifer conditions exist in which the oxygen demand of the aquifer is far greater than the mass of atmospheric oxygen that can be delivered. Under these conditions, the D.O. can rapidly decrease downgradient of the injection point.

Implementation of biosparging would entail installation of six sparge wells to a depth of 20 feet bls, approximately 2 feet below the vertical extent of the dissolved-phase impacts. Biosparging typically entails injection rates of 3 to 5 cfm per injection well cr a total of 30 scfm for the study site. Based on the depth of the sparge wells and injection airflow rates, a 15-foot radius of influence is anticipated. Considering the saturated O, transfer efficiency of 2%, approximately 2.4 lbs/day of O2 will be delivered to the dissolved-phase and adsorbed phase hydrocarbons located beneath the water table. The remaining 98% of the O2 mass used in the vadose zone will provide oxygen to the adsorbed-phase contaminants in the unsaturated zone.

Vacuum Extraction Systems

VES can be used to introduce atmospheric oxygen to the subsurface by applying a vacuum to a well screened within the unsaturated soils. The induced vacuum will move air into the impacted zone, thus providing a source of O_2 for aerobic degradation. Similar to air sparg-

ing, atmospheric oxygen is delivered to the subsurface but under a vacuum using VES, and the amount of O₂ in air is also limited to 21%. The limitation of using only this technology for addressing both the soil and ground water is the O2 can be applied to the entire unsaturated zone, but only a blanket of oxygenated air can be applied to the top or surface of the impacted ground water. For the study site and similar conditions, VES would generally have to be used in conjunction with one of the ground water O, delivery methods listed later to be cost effective. However, removal of a majority of the mass from the unsaturated zone would prevent the continued leaching of contaminants, thus improving the overall condition of the ground water. Although each site will be different, we will assume a 2% transfer efficiency as we did for air sparging, because the natural bacteria reside in the soil moisture and the O₂ must transfer into the liquid phase for utilization.

To implement VES at the study site, a pilot test showed that applying a vacuum to the subsurface resulted in a 20foot radius of influence and a subsurface airflow rate of 30 cubic feet per minute (cfm) per well. Three vertical vacuum extraction wells will be required to provide coverage of the area of the diesel fuel-impacted soil at a total flow rate of 90 cfm. Because the site is paved with very few pervious areas, installation of passive vents to the surface is recommended to ensure that a fresh supply of atmospheric O2 is available. Based on this observed airflow rate, 21% O2 in air and taking into consideration the oxygen-transfer efficiency, approximately 43.3 lbs/day of O2 will be swept through the vadose zone and transferred to the soil moisture for use in the biodegradation process.

Vacuum Enhanced Recovery

VER operates on the same principle as VES; however, the applied vacuum will be used to address both the unsaturated and saturated zones. For this strategy, recovery wells will be installed to a depth of 18 feet bls, which is the maximum depth of the dissolved-phase, diesel-fuel impacts. The recovery wells will be set up so that a drop tube is deployed to a depth of approximately 12 feet bls such that the saturated zone can be dewatered below 9 feet bls, where a majority of the adsorbed-phase hydrocarbons remain. This will allow delivery of atmospheric oxygen to the adsorbedphase impacts for aerobic degradation.

Implementation of VER at the site would require installation of four recovery wells and a portable VER system comprising a vacuum pump, air-water separator, liquid-phase carbon for ground water treatment, and vapor-phase carbon treatment for the first 30 days of system operation for air-emissions treatment (Florida requirement). Because of the permeable sandy soils at the site, a positive displacement blower or rotary vane vacuum pump can be used instead of a liquid ring pump owing to the lower vacuum requirements. Based on the fineto medium-grained sand aquifer, an airflow rate of up to 80 cfm is anticipated for this system with ground water being removed at a flow rate of up to 12 gpm for dewatering. While some petroleum mass will be recovered in the extracted ground water, more than 95% of the mass will be removed by the O2 delivery and aerobic degradation process. Therefore, the dissolved-phase mass will be negligible compared to the adsorbedphase mass. Based on the anticipated airflow rate, 21% O2 in air and oxygentransfer efficiency, approximately 38.5 lbs/day of O2 will be delivered to the area of adsorbed-phase impacts.

Neo Classics

Oxygen Release Materials

ORM compounds such as ORC® (Regenesis Bioremediation Products, magnesium peroxide) and PermeOx® (FMC Corp., calcium peroxide) are mild oxidants that hydrolyze into molecular oxygen when saturated with water. These compounds are manufactured in a solid form (powder and granular); they are mixed with water and injected into the subsurface in a slurry form for in situ treatment applications. These compounds are typically injected into boreholes and wells by gravity or injected under pressure using a direct-push probing rig and high-pressure pump. The advantage of using these compounds is that they hydrolyze slowly and reportedly release O2 over a period ranging from 100 to 200 days, according to the manufacturers. ORMs can increase the D.O. levels in ground water up to five times greater than using atmospheric

air. Although not specified by the manufacturer, ORMs do not have a 100% transfer efficiency. Because the ORMs release oxygen slowly and form minimal bubbles, an O2 transfer efficiency ranging from 25% to 50% is anticipated depending on the site conditions. Therefore, we will assume a 35% transfer efficiency for our case study. The delivery of the O₂ downgradient of the injection point is dependent upon the natural ground water velocity. Therefore, O2 delivery using these products may be limited to the immediate vicinity of the injection point at sites with minimal ground water gradients. The use of these compounds for treatment of unsaturated soil is limited to ex situ mixing or application to the backfill of an open excavation. Sites with both soil and ground water contamination where site conditions prohibit excavation may need to use another treatment option for addressing the vadose zone contamination.

Application of these compounds at the study site to the diesel-fuel impacts beneath the water table will require approximately 4500 pounds of material to release 450 pounds of O₂ into the ground water. With an assumed transfer efficiency of 35%, a total of 12,850 lbs of ORM will be required to transfer 450 lbs of O2 into the ground water. The solid material will be mixed with water such that a 30% solution is produced allowing direct injection into the aquifer using a direct-push probing rig and highpressure pump. The material will extend from the top of the smear zone impacts at 5 feet bls to a maximum vertical depth of the dissolved-phase contamination at 18 feet bls. Based on the ground water velocity observed at the site, 30 injection points installed in a grid pattern will be required to deliver the O2 to the entire impacted aquifer. The manufacturer's data indicates that ORMs release oxygen slowly over a three to seven month period depending on the site conditions. Based on the calculated mass of O2 required, a total of three injections will be needed in one year to deliver the required quantity of O2 to aerobically degrade the entire petroleum mass.

Hydrogen Peroxide (H₂O₂)

Most of the recent applications of H_2O_2 involve the use of concentrated solutions (up to 20%) to aggressively

oxidize organic contaminants. Because of the high reactivity and safety concerns associated with this application, these techniques cannot be used at operating sites. However, diluted H₂O₂ is a good source for deliverying oxygen for enhanced aerobic degradation. For such applications, a peroxide concentration ranging from 500 to 1000 mg/L can be safely used as an O₂ source while minimizing the dangerous subsurface reactions. The H₂O₂ can be delivered directly into the ground water using injection wells, or it can be allowed to infiltrate through the vadose and smear zones into the ground water using horizontal trenches. The transfer efficiency for diluted H2O2 is generally greater than atmospheric air but will be limited to a range of 20% to 50% because of the formation of bubbles and the fast release of the oxygen. In addition, the masstransfer efficiency of H2O, increases as the concentration of the solution decreases because of less bubble formation. For a 0.1% H2O2 solution, we will assume an oxygen-transfer efficiency of 35% for this case study.

Because of the presence of adsorbedphase impacts within the ground water fluctuation zone, three horizontal trenches will be installed at 4 feet bls for application of the H2O2 through the smear zone and into the water table. A 50% peroxide solution will be diluted with sufficient water to create a 1000 mg/L or 0.1% peroxide solution. The total amount of liquid per injection event will be limited to 2% of the impacted ground water volume or approximately 3435 gallons of water. This volume can be injected while minimizing concerns for migration of the dissolved hydrocarbon plume but still providing sufficient volume to flood the adsorbed-phase impacts above the water table. Based on the solution volume and 35% transfer efficiency, only 5 pounds of O, will be injected during each event. This will result in a need for injections on a weekly basis for approximately two years; therefore, an automated injection system is warranted to reduce the cost of weekly labor requirements.

New Stuff

Pure O₂ Sparging

Pure O2 sparging is similar in design to sparging with atmospheric oxygen except for some slight differences. A compressor is used in combination with a pressure swing adsorption (PSA) O2 generator as the oxygen source (Zamsojski 1999). The pure O2 is injected into the subsurface at much lower injection rates in the range of 3 to 10 cubic feet per hour (cfh), compared to the higher injection rates of 3 to 5 cfm for biosparging. The O2 injections are pulsed to allow the generator sufficient time to produce oxygen. The injection cycling and lower injection rates are practical due to the higher (90% to 95%) O2 concentrations than the 21% O2 in atmospheric air. Because lower injection flow rates are used, the production of bubbles is minimized. Between the higher O2 and the smaller bubbles, an oxygentransfer efficiency of 20% will be assumed. A limitation in using the lower flow rate O₂ sparging is that the radius of influence is usually less because of decreased flow and injection pressures. The ground water flow velocity plays a greater role in the clelivery and success of this method.

Because of the lower injection flow rates and diffusion-controlled delivery of O, sparging, a greater number of closely spaced injection wells will be required. For this site, 12 sparge wells installed with a 20-foot spacing should provide adequate delivery and coverage of the plume area. The clesign O2 injection flow rate per sparge well of 5 cfh and a cycle time of 10 minutes on and 50 minutes off is the anticipated operating frequency for each well. Considering the higher saturated O2 transfer efficiency of the 95% O2 air stream and low injection rates, only 0.3 lb/day of O2 will be delivered to the dissolved-phase and adsorbed-phase hydrocarbons beneath the water table because of the lower injection flow rates and required system cycling.

O, Diffusion

A new technique for delivering pure O_2 into the ground water is gas diffusion. One such technique is the Gas inFusion[®] technology referred to as in situ submerged oxygen curtain (iSOC[®])

Ground Water Monitoring & Remediation 22, no. 3/ Summer 2002 47

developed by inVentures Technology Inc. This technology supersaturates the ground water with low decay D.O. at concentrations ranging from 40 to 200 ppm depending on the aquifer conditions and depth of injection. This pure O2 delivery method eliminates the requirement for mechanical equipment such as air compressors and O2 generators, thus reducing capital and operating expenses. An in-well diffuser comprising a large surface area of microporous, aollow fibers allows increased mass transfer of O2 to the ground water without the creation of air bubbles and minimizing the loss of O2 to the vadose zone. Therefore, oxygen-transfer efficiency will approach 100% and complete transfer will be assumed for this evaluation.

The oxygen source is an O2 canister connected to the in-well diffuser using small diameter poly-tubing. The advantage of the smaller diameter tubing is that it can be easily installed without the need for large subsurface trenches. The O, flow rate can be controlled by a rotometer at each wellhead. Typical injection rates are in the cubic centimeter per minute range (cc/min) and the manufacturer reports that up to 64 pounds of oxygen can be delivered over a five-month period using a three-well system. Delivery of the O2 downgradient of the diffusion well is dependent on ground water velocity and the oxygen demand of the aquifer. The radius of influence is reported as ranging from 10 to 32 feet from the injection point.

Similar to O, sparging, the horizontal velocity of the ground water will be the basis for selecting the number and spacing of the O2 diffusion wells. Twelve wells installed at a spacing of 20 feet will be required to provide adequate coverage of the impacted area. This should allow adequate delivery of the O2 and creation of a radius of influence between the injection points. For a 12-well system and considering a 100% transfer efficiency, approximately 1.7 lbs/day of O2 will be transferred to the aqueous phase. The volume of the O2 cylinder will be sized such that a replacement can be installed conveniently during normal site visits.

O, Electrolytic Generation

Another new technique in generating O₂ is using electrolysis to dissociate water into hydrogen and oxygen within

a well. One such technology is Iso-Gen[®] developed by Environmental H2O LLC. This technology generates O2enriched ground water using a downwell unit comprising a circulation pump, electrolytic cell, diffuser tube, and AC voltage regulator/transformer. The circulation pump is placed at the base of the well to uptake water. The water is pumped past the electrolytic cell where the oxygen and hydrogen are dissociated from the water. The O2-enriched water is discharged back into the aquifer through well screens at the upper portion of the well. The hydrogen gas is released to the atmosphere through the well casing. The electrolytic cell operates approximately 10 minutes on and 40 minutes off, and the circulation pump run cycle is approximately 15 minutes on and 35 minutes off to allow for adequate O2 generation. The manufacturer's data reports generation of D.O. concentrations up to 20 mg/L in ground water and a radius of influence of up to 30 feet from the well. The influence area will be affected by the varying aquifer conditions (oxygen demand, velocity, etc.).

Again, the diffusion controlled delivery and ground water velocity will also be the basis for selecting the number and spacing of the O2 generation wells. However, the in-well circulation capabilities will increase the area of distribution of the oxygen. Based on these considerations, only nine circulation wells would be required to provide adequate coverage of the contaminant source area. However, the manufacturer's data indicates that the delivery capabilities are limited to approximately 0.4 lb/month per well. Because of the low oxygen generation and delivery rates for this technology, additional injection wells will be installed to increase the oxygen supply and to accommodate the 450 pounds of O2 required and to complete the degradation process. A total of 15 injection wells will be installed resulting in a total delivery of 72 lbs/year of O2.

Economic Analysis of Oxygen Delivery

Table 1 is a cost evaluation of the O_2 delivery methods discussed above. The cost evaluation provides the total cost per pound of O_2 delivered, which includes the periodic performance monitoring and equipment maintenance (if required) over a one-year period. We have ranked each site beginning with the least costly delivery method. If you are a vendor of a specific technology, please don't get mad at us if you are not pleased with this ranking. This cost estimate was developed based on our case study site and our stated assumptions.

Based on our case study site, which had a significant adsorbed mass remaining within the ground water fluctuation zone, we have found that mechanical systems can deliver significantly more O₂ than injection or passive delivery techniques over a one-year period. This should not be a surprise to anyone because we all know that we can more efficiently move more pore volumes of air than liquid. Therefore, once we overcome the initial capital expenses of VES, VER, and air sparging, the O2 delivery costs continue to decrease the longer we operate these systems. The O2 diffusion technology was the next most cost-effective method because of the ability to release oxygen slowly at the maximum oxygen-transfer efficiency and relatively low capital and operating expenses. Diluted peroxide was not as cost effective because of its inability to release the O2 slowly and its limited transfer efficiency. The cost of the ORMs and number of required injections resulted in higher costs for this method. The low generation rates and limited area of influence rendered pure O2 sparging and electrolytic O2 generation the highest cost alternatives.

