

CB&I Environmental & Infrastructure, Inc. 150 Royall Street Canton, MA 02021 617-589-5111

FAX: 617-589-5495

November 6, 2014 Project #: 152780/06

Massachusetts Department of Environmental Protection Northeast Regional Office 205B Lowell Street Wilmington, Massachusetts 01887

Subject: Phase V Remedy Operation Status - Inspection & Monitoring Report

April 1, 2014 through September 30, 2014

Former Varian Facility Site Beverly, Massachusetts MADEP # 3-0485

To Whom It May Concern:

On behalf of Varian Medical Systems, Inc., CB&I Environmental and Infrastructure, Inc. has prepared the enclosed Phase V Remedy Operation Status - Inspection & Monitoring Report summarizing the activities conducted from April 1, 2014 through September 30, 2014 for the former Varian Facility Site in Beverly, Massachusetts. A copy of this report has also been provided to the Varian Public Involvement Plan (PIP) repository at the Beverly City Library, the City of Beverly Board of Health, and the Beverly Conservation Commission. An e-copy of this report will shortly be posted on the web site maintained for the former Varian Facility Site (http://www.beverlycleanup.varian.com). A notice of availability for this document has also been issued to the PIP mailing list established for this Site.

If you have any questions regarding the report, please do not hesitate to contact me.

Sincerely,

Raymond J. Cadorette Project Manager

CB&I Environmental and Infrastructure, Inc.

Phone: 617-589-6102

Email Address: Raymond.cadorette@CBI.com

Enclosure: BWSC-125

Receipt from eDEP Transaction ROS Report (electronic copy on CD)

cc: See attached distribution list

DISTRIBUTION

Hardcopy

Mr. John Buchanan, Varian Medical Systems, Inc. (all enclosures)
Ms. Suzanne Nichelson, Varian PIP Repository, Beverly MA (report only)
Paul Beattie, Esquire, Fafard Real Estate & Development Corporation (report only)

Electronic Copy— report only on CD

Mr. Frank Carbone, Beverly Board of Health

Ms. Debbie Hurlburt, Beverly Conservation Commission

Mr. Paul Miedzionoski, Communications & Powers, Inc.

Mr. Grove Bryant, Signal Technology Corporation

District Four Environmental Engineer, Massachusetts Highway Department

Ms. Bobbi Whiting, Shore Country Day School

Mr. Peter Muto, Cell Signaling Technology, 32 Tozer Road

Mr. Andrew Irwin, IRWIN Engineers, Inc.

Ms. Charlotte Parrish, U.S. Postal Service

1943 LLC, c/o John Drislane

Mr. Manuel Barros, 31 Tozer Road LLC

Mr. Richard High, John N. Corcoran & Co.

Richard Gallogly, Esquire, Rackemann, Sawyer & Brewster

Mr. David Doyle, Arro Engineering Corporation

Seth Jaffe, Esquire, Foley Hoag LLP

Daniel J. Bailey, Esquire, Rackemann, Sawyer & Brewster

Mr. Jonathan D. Penni, Cervinia LLC

CB&I Environmental and Infrastructure, Inc.

150 Royall Street Canton, MA 02021 Tel: +1 617 589 5111

Fax: +1 617 589 5111 www.CBl.com

MASSACHUSETTS CONTINGENCY PLAN PHASE V REMEDY OPERATION STATUS INSPECTION & MONITORING REPORT April 1, 2014 through September 30, 2014

FORMER VARIAN FACILITY SITE 150 SOHIER ROAD BEVERLY, MASSACHUSETTS 01915

MADEP Site # 3-0485

October 31, 2014

CB&I Environmental and Infrastructure, Inc.

Prepared By:

Pernilla Haley

Environmental Scientist

Raymond J. Cadorette Project Manager

Timothy W. Kemper, P.E. Licensed Site Professional

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND	3
	1.1 Introduction	3
	1.2 Background Information	3
2.0	DESCRIPTION OF OPERATION, MAINTENANCE, AND/OR MONITORING ACTIVITIES (310 CMR	
	40.0892 (2)(a))	
	2.1 Building 3 and 5 Assessment Activities	
	2.1.1 Drain Line Inspections	
	2.1.2 Building 3 Pilot Testing	
	2.1.3 Installation of Groundwater Monitoring Wells OB45-S and OB45-DO	
	2.2 Site-Wide Groundwater and Surface Water Sampling	
	2.2.1 Sample Collection and Analysis	11
	2.2.2 VOC Monitoring Results	
	2.2 Groundwater Permanganate Treatment Program	
	2.2.1 Permanganate Injection Activities	
	2.2.2 Permanganate Parameter Monitoring and Results	
	2.3 Bioremediation Program	
	2.3.1 Bioremediation Parameter Monitoring Results	
	2.4 Building 3 SVE System	
	2.4.1 Building 3 Soil Vapor and Indoor Air Sampling	
	2.4.2 Building 3 Horizontal SVE Well Installation	
	2.4.3 Building 3 SVE System Operation and Maintenance	
	2.4.4 Building 3 SVE System Performance	
	2.5 Building 5 SVE System	
	2.5.1 Building 5 Soil Vapor and Indoor Air Sampling	
	2.5.2 Building 5 SVE Trench Installation	
	2.5.3 Building 5 SVE System Operation and Maintenance	
	2.5.4 Building 5 SVE System Performance	
	2.6 32 Tozer Road Soil Vapor and Indoor Air Sampling	
	2.7 Quality Assurance/Quality Control (QA/QC)	37
3.0	SIGNIFICANT MODIFICATIONS TO THE OPERATION, MAINTENANCE, AND/OR MONITORING	
	PROGRAM (310 CMR 40.0892 (2)(b))	.38
4.0	PROGRAM (310 CMR 40.0892 (2)(b)) EVALUATION OF THE PERFORMANCE OF REMEDIAL ACTIVITIES (310 CMR 40.0892 (2)(c))	. 38
	4.1 Building 3 Indoor Air Evaluation	. 40
	4.2 Building 5 Indoor Air Evaluation	
	4.3 Evaluation of Off-Site Properties	
	4.3.1 32 Tozer Road	
	4.3.2 30 Tozer Road	. 41
	4.3.3 39 Tozer Road	
5.0	MEASURES TAKEN TO ADDRESS PROBLEMS AFFECTING THE PERFORMANCE OF THE	
	REMEDIAL ACTION (310 CMR 40.0892 (2)(d))	.41
6.0	ACTIVE EXPOSURE PATHWAY MITIGATION MEASURES (310 CMR 40.1026)	. 41
	6.1 Operational Regimen for Active Exposure Pathway Mitigation Measure (310 CMR 40.1026(3) (a)),
	(b) & (c))	
	6.3 Remote Monitoring for Active Exposure Pathway Mitigation Measure (310 CMR 40.1026(3)(d))	
	6.4 Duration of Active Exposure Pathway Mitigation Measure Shutdown (310 CMR 40.1026(e))	
	REFERENCES	
8 N	LIMITATIONS ON WORK PRODUCT	46

TABLES

Table 1 Table 2A Table 2B Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 13 Table 14	Summary of Soil Vapor Extraction Tests Results, Building 3 Drain Lines and Injection Galleries Water Quality Sample Summary – April 2014 Water Quality Sample Summary – August 2014 Water Quality Data - VOC Results Water Quality Data - Chloride, Dissolved Iron and Dissolved Manganese Results Water Quality Data - Bioremediation Parameters Permanganate Concentrations in Groundwater Permanganate Injection Volume - 2014 Treatment Program Sub-Slab Soil Vapor Analytical Results – Building 3 Area Indoor Air Analytical Results – Building 3 SVE System Soil Vapor Analytical Results – Building 3 SVE System VOC Mass Removal Estimate Summary – Building 3 SVE System Indoor Air Analytical Results – Building 5 Area Sub-Slab Soil Vapor Analytical Results – Building 5 Area
	·
Table 14	Operation and Maintenance Data – Building 5 SVE System
Table 16 Table 17 Table 18 Table 19	VOC Mass Removal Estimate Summary – Building 5 SVE System Soil Vapor Analytical Results - Building 5 SVE System Sub-Slab Soil Vapor and Indoor Air Sampling Results – 32 Tozer Road Risk Evaluation – Indoor Air Exposure – Site Workers – 32 Tozer Road

FIGURES

Figure 1	Site Location Map
Figure 2	Expanded Site Plan
Figure 3	Bioremediation Injection Well Locations
Figure 4	Building 3 SVE Pilot Test Sketch
Figure 5	Groundwater Elevation Contours in Shallow Overburden Aquifer
Figure 6	Groundwater Elevation Contours in Deep Overburden Aquifer
Figure 7	Groundwater Elevation Contours in Bedrock Aquifer
Figure 8	Estimated Distribution of Total VOC Concentrations in Shallow Overburden Aquifer
Figure 9	Estimated Distribution of Total VOC Concentrations in Deep Overburden Aquifer
Figure 10	Estimated Distribution of Total VOC Concentrations in Bedrock Aquifer
Figure 11	Building 3 Remedial Treatment Area And Sampling Locations
Figure 12	Building 3 Treatment Area – SVE Cross Section
Figure 13	VOC Mass Removal Estimate – Building 3 Sub-slab SVE System
Figure 14	Building 5 Remedial Treatment Area
Figure 15	VOC Mass Removal Estimate – Building 5 Sub-slab SVE System
Figure 16	Site Plan 32 - Tozer Road

APPENDICES

Appendix A	MADEP Comprehensive Response Action Transmittal Form (BWSC108) and Remedial Monitoring Report (RMR)
Appendix B	Drain Line Assessment Building 3 and 5
Appendix C	Copies of Waste Manifests
Appendix D	Drilling Logs
Appendix E	Groundwater Gauging Results and Physical Parameter Data
Appendix F	Laboratory Analytical Reports
Appendix G	Groundwater VOC Concentration Trend Graphs

1.0 INTRODUCTION AND BACKGROUND

1.1 Introduction

On behalf of Varian Medical Systems, Inc. (Varian), CB&I Environmental and Infrastructure, Inc. (CB&I), has prepared this semi-annual Remedy Operation Status (ROS) Inspection and Monitoring Report for the former Varian facility located at 150 Sohier Road as well as other properties located in the vicinity (the Site) in Beverly, Massachusetts. This report is being submitted for Release Tracking Number (RTN) 3-0485 in accordance with the requirements of the Massachusetts Contingency Plan (MCP; 310 CMR 40.000). A Site Location Map illustrating the location of the former Varian facility is attached as **Figure 1**, and a Site Plan is attached as **Figure 2**.

This semi-annual report summarizes activities conducted during the period of April 1, 2014 through September 30, 2014. Results of remedial activities and monitoring conducted during this reporting period are presented in this report. As required, the Massachusetts Department of Environmental Protection (MADEP) Comprehensive Response Action Transmittal Form (BWSC108) and Remedial Monitoring Reports (RMR) associated with this submittal were submitted electronically to MADEP. Copies of BWSC108 and the RMRs are included in **Appendix A**. This Inspection and Monitoring Report has been formatted to reference the requirements outlined in Section 310 CMR 40.0892(2) of the MCP.

1.2 Background Information

Based on the Phase II Comprehensive Site Assessment (CSA) completed in 2000 (IT, 2000), a condition of No Significant Risk existed at the Site with the exception of potential future significant risk associated with groundwater use in the area identified as a Potentially Productive Aquifer (PPA) north of Route 128. Groundwater concentrations in this PPA area were above applicable Massachusetts Drinking Water Standards. As a result, one of the stated remedial action goals in the December 2001 Phase IV Remedial Implementation Plan (Phase IV Plan) submitted to MADEP for the Site, was to achieve Drinking Water Standards in this area of the site (IT, 2001).

The Phase IV Plan proposed remedial actions for addressing volatile organic compounds (VOCs) in soil and groundwater at the subject Site. *In situ* oxidation of VOCs in soil and groundwater using permanganate solution was chosen as the best remedial alternative for the Site. The Phase IV Plan proposed treatment in the "source areas" to achieve these objectives. The Potential Source Location (PSL) areas at the former facility identified in the Phase IV Plan as potentially affecting the PPA area are listed below:

- PSL 5 Potential former septic tank near Building 3
- PSL 6 -Potential former septic tank/leach field at Building 6
- PSL 9 Inspection pit near Building 3
- PSL 11 –Chemical laboratory at Building 3
- PSL 12 Potential former lime pit near Building 3

Other PSL areas that do not impact the PPA and certain other downgradient areas have been included in the *in situ* oxidation program to expedite groundwater cleanup. These areas include PSL 7--Building 5

Chem Lab, PSL 10--open field at south end of 150 Sohier Road, and downgradient treatment areas at 31 Tozer Road and in the Longview/Hill Street area.

Implementation of the Comprehensive Response Actions, including the injection of permanganate solution, began in July 2002 and a Phase IV As-Built and Final Inspection Report (Shaw, 2002a) detailing initial Phase IV activities including permitting, well installation, construction of the remedial treatment system, and initial implementation of remedial actions was submitted to MADEP in October 2002. The Phase IV As Built and Final Inspection Report also provided results of additional soil and groundwater analyses, identified minor modifications made to the Phase IV Plan, and documented the final inspection of the remedial system.

In December 2002, Varian submitted a Remedy Operation Status Opinion (Shaw, 2002b), which stated that the performance standards for ROS, as specified in 310 CMR 40.0893(2), have been achieved and will be maintained at the Site. A Response Action Outcome (RAO) has not yet been achieved at the Site, and the operation and maintenance of the remedial action will proceed under Remedy Operation Status.

The sodium permanganate treatment conducted at the Site since 2002 has produced significant reductions in chlorinated VOC levels at multiple depths in groundwater across the Site. These remedial activities are reported to MADEP in regular semi-annual ROS reports. As detailed in the October 2006 status report, bioremediation was proposed as a supplemental remedial approach to address two small VOC impacted areas in the northeast corner of the Site (Shaw, 2006). The first area includes shallow groundwater with residual trichloroethene (TCE) impacts located close to the Unnamed Stream to the northeast of Building 9 (**Figure 3**). Bioremediation was used to address the shallow groundwater near the Unnamed Stream in lieu of permanganate because permanganate treatment may affect the stream. The second bioremediation area is northeast of Building 3 where deep overburden groundwater is impacted with residual 1,1,1-trichloroethane (TCA), which is not effectively treated with permanganate.

Subsequent to the start of Comprehensive Response Actions, the PPA designation for the area to the north of Route 128 was removed by MADEP and, as a result, Drinking Water Standards no longer apply to this area. Therefore, the Remedial Action Goal specified in the Phase IV Plan to achieve drinking water standards in downgradient wells in the PPA area such as BR-1 is no longer applicable. As presented in the October 30, 2010 ROS report (Shaw, 2010b), the following updated remedial action goals will be used for ongoing response actions being conducted under Phase V ROS at the Site:

- Maintain compliance with Upper Concentration Limits (UCLs);
- Achieve a condition of No Significant Risk for site workers in site buildings by remediating, where necessary, elevated VOC concentrations in soil and groundwater beneath buildings;
- Limit rebound in VOC source areas such that potential impacts to indoor air in downgradient areas continue to pose No Significant Risk;
- Demonstrate that VOC concentrations in groundwater at the Site do not represent an uncontrolled source for impacts to surface water; and
- Demonstrate that VOC concentrations in soil and groundwater at the Site continue to pose No Significant Risk in accordance with current MADEP requirements.

To achieve these goals, the previously proposed remediation planning criteria will continue to be applied to focus remediation activities at the Site. These remediation planning criteria include the decrease of target VOC concentrations in certain source area wells to 50 percent or less of the UCL and the reduction of target VOC concentrations (including breakdown products) in treatment areas by at least 50 percent below pretreatment levels in order to mitigate potential post-remediation rebound effects. These remediation planning criteria are consistent with MADEP guidance (Policy #WSC-04-160) on the feasibility of achieving background concentrations which indicates that a reduction of risk to 50% of a level where No Significant Risk is achieved will be considered approaching background conditions and appropriate site closure criteria with Presumptive Certainty (MADEP, 2004b).

In December 2012, CB&I submitted a modification of the Phase III Remedial Action Plan (RAP) and Phase IV Plan for RTN 3-0485 (Shaw, 2012d). This modification addressed the Building 5 remedial area, located in the central portion of the former Varian facility (**Figure 2**). The Building 5 treatment area was not previously included in the original Phase III RAP and Phase IV Plan submitted to MADEP in 2001 (IT, 2001). The Phase III RAP was modified to identify, evaluate, and select remedial action alternatives to reduce potential risk associated with indoor air exposure in the Building 5 area. Soil vapor extraction (SVE) was selected as the preferred remedial alternative. The goal of the selected remedial action alternative in the Modified Phase III RAP was to control exposures and reduce VOC concentrations remaining in shallow soil that have the potential to migrate into the indoor air of Building 5. The Modified Phase IV Plan provided detail engineering designs, waste management plans, and initial operation and maintenance activities for the selected SVE remedial alternative (Shaw, 2012d). Details regarding the Building 5 SVE installation, including a Final Licensed Site Professional (LSP) Inspection and Phase IV Completion Statement, were included in the October 2013 status report (Shaw, 2013c).

Remediation in the Building 3 area, located in the northeast corner of the former Varian facility (Figure 2), has been conducted under ROS (to address groundwater impacts) and as an Immediate Response Action (IRA) under RTN 3-28531 (to address potential vapor intrusion). IRA activities included installation of a SVE system in December 2009. Phase II CSA and Phase III Remedial Action Plan reports were submitted for RTN 3-28531 in May 2012 (Shaw, 2012b and Shaw, 2012c). The Phase II and Method 3 Risk Assessment (Shaw, 2012b) concluded that a Condition of No Significant Risk had been achieved with the operation of the existing Building 3 SVE system which is effectively reducing VOC levels in indoor air in the Building 3 area. An Immediate Response Action Completion Report was submitted for RTN 3-28531 in February 2013 (Shaw, 2013a). The IRA Completion Report concluded that the primary objective of the IRA (to assess and mitigate the potential impacts to indoor air in the Building 3 area and thereby eliminate the potential for an Imminent Hazard) had been met by conducting IRA activities. Response actions for RTN 3-28531 had been effective in decreasing indoor air concentrations to below levels that would constitute an Imminent Hazard. However, continued operation of the SVE system is necessary to maintain a level of No Significant Risk in the Building 3 area. The IRA Completion Report linked RTN 3-28531 to RTN 3-0485 and also included a Phase IV Remedy Implementation Plan, Phase IV Completion Report, and Phase V Remedy Operation Status Opinion. The combined report for RTN 3-28531 closed this RTN and concluded that continued response actions (including the operation of the Building 3 SVE system) would be conducted in conjunction with Comprehensive Response Actions under Phase V ROS for RTN 3-0485. Building 3 remedial activities are therefore included as part of this ROS report.

2.0 DESCRIPTION OF OPERATION, MAINTENANCE, AND/OR MONITORING ACTIVITIES (310 CMR 40.0892 (2)(a))

The following sections summarize Phase V ROS activities that were conducted during the reporting period of April 1, 2014 through September 30, 2014.

2.1 Building 3 and 5 Assessment Activities

Based on the results of video drain inspections conducted in December 2013 and environmental data collected from the Building 3 area, additional drain line inspections and pilot testing were conducted in the Building 3 and 5 areas (**Figure 2**) during this reporting period. These activities were conducted to assess the integrity of existing drain lines at the facility in potential areas of VOC impact in shallow soil and groundwater beneath the buildings.

2.1.1 Drain Line Inspections

On April 7, 2014, East Coast Pipelines conducted cleaning and additional video inspection of drain lines in the Building 3 area under the direction supervision of CB&I. This inspection included three drain lines (identified as drain lines# 7, 8 and 9) formerly associated with the Building 3 Chem Lab (PSL 10). Additionally, one drain line (# 10) in the Building 5 area that may have received wastes from the former Building 5 Chem Lab (PSL7) was inspected.

Drain Line 7 (Beneath Building 3 Chem Lab)

Drain line 7 is a four-inch diameter, inactive cast iron drain line that formerly received waste from operations in the Building 3 Chem Lab. This pipe was accessed for cleaning and inspection at the former sump located adjacent to the building (**Figures 1** and **2**, **Appendix B**). Drain line 7 was previously inspected in December 2013, but sediment present in the line limited the inspection. On April 7, 2014, sediment in drain line 7 was cleared out using a pressure wash of tap water and the line was reinspected. This was conducted to better assess sections of the line where releases may have occurred and to assess the potential of using drain line 7 for remedial treatment (either soil vapor extraction or addition of remedial additives).

The re-inspection of drain line 7 indicated:

- pipe cleaning was successful at removing sediment present in the line (see screen shots 1 and 2, Appendix B);
- a hole was observed in the bottom of the pipe at approximately 9 feet from the former sump (see screen shot 3);
- from approximately 11 feet to the end of the inspection at 23 feet, the bottom of the pipe was deteriorated, resulting in gaps of varying size (see screen shots 4 and 5);
- the re-inspection could not extend past 23 feet from the sump because the camera became embedded in the soil outside of the pipe.

Wastes generated during the cleaning of the inactive drain line 7, which included sediment and wash water, were collected and drummed. This waste material was sampled for laboratory analysis and, based on those results, was characterized for appropriate off-site disposal. Analytical results of waste

characterization samples indicated the presence of low levels of the VOCs tetrachloroethene (PCE), acetone and chloroform. Waste characterization results also indicated the presence of:

- metals such as arsenic, barium, cadmium, chromium, lead, mercury and silver;
- polychlorinated biphenyl (PCB) Aroclor 1254;
- · heavy range petroleum hydrocarbons; and
- multiple polynuclear aromatic hydrocarbons, associated with heavy range petroleum hydrocarbons.

The compounds detected in the waste samples from drain line 7 are generally consistent with the former discharges to the drain line (e.g. electronic plating and parts washing). Assessment of petroleum hydrocarbons and metals was conducted in the Building 3 area during the Phase II investigation. This included soil sample analysis from borings installed in the Building 3 Chem Lab area. Results presented in the Phase II report did not indicate concentrations of petroleum hydrocarbons or metals that exceeded reportable concentrations. PCBs were not suspected as a potential contaminant for the Building 3 Chem Lab during the Phase II investigation and were therefore not included in the sampling program. It is unclear what the source is for the PCB detected in this wastes characterization sample. However, the concentration detected in the waste sediment sample, 0.56 milligrams per kilogram (mg/kg) is below the S1 reportable concentration (2 mg/kg).

One drum of solid waste and three drums of waste liquid were generated from the cleaning of drain line 7. This material was transported to Veolia Technical Services in Port Arthur, TX for proper disposal under a Hazardous Waste Manifest on June 13, 2014. A copy of the Hazardous Waste Manifest is included in **Appendix C**.

Based on the inspection of drain line 7, areas around this line were identified as potential locations of historic VOC releases to the environment. As discussed below, remedial testing was also conducted at drain line 7 to evaluate potential treatment alternatives.

Drain Line 8 (Beneath Building 3 Chem Lab)

Drain line 8 is a four-inch diameter, cast iron drain line that formerly received waste from operations in the Building 3 Chem Lab (PSL11). This pipe was accessed for cleaning and inspection at the former sump located adjacent to the building (**Figure 2, Appendix B**). Drain line 8 was previously inspected in December 2013. During that inspection, the line was found to be dry, with sediment present which limited the inspection. However, during the April 7, 2014 inspection, clear water was observed flowing through this line, which was previously thought to be inactive. The source(s) of the water could not be determined because of an obstruction in the line. To limit the potential impact that pressurized clearing of the line could have on facility storm water drainage or other facility operations, cleaning of this line was not conducted.

To assess if water present in drain line 8 represented a potential source of VOC, a sample of the water flowing in the line was collected and submitted for laboratory analysis of VOC by EPA method 8260B. The analytical results of this water sample did not indicate the presence of VOC above reporting limits.

Although cleaning and re-inspection of drain line 8 could not be completed, the prior inspection and the results of the water sample collected from this line indicate that drain line 8 is not a continuing source of

VOC. The inspections did indicate areas of the drain line where wastes may have been released previously. Those areas will be evaluated for potential treatment to address impacts to groundwater and indoor air.

Drain Line 9 (north side of Building 3)

The drain line inspections completed in 2013 were not able to evaluate the potential line associated with the discharge from the former sump at the Building 3 Chem Lab (PSL9). This line (drain line 9) reportedly ran from the sump northeast along the building to the brook and likely conveyed waste discharged to the former sump (**Figures 1** and **2**, **Appendix B**). In approximately 2002, this line was sealed at the stream end to limit the potential of permanganate entering the former line and flowing to the brook. On April 7, 2014, a shallow excavation was completed adjacent to the former sump at the Building 3 Chem Lab to access and inspect this drain line. Once the line was accessible, East Coast Pipelines conducted the video inspection of drain line 9 under the direction supervision of CB&I. The results of this inspection indicate:

- drain line 9 is a 4-inch diameter, clay pipe ranging from four feet below grade at the former sump to approximately two feet below grade at the limit of the inspection thirty feet east of the northeast corner of Building 3;
- the first 75 feet of the clay pipe was in in good condition, with no cracks or damage observed (screen shot 6):
- a potential connection to the south (right) was noted at approximately 80 feet from the former sump (screen shot 7);
- a crack in drain line 9 was noted at 75 feet and break in the south (right) side of the pipe was observed at approximately 100 feet from the former sump (screen shot 8);
- off set joints were noted at approximately 110 feet (screen shot 9) and 113 feet (screen shot 10) from the former sump;
- the line was inspected to a distance of approximately 126 feet from the former sump; at this point the friction of the camera control line would not allow further inspection.

Based on this inspection of drain line 9, it does not appear that the line is a continuing source of VOC. However, the inspection did indicate areas where wastes may have been previously released. As discussed below, remedial testing was also conducted at drain line 9.

Drain Line 10 (Adjacent and Beneath Building 5)

Drain line 10 is an active storm water line that receives run-off from the Building 5 roof drains and conveys the water to the culverted Unnamed Stream. This line also passes beneath a former sump associated with one of the utility trenches in Building 5 (**Figure 3, Appendix B**). Given the proximity of drain line to this former sump, waste may have been discharge to drain line 10 during the historic operation of the Building 5 Chem Lab (PSL7). A video inspection of drain line 10 was completed to evaluate this subsurface drainage structure as a potential source of VOCs and to focus potential remedial efforts. East Coast Pipelines conducted the video inspection of drain line 10 on April 4, 2014 under the direction supervision of CB&I. The pipe was accessed at a drainage manhole at the northeast corner of Building 5. Initial results of the video inspection indicated the line contained water and sediment that obscured the video camera. As a result, pressure washing of drain line 10 with tap water was conducted. Visibility in the pipe remained poor following the cleaning. However, the inspection indicated:

- drain line 10 consists of a 10-inch diameter, clay pipe in good condition with no cracks or deterioration observed (screen shot 11);
- · the pipe is located approximately five feet below grade;
- the line was inspected to a distance of approximately 187 feet from the manhole; at this point the friction of the camera control line would not allow further inspection:
- five connections that appeared to be roof drains were observed (screen shot 12, 14 and 17);
- three unknown connections were observed at 104 feet, 126 feet and 132 feet from the manhole (see screen shots 13, 15 and 16);
- the connection to drain line 10 at 104 feet from the manhole roughly correlates with the location of the former utility sump.

It appears that the former utility sump may have been connected to drain line 10. Based on this inspection of drain line 10, it does appear that drain line 10 is liquid tight. Therefore potential impacts in the Building 5 area associated with wastes that may have discharged to drain line 10 would be limited. Soil and groundwater impacts associated with potential wastes discharged from the historic Building 5 Chem Lab are therefore likely limited to the area of the former utility sump and/or former utility trenches connected to this sump.

2.1.2 Building 3 Pilot Testing

To evaluate the potential use of existing drainage lines and the permanganate injection galleries in the area of the Building 3 Chem Lab for remedial treatment, SVE pilot tests were conducted on April 8 and 9, 2014. These tests included using the existing Building 3 SVE system to pull a vacuum on drain lines 7 and 9 and the two permanganate injection galleries located near the building. These tests were coordinated with a planned temporary shutdown of the Building 3 SVE to conduct static indoor air sampling inside Building 3.

The soil vapor extraction pilot tests were performed by inducing a vacuum at target subsurface structures and measuring sub-slab vacuum influence at nearby temporary vacuum monitoring points (**Figure 4**). Prior to the start of the test, polyethylene sheeting was installed over the gravel and grass areas around the test area to limit potential vacuum loss. During a total of six tests, soil vapor was extracted from drain line 7, drain line 9, injection gallery 1 and injection gallery 2. The extraction tests were completed using up to two different flow rates, depending on the response of the target structures. During each test, vacuum readings were measured at four temporary vacuum monitoring points (VP1 through VP4), and at the adjacent subsurface structures (e.g. drain line 9 and Injection Gallery 1). The existing 2,000 pound carbon vessels were used for off-gas treatment during the pilot test.

Results of the various parameters measured during the soil vapor extraction pilot tests are summarized in **Table 1**. The pilot test vacuum monitoring points are shown on **Figure 4**.

The results of pilot tests conducted at drain line 7, drain line 9, injection gallery 1 and 2 indicated:

- with a low applied vacuum (2 to 5 inches of water), no VOC recovery was noted during vapor extraction at drain line 7
- with a low applied vacuum (2 to 5 inches of water), low VOC recovery (0.7 parts per million (ppm)) was noted during vapor extraction at drain line 9.
- with a high applied vacuum (12 inches of water), no VOC recovery was observed during vapor extraction at injection gallery 1

- with a high applied vacuum (12 inches of water), low VOC recovery (0.2 ppm) was observed during vapor extraction at injection gallery 2
- vapor extraction at both injection galleries resulted in vacuum influence measured at a distance up to 15 feet away

Given the low VOC recovery rates measured during pilot testing, the results of the pilot tests conducted at drain lines 7 and 9 and the injection galleries indicated that they are not suitable for effective soil vapor extraction or the structures are not located in an area with vadose zone VOC impacts. Based on these results and other available site data, Varian completed the installation of two new horizontal wells beneath Building 3 to provide further treatment of VOC in soil via SVE. The new horizontal wells also provide potential locations for groundwater treatment (e.g. permanganate addition). Details of horizontal well installation are discussed in section 2.4 below.

2.1.3 Installation of Groundwater Monitoring Wells OB45-S and OB45-DO

Groundwater analytical results from shallow well OB44-S, installed in December 2013 near the potential former sump associated with one of the utility trenches inside Building 5, indicated elevated concentrations of VOC in shallow groundwater. To further assess these impacts and to provide a means of monitoring potential treatment, a shallow and deep overburden well couplet, OB45-S and OB45-DO, was installed downgradient at the northwest corner of Building 5 (Figure 2). The groundwater monitoring well couplet was installed on April 14 and 15, 2014 by Technical Drilling Services (TDS) of Sterling Massachusetts using a hollow stem auger rig under the direct supervision of CB&I personnel. Digsafe notification was conducted before the start of field work and the first five feet of drilling was completed using hand tools to limit the potential of contacting subsurface utilities. During soil boring advancement, soil samples were collected for logging purposes and to conduct headspace VOC screening with a photoionization detector (PID). Headspace screening results revealed no VOC concentrations in OB45-S or within the first 44 feet of OB45-DO. A headspace reading of 5.3 ppm was detected in a soil sample collected from 45-47 feet below ground surface (bgs) in OB45-DO. Soil descriptions and headspace screening results are summarized on the drilling logs provided in **Appendix D**. Soil encountered during drilling consisted of approximately five feet of fill over a clay layer down to approximately 25 feet bgs. Below this material a sand and gravel layer was encountered to the bottom of exploration.

The shallow well (OB45-S) was advanced to a depth of 15 feet below grade and was constructed of 10 feet of slotted two-inch diameter PVC well screen and approximately five feet of solid PVC riser. The well screen was backfilled with a sand pack to a minim of one foot above the screen. Above the sand pack a one foot bentonite seal was installed and the remaining annular space was backfilled with clean fill.

The deep overburden well (OB45-DO) was advanced to a depth of 49 feet below grade feet and was constructed of 15 feet of slotted two-inch diameter PVC well screen and approximately 34 feet of solid PVC riser. The well screen was backfilled with a sand pack to a minim of one foot above the screen. Above the sand pack a one foot bentonite seal was installed and then a bentonite/grout slurry was installed with a tremie pipe to just below surface grade.

Wells OB45-S and OB45-DO were finished at grade with a bolting road box set in concrete. Well completion diagrams are included in the drilling log included in **Appendix D**.

During drilling, soil cuttings from well installation were transferred into drums and stored onsite pending characterization. One soil sample was collected from the soil cuttings generated during drilling and submitted to ALS Environmental Laboratory (ALS) for analysis of VOCs by EPA Method 8260B. No VOCs were reported above detection limits in the soil sample from the drummed soil cuttings. The three drums of soil cuttings from the installation of OB45-S and OB45-DO were transported to Enpro Services of Maine, Inc. for proper off-site disposal under a Non-Hazardous Waste Manifest on July 25, 2014. A copy of the Non-Hazardous Waste Manifest is included in **Appendix C**.

Following well installation, wells OB45-S and OB45-DO were developed by TDS using pumping and surging to remove silt from the sand pack and improve the hydraulic connection with the surrounding aquifer. Development water was drummed and stored onsite pending characterization. A sample of groundwater was collected from OB45-S and OB45-DO at the end of development. These samples were submitted to ALS for analysis of VOCs by EPA Method 8260B. Analytical results of these groundwater samples indicated:

- VOC were below reporting limits in the sample collected from OB45-S
- the sample collected from OB45-DO indicated the presence of PCE (0.0059 milligrams per liter (mg/L)), TCE (0.27 mg/L) and cis-1,2-dichloroethene (0.37 mg/L)

Based on these results, the drummed development water was transported to Veolia Technical Services in Port Arthur, TX for proper disposal under a Hazardous Waste Manifest on June 13, 2014. A copy of the Hazardous Waste Manifest is included in **Appendix C**.

2.2 Site-Wide Groundwater and Surface Water Sampling

2.2.1 Sample Collection and Analysis

Groundwater sampling to monitor groundwater conditions across the Site and the progress of both the permanganate and bioremediation programs was conducted in April 2014 and August 2014 during this reporting period. The April 2014 sampling was the annual event which monitored VOC trends and groundwater conditions at select wells across the Site. The August 2014 sampling event was the third quarterly bioremediation sampling focused on monitoring reductive dechlorination progress following the October 2013 injection of lactate described in the April 2014 ROS report. A summary of samples collected during these monitoring events and sampling rationale is provided on **Tables 2A** and **2B**. The annual sampling event also included select stream surface water locations previously requested by the Beverly Conservation Commission in various Orders of Condition (Beverly, 2002; 2003; 2004). Sampling locations are shown on **Figures 2** and **3**.

Groundwater and surface water samples were submitted to ALS for analysis of site specific VOCs (by EPA Method 8260B), dissolved iron and manganese, nitrate and sulfate, methane, ethane, ethene, total organic carbon, and chloride as outlined on **Tables 2A and 2B**. Additionally, groundwater samples collected from select bioremediation wells were submitted for analysis of *Dehalococcoides sp.* bacteria (DHC) at CB&I's Technology Development Laboratory in Lawrenceville, New Jersey.

Groundwater VOC sampling of monitoring and application wells during this reporting period utilized passive diffusion bag (PDB) samplers, with the exception of stream monitoring points and certain wells where alternative sampling methods were used, as discussed below. For wells sampled utilizing the PDB method, the sampling apparatus was deployed in each groundwater monitoring well for a minimum two-week equilibration period, after which the samples were collected.

Monitoring well BR-1, BR-3, BR-5, BR-6, BR-7, CL8-BR, and CL9-BR are bedrock wells utilizing a packer system in order to provide discrete groundwater sampling from three separate fracture zones. These wells use a Waterloo™ system, which collects groundwater samples in each packer zone by using dedicated dual-valve pumps driven by compressed nitrogen. Surface water stream samples were collected directly from the sample locations with a bailer or laboratory-supplied containers.

At locations where analyses of dissolved metals (manganese and/or iron), nitrate, sulfate, and chloride were performed, samples were collected using a conventional bailer, since these constituents cannot be accurately assessed using PDB samplers. Dissolved manganese and iron samples were field-filtered using a 0.45-micron filter prior to laboratory analysis consistent with MADEP policy.

During the April 2014 sampling event, groundwater samples from select permanganate injection and monitoring wells were also collected for bench-top colorimetric permanganate concentration analysis. These groundwater samples were field filtered using a 0.45-micron filter prior to permanganate concentration analysis. Samples that were collected for colorimetric analysis of residual permanganate concentrations were analyzed by CB&I using a Hach DR/890 colorimeter. The colorimeter utilizes a spectrophotometric method to determine the permanganate concentration based on a permanganate color calibration standard.

Groundwater monitoring at select wells for depth-to-groundwater and total-well-depth measurements, as well as for the potential presence of dense non-aqueous phase liquid (DNAPL) was performed in April 2014 and August 2014 when the PDB samplers were deployed. The electronic interface probe used during these monitoring activities did not detect DNAPL at monitoring wells gauged during this reporting period. Water level monitoring data from the April 2014 and August 2014 sampling events are summarized in **Appendix E**.

VOC analytical results from the April 2014 and August 2014 sampling event are summarized on **Table 3**. Results of chloride, iron, and manganese samples collected during the April 2014 and August 2014 sampling events are summarized on **Table 4**. Results of bioremediation parameter analyses (i.e., nitrate, sulfate, methane, ethane, ethene, total organic carbon, and DHC bacteria) are summarized on **Table 5**. Results of bench-top colorimetric analysis of residual permanganate are included in **Table 6**. Complete laboratory analytical reports for samples collected in April 2014 and August 2014 are provided in **Appendix F**. Sampling results are discussed below.

Depth to groundwater measurements collected during the April 2014 sampling event (**Appendix E**) were used to develop groundwater contour maps for the shallow overburden, deep overburden, and bedrock aquifers (**Figures5, 6**, and **7**). These figures show that the majority of Site groundwater in each aquifer generally flows to the west/southwest, following the regional groundwater flow pattern, which is south and

west toward Shoe Pond and the Bass River. The gradient in each aquifer is moderate to steep east of Tozer Road and very flat to the west of Tozer Road. In the shallow and deep overburden, there are indications of limited northerly and easterly groundwater flow in the contours at the northern end of the Site. Overall, the groundwater gradients shown on these figures are consistent with historical data from the Site.

2.2.2 VOC Monitoring Results

In general, the analytical results of groundwater samples collected during the April 2014 and August 2014 sampling events (**Table 3**) show decreasing or consistent concentrations of TCE and PCE at monitoring wells across the Site. Concentrations of cis-1,2-dichloroethene (DCE) continue to be variable. This variability may be due to the higher mobility of cis-1,2-DCE in groundwater compared to TCE and PCE and the generation of this daughter compound during natural attenuation and/or bioremediation processes.

Graphs illustrating concentration trends over time for the primary Site contaminants including TCE, PCE, cis-1,2-DCE, TCA, and vinyl chloride for numerous injection and monitoring wells are provided in **Appendix G**. Graphs for shallow overburden, deep overburden, and bedrock monitoring wells that are located in proximity to each other are grouped together for comparative purposes. These graphs indicate that data from many of the wells monitored continue to show decreasing concentration trends or sustained reductions in VOC concentrations as a result of Varian's remedial activities. These trends indicate that the remedial program is effectively treating groundwater and the Site is progressing toward a Permanent Solution as defined by the MCP.

Analytical results of target VOCs from the April 2014 groundwater sampling event were used to generate VOC iso-concentration maps for the shallow overburden, deep overburden, and bedrock aquifers (**Figures 8, 9,** and **10,** respectively). The "total" VOC numbers consider concentrations of the Site-related VOCs, which include TCE, PCE, TCA, cis- and trans-DCE, 1,1-dichloroethane (DCA), 1,1-DCE, 1,2-DCA, and vinyl chloride.

Recent groundwater sampling results support the following overall observations regarding the three aquifers present at the Site:

• In the shallow overburden aquifer (**Figure 8**), the April 2014 data demonstrate that an area with a total VOC concentration greater than 10 mg/L was present beneath Building 5. This area is characterized by a total VOC concentration of 67.7 mg/L at well OB44-S which was installed in December 2013 beneath Building 5. Shallow impacts in the Building 5 area appear to extend to 30 Tozer Road where total VOC at OB42-S were 3.442 mg/L in April 2014. In the Building 3 area to the north, prior to the start of permanganate injection at the Site in 2002, an area of VOC concentrations greater than 10 mg/L extended over an area from OB9-S by the Unnamed Stream west to AP12-S, located adjacent to the east side of Building 6. A second area of shallow VOCs greater than 10 mg/L was historically observed at AP14-S, adjacent to the north side of Building 3 (Shaw, 2002a). **Figure 8** indicates two isolated areas of total VOCs greater than 1 mg/L now exist in the shallow overburden: one in the area of MW-9, by the Unnamed Stream, and a second area around at AP12-S adjacent to Building 6.

- In the deep overburden aquifer (**Figure 9**), the April 2014 data demonstrate the area of total VOC concentrations greater than 100 mg/L remains reduced since the start of treatment and is limited to the northeast corner beneath Building 3. Prior to the start of permanganate injection at the Site, the area of the deep overburden plume with VOC concentrations greater than 100 mg/L extended significantly farther to the west, downgradient from Buildings 3 and 6, to the area just west of Building 7 (Shaw, 2002a). Pretreatment total VOC levels in the Building 5 source area were also greater than 100 mg/L. However, recent total VOC concentrations in the Building 5 area have been reduced through permanganate treatment to approximately 39 mg/L at OB35-DO in April 2014. Total VOC levels in the PSL 10 area to the south of the former Varian facility have been reduced from a concentration greater than 50 mg/L before treatment began in 2002 and remained reduced during the April 2014 sampling round (6.345 mg/L at AP-21). To the west of PSL 10, at the 32 Tozer Road property, a total VOC concentration of 8.07 mg/L was noted at well MW2-32Tozer in April 2014.
- Before treatment started in the bedrock aquifer in 2002, total VOC concentrations greater than 50 mg/L extended from the Building 3 and 9 areas west nearly to Tozer Road (Shaw, 2002a). The April 2014 data document reduced bedrock levels with total VOC concentrations greater than 10 mg/L, but still less than 50 mg/L, are limited to a smaller area (at OB25-BR) west of Building 3 and 6 source areas (Figure 10). Pretreatment total VOC concentrations in bedrock along Tozer Road were as high as 10 mg/L. Analytical results from April 2014 indicate that total VOC concentrations in this area along Tozer Road have now been reduced to about 1 mg/L.

In summary, recent groundwater sampling results shown on **Figures 8, 9,** and **10** continue to demonstrate overall decreasing in the concentrations and extent of VOCs in each aquifer. A more detailed discussion of VOC trends and monitoring results for the various treatment areas at the Site is presented below. This discussion is supported by the VOC trend graphs provided in **Appendix G**.

Building 3/6 Treatment Area

Permanganate injections have been conducted at multiple wells from 2002 through 2014 with treatment at fewer wells over recent years. During this reporting period, permanganate injections were conducted at OB12-DO and OB25-BR after the April 2014 sampling event. Bioremediation has also occurred in the area in the shallow overburden near the Unnamed stream and deep overburden aquifer east of Building 3. The VOC trend graphs provided in **Appendix G** generally indicate three trends for wells in this treatment area; initial decreasing trends without rebound, initial decreasing trends with rebounding concentration trends, and continued elevated VOC trends, as discussed below.

The first VOC trend represents wells that have been successfully treated by permanganate injections or bioremediation and VOC concentrations remain below the remedial planning criteria. This includes well OB32-DO, located on the north side of Building 3 where the pretreatment TCE concentration was 710 mg/L and PCE was 68 mg/L. Permanganate injection was conducted at OB32-DO in 2004 and VOC concentrations have remained well below the remedial planning criteria. In April 2014, the TCE concentration at OB32-DO was non-detectable, PCE was reported at 0.063 mg/L, and TCA was detected at 0.026 mg/L. In the shallow overburden near the Unnamed Stream a similar VOC trend is noted at OB9-S, where bioremediation has been conducted beginning in 2006. Pretreatment sampling indicated a TCE concentration of 53 mg/L and PCE of 30 mg/L at OB9-S. The August 2014 groundwater sample results indicated TCE and PCE were non-detectable at OB9-S with concentrations of vinyl chloride and

cis-1,2-DCE fluctuating. Other examples of wells with VOC trends indicating successfully treatment are wells AP12-S, AP14-S, AP25-DO, MW-9, OB12-S and OB37-DO.

At several wells in the Building 3/6 Treatment Area the initial permanganate treatment resulted in significant VOC concentration reductions (e.g., 99 percent reduction in TCE). However, concentrations of VOC have rebounded to above the remedial planning criteria, resulting in the need to implement additional, more recent, permanganate treatment events. This rebound effect is often observed due to the permanganate injections solubilizing VOC bound to soil particles. The soluble VOC are treated by the residual permanganate in the formation. However, once the residual permanganate in the area is consumed, VOC concentrations increase. An example of this is observed at deep overburden well OB12-DO, located north of Building 3 near Route 128. Pretreatment TCE and PCE concentrations at this well were 120 mg/L and 2 mg/L, respectively. Initial permanganate treatment was conducted at OB12-DO from 2003 to 2007, with subsequent treatment in 2009, 2011 and 2012 to address VOC increases above the remedial planning criteria. In April 2014, groundwater sampling indicated the TCE concentration increased to 28 mg/L at OB12-DO. Therefore, additional treatment was conducted during this reporting period. The October 2014 analytical data from OB12-DO will be evaluated to see if further treatment is warranted in the area. In April 2014, a similar increase to above the remedial planning criteria was observed at bedrock well OB25-BR, located west of Building 1. Treatment was also conducted at this well during the current reporting period. Additional wells where VOC trends indicate periodic VOC rebound to above the remedial planning criteria that has warranted subsequent permanganate treatment include AP12-DO, AP12-BR, AP26-DO, MW-13, OB19-DO, OB27-BR and OB36-DO. The VOC rebound observed at these wells indicates potential migration of VOC from under the existing building. Three angled wells (AP30R-DO, AP31-DO and AP32-DO) were installed in 2010 to provide permanganate treatment of deep overburden groundwater beneath Building 3. Permanganate injections were conducted at these wells in 2010, 2011 and 2013. However, as indicated by the graphs in Appendix G, subsequent VOC rebound was noted at wells downgradient of these treatment wells (e.g., OB12-DO, AP26-DO and OB25-DO). To limit additional VOC concentration rebound in groundwater, Varian may utilize the existing horizontal SVE wells and/or the new horizontal SVE wells discussed in section 2.4.2 for permanganate treatment during the upcoming reporting period.

At the deep overburden wells located at the northeast corner of Building 3, the graphs in **Appendix G** indicate a trend of continued elevated VOC concentrations above the remedial planning criteria. These wells include AP13-DO, AP23-DO and AP24-DO. Unlike other areas of the Site, groundwater sampling results also indicate elevated impacts of TCA and acetone in this area in addition to TCE and PCE. TCA and acetone are more effectively treated by bioremediation. Lactate injections began in this area in 2006 to address elevated VOC. Follow up injections were conducted in 2007, 2008, 2010 and 2011. Most recently deep overburden lactate injections were conducted in October 2013 at wells AP33-DO, AP34-DO and AP35-DO.

Based on the results of the April and August 2014 sampling at AP13-DO, AP23-DO and AP24-DO, target VOCs remain elevated at levels above the remedial planning criteria. For example, in August 2014, TCE, PCE and TCA were detected at concentrations of 320 mg/L, 92 mg/L and 26 mg/L, respectively. However, vinyl chloride and cis-1,2-DCE concentrations have increased at target wells AP23-DO and AP24-DO following the October 2013 treatment, indicating the TCE and PCE are being degraded.

Furthermore, increased or continuing elevated ethene concentrations were observed in the treatment area in April and August 2014. For example, ethene concentrations of 750 micrograms per liter (ug/L) and 850 ug/L were detected at AP23-DO and AP33-DO, respectively in August 2014. Ethene is the non-toxic end product of complete dechlorination of VOCs, including vinyl chloride.

Overall the data provide a strong indication that reductive dechlorination is occurring at wells AP23-DO, a moderate indication of reductive dechlorination at wells AP33-DO, AP34-DO and AP35-DO, and a limited indication of reductive dechlorination at wells AP13-DO and AP24-DO. Recommendations for additional bioremediation the Building 3 area are discussed in section 2.3.1.

Building 5 Treatment Area

Permanganate application to groundwater in the Building 5 treatment area was conducted at well AP27-DO, located east of Building 5, in 2004, 2005, and 2012, and at OB-35DO, located beneath Building 5, from 2005 to 2008, in 2011, and 2012. Permanganate injection during this reporting period was conducted at OB35-DO after the April 2014 sampling event.

The VOC trend graph for deep overburden well AP27-DO indicates a significant VOC decrease after the first treatment in 2004. In October 2011 and April 2012, the TCE concentration increased to 12 mg/L and 13 mg/L, respectively. To address the increased level of TCE noted at AP27-DO and nearby well OB35-DO, permanganate treatment was conducted at AP27-DO in 2012. VOC concentrations responded to treatment, with TCE at AP27-DO decreasing to non-detectable in November 2012. The TCE concentration at this well increased to 0.0039 mg/L April 2013 and to 11 mg/L in April 2014. These concentrations remain below the remedial planning criteria.

Permanganate treatment at deep overburden well OB35-DO, located inside Building 5, has had mixed results. Treatment reduced the concentration of TCE at OB35-DO from 440 mg/L in May 2005 to consistently below the remedial planning criteria (e.g., 5.2 mg/L in April 2014). This reflects approximately a 99 percent reduction in TCE concentrations. However, permanganate treatment has not consistently reduced the concentration of PCE at OB35-DO to below the remedial planning criteria. In April 2014 the PCE concentration at well OB35-DO was 33 mg/L compared to a pretreatment concentration of 11 mg/L. PCE tends to adhere to the soil matrix more than TCE, so the continued detection of PCE at this well may be the result of the permanganate desorbing PCE bound to soil particles, where it then is treated by the oxidizer. Additional treatment was conducted at well OB35-DO following the April 2014 sampling to address the elevated PCE level. October 2014 analytical data will be evaluated to determine if further treatment is warranted in the Building 5 Area.

Shallow overburden wells OB44-S is located inside Building 5. This well was first sampled in January 2014, and indicated the presence of TCE (24 mg/L) and PCE (47 mg/L) with cis-1,2-DCE reported as non-detectable. In April 2014, TCE and PCE concentrations decreased to 1.5 mg/L and 7.2 mg/L, respectively, but cis-1,2-DCE increased to 59 mg/L. Sample results from future sampling of well OB44-S will be reviewed to assess VOC concentration trends.

PSL 10 Treatment Area

This area is located to the south of the Building 5 area, adjacent to the 32 Tozer Road property. Permanganate injections were conducted in this area from 2002 to 2004, from 2006 through 2008, and in 2011. Permanganate injection during this reporting period was conducted at OB35-DO after the April 2014 sampling event.

VOC concentrations at shallow overburden well CL10-S, located just downgradient of the PSL 10 treatment wells on the 32 Tozer Road property, continue to exhibit seasonal fluctuations. Higher concentrations of PCE are noted in the spring sampling with lower levels observed in the fall. For example, the PCE concentration increased to 1.8 mg/L in April 2014 from 0.011 mg/L in October 2013. Overall the PCE concentrations at CL10-S do not indicate a trend. TCE and PCE concentrations remained non-detectable in April 2014 at deep overburden well CL10-DO and bedrock well CL10-BR.

Deep overburden monitoring well MW2-32Tozer was installed west of the PSL10 injection wells on the 32 Tozer Road property in 2011. Overall the PCE concentrations at this well indicate a decreasing trend, with concentrations of PCE and TCE detected in April 2014 at 4.9 mg/L and 0.97 mg/L, respectively.

At bedrock well OB16-BR (32 Tozer Road), deep overburden well CL4-DO (30 Tozer Road) and bedrock well CL4-BR (30 Tozer Road), the graphs in **Appendix G** indicate a consistent or overall decreasing VOC trends.

October 2014 analytical data from this area will be evaluated to determine if further treatment is warranted in the PSL10 Area. Note that potential indoor air impacts at the 32 Tozer Road property are being monitored by sampling of indoor air as described in section 2.6.

North of Route 128

Historically, VOC concentrations in the area north of Route 128 have been low or non-detectable in the shallow and deep overburden aquifers. Impacts have been noted in the bedrock aquifer north of Route 128. Permanganate injection has not been performed directly in this area, but source area treatment beginning in 2002 south of Route 128 was conducted to address downgradient groundwater impacts north of the former Varian facility.