Now let's revisit our cost evaluation and re-rank our technologies based on the cost of 450 pounds of O2 required for the degradation of the existing petroleum mass. We have also included the approximate time for each technology to achieve the oxygen requirement assuming that the oxygen uptake rate (OUR) will be equivalent to the O2 delivery rate. For VES and VER, where it will take less than two weeks to deliver the entire amount of oxygen required, it would not be practical to assume an operation time of less than three months for these systems. These costs are presented in Table 2.

Table 2 shows that VES, air sparging, and VER still retain their top rankings for the case study site; however, the margin in cost between most of these technologies has decreased to within the same order of magnitude. The primary reason is that mechanical systems have higher initial capital and operating expenses than the other technologies, and a majority of the O₂ generated is wasted because the delivery rate far exceeds the OUR of the microbes. The O2 diffusion cost was 50% more than the mechanical air-phase delivery methods. This is a result of the high-transfer efficiency and relatively low capital and operating costs. The other O2 generation and delivery methods are more costly because the oxygen is being produced at slower rates than mechanical means and delivered beyond the injection point by slower advective and diffusion transport processes.

This case study was skewed toward large quantities of oxygen delivery. Would I ever want to use any of the passive, pure O_2 delivery methods? These passive techniques would be ideal for sites where polishing off a dilute dissolved-phase hydrocarbon plume is needed or any other time the total mass of the project is low and located mainly in the aquifer.

0 Q

The Last Problems

We have two final problems. First, it is relatively easy to determine the amount of mass in the dissolved-phase contamination from the large well network and the data that is normally collected at a site. However, it is very difficult to accurately estimate the adsorbed-phase mass using the soil sampling and analytical methods. Typically, we do not collect enough soil data. Petroleum mass is difficult to estimate using field screening meters with correlation to only a few confirmatory laboratory samples. We verify this when we estimate only 200 gallons of fuel was released but our vapor-phase emissions on our vacuum systems show that we have recovered hundreds of pounds per day of petroleum mass.

Our analysis shows that there is a good dichotomy between low oxygen demand situations and high oxygen demand situations. The problem is to determine which situation exists at your site. Don't worry; it is only hundreds of thousands of dollars of your client's money and your career on the line.

The second problem occurs only if you are lazy (stupid) enough to directly

Table 1 Cost Evaluation of Oxygen Delivered in One Year					
Technology	Pounds O ₂ Delivered for 1 Year	Total Cost for 1 Year	Cost per Pound of O ₂ Delivered		
Vacuum extraction	15,812	\$98,300	S 6		
Vacuum enhanced recovery	14,056	\$145,590	\$10		
Air sparging	878	\$93,200	\$106		
O2 diffusion	619	\$119,900	\$194		
Dilute H2O2 solutions	246	\$104,843	\$426		
Oxygen-releasing materials	421	\$205,255	\$487		
Pure O2 injection	114	\$150,550	\$1326		
Electrolytic O2 generation	72	\$113,740	\$1580		

Table 2 Cost Evaluation of 450 Pounds of Oxygen Used						
Technology	Pounds O ₂ Used for Degradation	Total Cost for Delivering 450 Pounds O ₂	Time to Deliver 450 Pounda O ₂	Cost per Pound of O; Used		
Vacuum extraction	450	\$63,500	10 days	\$141		
Air sparging	450	\$73,500	187 days	\$163		
Vacuum enhanced recovery	450	\$93,460	12 days	\$208		
O ₂ diffusion	450	\$119,050	265 days	\$265		
Electrolytic O2 generation	450	\$159,550	6.25 years	\$355		
Dilute H2O2 solutions	450	\$160,468	1.8 years	\$357		
Oxygen-releasing materials	450	\$210,010	1 year	\$467		
Pure O2 injection	450	\$242,050	4 years	\$538		
+				Aleger (S.S.		

use the values that we have presented in Tables 1 and 2. Every situation is unique. Do your own d— cost estimates.

References

- Kuo, J. 1999. Practical Design Calculations for Groundwater and Soil Remediation. Boca Raton, Florida: CRC Press LLC.
- Nyer, E. 2001. In Situ Treatment Technology, 2nd ed. Boca Raton, Florida: CRC Press LLC.
- Zamojski, L.D., J.R. Stachowski, and S.R. Carter. 1999. A case history of enhanced bioremediation utilizing pure oxygen injection. In In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds, vol. 5, no. 3. Columbus, Ohio: Battelle Press.

Biographical Sketches

J. Scott Davis, P.E., is a senior engineer with the ARCADIS Tampa, Florida, office, where he is the project manager and lead engineer for the assessment and remediation of chemically impacted sites in Florida. He has 10 years of experience in the design and implementation of soil and ground water strategies using both traditional and innovative technologies. He has a B.S. in civil engineering and an M.S. in environmental engineering from the University of South Florida.

Isabel King is an engineer with the ARCADIS Tampa, Florida, office, where she is involved in the design and implementation of soil and ground water remediation strategies, including air sparging, vacuum extraction, vacuumenhanced recovery, and enhanced biodegradation. She has a B.S. in chemical engineering from the University of South Florida.

Evan K. Nyer is a senior vice president with ARCADIS, where he is responsible for maintaining and expanding the company's technical expertise in geology/ hydrogeology, engintering, modeling, risk assessment, and bioremediation.

APPENDIX E

1

Brown and Caldwell Focused Area 5 Feasibility Study

Remedial Action Plan Addendum Former Malden MGP Site Parcel B Malden, Massachusetts

ì

7

-

L

June 2003

REMEDIAL ACTION PLAN ADDENDUM FORMER MALDEN MGP SITE PARCEL B MALDEN, MASSACHUSETTS

Prepared for:

Massachusetts Electric Company, A Subsidiary of National Grid USA 55 Bearfoot Road Northborough, Massachusetts 01532

Prepared by

Brown and Caldwell 110 Commerce Drive Allendale, New Jersey 07401

June 2003

23728.003

ř.

TABLE OF CONTENTS

I

.....

-		*
Pag	e D	NO.
1.95	N A	NO.

1.0	INTRODUCTION1-1					
2.0	REM	IEDIAI	ACTION OBJECTIVES	2-1		
	2.1		Media, and Constituents of Concern			
	2.2	Risk C	Characterization Summary	2-1		
	2.3	Reme	dial Action Objectives	2-3		
3.0	TRE	ATMEN	CATION, INITIAL SCREENING OF REMEDIAL ACTION NT TECHNOLOGIES, AND DEVELOPMENT OF REMEDIAL LTERNATIVES			
	3.1	Identi	fication and Screening of Technologies	3 1		
	3.2		dial Technologies			
	3.3					
	3.4		Screening of Groundwater Treatment Technologies			
	3.4	Devel	opment of Remedial Action Alternatives			
		3.4.1	No Further Action (Alt-1)			
		3.4.2	Air Sparging with Soil Vapor Extraction (Alt-2)			
		3.4.3	Biosparging with Soil Vapor Extraction (Alt-3)			
		3.4.4	Chemical Oxidation Using Ozone with SVE (Alt-4)			
		3.4.5	Soil Vapor Extraction			
4.0	DET	AILED	EVALUATION OF REMEDIAL ACTION ALTERNATIVES	4-1		
	4.1	Effect	iveness	4-3		
	4.2		jility			
	4.3		ulty in Implementation			
	4.4					
	4.5	Risks				
	4.6		its			
	4.7		iness			
	4.8		Pecumiary Interests			
5.0	SEL	ECTIO	N OF A REMEDIAL ACTION ALTERNATIVE	5-1		
	5.1	Com	parison of Alternatives			
	5.2		bility of Implementing a Permanent Solution			
	5.3		bility of Achieving or Approaching Background			
	5.4	Feasil	bility of Reducing Concentrations in Soil to Below UCLs			
	5.5	Select	tion of Alternatives			

TABLE OF CONTENTS (CONTINUED)

1

Page No.

	PRELIMINA ACTIVITIES	RY SCHEDULE FOR IMPLEMENTATION OF PHASE IV6-	1
REFI	ERENCES		1

LIST OF TABLES

.

1

Table No.	Title	Follows Section No.
3-1	Screening of Remedial Technologies for Groundwater Remediation	3
4-1	Remedial Action Alternative Evaluation	4
4-2	Alternative 1: No Further Action Cost Estimate	4
4-3	Alternative 2: Air Sparging with SVE Cost Estimate	4
4-4	Alternative 3: Biosparging with SVE Cost Estimate	4
4-5	Alternative 4: Chemical Oxidation with SVE Cost Estimate	4

LIST OF FIGURES

Figure No.	Title	Follows Section No.
1-1	Disposal Site Boundary	1
3-1	Horizontal Well Installation Layout	3
3-2	Approximate Relative Position of Horizontal Wells	3

iii P:\^J\23728\Focused Feasibility Stud₇\RAP061903(rem_act_pln_addendm).DOC 7/1/2003

•

1.0 INTRODUCTION

This Phase III Remedial Action Plan (RAP) Focused Evaluation Addendum has been prepared by Brown and Caldwell for the Former Malden Manufactured Gas Plant (MGP) Site (the Site) in Malden, Massachusetts. The former MGP site includes approximately 16.4 acres located in an urban area, consisting of five different parcels with eight different property owners. The former holdings occupy land currently referred to as Parcels A, B, C, D, and E. (A site map including the parcel designations is included as Figure 1-1.)

This RAP addresses Parcel B (129 Commercial Street), and specifically focuses on the evaluation remedial alternatives to address the issues related to exposures to indoor air and soil vapors inside the building. (Additional discussion of the Risk Characterization results is included in Section 2.) This Focused Evaluation is intended to be submitted as an addendum to the RAP for the entire site.

This Focused Evaluation RAP was prepared in accordance with the requirements of the MCP (310 CMR 40.0353), the performance standards for a Phase III evaluation. The MCP states that "a Phase III evaluation shall result in the identification of remedial action alternatives which are reasonable likely to achieve a level of No Significant Risk considering the oil and hazardous material present, media contaminated, and site characteristics, and, the recommendation of a remedial action alternative that is a Permanent or Temporary Solution, where a Permanent Solution includes measures that reduce, to the extent feasible, the concentration of oil and hazardous material in the environment to levels that achieve or approach background."

Site History and Background

The site was the location of a manufactured gas plant from 1855 to the 1970s. The types of manufacturing processes conducted at the former Malden MGP site included coal gasification (sometimes referred to as coal carbonization) (1855 to 1907), carbureted water gasification (1907 to 1954) and oil gasification (1954 to the 1970's). The process operations that were conducted on Parcel B included gas purification.

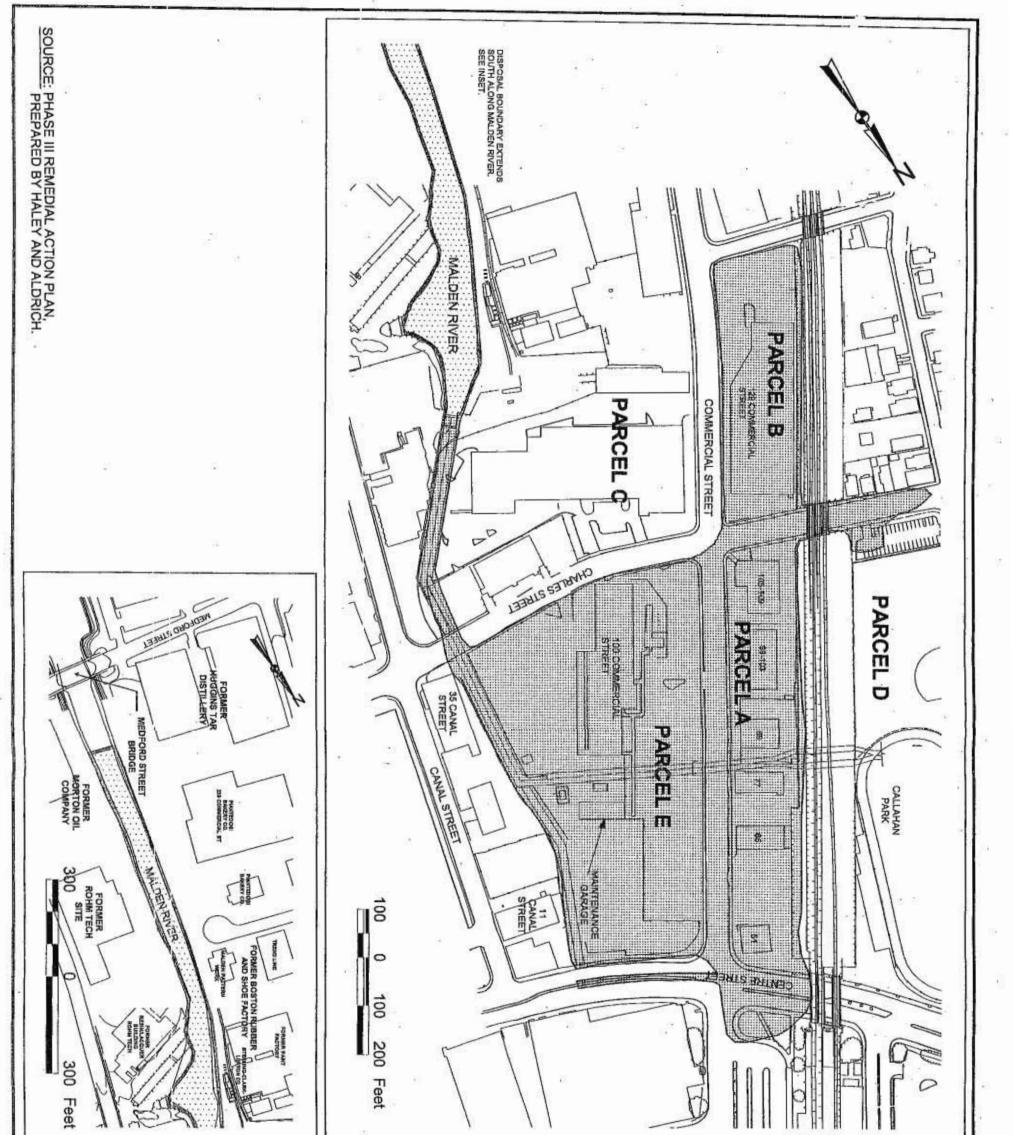
1-1

From results of the site investigation, benzene, toluene, ethylbenzene, xylenes, styrene, naphthalene (BTEXSN) and cyanide were the primary constituents of concern (COCs) found in the soil and groundwater at Parcel B. Specifically, in the soil, BTEXSN were found at levels approximately half of the UCL concentration at a depth that is coincident with groundwater (approximately 8 to 10 feet below grade surface). In the groundwater, BTEXSN concentrations were also detected (with toluene and benzene above UCL concentrations) at three locations beneath the building.