As shown in the VOC trend graphs provided in **Appendix G**, an overall decreasing VOC trend is occurring in the bedrock aquifer north of route 128. In particular, an overall decrease in VOC concentrations is noted in each zone of bedrock well BR-1, located on Walden Street. Over the last three sampling events, VOC have been non-detectable in each zone of this bedrock well. At bedrock well CL9, located on Commons Drive, TCE and PCE concentrations have decreased in each zone. For example, TCE at Zone 1 in CL9 has decreased from 5.2 mg/L in 2003 to 0.23 in April 2014. The TCE daughter products in each zone continue to show fluctuating concentrations. The concentration of cis-1,2-DCE at CL09-BR Zone 1 was detected at 4.9 mg/L in April 2014, but has ranged from 0.4 mg/L to 11 mg/L between 2009 and 2014.

Tozer Road Treatment Area South of 128

Initial permanganate injections were performed at 28 Tozer Road in 2006 and additional injections were conducted at CL3-DO in 2013 to address a TCE concentration rebound to 30 mg/L in April 2013, above the remedial planning criteria. Following the 2013 treatment, VOC concentrations decreased with TCE non-detectable in October 2013 and April 2014.

At bedrock well BR-5, located at 28 Tozer Road, VOC concentrations continue to fluctuate but remain at relatively low levels in each zone. Generally, cis-1,2-DCE concentrations are detected at levels higher than TCE and PCE. In April 2014, cis-1,2-DCE was detected at 0.09 mg/L in Zone 1 (deepest interval), 0.63 mg/L in Zone 2 (middle interval) and 0.23 mg/L in Zone 3 (shallowest interval).

At deep overburden well OB5-DO, located at 27 Tozer Road, lower VOC concentrations were observed after treatment began in 2002. However, an increasing VOC trend began in 2009 and since April 2010, generally consistent, higher VOC concentrations have been noted. In April 2014, TCE, PCE and cis-1,2-DCE were detected at concentrations of 1.8 mg/L, 0.59 mg/L and 1.7 mg/L, respectively. Although a trend graph is not provided for deep overburden well MW-36, located at 28 Tozer Road, analytical results from this well indicate a similar VOC concentration trend as described for OB5-DO. At the bedrock well OB5-BR, also located at 27 Tozer Road, an overall decreasing VOC trend is indicated by the graph in **Appendix G**. At OB5-BR, cis-1,2-DCE concentrations have decreased from 9 mg/L in 2002 to 0.016 mg/L in April 2014.

At deep overburden well OB06-DO, located on Sonning Road, concentrations of TCE and PCE have remained consistent for several sampling rounds while the cis-1,2-DCE level has decreased since 2010. In April 2014, TCE was detected at 0.14 mg/L and cis-1,2-DCE was reported at 0.39 mg/L at OB6-DO. In the adjacent bedrock well OB06-BR, VOC concentrations illustrate an overall decreasing trend since the start of treatment upgradient at 28 Tozer Road in 2002. For example, TCE has decreased from 1.8 mg/L in 2002 to 0.11 mg/L in April 2014.

31 Tozer Road Treatment Area

Shallow groundwater treatment was conducted in 2002 and 2003 and deep overburden permanganate injection occurred in this area in 2004.

Monitoring wells in this area of the site are sampled to assess shallow overburden impacts. These include AP15-S (31 Tozer Road), OB18-S (31 Tozer Road), OB41-S (39 Tozer Road), OB42-S (30 Tozer Road) and OB43-S (27 Tozer Road). The trend graphs for these wells in **Appendix G** indicate an overall decreasing VOC trend or generally consistent VOC concentrations. Wells AP15-S, OB18-S and OB43-S generally indicate the lowest VOC concentrations. Of these three wells, only OB43-S had detectable concentrations of TCE and PCE in April 2014 (0.004 mg/L and 0.0037 mg/L, respectively). Well OB42-S exhibits the highest VOC concentrations, with TCE and cis-1,2-DCE detected at 2.4 mg/L and 0.96 mg/L, respectively, in April 2014.

Longview/Hill Street Treatment Area

In the Longview/Hill Street area, permanganate injections were conducted at wells AP3-DO and AP4-DO during 2004, and at AP3-DO and AP3-BR in 2005.

At bedrock well BR6, located on Hill Street, TCE and PCE concentrations have been non-detectable in each zone over multiple years. Concentrations of vinyl chloride and cis-1,2-DCE at this well have fluctuated within each zone at relatively low levels. In April 2014, cis-1,2-DCE was detected in Zone 1 (deepest interval) at 0.012 mg/L, in Zone 2 (middle interval) at 0.35 mg/L and in Zone 3 (shallowest interval) at 0.17 mg/L.

Several monitoring wells in this downgradient area of the site are sampled to assess shallow overburden impacts. These include wells P-9R on Hill Street and OB20-S by Stream A, south of Sonning Road. VOCs remained non-detectable at well P-9R and decreased to non-detectable at OB20-S in April 2014.

At deep overburden well OB20-DO, TCE and PCE concentrations are generally low or non-detectable with higher cis-1,2-DCE concentrations. In April 2014, TCE and cis-1,2-DCE were reported at concentrations of 0.0076 mg/L and 0.3 mg/L, respectively, and PCE was non-detectable at OB20-DO. At the adjacent bedrock well OB20-BR, cis-1,2-DCE concentrations have increased over the last four sampling events. In April 2014, cis-1,2-DCE was detected at 0.98 mg/L at OB20-BR, which is comparable to the pretreatment concentration of 1.1 mg/L. However, TCE concentrations at OB20-BR remain below pretreatment levels, 0.3 mg/L in 2004 vs. 0.1 mg/L in April 2014.

2.2 Groundwater Permanganate Treatment Program

The permanganate injections in 2014 were focused on reducing VOC concentrations and minimizing potential contaminant migration from source areas at the Site by treating areas with VOC concentrations that exceeded the remedial planning criteria discussed section 1.2. Based on the results of the April 2014 sampling event, wells that exhibited concentrations of VOCs that exceeded the remedial planning criteria were OB12-DO (north of Building 3) and OB35-DO (inside Building 5). Although the concentrations of VOC at OB25-BR (west of Buildings 1) did not exceed the remedial planning criteria, the detected levels of each VOC did show an increase in April 2014, with cis-1,2-DCE detected at the highest concentration (25 mg/L). Therefore, additional injection was conducted at OB25-BR to reduce the VOC level at this well and to limit potential downgradient migration of VOC from this area.

Permanganate treatment was also conducted at wells AP-19 through AP-22 in the PSL 10 area upgradient of 32 Tozer Road. Residual permanganate in the area of these wells has decreased since the last injection in 2011 and sampling results from this area have indicated an increase in VOC concentrations. For example, PCE at AP-20 increased to 7.9 mg/l in October 2013 and cis-1,2-DCE increased to 4.9 mg/l at AP-21 in April 2014. Over the same period, sample results indicate a very low level of permanganate is present at AP-22, while data from the three other treatment wells indicate non-detectable permanganate concentrations. Permanganate treatment (100 gallons at each of the four existing application wells) was conducted in the PSL 10 area to help reduce the increases recently observed at source areas wells (e.g. AP-20) and to improve the decreasing VOC trend noted downgradient at well MW2-32Tozer, located downgradient on the 32 Tozer Road property. Well locations are illustrated on **Figure 2**.

2.2.1 Permanganate Injection Activities

The 2014 permanganate injection program was initiated on July 23, 2014 and continued until September 10, 2014. Volumes of sodium permanganate injected at each well during this reporting period as well as total volume injected during the 2014 treatment program (1,272 gallons) are summarized on **Table 7**.

During this reporting period, 40 percent sodium permanganate solution was delivered to the Site in 250-gallon totes which were stored in an on-site storage shed with secondary containment. Prior to conducting treatment activities, the permanganate was diluted to an approximate 20 percent solution. A tote placed in the bed of a pickup truck was used to transport the 20 percent permanganate solution to the majority of individual injection wells and then allowed to flow by gravity into the wells. Under the supervision of CB&I field personnel, application of permanganate into wells located inside facility buildings was performed by transferring the 20 percent permanganate solution into portable 5-gallon containers which were manually transported to a well location and then allowed to flow by gravity into the wells.

The permanganate totes, drums, hoses, portable containers, pumps, and associated equipment were periodically inspected during this reporting period to ensure no leaks occurred. Additionally, the spill containment features of the storage shed were inspected periodically during this monitoring period. No problems or releases were reported.

Personal protective equipment (PPE) generated during permanganate injections as well as absorbent pads used for cleanup during permanganate injection equipment were placed into 55-gallon polyethylene drums onsite. Materials were neutralized with a solution of hydrogen peroxide, vinegar and water prior to storing in the drum. This drum is stored on site within the storage shed equipped with spill containment pending appropriate off-site disposal. The drum is inspected periodically.

2.2.2 Permanganate Parameter Monitoring and Results

The Phase IV Plan (IT, 2001) detailed monitoring activities for the various permanganate treatment areas of the Site. As discussed in previous monitoring reports, monitoring activities have been adjusted, based upon changing site conditions. Groundwater physical parameters were monitored monthly during permanganate injection in select monitoring wells in active treatment areas. Monitoring activities typically completed during the permanganate treatment program include:

- visual observation of groundwater color for identification of residual permanganate;
- · depth-to-groundwater measurements; and
- measurement of oxidation-reduction potential (ORP), and pH using a down-well water parameter probe (if no residual permanganate is observed, which could damage the probe).

Results of water quality parameter measurements collected from monitoring wells during this reporting period are presented in **Appendix E**.

Sampling for analytical parameters associated with permanganate treatment during this monitoring period was completed in April 2014. Groundwater samples were collected from select wells in April 2014 for bench-top colorimetric permanganate concentration analysis. The permanganate analysis results are

provided in **Table 6**. As would be expected, samples from wells where permanganate injection was conducted in 2013 indicated residual permanganate was present in April 2014. For example, permanganate injections were conducted in AP32-DO in 2013 and the concentration of permanganate was 236 mg/L in April 2014.

Typically, the dissolved iron concentrations (**Table 4**) are expected to decrease in treatment areas due to the oxidizing nature of permanganate and associated iron precipitation from the treated groundwater. Results of monitoring in areas where permanganate treatment has occurred generally demonstrate low or non-detectable dissolved iron concentrations. For example, in AP31-DO located north of Building 3, where permanganate injections were conducted during the summer/fall of 2013, dissolved iron was non-detectable in April 2014.

Generally, elevated dissolved manganese concentrations (**Table 4**) are noted where unreacted permanganate was observed. For example, at well OB36-DO located inside Building 6, permanganate was present at approximately 5,300 mg/L in April 2014 and dissolved manganese was detected at a concentration of 2,200 mg/L in April 2014. Outside of the permanganate treatment areas, dissolved manganese concentrations are generally low or non-detectable. At deep overburden well OB19-DO, located adjacent to Building 1 and 2 and downgradient of well AP26-DO, where permanganate injection was conducted in 2013, the dissolved manganese concentration was 0.11 mg/L in April 2014.

Baseline chloride concentrations at the site were highly variable. As a result of permanganate treatment, chloride levels in groundwater typically increase from the destruction of the chlorinated VOCs. An example of this is observed at OB36-DO, located inside Building 6, where permanganate injections were conducted in 2013. In April 2014 VOC concentrations had decreased to non-detectable and chloride had increased to 419 mg/L from 9.54 during the prior sampling, in May 2008 (**Table 4**).

2.3 Bioremediation Program

The original bioremediation program proposed for a portion of the Site was detailed in the October 2006 ROS report and included treatment at shallow wells in the Building 9 area near the Unnamed Stream, as shown on **Figure 3**. As noted above, the bioremediation program has significantly reduced concentrations of TCE, PCE and TCA in the shallow overburden in this area. The bioremediation program appears to have successfully addressed the shallow overburden impact of TCE and PCE in the area of the Unnamed Stream. Based on an evaluation of groundwater data collected through August 2014, active reductive dechlorination is continuing to address residual VOC daughter products in the shallow overburden near the Unnamed Stream. The data suggest that additional active bioremediation in the shallow overburden in this area is not warranted at this time.

The bioremediation program in the deep overburden near Building 3 has had limited success in sustaining reductive dechlorination of target VOC. Injection wells AP33-DO, AP34-DO and AP35-DO (**Figure 3**) were installed during the previous reporting period in an effort to increase the ability to apply more lactate to the deep overburden aquifer and thereby provide a sufficient carbon source to sustain reductive dechlorination. The 2013 bioremediation injection program was conducted in October 2013 and included the application of DHC cultures seeded into a sodium lactate solution. These bioremediation

injections were discussed in the previous status report. Additional injections were not conducted during the current reporting period. Activities associated with the bioremediation program during the current reporting period included the April and August 2014 monitoring events discussed below.

2.3.1 Bioremediation Parameter Monitoring Results

Bioremediation injections were most recently conducted in October 2013 in the deep overburden east of Building 3. Following these activities, field parameters such as ORP, pH and DO were monitored to assess if appropriate conditions for reductive dechlorination were present in the treatment area. VOCs and bioremediation parameters (methane, ethane, ethene and total organic carbon) in groundwater samples are analyzed quarterly to monitor reductive dechlorination processes. During this reporting period, sampling was conducted in April and August 2014 in in the deep overburden east of Building 3. Bioremediation parameters are summarized on **Table 5**.

As discussed in Section 2.2.2, some VOC concentrations remain elevated in the deep overburden in the northeast corner of Building 3. However, the detection of daughter products and the presence of ethene in the deep overburden indicate that some complete degradation of VOCs is occurring as a result of the bioremediation injections in October 2013. As indicated in **Table 5**, favorable conditions for reductive dechlorination were maintained in the groundwater (dissolved oxygen levels <1.0 mg/L and negative ORP readings). Additionally, the August 2014 analytical results showed a *Dehalococcoides* bacteria population is present in deep overburden groundwater of the treatment area.

Although the data suggest that active reductive dechlorination is occurring in several deep wells, the results also indicated lower levels of carbon are available to sustain bioremediation activity. For example, the total organic carbon concentration at well AP24-DO has decreased from 1,520 mg/L in January 2014 to 13.6 mg/l in August 2014. Due to the lower total organic carbon concentrations and the continued elevated TCA and TCE levels in this area, additional application of carbon will be conducted to continue reductive dechlorination. During the upcoming reporting period, Varian plans to inject emulsified vegetable oil (EVO) with a ferrous iron additive as a carbon source for reductive dechlorination in the deep overburden. EVO tends to remain in the formation for a longer time than lactate and was successfully used at the Site in the shallow overburden near the Unnamed Stream. Use of EVO should reduce the frequency of potential future treatment applications to treat residual daughter products in this area of the Site. The addition of ferrous iron will aid in both biological and abiotic VOC degradation. Iron will help support reducing conditions in groundwater which are favorable for the reduction of the VOCs and will bind sulfide, which at high levels can be toxic to DHC, as sulfate is reduced. Elevated sulfide was detected at AP13-DO during the August 2014 sampling event and may be a key limiting factor in reductive dechlorination at this well. Iron can also convert TCE and cis-1,2-DCE to ethane abiotically without forming vinyl chloride which gives a second pathway to aid in reducing concentrations of VOCs.

2.4 Building 3 SVE System

The Building 3 SVE system was installed in December 2009 and system startup was completed in January 2010 (Shaw, 2010a). The SVE system was designed to reduce VOC concentrations in the vadose zone soil beneath Building 3 as well as to control potential vapor intrusion into the building.

The SVE system consists of the following components:

- two horizontal soil vapor extraction wells (BLDG3-SVE1 and BLDG3-SVE2) installed beneath Building 3;
- one 5 horsepower blower;
- one moisture knock-out drum; and
- two 2,000-pound carbon vessels piped in series (with a spare third 2,000 pound carbon vessel)

The locations of the two SVE wells and the treatment system trailer are shown on **Figure 11** The March 2010 IRA status report included an Operation & Maintenance (O&M) Manual developed to ensure that the system is operated properly to meet the intended design criteria and achieve site remedial goals (Shaw, 2010a). The O&M Manual includes manufacturer's literature and specific procedures for individual components for proper operation and maintenance. As-built drawings for the SVE system, a site-specific data collection form, preventive maintenance charts for key equipment and appropriate system start-up and shutdown procedures were also included.

The following section presents data regarding the operation of the Building 3 SVE system during this reporting period.

2.4.1 Building 3 Soil Vapor and Indoor Air Sampling

As discussed in the April 2014 ROS report, the concentrations of PCE detected at indoor air sample location BLDG2-6 in November 2013 (22 micrograms per cubic meter (ug/m³)) indicated an increase compared to results from the last several sampling events, although this level was below the historic high of 40 ug/m³. It appears that operation of the Building 3 SVE system has not had a significant effect on the levels of VOC detected in indoor air in the Building 2 basement. The Building 3 SVE system was designed to address elevated levels of VOC detected in indoor air in the northeast end of Building 3 (e.g. BLDG3-4 where PCE was detected at 72 ug/m³ in 2009). In April 2014 two soil vapor samples were collected in the basement of Building 2 in an effort to assess potential pathways for VOC migrating into the Building 2 basement. Installation of soil vapor points BLDG2-SV1 and BLDG2-SV2 (**Figure 11**) consisted of coring a hole through the basement walls in Building 2 and driving a three quarter inch (3/4") diameter metal probe using hand tools of approximately 1.5 feet into the soil behind the wall. The annular space around each soil vapor point at the basement wall was sealed to prevent short circuiting and the soil vapor point was finished with a flush-mounted road box.

On April 10, 2014, sub-slab soil vapor samples were collected from four vapor points, two in the basement of Building 2 (BLDG2-SV1, BLDG2-SV2), one in Building 3 (BLDG3-VP7) and one in Building 6 (BLDG6-SV1). The sub-slab soil vapor sampling points are illustrated on **Figure 11**. Each sample was collected using evacuated Summa® canisters over a four-hour sampling interval. The sub-slab soil vapor samples collected were submitted to ALS for laboratory analysis of select VOCs referencing EPA Method TO-15 (MADEP Method WSC-CAM-IXB). Analytical results of the soil vapor samples are summarized on **Table 8**. A complete copy of the laboratory analytical report is provided in **Appendix F**.

Analytical results of the April 10, 2014 sub-slab soil vapor samples collected beneath Building 2, 3, and 6 indicated:

- TCE was detected at concentrations ranging from 31 ug/m³ at BLDG2-SV2 to 48,000 ug/m³ at BLDG2-SV1;
- PCE was detected at concentrations ranging from 11 ug/m³ at BLDG2-SV2 to 1,200,000 ug/m³ at BLDG2-SV1; and
- cis-1,2- DCE was detected at a concentration of 13 ug/m³ at BLDG3-VP7.

Additional VOCs detected in sub-slab soil vapor samples collected from beneath Building 2, 3 and 6 in April 2014 include acetone (at 130 ug/m³), bromodichloromethane (at 1.6 ug/m³), and chloroform (at 39 ug/m^3).

The higher VOC concentrations detected at location BLDG2-SV1 compared to BLDG2-SV2 indicate that impacts to indoor air in the Building 2 basement are most likely from the Building 3 Chem Lab source rather than the Building 6 source area. Furthermore, the elevated concentration of PCE detected at BLDG2-SV1 indicates further treatment is warranted.

In conjunction with the April 10, 2014 sub-slab soil vapor sampling, indoor air samples were collected from the Building 2 basement in the vicinity of the two new sub-slab soil vapor sampling points. These locations included BLDG2-6 (Building 2 Basement) and a new location BLDG2-7 (Storage Room, Building 2 Basement). The indoor air samples were collected using evacuated Summa® canisters over an eighthour sampling interval. The indoor air sampling locations are also illustrated on Figure 11. The indoor air samples were submitted to ALS for laboratory analysis of select VOCs referencing EPA Method TO-15 (MADEP Method WSC-CAM-IXB). Analytical results of the indoor air samples are summarized on Table 9. A complete copy of the laboratory analytical report is provided in **Appendix F**.

Analytical results of the April 10, 2014 indoor air samples collected in the Building 2 basement indicate:

- TCE was detected at concentrations of 0.37 ug/m³ at BLDG2-7 and 0.96 ug/m³ at BLDG2-6; and
 PCE was detected at concentrations of 0.36 ug/m³ at BLDG2-7 and 4 ug/m³ at BLDG2-7.

Additional VOCs detected in indoor air samples collected from the Building 2 basement on April 10, 2014 include acetone (up to 95 ug/m³), carbon tetrachloride (up to 0.48 ug/m³), chloromethane (at 0.9 ug/m³), and trichlorofluoromethane (at 1.3 ug/m³).

Indoor air sampling results from BLDG2-6 on April 10, 2014 are similar to prior results from this location. Analytical results from indoor air sample BLDG2-7 indicate lower concentrations of VOC compared to BLDG2-6. This data also indicates indoor air impacts in the Building 2 basement are primarily the result of potential migration from the former Building 3 Chem Lab. Therefore, additional shallow treatment is warranted in the former Building 3 Chem Lab source area to address these indoor air impacts. To facilitate this additional treatment, a new horizontal well was installed beneath the former Building 3 Chem Lab source area (see section 2.4.2 below).

Based on lower concentrations of VOC in soil vapor recovered by the Building 3 SVE system and lower levels of VOCs detected in soil vapor beneath the northeast portion of Building 3, a temporary shutdown of the Building 3 SVE system was conducted from April 3, 2014 until April 29, 2014. At the end of the temporary system shutdown, soil vapor and indoor air samples were collected to assess static conditions with the building and in soil vapor beneath the building. Following sample collection, the SVE system was reactivated.

On April 29, 2014, sub-slab soil vapor samples were collected from three sub-slab soil vapor points (BLDG3-VP1, BLDG3-VP2 and BLDG3-VP3). The sub-slab soil vapor sampling points are illustrated on **Figure 11**. Each sample was collected using evacuated Summa® canisters over a four-hour sampling interval. The sub-slab soil vapor samples collected were submitted to ALS for laboratory analysis of VOCs referencing EPA Method TO-15 (MADEP Method WSC-CAM-IXB). Analytical results of the sub-slab soil vapor samples are summarized on **Table 8**. A complete copy of the laboratory analytical report is provided in **Appendix F**.

Analytical results of the April 29, 2014 sub-slab soil vapor samples collected beneath Building 3 indicated:

- TCE was detected at concentrations ranging from 460 ug/m³ at BLDG3-VP3 to 960 ug/m³ at BLDG3-VP-1:
- PCE was detected at concentrations ranging from 2,000 ug/m³ at BLDG3-VP3 to 19,000 ug/m³ at BLDG3-VP1; and
- cis-1,2- DCE was detected at a concentration of 20 ug/m³ at BLDG3-VP3.

Additional VOCs detected in sub-slab soil vapor samples collected from beneath Building 3 on April 29, 2014 include chloroform (at 24 ug/m³).

The April 29, 2014 soil vapor results indicated an increase in TCE and PCE concentrations at the three sub-slab vapor points sampled following the temporary shutdown of the Building 3 SVE system compared to prior results with the system operating. For example, the PCE concentration at BLDG3-VP1 increased from 1,000 ug/m³ in November 2013 to 19,000 ug/m³ at the end of the temporary shutdown.

In conjunction with the April 29, 2014 sub-slab soil vapor sampling, indoor air samples were collected from Building 2 and 3. The sampling included BLDG2-6 (Building 2 Basement), BLDG3-2 (Chemistry Laboratory Bench Testing Room), BLDG3-3 (Materials Inspection Department Room), and BLDG3-4 (Building 3 Machine Shop). Each sample was collected using evacuated Summa® canisters over an eight-hour sampling interval. The indoor air sampling locations are also illustrated on **Figure 11**. The indoor air samples were submitted to ALS for laboratory analysis of VOCs referencing EPA Method TO-15 (MADEP Method WSC-CAM-IXB). Analytical results of the indoor air samples are summarized on **Table 9**. A complete copy of the laboratory analytical report is provided in **Appendix F**.

Analytical results of the April 29, 2014 indoor air samples collected from the Building 3 area indicated:

- TCE was detected at concentrations ranging from non-detectable in BLD3-4 to 1.7 ug/m³ in BLDG3-3; and
- PCE was detected at concentrations ranging from 1.9 ug/m³ in BLD3-2 to 99 ug/m³ in BLDG3-3.

Additional VOCs detected in indoor air samples collected from beneath Building 2 on April 29, 2014 include acetone (up to 2,300 ug/m³), 2-butanone (up to 19 ug/m³), 4-methyl-2-pentanone (at 4.1 ug/m³), carbon tetrachloride (up to 0.49 ug/m³), and toluene (up to 14 ug/m³).

VOC concentrations detected in samples collected at in indoor air locations BLDG2-6 and BLDG3-2 (located the furthest form the SVE system) in April 2014 remained similar to concentration prior to the shutdown. At the sample location BLDG3-3, PCE in indoor air increased from 0.84 ug/m³ in October 2013 when the SVE system was operating to 99 ug/m³ at the end of the temporary SVE shutdown on April 29, 2014.

Based on the results of the April 29, 2014 indoor air samples, continued operation of the Building 3 system will be conducted. Several prior indoor air sampling events demonstrate that the current Building 3 SVE system is effectively maintaining a condition of no significant risk while operating. However, the April 2014 soil vapor and indoor air results indicate that the SVE system may not be completely treating residual VOC in soil beneath the northeast portion of Building 3. To provide further treatment of VOC impacts in the vadose zone beneath the northeast portion of Building 3, and to provide an additional means of potential shallow groundwater treatment, two new horizontal wells were installed beneath Building 3 in order to expand SVE treatment.

2.4.2 Building 3 Horizontal SVE Well Installation

Based on the data above, CB&I installed two new horizontal SVE wells beneath Building 3. **Figures 11** and **12** illustrate the location of the two new horizontal extraction wells BLDG3-SVE3 and BLDG3-SVE4. Well BLDG3-SVE3 was installed to provide further treatment of VOC impacts in the vadose zone beneath the northeast portion of Building 3 and to provide a means of potential shallow groundwater treatment. Well BLDG3-SVE4 was installed to provide treatment of VOC impacts in the vadose zone beneath the former Building 3 Chem Lab and to provide a means of potential shallow groundwater treatment.

From September 16 to 19, 2014, CB&I supervised the installation of two horizontal SVE wells beneath Building 3. Directional Technologies Inc. (DTI) of North Haven, CT completed installation of both horizontal wells using a Ditch Witch 2720 mud-rotary drill rig through the building foundation wall to the desired locations. Well BLDG3-SVE3 was advanced 40 feet beyond the foundation wall and well BLDG3-SVE4 was advanced 120 feet beyond the foundation. A copolymer mud specifically designed for horizontal drilling was used to help stabilize the bore hole and aid in well development. Each well was constructed of three-inch diameter schedule 80 PVC well screen and casing. BLDG3-SVE3 was completed with a 25 foot screen section installed approximately eight feet below the building floor. Well BLDG3-SVE4 was completed with a 40 foot screen section installed approximately 8.5 feet below the building floor. The screened section of extraction well BLDG3-SVE3 was located to treat soil impacts indicated from the soil sample collected eight feet below the floor at soil boring BLDG3-SB100 (15 mg/kg of PCE in 2012). The screened section of extraction well BLDG3-SVE4 was located to treat impacts indicated from the soil sample collected eleven feet below the floor at soil boring at BLDG3-SB105 (25 mg/kg of PCE in 2013) and the areas where holes in drain line 7 may have resulted in discharges to subsurface soils. Well completion diagrams are provided in the drilling log included in Appendix D. Figure 11 shows the locations of the new horizontal SVE wells and well cross sections are also illustrated.

Although the horizontal drilling method used to advance the soil borings limited observations of the soil, soil encountered during the installation of BLDG3-SVE3 appeared to consist of mainly of a silty sand with abundant gravels. Soil encountered during the installation of BLDG3-SVE4 appeared to consist of clayey sand with some gravel. Due to the nature of the drilling procedure, headspace readings were not collected during well installation; however, headspace screening of the drilling mud that contained soil cuttings from each well was conducted. Headspace readings revealed a VOC concentration of 276 ppm in the soil cuttings collected from BLDG3-SVE3 and 411 ppm in the soil cuttings collected from BLDG3-SVE4.

The mud slurry that flushed drill cuttings from the bore hole at each wells was containerized in 300 gallon plastic totes pending characterization and off-site disposal.

After well installation, the extraction wells were developed by DTI by pumping tap water directly into the installed well. Water passing through the screen displaced the cuttings-laden drilling fluid, forcing it to exit through the end of the wellbore. Flushing continued until the bulk of drilling fluids and cuttings were been removed from the wellbore. The wellbore was then flooded with a solution containing a clay dispersant which was given at minimum four hours of residence time for the drilling fluid to de-flocculate. Then the well was flushed using tap water to remove remaining solids from the wellbore. Water produced during well development was containerized and stored on-site in 300 gallon plastic totes for future off-site disposal.

As discussed below, extraction wells BLDG3-SVE3 and BLDG3-SVE4 were connected to SVE system on September 25, 2014.

2.4.3 Building 3 SVE System Operation and Maintenance

During this monitoring period, regular twice-monthly O&M site visits were performed by CB&I personnel. Activities performed during regular O&M visits include checking and recording information from SVE system alarms, gauges and meters, and screening soil vapor recovered by the system with a PID to assess VOC recovery and off-gas treatment removal efficiency. The results of regular O&M system monitoring conducted from April 1, 2014 to September 30, 2014 are summarized in **Table 10**. During this monitoring period the average total flow rate for the SVE system was approximately 172 cubic feet per minute (cfm), with an average pretreatment total VOC concentration of 11 ppm before extraction began at the two new wells. On September 25, 2014, soil vapor extraction began at wells BLDG3-SVE3 and BLDG3-SVE4. Screening of soil vapor from these two new wells indicated VOC concentrations of 56 ppm at BLDG3-SVE3 and 20 ppm at BLDG3-SVE4. Prior to these two new extraction wells, VOC recovery was highest at extraction well BLDG3-SVE2, with an average concentration of approximately 12 ppm during this reporting period.

Table 10 also includes calculated off-gas removal efficiency, which demonstrates greater than 95 percent removal of VOCs from the vapor discharge was maintained by the carbon vessels during this reporting period as required by MADEP (MADEP, 1994).

During O&M site visits, the applied vacuum on the SVE wells was adjusted to optimize VOC recovery from beneath Building 3. This included increasing or decreasing applied vacuum on the individual SVE

wells or adjusting the ambient air dilution valve to increase or decrease the total applied vacuum. In addition, adjustments are made to the well packers installed in BLDG3-SVE1 and BLDG3-SVE 2 to vary the sections of well screen where vacuum is applied. Other activities performed during this reporting period included draining condensation from lines in the system and monitoring vacuum influence at the sub-slab soil vapor points inside Building 3.

As previously noted, a temporary SVE system shutdown was conducted on April 3, 2014 for soil vapor and indoor air testing purposes. The SVE system was reactivated on April 29, 2014 after sampling was conducted.

On May 1, 2014, PID screening of soil vapor from the primary carbon vessel effluent indicated potential breakthrough of the primary carbon (**Table 10**). The primary carbon vessel was taken offline and the stand-by carbon vessel was brought into service as the new secondary treatment vessel and the secondary treatment vessel configured as the primary. The SVE system was then reactivated and monitoring of the secondary carbon effluent (discharge to atmosphere) on this date indicated greater than 95 percent treatment of VOC.

On May 12, 2014, approximately 2,000 pounds of spent carbon were removed from the off-line vessel and new carbon was installed. The spent Building 3 carbon was transported off site for regeneration at Evoqua Water Technologies in Parker, Arizona. A copy of the Uniform Hazardous Waste Manifest for the shipment of carbon is provided in **Appendix C**. The off-line vessel with new carbon remained on site as a stand-by in the event that vapor screening indicates carbon breakthrough.

On June 13, 2014, PID screening of soil vapor from the primary carbon vessel effluent indicated potential breakthrough of the primary carbon (**Table 10**). The primary carbon vessel was taken offline and the stand-by carbon vessel was brought into service as the new secondary treatment vessel and the secondary treatment vessel configured as the primary. The SVE system was then reactivated and monitoring of the secondary carbon effluent (discharge to atmosphere) on this date indicated greater than 95 percent treatment of VOC.

On July 8, 2014, approximately 2,000 pounds of spent carbon were removed from the off-line vessel and new carbon was installed. The spent Building 3 carbon was transported off site for regeneration at Evoqua Water Technologies in Parker, Arizona. A copy of the Uniform Hazardous Waste Manifest for the shipment of carbon is provided in **Appendix C**. The off-line vessel with new carbon remained on site as a stand-by in the event that vapor screening indicates carbon breakthrough.

On July 8, 2014, PID screening of soil vapor from the primary carbon vessel effluent indicated potential breakthrough of the primary carbon (**Table 10**). The primary carbon vessel was taken offline and the stand-by carbon vessel was brought into service as the new secondary treatment vessel and the secondary treatment vessel configured as the primary. The SVE system was then reactivated and monitoring of the secondary carbon effluent (discharge to atmosphere) on this date indicated greater than 95 percent treatment of VOC.

On July 25, 2014, approximately 2,000 pounds of spent carbon were removed from the off-line vessel and new carbon was installed. The spent Building 3 carbon was containerized in drums and stored onsite pending transport and appropriate off-site disposal. The off-line vessel with new carbon remained on site as a stand-by in the event that vapor screening indicates carbon breakthrough.

On July 8, 2014, grab soil vapor samples were collected from the Building 3 SVE system to assess current VOC concentrations in the recovered vapor. Vapor samples were collected from BLDG3-SVE1, BLDG3-SVE2, and total carbon influent. Each grab sample was collected using evacuated Summa® canisters. The soil vapor samples collected were submitted to ALS for laboratory analysis of the full VOC list referencing EPA Method TO-15 (MADEP Method WSC-CAM-IXB). The full analyte list was reported to aid in determining non-target VOCs were contributing to increased carbon consumption. Analytical results of the soil vapor samples are summarized on **Table 11**. A complete copy of the laboratory analytical report is provided in **Appendix F**.

Analytical results of the July 8, 2014, grab soil vapor samples from the Building 3 SVE wells indicated:

- TCE was detected at 2,900 ug/m³ in BLDG3-SVE2; and
- PCE was detected at 3.6 ug/m³ in BLDG3-SVE Influent and 99,000 ug/m³ in BLDG3-SVE2.

Other VOC reported above detection limits in soil vapor samples collected from the Building 3 SVE wells in July 2014 include 2-butanone (at 0.96 ug/m³) acetone (up to 39 ug/m³), and carbon tetrachloride (at 0.47 ug/m³). In addition, estimated concentrations of a number of VOC below the method reporting limit, but above the method detection limit, were reported by the laboratory to evaluate carbon consumption. These estimated data indicate the presence of low levels of VOC that have high carbon consumption rates and which may be impacting carbon performance. For example, dichloromethane (methylene chloride) and vinyl chloride were reported at estimated concentrations of 0.38 ug/m³ and 0.057 ug/m³, respectively, in the carbon influent vapor sample (**Table 11**).

On September 25, 2014, grab soil vapor samples were collected from the Building 3 SVE system to assess VOC concentrations in the recovered vapor at existing well BLDG3-SVE1, and the two new SVE wells BLDG3-SVE3 and BLDG3-SVE4. Each grab sample was collected using evacuated Summa® canisters. The soil vapor samples collected were submitted to ALS for laboratory analysis of full VOC list referencing EPA Method TO-15 (MADEP Method WSC-CAM-IXB). Analytical results of the soil vapor samples are summarized on **Table 11**. A complete copy of the laboratory analytical report is provided in **Appendix F**.

Analytical results of the September 25, 2014, grab soil vapor samples from the Building 3 SVE wells indicated:

- TCE was detected at concentrations ranging from 3 ug/m³ at BLDG3-SVE1 to 5,000 ug/m³ at BLDG3-SVE3
- PCE was detected at concentrations ranging from 240 ug/m³ at BLDG3-SVE1 to 410,000 ug/m³ at BLDG3-SVE3
- Acetone was detected at concentrations ranging from 290 ug/m³ at BLDG3-SVE1 to 37,000 ug/m³ at BLDG3-SVE4

 2-butanone (methyl ethyl ketone) was detected at concentrations ranging from 63 ug/m³ at BLDG3-SVE1 to 13,000 ug/m³ at BLDG3-SVE4

Additional VOC reported above detection limits in soil vapor samples collected from the Building 3 SVE wells in September 2014 include cis-1,2-DCE (at 120 ug/m³), trans-1,2-DCE (at 8 ug/m³), dichloromethane (at 7 ug/m³) and toluene (at 1 ug/m³).

2.4.4 Building 3 SVE System Performance

Measured VOC concentrations in soil vapor recovered by the Building 3 SVE system using a PID are evaluated to approximate the VOC mass removed by the treatment system. Both the VOC mass removal rate and total VOC mass removed by the Building 3 SVE system are presented in **Table 12** and illustrated in **Figure 13**. Since the SVE system was activated in December 2009, it has removed an estimated 1,526 pounds of VOCs from beneath Building 3. During this reporting period a total of approximately 148 pounds of VOCs were removed by the Building 3 SVE system. Initial monitoring and sampling of vapor extracted from horizontal wells BLDG3-SVE3 and BLDG3-SVE4 indicate elevated concentrations of VOC. These data illustrate the wells are located in areas with residual VOC in vadose zone soil.

Monitoring of applied vacuum beneath the Building 3 floor is conducted at the sub-slab vapor monitoring points installed inside Building 3. The results of this monitoring are provided on **Table 10** for the current reporting period and the locations of the sub-slab vapor monitoring are illustrated on **Figure 11**. Results of this monitoring indicate that vacuum influence from operation of the SVE system is present beneath Building 3, including point BLDG3-VP6, which is located approximately 22 feet to the south of BLDG3-SVE2. This data demonstrates soil vapor control is maintained by operation of the Building 3 SVE system beneath this portion of the Building 3 floor slab.

2.5 Building 5 SVE System

The Building 5 SVE system was installed in December 2012 and system startup was completed in March 2013. The SVE system was designed to reduce VOC concentrations in the vadose zone soil beneath Building 5 as well as to control potential vapor intrusion into the building.

The SVE system consists of the following components:

- three horizontal soil vapor extraction wells (BLDG5-SVE1, BLDG5-SVE2, and BLDG5-SVE3) installed beneath Building 5;
- one 5 horsepower regenerative blower;
- one moisture knock-out drum; and
- two 2,000-pound carbon vessels piped in series (with a spare third 2,000 pound carbon vessel).

The locations of the three SVE wells are shown on **Figure 14**. The October 2013 status report included an O&M Manual developed to ensure that the system is operated properly to meet the intended design criteria and achieve site remedial goals (Shaw, 2013c). The O&M Manual includes manufacturer's literature and specific procedures for individual components for proper operation and maintenance. As-

built drawings for the SVE system, a site-specific data collection form, preventive maintenance charts for key equipment and appropriate system start-up and shutdown procedures were also included.

The following section presents data regarding the operation of the Building 5 SVE system during this reporting period. In addition to the normal operation of the Building 5 SVE system, soil vapor and indoor air sampling was conducted in Building 5 and an additional extraction well was installed and connected to the system.

2.5.1 Building 5 Soil Vapor and Indoor Air Sampling

On April 1, 2014 indoor air samples were collected from three new locations inside Building 5 and adjacent Building 8. The sampling was conducted to assess potential indoor air impacts in Building 5 and in the Building 8 basement downgradient of well OB44-S where elevated VOC concentration were detected in shallow groundwater following installation of this well in December 2013. These new locations included BLDG5-5 (cathode spray room), BLDG5-6 (common office area), and BLDG8-1 (high power testing in Building 8 Basement). The samples were collected using evacuated Summa® canisters over an eight-hour sampling interval. The indoor air sampling locations are illustrated on **Figure 14**. The indoor air samples collected were submitted to ALS for laboratory analysis of VOCs by EPA Method TO-15. Analytical results of the indoor air samples are summarized on **Table 13**. Complete copies of the laboratory analytical reports are provided in **Appendix F**.

Analytical results of the April 1, 2014 indoor air samples collected from within Building 5 indicate:

- TCE was detected at concentrations ranging from 0.79 ug/m³ in BLDG5-5 to 5.2 ug/m³ in BLDG5-6;
- PCE was detected at concentrations ranging from non-detectable in BLDG5-5 to 0.81 ug/m³ in BLDG5-6; and
- Acetone was detected at concentrations ranging from 86 ug/m³ in BLDG8-1 to 3900 ug/m³ in BLDG5-5

Several additional VOC were reported at low levels in indoor air samples collected from the Building 5 in April 2014, including 2-butanone, carbon tetrachloride, cis-1,2-DCE, trans-1,2-DCE, 4-methyl-2-pentenone, toluene and xylenes.

The results of the April 2014 indoor air samples from Building 5 indicate concentrations of target VOC such as TCE and PCE are similar or lower than those previously detected in the Building 5 treatment area (e.g. locations BLDG5-1 and BLDG5-2). Therefore, it appears that potential impacts to indoor air are limited to the current Building 5 SVE treatment area and are nearly non-detectable in the Building 8 basement.

On June 17, 2014, sub-slab soil vapor samples were collected from six soil vapor points beneath Building 5 (BLDG5-SV1, BLDG5-SV2, BLDG5-SV3, BLDG5-SV4, BLDG5-SV5, and BLDG5-SV6, **Figure 14**). The samples were collected to evaluate current VOC concentrations beneath the building. The vapor samples were collected using an evacuated Summa® canister over a four-hour sampling interval and submitted to ALS for laboratory analysis of select VOCs by EPA Method TO-15. Analytical results of the June 17 2014 sub-slab soil vapor samples are summarized on **Table 14**. Complete copies of the laboratory analytical reports are provided in **Appendix F**.

Analytical results of the June 17, 2014 sub-slab soil vapor samples collected beneath Building 5 indicated:

- TCE was detected at concentrations ranging from 6 ug/m³ in BLDG5-SV5 to 970 ug/m³ in BLDG5-SV6:
- PCE was detected at concentrations ranging from 8.1 ug/m³ in BLDG5-SV2 to 420 ug/m³ in BLDG5-SV6;
- cis-1,2-DCE was detected at a concentration of 950 ug/m³ in BLDG5-SV6;
- TCA was detected at a concentration of 680 ug/m³ in BLDG5-SV6;
- 1,1-dichloroethene was detected at a concentration of 280 ug/m³ in BLDG5-SV6; and
- 1,1-dichloroethane was detected at a concentration of 1,600 ug/m³ in BLDG5-SV6.

Additional VOC reported above detection limits in sub-slab soil vapor samples collected from beneath Building 5 in June 2014 included: 2-buanone (up to 200 ug/m³); 2-hexanone (at 15 ug/m³); 4-methyl-2-pentanone (up to 98 ug/m³); acetone (up to 960 ug/m³); carbon tetrachloride (up to 0.49 ug/m³); ethylbenzene (at 10 ug/m³); toluene (up to 24 ug/m³); vinyl chloride (19 ug/m³); styrene (18 ug/m³) and xylenes (up to 50 ug/m³).

Data from soil vapor sampling in June 2014 indicated VOC concentrations similar to or less than January 2014 sampling and continue to reflect a significant decrease in TCE and PCE concentrations compared to analytical results from before the Building 5 SVE system was activated.

In conjunction with the June 17, 2014 sub-slab soil vapor sampling, indoor air samples were collected from the Building 5 treatment area. Indoor air samples were collected from inside Building 5 (BLDG5-1, BLDG5-2, and BLDG5-3) using evacuated Summa® canisters over an eight-hour sampling interval. The indoor air sampling locations are illustrated on **Figure 14**. This sampling was conducted to assess VOC concentration trends in indoor air of Building 5 with the SVE system operating. The indoor air samples collected were submitted to ALS for laboratory analysis of VOCs by EPA Method TO-15. Analytical results of the indoor air samples are summarized on **Table 13**. Complete copies of the laboratory analytical reports are provided in **Appendix F**.

Analytical results of the June 17, 2014 indoor air samples collected from within Building 5 indicated:

- TCE was detected at concentrations ranging from 3.5 ug/m³ in BLDG5-3 to 11 ug/m³ in BLDG5-2;
- PCE was detected at concentrations ranging from 3.3 ug/m³ in BLDG5-3 to 11 ug/m³ in BLDG5-2.

Additional VOC reported above detection limits in the indoor air samples collected in Building 5 in April 2014 included 2-butanone (up to 380 ug/m³); acetone (4,100 ug/m³); and 4-methyl-2-haxanone (up to 91 ug/m³).

Concentrations of VOC detected in indoor air samples since the Building 5 SVE system began operation do not indicate a consistent decreasing trend, despite significantly lower VOC concentrations in soil vapor beneath the building. As a result, installation of a new SVE trench well was completed to provide additional treatment in the area of well OB44-S.

2.5.2 Building 5 SVE Trench Installation

Based upon the available data, it appears that the existing Building 5 SVE system has significantly reduced VOC concentrations in soil vapor beneath Building 5 and has reduced VOC concentrations in the indoor air at the Sanding Room. However, it appears that shallow VOC impacts indicated at OB44-S, adjacent to the former utility trench sump, are continuing to impact indoor air in the QA Area (BLDG5-1) and Shipping Area (BLDG5-2). The area of OB44-S is outside of the current radius of influence of the three existing SVE trench wells. Therefore, CB&I installed an additional SVE trench extraction well (BLDG5-SVE4) adjacent to well OB44-S in Building 5. Installation of the new SVE trench well was conducted by Enpro Services from August 8 to 11, 2014 under the direct supervision of CB&I. Installation was conducted during the manufacturing shutdown to limit impacts to facility operations. The trench SVE well was installed by cutting through the concrete floor and excavating to a depth of approximately 4 feet below the floor. An extraction well consisting of 15 feet of four inch PVC screen material and approximately 3.5 feet of 4 inch PVC riser was then installed within the excavation. The trench was then backfilled with approximately 3.5 feet of clean, graded stone around the screen and approximately six inches of clean fill over the stone. Once backfilled, new concrete was installed. The location of the new SVE well BLDG5-SVE4 is shown on **Figure 14**.

2.5.3 Building 5 SVE System Operation and Maintenance

During this monitoring period, regular twice-monthly O&M site visits were performed by CB&I personnel. Activities performed during regular O&M visits include checking and recording information from SVE system alarms, gauges and meters, and screening soil vapor recovered by the system with a PID to assess VOC recovery and off-gas treatment removal efficiency. The results of regular O&M system monitoring conducted from April 1, 2014 to September 30, 2014 are summarized in **Table 15**. From April 1, 2014 to September 30, 2014, the average total flow rate for the SVE system was approximately 128 cfm, with an average pretreatment total VOC concentration of 1.6 ppm. VOC recovery continues to be higher at vapor extraction well BLDG5-SVE1, with an average concentration of approximately 4.2 ppm during this reporting period. On August 11, 2014, soil vapor extraction began at well BLDG5-SVE4. Screening of soil vapor from the new SVE trench well indicated an initial VOC concentration of 0.4 ppm at BLDG5-SVE4. These results are discussed further below.

Table 15 also includes calculated off-gas treatment removal efficiency, which demonstrates greater than 95 percent removal of VOCs from the SVE system discharge was maintained during this reporting period by the carbon treatment vessels as required by MADEP (MADEP, 1994).

During O&M site visits, the applied vacuum on the SVE wells was adjusted to optimize VOC recovery from beneath Building 5. This included increasing or decreasing applied vacuum on the individual SVE wells or adjusting the ambient air dilution valve to increase or decrease the total applied vacuum. Other activities performed during this reporting period included draining condensation from lines in the system and monitoring vacuum influence at the sub-slab soil vapor points inside Building 5.

2.5.4 Building 5 SVE System Performance

Measured VOC concentrations in soil vapor recovered by the SVE system using a PID are evaluated to approximate the VOC mass removed by the treatment system. Both the mass removal rate and total mass removed by the Building 5 SVE system are presented in **Table 16** and illustrated in **Figure 15**.

Since the Building 5 SVE system was activated on March 11, 2013, through the end of this reporting period, it has removed an estimated 82 pounds of VOCs from beneath Building 5.

On May 14, 2014 and September 23, 2014, grab soil vapor samples were collected from the SVE system. In May vapor samples were collected from BLDG5-SVE1, BLDG5-SVE2, and the carbon influent. In September, vapor samples were collected from BLDG5-SVE1, BLDG5-SVE2, BLDG5-SVE4, and the carbon influent. Each sample was collected using an evacuated Summa® canister and was submitted to ALS for laboratory analysis of select VOCs by EPA Method TO-15. Analytical results of the soil vapor samples are summarized on **Table 17**. A complete copy of the laboratory analytical report is provided in **Appendix F**.

Analytical results of the May 14, 2014, grab soil vapor samples from the Building 5 SVE system indicated:

- TCE was detected at concentrations ranging from 260 ug/m³ in BLDG5-SVE2 to 9,900 ug/m³ in BLDG5-SVE1;
- PCE was detected at concentrations ranging from 200 ug/m³ in BLDG5-SVE2 to 920 ug/m³ in BLDG5-SVE1; and
- cis-1,2-DCE was detected at concentrations ranging from 53 ug/m³ in BLDG5-SVE2 to 230 ug/m³ in BLDG5-SVE1.

Additional VOC reported above detection limits in soil vapor samples collected from the Building 5 SVE system in May 2014 include 1,1,-TCA (at 5.1 ug/m³), 2-butanone up to 51 ug/m³), 4-methyl-2-pentanone (at 13 ug/m³), and acetone (up to 130 ug/m³).

Analytical results of the September 23, 2014, grab soil vapor samples from the Building 5 SVE system indicated:

- TCE was detected at concentrations ranging from 7 ug/m³ in BLDG5-SVE4 to 30,000 ug/m³ in BLDG5-SVE1;
- PCE was detected at concentrations ranging from 59 ug/m³ in BLDG5-SVE4 to 3,000 ug/m³ in BLDG5-SVE1; and
- cis-1,2-DCE was detected at concentrations ranging from non-detectable in BLDG5-SVE4 to 300 ug/m³ in BLDG5-SVE1.

Additional VOC reported above detection limits in soil vapor samples collected from the Building 5 SVE system in September 2014 included: 2-butanone (up to 21 ug/m³), acetone (up to 73 ug/m³), and dichloromethane (up to 27 ug/m³).

As indicated on **Table 17**, VOC concentrations in soil vapor from the Building 5 Area extraction wells have decreased overtime due to operation of the SVE system. For example, the TCE concentration detected at BLDG5-SVE1 has decreased from 240,000 ug/m³ during the pilot test in September 2012 to 30,000 ug/m³ in September 2014 (after 539 days of SVE system operation). Based on September 2014 soil vapor analytical results from extraction well BLDG5-SVE4, VOC recovery is lower than would be expected considering the elevated VOC concentrations detected in soil and groundwater at adjacent well OB44-S.

Monitoring the vacuum beneath the Building 5 floor is conducted at six sub-slab vapor monitoring points (BLDG5-SV1, BLDG5-SV2, BLDG5-SV3, BLDG5-SV4, BLDG5-SV5 and BLDG5-SV6) installed inside the building (**Figure 14**). The monitoring data indicates that vacuum influence from operation of the SVE system is observed at most of the monitoring vapor monitoring locations demonstrating vapor control beneath this portion of the Building 5 floor slab.

On September 24, 2014, sub-slab soil vapor and indoor air samples were collected in the Building 5 area to assess the impact of operating the new SVE trench well on VOC concentration in soil vapor and indoor air. Vapor samples were collected from five sub-slab soil vapor points beneath Building 5 (BLDG5-SV2, BLDG5-SV3, BLDG5-SV4, BLDG5-SV5, and BLDG5-SV6). Indoor air samples were collected at four locations within Building 5 (BLDG5-1, BLDG5-2, BLDG5-3 and BLDG5-6). Soil vapor samples were collected using an evacuated Summa® canister over a four-hour sampling interval. Indoor air samples were collected using an evacuated Summa® canister over an eight-hour sampling interval. The soil vapor and indoor air samples collected were submitted to ALS for laboratory analysis of VOC by EPA Method TO-15.

Analytical results of the September 24, 2014 sub-slab soil vapor samples are summarized on **Table 14**. A complete copy of the laboratory analytical report is provided in **Appendix F**. Analytical results of these sub-slab soil vapor samples collected beneath Building 5 indicated:

- TCE was detected at concentrations ranging from 4 ug/m³ in BLDG5-SV5 to 390 ug/m³ in BLDG5-SV6:
- PCE was detected at concentrations ranging from non-detectable in BLDG5-SV4 to 97 ug/m³ in BLDG5-SV6;
- cis-1,2-DCE was detected at a concentration of 590 ug/m³ in BLDG5-SV6;
- 1,1,1-TCA was detected at a concentration of 490 ug/m³ in BLDG5-SV6; and
- 1,1-dichloroethene and 1,1-dichloroethane were detected in BLDG5-SV6 at a concentrations of 350 ug/m³ and 1,800 ug/m³, respectively.

Additional VOC reported above detection limits in sub-slab soil vapor samples collected from beneath Building 5 in June 2014 included: 2-buanone (up to 230 ug/m³), 2-hexanone (up to 5 ug/m³), 4-methyl-2-pentanone (up to 62 ug/m³), acetone (up to 300 ug/m³), 1,3 dichlorobenzene (up to 13 ug/m³), benzene (up to 2 ug/m³), ethylbenzene (up to 10 ug/m³), toluene (up to 29 ug/m³), dichloromethane (up to 350 ug/m³); and xylenes (up to 54 ug/m³).

Analytical results of the September 24, 2014 indoor air samples are summarized on **Table 13**. A complete copy of the laboratory analytical report is provided in **Appendix F**. Analytical results of these indoor air samples from Building 5 indicated:

- TCE was detected at concentrations ranging from non-detectable at BLDG5-3 and BLDG5-6 to 9 ug/m³ in BLDG5-1;
- PCE was detected at concentrations ranging from non-detectable at BLDG5-3 and BLDG5-6 to 8 ug/m³ in BLDG5-SV1 and
- cis-1,2-DCE was detected at concentrations ranging from non-detectable at BLDG5-3 and BLDG5-6 to 1 ug/m³ in BLDG5-SV6.

Additional VOC reported above detection limits in sub-slab soil vapor samples collected from beneath Building 5 in June 2014 included: 2-butanone (up to 340 ug/m³), 4-methyl-2-pentanone (up to 100 ug/m³), acetone (up to 620 ug/m³), ethylbenzene (up to 2 ug/m³), toluene (up to 4 ug/m³), dichloromethane (up to 57 ug/m³); and xylenes (up to 10 ug/m³).

Data from soil vapor samples collected in September 2014 continue to indicate lower VOC concentrations beneath Building 5. VOC concentrations from the September 2014 indoor air samples indicate mixed results. For example, TCE and PCE were both non detectable in the Sanding Room for the first time (BLDG5-3), but concentrations of these VOC indicated a slight increase in the QA Room sample (BLDG5-1). Lower than expected VOC concentrations have been measured in the soil vapor recovered by the new SVE trench well BLDG5-SVE4. These data suggest that indoor air impacts in the Building 5 area may be more directly from shallow groundwater rather than residual VOC in vadose zone soil. Even with operation of the SVE system, TCE concentrations in indoor air at Building 5 have periodically been detected above 8 ug/m³, which MADEP has specified as the long-term remediation target for situations where workplace indoor air has been impacted by vapor intrusion. This MADEP target is intended to be protective of developmental toxicity as well as other potential effects. Therefore, it appears that shallow groundwater treatment may be warranted in the Building 5 area.

2.6 32 Tozer Road Soil Vapor and Indoor Air Sampling

Previously collected data, including indoor air sampling results, indicated a condition of No Significant Risk exists at the 32 Tozer road building. Building renovations by the owner that resulted significant changes to the 32 Tozer Road building floor plan were completed in May 2013. To confirm that a condition of No Significant Risk still existed at this property following these renovations, CB&I completed soil vapor and indoor air sampling within the 32 Tozer Road building during previous reporting periods in May 2013, October 2013, and February 2014, and in April 2014 during this reporting period.

On April 17, 2014, three sub-slab soil vapor samples (32Tozer-SV3, 32Tozer-SV4, and 32Tozer-SV5) were collected from beneath the building floor at 32 Tozer Road using evacuated Summa[®] canisters over a four-hour sampling interval. The locations of soil vapor sampling points are shown on **Figure 16.** These samples were submitted to ALS Environmental for analysis of select VOCs by EPA Method TO-15.

Analytical results of the sub-slab soil vapor samples collected beneath the 32 Tozer Road building on April 17, 2014 are summarized in **Table 18**. A complete copy of the laboratory analytical report is included in **Appendix F**. The April 17, 2014 soil vapor analytical results indicated the following:

- TCE was detected at concentrations ranging from 0.41 ug/m³ in 32 Tozer-SV5 to 4,500ug/m³ in 32 Tozer-SV3;
- PCE was detected at concentrations ranging from 1.4 ug/m³ in 32 Tozer-SV5 to 14,000 ug/m³ in 32 Tozer-SV3;
- cis-1,2-DCE was reported at concentrations ranging from non-detectable in 32 Tozer-SV5 to 17,000 ug/m³ in 32 Tozer-SV3;
- 1,1-dichloroethane was detected at 0.8 ug/m³ in 32 Tozer-SV4; and
- vinyl chloride was detected at 1.2 ug/m³ in 32 Tozer-SV4.

Data from the April 2014 soil vapor samples indicate similar results to previous sampling rounds at location 32 Tozer-SV5 and 32 Tozer-SV4, but indicate an increase in VOC concentrations in location 32 Tozer-SV3.

As shown on **Table 18**, concentrations of some VOC in sample 32Tozer-SV3 from April 17, 2014 exceeded the Commercial/Industrial Sub-Slab Soil Gas Screening Values, which are screening criteria recommended by the MADEP for initial evaluation of soil vapor data in a commercial or industrial setting.

In conjunction with sub-slab soil vapor sampling on April 17, 2014, three indoor air samples (32Tozer-1, 32Tozer-2, and 32Tozer-3) were collected using evacuated Summa[®] canisters over an eight-hour sampling interval (**Figure 16**). These indoor air samples were submitted to ALS for analysis of select VOC by EPA method TO15.

Analytical results of the indoor air samples collected inside the 32 Tozer Road building April 17, 2014 are also summarized in **Table 18**. A complete copy of the laboratory analytical report is included in **Appendix F**. The April 17, 2014 indoor air analytical results indicated the following:

- TCE was reported at concentrations ranging from non-detectable in 32Tozer-3 to 1.9 ug/m³ in 32 Tozer-1:
- PCE was detected at concentrations ranging from 0.26 ug/m³ in 32Tozer-3 to 18 ug/m³ in 32 Tozer-1; and
- cis-1,2-DCE was reported at concentrations ranging from non-detectable in 32Tozer-3 to 3.9 ug/m³ in 32 Tozer-1.

In general, VOC concentrations detected in the four indoor sampling events conducted in May 2013, October 2013, February 2014, and April 2014 at 32 Tozer Road indicate similar levels. As indicated in **Table 18**, PCE was detected in the April 2014 indoor air sample at concentrations exceeding the Commercial/ Industrial Threshold Value in 32Tozer-1. This threshold value is a screening criterion recommended by the MADEP for initial evaluation of indoor air data in a commercial or industrial setting. Further evaluation of potential risk associated with indoor air at 32 Tozer Road was therefore conducted and is discussed in section 4.3.

2.7 Quality Assurance/Quality Control (QA/QC)

In general, the environmental data collected by CB&I during these remedial monitoring activities meets the "presumptive certainty" criteria described in MADEP guidance (MADEP, 2004a). To make this determination, the laboratory reports were reviewed by CB&I to confirm that each sample was analyzed within holding times and to ensure that surrogate recoveries and internal laboratory standards were within QA/QC limits. Based on a data usability assessment of the laboratory analytical reports, the data are appropriate for use in this ROS report. Copies of Data Usability Worksheets that document this review are included with each laboratory analytical report in **Appendix F**. If applicable, results from samples reported beyond the calibration range of the laboratory instrument are flagged with an "E" (exceeds calibration range) qualifier in the laboratory analytical report. However, these samples were reanalyzed by the laboratory as a secondary diluted sample. A "D" (diluted) qualifier in the laboratory analytical report and on the data tables indicates compounds that are reported from a secondary diluted sample.

Potential QA/QC issues identified during this reporting period included percent recoveries outside of control limits for certain compounds in laboratory control samples (LCS)/laboratory control sample duplicates (LCSD) in ALS submission numbers R1302631, R1402601, R1402779, R1403116, 2027489, 2031945 and 2031370. As a result of this, a "J" (estimated) qualifier was assigned to positive detects in applicable samples while non-detect results were not qualified.

In ALS submission number R1302631, R1402595 and R1402727, certain batches of samples had continued calibration verification (CCV) outside the control range. As a result, a "UJ" (non-detect, estimated) qualifier was assigned to non-detectable results in applicable samples.

In ALS submission number R1405214, a faulty regulator on the summa canister of sample BLDG3-SVE1 resulted in ambient air dilution of the sample, As a result positive and non-detect results were assigned a "J" (estimated) qualifier.

In summary, no data collected during this reporting period were rejected and the data generally meet the QA/QC requirements of the MCP.

3.0 SIGNIFICANT MODIFICATIONS TO THE OPERATION, MAINTENANCE, AND/OR MONITORING PROGRAM (310 CMR 40.0892 (2)(b))

No major modifications to the remediation or monitoring plans for the Site were made during this reporting period. One minor adjustment to the field monitoring plan was made during this reporting period. During previous years, well monitoring was conducted on a bi-weekly schedule following permanganate injections to confirm no adverse impacts resulted from the injections. As part of the 2014 permanganate treatment program, field monitoring was conducted monthly. It is anticipated that the monthly monitoring schedule will continue to provide data needed to confirm no adverse impacts resulted from the injections as required by MADEP guidance.

The original Phase IV Plan (IT, 2001) detailed groundwater remediation and monitoring activities for the various permanganate treatment areas of the Site. Plans for the bioremediation monitoring activities have been presented in previous ROS status reports. The operation, maintenance and monitoring plan for the Building 3 SVE system was submitted to the MADEP in a March 2010 IRA status report (Shaw 2010a). The operation, maintenance and monitoring plan for the Building 5 SVE system was presented in the modified Phase IV Plan (Shaw, 2012d). Minor adjustments to these remedial monitoring plans will continue to be made as site conditions warrant and will be reported in subsequent ROS reports.

4.0 EVALUATION OF THE PERFORMANCE OF REMEDIAL ACTIVITIES (310 CMR 40.0892 (2)(c))

As described in the preceding sections, remedial activities are progressing at the former Varian Facility Site in general accordance with the Phase IV Plan (IT, 2001) and the Modified Phase IV Plan (Shaw 2012d). Generally lower VOC levels and decreasing VOC concentration trends in groundwater have been observed at monitoring wells across the Site as a result of the permanganate injection program. October 2014 groundwater analytical results will be reviewed in an effort to determine if further treatment is required.

In addition, the limited bioremediation program which began at the Site in 2006 has resulted in significant decreases in VOC levels in shallow groundwater near the Unnamed Stream, where permanganate application is not appropriate. The deep overburden bioremediation injections conducted near the northeast corner of Building 3 were successful in establishing culture activity in the deep aquifer and distributing lactate to the target wells particularly wells AP23-DO and AP24-DO to sustain biodegradation. Monitoring data indicates that some reductive dechlorination is occurring in this area. However, the groundwater monitoring results indicated lower levels of carbon are available to sustain bioremediation activity. Due to the lower total organic carbon concentrations and the continued elevated TCA and TCE levels in this area, Varian plans to injection EVO as a carbon source for reductive dechlorination in the deep overburden during the next reporting period. Monitoring results from sampling events after these injections (e.g. January and April 2015) will be evaluated to determine future steps in the bioremediation program.

Site data continue to show that the remedial program is effectively treating Site groundwater in accordance with remedial objectives.

The Building 3 and Building 5 SVE systems are being operated in accordance with their respective Phase IV O&M plans (Shaw, 2012d and Shaw, 2013a). Monitoring of vacuum beneath the building floor in each area is conducted to demonstrate that soil vapor control is maintained beneath Buildings 3 and 5.

The indoor air samples collected at the April 2014 temporary shutdown of the Building 3 SVE system in April 2014 continue to indicate that operation of the SVE system is needed to mitigate VOC impacts to indoor air. It is expected that operation of the two new SVE wells will address additional VOC impacts in the vadose zone and further reduce potential vapor migration into the building. Data from the Building 3 area will be evaluated over the next reporting period to assess the impact of the two new horizontal SVE wells on site conditions. In addition, the Building 3 horizontal SVE wells will be utilized to inject permanganate beneath Building 3 to provide groundwater treatment. Application of permanganate directly to VOC impacted groundwater where historic releases likely occurred will help to limit rebound of VOC concentrations at deep overburden wells in the Building 3 Area and may also reduce potential VOC migration into indoor air. After this additional treatment is conducted, further soil vapor and indoor air sampling will be conducted in the Building 3 area to evaluate remedial progress.

Data from the Building 5 area suggest that indoor air impacts in the building may be more directly related to VOC in shallow groundwater than residual VOC in vadose zone soil. Because TCE concentrations in indoor air at Building 5 have periodically been detected above MADEP's long-term remediation target for workplace indoor air (8 ug/m³) with operation of the SVE system, it appears that shallow groundwater treatment may also be warranted in the Building 5 area. Over the next reporting period Varian will evaluate completing shallow groundwater treatment using the existing Building 5 SVE trench wells (e.g. permanganate or bioremediation injections) to further reduce potential impacts to indoor air.

The following sections present an updated evaluation, including new data collected during this monitoring period as it pertains to potential risk posed by oil or hazardous materials associated with the Site and potential receptors.

4.1 Building 3 Indoor Air Evaluation

The Phase II CSA for the Building 3 remedial area (Shaw, 2012b) included an evaluation of exposure to indoor air with the SVE system operating, considering four rounds of indoor air data collected from February 2011 to January 2012. The conclusion of the Phase II evaluation was that a Condition of No Significant Risk has been achieved with the operation of the SVE system. A subsequent round of indoor air samples in November 2013 confirmed that the SVE system is continuing to maintain a Condition of No Significant Risk. In addition, no conditions of Imminent Hazard have been identified. In particular, concentrations of TCE in indoor air with the system operating have been consistently below the Imminent Hazard value set by MADEP for occupational settings of 24 ug/m³ (MADEP, 2014). It should be noted that, even during the temporary shutdown of the Building 3 system in April 2014, TCE concentrations in indoor air remained below MADEP's long-term remediation target of 8 ug/m³ for workplace indoor.

4.2 Building 5 Indoor Air Evaluation

As shown in **Table 14**, soil vapor VOC concentrations beneath Building 5 have decreased substantially with the operation of the SVE system. Indoor air concentrations were relatively low prior to the installation of the SVE system and have also declined (**Table 13**), though not to the same degree as soil vapor. In the April 2012 ROS report (Shaw, 2012a), an evaluation of indoor air exposure was conducted using three rounds of pre-treatment indoor air data, collected from August 2011 to January 2012. This evaluation concluded that indoor air sampling results did not indicate the presence of an Imminent Hazard or Significant Risk in Building 5. However, indoor air concentrations are likely to be variable and the risk was at, but did not exceed, the MADEP limit. Therefore, Varian has continued to operate and maintain the Building 5 SVE system.

The April 2014 ROS report included a risk evaluation which considered four rounds of indoor air data collected since the installation of the Building 5 SVE system (CB&I, 2014). The risk evaluation concluded that the SVE system has achieved a condition of No Significant Risk (and no Imminent Hazard) while in operation. No new evaluation was conducted on analytical results collected during this reporting period. However, indoor air results from June and September 2014 indicated VOC concentrations consistent with the data evaluated in the April 2014 ROS report. Therefore, the SVE system continues to maintain a condition of No Significant Risk (and no Imminent Hazard) while in operation.

4.3 Evaluation of Off-Site Properties

4.3.1 32 Tozer Road

In April 2014, CB&I conducted the fourth round of indoor air and soil vapor sampling at the 32 Tozer Road property since the completion of building renovations in April 2013 (section 2.6 above). The results of these four rounds of indoor air sampling (May 2013, October 2013, February 2014 and April 2014) have been evaluated in accordance with the MCP to conservatively estimate potential risk from VOC in indoor air due to vapor intrusion.

CB&I used the maximum concentration of each VOC detected over the four sampling events to conservatively estimate risk in accordance with evaluation procedures established by MADEP. The

maximum indoor air concentrations of TCE, PCE and cis-1,2-dichloroethene detected in the four rounds were 1.9 ug/m³, 18 ug/m³, and 3.9 ug/m³, respectively. The risk evaluation, including input parameters and calculations, is presented on **Table 19**. The estimated non-cancer hazard resulted in a Hazard Index of 0.5. This estimated Hazard Index does not exceed the MCP cumulative non-cancer risk limit of 1 for Significant Risk. The estimated cancer risk was 5x10⁻⁶, which is below the MCP cumulative cancer risk limit of 1 in 100,000 or 1x10⁻⁵. Based on this evaluation, the data demonstrate a condition of No Significant Risk exists at the 32 Tozer Road property in accordance with MADEP criteria. In addition, the TCE concentrations in indoor air at 32 Tozer Road (**Table 18**) have consistently been less than 8 ug/m³, which MADEP has specified as the long-term remediation target for situations where workplace indoor air has been impacted by vapor intrusion to be protective of developmental toxicity as well as other potential effects.

4.3.2 30 Tozer Road

The April 2013 ROS report included an indoor air evaluation for 30 Tozer Road, which concluded that a condition of No Significant Risk associated with VOCs from the former Varian Site existed at the 30 Tozer Road property (Shaw, 2013b). The ROS report stated that additional indoor air sampling at 30 Tozer Road may be conducted if increased VOC concentrations are observed at shallow monitoring well OB42-S, located adjacent to the 30 Tozer Road Building (**Figure 2**). April 2014 groundwater analytical results indicate VOC concentrations similar to previous sampling rounds in OB42-S. Therefore, a condition of No Significant Risk would still be expected.

4.3.3 39 Tozer Road

The April 2013 ROS report included an indoor air evaluation for 39 Tozer Road, which concluded that a condition of No Significant Risk associated with VOCs from the former Varian Site existed at the 39 Tozer Road property (Shaw, 2013b). The ROS report stated that additional indoor air sampling at 39 Tozer Road may be conducted if increased VOC concentrations are observed at shallow monitoring well OB41-S, located adjacent to the 39 Tozer Road Building (**Figure 2**). April 2014 groundwater analytical results indicate VOC concentrations similar to previous sampling rounds in OB41-S. Therefore, a condition of No Significant Risk would still be expected.

5.0 MEASURES TAKEN TO ADDRESS PROBLEMS AFFECTING THE PERFORMANCE OF THE REMEDIAL ACTION (310 CMR 40.0892 (2)(d))

No problems affecting the performance of the selected remedial actions were identified during this reporting period. As demonstrated by the analytical data contained in this ROS report, significant remedial progress continues to be made with lower VOC concentrations measured across the Site. The performance of on-going remedial actions will continue to be documented in future ROS reports.

6.0 ACTIVE EXPOSURE PATHWAY MITIGATION MEASURES (310 CMR 40.1026)

The two SVE systems being operated under this Remedy Operation Status were designed and implemented to mitigate exposure to VOCs from potential vapor migration into Building 3 and Building 5. As discussed above, the remediation system in Building 3 was installed in 2009 under an IRA. In 2013, an IRA Completion report was submitted along with a Phase IV Plan and Remedy Operation Status

Opinion (Shaw, 2013a). The Building 3 SVE system is operated as part of the ROS at this Site. The Building 5 SVE system was installed in 2013 as part of the Phase IV Plan (Shaw, 2013b) and is operated under the Phase V ROS at this Site. The SVE systems at both Building 3 and Building 5 are therefore part of the Remedy Operation Status for the Site and meet the definition of an Active Exposure Pathway Mitigation Measure established in the June 2014 revisions to the MCP. The following sections present information required by 310 CMR 40.1026 and discusses how the existing operation and maintenance plans and Site conditions meet those requirements.

6.1 Operational Regimen for Active Exposure Pathway Mitigation Measure (310 CMR 40.1026(3) (a), (b) & (c))

The Operation and Maintenance (OMM) Plan for the Building 3 system was provided to the MADEP as part of the March 2010 IRA Status Report (Shaw, 2010a). The OMM Plan for the Building 5 system was provided to the MADEP as part of the April 2013 ROS Status Report (Shaw, 2013b). Each OMM Plan includes the methods of monitoring and the frequency of planned maintenance activities. The Building 3 and Building 5 operating regimens were designed to ensure a level of No Significant Risk is maintained for the Receptor of concern under normal operating conditions. Monitoring and maintenance activities regularly conducted for the remedial systems demonstrate that the systems are operating in accordance with the OMM Plans and the objectives stated in appropriate MCP submittals, thereby effectively mitigating the exposure pathway.

6.3 Remote Monitoring for Active Exposure Pathway Mitigation Measure (310 CMR 40.1026(3)(d))

The MCP requires that an Active Exposure Pathway Mitigation Measure implemented as part of a Temporary Solution or Remedy Operation Status employ remote monitoring technology that will alert the owner and operator of the building protected by the Active Exposure Pathway Mitigation Measure and MADEP immediately upon failure of the system.

Currently the systems at Building 3 and 5 provide an automated text messages to CB&I when there is an alarm condition including a power failure. CB&I is currently working to reconfigure the system to also provide notice to the MADEP and the facility operator as required by the MCP. It is expected that these upgrades will be completed by the end of November 2014 and will be reported in the next status report.

6.4 Duration of Active Exposure Pathway Mitigation Measure Shutdown (310 CMR 40.1026(e))

The MCP specifies that the operating regimen for an Active Exposure Pathway Mitigation Measure document the longest duration of a shutdown that would be consistent with a level of exposure that does not pose an Imminent Hazard and a level of exposure that poses No Significant Risk.

A planned shutdown of the Building 3 SVE system was conducted in April 2014. The indoor air data collected at the end of the 26-day shutdown were discussed above. For the purpose of estimating the durations required in 310 CMR 40.1026(e), these results have been compared to risk-based indoor air concentrations provided in MADEP guidance (MADEP, 2014a, MADEP 2014b and MADEP 2013).

Based on this comparison, neither the PCE concentration (99 ug/m³) nor the TCE concentration (1.7 ug/m³) detected at the end of the April 2014 shutdown would be an imminent hazard or substantial hazard based on non-cancer effects. The April 2014 PCE concentration detected is above those values based on 1x10⁻⁵ or 1x10⁻⁶ risk, indicating an indoor air concentration that could be a Significant Risk if the Building 3 system was not operating for a sufficient period. Using this potential indoor air concentration, the estimated time to substantial hazard for potential PCE exposure is identified as 0.8 years, as that is the time that would result in an equivalent exposure to a cancer risk of 1x10⁻⁶ over 70 years. Although the actual target cancer risk for substantial hazard is 1x10⁻⁵, a value of 1x10⁻⁶ has been used to provide a margin of safety in estimated shutdown time. As a result, the estimated time for shutdown that could approach a Significant Risk is 0.8 years, based on PCE exposure.

A shutdown has not been conducted on the Building 5 SVE system since the system began operation in March 2013. For the purpose of estimating the durations required in 310 CMR 40.1026(e), indoor air analytical results from prior to system startup were used to compare to risk-based indoor air concentrations provided in MADEP guidance. Based on this comparison neither the PCE concentration (14 ug/m³) nor the TCE concentration (18 ug/m³) detected before the SVE system was activated would be an imminent hazard. The pre-treatment PCE and TCE concentrations detected are above those values based on 1x10⁻⁶ risk, indicating that indoor air concentration could be a Significant Risk if the Building 5 system was not operating for an extended period. In addition, the pretreatment TCE concentration is above the concentration associated with a Hazard Index of 1, indicating the potential for a non-cancer hazard were the system to be shutdown. The exact time for shutdown cannot be estimated since the concentration that results in non-cancer effects is not a function of time, although there is some minimum period of exposure for effects to occur. Due to concerns with short term exposure to TCE, a period of four weeks is specified for the longest shutdown period.

Regardless of this estimated time frame for either SVE system, the OMM Plans include taking prompt steps to maintain SVE system operation and it is not expected that the system would remain shut down for longer than two weeks.

7.0 REFERENCES

- Beverly, 2002. Order of Conditions File # 5-765, City of Beverly Conservation Commission. February 28, 2002.
- Beverly, 2003. Amended Order of Conditions File # 5-765, City of Beverly Conservation Commission. June 16, 2003.
- Beverly, 2004. Amended Order of Conditions File # 5-765, City of Beverly Conservation Commission. June 30, 2004.
- CB&I Environmental & Infrastructure, Inc. (CB&I), 2014. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. April 30, 2014.
- IT, 2000. Phase II Comprehensive Site Assessment, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. June 2000.
- IT, 2001. Phase IV Remedy Implementation Plan, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. December 2001.
- MADEP, 1994. Off-Gas Treatment of Point-Source Remedial Air Emission, WSC-94-150. May 25, 1994.
- MADEP, 2004a. The Compendium of Quality Assurance and Quality Control Requirements and Performance Standards for Selected Analytical Methods Used in Support of Response Actions for the Massachusetts Contingency Plan (MCP), WSC 02 320. May 28, 2004.
- MADEP, 2004b. Conducting Feasibility Evaluations under the Massachusetts Contingency Plan (MCP), Policy WSC # 04 160. July 16, 2004.
- MADEP 2013. Final Vapor Intrusion Guidance, WSC-11-435, Originally published December, 2011, Revised March, 2013.
- MADEP 2014a. MADEP Short Form Offices and Schools Indoor air. Imminent Hazard Evaluation. Short Form Version 10-12, lookup Version v0414.
- MADEP, 2014b. Fact Sheet TCE Toxicity Information: Implications for Chronic and Shorter-Term Exposure, March 27, 2014.
- Shaw Environmental, Inc. (Shaw), 2002a. Phase IV As-Built Construction And Final Inspection Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. October 2002.
- Shaw, 2002b. Remedy Operation Status Opinion, Former Varian Facility Site, Beverly, Massachusetts, RTN 3-0485. December 16, 2002.
- Shaw, 2006. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. October 4, 2006.
- Shaw, 2010a. Immediate Response Action Status Report, Building 3, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-28531. March 31, 2010.
- Shaw, 2010b. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. October 30, 2010.

- Shaw, 2011. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. October 31, 2011.
- Shaw, 2012a. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. April 30, 2012.
- Shaw, 2012b. Massachusetts Contingency Plan, Phase II Comprehensive Site Assessment, Building 3 Site, a Portion of the Former Varian Facility Site, 150 Sohier Road, Beverly, MA, RTN 3-28531. May 29, 2012.
- Shaw, 2012c. Massachusetts Contingency Plan, Phase III Remedial Action Plan, Building 3 Site, a Portion of the Former Varian Facility Site, 150 Sohier Road, Beverly, MA, RTN 3-28531. May 31, 2012.
- Shaw, 2012d. Modification of the Phase III Remedial Action Plan (RAP) and Phase IV Remedy Implementation Plan (Phase IV Plan) to address the Building 5 Area, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. December 17, 2012.
- Shaw, 2013a. Immediate Response Action Completion Report, Phase IV Remedy Implementation Plan, Phase IV Completion Statement, and Phase V Remedy Operation Status Opinion, Building 3, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-28531. February 28, 2013.
- Shaw, 2013b. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. April 30, 2013.
- Shaw, 2013c. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. October 31, 2013.
- United States Environmental Protection Agency (USEPA). 2013. Integrated Risk Information System (IRIS) Online database.

8.0 LIMITATIONS ON WORK PRODUCT

The information contained in this report, including its conclusions, is based upon the information that was made available to CB&I Environmental and Infrastructure, Inc.(CB&I), (formerly Shaw Environmental, Inc.), during the investigation and obtained from the services described, which were performed within time and budgetary restraints.

CB&I makes no representation concerning the legal significance of its findings or of the value of the property investigated. CB&I has no contractual liability to any third parties for the information or opinions contained in this report.

Unless and until the parties agree otherwise in writing, the use of this report or any information contained therein by any third party shall be at such third party's sole risk. Such use shall constitute an agreement to release, defend and indemnify Varian Medical Systems, Inc. and CB&I from and against any and all liability in connection therewith.

Table 1

Summary of Soil Vapor Extraction Test Results Building 3 Drain Lines and Injection Galleries April 8 and 9, 2014

Former Varian Facility Site 150 Sohier Road Beverly, MA

Extraction Location, Soil Vapor Extraction Rate (scfm), and Vacuum (" W.C.)	Soil Vapor Monitoring Point	Distance from Extraction Point (feet)	Vacuum (" W.C.)	Measured VOC Concentration (ppm) at SVE blower effluent (prior to carbon treatment)	Measured VOC Concentration (ppm) at carbon effluent (post treatment)
	Drain Line 7	5.0	0.013		
Drain Line 9	VP-1	5.0	0.039		
180 scfm, 5"W.C.	VP-2	25.0	0.003	0.7	ND
	VP-3	20.0	0.002	0.7	IND
	VP-4	35.0	0.012		
	Injection Gallery 1	10.0	NA		
	Drain Line 7	5.0	0.047		
Drain Line 9	VP-1	5.0	0.004		
120 scfm, 2"W.C.	VP-2	25.0	ND	ND	ND
	VP-3	20.0	ND	IND	ND
	VP-4	35.0	0.005		
	Injection Gallery 1	10.0	0.020		
	Drain Line 9	5.0	0.030		
Drain Line 7	VP-1	22.0	ND		
180 scfm, 5"W.C.	VP-2	35.0	ND	ND	ND
	VP-3	24.0	ND	IND	ND
	VP-4	35.0	0.003		
	Injection Gallery 1	8.0	0.006		
	Drain Line 9	5.0	0.018		
Drain Line 7	VP-1	22.0	ND		
120 scfm, 2"W.C.	VP-2	35.0	ND	ND	ND
	VP-3	24.0	ND	IND	ND
	VP-4	35.0	0.004		
	Injection Gallery 1	8.0	0.005		
	Drain Line 9	8.0	0.039		
Injection Gallery 1	VP-1	22.0	0.006		
175 scfm, 12"W.C.	VP-2	25.0	0.015	ND	ND
	VP-3	9.0	0.032	IND	ND
	VP-4	14.0	0.041		
	Injection Gallery 2	2.0	10.57		
	Drain Line 9	7.0	0.041		
Injection Gallery 2	VP-1	10.0	0.006		
175 scfm, 12"W.C.	VP-2	21.0	0.016	0.2	ND
	VP-3	11.0	0.024	U.Z	טא
	VP-4	26.0	0.030		
	Injection Gallery 1	2.0	10.67		

Notes:

" W.C. = inches of water column vacuum

scfm = standard cubic feet per minute

ppm = parts per million

VOC = volatile organic compounds measured with a photoionization detector with detection limit of 0.1 ppm

ND = non-detect

NA = not available

Well ID	Location	Comments/Notes	Analysis
Building 3/6 Tre	eatment Areas		
AP12-S	East Building 6	Monitor injection & Site conditions	VOC
AP12-DO	East Building 6	Monitor injection & Site conditions	VOC, Fe & Mn, Chloride, permanganate
AP12-BR	East Building 6	Monitor injection & Site conditions	VOC, Fe & Mn, Chloride, permanganate
AP13-S	East Building 3	Monitor injection & Site conditions	VOC
AP14-S	North Building 3	Monitor injection & Site conditions	VOC
AP26-DO	West Building 1 & 2	Monitor injection & Site conditions	VOC, Fe & Mn, Chloride, permanganate
AP31-DO	North Building 3	Monitor remediation and VOC trends	VOC, Fe & Mn, Chloride, permanganate
AP32-DO	North Building 3	Monitor remediation and VOC trends	VOC, Fe & Mn, Chloride, permanganate
B-3	East Building 3	Monitor injection & Site conditions	VOC
BW-5	By Unnamed Stream	Monitor shallow VOC trends	VOC
BW-6	By Unnamed Stream	Monitor shallow VOC trends	VOC
BW-8	By Unnamed Stream	Monitor shallow VOC trends	VOC
BW-9	By Unnamed Stream	Monitor shallow VOC trends	VOC
CL2-BR	16 Tozer	Monitor injection & Site conditions	VOC
CL-11S	Southwest Building 7	Monitor VOC trends	VOC
CL-11DO	Southwest Building 7	Monitor VOC trends	VOC
MW-5	East Building 4	Monitor VOC trends	VOC
MW-8	East Building 9	Monitor injection & Site conditions	VOC
MW-9A	By Unnamed Stream	Monitor shallow VOC trends	VOC
MW-13	North Building 3 by Rte 128	Monitor injection & Site conditions	VOC, Fe & Mn, Chloride, permanganate
MW-14A	North Building 1	Monitor injection & Site conditions	VOC
MW-16	South Building 4	Monitor VOC trends	VOC
MW-2R	16 Tozer	Monitor injection & Site conditions	VOC
MW-4R	16 Tozer	Monitor injection & Site conditions	VOC
OB9-DO	By Unnamed Stream	Monitor VOC trends	VOC
OB9-BR	By Unnamed Stream	Monitor VOC trends	VOC
OB10-S	East Building 4	Monitor shallow VOC trends	VOC
OB10-BR	East Building 4	Monitor injection & Site conditions	VOC
OB11-DO	North Building 3 by Rte 128	Monitor injection & Site conditions	VOC
OB11-BR	North Building 3 by Rte 128	Monitor injection & Site conditions	VOC
OB12-S	North Building 3 by Rte 128	Monitor shallow VOC trends	VOC
OB12-DO	North Building 3 by Rte 128	Monitor remediation	VOC, Fe & Mn, Chloride, permanganate

Well ID	Location	Comments/Notes	Analysis
OB14-DO	North Building 1	Monitor injection & Site conditions	VOC
OB19-S	West Building 1 & 2	Monitor injection & Site conditions	VOC
OB19-DO	West Building 1 & 2	Monitor remediation	VOC, Fe & Mn, Chloride, permanganate
OB25-BR	West Building 1 & 2	Monitor injection & Site conditions	VOC, Fe & Mn, Chloride, permanganate
OB26-DO	West Building 1 & 2	Monitor injection & Site conditions	VOC
OB26-BR	West Building 1 & 2	Monitor injection & Site conditions	VOC
OB27-BR	West Building 7	Monitor injection & Site conditions	VOC, Fe & Mn, Chloride, permanganate
OB28-BR	West Building 1 & 2	Monitor injection & Site conditions	VOC
OB32-DO	North Building 3	Monitor injection & Site conditions	VOC, Fe & Mn, Chloride, permanganate
OB36-DO	Inside Building 6	Monitor VOC trends	VOC, permanganate
OB37-DO	Inside Building 6	Monitor VOC trends	VOC
RW-22	North Building 1	Monitor injection & Site conditions	VOC
STR-3	Unnamed Stream	Monitor VOC trends, also Con Comm request	VOC
UNNAMED STREAM	Unnamed Stream	Monitor VOC trends, also Con Comm request	VOC
AP13-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Dehalococcoides sp.
AP23-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Dehalococcoides sp.
AP24-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Dehalococcoides sp.
AP33-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Dehalococcoides sp.
AP34-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Dehalococcoides sp.
AP35-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Dehalococcoides sp.
AP25-DO	East Building 3	Monitor VOC trends and confirm no adverse downgradient impacts	VOC, methane, ethane, ethene, TOC
RW-1	East Building 3	Monitor VOC trends and confirm no adverse downgradient impacts	VOC, methane, ethane, ethene, TOC
AP30R-DO	Beneath Building 3	Monitor VOC trends and confirm no adverse downgradient impacts	VOC, methane, ethane, ethene, TOC
OB25-DO	West Building 1 & 2	Monitor VOC trends and confirm no adverse downgradient impacts	VOC, methane, ethane, ethene, TOC
MW-9	Near Bldg. 9 and Unnamed Stream	Monitor VOC trends in shallow bioremediation area	VOC, methane, ethane, ethene, TOC
OB9-S	Near Bldg. 9 and Unnamed Stream	Monitor VOC trends in shallow bioremediation area	VOC, methane, ethane, ethene, TOC

Well ID	Location	Comments/Notes	Analysis
OB15-S	Near Bldg. 9 and Unnamed Stream	Monitor VOC trends in shallow bioremediation area	VOC, methane, ethane, ethene, TOC
Building 5 Treatme	ent Area		
B-2	East Building 5	Monitor shallow VOC concentrations	VOC
OB35-DO	Inside Building 5	Monitor injection and VOC trends	VOC, Fe & Mn, Chloride, permanganate
AP27-DO	East Building 5	Monitor residual permanganate and VOC trends	VOC, Fe & Mn, Chloride, permanganate
OB38-DO	East Building 5	Monitor VOC trends	VOC
Tozer Road North	Area		
CL6-BR	Walden Street	Monitor VOC trends	VOC
CL6-DO	Walden Street	Monitor VOC trends	VOC
CL9-DO	Commons Drive	Monitor Site conditions	VOC
CL9-BR ZONE 1	Commons Drive	Monitor Site conditions	VOC
CL9-BR ZONE 2	Commons Drive	Monitor Site conditions	VOC
CL9-BR ZONE 3	Commons Drive	Monitor Site conditions	VOC
BR-1 ZONE 1	Walden Street	Monitor VOC trends	VOC
BR-1 ZONE 2	Walden Street	Monitor VOC trends	VOC
BR-1 ZONE 3	Walden Street	Monitor VOC trends	VOC
BR-3 ZONE 1	Devon Street	Sentry Wells	VOC
BR-3 ZONE 2	Devon Street	Sentry Wells	VOC
BR-3 ZONE 3	Devon Street	Sentry Wells	VOC
MW-3R	16 Tozer	Monitor current VOC concentrations	VOC
MW-5R	16 Tozer	Monitor current VOC concentrations	VOC
OB17-DO	Commons Drive	Monitor Site conditions	VOC
OB17-BR	Commons Drive	Monitor Site conditions	VOC
OB23-BR	16 Tozer	Monitor Site conditions	VOC

Well ID	Location	Comments/Notes	Analysis
Tozer Road South	ı Area		
MW-36	28 Tozer	Monitor Site conditions	VOC
CL3-DO	28 Tozer	Monitor VOC trends	VOC
CL3-S	28 Tozer	Monitor VOC trends	VOC
BR-5 ZONE 1	28 Tozer	Monitor Site conditions	VOC
BR-5 ZONE 2	28 Tozer	Monitor Site conditions	VOC
BR-5 ZONE 3	28 Tozer	Monitor Site conditions	VOC
CL8-BR ZONE 1	Longmeadow Rd	Sentry Wells	VOC
CL8-BR ZONE 2	Longmeadow Rd	Sentry Wells	VOC
CL8-BR ZONE 3	Longmeadow Rd	Sentry Wells	VOC
CL8-DO	Longmeadow Rd	Sentry Wells	VOC
OB4-DO	28 Tozer	Monitor Site conditions	VOC
OB5-BR	27 Tozer	Monitor Site conditions	VOC
OB5-DO	27 Tozer	Monitor Site conditions	VOC
OB6-BR	Sonning Rd	Monitor Site conditions	VOC
OB6-DO	Sonning Rd	Monitor Site conditions	VOC
OB42-S	30 Tozer Rd	Monitor shallow VOC trends	voc
OB43-S	30 Tozer Rd	Monitor shallow VOC trends	VOC
31 Tozer Rd Treat	tment Area		
GZ-1	31 Tozer Road	Monitor Site conditions	VOC
GZ-4	31 Tozer Road	Monitor Site conditions	VOC
OB8-DO	39 Tozer Road	Monitor Site conditions	VOC
OB18-DO	31 Tozer Road	Monitor Site conditions	VOC
OB18-S	31 Tozer Road	Monitor Site conditions	VOC
OB41-S	39 Tozer Road	Monitor shallow VOC trends	VOC
AP15-S	31 Tozer Road	Monitor Site conditions	VOC
BR-7 ZONE 1	39 Tozer Road	Sentry Wells	VOC
BR-7 ZONE 2	39 Tozer Road	Sentry Wells	VOC
BR-7 ZONE 3	39 Tozer Road	Sentry Wells	VOC
MW-34	39 Tozer Road	Sentry Wells	VOC
STRHA-7A	39 Tozer Road	Monitor VOC trends in surface water	voc
STRHA-7B	39 Tozer Road	Monitor VOC trends in surface water	voc
Culvert Outfall	39 Tozer Road	Sentry Wells	VOC

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Well ID	Location	Comments/Notes	Analysis
Longview/Hill Stre	eet Treatment Area		
BR-6 ZONE 1	Hill Street	Monitor VOC trends	VOC
BR-6 ZONE 2	Hill Street	Monitor VOC trends	VOC
BR-6 ZONE 3	Hill Street	Monitor VOC trends	VOC
APBIO-01	SCDS field	Monitor VOC trends	VOC
P-9R	Hill Street	Monitor VOC trends	VOC
P-11R	Longview Terr	Monitor VOC trends	VOC
P-19A	Hill Street	Monitor VOC trends	VOC
P-20R	SCDS field	Monitor VOC trends	VOC
OB20-S	SCDS field	Monitor VOC trends	VOC
OB20-DO	SCDS field	Monitor VOC trends	VOC
OB20-BR	SCDS field	Monitor VOC trends	VOC
OB21-DO	SCDS field	Monitor VOC trends	VOC
OB21-BR	SCDS field	Monitor VOC trends	VOC
STRM-A-SCDS	SCDS field	Monitor VOC trends in	VOC
		surface water	
PSL10 Treatment	Area		
AP-19	PSL10	Monitor residual permanganate and VOC trends	VOC, Fe & Mn, Chloride, permanganate
AP-20	PSL10	Monitor residual permanganate and VOC trends	VOC, Fe & Mn, Chloride, permanganate
AP-21	PSL10	Monitor residual permanganate and VOC trends	VOC, Fe & Mn, Chloride, permanganate
AP-22	PSL10	Monitor residual permanganate and VOC trends	VOC, Fe & Mn, Chloride, permanganate
MW2-32 Tozer	32 Tozer Rd	Monitor VOC trends	VOC
MW-33B	Base ball field	Monitor Site conditions	VOC
CL10-S	32 Tozer Rd	Monitor VOC trends	VOC
CL10-DO	32 Tozer Rd	Monitor VOC trends	VOC, Fe & Mn, Chloride, permanganate
CL10-BR	32 Tozer Rd	Monitor VOC trends	VOC
CL4-DO	30 Tozer Rd	Monitor VOC trends	VOC
CL4-BR	30 Tozer Rd	Monitor VOC trends	VOC
OB16-S	32 Tozer Rd	Monitor VOC trends	VOC
OB16-BR	32 Tozer Rd	Monitor VOC trends	VOC
OB24-S	32 Tozer Rd	Monitor VOC trends	VOC

Notes:

TOC = Total Organic Carbon, analysis by EPA Method 5310C

VOCs = Volatile Organic Compounds, analysis by EPA Method 8260C

Methane, ethane, ethene analysis by RSK-175 Method

Dissolved Iron and Manganese, analysis by Method 6010C

Dehalococcoides sp. analysis by polymerase chain reaction (PCR)

Table 2B Water Quality Sample Summary August 2014 Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Sample Location	Location	Rationale for Sampling	Analysis Performed
AP13-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Nitrate/sulfate, dissolved iron and manganese, Dehalococcoides sp.
AP23-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Nitrate/sulfate, dissolved iron and manganese, Dehalococcoides sp.
AP24-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Nitrate/sulfate, dissolved iron and manganese, Dehalococcoides sp.
AP33-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Nitrate/sulfate, dissolved iron and manganese, Dehalococcoides sp.
AP34-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Nitrate/sulfate, dissolved iron and manganese, Dehalococcoides sp.
AP35-DO	East Building 3	Monitor remediation and VOC trends	VOC, methane, ethane, ethene, TOC, Nitrate/sulfate, dissolved iron and manganese, Dehalococcoides sp.
AP25-DO	East Building 3	Monitor VOC trends and confirm no adverse downgradient impacts	VOC, methane, ethane, ethene, TOC
OB25-DO	West Building 1 & 2	Monitor VOC trends and confirm no adverse downgradient impacts	VOC
RW-1	East Building 3	Monitor VOC trends and confirm no adverse downgradient impacts	VOC, methane, ethane, ethene, TOC
AP30R-DO	Beneath Building 3	Monitor VOC trends and confirm no adverse downgradient impacts	VOC
MW-9	Near Bldg. 9 and Unnamed Stream	Monitor VOC trends in shallow bioremediation area	VOC, methane, ethane, ethene, TOC
OB9-S	Near Bldg. 9 and Unnamed Stream	Monitor VOC trends in shallow bioremediation area	VOC, methane, ethane, ethene, TOC
OB15-S	Near Bldg. 9 and Unnamed Stream	Monitor VOC trends in shallow bioremediation area	VOC, methane, ethane, ethene, TOC

Notes:

TOC = Total Organic Carbon, analysis by EPA Method 5310C VOCs = Volatile Organic Compounds, analysis by EPA Method 8260C Methane, ethane, ethene analysis by RSK-175 Method nitrate/sulfate analysis via EPA Method 300 Dissolved Iron and Manganese, analysis by Method 6010C Dehalococcoides sp. analysis by polymerase chain reaction (PCR)

	trans-1,2-	DCE (mg/l)	<0.0020	<0.0010	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	<0.10	<0.10	05:0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	0.0034	0.0067	<2.0	<2.0	<4.0	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
	cis-1,2-	DCE (mg/l)	<0.0020	0.059	9.4	4.6	3.6	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	0.10 0.16	2.5	4.2	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	0.25D	0.38	<2.0	<2.0	5.2	5.83	<5.0	14	5.8	3.8	7.2	3.7	<4.0	<4.0	7.6	5.4	11	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
	Vinyl	chloride (mg/l)	<0.0020	0.024	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	<0.10	<0.10	<0.50	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0040	<2.0	<2.0	<4.0	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
	Trichloro	methane (mg/l)	<0.0020	<0.0010	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	<0.10	<0.10	0±:0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0040	<2.0	<2.0	<4.0	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
-		TCE (mg/l)	<0.0020	0.0022	24	17	12	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	0.53	75.0	07.0	39	<0.0020	<0.0020	<0.0020	0.012	<0.0010	<0.0010	<0.0020	<0.0020	0.11	1.8D	170	200	290	2900	350	160	200	150	230D	360D	320	330	350	340	320	0.0021	0.0034	<0.0020	<0.0020	<0.0020
=		PCE (mg/l)	0.032	<0.0010	0.47	0.59	0.48	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	0.016	0.94	0.33	7.7	/:/ 8	100	14	<0.0020	0.002	0.0022	1.9D	<0.0010	<0.0010	0.0027	0.016	0.26DJ	1.9D	87	98	2 %	707	75	40	46	23	44	53	59	09	87	85	95	0.0019	0.0037	<0.0020	<0.0020	<0.0020
=	Chloro	methane (mg/l)	<0.0020	<0.0010	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	V0.10	<0.10	02:0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0040	<2.0	<2.0	<4.0	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
=	Chloro	ethane (mg/l)	<0.0020	<0.0010	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	<0.10	<0.10	<0.50	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0040	<2.0	<2.0	0.2>	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
=	Chloro	form (mg/l)	0.028	<0.0010	<0.20	<0.20	<0.13	0.0091	0.0046	0.0021	0.0031	0.0036J	<0.0020	<0.0020	<0.0020	<0.0020	0.033	0.019	<0.050	V0.10	<0.10	02:0>	0.083	0.12	0.093	0.11	0.0032	0.0035	0.0044	0.0032	0.0034	<0.0040	<2.0	<2.0	<4.0	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
=	Chloro	benzene (mg/l)	<0.0020	<0.0010	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	<0.10	<0.10	<0.50	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0040	<2.0	<2.0	0.2>	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
-	Carbon	chloride (mg/l)	0.042	<0.0010	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.00200	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	0.004	<0.050	V0.10	<0.10	02:0>	0.013	0.042	0.017	0.0074	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0040	<2.0	<2.0	<4.0	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
-		Acetone (mg/l)			1	-	-	-	1	0.013	0.01	<0.010	<0.010	0.018	<0.010	<0.010	-	1		- 020	05.0>	50.5	<0.010	0.023	<0.010	<0.010	1		<0.010	<0.010	<0.010	<0.020	1	1		1	28	5.51	121	41	<10	10	<20	62	20	24	28	-	1	<0.010	<0.010	<0.010
=		1,2-DCA (mg/l)	<0.0020	<0.0010	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	<0.10	<0.10	02:0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0040	<2.0	<2.0	<2.0 <4.0	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
-		1,1-DCE (mg/l)	<0.0020	<0.0010	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	<0.10	<0.10	02:0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	Н	H	+	0	<2.0	<2.0	0.2>	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
=		1,1-DCA (mg/l)	0.023	<0.0010	<0.20	<0.20	<0.13	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	<0.10	<0.10	02:0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0040	<2.0	<2.0	0.2> <4.0	<2.0UJ	<5.0	<2.0	<4.0	<2.0	<2.0	<2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
=		1,1,1-TCA (mg/l)	0.16	<0.0010	<0.20	<0.20	<0.13	0.0011	<0.0020	<0.0020	<0.0020	0.0022J	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0025	<0.050	<0.10	<0.10	02:0>	0.003	0.0046	0.0038	0.0032	0.011	0.0088	0.008	0.0062	0.0049	0.0043	25	28	23	283	28	13	18	13	19	29	25	26	56	25	26	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020
=		DEPTH	24	93	84	65	92	81	81	78	74	80	81	81	81	73	20	20	2/	3/	44	26	57	35	57	48	56	29	31	26	22	26	47	51	25	09	51	61	51.2	51	09	51	51	47.5	41	51	49	16	17	16.1	16	16
		DATE	4/3/2009	4/1/2009	4/3/2009	10/26/2009	10/26/2009	4/20/2010	10/14/2010	4/14/2011	10/28/2011	4/6/2012	11/27/2012	4/18/2013	10/23/2013	4/10/2014	4/3/2009	10/26/2009	4/20/2010	10/14/2010	10/28/2011	4/5/2012	11/27/2012	4/18/2013	10/23/2013	4/10/2014	4/3/2009	4/20/2010	4/14/2011	4/5/2012	4/12/2013	4/10/2014	1/14/2009	4/2/2009	4/22/2010	7/14/2010	10/12/2010	1/4/2011	4/5/2011	7/28/2011	10/25/2011	1/17/2012	4/3/2012	5/2/2013	1/20/2014	4/8/2014	8/6/2014	4/3/2009	4/20/2010	4/4/2011	1/17/2012	4/5/2012
		SITE ID	AP-02	AP-06-BR	AP-12-BR								1				AP-12-DO		1						1		AP-12-S						AP-13-D0		1	1		1										AP-13-S		1	1	1

					_			Carbon							0.00			
			7					tetra	Chloro	Chloro	Chloro	Chloro	Š	Š	fluoro	Vinyl	cis-1,2-	trans-1,2-
SITE ID	DATE	DEPTH	(mg/l)	(mg/l)	1,1-DCE (mg/l)	1,2-DCA (mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	PCE (mg/l)	nce (mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
AP-13-S (cont.)	4/15/2013	16	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/10/2014	16	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0087	0.0059	<0.0020	<0.0020	0.0022	<0.0020
	4/3/2009	32	0.19	<0.0025	<0.0025	<0.0025	1	0.14	<0.0025	0.0091	<0.0025	<0.0025	0.28	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
	4/21/2010	34	0.12	<0.010	<0.010	<0.010	1	0.1	<0.010	0.055	<0.010	<0.010	1.2	1.2	<0.010	<0.010	<0.010	<0.010
	4/6/2011	29.1	0.0800	<0.020UJ	<0.0200J	<0.02000	<0.10UJ	0.047J	<0.020UJ	<0.02000	<0.020UJ	<0.020UJ	1.63	0.583	<0.020UJ	<0.020UJ	<0.0200J	<0.02000
	5/2/2013	29	<0.0040	<0.0040	<0.0040	<0.0040	<0.023	<0.0040	<0.0040	<0.0030	<0.0040	<0.0030	0.21	0.022	<0.0040	<0.0040	<0.0040	<0.0040
	4/21/2014	29	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.14	0.028	<0.0020	<0.0020	<0.0020	<0.0020
	4/2/2009	16	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/27/2009	12	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.01	0.054	<0.0010	<0.0010	0.017	<0.0010
	4/20/2010	14	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.012	0.036	<0.0010	<0.0010	0.0089	<0.0010
	4/5/2011	12	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	10/25/2011	12	<0.0020	<0.0020	<0.0020	<0.0020	0.023	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/5/2012	12	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	11/12/2012	17.7	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	10/23/2013	12.2	<0.0020	<0.0020	<0.0020	<0.0020	0.013	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020UJ	<0.0020	<0.0020	<0.0020
	4/8/2014	12	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/6/2009	27	<0.0050	<0.0050	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.4	90:0	<0.0050	<0.0050	<0.0050	<0.0050
	4/21/2010	77	<0.0025	<0.0025	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.32	0.054	<0.0025	<0.0025	<0.0025	<0.0025
	10/14/2010	28	<0.0040	<0.0040	<0.0040	<0.0040	1	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.22	0.024	<0.0040	<0.0040	<0.0040	<0.0040
	4/6/2011	27.5	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.71	0.071	<0.010	<0.010	<0.010	<0.010
	10/27/2011	29	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.26	0.036	<0.0040	<0.0040	<0.0040	<0.0040
	4/5/2012	27	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.94	0.085	<0.010	<0.010	<0.010	<0.010
	5/2/2013	27	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.004001	<0.0040	0.28 1.3D	0.12	<0.0040	<0.0040	<0.0040	<0.0040
	10/24/2013	24.3	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.17D	0.026	<0.0020UJ	<0.0020	<0.0020	<0.0020
	4/11/2014	25	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.39	0.077	<0.0040	<0.0040	0.081	<0.0040
	4/6/2009	18	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/27/2009	16	0.0021	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/14/2010	15	<0.010	<0.0050	<0.010	<0.0050		<0.010	<0.0050	<0.010	<0.0050	<0.010	0.45	0.012	<0.010	<0.0050	<0.010	<0.010
	4/6/2011	15.1	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.25	0.017	<0.0040	<0.0040	0.01	<0.0040
	10/27/2011	19	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.007	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/5/2012	15	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.96D	0.1	<0.0020	<0.0020	0.09	<0.0020
	5/2/2013	15	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.39	0.038	<0.0050	<0.0050	0.03	<0.0050
	10/24/2013	15	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	7.9D	0.37	<0.040UJ	<0.040	0.2	<0.040
	4/11/2014	16	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.55	0.069	<0.010	<0.010	0.097	<0.010
	4/6/2009	28	<0.0010	0.002	<0.0010	<0.0010	1	<0.0010	<0.0010	0.0081	<0.0010	<0.0010	<0.0010	<0.0010	0.0029	<0.0010	<0.0010	<0.0010
	11/23/2009	20	<0.0010	0.075	<0.0010	<0.0010		<0.0010	\$0.0010	0.0043	<0.0010	<0.0010	V0.0010	<0.0010	0.058	<0.0010	V0.0010	<0.0010
	10/14/2010	29	<0.0020	0.17	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/14/2011	24	<0.0040	0.19	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	10/27/2011	59	<0.0020	0.19	<0.0020	<0.0020	0.013	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/5/2012	22.2	<0.0020	0.14	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	11/13/2012	29	<0.0020	0.15	<0.0020	<0.0020	0.01	<0.0020	0.0022	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	10/24/2013	22	<0.0020	0.13	<0.0020	<0.0020	<0.010	<0.0020	0.0022	<0.0020	<0.0020	<0.0020	0.19	0.048	<0.0020UJ	<0.0020	0.26D	<0.0020
	1/11/2014	23	<0.010	0.11	0.035	<0.010	<0.050	<0.010	010	0100/	0100/	010	000	1	0,00	0.00		010