The impacted media on Parcel B include soil, groundwater and air, with the most significant impacts to groundwater and air. The presence of COC's in the soil most likely is a result of historical manufacturing operations at the Parcel B. The contamination of the groundwater is likely the result of the dissolution of COC's from the impacted soil beneath the building. Indoor impacts appear to result from volatilization of contaminants from impacted groundwater. Sampling of the indoor air at the facility located at the property detected elevated concentrations of benzene, toluene, naphthalene and styrene. The concentrations did not exceed the applicable occupational standards set by the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH).

The Phase II Report does not confirm an area of concentrated contamination of the COCs in groundwater and air. Additional site investigation activities were conducted in July 2002 in an attempt to locate an area of concentrated contamination. Geophysical procedures were considered, but deemed ineffective due to the building being located directly over the suspected location(s) of elevated concentrations. Soil samples were collected at locations corresponding to the drip tanks based on historical maps. The results of the soil sample analyses did not confirm the location of a source area, however, stained soils and elevated contaminant concentrations were detected at or near the observed groundwater table elevation. The apparent pattern of dissolved phase BTEX is consistent with an area of elevated contamination located beneath the footprint of the existing building. The Phase III Report includes a risk characterization that was prepared in accordance with the requirements of the Massachusetts Contingency Plan (MCP) Method 3 Risk Characterization (31:) CMR 40.0901 through 40.0999) and the MADEP's *Guidance for Disposal Site Risk Characterization – In Support of the Massachusetts Contingency Plan* (MADEP, 1995). The original human health risk characterization concluded that a Condition of No Significant Risk for the indoor air inhalation pathway at Parcel B was not demonstrated. The Risk Characterization was revised to incorporate additional data obtained after the completion of the original Risk Characterization. The revised Risk Characterization, based on indoor air data collected between September 1999 and October 2002, demonstrated a condition of No Significant Risk to the current commercial worker via the indoor air pathway. This change is likely due to the slightly lower VOC concentrations that have been observed during recent indoor air sampling events inside the facility undertaken as part of an ongoing RAM.

Release Abatement Measures were instituted to address indoor air quality. An attempt was made to seal the floors in the packaging room area of the facility to reduce BTEX migration into the building. However, this procedure was not successful and in 1999, an active subslab venting system was installed to create a negative pressure gradient beneath the slab. The venting system was not intended to remediate the area of concentrated contamination of BTEX, but to reduce migration of BTEX into the building. The system is currently operating, but does not consistently control vapor migration into the building. These operational inconsistencies may be caused by the facility operations, which include ovens that require significant volumes of combustion air.


Therefore, because marginal changes in indoor air concentration could change the outcome of the Risk Characterization for the indoor air pathway and since the data used in the Risk Characterization was collected inside the facility with the RAM system in operation, an evaluation of remedial alternatives for reducing concentrations of VOCs was performed. (Phase III, RAP, Haley & Aldrich.)

Phase III RAP Addendum Contents

This RAP Addendum includes the identification, evaluation and selection of remedial action alternatives for Parcel B to address contamination in accordance with the Phase III requirements of the MCP (310 CMR 40.0850 – 40.0862). This report consists of the following sections:

- <u>Section 2: Remédial Action Objectives</u> Presents the remedial action objectives and the areas, media and constituents of concern to which remedial action alternatives will be applied.
- Section 3: Identification and Initial Screening of Technologies, and Development of Remedia, Action Alternatives - Identifies remedial technologies and presents the results of technology screening. Assembles remedial technologies into remedial action alternatives. Develops and screens the remedial action alternatives.
- Section 4: Detailed Evaluation of Remedial Action Alternatives Presents the Detailed Evaluation of the remedial action alternatives using the criteria specified in the MCP.
- Section 5: Selection of Remedial Action Alternative Compares and selects the remedial action alternatives based on the results of the Detailed Evaluation and describes the response action outcome that the selected alternative is expected to achieve. Also presents evaluations of the feasibility of achieving a Permanent versus a Temporary Solution, the feasibility of reducing concentrations in oil to levels below the Upper Concentration Limits, and the feasibility of approaching or achieving background concentrations at the Site.

Descriptions of the Site background, Site history and Site investigations are described in the Phase III Remedial Action Plan, prepared by Haley & Aldrich.

11(2) a 16.6 11-16:00-2 - In the set

						1. BASE FOR TOPC ASSES AND REVI				LEGEND	į.		12		9 B	88 83		
MASSACHUSE FORMER M MALDEN, M B R O W N C A L D W I	DISPOSAL		*		g	OTES: BASE PLAN ADAPTED FROM "TOPO OF THE MANUFACTURED GAS PLA FOR MASSACHUSETTS ELECTRIC TOPOGRAPHICS, JUNE 1986, AND C ASSESSOR'S PLAN, SHEETS 1 AND AND SHEET NO. 53 BY FAY, SPOFF REVISED JUNE 1976 AND REVISED 30 JULY 1979.	PILE - SUPPORTED CONCRETE INSTALLED BY MDC	TERRESTRIAL PORTION OF THE MALDEN MGP DISPOSAL SITE	FORMER MALDEN MGP DISPOS	æ		80 54		5	÷		A N	
MASSACHUSETTS ELECTRIC CO FORMER MALDEN MGP SITE MALDEN, MASSACHUSETTS A L D W L L Aliendaie, New Je	SITE BOUNDARY	FIGURE 1-1	е. ¹⁸	3		OGRAPHIC WORKSHEET ANT, MALDEN, MA COMPANY BY EASTERN CITY OF MALDEN D 2, JUNE 1985, FORD & THORNDIKE, INC.,	TE CULVERTS	THE FORMER	OSAL SITE BOUNDARY	u N	9		9		л и 19	1 34 35		

2.0 REMEDIAL ACTION OBJECTIVES

2

This section describes the remedial action objectives for Parcel B. This section also provides a summary of the areas, media and constituents of concern that have been identified for remedial actions. The purpose of the remedial action objectives is to define the medium specific goals for Parcel B that will result in the protection of health, safety, public welfare and the environment. The remedial action objectives are used in the evaluation of the remedial alternatives.

2.1 AREAS, MEDIA, AND CONSTITUENTS OF CONCERN

Investigations have been conducted at the Site since 1987. The facility at Parcel B appears to have been built on a layer of fill material ranging from approximately 3 to 10 feet thick. The fill overlies native sands and silty, fine sands. These materials become generally finer-grained (and thus less permeable) with depth. The organic layer that is present on other portions of the Site is not present beneath Parcel B. During the April 1999 groundwater level measurement event, only two monitoring points were available on Parcel B. The direction of groundwater flow was interpreted to be to the southwest, parallel to Commercial Street via extrapolation from the numerous data points to the north. This flow direction was confirmed by measurements from five additional wells (7 in total) on Parcel B that were available during two subsequent water level rounds conducted in July/August and December, 2000. These data clearly indicate that groundwater flow is to the southeast, with Charles Street and Parcel A being upgradient of Parcel B.

For the soil samples, there were no samples reported to have concentrations above the MCP Upper Concentration Limits (UCLs). However, UCLs were exceeded in groundwater samples taken on the property. Benzene and toluene exceeded UCLs at three locations.

2.2 RISK CHARACTERIZATION SUMMARY

A Risk Characterization was prepared by AMEC Earth and Environmental and was presented in the Phase II - Comprehensive Site Assessment. Subsequent sampling data became available and the Risk Characterization was revised and included in the Phase III -Remedial Action Plan. The results of the Risk Characterization were as follows:

- There is a Condition of No Significant Risk for the indoor air inhalation pathway. However, the level of potential risk presented by the elevated levels of VOCs is approximately equivalent to the MADEP criteria at which a condition of No Significant Risk cannot be satisfied. Also, the indoor air samples were collected with the RAM system in operation. Therefore, an evaluation of remedial alternatives to address indoor air will be conducted.
- A Condition of No Significant Risk to Public Welfare was demonstrated for the site, as stated in the Risk Characterization in the Phase II Report. In accordance with the MCP (310 CMR 40.0996(2)), the comparisons of groundwater concentrations to UCL's can be made using the arithmetic average concentration of hazardous material at a site. Therefore, even though there were some exceedances of contaminant concentrations above UCL's, the average concentrations of contaminants at Parcel B did not exceed UCL's.
- A Condition of No Significant Risk to the environment was demonstrated for the terrestrial portion of the site.
- For soil, two "hotspots" were identified at the Site. However, the risk characterization demonstrated a condition of No Significant Risk for both soil hot spots, including scenarios for current and future utility workers (which would, potentially, have the greatest calculated risk due to exposures to subsurface soils).

The calculations for the Risk Characterization, included in the Phase II- Comprehensive Site Assessment, Appendix N, Volume XIII, show that benzene contributes the highest calculated value for the Hazard Index, with naphthalene contributing the second highest

-

value. For the Excess Lifetime Cancer Risk, benzene was the only compound that contributed to the risk.

1

2.3 REMEDIAL ACTION OBJECTIVES

The Remedial Action Objectives for Parcel B were developed based on the results of the Risk Characterization. As mentioned above, a risk to human health due to exposures of the concentrations of COC's in indoor air (resulting from migration of contaminants from the groundwater) was slightly below the MADEP target levels. Since an incremental increase in the concentrations of BTEXSN in indoor air would result in an exceedance and the indoor air samples were taken while the RAM system was in operation, a remedial alternative evaluation was conducted for mitigation of this risk. The risk characterization calculations show that the compound that contributes the most significant risk is benzene, with naphthalene contributing the next highest risk.

Therefore, the Remedial Objective for Parcel B is to reduce the concentrations of BTEXSN in the indoor air in the building. This could be accomplished by either reducing the concentrations of COCs in groundwater, controlling vapor migration with a soil vapor extraction (SVE) system and/or, controlling vapor migration by modifying the HVAC system in the building.

Of note, MEC is conducting an evaluation of the HVAC system inside the building to assess the feasibility of making modifications to the existing system. The evaluation is being conducted to assess if implementation of modifications to the existing system or a new system is a feasible measure to control the infiltration of vapors from the subgrade. Therefore, this report does not include evaluation of the remedial alternatives for the HVAC system. Instead, this report will include remedial alternatives for reducing concentrations of COC's in the groundwater and implementation of an SVE system.

It may be possible to achieve the Remedial Objectives with just the implementation of an SVE system. However, an SVE system would not address the saturated zone or the

contaminants in the groundwater. A remedial action alternative that consists only of SVE would not have the potential to achieve a Permanent Solution.

- ----

.

3.0 INDENTIFICATION, INITIAL SCREENING OF REMEDIAL ACTION TREATMENT TECHNOLOGIES, AND DEVELOPMENT OF REMEDIAL ACTION ALTERNATIVES

This section includes the identification of groundwater treatment technologies that are potentially applicable to the site and the initial screening of the technologies. The remedial alternatives were then developed from technologies that passed the initial screening. The remedial alternatives are evaluated in a detailed analysis that is included in Section 4.0.

3.1 IDENTIFICATION AND SCREENING OF TECHNOLOGIES

The identification and initial screening of the technologies was conducted in accordance with the requirements of the MCP. The MCP (310 CMR 40.0856) states that "An initial screening of remedial technologies shall be conducted to identify remedial action alternatives for further evaluation which are reasonably likely to be feasible, based on the oil and hazardous material present, media contaminated, and site characteristics." "...remedial action alternatives are reasonably likely to be feasible if: (a) the technologies are employed by the alternative area reasonably likely to achieve a Permanent or Temporary Solution; and (b) individuals with the expertise needed to effectively implement available location would be available, regardless of arrangement for securing their services."

In addition to identifying technologies that are applicable based on the remedial objectives identified in Section 2.0, site-specific considerations were also taken into account. These considerations include constraints that may affect the implementability of technologies and/or alternatives due to physical and/or operational limitations. These site-specific constraints are as follows:

 The building is currently occupied and cannot be removed for implementation of remedial alternatives.

- Interruptions to operations in the building during the remedy implementation must be minimized.
- The remedial alternative must not be obtrusive.
- Floor penetrations, if necessary, should be minimized so that additional pathways for vapor migration are not created.
- It is possible that an area of concentrated contamination (i.e., such a purifier box) could be present above the groundwater table. However, even if it could be located through additional investigation, a large excavation through the floor slab would be necessary. This is not, most likely, a feasible option due to access and space constraints.
- Space limitations on site preclude the installation of ex-situ on-site treatment of
 extracted groundwater. The building itself occupies a large portion of the site and
 the paved lot, located at the southern end of the property, is used for truck loading
 and employee parking.

3.2 REMEDIAL TECHNOLOGIES

The following sections include descriptions of the technologies that are potentially applicable for remediation of 3TEXSN in groundwater at Parcel B. Considering the remedial objectives (in Section 2.0) and the above specific site conditions, groundwater remedial technologies that may be appropriate for Parcel B are listed below. As mentioned *previously*, ex-situ treatment of the groundwater is not feasible due to space limitations at Parcel B. Therefore, the technologies that were considered for the site included in-situ groundwater technologies. The candidate technologies focused on the BTEXSN present in the shallow groundwater.

ï

3-2 P:\^J\23728\Focused Feasibility Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003 The key parameters that determine the effectiveness of an in-situ groundwater treatment technology are the hydraulic conductivity of the aquifer, the biodegradability of the COCs, the aquifer geochemistry, the accessibility of the COCs in the subsurface, and the ability to place wells, trenches or injection points in locations where they would most efficiently address the COCs. For Parcel B, the parameters for the application of an in-situ treatment technology appear favorable. The fill material is fairly permeable (although the permeability decreases with depth) and there is no organic layer in this area that could retard groundwater flow or be detrimental to chemical, nutrient and oxygen delivery.

÷

There are a variety of in-situ technologies that may be applicable to Parcel B. The technologies include:

- Air Sparging
- Enhanced Bioremediation
 - Hydrogen Peroxide Injection
 - Biosparging
- Chemical Oxidation
 - Fenton's Reagent
 - Permanganate
 - Ozone
- In-well Air Stripping

The applicability of a specific technology for Parcel B is a function of the COCs (BTEXSN), the degree of impact (BTEXSN, but other constituents, including reduced iron, manganese and natural organic material will consume oxygen or other chemical agents), the hydrogeology/lithology, and parcel related issues (i.e., access, logistics, etc.).

Descriptions of each of these technologies are presented below. The descriptions include the basic principles of each technology and a brief description of implementation characteristics. In addition, a discussion of the implementation of horizontal wells is included. Since the areas targeted for remediation are beneath the building, and installation of vertical wells may be prohibitive due to restrictions from production equipment and the potential migration of vapors through floor penetrations, horizontal wells are the most appropriate type of injection system for this site.

Air Sparging

Air sparging is the direct injection of air into the groundwater. Air rises through the aquifer to the water table surface. VOCs are volatilized in the process and transferred to the unsaturated zone. Additionally, some biodegradation will occur in the saturated zone due to the increase in dissolved oxygen. In the unsaturated zone, the VOCs may adsorb to and desorb from the soil matrix. While adsorbed to the soil matrix, the VOCs will undergo biodegradation. The portion of the VOCs not biodegraded will eventually reach the ground surface or migrate into buildings or utility trenches. To prevent impact from the vapors at or near the surface, air sparging is frequently implemented in conjunction with a soil vapor extraction (SVE) system to collect vapors generated through sparging. SVE uses slotted piping located within the unsaturated zone. Systems may use vertical or horizontal piping. A vacuum is applied to the SVE piping to draw in air and VOC vapors. The recovered gases are normally treated at the surface by granular activated carbon or thermal destruction units.

Since vapor migration is already a concern at Parcel B, the generation of additional vapors that are released at the water table would not be desirable. Therefore, an SVE system would have to be implemented if air sparging were implemented. (This is further discussed in Section 3.4.)

Enhanced Bioremediation

In-situ bioremediation can be accomplished by enhancing aerobic or anaerobic biodegradation processes naturally occurring in the environment. In-situ aerobic bioremediation is a process whereby the natural biodegradation process is accelerated by providing an electron acceptor (usually oxygen), occasionally nutrients (phosphorus and nitrogen compounds) and rarely, other microorganisms for the conversion of the BTEXSN to innocuous products (bioremediation end products are carbon dioxide and water). The

3-4

electron acceptor source is supplied by either sparging air or oxygen below the water table or by introducing a diluxe hydrogen peroxide solution (500-2000 mg/L) to the treatment areas.

Anaerobic bioremediation (using nitrates or sulfates as electron donors) was not considered a strong candidate for this application since it has been demonstrated that benzene is slower to biodegrade under anaerobic conditions. Also, these alternative electron donors are seldom used. They offer the advantage that they are not likely to be consumed by reduced species in the soils and groundwater since many hydrocarbon-impacted aquifers are already partially reduced. On the other hand, regulatory agencies limit the concentrations of nitrate that can be introduced and sulfate causes some concern about the formation of sulfide. For the purpose of this evaluation, oxygen as the electron acceptor was considered (i.e., aerobic bioremediation).

Aerobic bioremediation of BTEXSN compounds has been successful. Published data indicate reductions of BTEXSN and other hydrocarbons at hundreds of sites. In similar aquifers, bioremediation has achieved cleanup levels over reasonably short time periods. Two technologies applicable for the introduction of oxygen to the aquifer are discussed below.

Hydrogen Peroxide Injection

The traditional form of in-situ bioremediation involves the injection of water containing an oxygen source, namely, dilute hydrogen peroxide (500 to 2,000 mg/L). Hydrogen peroxide will degrade to produce oxygen for biodegradation. The injected water will move with the groundwater flow, thereby delivering the oxygen across the treatment area. The process is typically implemented by recovering groundwater from the downgradient portion of the plume and removing VOCs at the surface, or by using water from a local water supply, amending with hydrogen peroxide (and sometimes nutrients), and reinjecting in the middle of and/or upgradient portion of the plume. With the proper design, this process can be relatively inconspicuous once installed.

Biosparging, Oxygen Injection

The most commonly used and generally most cost-effective approach for bioremediation of BTEXSN is referred to as biosparging. It uses essentially the same design as air sparging, except that the injection rates are much lower and typically carried out using an intermittent injection schedule. The result is that oxygen is supplied for biodegradation with minimal volatilization. Oxygen (from an oxygen tank at the surface) or air is piped to the desired depth and introduced within the aquifer where biodegradation is promoted. The process may also increase available oxygen within the unsaturated zone and result in degradation in that zone as well. Degradation within the vapor phase should reduce the migration of VOCs that may enter buildings and utility trenches, etc. Remediation should be substantially more rapid if oxygen is injected rather than air. Oxygen can be supplied from cylinders, or as an alternative, a membrane system that separates oxygen from air could be used.

1

Biosparging is most often used at sites with contaminants with lower vapor pressures since lighter constituents volatilize readily and are removed more rapidly using air sparging. For this site, as stated previously, BTEXSN the contaminants of concern. (Benzene is a volatile constituent with a relatively high vapor pressure (76 mm Hg at 20°C), while naphthalene is a polycyclic aromatic hydrocarbon (PAH) with a lower vapor pressure (0.5 mm Hg at 20°C).)

The most important characteristic of the soil for determining the effectiveness of biosparging is the permeability. The bacteria use oxygen to metabolize organic material into carbon dioxide and water. Therefore, oxygen is required for the metabolizing process and for the sustainment of a substantial bacterial population. For sites with intrinsic permeabilities of less than 10" (cm2), biosparging effectiveness is marginal.

Chemical Oxidation.

Chemical oxidation is the chemical conversion of hazardous constituents to less toxic compounds that are more stable, less mobile or inert. For hydrocarbons, the end products are carbon dioxide and water. Ozone, hydrogen peroxide, potassium permanganate, sodium

3-6

permanganate, potassium persulfate, and Fenton's Reagent (reduced iron and hydrogen peroxide at low pH) have been used to address the types of constituents present in groundwater at Parcel B. Degradation reactions are quite rapid. The rate-controlling step is the ability of the implementation system to deliver the chemical oxidant throughout the impacted soils and groundwater. It is essential that the correct oxidant and in-situ delivery systems be utilized for achieving the desired reduction goals under site-specific conditions. For instance, Fenton's Reagent requires numerous closely spaced injection points that might not be feasible in the vicinity of the facility.

Factors that can alfect performance of chemical oxidation are pH, temperature, the concentration of the oxidant, and the concentration of other oxidant consuming substances (such as organic matter). Delivery systems for the oxidant can use either vertical or horizontal injection wells with sparge points (or tubing with spaced discharged points inside the horizontal well). This technology can be applied to area of concentrated contamination areas or a plume of dissolved phase constituents. The equipment utilized for this technology is readily available and not complex.

Additional specific information regarding possible chemical oxidants that could be used at Parcel B is presented below.

Fenton's Reagent

Various vendors implement the chemical oxidation remedial technology using Fenton' Reagent using somewhat different methods. Some vendors, but not all, add a ferrous sulfate solution or equivalent while others rely on native iron in the formation. Most vendors add various amounts of dilute acid to lower the pH, and add hydrogen peroxide solutions through injection points/wells. Hydrogen peroxide concentrations used vary from about 6 percent to as high as 50 percent. At many sites, the introduction of Fenton's Reagent using high concentrations of hydrogen peroxide has resulted in the formation of steam that has come to the surface and buckled the asphalt paving. Explosions are possible and have occurred at sites where higher concentrations of hydrogen peroxide were used. Also, VOC vapors may be created in the unsaturated zone. The implementation of this remedial technology requires a high level of field personnel training, a high level of activity at the site, and the careful handling of high strength hydrogen peroxide. In addition, if free phase product is present, then larger quantities of the oxidizing agent are required and the operation of the technology may become cost prohibitive.

Permanganate

Permanganate (including potassium or sodium) has largely been used for chlorinated ethenes, and is not generally selected for hydrocarbons. However, it will react with BTEXSN. Potassium permanganate requires highly trained personnel for handling, and requires a hopper and mixing equipment in order to create the proper solution prior to injection into the subsurface. The solutions can be explosive if not handled correctly. Sometimes, persulfate is added with permanganate to enhance performance.

Implementation of a sodium permanganate system is accomplished with an aqueous injection system into the subsurface. Sodium permanganate is shipped as a liquid in drums, usually as a 20 percent solution. It is usually diluted in a tank at grade surface and, delivered and metered into water injection wells. It is slightly more expensive than potassium permanganate, but is more soluble and easier to apply. One other issue with permanganate is that it will leave high levels of manganese dioxide in the ground. This is not necessarily a problem, as much as a perception issue, since manganese is a regulated substance. Another concern that frequently arises with the implementation of this technology is that a build up of manganese dioxide may clog the aquifer; however, this would not likely to be a problem because of the permeability of the soil matrix (namely, the fill material) at Parcel B.

Typically, the addition of sodium permanganate would be made in batches at a frequency of one batch per week, and subsequently decreasing to one per month. After the first few additions, additional water would be added following injection of the permanganate to push the reagent further out into the aquifer. Activities could take place in a small shed on-site to reduce visibility to the public.

Ozone

Ozone is another type of oxidant that could be used. Ozone is typically generated on site. The generator could be placed in a trailer or small shed. Ozone can be sparged or dissolved in water and injected into the subsurface. If the ozone is sparged, there could be concerns about vapors migrating into the facility unless a soil vapor extraction system was used in conjunction with ozone sparging. If the ozone is dissolved in water, the injection system/process would be similar to that used for chemical oxidation with sodium permanganate or in-situ bioremediation.

In order to enhance treatment times or ozone utilization efficiencies, a groundwater recirculation system could be used. As described previously, the groundwater downgradient of the treatment area is pumped to the surface, contaminants are removed, ozone may be added in the dissolved phase, and reinjected upgradient or in the middle of the treatment area. While this may be appropriate in some locations, the pumping, treating and reinjecting of the groundwater is problematic at Parcel B, since there is limited available space on site.

In-Well Air Stripping

In-well air stripping is similar in theory to air sparging, where air is injected into the groundwater; however, with in-well air stripping, the air is injected into the formation at such a rate as to volatilize the VOCs within the well. The volatilized VOCs are subsequently captured and treated at the surface. There are several variations on the basic concept. In one method, the air is injected into wells that have been screened at two locations. The lower screen is set in the groundwater, and the upper screen is located either in the vadose zone or the saturated zone. The groundwater is aerated within the well, and the VOCs volatilize within the vell, travel up through the aquifer, and the vapors are drawn off by an in-well vapor extraction system. The vapors may then require treatment above the surface.

Horizontal vs. Vertical Well Installation

The radius of influence of vertical injection wells for in-situ bioremediation and chemical oxidation, while highly dependent on the subsurface conditions, typically range from 10 to 20 feet. (Some sites have achieved a radius of influence up to as high as 100 feet, although this is not typical.) This means that in order to address areas under the building, numerous vertical wells would have to be installed through the floor slab inside the building. A preliminary calculation shows that, most likely, approximately 25 wells would be required. Also, a vertical well injection system would require the installation of a header system inside the building either in the floor slab or overhead. Therefore, the use of horizontal wells for this site is recommended.

Horizontal drilling can be performed adjacent to and outside of the building. The boring head is directed into the subsurface under the building and can be directed, to some degree, around obstacles. The drill bit is outfitted with a radio transmitter and the exact location can be tracked from the surface. Typically, a driller would monitor the drill bit location directly above it at the surface. However, if access to the building is not available, the drill bit location can be tracked remotely from outside the building. A horizontal well can completely span the distance under the building, or it can extend to the desired location and partially span the distance under the building. Once the boring is completed, a well casing is installed. Then, the appropriate delivery system can be installed at the desired locations. If, in the future, the location of the delivery system needs to be modified, the locations can be adjusted relatively easily.

The drill rig that is used is smaller than a conventional drill rig. Generally, a lay down area of approximately 20 feet by 30 feet is required for the rig operations. An additional area of approximately 10 feet by 30 feet is required for the support trucks. Also, the drilling operations schedule could be adjusted to fit the project needs. Drilling contractors can operate at night or on weekends in order to limit disruption to facility operations.

While the drilling assembly can be steered to predetermined points in both the vertical and horizontal plane, it should be noted that a thorough utility location effort is required and also, information regarding the foundation system is necessary. If this information is not available, a field investigation to obtain as much site information as possible would be beneficial. Historical maps show that it is possible that structures relating to the former MGP operations may be present in the subsurface at the site. If these structures are encountered during crilling operations, the well installation layout may have to be revised to accommodate these structures. It may be possible to drill through the former MGP structure depending on the condition and the types of material used for construction. Also, the presence of the structures may provide preferential pathways for air or oxidants, and may reduce treatment efficiencies.

The wells would run the length of the building since access is limited behind (by the railroad) and in front of the building (along Commercial Street). A conceptual layout of the injection wells and the SVE extraction wells is shown on Figure 3-1. In order to minimize costs, it may be possible to install vertical wells along the front of the building where the treatment area extends beyond the footprint of the building. So, the most appropriate well configuration may be a combination of horizontal and vertical wells. The injection wells will be placed in the upper portion of the Silty Fine Sand deposit as shown on Figure 3-2. This position is approximately 8 to 10 feet below the groundwater table. The SVE wells will be placed in the Fill material, approximately 5 feet below the building slab. The exact depth of the SVE wells may be modified based on information obtained regarding the building footings, etc. Pre-design field testing will be conducted to obtain site specific information that would be used to develop design parameters. The results of the testing would be used to calculate parameters, such as, well spacing, well placement, well piping design, flow pressures and flow rates.

The final design of the horizontal well system will be dependent on site specific conditions, including the location and type of the building foundation system, underground utilities, former MGP manufacturing structures, etc. If, after a site field investigation is conducted, a determination may be made that horizontal well installation may not be feasible due to the presence of subsurface structures, utilities or other obstructions. A re-evaluation of the project may be required at that time.

3.3 INITIAL SCREENING OF GROUNDWATER TREATMENT TECHNOLOGIES

As stated above, the initial screening of groundwater treatment technologies was conducted in accordance with requirements of the MCP and in consideration of the site-specific conditions identified in Section 3-1. Some technologies that are generally applicable to the contaminants and hydrogeologic conditions are not implementable at Parcel B and, therefore were eliminated in the technology screening. The screening is presented on Table 3-1.

The groundwater technologies that were retained for further evaluation are listed below. They include:

- Air Sparging
- Biosparging
- Chemical Oxidation Using Ozone

3.4 DEVELOPMENT OF REMEDIAL ACTION ALTERNATIVES

From the results of the initial screening, the technologies that were retained provided a basis for the development of remedial action alternatives. The alternatives were intended to provide a range of treatment options for evaluation against the criteria in the MCP (310 CMR 40.0858).

Each of the technologies listed above will become a potential remedial alternative for the treatment of groundwater at Parcel B. In addition, there are several other aspects of a *remedial alternative that must be considered* in order for the alternative to address site specific characteristics. At this portion of the Site, there are several issues that must be taken into account. They are the occupied building that is located on Parcel B, and the management of the :nigration of vapors into the building to address concerns regarding potential exposures to facility employees.