								Carbon							Trichloro			
Part (1987) Column (19			111170	11,000	170	13.00	Acetono	tetra	Chloro	Chloro	Chloro	Chloro	DOE	101	fluoro	Vinyl	cis-1,2-	trans-1,2-
	TE	DEРТН	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
19 CARRELLY C	2009	13	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	0.001	0.0023	<0.0010	<0.0010	<0.0010	<0.0010	0.001	<0.0010	<0.0010	<0.0010
	// 2009	17	<0.0010	0.015	<0.0010	<0.0010		<0.0010	0.0031	0.0011	<0.0010	<0.0010	<0.0010	<0.0010	0.0099	<0.0010	<0.0010	<0.0010
13. 6.00000 6.	4/2010	19	<0.0020	0.017	<0.0020	<0.0020	-	<0.0020	0.0055	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
11. 0.00020.	1/2011	19	<0.0020	<0.0020	<0.0020	<0.0020	0.014	<0.0020	0.0063	<0.0020	<0.0020	<0.0020	1.4D	0.15	<0.0020	<0.0020	0.33D	<0.0020
	7/2011	19	<0.0020	<0.0020	Н	<0.0020	0.015	<0.0020	<0.0020	0.0028	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/5/2012	18	<0.0020	<0.0020	+	<0.0020	<0.010	<0.0020	0.0036	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	3/2012	ET.	<0.0020	0.009	+	<0.0020	<0.010	<0.0020	0.0052	<0.0020	<0.0020	<0.0020	0700.0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
10. 6.0.	7/2013	20.8	<0.0020	0.0020	+	<0.0020	<0.012	<0.0020	0.0047	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4.1 4.10	1/2014	20	<0.0020	0.0024	1	<0.0020	<0.010	<0.0020	0.005	<0.0020	<0.0020	<0.0020	0.025	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
44 420	1/14/2009	51	<1.0	<1.0	H	<1.0	1	<1.0	<1.0	<1.0	<1.0	<1.0	35	140	<1.0	<1.0	8.2	<1.0
48 420	2/2009	47	<2.0	<2.0	П	<2.0		<2.0	<2.0	<2.0	<2.0	<2.0	34	210	<2.0	<2.0	7	<2.0
51 400 410	10/26/2009	48	<2.0	<2.0		<2.0	1	<2.0	<2.0	<2.0	<2.0	<2.0	41	210	<2.0	4.2	29	<2.0
14 420	8/2010	51	<1.0	<1.0	<1.0	<1.0	1	<1.0	<1.0	1	<1.0	<1.0	32	150	<1.0	4.8	30	<1.0
14 4.2001	2/2010	51	<2.0	<2.0	<2.0	<2.0	1	<2.0	<2.0	<2.0	<2.0	<2.0	40	270	<2.0	<2.0	7.1	<2.0
41 420	14/2010	14	<2.00J	<2.0UJ	<2.0UJ	<2.0UJ	1 8	<2.00J	<2.00J	<2.00J	<2.00J	<2.00J	50)	330)	<2.00J	<2.0UJ	121	<2.00J
7.4 4.10	12/2010	4/	0.45.0 7.0	<4.0 /1.0	0.4.7	×4.0	30	×4.0	0.45	V4.0	0.45	×4.0	46	0/7	0.47	5.3	1/	0.45
41 C2.0 C	5/2011	47.4	CT>	<4.0	×4.0	<4.0	141	×4.0	<4 O	<4.0	0.17	<4.0	20	230	×4.0	3.2	6.2	<4.0
41 420	28/2011	47	<2.0	<2.0	<2.0	<2.0	2.9]	<2.0	<2.0	2	<2.0	<2.0	20	140	<2.0	2.7	7.4	<2.0
475 420 <td>25/2011</td> <td>51</td> <td><2.0</td> <td><2.0</td> <td><2.0</td> <td><2.0</td> <td><10</td> <td><2.0</td> <td><2.0</td> <td><2.0</td> <td><2.0</td> <td><2.0</td> <td>23</td> <td>240D</td> <td><2.0</td> <td>3.3</td> <td>9.6</td> <td><2.0</td>	25/2011	51	<2.0	<2.0	<2.0	<2.0	<10	<2.0	<2.0	<2.0	<2.0	<2.0	23	240D	<2.0	3.3	9.6	<2.0
47 410 420 420 420 440	17/2012	47.5	<2.0	<2.0	<2.0	<2.0	<10	<2.0	<2.0	<2.0	<2.0	<2.0	41	490D	<2.0	<2.0	4.7	<2.0
47.4 44.0 <th< td=""><td>3/2012</td><td>47</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><20</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td>21</td><td>350</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td></th<>	3/2012	47	<4.0	<4.0	<4.0	<4.0	<20	<4.0	<4.0	<4.0	<4.0	<4.0	21	350	<4.0	<4.0	<4.0	<4.0
476 440 <td>2/2013</td> <td>47.4</td> <td><4.0</td> <td><4.0</td> <td><4.0</td> <td><4.0</td> <td>79</td> <td><4.0</td> <td><4.0</td> <td><4.0</td> <td><4.00J</td> <td><4.0</td> <td>47</td> <td>510D</td> <td><4.0</td> <td><4.0</td> <td><4.0</td> <td><4.0</td>	2/2013	47.4	<4.0	<4.0	<4.0	<4.0	79	<4.0	<4.0	<4.0	<4.00J	<4.0	47	510D	<4.0	<4.0	<4.0	<4.0
48 440	1/20/2014	47.6	<4.0	<4.0	<4.0	<4.0	23	<4.0	<4.0	<4.0	<4.0	<4.0	40	390	<4.0	4.7	41	<4.0
45 440	/8/2014	48	<4.0	<4.0	<4.0	<4.0	21	<4.0	<4.0	<4.0	<4.0	<4.0	41	360	<4.0	5.2	32	<4.0
32 2.2. 2	/6/2014	46	<4.0	<4.0	<4.0	<4.0	92	<4.0	<4.0	<4.0	<4.0	<4.0	61	440D	<4.0	<4.0	<4.0	<4.0
47 20 C20	14/2009	25	36	0.2>	2.0	0.25		0.25	0.20	0.2.0	0.20	0.25	4T	07.6	22.0	0.25	10	0.25
5.2 4.1 c.2.0 c.2	6002/2/	44,	90	<2.0	22.0	<2.0		<2.0	20.0	<2.0	0.20	<2.0	33	270	62.0	4.2	44	62.0
5.2 5.2 <td>28/2010</td> <td>52</td> <td>41</td> <td><2.0</td> <td>0.2></td> <td><2.0</td> <td> </td> <td><2.0</td> <td>0.5</td> <td><2.0</td> <td>0.5</td> <td><2.0</td> <td>30</td> <td>240</td> <td>2.5</td> <td>7. 9</td> <td>14</td> <td><2.0</td>	28/2010	52	41	<2.0	0.2>	<2.0		<2.0	0.5	<2.0	0.5	<2.0	30	240	2.5	7. 9	14	<2.0
15.5 38.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,00.1 <2,0	22/2010	52	52	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0	<2.0	27	270	<2.0	3.7	14	<2.0
47 27 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40	14/2010	╙	381	<2.0UJ	<2.00J	<2.0UJ	1	<2.0UJ	<2.0UJ	<2.0UJ	<2.00J	<2.0UJ	26J	2603	<2.0UJ	151	651	<2.0UJ
52 9.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	/12/2010		27	<4.0	<4.0	<4.0	<20	<4.0	<4.0	<4.0	<4.0	<4.0	13	190	<4.0	27	41	<4.0
473 43 64,0 64	/4/2011		9.5	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	19	9.8D	<1.0	30	75	<1.0
47 1.2 </td <td>/5/2011</td> <td>47.3</td> <td>43</td> <td><4.0</td> <td><4.0</td> <td><4.0</td> <td><20</td> <td><4.0</td> <td><4.0</td> <td><4.0</td> <td><4.0</td> <td><4.0</td> <td>24</td> <td>300</td> <td><4.0</td> <td>10</td> <td>28</td> <td><4.0</td>	/5/2011	47.3	43	<4.0	<4.0	<4.0	<20	<4.0	<4.0	<4.0	<4.0	<4.0	24	300	<4.0	10	28	<4.0
52 35D <0.20 <0.20 <0.20 <0.74 <0.20 <0.20 <0.74 <0.20 <0.20 <0.74 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.40 <0.40 <0.40 <0.20 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	28/2011	47	1.2	<0.20	<0.20	<0.20	0.10)	<0.20	<0.20	0.22	<0.20	<0.20	1.7	16	<0.20	0.94	1.7	<0.20
47 27 C410 C41	125/2011	52	350	<0.20	1.7	<0.20	QT.0	<0.20	<0.20	0.74	<0.20	<0.20	SID	350D	<0.20	6.9	17	<0.20
47 20 440	75/2012	51.1	27	74.0	0.45	4.0	200	24.0	0.45	24.0	0.450	74.0	27	280	0.47	4.2	45	0.45
46 120 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4	/8/2014	47	30	<4.0	<4.0	<4.0	<20	<4.0	<4.0	<4.0	<4.0	<4.0	3 i	340	<4.0	7.9	64	<4.0
51 0.021 0.006 <0.0066 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	/6/2014	46	120	<4.0	<4.0	<4.0	<20	<4.0	<4.0	<4.0	<4.0	<4.0	39	560D	<4.0	<4.0	12	<4.0
47 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0	14/2009	51	0.021	0.006	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0059	<0.0050	0.56	0.62	<0.0050
48 0.029 0.025 <0.0056 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	/2/2009	47	<0.20	<0.20	<0.20	<0.20	1	<0.20	<0.20	<0.20	<0.20	<0.20	0.24	1.6	<0.20	2.2	17	<0.20
51 0.005 0.0054 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.001	/26/2009	48	0.029	0.025	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0056	<0.0050	<0.0050	0.48	0.74	0.0073
51 0.144 <0.100U <0.10U <0.10U <t< td=""><td>28/2010</td><td>51</td><td>0.005</td><td>0.0054</td><td><0.0010</td><td><0.0010</td><td>1</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td>0.0025</td><td>0.01</td><td><0.0010</td><td>0.047</td><td>0.13</td><td><0.0010</td></t<>	28/2010	51	0.005	0.0054	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0025	0.01	<0.0010	0.047	0.13	<0.0010
47 0.054 0.0554 0.0552 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400 <0.0400	14/2010	51	0.14J	<0.10UJ	<0.10UJ	<0.10UJ	-	<0.10UJ	2.3J	12J	<0.10UJ							
51 0.029 0.065 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <	/12/2010	47	0.054	0.052	<0.040	<0.040	1	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	1.8	3.7	<0.040
46.7 0.011 < 0.010 < 0.010 < 0.010 < 0.020 < 0.020 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0	/4/2011	51	0.029	0.065	<0.010	<0.010		<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	8.0	99.0	<0.010
4.0 V V V V V V V V	/5/2011	46.7	0.011	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.012	0.062	<0.010	0.13	0.45	<0.010
	20/2011	40	CO.10	O.10	CO.10	CO.10	20.30	CO.10	CO.10	V0.10	CO.10	CO.10	CO.10	CO.10	CO.10	2.0	4.0	V0.10

								•						•		٠	•	
			_					Carbon tetra	Chloro	Chloro	Chloro	Chloro			Trichloro fluoro	Vinyl	cis-1,2-	trans-1,2-
SITFID	DATE	DFPTH	1,1,1-TCA (mg/l)	1,1-DCA (mg/l)	1,1-DCE	1,2-DCA	Acetone (mg/l)	chloride (mg/l)	benzene (mg/l)	form (me/l)	ethane (mg/l)	methane (mg/l)	PCE (mg/l)	TCE (mg/l)	methane (mg/l)	chloride (me/l)	DCE (mg/l)	DCE (me/l)
AP-25-DO (cont.)	1/17/2012	46	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.049	<0.040	0.73	2.1	<0.040
	4/3/2012	47	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	1.1	7.5D	<0.040
	10/22/2013	46.75	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	3.9	9.1	<0.10
	1/20/2014	46.8	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	1.5	6.1	<0.10
	4/8/2014	46	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.19	<0.040	0.12	2.4	<0.040
00.00	8/6/2014	44	0.11	<0.040	0.05	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	3.4	11D	<0.040
AP-26-DU	4/3/2009	19	<0.20	<0.20	<0.20	<0.20	1	<0.20	<0.20	<0.20	<0.20	<0.20	×./	1D	<0.20	<0.20	0.42	<0.20
	9/07/27/01	97	50.10	\$0.10 \$0.20	\$0.10	\$0.10		\$0.10	\$0.10	\$0.10	\$0.10	\$0.10 \$0.20	4.4	7.7	\$0.10	<0.10	\$0.10 \$0.30	<0.10
	4/22/2010	64	V0.2U	07.0>	\$0.20 20.10	07:0>		07.0>	V0.20	07.0>	07.02	07.0>	13 0.21	191	V0.2U	V0.20	V0.2U	V0.20
	10/17/2010	04	-0.200J	V0.2003	-0.200J	20.2003		-0.200J	×0.2003	50.2003	×0.2003	, 40.200J	9.23	191	×0.2003	×0.2003	-0.200J	×0.2003
	10/13/2010	61.1	<0.40	<0.40	<0.40	<0.40	1 7	\$0.40 \$0.20	<0.40	<0.40	<0.40 <0.30	<0.40	4.7	170	<0.40	<0.40	<0.40	<0.40
	10/26/2011	64	<0.20	<0.20	<0.20	<0.20	V-1.0	<0.20	<0.20	<0.20	<0.20	<0.20	T 12	27D	<0.20	<0.20	<0.20	<0.20
	4/5/2012	61	<0.40	<0.40	<0.40	<0.40	<2.0	<0.40	<0.40	<0.40	<0.40	<0.40	11	27	<0.40	<0.40	<0.40	<0.40
	11/26/2012	64	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.35	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	4/15/2013	29	<0.20	<0.20	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	<0.20	7.43	17	<0.20	<0.20	<0.20	<0.20
	10/23/2013	64	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	0.041	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/16/2014	09	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	0.01	<0.0020	<0.0020	0.44D	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
AP-27-D0	4/9/2009	09	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.003	0.019	<0.0010	<0.0010	0.0023	<0.0010
	10/28/2009	57	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0017	0.022	<0.0010	<0.0010	0.001	<0.0010
	4/21/2010	61	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0036	<0.0010	<0.0010	<0.0010	<0.0010
	10/14/2010	57.5	<0.0020	<0.0020	<0.0020	<0.0020	1	<0.0020	+	+	<0.0020	<0.0020	0.009	1.2D	<0.0020	<0.0020	0.01	0.0049
	4/7/2011	57.2	<0.00200J	<0.00200J	<0.00200J	<0.00200J	<0.0100J	<0.00200J	+	5	<0.002000	<0.00200J	0.0027J	0.027	<0.00200J	<0.00200J	0.0100	<0.0020UJ
	10/20/2011	01	<0.0020	50.0050	0.0027	<0.0020	<0.0IO	<0.0020	<0.0020	<0.0020	\$0.0020 \$0.0020	50.0050	0.17	120	<0.0020	0.0031	0.00	0.037
	4/6/2012	5/	07:00	07:00	<0.000	<0.20	V. 040	07:00	<0.20	<0.20	07.00	07.00	07:00	T3	<0.20	<0.00	07.00	<0.20
	4/16/2013	59	<0.0020	<0.0020	<0.0020	<0.0020	0.016	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	0.0039	<0.0020	<0.0020	<0.0020	<0.0020
	10/23/2013	59	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.33D	5.5D	<0.0020	<0.0020	0.014	<0.0020
	4/11/2014	99	<0.0020	<0.0020	0.003	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.24D	11D	<0.0020	0.0023	0.072	0.023
AP-29-DO	4/2/2009	42	<0.010	<0.010	0.011	<0.010		<0.010	<0.010	<0.010	<0.010	<0.010	0.36	1.2	<0.010	<0.010	0.31	<0.010
AP-30-DO	2/12/2010	NA	<1.2	<1.6	<1.5	<1.1	<4.0	<0.90	<1.1	<0.45	<0.88	<2.4	82	330	1	<1.3	<1.2	<1.2
	5/24/2010	NA	<2.5	<2.5	<2.5	<2.5	1	<2.5	<2.5	<2.5	<2.5	<2.5	59	G89D	<2.5	<2.5	<2.5	<2.5
AP-30R-DO	4/7/2011	29	2.4)	<0.050UJ	<0.050UJ	<0.050UJ	<0.25UJ	6.4DJ	<0.050UJ	5.5DJ	<0.050UJ	<0.050UJ	0.47	0.082J	<0.050UJ	<0.050UJ	<0.050UJ	<0.050UJ
	11///2011	77	0.085	<0.0020	<0.0020	<0.0020	0.013	0.19D	<0.0020	0.18	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	11/27/2012	28	0.95	0.017	<0.010	<0.010	<0.050	1.90	<0.010	3.50	<0.010	<0.010	0.073	<0.010	<0.010	<0.010	<0.010	<0.010
	4/18/2013	20	0.72	<0.040	<0.040	<0.040	<0.20	1.1	<0.040	2.3	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
	11/8/2013	35	0.7	<0.040	<0.040	<0.040	<0.20	1.1	<0.040	5.6	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
•	1/21/2014	30	0.67	<0.040	<0.040	<0.040	<0.20	0.56	<0.040	2.1	<0.040	<0.040	3.9D	17D	<0.040	<0.040	0.52	<0.040
	4/8/2014	30	0.53	<0.10	<0.10	<0.10	<0.50	0.47	<0.10	1.4	<0.10	<0.10	3.1	4.8	<0.10	<0.10	0.25	<0.10
	8/6/2014	20	0.27	<0.10	<0.10	<0.10	<0.50	0.23	<0.10	1.2	<0.10	<0.10	1.1	8.3	<0.10	<0.10	0.71	<0.10
AP-31-D0	2/11/2010	NA	<1.2	<1.6	<1.5	<1.1	<4.0	<0.90	<1.1	<0.45	<0.88	<2.4	71	940D	-	<1.3	<1.2	<1.2
	10/18/2010	88	1.3D	0.011	<0.0040	<0.0040	1	0.97D	<0.0040	1	<0.0040	0.0062	0.053	0.015	0.0049	<0.0040	<0.0040	<0.0040
	4/6/2011	30	1.6)	0.034)	<0.00200J	<0.00200J	0.062	0.68DJ	0.00283	1	<0.00200J	0.00700	0.082	0.00993	0.00900	<0.0020UJ	<0.00200J	<0.00200J
	11/7/2011	000	1.0	0.041	<0.020	<0.020	<0.10	0.32	<0.020	L.9	<0.020	<0.020	1.0	43.020	<0.020	<0.020	<0.020	<0.020
	4/11/2012	88	1.3	0.045	<0.040	<0.040	<0.20	0.27	<0.040	T./	< 0.040	<0.040	1.9	430	<0.040	<0.040	<0.040	<0.040
	2102//2/11	87	1.4	<0.020	<0.020	<0.020	<0.10	0.49	<0.020	0.66	<0.020	<0.020	<0.020	4.45	<0.020	<0.020	<0.020	<0.020
	10/24/2013	35	1.2	<0.020	0.022	<0.020	<0.10	0.28	<0.020	2 0 01	020.020	020.020	7.TD	4.40	<0.020	020.020	0.046	<0.020
	4/16/2014	30	0.6	<0.020	<0.020	<0.020	<0.10	0.15	<0.020	0.8	<0.020	<0.020	7.4D	4.6D	<0.020	<0.020	<0.020	<0.020
AP-32-D0	2/11/2010	NA	<1.2	<1.6	<1.5	<1.1	<4.0	06:0>	<1.1	<0.45	<0.88	<2.4	91	950D	1	<1.3	<1.2	<1.2
	10/18/2010	68	2.3	<0.10	<0.10	<0.10	-	1.2	<0.10	8.9	<0.10	<0.10	0.2	<0.10	<0.10	<0.10	<0.10	<0.10
	4/7/2011	09	2.1)	<0.100J	<0.10UJ	<0.10UJ	<0.50UJ	0.87J	<0.10UJ	5.73	<0.10UJ	<0.10UJ	6.23	0.15J	<0.10UJ	<0.10UJ	<0.10UJ	<0.10UJ
		Ì					ĺ					l	l	l	Ì	l		ì

			F															
								Carbon	Chloro	Chloro	Chloro	Chloro			Trichloro fluoro	Vinyl	cis-1,2-	trans-1,2-
SITE ID	DATE	DEPTH	1,1,1-TCA (mg/l)	1,1-DCA (mg/l)	1,1-DCE (mg/l)	1,2-DCA (mg/l)	Acetone (mg/l)	chloride (mg/l)	benzene (mg/l)	form (mg/l)	ethane (mg/l)	methane (mg/l)	PCE (mg/l)	TCE (mg/l)	methane (mg/l)	chloride (mg/l)	DCE (mg/l)	DCE (mg/I)
AP-32-DO (cont.)	11/7/2011	34	1.8	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	3.3	<1.0	<1.0	41	81D	<1.0	<1.0	<1.0	<1.0
	4/17/2012	88	1.4	<0.10	<0.10	<0.10	<0.50	0.55	<0.10	2.4	<0.10	<0.10	62D	140D	<0.10	<0.10	<0.10	<0.10
	11/27/2012	25	<2.0	<2.0	<2.0	<2.0	<10	<2.0	<2.0	3	<2.0	<2.0	31	170	<2.0	<2.0	<2.0	<2.0
	4/18/2013	20	2	<2.0	<2.0	<2.0	<10	<2.0	<2.0	3.5	<2.0	<2.0	26	370D	<2.0	<2.0	<2.0	<2.0
-1	10/24/2013	35	1.8	<0.040	<0.040	<0.040	<0.20	0.83	<0.040	2.6	<0.040	<0.040	0.27	0.049	<0.040	<0.040	<0.040	<0.040
00 00	4/16/2014	30	1.2	<0.020	<0.020	<0.020	<0.10	0.45	<0.020	1.6	<0.020	<0.020	1.6	0.036	<0.020	<0.020	<0.020	<0.020
AP-33-DO	9/11/2013	NA L	119	\$0.50 £3	0.85	\$0.50 0.70	<2.25 3.5	40.50	<0.50	40.50	<0.50 50.50	<0.50	790	97	40.50	0.74	4.6	<0.50 0.50
	1/20/2014	37.5	750	6.2	0.71	<0.50	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	99D	400D	<0.50	9 ,	150D	<0.50
•	8/6/2014	36	92	<5.0	\$5.0 \$5.0	<5.0	<25	<5.0	<5.0 <5.0	<5.0	\$5.0	<5.0	69	330	\$5.0 \$5.0	10	170	<5.0
AP-34-DO	9/11/2013	SAN	<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	35	25	<0.50	<0.50	0.73	<0.50
	1/20/2014	36	7	1.1	0.77	<0.50	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	2.4	<0.50	1.1	46	<0.50
•	4/8/2014	36	8.1	1	0.92	<0.50	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.64	<0.50	2.1	25D	<0.50
	8/6/2014	33	1.1	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	77	<1.0
AP-35-DO	9/12/2013	NA	<2.0	<2.0	<2.0	<2.0	<10	<2.0	<2.0	<2.0	<2.0	<2.0	77	86	<2.0	2.1	19	<2.0
	1/20/2014	35.8	<2.0	<2.0	<2.0	<2.0	<10	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	6.3	<2.0	<2.0	82	<2.0
	4/8/2014	35	<2.0	<2.0	<2.0	<2.0	0I>	<2.0	<2.0	<2.0	C7:0	<2.0	2.1	25 458	<2.0	<2.0	130	4.0
200	8/6/2014	33	0.81	<0.40	<0.40	<0.40	<2.0	<0.40	<0.40	0.59	<0.40	<0.40	1.8	46D	<0.40	0.53	230D	1.8
APBIO-01	4/6/2009	78	<0.010	<0.010	<0.010	<0.0020		<0.010	<0.0020	<0.0020	<0.010	<0.010	<0.0020	0.045	<0.010	0.092	0.77	0.0022
	4/6/2011	77	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.023	<0.010	0.16	0.8	<0.010
	4/6/2012	77	<0.0050	0.0084	0.012	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.024	0.076	<0.0050	0.065	1.1D	<0.0050
	4/12/2013	77	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.021	<0.010	0.22	0.54	<0.010
	4/21/2014	77	<0.010	<0.010	0.015	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.14	<0.010	0.15	0.87	<0.010
P-7	4/9/2009	11	<0.0010	<0.0010	40.0010	<0.0010	-	<0.0010	<0.0010 <0.00010	<0.0010	<0.0010	<0.0010	<0.0010	0.019	<0.0010	<0.0010	0.022	<0.0010
•	4/21/2010	11	<0.0050	<0.0025	<0.0050	<0.0025		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.29	<0.0050	0.022	0.46	0.0049
•	10/14/2010	12	<0.010	<0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.011	<0.010	0.03	1.2D	0.016
	4/6/2011	15.7	<0.0040UJ	0.0044J	<0.0040UJ	<0.0040UJ	<0.020UJ	<0.0040UJ	<0.0040UJ	<0.0040UJ	<0.00400J	<0.0040UJ	<0.00400J	0.092J	<0.0040UJ	<0.0040UJ	0.23	0.00700
	10/27/2011	11.5	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.017	<0.0020	0.19	0.18	0.0053
	4/6/2012	11.5	<0.0020	<0.0020	0.0025	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0069	0.27D	<0.0020	<0.0020	0.26D	0.0038
•	4/16/2013	12	<0.0040	<0.0040	0.0052	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.015	0.56D	<0.0040	<0.0040	0.53D	0.0081
•	10/23/2013	12	<0.0020	0.0022	0.0042	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.011	0.40D	<0.0020	<0.0020	0.49D	0.0077
	4/11/2014	11	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.074	<0.0050	0.015	0.33	<0.0050
B-3	4/3/2009	12.5	60:0	0.0017	0.0023	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.02	0.015	<0.0010	<0.0010	0.0011	<0.0010
	10/26/2009	12.5	0.044	0.0016	0.0014	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.013	0.0095	<0.0010	<0.0010	<0.0010	<0.0010
•	10/12/2010	12 E	0.036	0.001	0.0014	<0.0010		\$0.0010 \$0.0000	\$0.0010	\$0.0010 \$0.0000	<0.0010 0.0010	<0.00010	0.0082	0.01	<0.0010 <0.0000	<0.0010 <0.0010	<0.00010	<0.0010 0.0010
•	4/4/2011	12.5	0.042	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.015	0.0068	<0.0020	<0.0020UJ	<0.0020	<0.0020
	10/26/2011	12	690.0	<0.0020	0.0028	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.016	0.013	<0.0020	<0.0020	<0.0020	<0.0020
	4/3/2012	12.5	0.065	<0.0020	0.004	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.023	0.011	<0.0020	<0.0020	<0.0020	<0.0020
	11/13/2012	17 E	0.043	<0.0020	0.0027	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.018	0.0088	<0.0020	<0.0020	<0.0020	<0.0020
•	4/10/2013	12.5	0.034	<0.0020	0.0021	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.016	0.0043	<0.0020	<0.0020	<0.0020	<0.0020
BR-1 ZONE1	4/6/2009	205	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0016	0.0016	<0.0010
	10/29/2009	205	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.028	0.067	<0.0010	0.083	0.20D	0.009
	4/22/2010	205	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/18/2010	205	<0.0020	<0.0020	<0.0020	<0.0020	1	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.013	0.042	<0.0020	0.036	0.11	0.0033
	4/14/2011	205	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.056	<0.020	0.43	1.5	0.027
•	10/24/2011	205	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.01	0.035	<0.0020	0.0041	0.19	0.0031
•	4/16/2013	205	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/21/2014	205	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020

						-			-										
to MTR DATE 11.2 CM 11.4 CM									tetra	Chloro	Chloro	Chloro	Chloro			fluoro	Vinyl	cis-1,2-	trans-1,2-
6 DATE PARTE PARTE (PARTE (PARTE <th></th> <th></th> <th></th> <th>1,1,1-TCA</th> <th>1,1-DCA</th> <th>1,1-DCE</th> <th>1,2-DCA</th> <th>Acetone</th> <th>chloride</th> <th>penzene</th> <th>form</th> <th>ethane</th> <th>methane</th> <th>PCE</th> <th>TCE</th> <th>methane</th> <th>chloride</th> <th>DCE</th> <th>DCE</th>				1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	chloride	penzene	form	ethane	methane	PCE	TCE	methane	chloride	DCE	DCE
VANANON 153 400000 40000 40000 40000 40000 40000 40000 40000 400	SITE ID	DATE	DEPTH	(I/gm)	(I/gm)	(mg/l)	(mg/l)	(mg/l)	(mg/I)	(mg/l)	(mg/I)	(mg/l)	(mg/l)	(I/gm)	(mg/I)	(mg/I)	(I/gm)	(mg/l)	(mg/I)
	ONE2	4/6/2009	152	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
		10/29/2009	152	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0013	<0.0010	0.0024	0.042	<0.0010
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		4/22/2010 10/18/2010	152	<0.0010 <0.0000	<0.0010 <0.0010	<0.0010 <0.0020	<0.0010 <0.0020	: :	<0.0010 <0.0020	<0.0010 <0.0000 <0.0000	<0.0010 <0.0010	<0.0010 <0.0020	<0.0010	<0.0010 <0.0000	0.0010	<0.0010	<0.0010 0.013	<0.0010 0.23D	0100010 0 0065
14/2/2012 1122 4010021 6100022 4010022 401002		4/14/2011	152	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0046	<0.0020	0.012	0.095	<0.0020
4/15/2012 1.00 4.00		10/24/2011	152	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.005	<0.0020	0.016	0.2	0.0031
4/15/2018 152 GRONDO		4/2/2012	152	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/11/2014 152 4,00020 4,00020 4,00020 4,00020 4,00020 4,00020 4,00020 4,00020 4,00020 4,00020 4,00020 4,00020 4,00020 4,00020 4,00000		4/16/2013	152	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
VINTANIANO 105 40,0000 40,00		4/21/2014	152	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	ONE3	10/29/2009	105	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
		4/22/2010	105	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1017-1701 105 0.0020 0		10/18/2010	105	<0.0020	<0.0020	<0.0020	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1/4/2/2011 155 6.00020 6.000		4/14/2011	105	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/12/2012 2.56 4.0000		10/24/2011	105	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/12/2014 105 -0,0020		4/2/2012	105	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/18/2013 2.26 cy0.001 c/0.0010 c/0.0010 <th< td=""><th></th><td>4/21/2014</td><td>105</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.010</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td></th<>		4/21/2014	105	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/18/2011 2.56 4,00010 <th< td=""><th>20NE1</th><td>4/6/2009</td><td>226</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td>1</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td></th<>	20NE1	4/6/2009	226	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4/12/2013 2.5 4,00020		4/28/2010	226	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4/12/2012 2.56 G10020		4/14/2011	226	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/21/2014 2.56 6.00020 6.00020 6.00020 6.00020 6.00020 6.00020 6.00020 6.00020 6.00020 6.00010 <th< td=""><th></th><td>4/2/2012</td><td>326</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.010</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td></th<>		4/2/2012	326	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/3/2019 200 <a.00010< th=""> <a.00010< th=""></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<></a.00010<>		4/21/2014	226	<0,0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/28/7010 200 c00010 c.00010 c.00020 c	ONE2	4/3/2009	200	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4/14/2011 200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <th< td=""><th></th><td>4/28/2010</td><td>200</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td>-</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td></th<>		4/28/2010	200	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4/12/2013 2.00 -0.0020 $-$		4/14/2011	200	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/37/2014 2.00 4,0020 4,0000		4/2/2012	700	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/12/2014 1.67 -0.0010 <th< th=""><th></th><th>4/16/2013</th><th>200</th><th><0.0020</th><th><0.0020</th><th><0.0020</th><th><0.0020</th><th><0.010</th><th><0.0020</th><th><0.0020</th><th><0.0020</th><th>00000</th><th><0.0020</th><th><0.0020</th><th><0.0020</th><th><0.0020</th><th><0.0020</th><th><0.0020</th><th><0.0020</th></th<>		4/16/2013	200	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	00000	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/38/2019 167 4,0000 4,0000	CANES	#T02/T2/#	167	0.0020	<0.0020	V0.0020	×0.0020	\0.0±0	V0.0020	0.0020	V0.0020	0.0020	×0.0020	×0.0020	×0.0020 ×0.0010	×0.0020	0.0020	×0.0020	<0.0020
4/14/2011 167 $-60,0020$	CONES	4/28/2010	167	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4/2/2012 167 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <		4/14/2011	167	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/16/2013 167 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <0.00220 <th< td=""><th></th><td>4/2/2012</td><td>167</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.010</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td></th<>		4/2/2012	167	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/1/2019 157 4.0020 <th< td=""><th></th><td>4/16/2013</td><td>16/</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.010</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td></th<>		4/16/2013	16/	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/28/2010 209 <0.0010	ONE1	4/21/2014	209	<0.0020	<0.0020	070070	<0.0020	0TO:0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	<0.0020	0700.00	0.0020	<0.0020
4/1/2011 209 <0.0020 <0.0025 <0.0010 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <t< td=""><th></th><td>4/28/2010</td><td>209</td><td><0.0010</td><td>0.0012</td><td><0.0010</td><td><0.0010</td><td>1</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td><0.0010</td><td>0.0014</td><td><0.0010</td></t<>		4/28/2010	209	<0.0010	0.0012	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0014	<0.0010
4/4/2012 209 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <		4/14/2011	209	<0.0020	<0.0020	0.0055	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.047	<0.0020	0.039	0.094	<0.0020
4/16/2013 2.09 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <th< td=""><th></th><td>4/4/2012</td><td>209</td><td><0.0050</td><td><0.0050</td><td>0.021</td><td><0.0050</td><td><0.025</td><td><0.0050</td><td><0.0050</td><td><0.0050</td><td><0.0050</td><td><0.0050</td><td><0.0050</td><td>0.21</td><td><0.0050</td><td>0.32</td><td>0.48D</td><td><0.0050</td></th<>		4/4/2012	209	<0.0050	<0.0050	0.021	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.21	<0.0050	0.32	0.48D	<0.0050
4/11/2014 2.09 <a.0.0020< th=""> <a.< td=""><th></th><td>4/16/2013</td><td>209</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.010</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td>0.0029</td><td>9000</td><td><0.0020</td></a.<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<></a.0.0020<>		4/16/2013	209	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0029	9000	<0.0020
4/1/2009 1/2 <a.0.0550< th=""> <a.0.0560< th=""> <a.0.0620< th=""> <a.0.< td=""><th></th><td>4/11/2014</td><td>209</td><td><0.0020</td><td><0.0020</td><td>0.0091</td><td><0.0020</td><td><0.010</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td><0.0020</td><td>90.0</td><td><0.0020</td><td>0.072</td><td>60.0</td><td><0.0020</td></a.0.<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0620<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0560<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<></a.0.0550<>		4/11/2014	209	<0.0020	<0.0020	0.0091	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	90.0	<0.0020	0.072	60.0	<0.0020
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZONEZ	4/7/2009	172	<0.0050	<0.0050	0.0095	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.17	<0.0050	0.18	0.43	<0.0050
4/4/2012 172 <0.0020 <0.0020 <0.0100 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <		4/14/2011	172	<0.0020	0.0025	0.015	<0.0020	0.044	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0047	0.21D	<0.0020	0.21D	0.34D	0.002
4/16/2013 172 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020		4/4/2012	172	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0025	<0.0020	0.0062	0.012	<0.0020
4/11/2014 172 <0.0020 <0.0020 <0.0010 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020		4/16/2013	172	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0028	0.0052	<0.0020
4/7/2009 133 <0.0025 0.0028 <0.0025 <0.0025		4/11/2014	172	<0.0020	<0.0020	0.018	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.17D	<0.0020	0.28D	0.63D	0.0035
133 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <th>ZONE3</th> <td>4/7/2009</td> <td>133</td> <td><0.0025</td> <td>0.0028</td> <td><0.0025</td> <td><0.0025</td> <td>1</td> <td><0.0025</td> <td><0.0025</td> <td><0.0025</td> <td><0.0025</td> <td><0.0025</td> <td>0.0063</td> <td>0.048</td> <td><0.0025</td> <td>0.029</td> <td>0.18</td> <td><0.0025</td>	ZONE3	4/7/2009	133	<0.0025	0.0028	<0.0025	<0.0025	1	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.0063	0.048	<0.0025	0.029	0.18	<0.0025
133		4/14/2011	133	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.14	0.77	<0.010	0.17	5.0D	0.013
133 <0.0020 0.0057 <0.0020 <0.0020 <0.010 <0.0020 <0.0020 <0.0020 <0.0020		4/4/2012	133	<0.0020	0.0077	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0055	0.0052	<0.0020	0.0054	0.074	<0.0020
		4/11/2014	133	<0.0020	0.0057	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0027	0.014	<0.0020	0.048	0.23D	<0.0020

		-								-	-	-				-	-	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	200	5	0400	tetra	Chloro	Chloro	Chloro	Chloro	i	Š	fluoro	Vinyl	cis-1,2-	trans-1,2-
SITE ID	DATE	DEPTH	(mg/l)	1,1-DCA (mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
BR-6_ZONE1	4/7/2009	94	<0.0025	<0.0025	<0.0025	<0.0025	1	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.058	0.22	<0.0025
	11/2/2009	94	<0.0025	<0.0025	<0.0025	<0.0025	-	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.047	0.22	<0.0025
	4/28/2010	94	<0.0010	0.002	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0084	0.0075	0.0014
	10/18/2010	94	<0.0020	0.0021	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.015	0.17	<0.0020
	10/27/2011	94	<0.0020	0.0023	<0.0020	<0.0030	<0.020	<0.0020	<0.0020	<0.0020	<0.0000	<0.0030	<0.0000>	<0.0020	<0.0030	0.024	0.200	<0.0030
•	4/2/2012	94	<0.0020	<0.0020	<0.0020	<0.0020	0.012	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0035	<0.0020
•	4/16/2013	94	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0055	0.012	<0.0020
•	10/24/2013	94	<0.0020	<0.0020	<0.0020	<0.0020	0.01	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020UJ	<0.0020	<0.0020	<0.0020
	4/11/2014	94	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.004	0.012	<0.0020
BR-6_ZONE2	4/7/2009	62	<0.0025	0.0025	<0.0025	<0.0025	1	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.0052	<0.0025	0.013	0.31	<0.0025
1	11/2/2009	62	<0.0025	<0.0025	<0.0025	<0.0025	1	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.04	0.21	<0.0025
	4/28/2010	62	<0.0025	<0.0025	<0.0025	<0.0025	:	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.014	0.3	<0.0025
	10/18/2010	62	<0.0050	<0.0050	<0.0050	<0.0050	- 0,0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.046	0.31	<0.0050
	10/2/2011	79	<0.013	<0.013	<0.013	<0.013	<0.050	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	0.023	0.37	<0.013
•	4/2/2012	62	<0.0020	0.0022	<0.0020	<0.0020	<0.025	<0.0050	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.021	0.19D	<0.0050
•	4/16/2013	62	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.024	0.34	<0.0040
	10/24/2013	62	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.019	0.14	<0.0020
	4/11/2014	62	<0.0020	0.0031	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.023	0.35D	<0.0020
BR-6_ZONE3	4/7/2009	42	<0.0020	<0.0020	<0.0020	<0.0020	1	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.06	0.15	0.0026
	11/2/2009	42	<0.0010	0.001	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0024	<0.0010
•	10/18/2010	42	<0.0010 <0.0010	0.002	V0.0010	<0.0010		<0.0010 <0.0010	<0.0010 <0.0010	<0.0010	<0.0010	<0.0010	<0.0010 <0.0000	<0.0010 <0.0000	0.00010	0.038	0.00	0.0012
•	4/19/2011	42	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0076	<0.0050
	10/27/2011	42	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.017	0.061	<0.0020
	4/2/2012	42	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/16/2013	42	<0.0020	<0.0020	<0.0020	<0.0020	0.018	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1	10/24/2013	42	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020UJ <0.0020	<0.0020	<0.0020	<0.0020
BR-7 ZONE1	4/7/2009	152	<0.0010	6900'0	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.11	0.085	<0.0010
	4/28/2010	152	<0.0020	0.0072	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.18	0.13	<0.0020
	4/14/2011	152	<0.0020	0.0034	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.051	0.012	<0.0020
	4/4/2012	152	<0.0020	0.0069	<0.0020	<0.0020	0.018	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.12	0.0048	<0.0020
1	4/16/2013	152	0200.0>	0.002/	070000	<0.0020	<0.010 <0.010	<0.0020	<0.0020	<0.0020	020000	020000	<0.0020 <0.0020	<0.0020	<0.0020	0.007	0.003/	<0.0020
BR-7 ZONE2	4/7/2009	112	<0.0050	0,0055	<0.0050	<0.0050	OTO:0>	<0.0050	<0.0050	<0.0020	<0.0050	<0.0020	<0.0050	<0.0050	<0.0020	0.048	0.47	<0.0050
	4/28/2010	112	<0.0050	0.0054	<0.0050	<0.0050	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.039	0.5	<0.0050
	4/14/2011	112	<0.0040	0.0064	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.15	0.2	<0.0040
	4/4/2012	112	<0.0040	0.0069	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.2	0.0093	<0.0040
•	4/16/2013	112	<0.0020	0.0085	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.16	0.0068	<0.0020
BR-7 ZONE3	4/7/2009	69	<0.010	<0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.029	0.84	<0.010
	4/28/2010	69	<0.010	<0.010	0.012	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.021	1	<0.010
	4/14/2011	69	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.036	1.1	<0.020
	4/4/2012	69	<0.010	<0.010	0.01	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.069	0.74	<0.010
1	4/16/2013	69	<0.020	<0.020 0.0065	070.020	070000	<0.10	<0.020	<0.020	020.020	02000	020.020	<0.000	02000	<0.020	0.024	<0.020	<0.020
BW-01	1/13/2009	14	<0.0020	<0.0010	<0.0010	<0.0010	010.0	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	0.0019	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/2/2009	12	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0016	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
-	7/14/2009	14	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0025	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
•	1/28/2010	12	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.001	0.002	<0.0010	<0.0010	<0.0010	<0.0010
•	4/22/2010	14	<0.0050	<0.0050	<0.0050	<0.0050	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.013	0.0073	<0.0050	0.13	0.44	<0.0050

																	•	
								Carbon tetra	Chloro	Chloro	Chloro	Chloro			Trichloro fluoro	Vinyl	cis-1,2-	trans-1,2-
SITE ID	DATE	DEPTH	1,1,1-TCA (mg/l)	1,1-DCA (mg/l)	1,1-DCE (mg/l)	1,2-DCA (mg/l)	Acetone (mg/l)	chloride (mg/l)	benzene (mg/l)	form (mg/l)	ethane (mg/l)	methane (mg/l)	PCE (mg/l)	TCE (mg/l)	methane (mg/l)	chloride (mg/l)	DCE (mg/l)	DCE (mg/l)
BW-02	1/13/2009	14	<0.0010	<0.0010	<0.0010	<0.0010	5 -	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/2/2009	13	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
•	7/14/2009	14	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0037	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/27/2009	13	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0028	0.0014	<0.0010	<0.0010	<0.0010	<0.0010
	1/28/2010	13	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0017	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
BM/-03	4/22/2010 1/13/2009	15 S	<0.0050	<0.0050	<0.0050	<0.0050	: :	<0.0050 <0.0010	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	<0.0050	<0.0050	0.12	0.00	<0.0050
	4/2/2009	13	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	7/14/2009	15.5	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0026	<0.0010	<0.0010	<0.0010	0.0011	<0.0010
	10/27/2009	13	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.003	0.0018	<0.0010	0.0037	0.0029	<0.0010
	1/28/2010	13	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.002	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/22/2010	15.5	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010	0.04	0.11	<0.0010
	8/21/2012	15.5	<0.0020	<0.0020	<0.0020	<0.0020	0.011	<0.0020	<0.0020	0.0087	0.0026	<0.0020	<0.0020	<0.0020	<0.0020	0.0064	0.0039	<0.0020
BW-04	1/13/2009	13	0.0011	0.0028	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0013	<0.0010	0.095	0.065	<0.0010
	4/2/2009	12	0.0054	<0.0050	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.54	0.48	<0.0050
	7/14/2009	13	0.0051	0.005	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.59	0.15	<0.0050
•	10/27/2009	12	0.05	0.035	<0.0025	<0.0025	1	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.3	0.02	<0.0025
	1/28/2010	12	<0.0010	0.0019	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	0.012	0.016	<0.0010
	4/22/2010	13	0.022	<0.010	\dashv	<0.010	1	+	\dashv	\dashv	\dashv	<0.010	<0.010	<0.010	<0.010	0.74	0.51	<0.010
	7/14/2010	13	<0.0010UJ	0.0016J	_	<0.00100J	1	_	_	_	_	<0.0010UJ	<0.00100J	0.0014J	<0.0010UJ	0.013	0.0075J	<0.0010UJ
•	10/12/2010	13	<0.0020	<0.0020	<0.0020	<0.0020	1	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0027	0.0044	<0.0020
•	1/4/2011	13	<0.0020	<0.0020	<0.0020	<0.0020	- 0	<0.0020	<0.0020	<0.0020	0.0024	<0.0020	<0.0020	<0.0020	<0.0020	0.016	0.0081	<0.0020
	4/5/2011	12.5	<0.0020	0.002	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.16	0.069	<0.0020
	1/28/2011	13	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.21	0.000	<0.0040
	1102/52/01	17.	0.095	0.032	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0700.0>	<0.0020	0.0023	<0.0020	<0.0020	0.098	0.0031	<0.0020
	1/18/2012	12.5	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	8/21/2012	12.3	<0.0020	<0.0020	<0.0020	<0.0020	0.011	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.40D	0.16D	<0.0020
	11/28/2012	13	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.052	0.01	<0.0020
	2/6/2013	12.35	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	0.0084	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/11/2013	13	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
BW-05	1/13/2009	15	0.16	0.099	<0.050	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	5.3	2.8	<0.050
	4/2/2009	6	0.019	0.018	<0.0010	<0.0010		<0.0010	<0.0010	0.004	<0.0010	<0.0010	0.0013	<0.0010	0.0045	0.021	0.015	<0.0010
•	7/14/2009	15	0.018	0.011	<0.0010	0.0011	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0064	0.002	0.002	0.0013	<0.0010	<0.0010
	5002/32/01	ם מ	0.0043	0.17	<0.0020	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0021	0.0025	<0.0020	<0.0020
•	1/28/2010	٦ ب	<0.00IUU	0.02	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.00T3	<0.0010	0.0047	0.073	0.011	<0.0010
	7/14/2010	71	0.33	0.02	101000	0.010		†=	†=	†=	†=	0.010	0.0101	0.010	\0.01010\	0.73	0.0	/0.010111
	10/12/2010	10	<0.0020	0.0041	<0.0020	<0.0020		╁	+	+	╁	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	1/4/2011	15	<0.0020	<0.0020	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	0.0047	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/5/2011	9.5	0.022	0.013	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	98.0	0.22	<0.010
	7/28/2011	6	<0.0020	0.0049	<0.0020	<0.0020	0.015	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
•	10/25/2011	6	1.5D	4.3D	0.02	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.0047	<0.0020	0.003	<0.0020	<0.0020	0.97D	0.064	<0.0020
•	1/18/2012	9.5	<0.0020	0.021	<0.0020	<0.0020	0.018	<0.0020	<0.0020	<0.0020	0.024	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/3/2012	6	<0.0020	0.0021	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.005	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
•	8/21/2012	9.4	0.0022	<0.0020	<0.0020	<0.0020	0.014	<0.0020	<0.0020	0.019	<0.0020	<0.0020	0.0027	<0.0020	<0.0020	0.02	0.014	<0.0020
	11/28/2012	15	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	900.0	<0.0020
•	2/6/2013	9.4	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0025	<0.0020
•	4/11/2013	٦,	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0044	<0.0020
	4/10/2013	т О	<0.0020	<0.0020	<0.0020	<0.0020	<0.010 <0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
BW-06	7/28/2011	13	0.024	0.038	<0.0020	<0.0020	0.016	<0.0020	<0.0020	0.005	<0.0020	<0.0020	0.0028	<0.0020	<0.0020	0.0059	<0.0020	<0.0020
	10/25/2011	13	3.5D	1.1D	90.0	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.017	<0.0020	0.027	0.019	<0.0020	0.92D	0.1	<0.0020

	trans-1,2-	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0010	<0.010	<0.0050	<0.020	<0.0050UJ	<0.0020	<0.0020	CU:010	0.0023	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	<0.0020	0.0013	<0.0050	<0.010	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	cis-1,2-	(mg/l)	<0.0020	0.0027	0.007	0.002	0.0023	0.0025	<0.0020	0.072	<0.0020	<0.0010	<0.010	<0.0050	2.2	0.024J	<0.0020	<0.0020	0.000	0.0020	<0.0000>	<0.010	<0.0020	0.003	<0.0020	<0.0020	<0.0020	<0.0020	0.019	<0.0020	<0.0010	<0.0050	40.0050	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.16J	0.2	0.15	0.0033	0.018	0.035	0.29	0.057
	Vinyl	(mg/l)	0.002	0.0045	0.011	0.0021	0.0044	<0.0020	<0.0020	0.78	<0.0020	<0.0010	<0.010	0.0058	1.8	0.045J	<0.0020	<0.0020	0.72	0.300	0.0000>	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.16	<0.0020	<0.0010	<0.0050	0.018	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020J	0.039	0.084	0.0038	<0.0050	0.0097	<0.0011	0.043
Trichloro	fluoro	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	0.005	0.0088	<0.010	<0.0050	<0.020	<0.0050UJ	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	0.0024	0.0087	0.0072	<0.010	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	101	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0010	<0.010	<0.0050	0.098	<0.0050UJ	<0.0020	<0.0020	00.00	0.0020	<0.0000	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	<0.0020	<0.0010	<0.0050	0.0050	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.086J	<0.0020	<0.0020	<0.0020	0.017	<0.0020	0.011	<0.0020
	PCF	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0010	<0.010	<0.0050	0.075	<0.00500J	<0.0020	<0.0020	V0.0010	0.0020	<0.0000>	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	<0.0020	<0.0010	<0.0050	<0.010	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.011	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	Chloro	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0010	<0.010	<0.0050	<0.020	<0.0050UJ	<0.0020	<0.0020	20.010	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	<0.0020	<0.0010	<0.0050	<0.010	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	Chloro	(mg/l)	1.1D	<0.0020	0.0033	<0.0020	<0.0020	0.0035	<0.0020	960.0	0.25	0.13J	1	0.41	0.047	0.090	0.045	0.051	0.033	0.24D	0.950	2:0D	0.018	0.044	0.021	0.015	0.0033	<0.0020	0.25	0.19	0.14)	0.62	0.059	0.22	0.092	3.6D	1.7D	0.11	0.057	0.025	0.0075	<0.0020	<0.00201	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	Chloro	(mg/l)	<0.0020	0.0065	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0010	<0.010	<0.0050	<0.020	<0.0050UJ	<0.0020	<0.0020	00.010	<0.0020	<0.0020	<0.010	0.0054	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	<0.0020	<0.0010	<0.0050	<0.0050	<0.0040	<0.0020	<0.0040	<0.0020	0.0046	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	Chloro	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0010	<0.010	<0.0050	<0.020	<0.0050UJ	<0.0020	<0.0020	V0.010	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	<0.0020	<0.0010	<0.0050	<0.010	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
Carbon	tetra	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0010	<0.010	<0.0050	<0.020	<0.0050UJ	<0.0020	<0.0020	V0.010	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	<0.0020	<0.0010	<0.0050	<0.010	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	Acetone	(mg/l)	<0.010	0.013	<0.010	<0.010	<0.010	<0.010	<0.010		-	1	1	-	1	1	1	- 0	0.030	V.014	<0.010	<0.050	0.013	0.016	<0.010	<0.010	<0.010	<0.010	1	1	1	1		<0.020	<0.010	<0.020	<0.010	0.013	<0.010	0.011	<0.010	<0.010	1	-	1		<0.020	<0.010	<0.020	<0.010
	1 2-DCA	(mg/l)	0.0028	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	0.0026	<0.010	<0.0050	<0.020	<0.0050UJ	<0.0020	<0.0020	0.010	0.0031	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	<0.0020	0.0024	<0.0050	<0.010	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	1 1-DCF	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0010	<0.010	<0.0050	0.13	<0.0050UJ	<0.0020	<0.0020	V0.010	0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0025	<0.0020	<0.0010	<0.0050	0.026	<0.0040	<0.0020	<0.0040	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	1 1-DCA	(mg/l)	0.14	0.012 <0.0020	0.0023	<0.0020	<0.0020	<0.0020	<0.0020	0.42	0.02	0.031	0.046	0.05	0.12	0.56J	0.013	0.031	0.13	0.730	3.50	0.077	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.22	0.015	0.017	0.017	0.07	0.13	0.062	1.1D	0.013	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
	1 1 1-TCA	(mg/l)	0.0027	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.39	<0.0020	0.023	<0.010	0.0053	2.4	0.59J	<0.0020	<0.0020	0.00	0.10	<0.0000>	0.018	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.17	0.0022	0.0051	<0.0050	0.33	<0.0040	0.0094	0.012	0.0067	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.0040	<0.0020
		DEPTH	13	13.3	15	13.1	13	14	13	15	13	15	13	13	15	15	14	15	13.7	13.5	13.5	13	14	15	13.6	17.5	14	13	15	11	15	11	11	12.5	12	12	12	12	17.7	12.5	14	12	42	75	42	42	80	42	41.5	79.6
		DATE	1/18/2012	4/3/2012 8/21/2012	11/28/2012	2/6/2013	4/11/2013	10/22/2013	4/10/2014	1/13/2009	4/2/2009	7/14/2009	10/27/2009	1/28/2010	4/22/2010	7/14/2010	10/12/2010	1/5/2011	4/3/2011	10/25/2011	1/18/2012	4/3/2012	8/21/2012	11/28/2012	2/6/2013	4/11/2013	10/22/2013	4/10/2014	1/13/2009	4/2/2009	7/14/2009	10/27/2009	4/22/2010	7/28/2011	10/25/2011	1/18/2012	4/3/2012	8/21/2012	2/6/2012	4/11/2013	10/22/2013	4/10/2014	4/27/2009	10/26/2009	4/21/2010	10/18/2010	5/2/2011	10/24/2011	4/3/2012	5/2/2013
		SITE ID	BW-06 (cont.)	,	•			•		BW-08		•						-1	•	•	•	•	•						8W-09			1	1	•					-		•	•	CL02-BR						1	