The presence of the building poses inherent restrictions on the location of the installation of vertical wells. Since the building is currently in use for bakery operations, there is process equipment located throughout the building that would preclude the installation of vertical wells in many areas. Also, there are concerns that penetrations of the existing floor slab would increase the potential of migration of vapors into the building. As discussed in Section 3.2, the remedial alternatives will be developed utilizing the installation of horizontal wells for each of the technologies. In addition, where appropriate, consideration was given to the installation of vertical wells or injection points outside the footprint of the building where these wells/injection points would enhance the performance, effectiveness, timeliness, etc., of the selected treatment technology.

Another consideration for the development of the alternatives is the potential for the creation and migration of vapors into the building. Since recent Release Abatement Measures have been conducted with limited success, the inclusion of a vapor management system would be prudent. Therefore, it was conservatively assumed that an SVE system would be installed with whichever remedial action alternative is selected. Even though bioremediation is the mechanism for reduction in one technology (biosparging), benzene is a volatile compound and will most likely undergo some volatilization with the introduction of air or oxygen to the subsurface. This being the case, in the detailed evaluation (in Section 4.0), the remedial alternatives (with the exception of Alt-1, No Further Action) were evaluated with SVE as a component of each alternative.

Based on the results of the initial technology screening and given the considerations listed above, several remedial action alternatives were developed. In addition, a No Action Alternative was included to provide a baseline for comparison to other alternatives. They are:

- Alternative 1 No Further Action
- Alternative 2 Air Sparging with SVE
- Alternative 3 Biosparging with SVE
- Alternative 4 Chemical Oxidation using Ozone with SVE

3-13 P:\^J\23728\Focused Feasibilit / Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003

3.4.1 No Further Action (Alt-1)

This alternative would include no further remedial measures to address groundwater and soil vapor impacts at Parcel B. This alternative would include annual monitoring of the groundwater. This alternative is included in the Detailed Evaluation of remedial action alternatives to provide a baseline for comparison to other alternatives.

3.4.2 Air Sparging with Soil Vapor Extraction (Alt-2)

This alternative consists of air sparging of the groundwater beneath the building. As previously discussed, vapor management is an issue at Parcel B. Since this technology utilizes a phase transfer mechanism and the contaminants will go from a dissolved phase to a vapor phase, an SVE system will be a component of this alternative. When air sparging is combined with SVE, the SVE system creates a negative pressure in the unsaturated zone through a series of extraction wells that are intended to control the vapor plume migration. The vapors are then treated in an on-site facility and discharged to the atmosphere. A description of the air sparging system is included herein. A description of the SVE system is included in Section 3.4.5.

An air sparging system will include a series of horizontal wells installed below the water table for the purpose of delivering the air to the subsurface. The horizontal wells will be connected to manifold piping that runs to a compressed air system housed in a shed or a trailer in a convenient location on site. The air delivery system will also include monitoring and controls in order to fine tune the system for optimum performance.

In preparing a conceptual design of an air sparging system, the two major factors that determine the effectiveness of air sparging are the vapor/dissolved phase partitioning of the constituents and the permeability of the soil. The combined effect of these two factors determines the rate at which the constituents will be removed. These factors also influence the placement and number of air sparge points required to sufficiently reduce the concentrations. Other parameters are involved in the design of an air sparging system. These includes the well spacing, the air sparging flow rate and sparging air pressure, and methods to evenly distribute air along the length of the horizontal pipe.

The design for the spacing of the air sparging wells is determined based on a calculated radius of influence (ROI). The ROI is the distance from the air sparging well at which sufficient air flow and pressure are present to facilitate the transfer of constituents from the dissolved phase to the vapor phase. The ROI is used to determine the number, spacing and location of wells. The ROI depends primarily on the hydraulic conductivity of the aquifer and physical properties of the soil, including permeabilities, and the layering of soils of varying permeabilities. Often, the ROI is determined from field testing. For this report, the ROI was calculated from available data in the Phase II – Comprehensive Site Assessment. For the final design, the ROI will be calculated on site data obtained during a pre-design field testing program. (A description of the field testing program is included in Section 5.5.)

Empirical data from prior air sparging projects indicate that the radius of influence of vertical wells can range from 5 to 100 feet (USEPA, 1992) but is typically less than 25 feet. The use of horizontal application wells is likely to increase the efficiency of air distribution by a factor of five over vertical wells (Looney, et. al., 1991). One case study reported by USEPA (1992) at the Savannah River site reported an average "distance of influence" of 10 to 15 feet for horizontal wells. Despite this rather large range of well spacing reported in the literature, it is clear that the actual distance of influence is highly dependent on the intrinsic permeability of the soil (USEPA, 1995). The intrinsic permeability can be estimated from the hydraulic conductivity of the soil by the relationship;

3-15

K = K(u/pg)

Where: k = intrinsic permeability (cm²)

- K = hydraulic conductivity (cm/sec)
- u = water viscosity (g/cm-sec)
- $p = water density (g/cm^3)$
- g = acceleration due to gravity (cm/sec²)

P:\^J\23728\Focused Feasibility Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003

Hydraulic conductivity data were reported in the Phase II report for three monitoring wells at the Site (B3-OW, B503-OW, B303L-OW). Two of the wells were screened in the Fill material and one in the underlying silty sand. Since the application of air sparging will be primarily within the upper portion of the Silty Fine Sand layer (refer to Figure 3-2), the reported hydraulic conductivity from this layer of 7×10^{-4} cm/sec was used to estimate the intrinsic permeability. Using default values for the properties of water (i.e., at 20 degrees C), this calculation resulted in an intrinsic permeability of 7×10^{-9} cm², which is within the lower portion of the range considered "generally effective" by USEPA (1995).

Based on a review of the soil descriptions for this area, the permeability of the overlying soils (Upper Sands) and Fill, is likely to be at least an order of magnitude greater than the Silty Fine Sands, and thus even more conducive to this application. For this conceptual design, the selection of a 30 foot spacing assumes a radius of influence of approximately 20 feet with a five foot overlap. This assumption appears reasonable considering the nature of the soil beneath the building, and the use of the more effective horizontal wells. Final well spacing will be determined from the results of the pilot tests that should be conducted prior to final design.

The air sparging flow rate is the rate required to provide sufficient air flow to enhance the mass transfer in the saturated zone. This is usually determined based on pilot-testing results. Intermittent operation of the air flow system sometimes provides better distribution and mixing of the air in the vadose zone and contact with the dissolved phase COC's, and therefore enhanced performance of the system. For this report, the conceptual design was based on a typical average air flow rate of 1.0 scfm per foot of slotted pipe (750 scfm total). The slotted pipe was assumed to be installed in the area defined by the groundwater plume, as shown in the Phase II Report, and as shown on Figure 3-1. In order to prepare a final design, field testing would be required and the design of an air sparging system would be based on actual site data, if this alternative were selected.

The sparging air pressure is the pressure at which air is injected into the subsurface. In order to overcome static head pressures and the head due to capillary forces of the water in the soil pores, the air sparging pressure must be greater than the sum of these pressures. Typically, systems operate at 10 to 15 psig. For this report, it was assumed that a system would operate in this range. For a final design, this air pressure would be confirmed based on pilot testing.

3.4.3 Biosparging with Soil Vapor Extraction (Alt-3)

Biosparging is a technology that is very similar to air sparging, with regard to mechanical delivery systems. This technology pumps air (and if needed, nutrients) into the subsurface in a well and manifold piping system similar to the configuration described above for air sparging. The majo:: difference is that biosparging relies on biological activity to reduce contaminant concentrations in the groundwater, in the soil below the water table and in the capillary fringe. Biosparging utilizes lower air flow rates that are more suitable for promoting biological growth. When volatile compounds are present, there will also be some degree of volatilization that will occur. Generally, air injection rates used in biosparging are low enough so that vapor migration is not a major issue. However, to be conservative, as with the other alternatives, SVE was included in this alternative for vapor management.

The components of a biosparging system include a series of horizontal wells that will be installed below the water table for the purpose of delivering the air to the subsurface. The horizontal wells will be connected to manifold piping that runs to a compressed air system housed in a shed or trailer in a convenient location on site. The air delivery system will also include monitoring and controls in order to fine tune the system for optimum performance. If nutrients are required, a nutrient delivery system will be included. This would be determined in a pilot study. For this report, it was assumed that a nutrient delivery system would not be required.

The mechanical components of a biosparging system are very similar to an air sparging system, and the layout and well spacings are similar. For this report, it was assumed that a well spacing of 30 feet, the same as for air sparging would be adequate. The layout is shown on Figure 3-1.

Other site-specific parameters that are factors in the design of a biosparging system are the soil structure and stratification, the temperature and pH of the groundwater, the microbial population density, nutrient concentrations, and the concentration of iron dissolved in the groundwater. For the conceptual design included in this report, available data from the Phase II – Comprehensive Site Assessment was used. If this alternative were selected, then additional effort would be required to confirm these site parameters prior to preparing the final design.

The air flow rates for biosparging systems are typically around 0.5 scfm per foot of slotted pipe and the total flow rate is estimated to be 375 scfm. As with air sparging systems, intermittent operation of the air flow may provide better distribution and mixing of the air in the saturated zone. The air pressure in the system should be maintained at a similar pressure as air sparging. The air pressure should be greater than the static water pressure and the head due to capillary forces of the water in the soil pores. Typical systems operate at 10 to 15 psig. This pressure range was assumed for this project.

Typically, the SVE system is started up first, before starting the biosparging system. This will remove the VOCs already in the vapor phase and increase the oxygen the vadose zone. Thus the VOCs reaching the vadose zone will be degraded to their full potential. Also, starting the SVE system prior to the biosparging system will avoid creating positive air pressure under the building, which could increase the potential for vapor migration.

3.4.4 Chemical Oxidation Using Ozone with SVE (Alt-4)

The chemical oxidation system would include the application of an oxidizing agent to chemically degrade the contaminants. For this application, ozone would be the oxidant of choice because it could be delivered in gaseous form via horizontal wells and would have a greater radius of influence than the liquid oxidants. Ozonation has documented effectiveness for degradation of BTEXSN compounds.

Ozone would be applied to groundwater in a horizontal well system similar to an air sparging system or biosparging system. With ozone sparging, the VOCs could volatilize and

potentially migrate inside the buildings. Therefore, as mentioned earlier, an SVE system would be installed to control migration of vapors. The well spacing was assumed to be consistent with the other alternatives for this report. A field study would have to be conducted in order to determine the optimum spacing.

Ozone gas can oxidize contaminants in two ways, either directly or through the formation of free radical intermediates. The oxidation reaction can occur rapidly. Due to ozone's high reactivity and instability, ozone must be generated on site. This eliminates the storage and handling problems associated with other oxidants. Typical application rates of ozone range from 1-10 lbs per pound of contaminant. It has been documented that moderate ozone gas saturation in the subsurface achieves treatment effectiveness for similar sites.

The equipment necessary for ozone groundwater treatment include ozone generation equipment, a horizontal well system for injection, and vapor extraction and treatment. The ozone could be generated on site and the application system would operate mechanically, which would reduce the manual labor requirements typically associated with chemical oxidation application. Ozone has a very short life span and since there may be a contaminant area of concentrated contamination area under the building, ozone may need to be applied over a long time frame. Groundwater monitoring would be conducted to determine the effectiveness and duration of operation of chemical oxidation.

3.4.5 Soil Vapor Extraction (SVE)

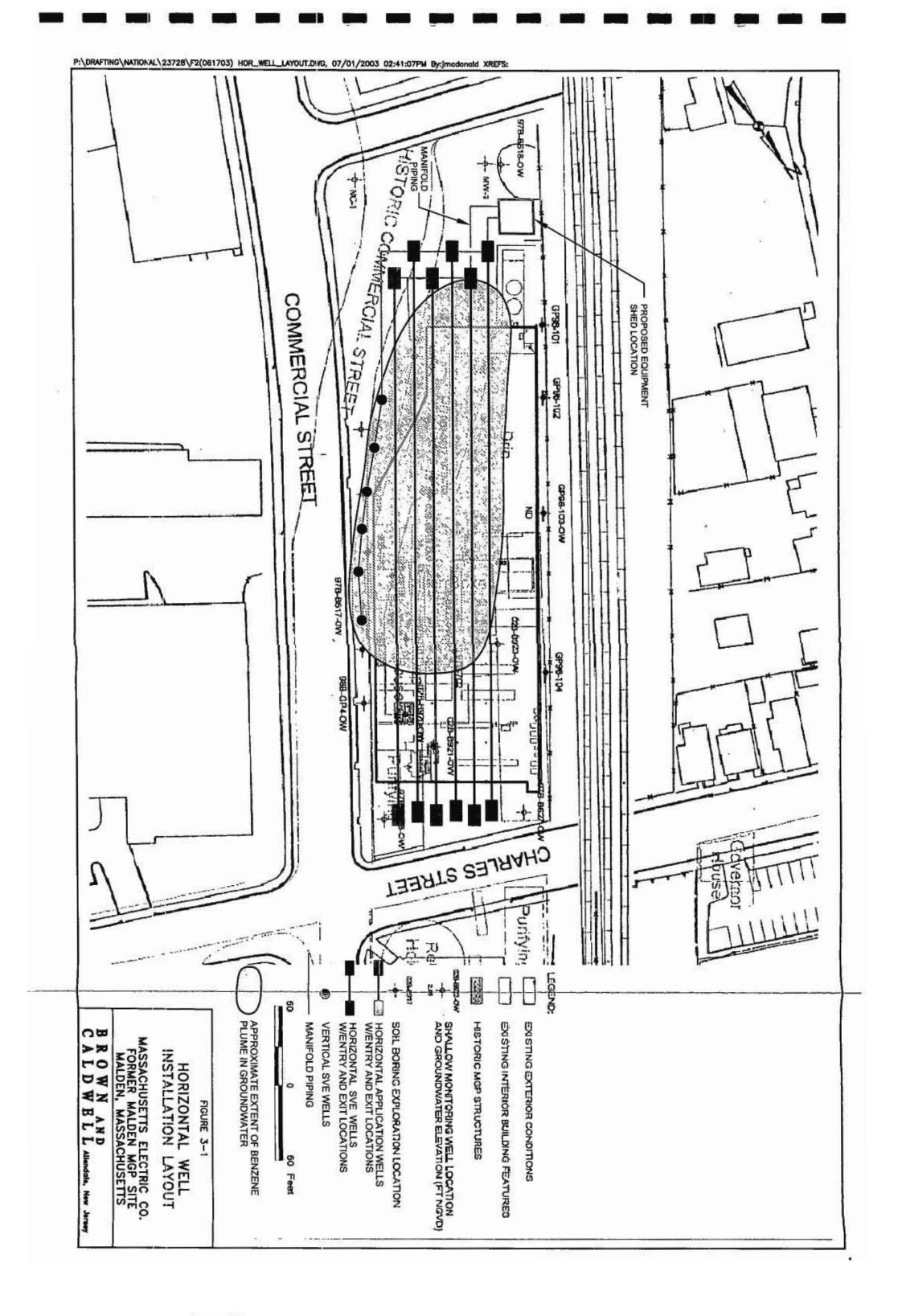
As mentioned previously, Alt-2, Alt-3, and Alt-4 would include the installation of an SVE system. The purpose of this system would be to capture the vapors that are generated from the groundwater treatment system.