							ŀ	ŀ	ŀ				ŀ	•		٠	١	
								Carbon	Chloro	Chloro	Chloro	Chloro			Trichloro fluoro	Vinyl	cis-1,2-	trans-1,2-
SITE ID	DATE	DEPTH	1,1,1-TCA (mg/l)	1,1-DCA (mg/l)	1,1-DCE (mg/l)	1,2-DCA (mg/l)	Acetone (mg/l)	chloride (mg/l)	benzene (mg/l)	form (mg/l)	ethane (mg/l)	methane (mg/l)	PCE (mg/l)	TCE (mg/l)	methane (mg/l)	chloride (mg/l)	DCE (mg/l)	DCE (mg/l)
CL02-BR (cont.)	10/24/2013	79	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200J	0.016	0.021	<0.0020
00.5010	4/29/2014	275	<0.0020	<0.0020	<0.0020	<0.0020	690.0	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.015	<0.0020	0.0044	0.36D	0.0034
	10/27/2009	75	<0.010	0.057	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	0.43	0.23	<0.010	<0.010	0.072	<0.010
	4/20/2010	79	<0.0010	0.035	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.083	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/14/2010	92	<0.0020	0.036	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.028	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/4/2011	75	<0.0020	0.03	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	690.0	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	10/27/2011	79	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0089	<0.0020	<0.0020	0.0034	<0.0020
	4/6/2012	76	<0.020	0.035	0.024	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	6.0D	15D	<0.020	0.29	06.9D	<0.020
	4/12/2013	76	<0.20	<0.20	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	<0.20	101	30D	<0.20	1.5J	13	<0.20
	10/23/2013	79	<0.0020	0.014	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	0.0082	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020UJ	<0.0020	<0.0020	<0.0020
7-017	4/9/2014	7.1	<0.0020	0.016	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/4/2011	18	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0038	<0.0020	<0.0020	<0.0020	<0.0020
	4/6/2012	18	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0043	0.0075	<0.0020	<0.0020	<0.0020	<0.0020
	4/12/2013	18	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0075	0.012	<0.0020	<0.0020	<0.0020	<0.0020
	4/7/2014	18	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0097	0.017	<0.0020	<0.0020	<0.0020	<0.0020
CL04-BR	4/3/2009	54	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0045	<0.0010	<0.0010	0.017	<0.0010
	4/21/2010	54	<0.0010	<0.0010	<0.0010	<0.0010	1 0	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0048	<0.0010	0.0014	0.023	<0.0010
	4/6/2011	54	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.023	<0.0020
	4/4/2012	5.4	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.036	0.0021
	4/10/2014	54	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.065	<0.0020
CL04-DO	4/3/2009	27	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0015	0.019	<0.0010	<0.0010	<0.0010	<0.0010
	4/21/2010	28	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0014	0.0083	<0.0010	<0.0010	<0.0010	<0.0010
	4/6/2011	27	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.015	<0.0020	<0.0020	<0.0020	<0.0020
	4/4/2012	27.3	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0022	0.031	<0.0020	<0.0020	<0.0020	<0.0020
	4/15/2013	28	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.03	<0.0020	<0.0020	<0.0020	<0.0020
C105-DOA	4/10/2014	49	<0.0020	<0.0020	<0.0020	<0.0020	OTO:01	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.043	<0.0020	<0.0020	<0.0010	<0.0020
	4/20/2010	42	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
CL06-BR	4/2/2009	69	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/22/2010	69	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/4/2011	89	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/4/2012	89	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/15/2013	61	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
00.9013	4/7/2014	99	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/22/2010	43	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/4/2011	41	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/4/2012	41	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/15/2013	42	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/7/2014	41	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0045	<0.0020	<0.0020	<0.0020	<0.0020
CL08-BR_ZONE1	4/7/2009	159	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/28/2010	159	<0.0010	<0.0010	<0.0010 <0.0000	<0.0010	0.350	<0.0010 <0.0010	<0.0010 <0.0000	<0.0010	0.0028	0.0038	<0.0010 <0.0000	<0.0010	<0.0010	<0.0010	<0.0010 <0.000	<0.0010
	4/2/2012	159	02020>	<0.0020	<0.0020	<0.0020	0.12	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/16/2013	159	<0.0020	<0.0020	<0.0020	<0.0020	0.08	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/11/2014	159	<0.010	<0.010	<0.010	<0.010	0.095	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
CL08-BR_ZONE2	4/7/2009	102	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/28/2010	102	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/14/2011	102	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/2/2012	T07	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020

								-		-	-	-						
								Carbon tetra	Chloro	Chloro	Chloro	Chloro			Trichloro fluoro	Vinyl	cis-1,2-	trans-1,2-
	į	i	1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	chloride	benzene	form	ethane	methane	PCE	TCE	methane	chloride	DCE	DCE
SITE ID	DATE	102	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
CLOS-BR_ZOINEZ (COIR.)	4/11/2014	102	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
CL08-BR_ZONE3	4/7/2009	70	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	<0.0010	<0.0010	<0.0010	<0.0010
	4/28/2010	20	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.001	<0.0010	<0.0010	<0.0010	<0.0010
	4/14/2011	20	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/2/2012	70	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/16/2013	70	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/11/2014	70	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
CL08-DO	4/6/2009	51	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010	<0.0010	0.0013	<0.0010
	4/22/2010	52	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	0.0011	<0.0010
	4/6/2011	51	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/5/2012	51.5	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/12/2013	51.5	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/9/2014	51	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
CL09-BR_ZONE1	4/6/2009	160	<0.025	<0.025	<0.025	<0.025	1	<0.025	<0.025	<0.025	<0.025	<0.025	1.3	2.2	<0.025	<0.025	0.4	<0.025
	11/2/2009	160	<0.010	<0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	0.58	1.1	<0.010	0.069	T :	<0.010
	4/21/2010	160	<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	0.7	1.7	<0.050	<0.050	5.7	<0.050
	11/15/2010	160	<0.10	<0.10	<0.10	<0.10	1 6	<0.10	<0.10	<0.10	<0.10	<0.10	0.62	1.1	<0.10	0.13	110	<0.10
	4/14/2011	160	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.97	1.8	<0.020	0.086	1.8	<0.020
	10/24/2011	160	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.83	2.0D	<0.020	<0.020	1	<0.020
	4/2/2012	160	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	99.0	1.4	<0.040	0.11	6.4D	<0.040
	3/2/2013	100	<0.10	<0.10	<0.10	<0.10	V0.30	\$0.10	<0.10	<0.10 0.10	<0.10 0.10	\$0.10 \$0.10	0.30	1.0	<0.10 0.10	<0.10	6.0	<0.10
21,000	4/11/2014	140	40.10	<0.10	0.02 0.050	<0.10	<0.50	<0.10	<0.10	40.10	<0.10	40.10	0.11	0.23	<0.10	<0.10	y, r	<0.10
CLU9-BK_ZOINEZ	4/6/2009	110	<0.050 \	050.05	<0.050 <0.025	<0.050		050.05	<0.05U	050.05	<0.050 <0.050	050.0>	0.81	T.5	<0.050 <0.055	0.078	9.6	<0.050
	0100/10/1	110	V0.023	V0.023	\0.023	0.023		×0.023	V0.023	V0.023	V0.023	V0.023	0.43	1.34	V0.023	0.070	6.2	V0.023
	11/15/2010	119	<0.030	<0.030	<0.050	<0.030		×0.030	<0.050 <0.10	<0.030	<0.030	<0.030	0.00	0.75	<0.050	0.10	2.5	<0.030
	4/14/2011	119	<0.10	<0.10	07.0>	01.0>	02 02	<0.10	<0.10	<0.10	20.10	<0.10	0.42	0.76	<0.10	0.14	80	<0.10
	10/24/2011	119	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	0.33	1	<0.050	0.067	2.7	<0.050
	4/2/2012	119	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	0.38	96.0	<0.050	60.0	4.5	<0.050
	5/2/2013	119	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	0.54	1.6	<0.050	0.075	2.4	<0.050
	4/11/2014	119	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	0.25	0.4	<0.050	0.085	6.7D	<0.050
CL09-BR_ZONE3	4/6/2009	81	<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	0.56	0.84	<0.050	0.11	6.3	<0.050
	11/2/2009	81	<0.0050	<0.0050	<0.0050	<0.0050	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.21	0.29	<0.0050	0.75	0.62	<0.0050
	4/21/2010	8.1	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050	<0.050	<0.050	<0.050	0.24	0.36	<0.050	<0.050	5.9	<0.050
	0102/51/11	01	×0.040	<0.040	×0.040	×0.040	0.00	×0.040	×0.040	×0.040	×0.040	×0.040	0.048	0.33	×0.040	67:0	4.10	×0.040
	10/74/2011	81	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.048	0.036	<0.010	1 20	1.20	0.016
	4/2/2012	81	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.12	0.31	<0.020	0.3	2.6D	<0.020
	5/2/2013	81	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	0.24	0.64	<0.050	0.32	2.6	<0.050
	4/11/2014	81	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	990.0	0.071	<0.020	0.052	1	<0.020
CL09-DO	4/2/2009	32	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.015	0.037	<0.0010	<0.0010	0.0012	<0.0010
	4/21/2010	35	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.024	0.061	<0.0010	<0.0010	0.0024	<0.0010
	4/4/2011	32	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020UJ	<0.0020	<0.0020
	4/2/2012	32.8	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.073	0.18	<0.0020	<0.0020	0.0061	<0.0020
	4/15/2013	32.8	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/7/2014	32	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	0.0051	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
CL09-S	9/24/2009	AN :	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
CLIU-BK	4/6/2009	444	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	0.0023	<0.0010	<0.0010	<0.0010	<0.0010
	4/20/2010	44	<0.0010	<0.0010	<0.0010	<0.0010 <0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010 <0.0010
	10/14/2010	45	<0.0020	<0.0020	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/5/2011	44	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020

	trans-1,2-	DCE (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	00000	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	<0.010 <0.000	<0.0020	<0.0020	0.0038	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.0020U	<0.0020U	<0.0020U	<0.0010U	<0.0010	<0.00100	<0.0010	<0.0010
	cis-1,2-	DCE (mg/l)	0.0027	<0.0020	<0.0020	<0.0020	0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.048	<0.0010	0.024	<0.0020	0.00	0.0032	<0.0020	0.033	<0.0020	0.046	0.0016	0.0013	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0020	0.051	0.012	0.004	0.019	0.055	0.071	0.063	0.0018	0.059	0.034	0.064
	Vinyl	chloride (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	00000	<0.0020	<0.0010	01000>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.020	<0.0010	0500.0>	0700.0>	VO.010	0200.0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010	<0.00200J	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020U	<0.00200	<0.00200	<0.00200	<0.0020U	<0.0020	<0.0020U	<0.00200	<0.0010
	Trichloro fluoro	methane (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	000000	<0.0020	<0.0010	0.0016	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020UJ	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	VO.010	<0.0020	<0.0020	<0.0020	<0.0020UJ	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0020	<0.0050	<0.0020	<0.00200	<0.00200	<0.00200	<0.0020U	<0.00100	<0.0010	<0.00100	<0.00100	<0.0010
		TCE (mg/l)	0.0036	<0.0020	<0.0020	<0.0020	0.0031	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.12	<0.0010	0.041	<0.0020	0.032	0.0027	<0.0020	0.15	<0.0020	0.13	0.07	0.067	0.067	0.044	0.025	0.005	0.0061	0.0037J	0.0063	0.0079	0.0031	0.079	0.026	0.003	0.024	0.079	0.096	0.091	0.0013	0.082	0.04	0.077
		PCE (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	1.4	0.0064	0.64	0.013	0.07	0.13	0.013	1.3D	0.011	1.8D	9600.0	9600.0	0.0076	0.0059	0.0037	0.011	0.014	0.0086J	0.012	0.011	V.01	0.017	0.007	<0.0020U	0.004	0.012	0.019	0.02	<0.0010	0.019	0.0088	0.016
	Chloro	methane (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	\0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	0.000	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0100	<0.0100	<0.010U	<0.010U	<0.0050U	<0.0050	<0.0050U	<0.00500	<0.0010
ĺ	Chloro	ethane (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	V0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0020	<0.0050	<0.010	<0.010U	<0.0100	<0.010U	<0.010U	<0.0020U	<0.0020	<0.0020U	<0.00200	<0.0010
ĺ	Chloro	form (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	02000	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.00200	<0.0020U	<0.00200	<0.0010U	<0.0010	<0.0010U	<0.00100	<0.0010
ĺ	Chloro	benzene (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	V0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010	_	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.00200	<0.0020U	<0.0020U	<0.0020U	<0.0020	<0.0020U	<0.0020	<0.0010
	Carbon tetra	chloride (mg/l)	<0.0020	<0.0020	<0.0020	<0.00200J	0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200J	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	02000	<0.0020	<0.0020	<0.00200J	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010	_	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.00200	<0.0020U	<0.00200	<0.0010U	<0.0010	<0.0010U	<0.00100	<0.0010
		Acetone (mg/l)	<0.010	<0.010	<0.010	<0.010	V0.010	OTO:00	-	1	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	1	1	1		0.030	<0.010	<0.010	<0.010	<0.010	<0.010	-	1	0.012	<0.010	<0.010	1		\dashv	<0.010	<0.010	0TO.02	<0.010	1	1	1		1	1	1	1		1
		1,2-DCA (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	00000	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	00.000	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020UJ	<0.0020	<0.0020	<0.0010	<0.0010	<0.00200J	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.00200	<0.00200	<0.00200	<0.00100	<0.0010	<0.0010U	<0.00100	<0.0010
		1,1-DCE (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	V0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.021	0.017	0.019	0.012	0.0063	<0.0010	<0.0010	_	<0.0020	<0.0020	<0.0020	0.002	<0.0010	<0.00100	<0.00100	0.002	0.003	0.0019	<0.0010	<0.0010U	<0.00100	<0.0010
		1,1-DCA (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	0.0020	0.0019	0.0041	0.0021	0.0027	<0.0020	0.0034	<0.0020	0.0033	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	02000	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.034	0.024	0.021J	0.0095	0.005	0.0029	0.0026	_	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200	<0.00200	0.002	0.002	0.0019	<0.0010	0.0013	<0.00100	<0.0010
		1,1,1-TCA (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	0.0020	0.0021	0.0045	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0023	<0.0020	<0.0020	<0.020	<0.0010	<0.0050	<0.0020	V0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.019	0.011	0.0087J	0.0043	0.0028	0.011	0.01	╛	0.0077	0.0032	0.0049	<0.0020	<0.0020	<0.00200	<0.0020U	<0.0020U	<0.0020U	<0.0010U	<0.0010	<0.0010U	<0.00100	<0.0010
ĺ		DEPTH	46	44.5	46	45	7 40	30	30	36	31	30	36	30.5	36	30	36	30	13	13	15	13	15	13	15	11	12	12	49	20	49.5	49.5	48	24	24	23.4	23.5	22	23	Z N	A	AN	AN	NA	NA	NA	AA	A S	Z Z	AN
		DATE	10/25/2011	4/5/2012	11/12/2012	4/16/2013	10/23/2013	4/6/2009	10/27/2009	4/20/2010	10/14/2010	4/5/2011	10/27/2011	4/6/2012	11/12/2012	4/16/2013	10/23/2013	4/10/2014	4/6/2009	10/2//2009	4/21/2010	10/14/2010	10/25/2011	4/5/2012	11/12/2012	4/16/2013	10/23/2013	4/10/2014	4/3/2009	4/20/2010	4/6/2011	4/6/2012	4/11/2014	4/3/2009	4/20/2010	4/6/2011	4/6/2012	4/15/2013	4/11/2014	11/10/1999	6/5/2000	12/11/2000	6/4/2001	11/26/2001	5/15/2003	12/22/2003	1/4/2005	1/4/2006	4/15/2007	4/3/2009
		SITE ID	CL10-BR (cont.)			ı		CI 10-DO			1	1	1	1					CL10-S	1			1	1	1	1	1		CL11-DO		1		1	CL11-S					CI 12-S1	T OUTFALL	1		1		<u> </u>			1	ı	

		ŀ	•	·	•				ŀ			ŀ	ŀ	١		٠	٠	
								Carbon tetra	Chloro	Chloro	Chloro	Chloro			Trichloro fluoro	Vinyl	cis-1,2-	trans-1,2-
SITE ID	DATE	DEPTH	1,1,1-TCA (mg/l)	1,1-DCA (mg/l)	1,1-DCE (mg/l)	1,2-DCA (mg/l)	Acetone (mg/l)	chloride (mg/l)	benzene (mg/l)	form (mg/l)	ethane (mg/l)	methane (mg/l)	PCE (mg/l)	TCE (mg/l)	methane (mg/l)	chloride (mg/l)	DCE (mg/l)	DCE (mg/l)
CULVERT_OUTFALL	4/28/2010	NA	<0.0010	0.0011	<0.0010	<0.0010	i	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.016	0.075	<0.0010	<0.0010	0.074	<0.0010
(Cont.)	4/6/2011	NA :	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0021	<0.0020	<0.0020	0.0032	<0.0020
	4/6/2012	NA :	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0021	<0.0020	<0.0020	0.0029	<0.0020
•	4/15/2013	A S	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0093	0.056	<0.0020	<0.0020	0.058	<0.0020
62.1	4/3/2014	¥ ;	0.0020	V0.0020	0.0020	×0.0020	V0.010	0.0020	0.0020	V0.0020	0.0020	0.0020	0.000	0.045	V0.0020	V0.0020	0.00	V0.0020
T-70	4/20/2010	14	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.001	0.016	<0.0010	<0.0010	0.0062	<0.0010
•	4/5/2011	12	0.0031	0.0044	0.0074	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.17	1.6D	<0.0020	0.0029	0.62D	0.0036
•	4/5/2012	12.3	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.18	0.76D	<0.010	<0.010	0.35	<0.010
	4/12/2013	12.4	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.191	1.3	<0.020	<0.020	0.32	<0.020
	4/8/2014	12	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.013	0.047	<0.0020	<0.0020	0.0089	<0.0020
GZ-2R	4/3/2009	10	<0.0025	<0.0025	<0.0025	<0.0025	-	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.0083	0.23	<0.0025	<0.0025	0.17	<0.0025
GZ-4	10/26/2009	14	<0.0010	0.003	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0039	0.029	<0.0010	0.0016	0.045	<0.0010
	4/20/2010	14	<0.0010	0.0015	0.0015	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0028	0.044	<0.0010	0.0037	0.069	<0.0010
	10/14/2010	14	<0.0020	0.0046	0.0045	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.047	0.24D	<0.0020	0.0028	0.43D	0.0028
	4/5/2011	14	<0.0050	0.0056	0.0072	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.097	0.78D	<0.0050	900'0	0.55D	<0.0050
	10/25/2011	14	<0.0020	0.0027	0.002	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0037	0.003	<0.0020	0.11	0.36D	0.0021
	4/5/2012	14	<0.010	<0.010	0.01	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.14	0.84	<0.010	<0.010	9.0	<0.010
•	11/12/2012	14	<0.0020	0.0049	0.0036	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.2	0.54D	0.0034
	4/11/2013	12	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.11	0.71	<0.010	<0.010	0.7	<0.010
•	10/23/2013	12	<0.0020	0.004	0.0068	<0.0020	0.014	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.002000	0.042	0.750	0.0044
MAM/_OO1	4/8/2014	17	<0.0020 <0.0010	V0.0020	0.0020	×0.0020	0.010	0.0020	<0.0020	×0.0020	<0.0020	V0.0020	0.0043	0.0003	<0.0020	0.0014	0.033	<0.0020
MW-001DO	4/3/2009	55	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
MW-002R	4/27/2009	13	<0.0010J	<0.0010	<0.0010J	<0.0010	1	<0.0010	<0.0010J	Ł	<0.00100	<0.0010	0.00200	0.0070	<0.0010J	<0.0010J	<0.00100	<0.0010J
•	4/21/2010	13	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	H	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/12/2010	10	<0.0020	<0.0020	<0.0020	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	5/2/2011	6	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	10/24/2011	6	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
•	4/2/2012	9.5	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	5/2/2013	9.8	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/29/2014	6	<0.0020	<0.0020	<0.0020	<0.0020	0.067	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
MW-003K	4/1/2009	30	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.001U	<0.0010	<0.0010	0.0041	<0.0010
•	4/21/2010	33	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
•	4/4/2011	30	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020UJ	<0.0020	<0.0020
	4/2/2012	30.2	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0035	<0.0020	0.0037	0.015	<0.0020
•	4/11/2013	30.3	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	0.0051	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	900.0	0.007	<0.0020
	4/7/2014	30	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0023	<0.0020	<0.0020
MW-004	4/10/2014	57	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1100-1111	4/21/2009	38	<0.00103	<0.00103	<0.00103	<0.0010		<0.0010	<0.0010	\pm	<0.00103	<0.0010	<0.00103	0.0133	<0.00103	<0.00103	0.0023	<0.00103
•	10/12/2010	35.5	<0.0020	<0.0020	<0.0020	<0.0020	1	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.066	<0.0020	<0.0020	0.0087	<0.0020
•	5/2/2011	36	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.026	<0.0050	<0.0050	<0.0050	<0.0050
	10/24/2011	35.5	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.048	<0.0020	<0.0020	0.0065	<0.0020
	4/2/2012	35.5	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.066	<0.0020	<0.0020	0.0081	<0.0020
	5/2/2013	35.4	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0061	<0.0020	<0.0020	<0.0020	<0.0020
MW-005	10/23/2013	23	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0064	0.0022	<0.0020	<0.0020	<0.0020	<0.0020
	4/10/2014	21	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.016	0.0057	<0.0020	<0.0020	<0.0020	<0.0020
MW-005R	4/1/2009	17	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0033	0.0086	<0.0010	<0.0010	0.0023	<0.0010
•	10/26/2009	21	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010 <0.0010	<0.0010	<0.0010	<0.0010	<0.0010 <0.0010	0.000	0.013	<0.0010	<0.0010	0.011	<0.0010
•	4/21/2010	16	<0.00±0	<0.0010	<0.0010 <0.0000	<0.0010 <0.0010	<0.010	<0.0010	<0.0010	<0.0010 <0.0010	<0.0010	<0.0010	0.0042	0.02	<0.0010	<0.0010	0.0037	<0.0010
	17/2/17	24	03000	0.00	03000	22000	0.00	03000	0.000	0700.07	20000	20000	2000	20:0	03000	000000	1,000	0.000

	trans-1,2-	DCE (mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	<0.050	<0.025	<0.020UJ	<0.010	<0.0050	<0.0040	<0.0050	<0.0050	<0.0020	<0.0010	<0.0010	0.0014	<0.0010	<0.0010	<0.00100J	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	00000	<0.0020	0.0032	0.0029	<0.010	<0.10	<0.010	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	<0.020	<0.0020	<0.0050	<0.0050
	cis-1,2-	(mg/l)	<0.0020	0.0064	20000	<0.0010	1.5	2.5	0.50	<0.010	<0.0050	<0.0040	0.054	0.19	<0.0020	0.0061	0.0053	0.0059	0.0058	0.0036	0.0039	0.0024	0.011	0.0028	0.023	0.02	2000	0.027	0.13D	0.60D	0.74	1.2	3.0D	7.6	<0.0010	<0.0010	0.016	<0.0020	0.052	0.0033	<0.0020	<0.0020	<0.0020	0.028	<0.20	<0.020	<0.0020	<0.0050	<0.0050
	Vinyl	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	5.1	2.1	1.31	<0.010	<0.0050	<0.0040	0.19	0.93D	<0.0020	0.007	0.0036	0.005	0.0035	9800.0	0.0026J	0.002	0.013	0.003	0.03	0.016	0.0033	0.012	0.11	0.45D	0.63	0.46	1.7D	0.69	<0.0010	<0.0010	<0.0010	<0.0020	0.0033	0.000	<0.0020	<0.0020	<0.0020	0.032J	<0.20	<0.020	<0.0020	<0.0020	<0.0050
Trichloro	fluoro	metnane (mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	<0.050	<0.025	<0.020UJ	<0.010	<0.0050	<0.0040	<0.0050	<0.0050	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010UJ	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	00000	020000	<0.0020	<0.0020	<0.010	<0.10	<0.010	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	070007	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	<0.020	0.003	<0.0050	<0.0050
	Š	nce (mg/l)	0.0054	0.019	20.02	<0.0010	<0.050	0.087	<0.020UJ	<0.010	<0.0050	<0.0040	<0.0050	0.029	<0.0020	0.0015	0.0015	<0.0010	<0.0010	0.0013	<0.0010UJ	<0.0020	0.0023	<0.0020	<0.0020	<0.0020	0.0034	0.0001	0.019	0.023	0.022	<0.10	<0.010	<0.050	<0.0010	<0.0010	0.0084	<0.0020	0.0049	0.012	<0.0020	<0.0020	<0.0020	<0.0020	12	<0.020	<0.0020	<0.0050	<0.0050
	Š	PCE (mg/l)	0.0021	0.0061	01000	<0.0010	<0.050	0.07	<0.020UJ	<0.010	<0.0050	<0.0040	<0.0050	0.044	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010UJ	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	00000	020000	0.0045	0.0058	<0.010	<0.10	<0.010	<0.050	<0.0010	<0.0010	0.01	<0.0020	0.0041	0.0043	<0.0020	<0.0020	<0.0020	<0.0020	21	0.074	0.0037	0.0066	0.011
	Chloro	metnane (mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	<0.050	<0.025	<0.020UJ	<0.010	<0.0050	<0.0040	<0.0050	<0.0050	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00100J	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	00000	020000	<0.0020	<0.0020	<0.010	<0.10	<0.010	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	<0.020	0.0061	<0.0050	<0.0050
	Chloro	etnane (mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	0.18	<0.025	0.023J	0.64	0.41	0.21	0.17	0.32	<0.0020	0.014	0.0099	0.0056	0.0023	0.0044	0.0025J	<0.0020	<0.0020	0.0028	0.0056	0.0096	0.000	0.0029	0.0048	0.0052	<0.010	<0.10	<0.010	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	070000	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	<0.020	<0.0020	<0.0050	<0.0050
	Chloro	mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	<0.050	<0.025	<0.020UJ	<0.010	<0.0050	<0.0040	<0.0050	<0.0050	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010UJ	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	00000	0.0020	<0.0020	<0.0020	<0.010	<0.10	<0.010	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	0.24	0.30D	0.24	0.31
	Chloro	menzene (mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	<0.050	<0.025	<0.020UJ	<0.010	<0.0050	<0.0040	<0.0050	<0.0050	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00100J	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	020070	<0.0020	<0.0020	<0.010	<0.10	<0.010	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	020070	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	<0.020	0.014	0.0053	0.0051
Carbon	tetra	(mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	<0.050	<0.025	<0.020UJ	<0.010	<0.0050	<0.0040	<0.0050	<0.0050	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010UJ	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	×0.0020	0.0020	<0.0020	<0.0020	<0.010	<0.10	<0.010	<0.030	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	2.2	2.7D	0.730	0.38
		Acetone (mg/l)	<0.010	<0.010	0.00	1	1	1	<0.10UJ	<0.050	<0.025	<0.020	<0.025	<0.025	<0.010	1	1		1	-	-	-	-	<0.010	0.015	0.011	V0.010	\$0.010 0.01	<0.010	<0.010	<0.050	<0.50	<0.050	<0.20	1	-	-	0,	<0.010	<0.010 <0.010	<0.010	0.012	<0.010	<0.010				<0.025	<0.025
	5	1,2-DCA (mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	<0.050	<0.025	<0.020UJ	<0.010	<0.0050	<0.0040	<0.0050	<0.0050	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010UJ	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	00000	00000	<0.0020	<0.0020	<0.010	<0.10	<0.010	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	<0.020	<0.0020	<0.0050	<0.0050
	4	1,1-DCE (mg/l)	\dashv	<0.0020	+	<0.0010	990.0	0.15	0.055J	<0.010	<0.0050	<0.0040	0.014	0.029	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010UJ	+	\dashv	+	<0.0020	<0.0020	0.0020	070070	╁	H	H	<0.10	<0.010	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	070007	$^{+}$	+	H	<0.0020	<0.0020	<0.20	<0.020	<0.0020	<0.0050	<0.0050
		1,1-DCA (mg/l)	<0.0020	<0.0020	<0.0020	<0.0010	1.3	0.38	0.21J	6.0	0.24	0.084	0.4	1.1D	<0.0020	0.0025	0.003	0.0028	<0.0010	<0.0010		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	00000	020070	0.003	0.0083	<0.010	<0.10	0.015	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	<0.020	0.0072	<0.0050	<0.0050
	7	1,1,1-1CA (mg/l)	<0.0020	<0.0020	0.0020	<0.0010	1.3	3	0.921	0.1	0.034	<0.0040	0.45	0.42	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010UJ	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	020070	<0.0020	<0.0020	<0.010	<0.10	<0.010	<0.050	<0.0010	<0.0010	<0.0010	<0.0020	070007	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.20	1.2	0.77D	0.25	0.27
		DEPTH	17.25	17.2	27	29	17	19	16.9	17	16.8	19	16.8	17.9	17	19	20	20	20	19	19	20	19	19.8	19	20	200	10.7	19	20	19	20.21	20.2	19	13	13	6	9	13.4	13	6	13.3	13.33	13	42	54	54	44	53
		DATE	4/2/2012	4/11/2013	4/2/2014	4/28/2010	4/3/2009	4/20/2010	4/6/2011	4/4/2012	8/21/2012	11/28/2012	2/6/2013	4/11/2013	4/10/2014	1/14/2009	4/2/2009	10/27/2009	1/28/2010	4/22/2010	7/14/2010	10/12/2010	1/4/2011	4/5/2011	1102/82//	10/25/2011	4/2//2012	4/5/2012	11/28/2012	2/6/2013	4/11/2013	10/22/2013	1/20/2014	8/6/2014	4/3/2009	10/26/2009	4/20/2010	10/12/2010	4/4/2011	4/3/2011	11/13/2012	4/15/2013	10/23/2013	4/10/2014	4/3/2009	4/21/2010	10/14/2010	10/27/2011	4/5/2012
		SITE ID	MW-005R (cont.)		MW-007B		MW-008				1		1			600-WW		1																	MW-009A						1				MW-013				

	TCE methane chloride DCE DCE (ms/l) (ms/l) (ms/l)	<0.0050 <0.0050 <0.0050	0<0.0050 <0.0050 <0.0050	<0.0020 <0.0020 <0.0020	<0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	w.co.com/w.co.com/	 <0.0050 <0.0050 <0.0050 <0.0050 	<0.0020 0.0023 0.06	<0.0050 <0.0050 0.087	<0.0020 <0.0020 0.19	0.50D <0.0020 <0.0020 0.12 <0.0020	<0.010 <0.010 0.36	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010	<0.0020 <0.0020 <0.0020	<0.0020 <0.0020 <0.0020	<0.0020 <0.0020 <0.0020	0 <0.0020 <0.0020 <0.0020	<0.010 0.013 1.1	0.11 <0.010 0.014 1.1 <0.010	<0.02000 0.0200 1.23 <0.02001 0.0200 1.3	<0.020 <0.020 0.026 1.6	<0.020 <0.020 1.3	<0.0010 <0.0010	0.0039 <0.0010 <0.0010 <0.0010 <0.0010	<0.0050 <0.0050 0.22	<0.010 0.017 0.42	1.8 <0.020 0.001 0.8 <0.020 0.3	<0.020 <0.040 0.18 1.4	0 <0.0050 <0.0050 0.046	<0.0050 <0.0050 0.098	1.8 <0.25 <0.25 3.4 <0.25	<0.20 <0.20 3.7	<0.20 <0.20 3.3	4.3 <0.20 <0.20 4.6 <0.20 3.8 <0.10 <0.10 4.6 <0.10	<0.10UJ <0.10 2.2	, <0.10 <0.10 2.2	<0.0010 <0.0010 0.013	<0.0020 <0.0020 <0.0020	<0.0010 <0.0010 0.066	<a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a>	<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.0030<0.003	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.	<0.0020 <0.0020 0.043	<0.0010 <0.0010 <0.0010	
	le PCE	Н	0.017	0.022	0.014	+	0.007	0.0027	╁	\vdash	0 0.012	0.058	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	\dashv	<0.010	\pm	+	\vdash	<0.0010	<0.0010	_	-	12.1			0.0067	11			1b 6.7		Н	0.039	<0.0020	0.0044	<0.0020	0.0020	0,0053	\vdash	<0.0010	
Chloro	ethane methane	Ť	\dashv	+	<0.0050 <0.0050	+	+	+	$\frac{1}{1}$		<0.0020 <0.0020		<0.0010 <0.0010	╁	╁	H	H	4	+	<0.010 <0.010	+	+	-	Ė	<0.0010 <0.0010	_	+	<0.020 <0.020	+		H	<0.50 <0.50		H	<0.20 <0.20 <0.10 <0.10	-	Н	H	4	<0.0020 <0.0020	<0.0020 <0.0020 <0.0020	╁	+	╁	H	
Chloro	form (mg/l)	0.55D	0.41	0.48D	0.36	<0.000 0000 0000 0000 0000 0000 0000 00	+	+	+	\vdash	<0.0020	\dashv	<0.0010	╁	<0.0020	H	H	4	<0.010	<0.010	<0.02000	<0.020	<0.020	Ė	<0.0010	À	<0.010	<0.020	╁	<0.0050	H	<0.25	<0.20	<0.20	<0.20	<0.10	<0.10	Н	\dashv	<0.0010	<0.0020	+	+	-	<0.0010	
oon Chloro	ride benzene	H	+		23 0.0052	+	+	+	+		020 0.0024		010 <0.0010	╁	╁	H	Н	+	+	010 <0.010	+	+	H		010 <0.0010		+	020 <0.020	+	H	Н	25 <0.25	-	+	20 <0.20		H	Н	-	0100 <0.0010	+	+	╁	Ł		
Carbon tetra	Acetone chloride	Н	-		<0.025 0.23	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<0.010 <0.0020	+	$\frac{1}{1}$		<0.010 <0.0020	<0.050 <0.010	<0.0010	<0.0010	<0.010 <0.0020	H	Н	<0.010 <0.0020	<0.010	<0.010 <0.010	<0.100 <0.0200	+	-		<0.0010	Ì		<0.10 <0.020	+	Ė	H	<2.5 <0.25			<0.20 <0.20 <0.10UI	<u> </u>	H	Н	+	+	<0.010 <0.0020	+	+	ľ	┢	
	1,2-DCA (mg/l)	<0.0050	<0.0050	<0.0020	<0.0050	<0.0030	<0.0030	<0.0020	<0.0050	<0.0020	<0.0020	<0.010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.010	+	<0.020	<0.020	<0.0010	<0.0010	<0.0050	<0.010	<0.020	<0.020	<0.0050	<0.0050	<0.25	<0.20	<0.20	<0.20	<0.10	<0.10	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	
	1,1-DCE (mg/l)	Ĥ	\dashv	+	<0.0050	+	+	+	╁	┢	<0.0020		<0.0010	╁	╁	H	Н	+	+	0.013	+	+	Ľ		<0.0010		+	<0.020		╁	Н	<0.020	<0.20	<0.20	<0.20	<0.10	<0.10	Н	+		<0.0020	H	0.0052	0.003	Ľ	
	A 1,1-DCA (mg/l)	Н	+	+	+	×0.0030	+	+	╁		0.007	\exists	<0.0010	+	+	H	Н	+	\dashv	<0.010	+	+	+		<0.0010	_	+	020.020	+	Ė	H	<0.25	<0.20	<0.20	<0.20	<0.10	H	Н	\dashv	+	<0.0020	+	+	╁	H	
	1,1,1-TCA	Н	0.25	0.29D	0.19	<0.0050	<0.0050	<0.0020	<0.0050	<0.0020	<0.0020	<0.010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.010	<0.0200	<0.020	<0.020	<0.0010	<0.0010	<0.0050	<0.010	<0.020	<0.020	<0.0050	<0.0050	<0.25	<0.20	<0.20	<0.20	<0.10	<0.10	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	
	DEPTH	Н	Ì	4	41	00	+		- -		3 35		20	+	F	H		_	4	+	63	+	-		51		-	51.8			Н	NA I			119	-	Н	H	1	0 5	+	╁	<u> </u>			
	DATE	11/26/2012	4/17/2013	10/24/2013	4/9/2014	4/3/2009	4/20/2010	4/5/2012	4/17/2013	4/9/2014	10/23/2013	4/10/2014	4/9/2009	4/21/2010	4/5/2011	4/6/2012	4/15/2013	4/11/2014	4/9/2009	4/28/2010	4/4/2011	4/16/2013	4/9/2014	4/1/2009	4/2/2009	4/20/2010	4/4/2011	4/6/2012	4/7/2013	2/24/2011	4/6/2012	2/24/2011	11/8/2011	4/6/2012	4/16/2013	10/23/2013	4/10/2014	2/24/2011	4/6/2012	11/8/2011	4/16/2013	11/8/2011	11/12/2012	4/16/2013	4/1/2009	
	SITE ID	MW-013 (cont.)			V 70 70 4	ININV-OT4A					MW-016		MW-030						MW-034					MW-035	MW-036					MW-1_32-TOZER		MW-2 32-TOZER	ı					MW-3_32-TOZER		MW-4_32-TOZER		MW-5 32-TOZER	777 - 77 - 77 - 77 - 77 - 77 - 77 - 77		OB-04-BR	_

	cis-1,2- tra	de DCE DCE) (mg/l) (mg/l)	<0.0020	20 <0.0020 <0.0020	0.027	0.043	1 0.091 <0.0020	0.086	-	<0.0010	10 <0.0010 <0.0010	10 <0.0010 <0.0010	<0.0020	20 <0.0020 <0.0020	0.036	0.026	1.2	0.48	0.032 <0.0040	69000	0.0085	0.016	0.11	0.23	0.4	0.48	0.76	5 1.0D <0.010	0.72	1.7	<0.0010	<0.0010	20 <0.0020 <0.0020	<0.0020	<0.0020	20 <0.0020 <0.0020	0.07	0.04	20 0.023 <0.0020	0.074	0.019	20 0.023 <0.0020	0.017	0.076	1.5	3 0.97 <0.010	×
		methane chloride (mg/l)	H	<0.0020 <0.0020	$\frac{1}{1}$		<0.0020 0.011	\vdash	<0.0020 0.021	H	<0.0010 <0.0010	<0.0010 <0.0010	+	<0.0020 <0.0020 <0.0020		<0.0010 0.067		+	<0.0040 0.22	-	+		<0.0050 <0.0050	Ĥ	+	1	·	<0.010 0.026	$\frac{1}{1}$	-	H	+	<0.0020 <0.0020	Ť	H	<0.0020 <0.0020	+		<0.0020 <0.0020		+	<0.0020 <0.0020	-			<0.010 0.013	
		TCE (mg/l)	Н	<0.0020	0.1	0.094	0.14	0.16	0.19	Н	0.0022	<0.0010	+	<0.0020	\vdash	H	\dashv	+	0.004	+	╁		0.47	69.0	1.4	1.9	3.0D	2.7D	3 7.9	1.8	Н	4	0.0043	┢	Н	0.0024	0.22	0.22	0.19	0.0025	0.14	0.14	0.11		0.1	0.35	-
		ane PCE (I) (mg/l)	H	20 <0.0020	+		20 0.059	Н	20 0.079	Н	10 <0.0010	10 <0.0010	+	20 <0.0020	-	10 <0.0010	\dashv	+	20 <0.0040	-	+	-		Н		\dashv		0.99	╁		Н	4	20 <0.0020	-	Н	20 <0.0020			20 0.061		_	20 0.049	-	-	Н	10 0.18	
		ethane methane (mg/l)	H	<0.0020 <0.0020 <0.0010 <0.0010	+	-	<0.0020 <0.0020	H	<0.0020 <0.0020	Н	<0.0010 <0.0010	<0.0010 <0.0010	+	<0.0020 <0.0020 <0.0020	\vdash	<0.0010 <0.0010	\dashv	+	<0.0040 <0.0040	+	+		H	Ť	+	+	+	<0.010 <0.010	+	-	Н	+	<0.0020 <0.0020 <0.0020	-	Н	<0.0020 <0.0020	+	H	<0.0020 <0.0020	\vdash	+	<0.0020 <0.0020	╁	-	H	<0.010 <0.010	
		form et (r.g./l)	H	<0.0020 <0	$\frac{1}{1}$	-	<0.0020 <0	H	4	Н		<0.0010 <0	\dashv	<0.0020 <0		H	\dashv	+	<0.0040	+	+				-	+	+	<0.010	+	\vdash	Н	<0.0010 <0	+	-	H	<0.0020 <0	+	H	<0.0020 <0	\dashv	+	<0.0020 <0	$\frac{1}{1}$	-	Н	<0.010	
,,	Chloro	benzene (mg/l)	<0.0020	<0.0020	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0010	<0.0010	<0.010	<0.0050	<0.0040	<0.0020	<0.0020	<0.0020	<0.0050	<0.0050	<0.010	<0.040	<0.020	<0.010	<0.020	<0.020	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0025	<0.0025	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.020	<0.010	
		e chloride (mg/l)	H	<0.0020	<0.0010	-		H	\dashv	<0.0010	<0.0010	<0.0010	\dashv	<0.0020		<0.0010	<0.010	+	<0.0040	+	H			<0.0050	<0.010	+	-	<0.010		-	Н	<0.0010	<0.0010	1	H	<0.0020	<0.0025	<0.0025	<0.0020		+	<0.0020	╁	-	<0.020	<0.010	
Ì		CA Acetone (I) (mg/l)	Н	020 <0.010	010			Н	020 <0.010	010			\dashv	20 <0.010		010	01	+	40 <0.020	-	-	L	H	050	10	+	-	+	40 <0.20		Н	010		┢	Н	020 <0.010			020		+	20 <0.010	╁	┢	20	10	
		1,1-DCE 1,2-DCA (mg/l)	Н	<0.0020 <0.0020 <0.0010 <	╁	-	<0.0020 <0.00	<0.0020 <0.0020	\dashv	Н	_	<0.0010 <0.0010	+	<0.0020 <0.0020		Н	\dashv	+	<0.0040 <0.0040	╁	+	+	H	H	-	+		<0.010 <0.010	+	\vdash	Н	<0.0010 <0.0010	<0.0020 <0.0020	╁	Н	<0.0020 <0.0020	╁	H	<0.0020 <0.0020	\pm	+	<0.0020 <0.0020 <0.0020	+		Н	<0.010 <0.010	
		1,1-DCA 1,: (mg/l) (r	Н	<0.0020 <0	╁	┢	<0.0020 <0	H	_	Н	_	<0.0010 <0	+	<0.0020 <0	H	Н	\dashv	+	<0.0040	╁	+	-		Н	+		-	<0.010	+	\vdash	Н	+	<0.0020 <0	┢	H	<0.0020 <0	+	H	<0.0020 <0		+	<0.0020 <0	+	┢	Н	<0.010	
	,	1,1,1-TCA (mg/l)	<0.0020	<0.0020	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0010	<0.0010	<0.010	<0.0050	<0.0040	<0.0020	<0.0020	<0.0020	<0.0050	<0.0050	<0.010	<0.040	<0.020	<0.010	<0.040	<0.020	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0025	<0.0025	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.020	<0.010	
		DEPTH		3 77.3	-					H		24		23.5	-	104	4	4	1004	+	-			9 81			_	1 81	+	-	25	4	0 25	_	H	25	-				101	-	\perp	9	Н	75	
		E ID DATE		4/12/2013	4/20/2010	4/4/2011	4/3/2012	4/12/2013	4/7/2014	4/1/2009	9/24/2009	4/20/2010	4/4/2011	4/3/2012	4/1/2009	10/26/2009	4/20/2010	10/12/2010	4/4/2011	4/3/2012	4/12/2013	4/8/2014	4/1/2009	10/26/2009	4/20/2010	10/12/2010	4/4/2011	10/24/201	4/3/2012	4/8/2014	4/1/2009	10/26/2009	10/12/2010	4/4/2011	10/24/2011	4/3/2012	10/26/2009	4/22/2010	10/12/2010	4/5/2011	10/24/2011	4/3/2012	4/9/2014	4/2/2009	10/26/2009	4/22/2010	
		SITE ID	OB-04-BR (cont.)	OR-04-DO						OB-04-S					OB-05-BR								OB-05-DO								OB-05-S					90 90	Va-00-a0							OB-06-DO			

								}								•	•	
								Carbon tetra	Chloro	Chloro	Chloro	Chloro			Trichloro fluoro	Vinyl	cis-1,2-	trans-1,2-
!			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	chloride	benzene	form	ethane	methane	PCE	TCE.	methane	chloride	DCE	DCE
SITE ID	DATE	DEPTH	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
UB-Ub-DO (cont.)	4/3/2012	65.6	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.013	0.033	<0.010	0.014	0.59	<0.010
	4/12/2013	63.6	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.16	0.25	<0.010	0.012	0.57	<0.010
	4/9/2014	9	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.051	0.14	<0.0050	0.013	0.39	<0.0050
OB-07-DO	4/2/2009	36	<0.0050	0.0075	0.0092	<0.0050	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.16	0.54	<0.0050	<0.0050	0.2	<0.0050
OB-08-DO	4/3/2009	79	<0.020	<0.020	<0.020	<0.020	-	<0.020	<0.020	<0.020	<0.020	<0.020	0.51	2.6	<0.020	<0.020	1.4	<0.020
	10/27/2009	78	<0.020	<0.020	<0.020	<0.020	-	<0.020	<0.020	<0.020	<0.020	<0.020	0.46	2.2	<0.020	<0.020	1.5	<0.020
	4/28/2010	6/	<0.020	<0.020	<0.020	<0.020		<0.020	<0.020	<0.020	<0.020	<0.020	0.46	2.3	<0.020	<0.020	1.1	<0.020
	10/18/2010	1 /8	<0.020	<0.020	<0.020	<0.020		<0.020	<0.020	<0.020	<0.020	<0.020	0.42	2.50	<0.020	<0.020	1.7	<0.020
	11/15/2010	//	<0.040	<0.040	<0.040	<0.040	- 0,00	<0.040	<0.040	<0.040	<0.040	<0.040	0.38	1.05	<0.040	<0.040	1.1	<0.040
	4/5/2011	//	<0.0020 <0.000	0.013	0.02	<0.0020	<0.010 <0.020	070007	070007	070007	070070	<0.0020	0.20	1.90	<0.00020	0.0084	1.1	0.0089
	4/3/2012	77	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.37	2.5	<0.040	<0.040	1.2	<0.040
	4/11/2013	78	<0.0050	0.0061	0.015	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.43	3.3D	<0.0050	0.0052	1.5D	0.0062
	4/8/2014	78	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.35	2.6	<0.040	<0.040	1.2	<0.040
OB-08-S	4/3/2009	12	<0.0025	<0.0025	<0.0025	<0.0025	-	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.075	0.31	<0.0025	<0.0025	0.11	<0.0025
	10/27/2009	12	<0.0020	<0.0020	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.029	0.15	<0.0020	<0.0020	0.062	<0.0020
	4/28/2010	14	<0.0025	<0.0025	<0.0025	<0.0025	-	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.044	0.21	<0.0025	<0.0025	0.066	<0.0025
	10/18/2010	12	<0.0020	0.0028	0.0028	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	60.0	0.45D	<0.0020	<0.0020	0.23D	<0.0020
	11/15/2010	12	<0.0050	<0.0050	<0.0050	<0.0050	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	690.0	0.38	<0.0050	<0.0050	0.16	<0.0050
	4/5/2011	12	<0.0020	0.0022	0.0028	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.081	0.39D	<0.0020	<0.0020	0.12	<0.0020
	10/23/2011	71	<0.0020 <0.0020	<0.0020	<0.0020	<0.0020 <0.0050	V0.010	<0.0020 <0.0050	<0.0020 0.0020	<0.0020 <0.0050	<0.0020 <0.0020	<0.0020 <0.00E0	0.030	0.13	<0.0020 <0.0050	<0.0020	0.042	<0.0020
	11/12/2012	17	<0.0050	V0.0030	<0.0050	<0.0030	<0.023	V0.0030	0.0030	×0.0030	<0.0050 <0.0050	00000	0.030	0.20	×0.0030	<0.0050 <0.0050	0.12	<0.0050
	4/11/2013	12	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.074	0.36	<0.0050	<0.0050	0.082	<0.0050
OB-09-BR	1/14/2009	121	<0.010	<0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.23	0.91	<0.010
	4/9/2009	118	<0.0020	<0.0020	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.013	0.016	<0.0020	<0.0020	0.23	0.01
	7/14/2009	121	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025	<0.025	<0.025	0.068	0.069	<0.025	0.24	3.6	<0.025
	10/28/2009	121	<0.050	<0.050	<0.050	<0.050	1	<0.050	<0.050	<0.050	<0.050	<0.050	0.45	99:0	<0.050	0.1	5.3	<0.050
	1/28/2010	118	<0.0050	<0.0050	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.011	0.018	<0.0050	0.0081	0.4	0.015
	4/22/2010	121	<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	0.35	99.0	<0.050	0.14	5.5	<0.050
	7/14/2010	121	<0.025UJ	<0.025UJ	0.0311	<0.025UJ	-	<0.025UJ	<0.025UJ	<0.025UJ	<0.025UJ	<0.025UJ	0.049J	0.054J	<0.025UJ	0.23	4.9)	0.031J
	10/12/2010	117	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	0.18	0.27	<0.10	0.1	7.9	<0.10
	1/5/2011	121	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.22	6.5	<0.10
	7/28/2011	117	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	0.55	1.2	<0.10	0.15	6.5	<0.10
	10/25/2011	121	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	1.6	1.1	<0.040
	1/18/2012	121	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.046	1.4	0.033
	4/3/2012	117	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	1.9	3.2	<0.040	<0.040	2.5	<0.040
	2/17/2017	121	<0.040	<0.040	<0.040	<0.040	07.0>	<0.040	<0.040	<0.040	<0.040	<0.040	1.6	2.1	<0.040	0.041	0/./	<0.040
	2/62/2012	101	×0.03	<0.03	<0.03	010	05.0>	010	0,000	01.05	20.02 0 10	010	2.5	3.1.	0,000	50.03 50.10	4.7	50.33 50.10
	4/11/2013	120	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	2.4	3.1	<0.050	<0.050	2.7	<0.050
	10/22/2013	121	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.21	2	<0.050
	4/10/2014	117	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	0.11	0.11	<0.050	0.74J	4.6	<0.050
OB-00-BO	1/13/2009	92	<0.0050	<0.0050	<0.0050	<0.0050	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.59	0.12	<0.0050
	4/9/2009	92	<0.0010	0.0016	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0025	0.014	<0.0010	<0.0010	0.007	<0.0010
	7/14/2009	95	<0.010	<0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.97	0.11	<0.010
	10/28/2009	95	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.87	0.06	<0.010
	1/28/2010	92	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0022	0.0043	<0.0010
	7/14/2010	95	<0.0010UJ	0.0033	<0.0010UJ	<0.0010UJ		+-	╁	+	+	+-	+	<0.0010UJ	<0.0010UJ	0.033	0.0059	<0.0010UJ
	10/12/2010	93	<0.0050	0.0071	<0.0050	<0.0050	-	┰	┰	+	┰	╁	+	<0.0050	<0.0050	0.42	0.064	<0.0050

SITE ID DATE OB-09-DO (cont.) 1/5/2011 4/6/2011 7/28/2011 10/28/2012 1/18/2012 2/4/3/2012 2/4/3/2012 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013 2/4/3/2013		1,1,1-TCA (mg/l) <0.020 <0.010	1,1-DCA (mg/l) <0.020	1,1-DCE (mg/l)	1,2-DCA	Acetone (mg/l)	carbon tetra chloride (mg/l)	Chloro benzene (mg/l)	Chloro form (mg/l)	Chloro ethane (mg/l)	Chloro methane (mg/l)	PCE (mg/l)	TCE (mg/l)	fluoro methane (mg/l)	Vinyl chloride (mg/l)	cis-1,2- DCE	trans-1,2- DCE
	- 	1,1,1-TCA (mg/l) <0.020 <0.010	1,1-DCA (mg/l) <0.020	1,1-DCE (mg/l)	1,2-DCA	Acetone (mg/l)	chloride (mg/l)	benzene (mg/l)	form (mg/l)	ethane (mg/l)	methane (mg/I)	PCE (mg/l)	TCE (mg/l)	methane (mg/l)	chloride (mg/l)	DCE (mg/l)	DCE
	+++++++++	<0.020 <0.010	<0.020	/2		(118/11)	(IIIS/ I)	(118/11)	(IIIg/II)	(III)	(11/8/11)	(IIIB/II)	(IIIS/ I)	(11/8/11)	(11/8/11)		(1/200)
		<0.010		<0.020	<0.020		<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	1.3	0.35	<0.020
7/28/2011 10/25/201 1/28/2012 4/3/2012 8/21/2012 11/28/201 2/6/2013 4/10/2012 1/3/2002 1/3/2004 1/3/2004			<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	1.4D	0.45	<0.010
10/25/201 1/18/2012 8/21/2012 8/21/2012 11/28/201 2/6/2013 4/10/2012 1/13/2005 1/13/2006 1/13/2007		<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	2	0.57	<0.040
1/18/2012 8/21/2012 8/21/2012 11/28/2013 2/6/2013 4/11/2015 1/13/2006 4/9/2014 1/13/2006 4/9/2014 1/13/2006		<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.41	1	<0.040	0.15	5.1D	<0.040
4/3/2012 8/21/2012 11/28/201 11/28/201 4/11/2013 4/11/2012 4/3/2009 4/3/2009 4/3/2009		<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	1.9	1.6	<0.040
8/21/2013 11/28/201 2/6/2013 4/11/2013 4/10/2014 1/13/2009 1/4/2000	++++	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	1.9	2	<0.040
11/28/201 2/6/2013 10/22/201 4/10/2014 4/10/2014 1/13/2008 1/4/2007	+	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	1.8D	1.4	<0.020
4/1/201 4/10/201 10/22/201 4/10/201 1/13/200 4/9/2005	+	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	1:1	0.27	<0.020
10/22/201 4/10/2014 1/13/2009 4/9/2009	\sqcup	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	1.5	1.4	<0.020
4/10/2012 1/13/2005 4/9/2009	1	<0.020	<0.020	0.023	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	1.31	2.2D	<0.020
1/13/2009 4/9/2009		<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	1.91	2.3	<0.040
4/9/2009	9 29	0.039	0.38	<0.010	<0.010	-	<0.010	<0.010	<0.010	0.13	<0.010	0.012	0.062	<0.010	1.2	0.43	0.02
2/11/2006	27.5	0.055	0.023	<0.020	<0.020		<0.020	<0.020	<0.020	0.024J	<0.020	<0.020	<0.020	<0.020	1.9	1.4	<0.020
7) 11/ 200	9 29	0.002	0.049	<0.0010	0.0011	-	<0.0010	<0.0010	<0.0010	0.046J	<0.0010	0.0045	0.035	0.0049	0.073	0.025	0.0037
10/28/2009		<0.0050	0.078	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	0.046	<0.0050	<0.0050	<0.0050	<0.0050	0.63	0.24	0.0056
1/28/2010	+	<0.0050	0.097	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	0.042	<0.0050	<0.0050	0.009	<0.0050	0.49	0.15	0.0098
4/22/2010	-	0.014	0.046	<0.00101	0.0010	: :	<0.00100 <0.0010111	\$0.0010	0.0036	670.0	<0.0010 <0.0010111	0.0019	0.029	<0.0010	0.14	0.048	0.0047
10/12/2010	22 0	0.0045	0.2323	<0.001000 <0.001000	0.0024J		+	+	<0.001003	t	<0.001003	<0.00163	0.0033	<0.001002	0.020	0.0203	0.00243
1/5/2011	-	<0.0020	0.0089	<0.0020	<0.0020	1	<0.0020	<0.0020	<0.0020	0.04	<0.0020	<0.0020	0.0074	<0.0020	0.0054	0.0065	<0.0020
4/5/2011		0.018	0.039	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.047	<0.0020	<0.0020	0.003	<0.0020	0.076	0.081	0.0028
7/28/2011		<0.0020	<0.0020	<0.0020	0.0025	0.019	<0.0020	<0.0020	<0.0020	0.044	<0.0020	<0.0020	<0.0020	<0.0020	0.0031	0.0063	<0.0020
10/25/2011	Н	0.14	0.89D	0.0042	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.45D	<0.0020	<0.0020	<0.0020	<0.0020	0.095	0.018	<0.0020
1/18/2012	1	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.56D	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0037	<0.0020
4/5/2012	23	×0.0040	<0.0040	×0.0040	<0.0040	\$0.020 0.014	<0.0040	<0.0040	<0.0040	0.27	<0.0040	×0.0040	\$0.0040 0.0040	<0.0040	×0.0040	50.0040	<0.0040
8/21/2012	-	<0.0020	<0.0020	<0.0020	<0.0020	0.014	<0.0020	<0.0020	<0.0020	0.0039	<0.0020	0.0020	0.0048	<0.0020	0.0020	0.002/	<0.0020
2/6/2013	+	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.0056	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.019	<0.0020
4/11/2013		<0.0020	0.0024	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.011	<0.0020	<0.0020	0.003	<0.0020	0.035	0.023	<0.0020
10/22/2013	Н	<0.0020	<0.0020	Н	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.008	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0033	<0.0020
1/21/2014	4 23.1	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.0022	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
8/6/2014	+	<0.0020	0.0043	+	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	0.11	<0.0020	<0.0020	<0.0020	<0.0020	0.14	0.37D	<0.0020
4/3/2009	74	<0.020	<0.020	<0.020	<0.020		<0.020	<0.020	<0.020	<0.020	<0.020	0.31	1.7	<0.020	0.034	1.6	<0.020
4/21/2010	\dashv	<0.020	<0.020	Ħ	<0.020	-	<0.020	<0.020	<0.020	<0.020	<0.020	0.079	0.51	<0.020	0.04	2.9	<0.020
4/5/2011	' '	<0.0020	0.0032	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0043	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/6/2012	73	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.25	1.6	<0.020	<0.020	0.3	<0.020
4/12/2013	1.	<0.020	<0.020	<0.10	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.89	4.9	<0.020	<0.020	0.76	<0.10
OB-10-DO 1/13/2009	-	<0.0050	<0.0050	<0.0050	<0.0050	25	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.017	0.39	<0.0050	<0.0050	0.4	<0.0050
<u> </u>		<0.010	<0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	0.034	1.1	<0.010	<0.010	99.0	<0.010
7/14/2010	0 48.5	<0.010UJ	<0.010UJ	<0.010UJ	<0.010UJ		<0.010UJ	<0.010UJ	<0.010UJ	<0.010UJ	<0.010UJ	0.0200	1.21	<0.010UJ	<0.010UJ	0.16J	0.014J
10/13/2010		<0.010	<0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	1.1D	0.014
1/5/2011		<0.010	<0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.37	<0.010	<0.010	69.0	0.014
4/6/2011	+	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.17	<0.010	<0.010	92.0	0.013
7/28/2011	1 46	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.013	0.87	<0.010	<0.010	0.4	0.017
1/18/2012	Н	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.013	0.92	<0.010	<0.010	0.38	0.023
4/4/2012	46	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.3	<0.010	<0.010	0.74	0.021

SITE ID DATE 1/13/2009 4/1/2009 7/14/2009 10/27/2009 10/27/20010 4/22/2010 7/14/2010															-		
DATE 1/13/2009 1/13/2009 1/14/2009 10/27/2009 11/28/2010 4/22/2010							tetra	Chloro	Chloro	Chloro	Chloro			fluoro	Vinyl	cis-1,2-	trans-1,2-
DATE 1/13/2009 1/13/2009 7/14/2009 10/27/2009 10/28/2010 4/22/2010 7/14/2010		1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	chloride	penzene	form	ethane	methane	PCE	TCE	methane	chloride	DCE	DCE
1/13/2009 4/1/2009 7/14/2009 1/27/2009 1/28/2010 4/22/2010	۵	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/I)	(mg/l)	(mg/I)	(mg/l)	(mg/I)	(mg/l)	(mg/I)	(mg/l)	(mg/l)	(mg/I)	(I/gm)
4/1/2009 7/14/2009 10/27/2009 1/28/2010 4/22/2010 7/14/2010	+	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
7/14/2009 10/27/2009 1/28/2010 4/22/2010 7/14/2010	29	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1/28/2010 1/28/2010 4/22/2010 7/14/2010	4	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1/28/2010 4/22/2010 7/14/2010	1	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
7/14/2010		<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
		<0.0010UJ	<0.00100J	_	<0.00100J	-	<0.00100J	<0.00100J	<0.0010UJ	<0.001001	<0.00100J	<0.0010UJ	<0.0010UJ	<0.0010UJ	<0.0010UJ	<0.00100J	<0.0010UJ
10/13/2010		<0.0020	<0.0020	+	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1/5/2011	29	<0.0020	<0.0020	<0.0020	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/6/2011	31	<0.0020	<0.0020	<0.0020	<0.0020	0.01	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
7/28/2011		<0.0020	<0.0020	<0.0020	<0.0020	0.013	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
10/26/2011	1 29	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1/18/2012		<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/4/2012	59	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0081	0.02	<0.0020	<0.0020	<0.0020	<0.0020
8/21/2012		<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.011	<0.0020	<0.0020	0.004	<0.0020
11/28/2012	4	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0038	0.03	<0.0020	<0.0020	0.0092	<0.0020
2/6/2013	+	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0023	0.024	<0.0020	<0.0020	0.0079	<0.0020
5/2/2013	4	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0051	0.032	<0.0020	<0.0020	0.0093	<0.0020
4/10/2014	29	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0029	<0.0020	<0.0020	<0.0020	<0.0020
4/3/2009	85	<0.0010	<0.0010	+	<0.0010	1 3	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0031	<0.0010	0.004	0.022	0.0021
4/6/2011	86.1	<0.002000	<0.00200J	<0.002003	<0.002000	<0.0100)	<0.002000	<0.002000	<0.002000	<0.002000	<0.002000	<0.002000	0.00643	<0.002000	0.00273	0.036	0.00453
4/3/2012	82	<0.0020	<0.0020	<0.0020	×0.0020	\0.010 \0.010	×0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0032	V0.0020	0.0020	0.045	0.0031
4/9/2014	+	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0055	<0.0020	<0.0020	0.035	0.0067
4/3/2009	61	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.065	<0.0010	<0.0010	0.023	<0.0010
4/6/2011		<0.0020UJ	<0.0020UJ	—	<0.0020UJ	<0.010UJ	_	<0.0020UJ	_	<0.0020UJ	<0.00200J	<0.0020UJ	0.075	<0.0020UJ	<0.0020UJ	0.021J	<0.0020UJ
4/5/2012		<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.083	<0.0020	<0.0020	0.021	<0.0020
4/17/2013	09	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.084	<0.0020	<0.0020	0.027	<0.0020
4/9/2014	09	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.091	<0.0020	<0.0020	0.02	<0.0020
4/3/2009	29	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1/13/2009	_	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0016	0.023	<0.0010	0.0013	0.037	<0.0010
4/1/2009	84	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0021	0.051	<0.0010	0.002	0.084	<0.0010
1/13/2009	+	<0.40	<0.40	<0.40	×0.40		<0.40 0.50	<0.40	<0.40	<0.40 \0.50	<0.40	2.3	39	<0.40	×0.40	18	<0.40
10/27/2009	-	<0.0010	0.0078	<0.0010	0.0027		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
5/7/2010	L	<0.0010	0.0075	<0.0010	0.0026	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.088	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
7/14/2010		<0.0010UJ	0.0084J	<0.00100J	0.0034J	1	<0.00100J	<0.00100J	<0.00100J	<0.00100J	<0.00100J	0.27DJ	0.0038J	<0.00100J	<0.0010UJ	<0.00100J	<0.0010UJ
10/13/2010		<0.0020	0.0076	0.024	<0.0020	0.011	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	1.4D	21D	<0.0020	<0.0020	8.7D	0.014
1/5/2011	29	<0.0050	0.0075	0.053	<0.0050	0.015J	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	2.2D	45D	<0.0050	0.0066	24D	0.018
4/6/2011	49.1	<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	2.1	33	<0.50	<0.50	17	<0.50
7/28/2011		<0.0020	0.0068	<0.0020	0.0022	0.02	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
10/26/2011	4	<0.0020	0.0069	<0.0020	0.0022	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0034	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1/17/2012	Ì	<0.0020	0.008	0.018	0.0021	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	1.8D	15D	<0.0020	<0.0020	5.5D	0.013
4/4/2012		<0.40	<0.40	<0.40	<0.40	<2.0	<0.40	<0.40	<0.40	<0.40	<0.40	2.5	37	<0.40	<0.40	19	<0.40
11/26/2012	2 59	<0.0020	0.0068	<0.0020	0.0024	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/17/2013	4	<0.0020	0.0076	<0.0020	<0.0020	0.014	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.086	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
10/24/2013	4	<0.0020	0.0057	0.025	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	1.8D	18D	<0.0020	<0.0020	7.5D	0.051
4/9/2014	47	<0.0020	0.0059	0.059	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	2.0D	28D	<0.0020	0.0053	16D	0.11

111-TCA 11-DCA 11-DCE 1 2.
(mg/l) (mg/l)
<0.0025
0.0021 <0.0020 <0.0020 <0.002 0.0048 <0.0025 <0.0075 <0.007
<0.0010 <0.0010
<0.0010 <0.0010
0.0023 <0.0010 <0.0010 <0.0010 0.00431 <0.001011 <0.001011 <0.001011
<0.0040 <0.0040
<0.0020 <0.0020
<0.0020 <0.0020
0.0033 <0.0020 <0.0020 <0.0020
<0.0020 <0.0020 <0.0020
<0.0040 <0.0040
<0.0040 <0.0040
<0.0040 <0.0040 <0.0040
<0.0020 <0.0020
<0.010 <0.010
<0.020UJ <0.020UJ
<0.020 <0.020
<0.020 <0.020
0 <0.020 <0.020
+
<0.10 <0.10
<0.050 <0.050
<0.050 <0.050
<0.050 <0.050 <0.050 0.00441 0.00541 <0.0010111
0.0085 <0.0020
0.0022 <0.0020
<0.010
<0.0020 <0.0020
0.0051 <0.0020
<0.0020<0.0020<0.0020<0.0020<0.0020<0.0020
<0.0020 <0.0020
<0.0020 <0.0020
<0.0020
0.0020 <0.0020
<0.0020 <0.0020
<0.0020 <0.0020
<0.0020
0.0022 <0.0020
<0.0010
<0.0010 <0.0010
<0.0020 <0.0020 <0.0020 <0.0020 <0.0020
<0.0020
<0.0020 <0.0020

							}	}	}		f		ļ	}				
								Carbon tetra	Chloro	Chloro	Chloro	Chloro			Trichloro fluoro	Vinyl	cis-1,2-	trans-1,2-
SITE ID	DATE	DEPTH	1,1,1-TCA (mg/l)	1,1-DCA (mg/l)	1,1-DCE (mg/l)	1,2-DCA (mg/l)	Acetone (mg/l)	chloride (mg/l)	benzene (mg/l)	form (mg/l)	ethane (mg/l)	methane (mg/I)	PCE (mg/l)	TCE (mg/l)	methane (mg/l)	chloride (mg/l)	DCE (mg/l)	DCE (mg/l)
OB-16-S	4/3/2009	15	<0.0010	<0.0010	<0.0010	<0.0010	i	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0013	0.0016	<0.0010	<0.0010	<0.0010	<0.0010
	4/20/2010	17	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0017	<0.0010	<0.0010	<0.0010	<0.0010
	4/6/2011	15	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/5/2012	16	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.002001	<0.0020	0.048	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/10/2014	15	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
OB-17-BR	4/1/2009	95	<0.0025	<0.0025	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.018	0.37	<0.0025
	4/21/2010	97	<0.0025	<0.0025	<0.0025	<0.0025	-	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.17	0.11	<0.0025
	4/4/2011	96	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0029	<0.0020	0.13	0.039	<0.0020
	4/2/2012	86	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.13	<0.0020	<0.0020
	4/12/2013	97	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020J	<0.0020	<0.0020	0.097	0.016	<0.0020
00 77	4/7/2014	95	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0021	<0.0020	0.012	0.006	<0.0020
00-1/1-90	4/1/2009	41	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.016	0.018	<0.0010	<0.0010	<0.0010	<0.0010
	4/4/2011	41	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.014	0.015	<0.0020	<0.0020UJ	<0.0020	<0.0020
	4/2/2012	41.24	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.013	0.015	<0.0020	<0.0020	<0.0020	<0.0020
	4/12/2013	41.4	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0094J	9600.0	<0.0020	<0.0020	<0.0020	<0.0020
00 07	4/7/2014	41	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0066	0.0078	<0.0020	<0.0020	<0.0020	<0.0020
OR-18-DO	4/2/2009	23	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010 <0.0010	<0.0010	<0.0010	<0.0010 <0.0010	<0.0010	0.0051	0.088	<0.0010	0.0016	0.056	<0.0010
	10/26/2009	22	<0.0010	<0.0010	C0.00T0	<0.0010		<0.0010	<0.0010	0.0019	<0.0010	<0.0010	0.012	0.11	<0.0010	<0.0010	0.040	<0.0010
	10/14/2010	24	<0.0020	0.0023	0.0038	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.035	0.36D	<0.0020	0.015	0.46D	0.0032
	4/5/2011	23	<0.0020	0.0027	0.0048	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.076	0.63D	<0.0020	0.051	0.66D	<0.0020
	10/25/2011	23	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.027	0.16	<0.0020	0.007	660.0	<0.0020
	4/5/2012	23.8	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.018	0.23	<0.0050	0.024	0.37	<0.0050
	4/12/2013	23.8	<0.0050	<0.0050	0.0057	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.039	0.37	<0.0050	0.063J	0.43	<0.0050
	4/8/2014	23	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.017	<0.0020	<0.0020	0.013	<0.0020
OB-18-S	4/2/2009	11	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/26/2009	11	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	<0.0010	<0.0010	<0.0010	<0.0010
	4/20/2010	14	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	0.0011	<0.0010
	10/14/2010	11	0700.0>	<0.0020	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	070070	<0.0020	0.0026	0.0082	<0.0020	0.019	0.07	0.0082
	4/5/2011	11	070000	<0.0020	<0.0020	<0.0020	0.011	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	070000	<0.0020	<0.0020
	4/5/2012	11.2	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0049	<0.0020	<0.0020	0.0026	<0.0020
	11/12/2012	14	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/12/2013	11.2	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	10/23/2013	11	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.013	<0.00200J	0.0087	980:0	0.0031
10 PP	4/8/2014	10	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
VIG-CT-GO	4/9/2009	82	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	1.05	12	<0.10	<0.10	· +· 0	<0.10
	7/14/2010	91	<0.050UJ	<0.050UJ	<0.050UJ	<0.050UJ	1	<0.050UJ	<0.050UJ	<0.050UJ	<0.050UJ	<0.050UJ	0.391	6.31	<0.050UJ	0.133	5.83	0.0531
OB-19-DO	1/13/2009	64	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	8.7	17	<0.20	<0.20	2.3	<0.20
	4/9/2009	57	<0.20	<0.20	<0.20	<0.20	1	<0.20	<0.20	<0.20	<0.20	<0.20	8.1	17	<0.20	<0.20	2.1	<0.20
	7/14/2010	64	<0.020UJ	<0.020UJ	<0.020UJ	<0.020UJ	-	<0.020UJ	<0.020UJ	<0.020UJ	<0.020UJ	<0.020UJ	0.52J	2.6J	<0.020UJ	0.10	1.4)	0.075J
	10/13/2010	57	<0.020	<0.020	<0.020	<0.020	1	<0.020	<0.020	<0.020	<0.020	<0.020	0.25	0.94	<0.020	0.085	1.9D	0.058
	1/5/2011	64	<0.040	<0.040	<0.040	<0.040	1	<0.040	<0.040	<0.040	<0.040	<0.040	0.87	3.2	<0.040	0.1	1.5	0.064
	4/4/2011	57	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.46	1.8	<0.020	0.066J	1.4	0.051
	7/28/2011	57	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.74	2.8	<0.040	0.11	1.7	0.061
	1/17/2012	7 2	V0.020	0.020	<0.020	0.020	V0.10	0.020	0.020	0.020	0000	0.020	0.72	3.27	\0.020 \0.040	0.00	F. 1.5	0.055
	4/4/2012	57	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.8	3.1	<0.040	0.1	1.5	0.066
	11/26/2012	64	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	12D	24D	<0.040	0.086	4.1	0.07
	4/15/2013	57	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	0.83J	3.8	<0.050	0.097	1.3	0.063

								-				-		-				
								Carbon	Chloro	Chloro	Chloro	Chloro			Trichloro fluoro	Vinyl	cis-1,2-	trans-1,2-
SITE ID	DATE	DEPTH	1,1,1-TCA (mg/l)	1,1-DCA (mg/l)	1,1-DCE (mg/l)	1,2-DCA (mg/l)	Acetone (mg/l)	chloride (mg/l)	benzene (mg/l)	form (mg/l)	ethane (mg/l)	methane (mg/l)	PCE (mg/l)	TCE (mg/l)	methane (mg/I)	chloride (mg/l)	DCE (mg/l)	DCE (mg/l)
OB-19-DO (cont.)	10/23/2013	64	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.64	2.4	<0.040	0.044	0.8	0.051
	4/16/2014	56	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.41	2	<0.040	0.061J	0.83	0.057
OB-19-S	4/3/2009	34	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/5/2010	32.7	<0.0020	<0.0010	<0.0010 <0.0020	<0.0010	<0.010	<0.0010	<0.0010	<0.0010	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/5/2012	32	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/15/2013	32	<0.0020	<0.0020	<0.0020	<0.0020	0.012	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/21/2014	32	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	0.014	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
OB-20-BR	4/6/2009	95	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
,	10/27/2009	95	<0.0010	0.0014	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/28/2010	100	<0.0010	0.0014	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
•	10/13/2010	96	<0.0020	<0.0020	<0.0020	<0.0020	- 0	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0027	<0.0020	<0.0020	0.014	<0.0020
•	4/6/2011	95	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	0.056	<0.0020	0.0020	0.29D	<0.0020
	4/6/2012	94.75	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.024	<0.0040	<0.0040	0.19	<0.0040
	4/15/2013	93.5	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.11	<0.0040	0.0058	0.89D	0.011
	4/21/2014	94	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.1	<0.020	<0.020	0.98	<0.020
OB-20-DO	4/6/2009	75	<0.0050	<0.0050	<0.0050	<0.0050	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.031	<0.0050	0.0075	0.42	<0.0050
	10/2//2009	5/	<0.0050	<0.0025	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.0058	0.076	<0.0025	<0.0025	0.25	<0.0025
	10/13/2010	75	<0.0000	<0.0030	<0.0030	<0.0030		<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.012	<0.00000	0.005	0.34	<0.0000
	4/6/2011	75	<0.0020	<0.0020	<0.0020	<0.0020	0.011	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0036	0.023	<0.0020	<0.0020	0.19	<0.0020
	10/26/2011	75	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.012	<0.0050	0.027	0.47	<0.0050
•	4/6/2012	74.5	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
•	4/15/2013	73	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0079	<0.0020	0.013	0.30D	<0.0020
OB-20-S	4/21/2014	11	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.022	0.19	<0.0040
)	10/27/2009	11	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	4/23/2010	12	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/13/2010	11	<0.0020	<0.0020	<0.0020	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
•	4/6/2011	11	<0.0020	<0.0020	<0.0020	<0.0020	0.011	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
•	10/26/2011	12	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
•	4/6/2012	10.9	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/15/2013	11	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	10/23/2013	12	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.003	<0.00200J	<0.0020	0.0029	<0.0020
	4/21/2014	10	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
OB-21-BR	4/6/2009	97	<0.0050	0.008	0.0087	<0.0050	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.037	0.16	<0.0050	0.012	0.74	<0.0050
•	10/2//2009	97	<0.010	<0.010	0.012	<0.010		<0.010	<0.010	<0.010	<0.010	<0.010	0.043	0.12	<0.010	0.014	1,	<0.010
	10/13/2010	97	<0.020	<0.020	<0.020	<0.020	1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.13	<0.020	0.03	1.6	<0.020
	4/6/2011	98.2	<0.0040	0.0092	0.011	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.013	0.14	<0.0040	0.017	1.5D	0.0043
	10/26/2011	62	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.033	0.061	<0.020	0.022	1.5	<0.020
•	4/6/2012	99.5	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.49	<0.010
•	4/15/2013	96	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.024	<0.0050	<0.0050	<0.0050	0.31	<0.0050
OB-21-DO	4/6/2009	79	<0.0050	69000	0.0074	<0.050 <0.0050	0000	05000	<0.0050	050000	<0.050	05000	0.21	0.71	0.0000>	<0.0050	0.00	<0.000
)	10/27/2009	62	<0.0050	7600.0	0.01	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.17	0.61	<0.0050	<0.0050	0.42	<0.0050
	4/28/2010	79	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	0.32	1.1	<0.010	<0.010	0.49	<0.010
•	10/13/2010	79	<0.020	<0.020	<0.020	<0.020		<0.020	<0.020	<0.020	<0.020	<0.020	0.32	1.4	<0.020	<0.020	0.47	<0.020
•	4/6/2011	79	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.34	1.3	<0.020	<0.020	0.41	<0.020
•	10/26/2011	79	<0.010	<0.010	0.011	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.28	1.4D	<0.010	<0.010	0.51	<0.010
	4/6/2012	/ 0.5	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	\$0.020	<0.020	<0.020	0.22	7	<0.020	<0.020	0.39	<0.020

							2										
		1 1 1-TCA	1 1-DCA	1 1-DCF	1 2-DCA	Acetone	tetra	Chloro	Chloro	Chloro	Chloro	PCF	TCE	fluoro	Vinyl	cis-1,2-	trans-1,2-
DATE	DEPTH	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
4/15/2013	9.87	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.31	1.1	<0.020	<0.020	0.33	<0.020
4/21/2014	78	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.26	0.97	<0.020	<0.020	0.32	<0.020
4/6/2009	50	<0.0050 <0.0050	<0.005U	<0.0050	<0.0050 <0.0050		<0.0050	<0.0050	<0.0050	<0.000	<0.0050 <0.005E	0.38	0.58	<0.0030	0.0030	0.15	<0.000 <0.000
10/12/2010	56	<0.0040	<0.0040	<0.0040	<0.0040		<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.003	0.054	<0.0040	0.032	0.40D	<0.0040
10/25/2011	55	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0069	<0.0020	<0.0020	0.031	<0.0020
4/1/2009	95	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.01
4/21/2010	97	<0.0010	<0.0010	<0.0010	<0.0010	- 0,00	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.001	<0.0010	0.071	0.065	<0.0010
4/4/2011	83	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.062	0.013	<0.0020
4/5/2012	83	0.0020	<0.0020	020070	0.0020	<0.010	0.0020	<0.0020	0.0020	<0.0020	<0.0020	0.200.0	0200.00	<0.0020	0.038I	0.00	0.0020
4/7/2014	80	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/3/2009	NA	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	0.0018	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4/21/2010	NA	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4/5/2011	2	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/5/2012	A S	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/10/2013	7 C	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/3/2009	95	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1.5	<0.50	18	64	<0.50
4/20/2010	66	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	0.51	3.8	<0.50	21	99	<0.50
7/14/2010	99.5	<0.50UJ	<0.50UJ	<0.50UJ	<0.50UJ		<0.50UJ	<0.50UJ	<0.50UJ	<0.50UJ	<0.50UJ	<0.50UJ	2.91	<0.50UJ	201	653	<0.50UJ
10/13/2010	97	<0.50	<0.50	<0.50	<0.50	1 0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	2.7	<0.50	21	67D	<0.50
4/14/2011	101	<0.0020	0.023	<0.0020	<0.0020	0.018	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/5/2012	90	<0.0020	0.037	0.11	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.69D	0.0 7.8D	<0.0020	6.8D	30D	0.14
11/26/2012	66	<0.0020	0.0026	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	0.014	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/15/2013	92	<0.0020	0.019	<0.0020	<0.0020	0.015	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
10/23/2013	66	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	0.11	1.1	<0.050	0.3	4.4	<0.050
4/16/2014	98	<0.050	<0.050	0.064 <0.10111	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	1.01	131	<0.050	5.603	131	0.056
11/8/2013	69	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	0.46	8.4	<0.10	<0.10	0.21	<0.10
1/21/2014	50.5	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	0.46	15D	<0.10	<0.10	0.59	<0.10
4/9/2014	46	<0.20	<0.20	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	<0.20	0.47	17	<0.20	<0.20	0.48	<0.20
8/6/2014	65	<0.20	<0.20	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	<0.20	0.56	16	<0.20	<0.20	0.45	<0.20
4/2/2009	95	<0.0010	<0.0030	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0030	<0.0010	<0.0019	0.0016	<0.0030	<0.0010	<0.0010	<0.0010
4/4/2011	93.1	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200J	<0.0020	<0.0020
4/17/2012	95	<0.0020	<0.0020	<0.0020	<0.0020	0.011	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0039	0.031	<0.0020	0.011	0.28D	<0.0020
4/15/2013	06	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0082	<0.0020	<0.0020	0.021	<0.0020
4/ 16/ 2014 10/23/2013	90	<0.050	<0.0020	<0.020	<0.050	<0.010	<0.0020	<0.0020	<0.0020	<0.020	<0.020	1.3	0.24D 5	<0.020	0.00083	0.27	<0.0020
4/16/2014	59	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	1.8	6.6D	<0.050	<0.050	0.74	<0.050
4/3/2009	98	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	10	26	<0.20	<0.20	7.7	<0.20
10/27/2009	78.5	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	10	24	<0.20	<0.20	9.7	<0.20
4/22/2010	98	<0.0025	0.028	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.19	0.048	<0.0025	<0.0025	0.005	<0.0025
10/14/2010	98	<0.0020	0.045	<0.0020	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/14/2011	81	<0.0020	0.017	<0.0020	<0.0020	0.01	<0.0020	<0.0020	0.0056	<0.0020	<0.0020	0.0026	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
10/28/2011	986	<0.0050	0.036	0.05	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	7.4D	22D	<0.0050	0.03	4.9D	0.012
4/6/2012	85	020000	0.033	0.054	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	02000	<0.0020	3.20	200	<0.0020	0.026	4.70	0.028
4/15/2013	85	<0.0020	0.037	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
10/24/2013	98	<0.0020	0.036	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0061	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4/11/2014	74	<0.0020	0.014	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.057	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020

							Carbon							Trichloro			
	,	-					tetra	Chloro	Chloro	Chloro	Chloro	i	i	fluoro	Vinyl	cis-1,2-	trans-1,2-
1,1,1-TCA DEPTH (mg/l)	1,1,1-1 /mg/	<u>ج</u> ک	1,1-DCA (mg/l)	1,1-DCE (mg/l)	1,2-DCA (mg/l)	Acetone (mg/l)	chloride (mg/l)	benzene (mg/l)	torm (mg/l)	ethane (mg/l)	methane (mg/l)	PCE (mg/l)	TCE (mg/l)	methane (mg/l)	chloride (mg/l)	(mg/l)	DCE (mg/l)
Н	<0.00	10	0.0013	0.0029	<0.0010	i	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0028	<0.0010	<0.0010	<0.0010	<0.0010
+	0.0	010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.024	<0.0010	<0.0010	0.0011	<0.0010
122 <0.0	0.0	<0.0020	<0.0020	<0.0020	<0.0020	0.022	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	0>	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
84 <0.	0	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.082	<0.0020	<0.0020	0.0059	<0.0020
\dagger	8	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	070070	<0.0020	0.0042	0.98D	<0.0020	0700.0>	0.000	0.0026
	7	2.0020	0.18	0.10	0.0023		200.0020	<0.0020	0.0020	<0.0020 <0.0020	<0.0020	0.16	0.10	<0.0020 <0.0020	<0.0020	0.0089	<0.0020
+		1.5	<0.020	<0.020	<0.020		1.4	<0.020	0.53	<0.010	<0.010	0.059	<0.010	<0.020	<0.020	<0.020	<0.020
		2	<0.020	<0.020	<0.020	1	1.7	<0.020	0.51	<0.020	<0.020	0.3	<0.020	<0.020	<0.020	<0.020	<0.020
H		1.5	<0.010	<0.010	<0.010	1	1.3	<0.010	98'0	<0.010	<0.010	0.046	<0.010	<0.010	<0.010	<0.010	<0.010
60		1.4D	<0.0020	<0.0020	<0.0020	1	1.2D	<0.0020	0.28D	<0.0020	0.0025	0.0021	<0.0020	0.004	<0.0020	<0.0020	<0.0020
+	0	0.57D	<0.0040	<0.0040	<0.0040	<0.020	0.50D	<0.0040	0.1	<0.0040	<0.0040	0.079	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
90		0.43	<0.0050	<0.0050	<0.0050	<0.025	0.45	050000	0.079	<0.0050	<0.0050	0.0068	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	$ ^{\circ}$	0.097	<0.00020	<0.00057	<0.00036	0.012	0.12	<0.00029	0.026	<0.00024	<0.00021	<0.00030	<0.00022	<0.00020	<0.00032	<0.00030	<0.00033
0 09	0	0.062	<0.0020	<0.0020	<0.0020	<0.010	0.067	<0.0020	0.019	<0.0020	<0.0020	0.014	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
\forall		0.043	<0.0020	<0.0020	<0.0020	<0.010	0.057	<0.0020	0.015	<0.0020	<0.0020	0.055	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
\dagger	18	0.020	<0.0020	<0.0020	<0.0020	<0.010	0.037	<0.0020	0.014	<0.0020	<0.0020	0.003	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
$^{+}$	/ V	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	0.0027	<0.0010	<0.0010	0.059	0.0022	<0.0010	<0.0010	<0.0010	<0.0010
		<0.10	<0.10	<0.10	<0.10	1	<0.10	<0.10	<0.10	<0.10	<0.10	1.6	9.8	<0.10	<0.10	0.65	<0.10
		<0.10	<0.10	<0.10	<0.10	1	<0.10	<0.10	<0.10	<0.10	<0.10	1.6	10	<0.10	<0.10	1.1	<0.10
+	ľ	<0.0050	<0.0050	<0.0050	<0.0050	- 0	<0.0050	<0.0050	0.0093	<0.0050	<0.0050	0.3	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
19	` `	<0.010	<0.010 <0.0050	010.0>	<0.010 <0.0050	<0.050	<0.010 <0.0050	<0.010 <0.0050	010.0>	<0.010 <0.0050	<0.010 <0.0050	130	0.37 11D	<0.010 <0.0050	<0.010 <0.0050	0.011	<0.010
\perp		<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	1.2	8.5	<0.10	<0.10	0.77	<0.10
		<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	1.5	9.5D	<0.10	<0.10	0.83	<0.10
58.2	- 1	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	1.2	7.6	<0.10	<0.10	0.58	<0.10
63	- 1	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	1.3	10	<0.10	<0.10	0.78	<0.10
57	- [<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	19	6.9	<0.20	<0.20	1.7	<0.20
62		<0.20	<0.20	<0.20	<0.20	1	<0.20	<0.20	<0.20	<0.20	<0.20	22	7.5	<0.20	<0.20	1.6	<0.20
49	'	<0.40	<0.40	<0.40	<0.40	-	<0.40	<0.40	<0.40	<0.40	<0.40	34	7.7	<0.40	<0.40	1.6	<0.40
48.7	- 1	<0.50UJ	<0.50UJ	<0.50UJ	<0.50UJ	<2.5UJ	<0.50UJ	<0.50UJ	<0.50UJ	<0.50UJ	<0.50UJ	32.1	7.7	<0.50UJ	<0.50UJ	1.61	<0.50UJ
48	- 1	<0.40	<0.40	<0.40	<0.40	<2.0	<0.40	<0.40	<0.40	<0.40	<0.40	29	5,4	<0.40	<0.40	0.79	<0.40
62		<0.20	<0.20	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	<0.20	32D	4.8	<0.20	<0.20	0.78	<0.20
61		<0.40	<0.40	<0.40	<0.40	<2.0	<0.40	<0.40	<0.40	<0.40	<0.40	47D	9.8	<0.40	0.41	1.4	<0.40
56	- 1	<0.0020	0.009	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.007	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
62	- 1	<0.20	<0.20	<0.20	<0.20	O'T >	<0.20	<0.20	<0.20	<0.20	<0.20	330	2.5	<0.20	<0.20	0.34	<0.20
54		<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	3.9	6.3	<0.050	<0.050	<0.050	<0.050
55		<0.25	<0.25	<0.25	<0.25	1	<0.25	<0.25	<0.25	<0.25	<0.25	7.9	29	<0.25	<0.25	<0.25	<0.25
61		<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	4.4	5.8	<0.050	<0.050	<0.050	<0.050
54	- 1	<0.20	<0.20	<0.20	<0.20	1	<0.20	<0.20	<0.20	<0.20	<0.20	6.4	15	<0.20	<0.20	<0.20	<0.20
53.9	- 1	<0.20UJ	<0.20UJ	<0.20UJ	<0.20UJ	<1.00J	<0.20UJ	<0.20UJ	<0.20UJ	<0.20UJ	<0.20UJ	7.03	9.81	<0.20UJ	<0.20UJ	0.24J	<0.20UJ
61	- 1	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.10	<0.10	<0.10	<0.10	9.9	5.2	<0.10	<0.10	<0.10	<0.10
61		<0.20	<0.20	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	<0.20	10	9.1	<0.20	<0.20	<0.20	<0.20
46		<0.20	<0.20	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20	<0.20	<0.20	8.1D	48D	<0.20	<0.20	<0.20	<0.20
51.5	- 1	0.02	0.013	<0.0020	<0.0020	0.021	<0.0020	<0.0020	0.0034	<0.0020	<0.0020	<0.0020	0.012	<0.0020	<0.0020	<0.0020	<0.0020
51		0.003	<0.0020	<0.0020	<0.0020	0.024	<0.0020	<0.0020	0.0026	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
61		<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	2.4	23	<0.20	<0.20	<0.20	<0.20
-		21.0	21.0	21.0	21.5		24:00	3	24.0	24.57	24.00)	2	5	31.0	24.5

								tetra	Chloro	Chloro	Chloro	Chloro			fluoro	Vinyl	cis-1,2-	trans-1,2-
i		i	1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	chloride	penzene	form	ethane	methane	PCE,	1CE	methane	chloride	DCE	DCE
OB-37-DO (cont.)	10/26/2009	DEPIH	(I/gm)	(mg/l)	(mg/l)	(mg/I)	(mg/I)	(mg/l)	(mg/l)	(mg/I)	(mg/l)	(mg/l)	(mg/I)	(mg/1)	(mg/1)	(mg/l)	(mg/1)	(mg/I)
	4/22/2010	61	<0.010	<0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010	<0.010	<0.010	0.36	86:0	<0.010	<0.010	<0.010	<0.010
	10/13/2010	61	<0.0050	<0.0050	<0.0050	<0.0050	1	0.007	<0.0050	0.019	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	4/7/2011	35	0.0031J	<0.0020UJ	<0.0020UJ	<0.0020UJ	0.016	<0.0020UJ	<0.0020UJ	0.0093	<0.0020UJ	<0.0020UJ	<0.0020UJ	<0.0020UJ	<0.00200J	<0.0020UJ	<0.0020UJ	<0.0020UJ
	10/28/2011	61	0.0084	<0.0020	<0.0020	<0.0020	0.12	0.0033	<0.0020	0.007	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/6/2012	46	<0.0020J	<0.0020J	<0.0020J	<0.0020J	0.014J	<0.0020J	<0.0020J	<0.0020J	<0.0020J	<0.0020J	0.0028J	<0.0020J	<0.0020J	<0.0020J	<0.0020J	<0.0020J
	11/27/2012	61	0.039	0.01	<0.0020	<0.0020	0.02	<0.0020	<0.0020	0.0045	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/15/2013	53.7	0.05	0.018	<0.0020	<0.0020	0.025	<0.0020	<0.0020	0.0048	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	10/24/2013	59	0.0069	<0.0020	<0.0020	<0.0020	0.018	<0.0020	<0.0020	0.0084	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/21/2014	46	<0.0020	<0.0020	<0.0020	<0.0020	0.016	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.066	0.35D	<0.0020	<0.0020	<0.0020	<0.0020
OB-38-DO	4/9/2009	47	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	0.74	0.55	<0.010	<0.010	0.13	<0.010
	10/28/2009	47	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	0.25	0.36	<0.010	<0.010	1.1	<0.010
	4/21/2010	54	<0.0025	<0.0025	<0.0025	<0.0025	-	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.25	0.27	<0.0025	<0.0025	0.056	<0.0025
	10/14/2010	45.5	<0.0050	<0.0050	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.43	0.32	<0.0050	0.0064	0.34	<0.0050
	4/5/2011	45	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.27	0.22	<0.0040	<0.0040	0.037	<0.0040
	10/26/2011	45	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.52D	0.39	<0.0050	0.0052	0.28	0.0057
	4/6/2012	44.5	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.47	0.46	<0.0050	<0.0050	0.15	0.0067
	11/27/2012	54	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.24	0.19	<0.0050	<0.0050	0.13	<0.0050
	4/15/2013	42	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.45	0.62D	<0.0050	0.0061	0.12	0.0075
	10/23/2013	46	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0094	0.014	<0.0050	<0.0050	0.54D	0.0074
	4/11/2014	44	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.057	0.099	<0.0020	<0.0020	0.045	0.0034
OB-39-DO	4/9/2009	53	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0076	<0.0010	<0.0010	<0.0010	<0.0010
OB-40-DO	4/9/2009	89	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
OB-41-S	4/5/2011	13	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.05	0.26	<0.0040	<0.0040	0.081	<0.0040
	10/25/2011	13	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.03	0.12	<0.0020	<0.0020	0.04	<0.0020
	4/5/2012	13.2	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.017	0.069	<0.0020	<0.0020	0.028	<0.0020
	11/12/2012	14	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.022	0.082	<0.0020	<0.0020	0.034	<0.0020
	4/12/2013	13.3	<0.0020	<0.0020	0.0024	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.071	0.29D	<0.0020	<0.0020	0.08	<0.0020
	10/23/2013	13.3	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.021	0.089	<0.0020UJ	<0.0020	0.035	<0.0020
	4/8/2014	13	<0.0020	<0.0020	0.0021	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.064	0.28D	<0.0020	<0.0020	0.082	<0.0020
OB-42-5	4/5/2011	13	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.00	7.7	<0.040	<0.040	1.2	<0.040
	10/24/2011	13	<0.030	00.00	<0.030	0.030	50.23	00.00	<0.030	0.030	<0.030	0.030	0.030	0 ,	<0.030	<0.030	1 00	<0.030
	4/4/2012	13.5	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.078	2.4	<0.040	<0.040	0.94	<0.040
	11/12/2012	13 E	<0.040	<0.040	<0.040	<0.040	20.20	<0.040	<0.040	<0.040	V0.040	<0.040 <0.040	0.11 0.12	2.D	<0.040	<0.040 \0000	67.0	<0.040
	10/23/2013	12.0	\0.040 \0.040	<0.040	\0.040 \0.040	0.040	V0.20	040.07	0,040	0.040	0,040	0,040	0.081	5.5	0.040	00.040	+ i.4	\0.040 \0.040
	4/9/2014	14	<0.040	<0.040	<0.040	<0.040	<0.20	<0,040	<0.040	<0.040	<0.040	<0.040	0.082	2.4	<0.040	<0.040	96'0	<0.040
OB-43-S	10/24/2011	16	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0052	0.007	<0.0020	<0.0020	<0.0020	<0.0020
	4/4/2012	15	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	11/12/2012	14	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0021	0.003	<0.0020	<0.0020	<0.0020	<0.0020
	4/12/2013	16	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0024	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	10/23/2013	16	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.00200J	<0.0020	<0.0020	<0.0020
	4/8/2014	15	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0037	0.004	<0.0020	<0.0020	<0.0020	<0.0020
OB-44-S	1/7/2014	NA	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	47	24	<1.0	<1.0	<1.0	<1.0
	4/21/2014	17	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.2	1.5	<1.0	<1.0	59	<1.0
OB-45-DO	4/15/2014	45	<0.0050	<0.0050	<0.0050	<0.0050	0.035	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0059	0.27	<0.0050	<0.0050	0.37	<0.0050
OB-45-S	4/15/2014	13	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
P-05R	4/27/2009	AN :	<0.0010J	<0.0010J	<0.0010J	<0.0010J	1	<0.00100	<0.0010J	<0.00100	<0.0010J	<0.00100	<0.0010J	<0.0010	<0.0010J	<0.0010J	<0.00100	<0.0010J
P-09K	4/6/2009	4.5	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.016	<0.0010
	10/27/2009 4/23/2010	4.5	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
							•		-						-			

1,1,1-TCA 1,1-DCA 1,1-DCE 1,2-DCA Acetone DEPTH (me/l) (me/l) (me/l)
(''B'') ('''B'') ('''B'') ('''B'') ('''B'') ('''B'') ('''B'') ('''B'') ('''B'') (''''B'') (''''B'') (''''B''') ('''''B''') (''''''''''
<0.0020 <0.0020 <0.0020 <0.0020
4.5 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0010 5 <0.0020 <0.0020 <0.0020 <0.0020 <0.010
3 <0.0020 <0.0020 <0.0020 <0.0020
4.5 <0.0020 <0.0020 <0.0020 <0.0020 <0.0010
<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020
<0.0010 <0.0010 <0.0010
<0.0020 <0.0020 <0.0020
<0.0020 <0.0020 <0.0020
8.75 <0.0020 <0.0020 <0.0020 <0.0020
<0.0020 <0.0020
<0.0020 <0.0020 <0.0020
<0.0010 <0.0010 <0.0010
<0.0020 <0.0020 <0.0020 <0.0020 <0.00
9 <0.0020 <0.0020 <0.0020 <0.0020 10 <0.0040 <0.0040 <0.0040 <0.0040
<0.0040 <0.0040
H
<0.0020 <0.0020
<0.0020 <0.0020 <0.0020
10 <0.0040 <0.0040 <0.0040 <0.0040
<0.0010<0.0010<0.0010<0.0010
<0.0020 <0.0020 <0.0020
<0.0020 <0.0020 <0.0020
<0.0020 <0.0020 <0.0020
10 <0.0020 <0.0020 <0.0020 <0.0020 39 0.32 0.017 <0.0025 <0.0025
<0.0050 0.014 0.025
<0.050 <0.050
36
<0.010 <0.010 <0.010
0.068 0.0071 <0.0050
56 0.036 0.0069 <0.0050 <0.0050
0.01 0.0026 <0.0020
0.022 <0.020 <0.020
<0.025 <0.025 <0.025
69 0.032J <0.025UJ <0.025UJ <0.025UJ
55 0.78 <0.10 <0.10 <0.10
0.29 <0.020 <0.020
\dashv
<0.0025 <0.0025 <0.0025
<0.0050 <0.0050 <0.0050
105 <0.0040 <0.0040 <0.0040 <0.0040 62 <0.0040 <0.0040 <0.0040 <0.0040
<0.0040 <0.0040 <0.0040
<0.0040 <0.0040 <0.0040

						}	}	-	}	}		}				•		
			7	5		2	-	tetra	Chloro	Chloro	Chloro	Chloro	Ç	Š	fluoro	Vinyl	cis-1,2-	trans-1,2-
SITE ID	DATE	DEPTH	1,1,1-1CA (mg/l)	1,1-DCA (mg/l)	1,1-DCE (mg/l)	1,2-DCA (mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
STR-03	1/13/2009	AN S	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010	0.0013	0.011	<0.0010
	7/14/2009	Y Y	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0073	<0.0010	0.0079	0.045	<0.0010
	10/27/2009	AN	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1/28/2010	NA	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0067	0.0084	<0.0010	0.0053	0.047	<0.0010
	4/22/2010	NA	<0.0010	<0.0010	<0.0010	<0.0010	-	Н	Н	Н	Н	Н	<0.0010	<0.0010	<0.0010	0.0014	0.003	<0.0010
	7/14/2010	A S	<0.0010UJ	<0.0010UJ	<0.0010UJ	<0.00100J	-	_	_	_	_	_	<0.0010UJ	<0.00100J	<0.00100J	<0.0010UJ	<0.00100J	<0.00100J
	10/12/2010	Y S	<0.0020	<0.0020	<0.0020	<0.0020	1	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1	1/5/2011	A S	<0.0020	<0.0020	<0.0020	<0.0020	- 000	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
-1	4/5/2011	A N	<0.0020	<0.0020	070000>	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	070000	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	10/25/2011	Z A	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0067	0.027	<0.0020
	1/18/2012	NA	<0.0040	<0.0040	<0.0040	<0.0040	<0.020	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.011	0.02	<0.0040	0.041	0.21	<0.0040
	4/3/2012	NA	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	8/21/2012	AN	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	11/28/2012	¥ ≥	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	2/0/2013 4/11/2013	Y AN	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.004	0.0083	<0.0020	0.0092	0.450	0.0037
	10/23/2013	ΑN	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	4/10/2014	NA	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0023	<0.0020
STRHA-07A	4/7/2009	AN :	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0015	<0.0010	<0.0010	0.0017	<0.0010
	10/2//2009	Ψ.	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.013	0.058	<0.0010	<0.0010	0.051	<0.0010
	10/14/2010	Z Z	<0.0020	<0.0020	<0.0020	<0.0020	1	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0061	0.036	<0.0020	<0.0020	0.035	<0.0020
	4/6/2011	NA	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0026	0.013	<0.0020	<0.0020	0.012	<0.0020
	10/25/2011	NA	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0021	0.011	<0.0020	<0.0020	0.011	<0.0020
	4/6/2012	AN	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0054	0.03	<0.0020	<0.0020	0.036	<0.0020
	11/13/2012	¥ ₹	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0068	0.033	<0.0020	<0.0020	0.032	<0.0020
	10/23/2013	Z Z	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.00	0.035	<0.0020UJ	<0.0020	0.037	<0.0020
	4/10/2014	Ą	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0088	<0.0020	<0.0020	0.0097	<0.0020
STRHA-07B	4/7/2009	AN	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	10/27/2009	NA	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0044	0.025	<0.0010	<0.0010	0.0091	<0.0010
- 1	4/28/2010	A N	<0.0010	<0.0010	<0.0010	<0.0010	1 1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0058	0.031	<0.0010	<0.0010	0.0098	<0.0010
1	4/6/2011	AN AN	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0062	0.028	<0.0020	<0.0020	0.0089	<0.0020
	10/25/2011	NA	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0055	0.025	<0.0020	<0.0020	0.0076	<0.0020
	4/6/2012	AN S	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0037	0.019	<0.0020	<0.0020	0.0071	<0.0020
	4/15/2013	Y Y	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0073	0.034	<0.0020	<0.0020	0.031	<0.0020
	10/23/2013	AN	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0082	<0.0020UJ	<0.0020	0.0025	<0.0020
	4/10/2014	NA	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0099	0.042	<0.0020	<0.0020	0.013	<0.0020
STRM-A-SCDS	4/6/2009	AN :	<0.0010	<0.0010	<0.0010	<0.0010	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0035	<0.0010	<0.0010	0.0012	<0.0010
-1	10/2//2009	Y S	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.002	0.0079	<0.0010	<0.0010	0.0034	<0.0010
-	4/22/2010 10/13/2010	A A	<0.0010	<0.0010 <0.0020	<0.0010	<0.0010		<0.0010 <0.0020	<0.0010	<0.0010	<0.0010	<0.0010	0.0016	0.0059	<0.0010	<0.0010	0.0044	<0.0010
	4/6/2011	N A	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0033	<0.0020	<0.0020	0.0022	<0.0020
	10/26/2011	AN	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0025	<0.0020	<0.0020	<0.0020	<0.0020
	4/6/2012	NA	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0048	0.017	<0.0020	<0.0020	0.013	<0.0020
	11/12/2012	AN	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0038	0.012	<0.0020	<0.0020	0.0051	<0.0020
-1-	4/15/2013	AN AN	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	0.0055	<0.0020	<0.0020	0.0028	<0.0020
	4/21/2014	Z AZ	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	0.0038	<0.0020	<0.0020	020000>	<0.000 0>	<0.002003	<0.0020	<0.000	<0.0020
	7/ 21/ 2017		20000	200.00	0300.0	03000	0.00	20.00	0.000	2000	200:05	0.000	20.00	200.0	20.02	0.00.00	0700.00	22000

							Carbon							Trichloro			
							tetra	Chloro	Chloro	Chloro	Chloro			fluoro	Vinyl	cis-1,2-	trans-1,2-
		1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	chloride	benzene	form	ethane	methane	PCE	TCE	methane	chloride	DCE	DCE
DATE	DEPTH	(mg/l)	(I/gm)	(mg/l)	(mg/I)	(mg/l)	(mg/I)	(mg/l)	(mg/l)	(mg/l)	(mg/I)	(mg/l)	(mg/I)	(mg/I)	(mg/l)	(mg/I)	(mg/l)
1/14/2009	NA	<0.010	<0.010	<0.010	<0.010		<0.010	<0.010	<0.010	<0.010	<0.010	0.016	0.031	<0.010	0.18	1	<0.010
4/9/2009	NA	<0.010	<0.010	<0.010	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	6.0	0.43	<0.010	0.081	0.82	<0.010
7/14/2009	AN	<0.025	<0.025	0.033	<0.025		<0.025	<0.025	<0.025	<0.025	<0.025	1.7	96.0	<0.025	0.48	3.4	<0.025
10/27/2009	AN 6	<0.0025	<0.0025	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.0027	0.015	<0.0025	0.1	0.31	<0.0025
1/28/2010	NA	<0.020	<0.020	<0.020	<0.020		<0.020	<0.020	<0.020	<0.020	<0.020	1.4	1.2	<0.020	0.22	1.9	<0.020
4/22/2010	NA	<0.010	<0.010	<0.010	<0.010		<0.010	<0.010	<0.010	<0.010	<0.010	0.29	0.17	<0.010	0.14	1	<0.010
10/12/2010	O NA	<0.0020	<0.0020	<0.0020	<0.0020		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.005	0.0053	<0.0020	<0.0020	0.016	<0.0020
1/4/2011	AN	<0.0020	<0.0020	0.011	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.51D	0.24D	<0.0020	0.20D	1.4D	0.0094
4/5/2011	NA	0.0022	<0.0020	0.015	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	1.1D	0.86D	<0.0020	0.083	2.3D	0.012
10/25/2011	1 NA	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.91	0.59	<0.020	0.16	1.4	<0.020
1/17/2012	NA	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.98	0.61	<0.010	0.037	0.48	<0.010
4/3/2012	NA	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	1.2	0.73	<0.020	0.18	2	<0.020
8/21/2012	NA	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	0.043	0.071	<0.010	0.11	95'0	<0.010
2/6/2013	NA	<0.010	<0.010	0.019	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	1.7D	1.5D	<0.010	0.18	2.2D	0.012
4/11/2013	NA NA	<0.040	<0.040	<0.040	<0.040	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	0.065	0.071	<0.040	0.14	2.9	<0.040
4/10/2014	NA 1	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0026	0.003	<0.0020	<0.0020	0.012	<0.0020
10/26/2009	6 6	<0.0025	<0.0025	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.013	0.21	<0.0025	<0.0025	0.048	<0.0025
4/21/2010	6 (<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0065	0.11	<0.0010	<0.0010	0.055	<0.0010
10/14/2010	6 0	<0.0040	<0.0040	<0.0040	<0.0040	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.0066	0.23	<0.0040	<0.0040	0.028	<0.0040
4/5/2011	11	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0072	0.095	<0.0020	<0.0020	950.0	<0.0020
10/24/2011	1 9	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	9900'0	<0.0020	<0.0020	<0.0020	<0.0020
4/5/2012	11	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.039	1.0D	<0.0020	<0.0020	0.49D	0.0054
11/12/2012	2 9	<0.0020	<0.0020	<0.0020	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0067	0.17	<0.0020	<0.0020	0.025	<0.0020
5/2/2013	10.8	<0.0020	<0.0020	0.0021	<0.0020	<0.010	<0.0020	<0.0020	<0.0020	<0.0020UJ	<0.0020	0.055	1.3D	<0.0020	<0.0020	0.48D	0.007
4/9/2014	10	<0.020	<0.020	<0.020	<0.020	<0.10	<0.020	<0.020	<0.020	<0.020	<0.020	0.033	86.0	<0.020	<0.020	0.42	<0.020

150 Sohier Road, Beverly, Massachusetts Water Quality Data - VOC Results Former Varian Facility Site 2009 to Present

Analytical results presented in milligrams per liter (mg/l).