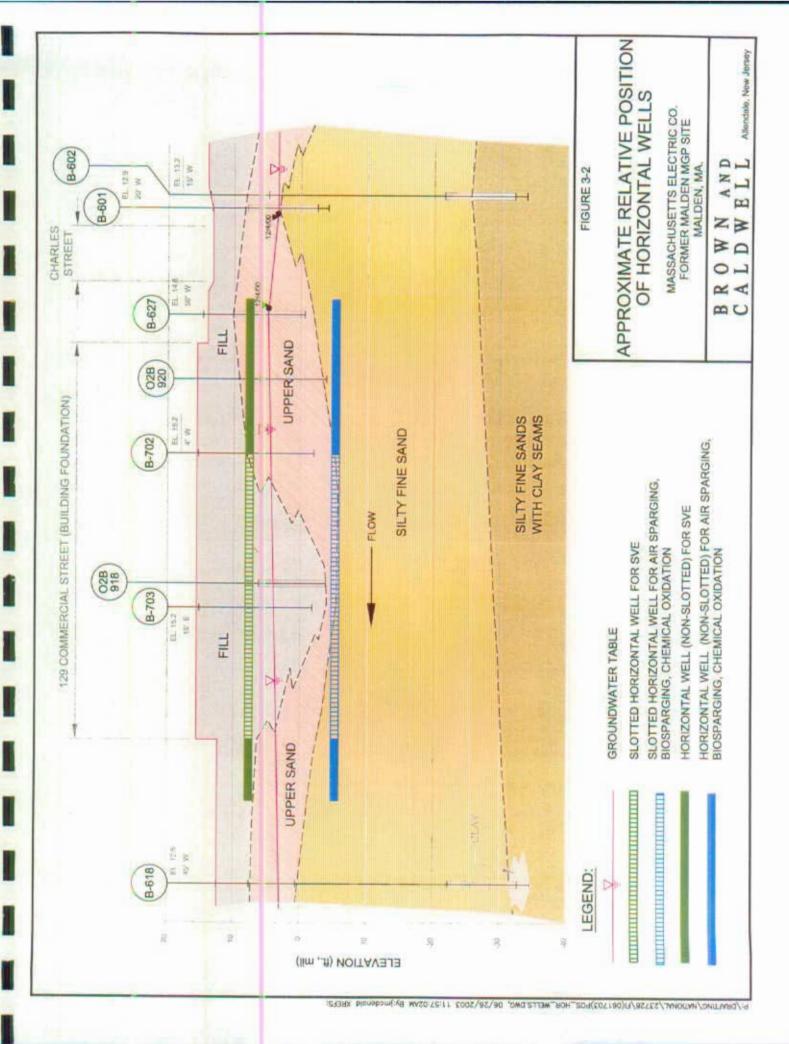
For this system, a vacuum is applied by a pump or blower, through the horizontal wells in the unsaturated zone. The vacuum induces gas flow through the soil toward the wells. The removed vapors are treated in a vapor treatment system located on-site, before the air is discharged to the atmosphere. Typical components of an SVE system include manifold piping, extraction wells, control valves to adjust flow, vacuum blowers and controls, pressure gauges and flow meters, an air water separator, and a vapor treatment unit. A conceptual layout of a soil vapor extraction system piping is shown on Figure 3-1.

1

The design of a vapor extraction system is based on the radius of influence. The radius of influence is the extent of measurable vacuum in the subsurface during vapor extraction. Vapor extraction systems should be designed based on providing adequate air flow to achieve remediation goals over the target area and should also account and provide for deviations in performance due to site specific conditions. The final design should be based on data obtained from field studies.

The SVE system should have a greater flow capacity and area of influence than the biosparging system. SVE extraction systems generally have extraction rates 1.25 to 5 times greater than the bicsparging rate. Of note, a review of the facility HVAC should be conducted prior to the design of the SVE system in order to avoid possible interference of the operation of these two systems.


TABLE 3-1


SCREENING OF REMEDIAL TECHNOLOGIES FOR GROUNDWATER REMEDIATION FORMER MALDEN MGP SITE MALDEN, MASSACHUSETTS

Technology	Applicability to Treat or Contain COCs	Comments	Retain? (Yes/No)
<u>In-Situ Technologies</u> Air Sparging	+	Can be effectively implemented to reduce BTEXSN concentrations	Yes
<u>Enhanced</u> <u>Bioremediation</u> Hydrogen Peroxide Injection	+/-	Other bioremediation techniques would be more effective at this site.	No
Biosparging	+	Successfully implemented at other sites to reduce BTEXSN.	Yes
operator training and site activities due to the mater management procedures handling these chemicals. technology is difficult to a horizontal well system a		This technology requires high level of operator training and site maintenance activities due to the materials management procedures necessary for handling these chemicals. Also, this technology is difficult to implement in a horizontal well system and a vertical well injection system is not feasible at	No
Permanganate	transpanate +/- This technology requires high level of operator training and site maintenance activities due to the materials management procedures necessary for handling these chemicals. Also, this technology is difficult to implement in a horizontal well injection system and a vertical well injection system is not feasible at Parcel B.		No
Ozone	+	Can be effectively implemented to reduce COCs via a horizontal well system.	Yes
In-Well Air Stripping	+	This technology requires the installation of closely spaced vertical wells, which is not feasible at site due to physical constraints (i.e., building).	No

Notes:

(+) Better, (+/-) Average, (-) Worse

.

4.0 DETAILED EVALUATION OF REMEDIAL ACTION ALTERNATIVES

This section presents the detailed evaluation of the remedial action alternatives for Parcel B that were developed from the technologies retained after initial screening. The detailed evaluation provides a basis for the selection of a recommended remedial action alternative. The criteria used in the detailed evaluation are included in the MCP (310 CMR 40.0858) and are as follows:

- <u>Effectiveness</u> The effectiveness of the remedial action alternatives is evaluated in terms of:
 - achieving a permanent solution;
 - reusing, recycling, destroying, detoxifying, or treating oil and hazardous material; and
 - achieving or approaching background concentrations.
- <u>Reliability</u> The short-term and long-term reliability of the remedial action alternatives is evaluated in terms of:
 - degree of certainty that the alternative will be successful; and
 - effectiveness of measures required to manage residues or discharges to the environment.
- <u>Difficulty in Implementation</u> The difficulty in implementation of the remedial action alternatives is evaluated in terms of:
 - technical complexity;
 - integration with existing site operations and conditions;
 - monitoring, maintenance, or operation requirements;
 - availability of services, materials, equipment, or specialists;

4-1

P:\^J\23728\Focused Feasibil.ty Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003

- availability of off-site treatment, storage and disposal facilities; and
- compliance with regulatory requirements, approvals, permits or licenses.
- <u>Cost</u> The factors to be considered in the evaluation of this criterion include the capital and long-term operation and maintenance costs for each alternative.
- <u>Risks</u> The risks of the remedial action alternatives are evaluated in terms of:
 - long- and short-term risks to health, safety, public welfare, and the environment associated with the implementation and operation of the alternative; and
 - potential risks to health, safety, public welfare, and the environment associated with the residual remaining on site after the alternative is implemented.
- <u>Benefits</u> the benefits of the remedial action alternatives are evaluated in terms of:
 - restoration of natural resources;
 - providing for the productive reuse of the site;
 - avoided cost of relocating businesses, people or providing alternative water supplies; and
 - avoided loss value of the site.
- <u>Timeliness</u> The timeliness of the remedial action alternative is evaluated in terms of eliminating uncontrolled area of concentrated contaminations and achieving a level of no significant risk.
- <u>Non-Pecuniary Interests</u> The remedial alternatives are evaluated in terms of the relative effect of the non-pecuniary interests such as aesthetic values.

The results of the detailed evaluation for the alternatives are presented on Table 4-1.

4-2

P:\^J\23728\Focused Feasibility Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003

4.1 EFFECTIVENESS

Alt-1 (No Further Action) would not achieve a Permanent Solution, does not treat or destroy the contaminants, and would not achieve or approach background levels. This alternative would rely on natural biodegradation of the contaminants. Alt-2 (Air Sparging), Alt-3 (Biosparging), and Alt-4 (Chemical Oxidation) would effectively treat the contaminants and achieve a Permanent Solution. However, the timeframe to achieve a Permanent Solution is uncertain because the potential area of concentrated contamination is not well defined and cannot be directly accessed. Published data has shown these technologies to successfully treat the types of contaminants present at Parcel B.

4.2 RELIABILITY

Alt-1 would not successfully achieve the remedial action objectives since no treatment would be conducted. Also, this alternative includes no measures to manage residues or discharges to the environment. For the remaining alternatives, the reliability of the treatment mechanisms has been shown to be effective for many sites with the types of contaminants present on Parcel B. For this application, the reliability of the alternatives is more dependent on the ability of the horizontal well injection system to deliver the air, nutrients or ozone to the treatment area. The building is located over the majority of the groundwater plume and access through the building is not feasible. Therefore, as previously mentioned, a horizontal well system is the most appropriate delivery system for this application. It has been reported in some cases, horizontal wells provided more surface area for sparging than a vertical well and provided uniform pressure throughout the length of the well.

With regard to the effectiveness of the measures required to manage residues or discharges to the environment, the three treatment alternatives include an SVE system that would extract the vapors and provide on-site treatment. So, the only discharge to the environment would be treated air from the SVE system. Therefore, for this category, these remedial alternatives are rated as good.

4.3 DIFFICULTY IN IMPLEMENTATION

Alt-1 is No Further Action, therefore, there is no technical complexity.

Alt-2 would require the design and installation of an on-site blower station, horizontal well injection system, and a vapor extraction and treatment system. The horizontal well system would have to be designed to not interfere with subgrade utilities, the foundation structure of the building and possibly historical MGP manufacturing structures. Field testing prior to the design would be necessary in order to determine well spacing. Monitoring would also be required to assess the effectiveness of the alternative. O&M requirements would include maintenance for proper functioning of the horizontal injection well and extraction well systems, and the blower station. There is sufficient availability of services, materials, equipment and specialists for implementation of this and the other two alternatives.

Alt-3 and Alt-4 would require similar design activities as mentioned above. For Alt-3, field testing would be required to determine if the addition of nutrients would be required to enhance the performance of the bioremediation of the contaminants. In addition, the determination of the well spacing would need to be calculated based on field studies. The system could be integrated with existing site operations and conditions. O&M requirements would include maintenance for proper functioning of the horizontal injection and extraction well system, the blower station and the nutrient injection system, if necessary. For Alt-4, installation of an ozone generating station would require more highly trained field personnel. O&M requirements would also include maintenance for the injection and extraction well system, and an on-site ozone generation station. O&M activities would be more intense with this alternative. As with the other systems, this treatment alternative could be integrated with existing site operations. For this category, Alt-2 and Alt-3 were rated as good and Alt-4 was rated as fair.

4-4 P:\^J\23728\Focused Feasibility Study\RAP061903(rem_act_pla_addendm).DOC 7/1/2003

4.4 COSTS

The cost estimates for the remedial action alternatives are presented in Table 4-2 through 4-5. The following is a summary of the capital and present worth cost estimates for each of the alternatives.

1

Remedial Alternative	Estimated Capital Cost	Estimated Total Present Worth of O & M Costs	Total
Alt-1 - No Further Action	\$ 0	\$440,000	\$440,000
Alt-2 - Air Sparging with SVE	\$900,000	\$100,000	\$1,000,000
Alt-3 - Biosparging with SVE	\$840,000	\$130,000	\$970,000
Alt-4 – Chemical Oxidation using Ozone with SVE	\$1,100,000	\$100,000	\$1,200,000

4.5 RISKS

Alt-1 does not have short-term risks associated with implementation, since there would be no implementation. The long-term risks to human health would be the exposures from the potential migration of VOCs into the building. Risks to the environment would be the potential migration of the contaminant plume. Since this alternative does not include treatment, the contamination would remain for a considerable timeframe and could pose a long term risk.

The short-term risks for Alt-2, Alt-3, and Alt-4 would be the limited potential exposures to soils from cuttings during the installation of the horizontal well system. Since the groundwater would not be extracted, the potential for exposures to the groundwater is minimal. For Alt-4, there is the potential for exposures to ozone gas, if leakage occurs. However, ozone has a low odor threshold, lower than concentrations at hazardous levels.

For Alternatives Alt-2, Alt-3 and Alt-4, monitoring would be conducted to assess the extent of treatment, the extent the alternatives are expected to reduce groundwater contamination levels, and the risks associated with any residuals remaining on Parcel B would be minimal.

4-5

A Health and Safety Plan (HASP) would be prepared to identify hazards associated with the implementation and operation of the selected treatment system. The HASP would include health and safety procedures designed to reduce the risk posed to site workers and others through treatment completion.

4.6 BENEFITS

Alt-1 does not accomplish the restoration of the sites within a reasonable time frame. Alt-2, Alt-3, and Alt-4 would lower the concentrations of contaminants in the groundwater and, therefore would enhance the restoration of the property. Parcel B is currently being used as a commercial bakery facility and, implementation of the alternatives would not affect these operations since on-site blower operations and a treatment equipment building could be located in a non-obtrusive location. Also, the implementation of the alternatives would not require relocation of the Parcel B commercial facilities. In addition, Parcel B is serviced by a public water supply system so the installation of the remedial alternatives would not require alternative water supplies. The remedial alternatives would not reduce the current value of the property.

4.7 TIMELINESS

Alt-1 would require the longest time frame to achieve the remedial objectives, since it would rely on natural degradation of the contaminants. Alt-2, Alt-3, and Alt-4 include treatment of the area exhibiting the highest concentrations of constituents. Most likely, Alt-4, treatment by chemical oxidation with ozone, and Alt-2, air sparging would probably require the shortest timeframe. It was estimated that these treatment durations would be 3 years. Alt-3, biosparging, would most likely take the longest timeframe. It was estimated that the treatment timeframe would be 5 years. Since this alternative relies on biological mechanisms, the remedial timeframe cannot be estimated with certainty.