Analytical results are reported by the laboratory in micrograms per liter (ug/l). Results are presented without changing the number of significant figures reported by the laboratory.

Bedrock wells BR-1 through BR-8, CL8-BR and CL9-BR each have a multilevel groundwater monitoring system present within the bedrock portion of the well. Zone 1 refers to the deepest sample interval, Zone 2 refers to the middle sampling zone and Zone 3 refers to the sampling zone closest to the ground surface.

1,1,2-Trichloroethane, 1,2-dichloropropane, dichloromethane and dichlorodifluoromethane are compounds which have been detected but are not included on the table.

Sample depths are in feet below grade. A sample depth of NA indicates that the sample was not collected at a discrete depth.

OB-32-DO(PURGE) = Duplicate sample collected by purge and grab method.

DCA - Dichloroethane

DCE - Dichloroethene

PCE - Tetrachloroethene TCA - Trichloroethane TCE - Trichloroethene

NA = discreet sample depth not applicable.

< = Not Detected at indicated detection limit</p>

D - Indicates that the result is reported from a secondary dilute sample.

E - Estimated concentration

J - Estimated concentration

L - Sample analyzed outside of holding time.

N - Matrix interference

U - Determined to be non-detect through expert validation protocol.

Z - Sample results switched in May 7, 2004 status report.

TABLE 4 Water Quality Data - Chloride, Dissolved Iron and Dissolved Manganese Results 2009 to Present

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

		Chloride Total	Iron Dissolved	Manganese Dissolved
SITE ID	DATE	(mg/l)	(mg/l)	(mg/l)
AP-12-BR	4/20/2010	1200	25	26000
	10/14/2010	33100	ND(3.0)	24000
	4/14/2011	10400	8.7	12000
	10/28/2011	225	ND(5.0)	3900
	4/6/2012	890	ND(2.5)	9000
	11/27/2012	420	ND(1.0)	3300
	4/18/2013	192	ND(0.50)	1400
	10/23/2013	137	ND(0.50)	230
	4/10/2014	75.5	0.9	0.56
AP-12-DO	4/20/2010	34.4	0.47	5.4
711 12 50	11/27/2012	538	9.2	3400
	4/18/2013	156	ND(0.50)	720
	10/23/2013	109	ND(0.10)	36
	- : :	124	· · · · · ·	0.32
AP-13-DO	4/10/2014 1/14/2009	150	ND(<0.10) 0.26	9.3
VIT2-DO	4/2/2009	273	0.26	9.3
	8/14/2014		ND(<0.10)	25.3
AP-19	10/27/2009	4.1	· · · · · · · · · · · · · · · · · · ·	ND(0.010)
AP-19	- : :	18.7	ND(0.10)	· · · · · ·
	4/21/2010 10/14/2010	17.2	ND(0.10) ND(0.10)	0.095
		24.8	1 1	0.029
	4/6/2011		ND(0.10)	0.061
	10/27/2011	ND(1.0)	ND(0.10)	0.012
	4/5/2012	29	ND(0.10)	0.12
	11/13/2012	20.4	ND(0.10)	ND(0.010)
	5/2/2013	28.2	ND(0.10)	0.021
	10/24/2013	26.3	0.12	1.0
AP-20	4/11/2014	25.4	ND(<0.10)	1.1
AP-20	10/27/2009	11.1	ND(0.10)	6.9
	4/21/2010	31.3	ND(0.10)	0.011
	10/14/2010	29.4	ND(0.10)	0.012
	4/6/2011	15.4	ND(0.10)	ND(0.010)
	10/27/2011	2	ND(0.10)	0.028
	4/5/2012	86 68.2	ND(0.10)	23
	11/13/2012		0.39	8.5
	5/2/2013	45	ND(0.10)	2.1
	10/24/2013 4/11/2014	109	ND(0.10)	0.17
AD 21		14.1	ND(<0.10)	4.0
AP-21	11/23/2009	850	8.5	14000
	4/21/2010	900	10	15000
	10/14/2010	1690	ND(2.0)	9000
	4/14/2011	450	3.2	3400
	10/27/2011	190	ND(2.5)	1100
	4/5/2012	286	ND(1.0)	970
	11/13/2012	271	ND(0.10)	640
	5/2/2013	275	ND(0.10)	190
	10/24/2013	323	ND(0.10)	0.24
AD 22	4/11/2014	227	ND(<0.10)	0.51
AP-22	10/27/2009	378	ND(0.50)	3800
	4/21/2010	489	ND(1.0)	73
	10/14/2010	491	ND(1.0)	240
	4/14/2011	208	ND(0.10)	0.37
	10/27/2011	225	ND(2.5)	1200
	4/5/2012	1360	ND(2.0)	2000
	11/13/2012	794	ND(1.0)	4100
	4/17/2013	425	ND(0.10)	150

TABLE 4 Water Quality Data - Chloride, Dissolved Iron and Dissolved Manganese Results 2009 to Present

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

		Chloride Total	Iron Dissolved	Manganese Dissolved
SITE ID	DATE	(mg/l)	(mg/l)	(mg/l)
AP-22 (cont.)	10/24/2013	892	ND(0.50)	440
(4/11/2014	919	0.26	51
AP-23-DO	1/14/2009	43.6	1.7	6.4
	4/2/2009	60.7	3.2	19
	8/6/2014		0.57	7.6
AP-24-DO	1/14/2009	117	0.48	7.5
	4/2/2009	283	0.25	11
	8/6/2014		1.7	1.2
AP-25-DO	1/14/2009	34.9	0.28	0.24
	4/2/2009	61.1	ND(0.10)	0.11
AP-26-DO	11/26/2012	33.5	ND(0.10)	8.5
	4/15/2013	39.4	ND(0.10)	0.01
	10/23/2013	91.2	ND(0.10)	3.9
	4/16/2014	43	ND(<0.10)	0.81
AP-27-DO	4/9/2009	57.8	ND(0.10)	0.098
	10/28/2009	13.7	ND(0.10)	0.1
	4/21/2010	29.4	ND(0.10)	0.1
	10/14/2010	11.2	ND(0.10)	0.42
	4/7/2011	387J	ND(0.10)	0.046
	10/26/2011	140	ND(0.10)	2.8
	4/6/2012	450	ND(0.10)	0.053
	11/27/2012	624	ND(0.10)	9.1
	4/16/2013	79.6	ND(0.10)	0.073
	10/23/2013	50	ND(0.10)	0.095
	4/11/2014	342	ND(<0.10)	0.19
AP-30-DO	4/18/2013	3860	ND(0.50)	3500
AP-30R-DO	4/7/2011	1000J	6	7900
	11/7/2011 4/17/2012	2730	ND(50)	20000
AP-31-DO	4/1//2012	1070	ND(5.0) 2.5	6400 2200
AP-31-DU	11/7/2011	3380J 3240	ND(1.0)	780
	4/17/2012	2650	ND(1.0) ND(0.10)	0.58
	4/18/2013	742	ND(0.10)	67
	10/24/2013	907	ND(0.10)	23
	4/16/2014	720	ND(<0.10)	0.86
AP-32-DO	4/7/2011	1440J	ND(1.0)	75
7.11 32 00	11/7/2011	979	ND(0.10)	0.055
	4/17/2012	631	ND(0.10)	0.072
	4/18/2013	565	ND(0.10)	0.012
	10/24/2013	624	ND(0.10)	99
	4/16/2014	608	ND(<0.10)	110
AP-33-DO	8/6/2014		4.3	1.9
AP-34-DO	8/6/2014		0.89	9.1
AP-35-DO	8/6/2014		0.82	0.31
BR-5_ZONE3	4/11/2014	136	ND(<0.10)	3.1
BW-01	1/13/2009	86.1	2.1	2.3
	4/2/2009	67.3	3.8	3.2
BW-02	1/13/2009	87.2	8.2	2.3
	4/2/2009	97.8	6.4	2.4
BW-03	1/13/2009	80.8	13	5.6
	4/2/2009	91.3	18	8
BW-04	1/13/2009	96.5	9.5	3.8
	4/2/2009	95.1	10	3.2
BW-05	1/13/2009	205	20	4.7
	4/2/2009	130	27	4.9

TABLE 4 Water Quality Data - Chloride, Dissolved Iron and Dissolved Manganese Results 2009 to Present

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

		Chloride	Iron	Manganese
		Total	Dissolved	Dissolved
SITE ID	DATE	(mg/l)	(mg/l)	(mg/l)
BW-08	1/13/2009	124	18	5.3
D.V. 00	4/2/2009	104	27	7.9
BW-09	1/13/2009	131	20	7.1
311 03	4/2/2009	174	41	11
CL03-DO	10/23/2013	302	ND(0.50)	300
	4/9/2014	12.4	ND(<0.10)	0.099
CL10-DO	10/23/2013	25.1	ND(0.10)	510
	4/10/2014	50.1	ND(<0.10)	180
MW-009	1/14/2009	822	60	7
	4/2/2009	711	70	6
MW-013	4/21/2010	586	2.4	2300
	10/14/2010	928	ND(1.0)	4800
	4/14/2011	1920	2.8	3100
	10/27/2011	1410	ND(0.50)	510
	4/5/2012	930	ND(0.50)	560
	11/26/2012	647	ND(1.0)	210
	4/17/2013	635	ND(0.10)	210
	10/24/2013	491	ND(0.10)	31
	4/9/2014	506	ND(<0.10)	23
MW-030	4/9/2009	135	0.16	0.012
OB-05-DO	4/8/2014	32.4	0.3	0.23
OB-06-DO	4/9/2014	32.7	0.11	0.13
OB-09-BR	1/14/2009	16	1.5	0.17
	4/9/2009	20	1.5	0.24
OB-09-DO	1/13/2009	32.6	ND(0.10)	ND(0.010)
OD 00 C	4/9/2009	44.6	ND(0.10)	ND(0.010)
OB-09-S OB-12-DO	4/9/2009	122	16	2
OB-12-DO	10/27/2009 10/26/2011	116	ND(0.50)	1100 54
	11/26/2012	87.6 120	ND(0.50) ND(1.0)	790
	4/17/2013	62.8	ND(1.0) ND(0.10)	22
	10/24/2013	53.8	ND(0.10)	0.11
	4/9/2014	39.4	ND(<0.10)	0.11
OB-19-DO	10/13/2010	15.9	ND(0.10)	1.1
	4/4/2011	24	0.84	2.6
	10/26/2011	34	0.78	3.2
	4/5/2012	25.8	ND(0.10)	5.8
	11/26/2012	26.7	0.13	4.9
	4/15/2013	28.3	ND(0.10)	0.061
	10/23/2013	30.4	ND(0.10)	2.3
	4/16/2014	33	ND(<0.10)	0.11
OB-25-BR	11/26/2012	812	ND(1.0)	7300
	10/23/2013	151	ND(0.10)	0.64
Dup.	10/23/2013	145	ND(0.10)	0.63
	4/16/2014	114	ND(<0.10)	6.4
OB-27-BR	4/22/2010	214	1.9	1800
	10/14/2010	421	ND(1.0)	4800
	4/14/2011	690	5.2	6700
	10/28/2011	94	ND(0.50)	300
	4/6/2012	273	ND(0.50)	2200
	11/26/2012	540	ND(1.0)	4400
	4/15/2013	113	ND(0.50)	770
	10/24/2013	117	ND(0.50)	200
	4/11/2014	36.6	0.76	370

TABLE 4

Water Quality Data - Chloride, Dissolved Iron and Dissolved Manganese Results 2009 to Present

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

		Chloride	Iron	Manganese
		Total	Dissolved	Dissolved
SITE_ID	DATE	(mg/l)	(mg/l)	(mg/l)
OB-32-DO	4/20/2010	74	ND(1.0)	540
	10/14/2010	211	ND(1.0)	690
	4/14/2011	262	ND(1.0)	520
	10/28/2011	175	ND(0.50)	290
	4/5/2012	204	ND(0.20)	190
	11/27/2012	209	ND(1.0)	220
	4/18/2013	203	ND(0.10)	140
	10/24/2013	132	ND(0.10)	40
	4/21/2014	107	ND(<0.10)	60
OB-34-DO	10/27/2009	38.7	ND(0.50)	10
OB-35-DO	4/9/2009	79.1	ND(0.10)	0.03
	10/28/2009	328	ND(0.10)	ND(0.010)
	4/22/2010	73.2	ND(0.10)	0.2
	10/14/2010	193	ND(0.10)	0.074
	4/7/2011	112J	ND(0.10)	0.023
	10/27/2011	84.3	ND(0.10)	0.066
	4/6/2012	78.4	ND(0.10)	0.028
	11/27/2012	83.5	ND(0.10)	4.2
	4/15/2013	135	ND(0.10)	0.37
	10/24/2013	91.5	ND(0.10)	15
	4/21/2014	96.1	ND(<0.10)	6.2
OB-36-DO	4/21/2014	419	0.13	2200
OB-37-DO	5/7/2010	47.3	ND(1.0)	63
	10/13/2010	621	ND(1.0)	3800
	4/7/2011	10800J	11	18000
	10/28/2011	890	ND(10)	15000
	4/6/2012	438	ND(1.5)	3200
	11/27/2012	14.4	0.56	20
	4/15/2013	181	ND(0.10)	66
OB-38-DO	4/9/2009	459	ND(0.10)	0.14
	10/28/2009	31.7	ND(0.10)	0.025
OB-39-DO	4/9/2009	15.5	ND(0.10)	ND(0.010)
OB-40-DO	4/9/2009	48.2	ND(0.10)	ND(0.010)
STR-03	1/13/2009	1790	1.4	0.58
	4/9/2009	1320	3.5	2.6
UNNAMED_STREAM	1/14/2009	1460	48	6.9
	4/9/2009	1170	22	6.1
MW-2_32-TOZER	11/8/2011	489	2.58	

Notes:

mg/l = milligrams per liter

--- = not collected

ND(0.05) = non detect (method detection limit)

Dup. = Duplicate sample

J = Estimated value.

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

CONSTITUENT UNITS 11412000 4122010 11422010 11422010 14122010			AP-13-DO	AP-13-DO AP-13-DO	AP-13-DO AP-13-DO AP-13-DO	AP-13-DO	AP-13-DO	AP-13-DO	AP-13-DO /	4P-13-DO	AP-13-DO	AP-13-DO	AP-13-DO	P-13-DO AP-13-DO AP-13-DO AP-13-DO AP-13-DO AP-13-DO AP-13-DO AP-23-DO	AP-13-DO	AP-13-DO		AP-23-DO	AP-23-DO	AP-23-DO AP-23-DO	AP-23-DO
mg/L c20 c2	CONSTITUENT	UNITS	1/14/2009	4/2/2009	4/22/2010	7/14/2010		1/4/2011		7/28/2011	10/25/2011		4/3/2012	1/20/2014	4/8/2014	3/14/2014		4/2/2009	1/28/2010	4/22/2010	7/14/2010
mg/L 0.26 0.2	solved Metals																				
mg/l c20 2.6		mg/L	0.26	0.2									-	-		<0.1	1.73	3.2		-	
mg1 c20 26	ganese	mg/L	9.27	13	-	-	-	-	-	1	-	1	-	1	-	25.3	6.44	19	-	-	1
mg/l <2.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																					
mg/L <td>ate</td> <td>mg/L</td> <td><2.0</td> <td>2.6</td> <td>-</td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>319</td> <td><2.0</td> <td>5.2</td> <td>-</td> <td>-</td> <td>-</td>	ate	mg/L	<2.0	2.6	-	-	1	-	-	-	1	1	-	1	1	319	<2.0	5.2	-	-	-
mg/L 7.8 40.50 <	ate	mg/L	<0.50											-		-	<0.50			-	
mg/L <10 460 630 980 2500 1500 150 51 980 2500 1600 2500 1500 1500 61 33 5.7 mg/L <1.0	ate/Nitrogen	mg/L		<0.50										-	-	<1.0		<0.50			
mg/L 78 180 460 630,1 980 250 1800 1300 1200 1300	tabolic Acids																				
Mg/L <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <td>tic acid</td> <td>mg/L</td> <td>78</td> <td>180</td> <td>460</td> <td>6301</td> <td>086</td> <td>2500</td> <td>1600</td> <td>2700</td> <td>2500</td> <td>1300</td> <td>1200</td> <td>-</td> <td>-</td> <td></td> <td>220</td> <td>290</td> <td>28</td> <td>320</td> <td>260J</td>	tic acid	mg/L	78	180	460	6301	086	2500	1600	2700	2500	1300	1200	-	-		220	290	28	320	260J
mg/L c20 63 c400 c400 c40 20 c40 20 c40 20 c40 20 c40 20 c40	tic Acid	mg/L	<1.0	<1.0	<5.0	<101	360	16000	930	32000	6300	740	290	-	-	-	6.1	33	5.7	15	<107
year mg/L 2.6 4.8 7.4 85.0 150 220 93 270 210 41 16 <td>utanoic acid</td> <td>mg/L</td> <td><2.0</td> <td>6.3</td> <td><10</td> <td><207</td> <td>18</td> <td><200</td> <td>89</td> <td><400</td> <td><100</td> <td><40</td> <td>20</td> <td>-</td> <td></td> <td>-</td> <td>36</td> <td>2.2</td> <td>3.1</td> <td>22</td> <td>41)</td>	utanoic acid	mg/L	<2.0	6.3	<10	<207	18	<200	89	<400	<100	<40	20	-		-	36	2.2	3.1	22	41)
MayL <.550 <.255 <.560	pionic acid	mg/L	26	48	74	85J	150	220	93	270	210	41	16	-	-	-	200	Q029	41	770	620)
yeac yeac <th< td=""><td>ivic Acid</td><td>mg/L</td><td><0.50</td><td><0.50</td><td><2.5</td><td><5.0J</td><td>14</td><td><20</td><td>7.7</td><td><100</td><td><25</td><td><10</td><td><5.0</td><td>-</td><td></td><td>-</td><td><2.5</td><td><0.50</td><td><0.50</td><td><2.5</td><td><5.0J</td></th<>	ivic Acid	mg/L	<0.50	<0.50	<2.5	<5.0J	14	<20	7.7	<100	<25	<10	<5.0	-		-	<2.5	<0.50	<0.50	<2.5	<5.0J
ug/L <2.0 2.8 83 18J 66 5.4 2.7 86 36 3.2 < 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	cellaneous Analyse	S																			
ug/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th< td=""><td>nane</td><td>ng/L</td><td><2.0</td><td>2.8</td><td>83</td><td>18J</td><td>9.9</td><td>5.4</td><td>2.7</td><td>8.6</td><td>3.6</td><td>3</td><td>2.3</td><td><1.0</td><td><1.0</td><td>2.3</td><td>3.9</td><td>36</td><td>27</td><td>14</td><td>19J</td></th<>	nane	ng/L	<2.0	2.8	83	18J	9.9	5.4	2.7	8.6	3.6	3	2.3	<1.0	<1.0	2.3	3.9	36	27	14	19J
ug/L <td>ine</td> <td>ng/L</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0J</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>1.5</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>2.2</td> <td>2.1</td> <td><2.0</td> <td><1.0</td> <td><1.0J</td>	ine	ng/L	<1.0	<1.0	<1.0	<1.0J	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	2.1	<2.0	<1.0	<1.0J
mg/L 150 273 <td>ine in</td> <td>ng/L</td> <td><1.0</td> <td><1.0</td> <td>17</td> <td>5.6J</td> <td>17</td> <td>21</td> <td>2</td> <td>71</td> <td>35</td> <td>7.8</td> <td>3.3</td> <td>1.9</td> <td>6.6</td> <td>22</td> <td>22</td> <td>36</td> <td>170</td> <td>65</td> <td>651</td>	ine in	ng/L	<1.0	<1.0	17	5.6J	17	21	2	71	35	7.8	3.3	1.9	6.6	22	22	36	170	65	651
mg/L 65.1 106 484 569 616 324 417	nide	mg/L	150	273	-	-	-	-	-		-	-	-	-	-		43.6	2.09	-		-
Cells/ml 7.4 x 10³ 6.77 x 10³ 1.2 x 10³ 4.4 x 10³ 1.1 x 10° 4.0 x 10³ 6.3 x 10³ 7.1 x 10³ 6.3 x 10³ 7.1 x 10³ 6.2 x 10³ 4.2 x 10³ 4.2 x 10³ 4.2 x 10³ 4.5 x 10³ 4.5 x 10³ 3.5 x 10³ (1) <td>,</td> <td>mg/L</td> <td>65.1</td> <td>106</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td>484</td> <td>569</td> <td>616</td> <td>324</td> <td>417</td> <td></td> <td></td> <td></td>	,	mg/L	65.1	106	1	-	-	-	-	-	1	-	-	484	569	616	324	417			
(1) <td>alococcoides sp.</td> <td>cells/ml</td> <td>7.4×10^{3}</td> <td>$< 7.7 \times 10^{1}$</td> <td>1.2 X 10⁶</td> <td>4.4×10^4</td> <td>1.1×10^{5}</td> <td>4.0×10^4</td> <td></td> <td>6.3×10^{1}J</td> <td></td> <td>_</td> <td>_</td> <td><9.2 x 10¹</td> <td>111</td> <td>42</td> <td>3.1×10^{6}</td> <td>4.5×10^4</td> <td>3.5×10^4</td> <td>1.0×10^{5}</td> <td>3.6 X 10⁴</td>	alococcoides sp.	cells/ml	7.4×10^{3}	$< 7.7 \times 10^{1}$	1.2 X 10 ⁶	4.4×10^4	1.1×10^{5}	4.0×10^4		6.3×10^{1} J		_	_	<9.2 x 10 ¹	111	42	3.1×10^{6}	4.5×10^4	3.5×10^4	1.0×10^{5}	3.6 X 10 ⁴
(2)	alococcoides sp.	(1)																			
(3)	alococcoides sp.	(2)				-		-	-					-							
	Degraders	(3)											-	-		-				-	
8.15 8.83 7.81 7.17 6.52 7.66 8.1 8.31 8.31 m/V -170 -153.5 -2 -1	d Parameters																				
mV -170 -153.5 -32 -71 -181.9 -354 -7 -7 -5.33 -33.3 -33.1 -33.1 -33.1 -33.8 -7 -7 -7		:	8.15	8.83		7.81	7.19	7.28	7.17			-	-	6.52	-	-	99.7	8.1	8.31	8.44	7.3
mg/L 0.32 0.44 0.39 0.22 0.79 0.43 3.86 0.92 0.65 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05	,	Λm	-170	-153.5		-32	-71	-181.9	-354			-	-	-7	-		54.3	-36.3	-231	-390	-156
ms/cm 8.547 12.369 9.527 9.191 11.269 9.699 0.071 2.8.13 25.632 20.055 ·	olved Oxygen	mg/L	0.32	0.44		0.39	0.22	0.79	0.43					3.86			0.92	0.65	0.2	0.16	0.43
	cific Conductivity	ms/cm	8.547	12.369	-	9.527	9.191	11.269	669.6			-	-	0.071	-	-	28.13	25.632	20.055	19.235	16.707

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

AP-23-DO AP-23-DO AP-23-DO AP-23-DO AP-23-DO	A A	-23-DO	AP-23-DO	AP-23-DO	AP-23-DO		AP-23-DO	AP-23-DO AP-23-DO AP-23-DO	AP-23-DO		AP-24-DO	AP-24-DO	AP-24-DO	AP-24-DO	AP-24-DO	AP-24-DO	AP-24-DO	AP-24-DO AP-24-DO AP-24-DO	AP-24-DO
UNITS 10/12/2010 1/4/2011 4/5/2011 7/28/2011 10/2	1/4/2011 4/5/2011 7/28/2011	7/28/2011		10/2	10/25/2011	1/17/2012	4/3/2012	4/3/2012 1/20/2014 4/8/2014	_	8/6/2014	1/14/2009	4/2/2009	1/28/2010	4/22/2010	7/14/2010	10/12/2010	1/4/2011	4/5/2011	7/28/2011
mg/L		-		-		-	-			929	0.48	0.25		-		-		-	
mg/L										7560	7.46	11							
3/8m										9.9	<2.0	48.4							
dw		-					-				<0.50	-							-
mg/L										<1.0		0.58							
mg/L 620 2800 2000 920 220	2000 920	920		220	Н	26	190				440	780D	73	260	1901	480	2500	480	280
mg/L <10 20000 11000 150 5.5	11000 150	150		5.5	Н	9	4.1				<10	4600D	4.8	340	<1.0J	<5.0	11000	33	20000
mg/L 240 <400 1200 140 25	1200 140	140		25	-	<2.0	17				53	130	11	21	16J	15	250	120	<400N
mg/L 1100 5200 3100 1800 390	3100 1800	1800		390		42	290	-			930	1200D	48	330	2001	340	4900	740	<200N
mg/L <5.0 430 <50 19 <1.0	<50 19	19		<1.0		<0.50	<1.0				<5.0	2.5	<0.50	<1.0	C05.0>	<2.5	88	<5.0	<100U
ug/L 700D 200 240 340 120	240 340	340		120		26	130	120J	280	110	29	110	<4.0	<20	<201	<50	<100	<100	<40U
ug/L 2.5 <10 <10 <10 <2.0	<10 <10U	<100		<2.0		<2.0	<4.0	17.1	<5.0	<10	<1.0	<2.0	<2.0	<10	<101>	<25	<20	<20	<20N
ug/L 310D 2500D 640 500 65	640 500	200		65		230D	510D	4700DJ	610D	750	1.6	3.9	160	089	1900DJ	4600D	4500	2600	1400
mg/L				-	ш						117	283							
mg/L							-	2270	387	231	629	1950							
cells/ml \mid 7.1 x 10 ⁵ \mid 6.0 x 10 ⁴ \mid 3.7 x 10 ⁵ \mid 2.1 x 10 ⁴ \mid 2.7 x 10 ⁶	6.0×10^4 3.7×10^5 2.1×10^4	2.1×10^4		2.7×10^{6}	\vdash	5.5×10^{5}	1.4 x 10 ⁷	3.16×10^{3}	91	3.17×10^{3}	3.2×10^4	6.2×10^3	5.1×10^4	2.1×10^{6}	8.8 X 10 ⁴	1.8×10^5	1.5×10^{5}	1.8×10^{6}	8.0×10^{3}
(1)					Н														
(2)					H														
		-		1	Н	-	-	-								-			
					Н														
7.28 6.52 7.2	7.2	1		1	H	!	1	6.52		6.52	7.83	7.74	8.38	8.05	7.29	7.1	6.35	7.27	
mV -200 -348.6 -360	-360			1	Н			-238.2		-130.6	-238.3	-92.7	-223	-195	-33	-191	-133.1	-360	
mg/L 0.21 0.21 0.35	0.35				П			0.87		0.38	0.28	69.0	0.32	0.49	0.41	0.39	0.39	0.59	
ms/cm 17.112 16.25 16.20	16.20				Н			3.162		5.327	14.33	8.644	3.816	3.262	3.473	3.415	12.112	3.542	
					1														Ì

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

AP-33-DO	8/6/2014		4300	1890	<2.0	-	<1.0		-		-		-		24	13	850D	-	177	<10	-		-		6.73	-135	0.94	2.591
AP-33-DO			-		-	-	-		1		!	-	-		09	<50	2400	-	625	<92	-		-		-	-	-	
AP-33-DO	1/20/2014		:	-	1				:	-	:	1	:		61)	100DJ	4800DJ	-	3100	1.2 X 10 ¹ JD	:	-	:		6.57	-205.7	0.49	698.6
AP-25-DO	8/6/2014				-				-		-	-	-		<1.0	<1.0	<1.0		4.4	-			-		7.97	-114.4	0.77	0.275
AP-25-DO	4/8/2014				1				1		1	1	1		9.1	<1.0	47		2.5				1					
AP-25-DO	10/22/2013 1/20/2014				1				-		-	-	-		13J	<1.00J	110DJ		3.3				-		7.13	-73.9	0.52	3.503
AP-25-DO									:		1	1	-		5.7	<1.0	<1.0		1.8						8.02	111.1	2.05	0.106
AP-25-DO					1				1		1	1	1		1	1	1						1		10.02	-351	8.0	0.116
AP-25-DO			-		1	-	-		8.2	<1.0	<2.0	<1.0	<0.50		130D	<1.0	320D	-	-	1.1×10^4	-		1		7.62	-175.9	0.38	0.271
AP-25-DO	1/28/2010		-		-	-			<1.0	<1.0	<2.0	<1.0	<0.50		16	<1.0	18		-	2.6×10^4	-		-		8.04	-165	0.13	0.185
AP-25-DO			<0.10	0.11	6.7		<0.50		29	1.9	<2.0	15	<0.50		22	<20	1100	61.1	32.2	2.3×10^4			-		8.17	-133.5	0.22	0.495
AP-25-DO	1/14/2009		0.28	0.243	<2.0	<0.50			24	<1.0	<2.0	5.8	<0.50		<10	<5.0	440	34.9	19.3	9.5×10^5			-		7.03	-110.3	0.2	0.357
AP-24-DO			1670	1190	13.4		<1.0		1		1	1	1		<1.0	<1.0	10		13.6	5.6J			1		7.28	-165.7	0.44	2.152
AP-24-DO	4/8/2014		-		1	-			1		1	1	1		<1.0	<1.0	16		38.2	33	-		1		-		-	
AP-24-DO	1/20/2014				1				1		1	1	1		2.1	1.1	100D		1520	1			1		9.9	9.7-	4.27	1.834
AP-24-DO AP-24-DO AP-24-DO	4/3/2012				1				380	<5.0	54	420	<2.5		<8.0	<4.0	5100D			2.2×10^{7}			1					
AP-24-DO	UNITS 10/25/2011				1				780	750	710	1600	6.5		<8.0	<4.0	300			3.4×10^4			1					
	UNITS		mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	ses	ng/L	ng/L	ng/L	mg/L	mg/L	cells/ml	(1)	(2)	(3)		:	Λm	mg/L	ms/cm
	CONSTITUENT	Dissolved Metals	Iron	Manganese	Sulfate	Nitrate	Nitrate/Nitrogen	Metabolic Acids	Acetic acid	Lactic Acid	n-Butanoic acid	Propionic acid	Pyruvic Acid	Miscellaneous Analyses	Methane	Ethane	Ethene	Chloride	TOC	Dehalococcoides sp.	Dehalococcoides sp.	Dehalococcoides sp.	Mn Degraders	Field Parameters	Hd	ORP	Dissolved Oxygen	Specific Conductivity

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

BW-02 4/22/2010								<1.0	<1.0	<2.0	<1.0	<0.50		1400	<25	<25			<1.0 X 10 ¹			-					
BW-02 1/28/2010								<1.0	<1.0	<2.0	<1.0	<0.50		170	<2.0	<2.0			7.6×10^{3}			1					-
BW-02 BW-02 BW-02 BW-02 BW-02 1/13/2009 4/2/2009 7/14/2009 10/27/2009 1/28/2010								<1.0	<1.0	<2.0	<1.0	<0.50		100	<1.0	<1.0			1.6×10^4			-		6.25	13.9	0.22	0.213
BW-02 7/14/2009		-						<1.0	<1.0		<1.0	<0.50		71	<1.0	1.9		1	9.5×10^3	-		1		6.11	4	0.48	0.192
BW-02 4/2/2009		6.4	2.4	14.6		9.0		<1.0	<1.0	<2.0	<1.0	<0.50		1300	<25	<25	8.76	3.8	4.6×10^{3}			1		6.46	11.4	2.53	0.219
		8.16	2.32	16.4	<0.50			<1.0	<1.0	<2.0	<1.0	<0.50		1900	<20	<20	87.2	2.3	1.4×10^3			1		6.12	-49.5	0.35	0.361
BW-01 4/22/2010		-						<1.0	<1.0	<2.0	<1.0	<0.50		1300	<25	<25		-	8.6 X 10 ³							-	
BW-01 1/28/2010								<1.0	<1.0	<2.0	<1.0	<0.50		54	<1.0	<1.0			7.8×10^3								
BW-01 10/27/2009								<1.0	<1.0	<2.0	<1.0	<0.50		77	<1.0	<1.0			1.1 x 10 ⁴			-		6.21	-0.8	0.17	0.253
BW-01 7/14/2009								<1.0	<1.0		<1.0	<0.50		170	<2.0	<2.0			3.2×10^{3}			-		6.01	29	0.27	0.216
BW-01 4/2/2009		3.8	3.2	8.6		1.03		<1.0	<1.0	<2.0	<1.0	<0.50		260	<5.0	<5.0	67.3	1.6	1.2×10^4			1		6.46	35.3	5.5	0.174
BW-01 1/13/2009		2.1	2.27	16.1	<0.50			<1.0	<1.0	<2.0	<1.0	<0.50		1700	<20U	<20U	86.1	2.4	5.7×10^{2}			1		6.15	-45.5	0.29	0.348
AP-35-DO 8/6/2014		820	313	2.2		1.8					-			19	1.0	5.6		7.7	7.3J	-		-		6.16	-138.4	9.0	6.626
AP-35-DO 4/8/2014		-								-	:	-		62	4.3	38		029	<92	-	-	:		-		:	-
AP-35-DO 1/20/2014		:									-			24	4.3	36		1330	3.68 X 10 ³ D	:	1			7.49	-56.0	10.51	0.061
AP-34-DO 8/6/2014		068	0606	3.1		<1.0								43	<1.0	42		112	2.4)	-		-		69.9	-149.6	0.53	2.169
AP-34-DO 4/8/2014											-			25	<4.0	210		215	<85			1				-	
AP-34-DO 1/20/2014		1	-						-	-	-	-		197	391	240DJ		1010	2.3 X 10 ¹ JD	1	-	-		6.59	-153.7	0.48	5.261
UNITS		mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	S	ng/L	ng/L	ng/L	mg/L	mg/L	cells/ml 2.3 X 10 ¹	(1)	(2)	(3)			/m	mg/L	ms/cm
CONSTITUENT	Dissolved Metals	Iron	Manganese	Sulfate	Nitrate	Nitrate/Nitrogen	Metabolic Acids	Acetic acid	Lactic Acid	n-Butanoic acid	Propionic acid	Pyruvic Acid	Miscellaneous Analyses	Methane	Ethane	Ethene	Chloride	TOC	Dehalococcoides sp.	Dehalococcoides sp.	Dehalococcoides sp.	Mn Degraders	Field Parameters	Hd	ORP	Dissolved Oxygen	Specific Conductivity

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

CONSTITUENT	UNITS		BW-03 4/2/2009	BW-03 7/14/2009	BW-03 BW-03 BW-03 BW-03 BW-03 1/13/2009 4/2/2009 7/14/2009 10/27/2009 1/28/2010	BW-03 1/28/2010	BW-03 4/22/2010	BW-04 1/13/2009	BW-04 4/2/2009	BW-04 BW-04 7/14/2009 10/27/2009	BW-04	BW-04	BW-04	BW-04 7/14/2010	BW-04 BW-04 BW-04 BW-04 1/28/2010 4/22/2010 17/14/2010	BW-04 1/4/2011	BW-04 4/5/2011	BW-04 7/28/2011	BW-04 10/25/2011	BW-04 1/18/2012
Dissolved Metals																				
Iron	mg/L	12.6	18	1	-	1	-	9.46	10	1	1	1	-	1	1	1	!	-	-	-
Manganese	mg/L	5.64	8					3.82	3.2											
Sulfate	mg/L	14.8	13.3	-			-	7.7	3.2	-		-	-		-	-	-	-	-	-
Nitrate	mg/L	<0.50						<0.50												
Nitrate/Nitrogen	mg/L		0.59					-	<0.50				-		-	-				-
Metabolic Acids																				
Acetic acid	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.9	<1.0	98	<1.0	<1.0	2	280J	3.9	<1.0	<1.0	<1.0	<1.0	<1.0
Lactic Acid	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<101	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Butanoic acid	mg/L	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	351	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Propionic acid	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	110	<1.0	<1.0	<1.0	660J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Pyruvic Acid	mg/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.58	<5.0J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Miscellaneous Analyses	Si																			
Methane	ng/L	1900	2300	1300	45	800	2000	4800	9200	2700	2300	37	1800	2200J	3200D	2000	1100	290	240	17
Ethane	ng/L	<20	<40	<20	<1.0	<10	<20	<50	<100	<20	130	<1.0	<25	681	66	110	40	62	19	<1.0
Ethene	ng/L	<20	<40	<20	<1.0	<10	<20	66	1300	1100	220	56	830	950J	99	110	370	330	130	5.1
Chloride	mg/L	80.8	91.3			-		96.5	95.1	-		-	-	-	-	-	-			-
TOC	mg/L	3.8	2.8	-	-	-		22.1	15.2	-	-	1				-	1		-	-
Dehalococcoides sp.	cells/ml	2.0×10^{3}	1.5×10^3	1.7×10^4	1.0×10^4	*	<2.9 X 10 ¹	6.2×10^4	$< 2.2 \times 10^{1}$	2.4×10^{6}	7.6×10^4	1.4 x 10 ⁴	$< 2.9 \times 10^{1}$	2.5×10^{5}	$< 8.0 \times 10^{2}$	2.3×10^{3}	$<6.3 \times 10^{1}$	1.4×10^{2}	5.5×10^4	1.8×10^4
Dehalococcoides sp.	(1)							-		-							-			-
Dehalococcoides sp.	(2)							-	-	-		-				-		-	-	
Mn Degraders	(3)									-							-			-
Field Parameters																				
Hd		6.43	6.67	6.19	6.43			7.17	7.38	6.81	6.9						7.52	7.17	7.1	
ORP	Λm	-102.1	-16.7	-84	-53.7			-154	-140.4	-138	-116.7						-367	-179.5	-141	
Dissolved Oxygen	mg/L	0.62	1.27	0.25	0.12			0.39	0.36	0.13	0.2						0.24	0.24	0.43	
Specific Conductivity	ms/cm	0.398	0.237	0.29	0.279	-	-	1.134	0.821	1.186	0.701	-				-	69.0	0.484	0.567	-

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

CONSTITUENT	UNITS	BW-04 4/3/2012	BW-04 8/21/2012	BW-04 BW-04 8/21/2012 11/28/2012	BW-04 2/6/2013	BW-04 4/11/2013	BW-05	BW-05 4/2/2009 7	BW-05	BW-05	BW-05	BW-05	BW-05	BW-05 10/12/2010		BW-05 4/5/2011 7	BW-05	BW-05 BW-05 BW-05 4/5/2011 7/28/2011 10/25/2011	BW-05 1/18/2012	BW-05 4/3/2012
Dissolved Metals																				
Iron	mg/L						20.1	27						-						
Manganese	mg/L						4.7	4.9												
Sulfate	mg/L						<2.0	3.2												
Nitrate	mg/L						<0.50													
Nitrate/Nitrogen	mg/L							0.57	-	-		-		-	-	-			-	-
Metabolic Acids																				
Acetic acid	mg/L	<1.0					81	41	44	1.7	<1.0	43	2eJ	32	<1.0	20	89	53	30	<1.0
Lactic Acid	mg/L	<1.0					<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Butanoic acid	mg/L	<2.0					2.1	<2.0		<2.0	<2.0	<2.0	4.83	<2.0	<2.0	<2.0	9.9	<2.0	<2.0	<2.0
Propionic acid	mg/L	<1.0					140	43	34	<1.0	<1.0	43	887	1.5	<1.0	<1.0	120	20	<1.0	<1.0
Pyruvic Acid	mg/L	<0.50					<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Miscellaneous Analyses	S																			
Methane	ng/L	1200D	096	970D	1200D	3100D	<100	210	340	260	490	<100	1600J	1400	G0068	200	920	110	710	G009
Ethane	ng/L	28	09	140	14	23	<20	<100	<20	23	<40	<20	<25J	130	1000	<20	31	<25	<25	67
Ethene	ng/L	20	310	180	∩0.5>	<20	4400	2100	3600	1900	2300	4700	1900J	700	26	3700	1500	1700	4000D	750D
Chloride	mg/L						205	130												
TOC	mg/L		5.5	3.9	15.3	8.9	106	42.1						-	-					
Dehalococcoides sp.	cells/ml	cells/ml <1.1 x 101	$< 3.7 \times 10^{1}$	4.1×10^{6}	$< 1.0 \times 10^{2}$	<1.2x10 ¹	3.3×10^4	1.8 x 10 ⁴ 1	1.2×10^{5}	4.5 × 10 ⁴	3.4×10^4	1.1 X 10 ⁶	2.4 X 10 ⁴	8.7×10^3	6.5×10^{2}	5.9 x 10 ⁴	5.5×10^{2}	1.9×10^{5}	1.2×10^4	$< 1.0 \times 10^{1}$
Dehalococcoides sp.	(1)								-	-		-		-	-					
Dehalococcoides sp.	(2)																			
Mn Degraders	(3)						-	-	-		-	-		-	-		-	-		
Field Parameters																				
Н				6.79	6.79		7.2	7.41	7.18	7.22				-		79.7	7.34	7.36		
ORP	Λm			-89.1	-93.5		-171.3	-165.6	-185	-138.8				-		-366	-170.8	-145.5		
Dissolved Oxygen	mg/L			0.26	0.32		1.11	0.27	0.34	0.43						0.34	0.43	99.0		
Specific Conductivity	ms/cm		-	0.602	0.635	1	0.952	0.862	0.692	0.571	-	-	-	1	-	0.617	0.816	0.64		

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

8 BW-08	10 4/22/2010		-		-	-	-		<1.0	<1.0	<2.0		<0.50		210	<10	620			0 ⁴ <2.6 X 10 ¹	-	-	-		-	-	
BW-08	1/28/2010		-	-	-	1	-		<1.0	<1.0	<2.0	<1.0	<0.50		81	12	280	-	-	4.8×10^4	-	-	1		-	-	
BW-08	10/27/2009						-		25	<1.0	<2.0	1.9	<0.50		1000	<100	2900			5.6×10^{5}			-		7.39	-191.5	000
BW-08	7/14/2009				-	-			160	<1.0		140	<0.50		520	<100	0069	-	-	1.4×10^{5}					7.1	-162	770
BW-08	4/2/2009		27	7.9	2.5		<0.50		39	<1.0	<2.0	26	<0.50		350	<100	7300	104	34.4	1.3×10^3					7.36	-138.4	0.7
BW-08	1/13/2009		18.5	5.26	3.7	<0.50			7	<1.0	<2.0	2.5	<0.50		220	<20	1500	124	10.1	4.5×10^{2}			-		6.95	-160.2	0
BW-06	4/11/2013				-	-	-								13000D	<100	<100		72.2	$< 2.4 \times 10^{1}$			-			-	
BW-06	2/6/2013				1	-	1								11000D	<100U	<100U		34.1	<1.1 x 10 ²			1		6.3	-62.5	,,,
BW-06	11/28/2012				-	-	-								G300D	89	140		167	<4.6 × 10 ¹			1		-	-	
BW-06	8/21/2012 11/28/2012		-	-	1	1	1			-	-	-	-		320	20	22		271	$< 3.3 \times 10^3$	-	-	1		-	1	
BW-06	4/3/2012				-	1	1		63	<1.0	<2.0	<1.0	<0.50		1700	62	3200			1.2×10^{5}			1			1	
BW-06	1/18/2012 4/3/2012				1	1	1		110	<1.0	2.6	28	<0.50		270	<5.0	3900□			3.1×10^4			1			1	
BW-06	7/28/2011 10/25/2011				1	1	1		1.5	<1.0	<2.0	<1.0	<0.50		51	<5.0	380			2.5×10^4			-		7.29	-87.9	000
BW-06	7/28/2011				1	1	1		180	<2.0	8.7	300	<1.0		210D	<1.0	2800□			9.9×10^{3}			-		7.15	-157	0,0
BW-05	4/11/2013				-	-	-								18000	<200	<200		180	<1.4 x 10 ¹					-	-	
BW-05	2/6/2013				1	-	1								20000	<200U	<200U		105	$< 1.2 \times 10^{2}$					6.55	15.4	C
BW-05	11/28/2012				1	-	-								11000D	<20	<20		200	1.2×10^{6}			1		6.34	-135.6	.00
BW-05	8/21/2012				1	1	1								4800D	49	170		008	cells/ml <3.3 x 10 ³			-			1	
	UNITS		mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	Se Se	ng/L	ng/L	ng/L	mg/L	mg/L	cells/ml	(1)	(2)	(3)		-	Λm	"
	CONSTITUENT	Dissolved Metals	Iron	Manganese	Sulfate	Nitrate	Nitrate/Nitrogen	Metabolic Acids	Acetic acid	Lactic Acid	n-Butanoic acid	Propionic acid	Pyruvic Acid	Miscellaneous Analyses	Methane	Ethane	Ethene	Chloride	100	Dehalococcoides sp.	Dehalococcoides sp.	Dehalococcoides sp.	Mn Degraders	Field Parameters	Hd	ORP	