4-6 P:\^J\23728\Focused Feasibility Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003

4.8 NON-PECUMIARY INTERESTS

1

Alt-1 would not have any effect on non-pecuniary interests. The remaining treatment alternatives would all require the installation of the horizontal well system and a treatment equipment building needed to house equipment. The treatment alternatives would also require personnel to operate and monitor the treatment equipment and the effectiveness of the remedial alternative. This means that there would be equipment located on site and field personnel on-site on a periodic basis to conduct O&M activities.

4-7 P:\^J\23728\Focused Feasibility Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003

REMEDIAL ACTION ALTERNATIVE EVALUATION FORMER MALDEN SITE PARCEL B MALDEN, MASSACHUSETTS

÷

EVALUATION CRITERIA	Alt-1: No Further Action	Alt-2: Air Sparging with SVE	Alt-3: Biosparging with SVE	Alt-4: Chemical Oxidation with SVE
1) EFFECTIVENESS				
 Achieving a Permanent or Temporary Solution. 	This alternative would require a lengthy time frame to achieve a, permanent solution.	Could achieve a permanent solution in a relatively short timeframe provided there is no area of elevated concentrations in the soil. If there is an area of elevated concentrations, treatment times may be extended	Could achieve a permanent solution in a relatively short- timeframe provided there is no area of elevated concentrations in the soil. If there is an area of elevated concentrations, treatment times may be extended.	Could achieve a permanent solution in a -relatively short timeframe provided there is no area of elevated concentrations in the soil. If there is an area of elevated concentrations, treatment times may be extended.
 Rcusing, recycling, destroying, detoxifying, or treating oil and hazardous material 	Natural degradation of contaminants would be only mechanism to reduce concentrations.	Air sparging would reduce contaminant levels through volatilization.	Biosparging reduces concentration through aerobic bioremediation.	Chemical oxidation chemically destroys contaminants using ozone.
 Achieving or approaching background concentrations 	This alternative would require a lengthy timeframe to approach background conditions.	Could be operated until concentrations achieve or approach background provided that there is no area of elevated concentrations.	Could be operated until concentrations achieve or approach background provided there is no area of elevated concentrations.	Could be operated until concentrations achieve or approach background provided there is no area of elevated concentrations.
Effectiveness Rating	Poor	Good	Good	Good
2) RELIABILITY				
Degree of certainty that the alternative will be successful	This alternative would not be very reliable in reducing concentrations.	Air sparging has documented success at remediating BYTEX and naphthalene. High degree of certainty that it would be successful provided that there is no area of clevated concentrations.	Bioremediation has documented success at remediating BTEX and naphthalene. High degree of certainty that it would be successful provided that there is no area of elevated concentrations.	Chemical oxidation has had documented success at remediating BTEX and naphthalene. High degree of certainty that it would be successful provided that there is no area of elevated concentrations.
 Effectiveness of measures required to manage residues or discharges to the environment 	Natural degradation would address residuals. There would be no discharges to the environment.	No residuals generated. Discharges to the environment would be only air pumped to subsurface.	No residuals generated. Discharges to the environment would be only air pumped to subsurface.	No residuals generated. Discharges to the environment would be ozone pumped to subsurface.
Reliability Rating	Poor	Good	Good	Good

1

P:*J\23728\Focused Feasibility Study\T061303(Tble4-1_Frmr_malden_mgp_parcel_B).DOC 07/01/03

Page 1 of 4

N

REMEDIAL ACTION ALTERNATIVE EVALUATION FORMER MALDEN SITE PARCEL B MALDEN, MASSACHUSETTS

2

			10200 P0220	
EVALUATION CRITERIA	Alt-1: No Further Action	Alt-2: Air Sparging with SVE	Alt-3: Biosparging with SVE	Alt-4: Chemical Oxidation with SVE
3) DIFFICULTY IN IMPLEMENTATION	TATION			
Technical complexity	No technical complexity.	Minimal technical complexity associated with design of the well and application system.	Minimal technical - complexity associated with design of well and application system.	Moderate technical complexity associated with design of well and ozone generation system.
 Integration with existing site operations and conditions 	No integration required.	Horizontal wells would not require access inside building.	Horizontal wells would not require access inside building.	Horizontal wells would not require access inside building.
Operation, maintenance, and monitoring (OMM) requirements	This alternative would include groundwater monitoring for 30 years.	Low OMM requirements with air blower systems.	Low OMM requirements with air blower systems.	Intense OMM associated with ozone system.
 Availability of scrvices, materials, equipment, or specialists 	Not required.	Readily available.	Readily available.	Readily available.
 Availability of off-site treatment, storage and disposal facilities 	Not required.	No off-site treatment, storage, or disposal of groundwater. Off-site disposal of spent carbon from SVE system would be required.	No off-site treatment, storage, or disposal of groundwater. Off-site disposal of spent carbon from SVE system would be required.	No off-site treatment, storage, or disposal of groundwater. Off-site disposal of spent carbon from SVE system would be required.
 Compliance with regulatory requirements, approvals, permits or licenses 	Does not address regulatory requirement to reduce contarninants.	Would comply. May need an air discharge permit for SVE treatment system.	Would comply. May need an air discharge permit for SVE treatment system.	Would comply. May need an air discharge permit for SVE treatment system.
Implementation Rating	Poor	Good	Good	Fair
4) COST				
Capital	\$ 0	\$900,000	\$840,000	\$1,100,000
 Present Worth (O&M) 	\$440,000	\$100,000	\$130,000	\$100,000
	-	L'.L	1.1	

Fair

Fair

Fair

Good

Cost Rating

REMEDIAL ACTION ALTERNATIVE EVALUATION FORMER MALDEN SITE PARCEL B MALDEN, MASSACHUSETTS

EVALUATION CRITERIA	Alt-1: No Further Action	Alt-2: Air Sparging with SVE	Alt-3: Biosparging with SVE	Alt-4: Chemical Oxidation with SVE
5) RISKS				
 Long- and short-term risks to health, safety, public welfare, and— the environment associated with the implementation and operation of the alternative 	No risks associated with implementation. No operational risks.	Risks of exposures to drill cutting during well installations.	Risks of exposures to drill scuttings during well- installations.	Risks of exposures to drill cuting during ->well installations. Risks of exposures to ozone during operation.
 Potential risks to health, safety, public welfare, and the environment associated with the residuals remaining on site after the alternative is implemented 	Potential exposures to vapors migrating to inside building would remain.	Would reduce the concentrations and risks are anticipated to be minimal following treatment. SVE will control vapor migration until concentrations are reduced to levels such that SVE is no longer needed.	Would reduce the concentrations and risks are anticipated to be minimal following treatment. SVF, will control vapor migration until concentrations are reduced to levels such that SVE is no longer needed.	Would reduce the concentrations and risks are anticipated to be minimal following treatment. SVE will control vapor migration until concentrations are reduced to levels such that SVE is no longer needed.
Risks Rating	Poor	Good	Good	Good
6) BENEFITS	A Provide a strategy of the second seco			
 Restoration of natural resources 	Would require a long timeframe to restore groundwater.	Could reduce timeframe to reduce concentrations.	Could reduce timeframe to reduce concentrations.	Could reduce timeframe to reduce concentrations.
 Providing for the productive reuse of the site 	Not applicable.	Not applicable.	Not applicable.	Not applicable.
 Avoided cost of relocating businesses, people, or providing alternative water supplies 	Not applicable.	Not applicable.	Not applicable.	Not applicable.
 Avoided loss value of the site 	No lost value.	No lost value.	No lost value.	No lost value.
Bencfits Rating	Poor	Good	Good	Good

i

P:\^J\23728\Focused Feasibility Study\T061303(Thie4-1_Fmr_malden_mgp_parcel_B).DOC 07/01/03

Page 3 of 4

ł

E

REMEDIAL ACTION ALTERNATIVE EVALUATION FORMER MALDEN SITE PARCEL B MALDEN, MASSACHUSE'TTS

•

EVALUATION CRITERIA	Alt-1: No Further Action	Alt-2: Air Sparging with SVE	Alt-3: Biosparging with SVE	Alt-4: Chemical Oxidation with SVE
7) TIMELINESS				
 Time to climinate any uncontrolled sources and achieve a level of No Significant Risk 	Would not reduce concentrations in a timely manner and would require a long timeframe to achieve a level of no significant risk.	Could address the contaminants in a shorter timeframe. SVE will achieve a Condition of No Significant Risk upon startup by controlling vapor migration. GW treatment may reduce concentrations such that operation of SVE system is no longer needed and a Permanent Solution is attained.	Could address the contaminants in a shorter timeframe. SVE will achieve a Condition of No Significant Risk upon startup by controlling vapor migration. GW treatment may reduce concentrations such that operation of SVE system is no longer needed and a Permanent Solution is attained.	Could address the contaminants in a shorter timeframe. SVE will achieve a Condition of No Significant Risk upon startup by controlling vapor migration. GW treatment may reduce concentrations such that operation of SVE system is no longer treeded and a Permanent Solution is attained.
Timeliness Rating	Poor	Good	Good	Good
8) NON-PECUNIARY INTERESTS	LS			
Aesthetics	No effects on aesthetics.	Moderate site disturbance with installation of wells and equipment shed.	Modcrate site disturbance with installation of wells and equipment shed.	Moderate site disturbance with installation of wells and equipment shed.
Non-Pecuniary Rating	Good	Fair	Fair	Fair

P:\'J\23728\Focused Feasibility Study\T061303(Tple4-1_Frmr_malden_mgp_parcel_B).DOC 07/01/03

Page 4 of 4

ł

• 0

TABLE 4-3 ALTERNATIVE 2: Air Sparging with SVE COST ESTIMATE FORMER MALDEN MGP SITE PARCEL B Malden, Massachusetts

.

Car	pital		
<u>ya</u>	Pitas		

ITEM	NOTES ^b	UNIT [€]	QUANTITY*	UNIT COST ^d	INSTALLEI COST
Mobilization and Demoblization	4	LS	1	\$5,000	\$5,000
Site Preparation	5	LS	1	\$5,000	\$5,000
Horizontal Well Installation	6	LF	2,520	\$140	\$352,800
Freatment equipment enclosure	7	LS	1	\$5,000	\$5,000
Instrumentation, Electrical, and Controls	8	LS	1	\$20,000	\$20,000
Air Sparging System					
Blower	9	EA	1	\$6,000	\$6,000
Manifold Piping	10	LF	150	\$8	\$1,100
Solid Horizontal Well Pipe	11	LF	510	\$3	\$1,300
Slotted Horizontal Well Pipe	12	LF	750	\$20	\$15,000
Utility Vaults	13	EA	4	\$2,000	\$8,000
Soil Vapor Extraction System					
Vacuum Pump	14	EA	1	\$73,000	\$73,000
Vapor Control and Treatment System (Activated Carbon)	15	EA	1	\$6,000	\$6,000
Manifold Piping	10	LF	460	\$13	\$6,000
Solid Horizontal Well Pipe	11	LF	510	\$3	\$1,300
Slotted Horizontal Well Pipe	16	LF	750	\$6	\$4,100
Utility Vaults	13	EA	6	\$2,000	\$12,000
Vertical Extraction Wells	17	EA	5	\$1,500	\$7,500
System Start-up and Optimization	18	LS	1	\$5,000	\$5,000
Miscellaneous		%	25		\$133,500
1				SUBTOTAL	\$668,000
Engineering Design & Reporting	19	%	15		\$100,200
Project/Construction Management		%	10		\$66,800
Contingency		⁰∕₀	10		\$66,800

İ

TABLE 4-3 ALTERNATIVE 2: Air Sparging with SVE COST ESTIMATE FORMER MALDEN MGP SITE PARCEL B Malden, Massachusetts

Operation and Maintenance

ITEM ⁴	NOTES	O&M PERIOD ^f	FREQUENCY	ANNUAL COST ^e	PRESENT WORTH ⁸
Quarterly Monitoring Carbon Changeouts Plant Operations and Equipment Replacement	20 21 28	3 3 3	Quarterly Quarterly Annually	\$3,500 \$500 \$20,000	\$40,000 \$5,700 \$56,600
			TOTAL PRES	ENTWORTH	\$100,000

Notes:

a: Items and quantities included in this estimate are based on preliminary system designs for the purpose of the Phase III Detailed Evaluation and may change based on system design.

b: Notes are presented in the pages following the cost tables.

e: I.S: Lump Sum, LF: Linear Foot, SY: Square Yard, CY: Cubic Yard

d: Unit costs represent Year 2003 dollars and are estimated based on cost estimating guidances and Brown and Caldwell experience.

f. Installed costs are rounded to the nearest Eurofred, subtotals are rounded to the nearest thousand, and totals are rounded to the nearest ten thousand.

er. Installed costs are rounded to the nearest hundred, subtotals are rounded to the nearest thousand, and totals are rounded to the nearest ten thousand.

f: O&M Period refers to the estimated monitoring time for the remedial option. These timeframes are estimates and actual operating times could be shorter or longer. g: Present worth estimates are based on extending the annual cost over the O&M period at a discount rate of 3%. TABLE 4-4 ALTERNATIVE 3: Biosparging with SVE COST ESTIMATE FORMER MALDEN MGP SITE PARCEL B Malden, Massachusetts

1

Capital

ITEM [*]	NOTES	UNIT	OUNTER	UNUT COOTA	INSTALLED
	NOIES	UNII	QUANTITY*	UNIT COST ^d	COST
Mobilization and Demoblization	4	LS	1	\$5,000	\$5,000
Site Preparation	5	LS	1	\$5,000	\$5,000
Horizontal Well Installation	6	LF	2,520	\$140	\$352,800
Treatment equipment enclosure	7	LS	1	\$5,000	\$5,000
Instrumentation, Electrical, and Controls	8	LS	1	\$20,000	\$20,000
Air Sparging System					
Blower	22	EA	1	\$3,000	\$3,000
Manifold Piping	10	LF	150	\$8	\$1,100
Solid Horizontal Well Pipe	11	LF	510	\$3	\$1,300
Slotted Horizontal Well Pipe	12	LF	750	\$20	\$15,000
Utility Vaults	13	EA	4	\$2,000	\$8,000
Soil Vapor Extraction System			6)		
Vacuum Pump & Controls	23	EA	1	\$37,000	\$37,000
Vapor Control and Treatment System (Activated Carbon)	15	EA	1	\$6,000	\$6,000
Manifold Piping	10	LF	460	\$13	\$6,000
Solid Horizontal Well Pipe	11	LF	510	\$3	\$1,300
Slotted Horizontal Well Pipe	16	LF	750	\$6	\$4,100
Utility Vaults	13	EA	6	\$2,000	\$12,000
Vertical Extraction Wells	17	EA	5	\$1,500	\$7,500
System Start-up and Optimization	18	LS	1	\$5,000	\$5,000
Miscellaneous		%	25		\$123,800
				SUBTOTAL	\$619,000
Engineering Design & Reporting	19	%	15	8	\$92,900
Project/Construction Management		%	10		\$61,900
Contingency		%	10		\$61,900
	1000		TOTAL	CAPITAL COST	\$840,000

P:\^J\23728\Focused Feasibility Study\Cost Estimate 7/1/2003

TABLE 4-4 ALTERNATIVE 3: Biosparging with SVE COST ESTIMATE FORMER MALDEN MGP SITE PARCEL B Malden, Massachusetts

Operation and Maintenance

ITEM*	NOTES	O&M PERIOD ^f	FREQUENCY	ANNUAL COST ⁴	PRESENT WORTH ⁸
Quarterly Monitoring	20	5	Quarterly	\$3,500	\$64,800
Carbon Changeouts	21	5	Quarterly	\$500	\$9,300
Plant Operations and Equipment Replacement	28	3	Annually	\$20,000	\$56,600
			TOTAL PRES	ENT WORTH	\$130,000

Notes:

a: Items and quantities included in this estimate are based on preliminary system designs for the purpose of the Phase III Detailed Evaluation and may change based on system design.

b: Notes are presented in the pages following the cost tables.

c: LS: Lump Sum, LF: Linear Foot, SY: Square Yard, CY: Cubic Yard

d: Unit costs represent Year 2003 dollars and are estimated based on cost estimating guidances and Brown and Caldwell experience.

f. Installed costs are rounded to the nearest hundred, subtotals are rounded to the nearest thousand, and totals are rounded to the nearest ten thousand.

e. Installed costs are rounded to the nearest hundred, subtotals are rounded to the nearest thousand, and totals are rounded to the nearest ten thousand.

f: O&M Period refers to the estimated monitoring time for the remedial option. These timeframes are estimates and actual operating times could be shorter or longer. g: Present worth estimates are based on extending the annual cost over the O&M period at a discount rate of 3%.

P:\^J\23728\Focused Feasibility Study\Cost Estimate 7/1/2003

2 of 2

TABLE 4-5 ALTERNATIVE 4: Chemical Oxidation with SVE COST ESTIMATE FORMER MALDEN MGP SITE PARCEL B

Malden, Massachusetts

Operation and Maintenance

ITEM*	NOTES	O&M PERIOD ^f	FREQUENCY	ANNUAL COST ⁴	PRESENT WORTH ⁸
Quarterly Monitoring Carbon Changeouts	20 21	3 3	4 times/year 4 times/year	\$3,500 \$500	\$40,000 \$5,700
Plant Operations and Equipment Replacement	28	3	Annually	\$20,000	\$56,600
		10.000 10.000	TOTAL PRES	ENT WORTH	\$100,000

Notes:

a: Items and quantities included in this estimate are based on preliminary system designs for the purpose of the Phase III Detailed Evaluation and may change based on system design.

h: Notes are presented in the pages following the cost tables.

e: LS: Lump Sum, LF: Linear Foot, SY: Square Yard, CY: Cubic Yard

d: Unit costs represent Year 2003 dollars and ire estimated based on cost estimating guidances and Brown and Caldwell experience.

f. Installed costs are rounded to the nearest hundred, subtotals are rounded to the nearest thousand, and totals are rounded to the nearest ten thousand.

er. Installed costs are rounded to the nearest hundred, subtotals are rounded to the nearest thousand, and totals are rounded to the nearest ten thousand.

F: O&M Period refers to the estimated monitoring time for the remedial option. These timeframes are estimates and actual operating times could be shorter or longer. g: Present worth estimates are based on extending the annual cost over the O&M period at a discount rate of 3%.

P:\^J\23728\Focused Feasibility Study\Cost Estimate 7/1/2003

2 of 2

5.0 SELECTION OF A REMEDIAL ACTION ALTERNATIVE

This section presents a comparison of the alternatives evaluated in the detailed evaluation, a feasibility evaluation, and the recommended alternative to address groundwater and soil vapor impacts at Parcel B. The comparison of alternatives and selection of a remedial action alternative are based on the results of the detailed evaluation.

In accordance with the MCP (310 CMR 40.0860), this section includes a discussion of the evaluation of the feasibility of:

- Implementing a Permanent Solution;
- Reducing the concentration of oil and hazardous material in the environment to levels that achieve or approach background; and
- Reducing the concentrations of oil and hazardous material in soil at a disposal site to levels at or below applicable soil Upper Concentration Limits.

5.1 COMPARISON OF ALTERNATIVES

As shown in the detailed evaluation, Alt-1, No Further Action, rated the least favorable for most categories. While it is the least costly option, it does not reduce the contaminants in the subsurface or the associated risks. It does not provide any benefits, nor does it assist in the restoration of the aquifer within a reasonable time frame. Based on these factors, Alt-1 was not considered a viable alternative for Parcel B.

The remaining alternatives were rated comparatively favorable for this application. These technologies have been documented to reduce the COCs that are present and the evaluation of the site geology was favorable for an in-situ treatment application. The costs for the alternatives are comparable. Implementation of any of these three alternatives would probably result in a successful reduction of COCs.

There were slight disadvantages of one technology over the others relating to implementability. Alt-4 (Chem Ox) requires more intense training and higher level field personnel to meet operational requirements. The equipment is slightly more difficult and complex to install, operate and maintain. In addition, there is a limited potential for exposures to ozone by the field personnel. For Alt-2 (Air Sparging), while the volatilization of benzene may be easily accomplished, the volatilization of naphthalene may not be accomplished as easily. Since air sparing requires air flow rates twice as high as biosparging, air sparging equipment and operational costs will be greater. Also, this treatment has a higher potential to generate benzene in the vapor phase, since that is the treatment mechanism. Considering there is a concern for the potential migration of vapors into the building, this alternative is slightly less favorable than biosparging. Therefore, for this application, the one alternative that was slightly favored above the others was Alt-3, Biosparging with SVE.

5.2 FEASIBILITY OF IMPLEMENTING A PERMANENT SOLUTION

The MCP (310 CMR 40.0860) requires a feasibility evaluation of implementing a Permanent Solution only in cases where the remedial action alternative is a Temporary Solution. The recommended remedial action alternative is intended to address constituents in the indoor air such that concentrations present after implementation of the remedial action alternative do not pose a significant risk of harm to health, safety, public welfare or the environment during any foreseeable period of time. However, since an area of concentrated contamination in the soil that is most likely contributing to the groundwater and indoor air contamination has not been identified, there is uncertainty as to the timeframe that would be required to reduce the concentrations to a level where a No Significant Risk could be demonstrated. The remedy would be implemented under a Remedy Operation Status, but if it became apparent that it is not feasible to reduce the concentrations in a reasonable time frame, the remedy would be considered a Temporary Solution.

5-2 P:\^J\23728\Focused Feasibility Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003

5.3 FEASIBILITY OF ACHIEVING OR APPROACHING BACKGROUND

The MCP requires an evaluation of the feasibility of reducing the levels of concentrations of oil and hazardous materials in the environment to levels that achieve or approach background when a remedial alternative is selected that constitutes a Class A-2, A-3, or A-4 RAO. To achieve or approach background levels, current COC concentrations in groundwater would have to be reduced and any areas of concentrated contaminations impacting site groundwater would have to be mitigated. As previously mentioned, an area of concentrated contamination of the groundwater contamination has not been definitively located. It is presumed to be beneath the building. Groundwater sampling upgradient of the building, north of Parcel B, indicated that the groundwater contamination is not from an upgradient source. If an area of concentrated contamination was identified beneath the building, excavation and removal of material is not feasible.

The objective of the remedial action alternatives is to control risks associated with the migration of VOCs to indoor air. This objective can be achieved by reducing the concentrations in groundwater or by collecting vapors with the SVE system. The SVE system will have some effect on the soil contaminant concentrations since this technology can result in the volatilization of contaminants in the vadose zone, but not the saturated zone. However, without knowing the location of the area of concentrated contamination, effectively reducing the concentrations in soil cannot be expected. The resulting impacts to groundwater from the soil may persist for some time. Therefore, treating groundwater to levels that achieve or approach background is not probable.

5.4 FEASIBILITY OF REDUCING CONCENTRATIONS IN SOIL TO BELOW UCLs

The Phase II investigation for the site reported that soil COCs above UCL's were not detected on Parcel B. However, as stated above, the area of concentrated contamination of the groundwater contamination has not been definitively located and it has been presumed that it is beneath the building. Soil sampling in borings drilled through the floor slab in suspected locations has not located an area of concentrated contamination. At this point, further investigation in an effort to locate an area of concentrated contamination is not considered to be feasible. Of note, some reduction of the COCs in the soil may occur insitu as a side benefit of the installation and operation of a SVE system, although it is not the primary goal of that system. Therefore, reduction of concentrations of COCs may occur, but without knowing the location of the area of concentrated contamination, the feasibility of reducing the concentrations of a potential area of concentrated contamination is not predictable.

5.5 SELECTION OF ALTERNATIVES

As mentioned in Section 5.1, the remedial action alternative selected for the site is Alt-3, Biosparging with SVE. The selection of the recommended remedial alternative was based on the results of the detailed evaluation. The recommended remedial alternative is expected to achieve the remedial action objectives set forth in Section 2, and is technologically feasible, as defined by the MCP. However, the timeframe in which treatment would be required is uncertain. Therefore, potentially this remedial alternative could achieve a Permanent Solution, however, that would be determined based actual field operations.

A conceptual design of the system prepared for this report assumed that three horizontal delivery wells for biosparging would be installed and run the length of the building. The biosparging wells would be connected to manifold piping and a blower station located in the southwest corner of the property. The wells would be screened in the areas where the plume has been identified. If it is necessary that nutrients be added to the subsurface, the required equipment would be included in the system design.

The SVE system would include the installation of four horizontal wells in between the biosparging wells. The SVE would also be screened in the area where the plume has been identified. In an effort to be more cost effective, the area in front of the building vertical extraction wells could be installed. These wells would be located outside and adjacent to the foundation of the building. The SVE extraction wells would be connected to manifold piping and a vapor treatment system located in a shed or trailer on-site. The treated air would be released to the atmosphere. In order to adequately capture the vapors under the

5-4

building, the SVE system should operate at an air flow rate approximately four times greater than the air flow rate of the biosparging system.

In addition to treatment, it was assumed that groundwater monitoring would be conducted at the site. This would include sampling of five wells quarterly during the operation of the treatment system (5 years was assumed).

Prior to the final design, field testing will be conducted to obtain site specific information that will be used to calculate design parameters. A site specific field testing program will be developed during the initial design activities. One option for determining the horizontal well spacing is conducting a two part field test for use in designing the SVE system and the air sparging system. The test would be fairly simple and would include the installation of several probes near an existing well, if possible, in an area that would not affect operations. The first part of the test would be to establish soil vapor extraction rates through the subgrade at selected locations. A vacuum would be applied to the well at different pressures and flow rates, and the vacuum in the GeoProbes[®] would be measured. This information would be used to design the SVE system. Then, for the second part of the test, air (and possibly a tracer, such as helium) would be injected in the well at different flow rates and pressures, and the biosparging system.

As previously mentioned in Section 2.3, MEC is conducting an evaluation of the HVAC system for the facility on Parcel B, and therefore, the implementation of a new or modified HVAC system was not included in this report. If, however, site conditions or other parameters interfere with the successful installation of a horizontal well system that would meet the design requirements of the remedial alternative selected for the site, then further effort will be directed towards the consideration of the implementation of an HVAC system for the facility at Parcel B that would minimize the infiltration of vapors from the subgrade.

P:\^J\23728\Focused Feasibility Study\RAP061903(rem_sct_pln_sddendm).DOC 7/1/2003

6.0 PRELIMINARY SCHEDULE FOR IMPLEMENTATION OF PHASE IV ACTIVITIES

The MCP requires that the selected remedial alternative by developed and implemented in accordance with the Phase IV requirements of the MCP (310 CMR 40.0870). The MCP requires that a detailed design be presented in the format of a Remedy Implementation Plan (RIP). The RIP must include a list of relevant contacts, documentation of the engineering concepts and criteria used in the design and implementation of the remedy, construction plans and specifications, an operation, maintenance, and monitoring plan, a health and safety plan, and a list of any necessary federal, state or local permits. A description of long-term monitoring and maintenance activities will also be included in a plan.

As mentioned previously, the implementation of biosparging has been estimated to take five years to complete. A breakdown of the timeframes to complete the project is included below:

Field/Lab Studies	3 months
Preparation of Phase IV RIP	5 months
Contractor Procurement	2 months
Installation of Biosparge and SVE System	2 months
Startup and Optimization	1 month
Preparation of Final Inspection Report	2 months
Remedy Operation	5 years
Total Estimated Time	6-7 years

This is an estimated time frame. If a Permanent Solution is attained in 5 years or less, then a Class A RAO would be filed. Otherwise, a Class C RAO could be filed and the system would continue to operate as a Temporary Solution until it becomes feasible to implement a Permanent Solution.

6-1 P:\^J\23728\Focused Feasibili.y Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003

REFERENCES

- USEPA, "A Technology Assessment of Soil Vapor Extraction and Air Sparging", Office of Research and Development, EPA 600/R-192/173, September 1992.
- Wisconsin Department of Natural Resources, "Guidance for Design, Installation and Operation of Soil Venting Systems', Emergency and Remedial Response Section, July, 1993.
- USEPA, "Engineering Forum Issue Paper: Soil Vapor Extraction Implementation Experiences", Office of Solid Waste and Emergency Response, EPA/F-95/030, April, 1996.
- USEPA, "Engineering Bulletin, Chemical Oxidation Treatment", Office of Emergency and Remedial Response, EPA/540/2-91/025, October, 1991.
- Interstate Technology and Regulatory Cooperation Work Group, "Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater", June, 2001.
- Haley & Aldrich, "Phase II-Comprehensive Site Assessment, Former Malden MGP Site, Malden, Massachusetts, RTN 3-0362, Tier IB Permit 7378, June, 2003."
- Haley & Aldrich, "Phase III-Remedial Action Plan, Former Malden MGP Site, Malden, Massachusetts, RTN 3-0362, Tier IB Permit 7378, June, 2003."

R-1 P:\^J\23728\Focused Feasibility Study\RAP061903(rem_act_pln_addendm).DOC 7/1/2003