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

		BW-08	BW-08	BW-08	BW-08	BW-08	BW-08	BW-08	BW-08	BW-08	BW-08	BW-08	BW-08	BW-09	BW-09	BW-09	BW-09	BW-09
CONSTITUENT	UNITS	0	10/12/2010	1/5/2011	4/5/2011	7/28/2011	10/25/2011	1/18/2012	4/3/2012	8/21/2012	11/28/2012	2/6/2013	4/11/2013	1/13/2009	4/2/2009	7/14/2009	10/27/2009	1/28/2010
Dissolved Metals																		
Iron	mg/L							-		-		-		19.6	41			
Manganese	mg/L		-					-				-		60.7	11			
Sulfate	mg/L		-				-	1	-		-	-	-	10.3	2.4	-		-
Nitrate	mg/L	-	-	-	-	1	-	-	1	-	-	-	-	<0.50	-	-	-	-
Nitrate/Nitrogen	mg/L	-	-	-	-	1	1	1	1	-	-	1	-	1	<0.50	-	1	-
Metabolic Acids																		
Acetic acid	mg/L	130J	270	290	21	220	1.8	12	100					9.9	17	260	99	<1.0
Lactic Acid	mg/L	<2.0J	<2.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0			-		<1.0	<1.0	<2.0	1.5	<1.0
n-Butanoic acid	mg/L	22J	4.8	5.9	<2.0	11	<2.0	<2.0	<2.0	-		-		<2.0	<2.0		<2.0	<2.0
Propionic acid	mg/L	260J	110	120	<1.0	250	<1.0	<1.0	2.2	-		-		<1.0	2.2	250	<1.0	<1.0
Pyruvic Acid	mg/L	<1.0J	<1.0	<1.0	<0.50	<1.0	<0.50	<0.50	<0.50	-		-		<0.50	<0.50	<1.0	<0.50	<0.50
Miscellaneous Analyses	Si																	
Methane	ng/L	1500DJ	4900D	16000D	0068	2800	250	1600D	4300D	1700	15000D	21000D	19000	099	099	2500	2800	370
Ethane	ng/L	29J	75	1700	099	<100	17	20	82	40	40	<200U	<200	42	<20	74	140	22
Ethene	ng/L	3800DJ	1300D	250	1900	4800	1000D	260	3400D	39	<20	<200U	<200	1200	2000	4600	4600	830
Chloride	mg/L													131	174			
TOC	mg/L	-	-	-						194	630	181	52	8.6	13.8	-		
Dehalococcoides sp.	cells/ml	2.3 X 10 ⁴	1.0×10^4	$<1.0 \times 10^{1}$ U	3.7×10^4	2.1×10^{2}	4.6×10^4	2.9×10^{5}	1.8×10^{5}	$< 3.7 \times 10^{1}$	<3.1 x 10 ¹	<8.3 x 10 ¹	3.3×10^3	1.9×10^3	6.7×10^{3}	4.0×10^4	1.2×10^{5}	8.3×10^4
Dehalococcoides sp.	(1)	-												-				-
Dehalococcoides sp.	(2)													-	-			-
Mn Degraders	(3)							-		-		-			-			
Field Parameters																		
Hd	-				2.7	7.21	7.43	-		-	6.15	6.59		90'2	7.34	7.24	7.51	
ORP	Λm				-373	-167.6	-116.7				-88.1	-106.3		-167.1	-106.5	-174	-197.9	
Dissolved Oxygen	mg/L		-		0.22	0.36	0.82	-			0.26	0.72		0.22	0.2	0.11	0.14	
Specific Conductivity	ms/cm	-	-	-	0.608	1.408	0.565	1	-	1	2.384	1.754	-	0.724	669.0	1.463	1.094	-

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

		BW-09	BW-09	BW-09	BW-09	BW-09	BW-09	BW-09	BW-09	BW-09	WW-009	600-WW	600-WW	MW-009	MW-009	00-WM	MW-009	MW-009	WW-009
CONSTITUENT	UNITS	4/22/2010	_	Ξ	1/18/2012	4/3/2012	-	11/28/2012	2/6/2013		1/14/2009	4/2/2009		_	1/28/2010	4/22/2010	7/14/2010	10/12/2010	1/4/2011
Dissolved Metals																			
Iron	mg/L	1	1	!	1	-	-	1	1	-	59.5	70	-	1	1	-		1	1
Manganese	mg/L	1	1	1	-	-	-	-	-	-	6.98	9	-	1	1	-		-	1
Sulfate	mg/L	1	-	-	-	-	-	-	-	-	<2.0	<2.0		1	1	-			-
Nitrate	mg/L	-	-	-					-	-	<0.50			-	-				-
Nitrate/Nitrogen	mg/L		-						-		-	<0.50		-	-				
Metabolic Acids																			
Acetic acid	mg/L	<1.0	530	<1.0	32	85			-		210E	390	1000	200	250	009	320J	6.1	<1.0
Lactic Acid	mg/L	<1.0	<5.0	<1.0	<1.0	<1.0		-	-	-	<1.0	<1.0	370	<5.0	<2.0	<5.0	<2.0J	<1.0	<1.0
n-Butanoic acid	mg/L	<2.0	31	<2.0	<2.0	<2.0			-	-	4.9	11		30	12	63	11)	<2.0	<2.0
Propionic acid	mg/L	<1.0	089	<1.0	4.1	4.2					7.7	17	2900	810	200	370	74.)	<1.0	<1.0
Pyruvic Acid	mg/L	<0.50	<2.5	<0.50	<0.50	<0.50			-	-	<0.50	<0.50	<20	<2.5	<1.0	<2.5	<1.0J	<0.50	<0.50
Miscellaneous Analyses																			
Methane	ng/L	640	7500D	7400	2200	4500D	9400D	17000D	22000D	17000	15000	17000	9500	14000	16000	15000	15000J	12000	20000D
Ethane	ng/L	<10	200	1500	160	320	450	<100	<200U	<200	1300	1900	360	330	870	1200	1200J	930	1500
Ethene	ng/L	006	3500D	280	1100	4100D	370	<100	<200U	<200	<250	<250	1600	069	<250	1000	<250J	220	430
Chloride	mg/L										822	711							
TOC	mg/L						1010	930	124	144	109	183							
Dehalococcoides sp.	cells/ml	$< 2.4 \times 10^{1}$	5.1×10^{1}	1.2×10^{3}	1.5×10^5	3.1×10^{5}	$< 3.1 \times 10^{1}$	<3.1 x 10 ¹ ·	$< 7.7 \times 10^{1}$	$< 3.1 \times 10^{1}$	8.8×10^{3}	1.5×10^4	2.7×10^{5}	1.2×10^{5}	2.5×10^4	5.6×10^{5}	9.0×10^{3}	<6.4 X 10 ¹	3.3×10^3
Dehalococcoides sp.	(1)	-	-	-					-	-	-			-	-				-
Dehalococcoides sp.	(2)	1	-	-				-	-	-	-			1	1				
Mn Degraders	(3)	-	-	-					-	-	-			-	-				-
Field Parameters																			
Hd	:	-	6.71	7.17				6.3	6.55	-	6.83	6.87	6.51	6.51	-				-
ORP	Λm		-163.4	-113.6				-111.7	-118.1		-168.2	-143.3	-116	-105.1	-				-
Dissolved Oxygen	mg/L	1	0.62	0.55		-		0.15	0.22	-	0.52	0.74	0.74	0.31	1				
Specific Conductivity	ms/cm	-	3.207	0.636				2.362	1.725	-	3.53	3.435	7.494	5.223	-				-

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

4/5/2011 7/28/2011 10/25/2011 1/17/2012 4/3/2012
<1.0U <1.0 <1.0 <1.0
<1.0U <1.0 <1.0 <1.0
<2.0U <2.0 <2.0 <2.0
<1.0U <1.0 <1.0 <1.0
<0.50 <0.50U <0.50U <0.50 <0.50
1900
1400 1100 2000 1200
1.5×10^{5} 2.1×10^{2} $<4.0 \times 10^{1}$ $<3.7 \times 10^{2}$
20.7 7.05
128.4
0.39
5.494 4.105 2.545

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

OB-09-BR				œ	ж.		OB-09-BR				OB-09-BR	OB-09-BR	OB-09-BR	OB-09-DO)	OB-09-DO	OB-09-DO
1/28/2010 4/22/2010 7/1		7/14/2010	0 10/12/2010	1/5/2011	4/6/2011	7/28/2011	10/25/2011	1/18/2012	4/3/2012	8/21/2012	11/28/2012	2/6/2013	4/11/2013	1/13/2009	4/9/2009	4/27/2009	7/14/2009
														<0.100	<0.10		-
														<0.0100	<0.010		
			-	-		-	1	-					-	2.4	4.7		-
			-										-	1.12			
		1													1.63		
<1.0 <1.0		2.7J	2.4	9	2.8	8.6	1.5	110	6.2	-	1	1		<1.0	-	<1.0	<1.0
<1.0 <1.0		<1.0J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1	-	-	<1.0		<1.0	<1.0
<2.0 <2.0		<2.0J	<2.0	<2.0	<2.0	<2.0	<2.0	2.7	<2.0					<2.0		<2.0	
<1.0 <1.0		1.3J	<1.0	<1.0	<1.0	<1.0	<1.0	58	<1.0	1	-	1		<1.0		<1.0	<1.0
<0.50 <0.50		<0.50J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	1	-	-	<0.50	-	<0.50	<0.50
170 340		260DJ	490	1300D	720	1600D	1200	099	1700D	2500D	2100	2300	1800	<2.0	10000	-	2100
<2.0 <5.0		<5.0J	<10	<10	<10	<10	<20	<10	<10	<20	<20	~52N	<25	<1.0	320		130
3 8.1		16J	13	28	20	34	<20	11	42	99	22	64	28	<1.0	320		73
														32.6	44.6		
						-				12.3	13.2	10.3	11.5	2.2	4.4		-
$<6.7 \times 10^{1}$ $<3.1 \times 10^{4}$	04	1	1	3.6×10^{3}			1	1.5×10^3			-		1	$< 2.0 \times 10^{1}$	$< 1.0 \times 10^{1}$		3.0×10^{5}
																	-
			-										-				
7.48		8.51	7.65	8.51	8.10							7.53	-	6.48	6.22	6.52	6.95
-174		-63	-311	-405.5	-363							-172.1		9.7	-41	37.9	-126
0.36	l	0.26	0.31	29.0	0.31		-					0.4	-	22.0	0.14	0.34	0.12
0.146		0.157	0.17	0.173	0.190	-	1	-	-	-	1	0.31		0.105	0.233	0.161	0.21

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

			OB-09-DO OB-09-DO OB-09-DO OB-09-DO	OB-09-DO	OB-09-DO			0	_		OB-09-DO	OB-09-DO				OB-09-DO	S-60-BO	S-60-BO	OB-09-S
CONSTITUENT	ONITS	10/28/2009	1/28/2010	4/22/2010	7/14/2010	10/12/2010	1/5/2011	4/6/2011	7/28/2011	10/25/2011	1/18/2011	4/3/2012	8/21/2012	11/28/2012	2/6/2013	4/11/2013	4/9/2009	4/27/2009	7/14/2009
Dissolved Metals																	9		
Iron	mg/L	-	-	-	-	:	-	!	1	-	1		:	1	-	:	16	!	-
Manganese	mg/L						-					-		-	-		2		
Sulfate	mg/L		1		-	-	-	-	-	-		-	-	1		1	<2.0	-	-
Nitrate	mg/L	-	-		-	-	-	-	-			-		-			-	-	
Nitrate/Nitrogen	mg/L		-		-	-	-		-								<0.50		-
Metabolic Acids																			
Acetic acid	mg/L	2.8	<1.0	72	4.03	3.7	1.5	1.2	2.1	7.8	1.4	<1.0						150	099
Lactic Acid	mg/L	<1.0	<1.0	<1.0	<1.0J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0					-	<1.0	<20
n-Butanoic acid	mg/L	<2.0	<2.0	2.5	<2.0J	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		-			-	31	-
Propionic acid	mg/L	<1.0	<1.0	140	<1.0J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0					-	230	1700
Pyruvic Acid	mg/L	<0.50	<0.50	<0.50	<0.50J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		-				<0.50	<10
Miscellaneous Analyses																			
Methane	ng/L	610	180	4500	13000DJ	3000	12000D	3000	009	1800D	1200	1200	1800	330	240	840D	10000	-	10000
Ethane	T/Bn	16	<2.0	140	2407	80	410	100	<10	<10	<25	<20	<20	<5.0	<5.00	<5.0	<200		<200
Ethene	ng/L	31	<2.0	110	210J	25	330	80	11	37	<25	<20	<20	<5.0	<5.00	5.6	4300	-	2000
Chloride	mg/L		-		-	-	-		-								122		-
TOC	mg/L		-		-	-	-		-			-	29.7	8.8	6.4	5.5	231	-	
Dehalococcoides sp.	cells/ml	3.5×10^{5}	5.1×10^{3}	6.1×10^{5}			2.4×10^{5}				1.8×10^{5}							1.0×10^4	9.6×10^{5}
Dehalococcoides sp.	(1)	-	:	-	1	-	1	-	1	-	-	-	1	-	-	:	-	-	-
Dehalococcoides sp.	(2)	-	1	-	1	1	1	-	1	1	1	1	1	1	-	1	1	-	-
Mn Degraders	(3)	-	-		-	-	-	-	-			-		-			-	-	-
Field Parameters																			
Hd	:	69.9	6.52		6.71	6.75	6.82	6.43	-			-		9	6.54		6.43	6.43	6.3
ORP	Λm	-130.7	-65	1	-34	-135	-171.6	-390	1	1	1	-	1	-99.2	-16.1	1	-126	-106.4	-100
Dissolved Oxygen	mg/L	0.32	0.26		0.19	0.27	0.32	0.16	-			-	1	0.15	2.26	-	0.53	0.24	0.17
Specific Conductivity	ms/cm	0.226	0.124		0.266	0.259	0.225	0.105						0.212	0.112		14	11.583	10.859

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

FNELFIT	V.	OB-09-S OB-09-S	OB-09-S	OB-09-S	OB-9-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S	OB-09-S
Dissolved Metals					+-				+						+			
Iron	mg/L					-			-				-				-	
Manganese	mg/L																	
Sulfate	mg/L																	
Nitrate	mg/L																	
Nitrate/Nitrogen	mg/L																	
Metabolic Acids																		
Acetic acid	mg/L	92	23	310	160J	250	870	390	940	360	<1.0	54					-	
Lactic Acid	mg/L	<1.0	<1.0	290	220J	<2.0	<10	<5.0	<10	<2.0	<1.0	<1.0					-	-
n-Butanoic acid	mg/L	16	6	100	17.1	8.5	270	100	48	74	<2.0	<2.0	-	-			-	
Propionic acid	mg/L	110	25	830	210J	170	1700	510	1100	300	<1.0	19						-
Pyruvic Acid	mg/L	<0.50	<0.50	<2.5	<1.0J	<1.0	<5.0	<2.5	<5.0	<1.0	<0.50	<0.50	-				-	
Miscellaneous Analyses	Se																	
Methane	T/6n	3700	12000	12000	130001	0006	25000D	25000	21000D	18000	18000	27000D	13000	15000	21000D	18000	10000	16000D
Ethane	ng/L	<20	320	<200	240J	370	470	<200	330	290	310	069	<200	<200	<200U	<200	<200	170
Ethene	T/6n	280	820	1300	17001	290	1000	1000	<200	<250	<250	<250	<200	<200	<200U	<200	<200	<130
Chloride	mg/L																	
TOC	mg/L								-	-			210	32.7	23	34.9	81	28.1
Dehalococcoides sp.	cells/ml	2.4×10^{6}	1.5×10^5	9.6×10^5	$< 1.0 \times 10^{2}$	7.2×10^3	8.1×10^{3}	9.4×10^5	1.6×10^3	4.9×10^5	4.8×10^4	6.4×10^{5}	$< 3.3 \times 10^3$	<9.1 x 10 ¹	$< 9.7 \times 10^{1}$	$< 1.2 \times 10^{2}$	<6.8 x 10 ¹	
Dehalococcoides sp.	(1)					-			-				-				-	-
Dehalococcoides sp.	(2)																	-
Mn Degraders	(3)					-			-	-			-		-		-	-
Field Parameters																		
Hd	-	-	6.45		6.42	6.3	6.16	8.9	-				-	5.8	6.43		6.52	6.65
ORP	Λm	-102	-102		-43	-98	-144.9	-367						-62.2	-77.9		-34.8	-90.8
Dissolved Oxygen	mg/L	0.31	1.49		0.44	0.19	0.40	0.54						0.08	0.3		3.11	0.93
Specific Conductivity	ms/cm	7.857	12.945		6.045	6.144	-	11.86		-	-	-	-	0.276	1.539		2.151	1.88

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

CONSTITUENT	STINU	OB-09-S 1/21/2014	OB-09-S	OB-15-S	OB-15-S	OB-15-S	OB-15-S	OB-15-S	OB-15-S 7/28/2011	OB-15-S	OB-15-S
Dissolved Metals											
Iron	mg/L	-	-	-	-		-		-	-	-
Manganese	mg/L			-	-		-			-	1
Sulfate	mg/L	-	-	-	-		-			-	
Nitrate	mg/L	-	-	-	-		-		-	-	-
Nitrate/Nitrogen	mg/L		-			-		-		-	-
Metabolic Acids											
Acetic acid	mg/L	-	-	180	<1.0	12	12	120	029	230	22
Lactic Acid	mg/L			420	<1.0	490	<1.0	<1.0	<10	<2.0	<1.0
n-Butanoic acid	mg/L	-	-	-	<2.0	<10	<2.0	4.6	120	37	<2.0
Propionic acid	mg/L			310	<1.0	24	11	110	1200	310	31
Pyruvic Acid	mg/L			<1.3U	<0.50	<2.5	<0.50	<0.50	<5.0	<1.0	<0.50
Miscellaneous Analyses	Se										
Methane	ng/L	15000	14000	22	92	390	5400D	12000D	8100	11000D	21000D
Ethane	ng/L	<250	<250	<1.0U	<1.0	<5.0	<5.0	150	<100	210	400
Ethene	ng/L	<250	<250	06	24	170	540D	210	230	480	160
Chloride	mg/L										
TOC	mg/L	26.4	29.8								
Dehalococcoides sp.	cells/ml			8.5×10^4	5.2×10^3	<7.7 X 10 ¹	8.8×10^4	1.1×10^{5}	6.1×10^{1}	1.8×10^{7}	$<6.6 \times 10^{1}$
Dehalococcoides sp.	(1)										
Dehalococcoides sp.	(2)										
Mn Degraders	(3)					-					
Field Parameters											
hd				6.64					6.29	6.52	6.52
ORP	Λm			-163					-145	-94.2	-94.2
Dissolved Oxygen	mg/L			0.37					0.24	0.41	0.41
Specific Conductivity	ms/cm			9.071					14.038	3.543	3.543

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

STR-03 1/5/2011			1	-				<1.0	<1.0	<2.0	<1.0	<0.50		5.5	<1.0	<1.0			1.6 X 10 ³	1	-	1				1	
`	L																										
STR-03 10/12/2010		1	1	1	1	1		<1.0	<1.0	<2.0	<1.0	<0.50		<2.0	<1.0	<1.0	!		<6.4 x 10 ¹	1	1	1		1	!	8.02	
STR-03 7/14/2010		1	1	1	1	1		1.5J	<1.0J	<2.0J	<1.0J	<0.50J		4.3J	<1.0J	<1.0J	-		4.2×10^{3}		-			1	-	6.05	
STR-03 4/22/2010		1	-	1	1	1		<1.0	<1.0	<2.0	<1.0	<0.50		46	1.5	3.5	-		<2.2 X 10 ¹					1	-		
STR-03 1/28/2010		-	-	-	-	1		1.8	<1.0	<2.0	<1.0	<0.50		24	1.1	3.6			5.2×10^{3}					-			
STR-03 10/27/2009						-		<1.0	<1.0	<2.0	<1.0	<0.50		4.5	<1.0	<1.0			2.0×10^4								
STR-03 7/14/2009						-		<1.0	<1.0		<1.0	<0.50		270	13	13			$< 1.0 \times 10^{1}$								
STR-03 4/9/2009		3.5	2.6	22		0.86		<1.0	<1.0	<2.0	<1.0	<0.50		39	1.3	6.2	1320	1.6	5.9×10^{2}		-						
STR-03 1/13/2009		1.44	0.577	32.6	1.58			<1.0	<1.0	<2.0	<1.0	<0.50		20	<1.0	<1.0	1790	1.7	<1.0 × 10 ¹								
OB-15-S 8/6/2014					-	-								15000D	440	<130		36.5									
OB-15-S 4/8/2014		1	1	-	1	1		-	-	-	-	-		11000	340	160	1	17.5	<150	-	-	-		1	1		
OB-15-S 1/21/2014														12000	310	210		59						6.61	-40.3	2.09	010
OB-15-S 10/22/2013														13000	340	<250U		187	$< 8.6 \times 10^{1}$					6.65	-105.2	0.2	101
OB-15-S 4/11/2013														15000	280	<250		543	1.1 x 10 ⁵								
OB-15-S 2/6/2013						-								24000	280	<250U		620	$< 1.1 \times 10^{2}$					6.48	-96.5	66.0	0,0
OB-15-S 11/28/2012														18000	300	<250		1670	$< 1.7 \times 10^{2}$								
OB-15-S 8/21/2012			-	-	-	-								21000	300	280	-	1750	$< 3.3 \times 10^{3}$						-		
OB-15-S 4/3/2012		-	1	1	1	1		9.4	<1.0	<2.0	<1.0	<0.50		21000	370	310	1		7.5×10^{5}					-	1		
UNITS		mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L		ng/L	ng/L	ng/L	mg/L	mg/L	cells/ml	(1)	(2)	(3)		:	Λm	mg/L	
CONSTITUENT	Dissolved Metals	Iron	Manganese	Sulfate	Nitrate	Nitrate/Nitrogen	Metabolic Acids	Acetic acid	Lactic Acid	n-Butanoic acid	Propionic acid	Pyruvic Acid	Miscellaneous Analyses	Methane	Ethane	Ethene	Chloride	TOC	Dehalococcoides sp.	Dehalococcoides sp.	Dehalococcoides sp.	Mn Degraders	Field Parameters	Hd	ORP	Dissolved Oxygen	

TABLE 5
Water Quality Data
Bioremediation Parameters
2009 to Present
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

CONSTITUENT	UNITS	STR-03 4/5/2011	STR-03 7/28/2011	STR-03 10/25/2011	STR-03 1/18/2011	STR-03 4/3/2012	UNNAMED STREAM 1/14/2009	UNNAMED STREAM 4/9/2009	UNNAMED STREAM 7/14/2009	UNNAMED UNN	UNNAMED STREAM 1/28/2010	UNNAMED STREAM 4/22/2010
Dissolved Metals												
Iron	mg/L						47.8	22				
Manganese	mg/L						68.9	6.1				
Sulfate	mg/L	-	1	-	1		20.8	20.7		-	-	1
Nitrate	mg/L	-	1	-	-		<0.50			-	-	-
Nitrate/Nitrogen	mg/L							<0.50				
Metabolic Acids												
Acetic acid	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Lactic Acid	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Butanoic acid	mg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0
Propionic acid	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Pyruvic Acid	mg/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Miscellaneous Analyses												
Methane	ng/L	2	2	49	170D	7.7	470	240	240	2300	360	260
Ethane	ng/L	<1.0	<1.0	2.5	10	<1.0	37	15	14	110	31	11
Ethene	ng/L	<1.0	<1.0	7.8	36	<1.0	37	24	65	61	70	46
Chloride	mg/L						1460	1170				
TOC	mg/L	-	-	-			16.7	3.7	-			-
Dehalococcoides sp.	cells/ml	3.1×10^{3}	$< 1.0 \times 10^{1}$	4.8×10^{3}	1.5×10^4		6.7×10^{3}	3.8×10^{2}	1.2×10^{5}	2.1×10^4	9.7×10^{2}	<2.2 X 10 ¹
Dehalococcoides sp.	(1)											
Dehalococcoides sp.	(2)											
Mn Degraders	(3)											
Field Parameters												
Hd												
ORP	λm											
Dissolved Oxygen	mg/L	10.12	2.87				-					
Specific Conductivity	ms/cm	-										-

Water Quality Data Bioremediation Parameters Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts 2009 to Present TABLE 5

		UNNAMED	UNNAMED	UNNAMED	UNNAMED UNNAMED UNNAMED UNNAMED UNNAMED UNNAMED UNNAMED UNNAMED UNNAMED	UNNAMED	UNNAMED	UNNAMED	UNNAMED	UNNAMED
		STREAM	STREAM	STREAM	STREAM	STREAM	STREAM	STREAM	STREAM	STREAM
CONSTITUENT	UNITS	10/12/2010	1/4/2011	4/5/2011	10/25/2011	1/17/2012	4/3/2012	8/21/2012	2/6/2013	4/11/2013
Dissolved Metals										
Iron	mg/L									
Manganese	mg/L									-
Sulfate	mg/L	-				-	1	-		
Nitrate	mg/L	-				-	-	-		-
Nitrate/Nitrogen	mg/L	-				-	-	-		-
Metabolic Acids										
Acetic acid	mg/L	4.5	<1.0	<1.0	<1.0	<1.0	<1.0			-
Lactic Acid	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			-
n-Butanoic acid	mg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			-
Propionic acid	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			-
Pyruvic Acid	mg/L	1.4	<0.50	<0.50	<0.50	<0.50	<0.50			-
Miscellaneous Analyses	es									
Methane	ng/L	<2.0	008∠	290	€20D	200	350D	160	540D	370D
Ethane	ng/L	<1.0	25	19	25	12	26	14	33	17
Ethene	ng/L	<1.0	61	21	32	9.6	49	22	100	35
Chloride	mg/L									
TOC	mg/L							16.2	4.5	13.8
Dehalococcoides sp.	cells/ml	1.6×10^3	5.2×10^{2}	$< 1.0 \times 10^{1}$	1.4×10^5	<4.0 X 10 ¹	4.5×10^3	$<5.0 \times 10^{1}$	$<5.9 \times 10^4$ J	<1.1 x 10 ¹
Dehalococcoides sp.	(1)									
Dehalococcoides sp.	(2)									
Mn Degraders	(3)	-		-						-
Field Parameters										
Hd	:	-		-						-
ORP	Λm			-						
Dissolved Oxygen	mg/L	8.48	-	4.39	-					-
Specific Conductivity	ms/cm		-							-
		h - 4	1							

Notes: <= Less than detection limit
--- = Not Sampled
mg/L = Miligrams per liter
ug/L = Milisorams per liter
m/ = Milivolt
ms/cm = Milisorams per liter
m/ = Milisorams per li

J - Estimated concentration

Permanganate Concentrations in Groundwater Former Varian Facility Site Beverly, Massachusetts 150 Sohier Road Table 6

	April 2011	011	October-November 2011	mber 2011	April 2012	012	November 2012	ır 2012	April-May 2013	y 2013	October 2013	2013	April 2014	2014
	NaMnO4		NaMnO4	Result	NaMnO4	Result	NaMnO4	Result	NaMnO4	Result	NaMnO4		NaMnO4	Result
Well ID	Result (mg/L)	(percent)	Result (mg/L)	(percent)	Result (mg/L)	(percent)	Result (mg/L)	(percent)	Result (mg/L)	(percent)	Result (mg/L)	೨	Result (mg/L)	(bercent)
AP-12-BR	110,000	11.0	006'6	0.990	19,000	1.900	8,000	0.800	2,800	0.280	1100	0.110	ND(<0.1)	NA
AP-12-DO	0.3	0.00003	ND(<0.2)	NA	0.2	0.00002	9,100	0.910	17,000	1.700	180	0.018	1.5	0.00015
AP-12-S	-		-		ND(<0.2)	NA			0.5	90000.0	-			
AP-19	ND(<0.1)	ΝA	ND(<0.2)	NA	ND(<0.2)	ΑN	ND(<0.2)	ΑN	ND(<0.2)	VΑ	ND(<0.1)	ΑN	ND(<0.1)	AN
AP-20	0.1	0.00001	ND(<0.2)	AN	ND(<0.2)	ΑN	ND(<0.2)	AN	0.1	0.00001	ND(<0.1)	ΑN	ND(<0.1)	NA
AP-21	8,200	8.0	1,000	0.1	2,200	0.220	1,900	0.190	200	0:020	ND(<0.1)	ΑN	ND(<0.1)	NA
AP-22	1.0	0.0001	3,200	0.32	10,000	1.000	9,700	0.970	400	0.04	1300	0.130	110	0.011
AP-26-DO	-		ND(<0.2)	ΑN	ND(<0.2)	ΑN	17.0	0.00170	ND(<0.2)	ΑN	12	0.001	5.6	0.00056
AP-27-DO			0.4	0.00004	ND(<0.2)	NA	57.0	0.00570	0.3	0.00003	ND(<0.1)	NA	ND(<0.1)	NA
AP-30-DO	20,000	2.0					-	-	-		-		-	-
AP-30R-DO	-		84,000	8.40	19,000	1.900			7,700	0.770				
AP-31-DO	12,000	1.2	2,400	0.24	0.2	0.00002			100.0	0.01	120	0.012	2.0	0.0005
AP-32-DO	3.7	0.00037	ND(<0.2)	NA	0.2	0.00002			ND(<0.2)	NA	290	0.059	240	0.0240
B-2	-	-				-	ND(<0.2)	NA	-					-
BR-5_ZONE3						-			-				ND(<0.1)	NA
CL03-DO	-	-	-	-	-	-	-		-		-	-	0.7	0.00007
CL10-BR	0.2	0.00002							1					-
CL10-DO	250	0.0	7.1	0.00071	44.0	0.0044			85.0	9800'0	140	0.014	430	0.0430
CL10-S	ND(<0.1)	VΑ							-					
MW-013	6,900	2.0	1,200	0.12	1,300	0.130	440	0.044	610	0.061	140	0.014	57.0	0.00570
OB-02-DO													2.5	0.00025
OB-00-DO	-												0.3	0.00003
OB-10-S	87	2800'0							-		-			-
OB-12-DO	-		190	0.01903	ND(<0.2)	NA	2,000	0.200	47.0	0.0047	ND(<0.1)	NA	1.3	0.00013
OB-19-DO	-		ND(<0.2)	NA					ND(<0.2)	ΝA	ND(<0.1)	NA	1.9	0.00019
OB-25-BR	9,200	6.0			ND(<0.2)	ΝΑ	17,000	1.700	1,200	0.120	ND(<0.1)	NA	0.2	0.00002
OB-26-BR	-		-	-	0.2	0.00002	12,000	1.200	ND(<0.2)	NA	ND(<0.1)	NA		-
OB-26-DO	-	-	-	-					-	1	-			-
OB-27-BR	14,000	1.4	1,500	0.1500	5,700	0.570			2,000	0.200	1200	0.120	1030	0.1030
OB-28-BR	15	0.0015			ND(<0.2)	NA			0.5	90000.0				-
OB-32-DO	1,200	0.1	029	0.0670	0.069	0.063	470	0.047	300	0:030	180	0.018	150	0.0150
OB-34-DO	18	0.0018	ND(<0.2)	NA	31	0.0031	31.0	0.0031	18.0	0.0018	20	0.002	-	-
OB 35-DO	ND(<0.1)	NA	ND(<0.2)	NA	ND(<0.2)	AN	ND(<0.2)	NA	ND(<0.2)	NA	20	0.002	14.0	0.00140
OB-36-DO	ND(<0.1)	NA			0.3	0.00003	ND(<0.2)	NA	-	!	-		5300	0.5300
OB-37-DO	180,000	18.0	34.0	0.003	9,700	0.9700	0.09	0.006	84.0	0.0084	ND(<0.1)	NA	ND(<0.1)	ΝΑ

Color Key:

Sample Dark Purple Sample Medium Purple Sample Light Purple Sample Prink Sample Pale Light Brown

No color indicates groundwater sample was clear

-- = sample not collected

ND (<0.2) = Not detected at estimated detection limit.

NA = Not applicable or value does not appear when reporting to 2 significant figures.

mg NaMnO4/L = milligrams of sodium permanganate per liter

Table 7 Permanganate Injection Volume 2014 Treatment Program Former Varian Facility Site 150 Sohier Road Beverly, MA

		ection Volume (in gallons solution)
Location	Total Injection Volume During This Reporting Period ¹	Planned Injection Volume 2014 Treatment Program
OB12-DO	395	380
OB25-BR	400	370
OB35-DO	77.25	75
AP-19	100	100
AP-20	100	100
AP-21	100	100
AP-22	100	100
Total	1272.25	1225

Notes

1 - Injections conducted from July 23, 2014 through September 10, 2014

TABLE 8
Sub-Sab Soil Vapor Analytical Results
Building 3 Area
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

	BLDG2-SV1	BLDG2-SV2						BLDG3-VP1								BLDG3-VP2		
CONSTITUENT (ug/m3)	4/10/2014 (2)	4/10/2014 (2) 4/10/2014 (2)		8/5/2010 11/22/2010 2/22/2011	2/22/2011	6/27/2011	1/24/2012	3/5/2012 (1)	11/7/2012	3/29/2013	8/5/2013	11/1/2013	11/1/2013 4/29/2014 (2)	11/7/2012	3/29/2013	8/5/2013	11/1/2013	11/1/2013 4/29/2014 (2)
1,1,1-Trichloroethane	<11000	<20	<19	<4.2	<26	<14	<13	<30	<17	<5.7	<45	<11	<260	<13	<9.5	<1.8	<2.0	<130
1,1,2,2-Tetrachloroethane	<2900	<4.9	<4.7	<1.1	<6.5	<3.4	<3.3	<7.4	<4.2	<1.4	<11	<2.6	99>	<3.2	<2.4	<0.44	<0.50	<32
1,1,2-Trichloroethane	<11000	<20	<19	<4.2	<26	<14	<13	<30	<17	<5.7	<45	<11	<260	<13	<9.5	<1.8	<2.0	<130
1,1-Dichloroethane	<8600	<15	<14	<3.2	<20	<10	<10	<22	<13	<4.3	<34	<7.9	<200	<9.7	<7.2	<1.3	<1.5	<95
1,1-Dichloroethene	<8400	<14	<14	<3.1	<19	<10	<9.7	<22	<12	<4.2	<33	<7.7	<190	<9.5	<7.0	<1.3	<1.5	<93
1,2-Dibromoethane (EDB)	1	1	ı	1	<7.4	<3.8	<3.8	<8.4	1	1	1	1	<74	I	1	ı	1	<36
1,2-Dichlorobenzene	1	1	1		<57	<30	<29	99>	1	1	1	-	<580	1	1	-	1	<280
1,2-Dichloroethane	<8600	<15	<14	<3.2	<20	<10	<10	<22	<13	<4.3	<34	<7.9	<200	<9.7	<7.2	<1.3	<1.5	<95
1,2-Dichloropropane	<9700	<17	<16	<3.6	<22	<12	<11	<25	<14	<4.8	<38	<9.0	<220	<11	<8.1	<1.5	<1.7	<110
1,3-Dichlorobenzene	-		-	-	2 57	<30	<29	99>		-	-	-	<580		-	-		<280
1,4-Dichlorobenzene					<57	<30	<29	99>					<580					<280
1,4-Dioxane	-					<110	<110	<250			-		<2200		-			<1100
2-Butanone					<28	<15	15	<32			-		<280		-			<140
2-Hexanone	-				<20	<10	<10	<22		-	-	-	<200		-	-		<95
4-Methyl-2-pentanone					<39	<20	<20	<45					<390					<190
Acetone	<95000	<160			008	110	140	<250	150	120	<380	120	<2200	360	320	220D	140D	<1100
Benzene					<15	<7.9	<7.8	<17					<150		-			<74
Bromodichloromethane	<2900	<4.9	<4.7	<1.1	<6.5	<3.4	<3.3	<7.4	<4.2	<1.4	<11	<2.6	99>	<3.2	<2.4	<0.44	<0.50	<32
Bromoform	<22000	<37	<36	<8.0	<20	<26	<25	<57	<32	<11	98>	<20	<500	<25	<18	<3.4	<3.8	<240
Bromomethane	<8200	<14	<14	<3.0	<19	<9.7	<9.5	<21	<12	<4.1	<32	<7.6	<190	<9.2	<6.8	<1.3	<1.4	<91
Carbondisulfide	-				<15	-		-		-	-		-	-	-	-		-
Carbontetrachloride	<1300	<2.3	<2.2	0.64	<3.0	<1.6	<1.6	<3.5	<2.0	>0.66	<5.3	<1.2	<31	<1.5	<1.1	0.52	0.54	<15
Chlorobenzene	<9700	<17	<16	<3.6	<22	<12	<11	<25	<14	<4.8	<38	<9.0	<220	<11	<8.1	<1.5	<1.7	<110
Chloroethane	<11000	<19	<18	<4.1	<25	!	-		<16	<5.5	<44	<10	1	<12	<9.2	2.5	<1.9	-
Chloroform	<10000	<18	<17	4.4	29	22	17	29	<15	9.5	<41	16	<240	19	13	25	14	<110
Chloromethane	<8600	<15	<14	<3.2	<20	!	-	-	<13	<4.3	<34	<7.9	1	<9.7	<7.2	<1.3	<1.5	-
cis-1, 2-Dichloroethene	<8400	<14	<14	<3.1	<19	<10	<9.7	<22	<12	<4.2	<33	<7.7	<190	<9.5	<7.0	<1.3	<1.5	<93
cis-1, 3-Dichloropropene	<19000	<33	<31	<7.0	<44	<23	<22	<50	<28	<9.5	<75	<18	<440	<22	<16	<3.0	<3.3	<210
Dibromochloromethane	<3600	<6.2	<6.0	<1.3	<8.3	<4.3	<4.2	<9.4	<5.3	<1.8	<14	<3.3	<83	<4.1	<3.0	<0.56	<0.63	<40
Dichloromethane	<7200	<12	<12	<2.7	<17	<8.6	<8.4	<19	<11	<3.6	<29	<6.7	<170	<8.2	<6.0	<1.1	<1.3	<81
Ethylbenzene		-	-	-	160	240	150	120	79	56	1	-	<420	24	<15	-	-	<200
Freon 113			-		<7.4	-		-		-	-	-		-	-	-		-
Hexachlorobutadiene	-	-	:	!	-	89>	99>	<150	1	1	1	1	<1300	1	-	-	-	<640
Methyltert-butylether	!	-	1	1	<34	<18	<18	<39	1	1	1	-	<350	1	1	1	-	<170
Naphthalene	1		1	1	1	<45	<44	66>	1	1		1	<880	1	1	1	1	<420
Styrene	1	1	1	1	<41	<21	<21	<47	-	1	1	-	<410	1	1	1	1	<200
Tetrachloroethene	1200000	11	1600	480	2100	2100D	1100	2100	1300	200	3200	1000	19000	61	26	130	31	0096
Toluene	!	1	1	1	<18	<9.3	<9.1	<20	1	1		1	<180	1	1	1	1	<87
trans-1,2-Dichloroethene	<8400	<14	<14	<3.1	<19	<10	<9.7	<22	<12	<4.2	<33	<7.7>	<190	<9.5	<7.0	<1.3	<1.5	<93
Trans-1,3-Dichloropropene	<9500	<16	<16	<3.5	<22	<11	<11	<25	<14	<4.7	<38	<8.8	<220	<11	<8.0	<1.5	<1.7	<110
Trichloroethene	48000	31	510	130	1500	630	350	810	320	150	670	290	096	12	11	25	11	820
Trichlorofluoromethane	<12000	<20	<19	<4.4	<27	!	-	!	<17	<5.9	<47	<11		<13	<9.9	<1.8	<2.1	-
Vinyl acetate		-	-	-	<220	1	-	:	-	-	-	-	-	-	1	-	-	-
Vinyl chloride	<1100	<2.0	<1.9	<0.42	<2.6	<1.4	<1.3	<3.0	<1.7	<0.57	<4.5	<1.1	<26	<1.3	<0.95	<0.18	<0.20	<13
m/p-xylene	-	1	1	:	610	066	009	480	340	100	1	1	<840	98	<30	1	1	<410
o-Xylene	1	1	i	1	57	87	57	<47	37	14	1	1	<420	32	<15	I	1	<200
Xylene (total)	1	-	1	1	029	1100	099	480	380	110	1	1	<840	120	<30	ı	1	<410

TABLE 8
Sub-Sab Soil Vapor Analytical Results
Building 3 Area
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

						BLD(BLDG3-VP3							BLDG	BLDG3-VP5	
CONSTITUENT (ug/m3)	8/5/2010	11/22/2010	2/22/2011	6/27/2011	10/6/2011	1/10/2012	1/10/2012 3/5/2012 (1) 11/7/2012	11/7/2012	3/29/2013	8/5/2013	11/1/2013	11/1/2013 4/29/2014 (2)	10/6/2011	1/10/2012	3/5/2012 (1)	11/7/2012
1,1,1-Trichloroethane	<400	<39	<290	<260	<19	<67	<71	<19	<10	<7.7>	<12	<26	<3200	<1700	<1400	<180
1,1,2,2-Tetrachloroethane	<100	8.6>	<72	<65	<4.7	<17	<18	<4.8	<2.6	<1.9	<2.9	<6.5	<810	<430	<340	<46
1,1,2-Trichloroethane	<400	<39	<290	<260	<19	<i>L</i> 9>	<71	<19	<10	<7.7>	<12	<26	<3200	<1700	<1400	<180
1,1-Dichloroethane	<300	<29	<220	<200	<14	<50	<53	<14	<7.9	<5.8	<8.7	<19	<2400	<1300	<1000	<140
1,1-Dichloroethene	<290	<29	<210	<190	<14	64>	<52	<14	<7.7>	<5.6	<8.5	<19	<2400	<1200	<1000	<140
1,2-Dibromoethane (EDB)			<81	<74		<19	<20					<7.3		<480	<390	
1,2-Dichlorobenzene	-	-	<630	<570		<150	<160	-	-	-	-	<57	-	<3700	<3000	-
1,2-Dichloroethane	<300	<29	<220	<200	<14	<50	<53	<14	6'.2>	<5.8	<8.7	<19	<2400	<1300	<1000	<140
1,2-Dichloropropane	<340	<33	<240	<220	<16	<57	09>	<16	<8.9	<6.5	<9.9	<22	<2800	<1400	<1200	<160
1,3-Dichlorobenzene	1	1	<630	<570	1	<150	<160	1	1	-	1	<57	-	<3700	<3000	-
1,4-Dichlorobenzene	1	1	<630	<570	1	<150	<160	1			1	<57	1	<3700	<3000	1
1,4-Dioxane	1			<2200	1	<560	<590	1			1	<220	1	<14000	<11000	1
2-Butanone	1	1	<310	<280	1	<73	<77>			-	1	<28	1	<1800	<1500	:
2-Hexanone	1	1	<220	<200	-	<50	<53	-		-	1	<19	1	<1300	<1000	1
4-Methyl-2-pentanone	1	1	<430	<390	1	<100	<110	1			1	<39	1	<2600	<2000	1
Acetone	1	1	<2400	<2200	1300	<560	<590	260	140	160	160	<220	<27000	<14000	<11000	<1500
Benzene	1	1	<170	<150	1	<39	<41	1		1	1	<15	1	066>	<790	-
Bromodichloromethane	<100	8.6>	<72	<65	<4.7	<17	<18	<4.8	<2.6	<1.9	<2.9	<6.5	<810	<430	<340	<46
Bromoform	<760	<74	<550	<490	<36	<130	<130	<36	<20	<15	<22	<49	<6200	<3200	<2600	<350
Bromomethane	<290	<28	<210	<190	<14	<48	<51	<14	<7.5	<5.5	<8.3	<19	<2300	<1200	<970	<130
Carbondisulfide	1	1	<160	1	1			1		-	1	1	1	1		-
Carbontetrachloride	<47	<4.6	<34	<30	<2.2	<7.8	<8.3	<2.2	<1.2	1	<1.4	<3.0	<380	<200	<160	<22
Chlorobenzene	<340	<33	<240	<220	<16	<57	09>	<16	<8.9	<6.5	<9.9	<22	<2800	<1400	<1200	<160
Chloroethane	<390	<38	<280		<18	-		<19	<10	<7.4	<11		<3100			<180
Chloroform	<360	<35	<260	<230	<17	09>	<64	20	17	14	15	24	<2900	<1500	<1200	<170
Chloromethane	<300	<29	<220		<14	-		<14	6.7>	<5.8	<8.7	-	<2400			<140
cis-1,2-Dichloroethene	<290	<29	<210	<190	<14	<49	<52	32	22	19	19	20	<2400	<1200	<1000	<140
cis-1,3-Dichloropropene	<670	<65	<480	<430	<31	<110	<120	<32	<17	<13	<19	<43	<5400	<2800	<2300	<310
Dibromochloromethane	<130	<12	<91	<82	<6.0	<21	<22	<6.1	<3.3	<2.4	<3.7	<8.2	<1000	<540	<430	<59
Dichloromethane	<250	<25	<180	<160	<12	<42	<45	<12	9'9>	<4.9	<7.3	<16	<2100	<1100	<860	<120
Ethylbenzene	-		<460	<410	<30	<110	<110	<30	<17	-	-	<41	120000	00009	36000	8100
Freon 113	-	1	130	1	-	1	1	-	1	1		-	1			:
Hexachlorobutadiene	-	-	-	<1300	-	<340	<360	-	1	-	-	<130	-	<8500	<6800	
Methyltert-butylether	-	-	<380	<340	-	<88>	<93	-		-	-	<34	-	<2200	<1800	
Naphthalene	-	-	-	<870	-	<220	<240	-	-	-	-	<86	-	<5700	<4500	
Styrene	-	-	<450	<410		<100	<110					<40		<2700	<2100	
Tetrachloroethene	36000	3000	51000	27000	410	4800	2000	2200	096	1200D	620	2000	<430	<230	350	62
Toluene	-	-	<200	<180	-	<46	<49	1	-	-	1	<18	-	<1200	<930	-
trans-1,2-Dichloroethene	<290	<29	<210	<190	<14	64>	<52	<14	<7.7>	<5.6	<8.5	<19	<2400	<1200	<1000	<140
Trans-1, 3-Dichloropropene	<330	<33	<240	<220	<16	>26	65>	<16	<8.7	<6.4	<9.7	<22	<2700	<1400	<1100	<150
Trichloroethene	3600	1000	4900	2100	42	640	620	009	390	380	270	460	<320	<170	<140	<18
Trichlorofluoromethane	<410	<40	<300		<19			<20	<11	<7.9	<12		<3300			<190
Vinyl acetate	-	-	<2400		-			-		-	-					
Vinyl chloride	<40	<3.9	<29	<26	<1.9	<6.7	<7.1	<1.9	<1.0	<0.77	<1.2	<2.6	<320	<170	<140	<18
m/p-xylene	1	1	<920	<830	09>	<210	<230	110	<33	1	1	<82	470000	240000	140000	40000D
o-Xylene	-	-	<460	<410	<30	<110	<110	38	<17	-	-	<41	47000	29000	18000	5700
Xylene (total)			<920	<830	<60	<210	<110	150	<33		:	<82	520000	270000	158000	46000D

Sub-Sab Soil Vapor Analytical Results Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts **Building 3 Area** TABLE 8

				BLDG3-VP6				BLDG3-VP7	3-VP7			BLDC	BLDG6-SV1		
CONSTITUENT (ug/m3)	8/5/2010	8/30/2010	11/22/2010	11/22/2010 2/22/11	6/27/2011	10/6/2011	1/10/2012	3/27/2012	3/27/2012 4/10/2014 (2)	2/22/2011	6/3/2011	8/22/2011 10/6/2011	10/6/2011	1/10/2012	4/10/2014 (2)
1,1,1-Trichloroethane	<57	<17	<11	<1700	066>	0098>	<8200	<95	<8.4	<1200	<2300	<1100	<280	<1600	<640
1,1,2,2-Tetrachloroethane	<14	<4.2	<2.8	<420	<250	<2200	<2000	<24	<2.1	<300	<570	<270	69>	<400	<160
1,1,2-Trichloroethane	<57	<17	<11	<1700	066>	0098>	<8200	<95	<8.4	<1200	<2300	<1100	<280	<1600	<640
1,1-Dichloroethane	<43	<13	<8.5	<1300	<740	<6500	<6100	<71	<6.3	<890	<1700	<820	<210	<1200	<480
1,1-Dichloroethene	<42	<12	<8.3	<1200	<730	<6300	<6000	69>	<6.2	<870	<1700	<800	<200	<1200	<470
1,2-Dibromoethane (EDB)		<4.8		<480	<280		<2300	<27		<340			:	<450	
1,2-Dichlorobenzene		<37		<3700	<2200	-	<18000	<210		<2600	1	:	-	<3500	
1,2-Dichloroethane	<43	<13	<8.5	<1300	<740	<6500	<6100	<71	<6.3	<890	<1700	<820	<210	<1200	<480
1,2-Dichloropropane	<48	<14	<9.7	<1400	<840	<7300	0069>	<80	<7.1	<1000	<1900	<930	<230	<1300	<540
1,3-Dichlorobenzene		<37		<3700	<2200		<18000	<210		<2600				<3200	
1,4-Dichlorobenzene		<37		<3700	<2200		<18000	<210		<2600				<3200	
1,4-Dioxane		<140		-	<8300		00089>	<790						<13000	-
2-Butanone		<18	-	<1800	<1100	1	<8800	<100	-	<1300	1	ı	1	<1700	-
2-Hexanone		<13		<1300	<740	1	<6100	<71	-	<890	1	1		<1200	
4-Methyl-2-pentanone		<25	1	<2500	<1500	1	<12000	<140	-	<1800	1	1	1	<2400	-
Acetone		410		24000	<130000D	150000	00089>	<790	130	0066>	<19000	-	<2300	<13000	<5300
Benzene		8.6>		086>	<580	-	<4800	<55		<700				<920	-
Bromodichloromethane	<14	<4.2	<2.8	<420	<250	<2200	<2000	<24	1.6	<300	<570	<270	69>	<400	<160
Bromoform	<110	<32	<22	<3200	<1900	<16000	<16000	<180	<16	<2300	<4300	<2100	<520	<3000	<1200
Bromomethane	<41	<12	<8.1	<1200	<710	<6200	<5800	89>	<6.0	<850	<1600	<790	<200	<1100	<460
Carbondisulfide		1	-	<950	-	1	1	1	-	<680	1	1	1	1	-
Carbontetrachloride	9.9>	<2.0	<1.3	<200	<120	<1000	<950	<11	86.0>	<140	<270	<130	<32	<180	<75
Chlorobenzene	<48	<14	<9.7	<1400	<840	<7300	0069>	<80	<7.1	<1000	<1900	<930	<230	<1300	<540
Chloroethane	<55		<11	<1600		<8400			<8.1	<1200	<2200	<1100	<270		<620
Chloroform	<51	<15	<10	<1500	068>	<7800	<7300	<85	39	<1100	<2000	066>	<250	<1400	<570
Chloromethane	<43		69	<1300	-	<6500			<6.3	<890	<1700	<820	<210	-	<480
cis-1,2-Dichloroethene	<42	<12	<8.3	<1200	<730	<6300	<6000	69>	13	<870	<1700	<800	<200	<1200	<470
cis-1,3-Dichloropropene	<94	<28	<19	<2800	<1700	<14000	<14000	<160	<14	<2000	<3800	<1800	<460	<2600	<1100
Dibromochloromethane	<18	<5.3	<3.6	<530	<310	<2700	<2600	<30	<2.7	<380	<720	<350	<87	<500	<200
Dichloromethane	<36	<11	<7.2	<1100	<630	<5500	<5200	09>	<5.3	<750	<1400	069>	<170	<1000	<400
Ethylbenzene		40		190000D	300000D	200000	180000	4700		<1900		<1700	<440	<2500	-
Freon 113		1		<480	I	i		1	1	<340	1		1	1	
Hexachlorobutadiene		<84			<5000	:	<41000	<470	-			:	:	<7900	
Methyltert-butylether		<22		<2200	<1300	i	<11000	<120	-	<1600	1	1	1	<2100	
Naphthalene		<56			<3300	1	<27000	<320	-		1	-	1	<5300	
Styrene		<26		<2600	<1600	i	<13000	<150	1	<1900	1	1	1	<2500	
Tetrachloroethene	8.91	<2.2	<1.5	<220	<130	<1200	<1100	210	520	85000	130000	70000	32000	100000	48000
Toluene		<11		<1100	1000	-	<5600	<65		<810	-	-		<1100	
trans-1, 2-Dichloroethene	<42	<12	<8.3	<1200	<730	<6300	<6000	69>	<6.2	<870	<1700	<800	<200	<1200	<470
Trans-1,3-Dichloropropene	<47	<14	<9.5	<1400	<830	<7200	<6800	<79	<7.0	<990	<1900	<910	<230	<1300	<530
Trichloroethene	<5.7	<1.7	1.2	<170	66>	<860	<820	170	92	34000	45000	40000	14000	41000	22000
Trichlorofluoromethane	<59		<12	<1700		0068>			<8.7	<1200	<2400	<1100	<280		<660
Vinyl acetate		-		<14000	-	1	-	-		<9900	1	-	:	1	
Vinyl chloride	<5.7	<1.7	<1.1	<170	66>	<860	<820	<9.5	<0.84	<120	<230	<110	<28	<160	<64
m/p-xylene	-	240		680000D	1100000D	700000	640000	15000D	1	<3800	i	<3500	<880	<5000	-
o-Xylene		<27		00089	100000D	62000	61000	1200	-	<1900	-	<1700	<440	<2500	
Xylene (total)	-	240	-	748000D	1200000D	760000	700000	16000D	-	<3800	1	<3500	<880	<5000	
	Notes:														

< indicates chemical not detected, and concentration is less than reporting limit (value shown).

ug/m³ = micrograms per cubic meter.

J = Estimated concentration.

D = Result is from a diluted sample.

--- Not analyzed for.

(1) = sample collected following scheduled temporary SVE system shutdown from 2/27/12 to 3/5/12.

(2) = sample collected following scheduled temporary SVE system shutdown from 4/3/14 to 4/29/14.

								F	BLDG2-6							
							Environm	Environmental Testing Room Building 2 Basement	g Room Buil	ding 2 Base	ment					
CONSTITUENT (ug/m3)	6/1/2009	6/1/2009 10/8/2009	2/9/2010	5/19/2010	8/5/2010	11/22/2010	2/22/2011	6/27/2011	10/6/2011	1/10/2012	8/5/2010 11/22/2010 2/22/2011 6/27/2011 10/6/2011 1/10/2012 3/5/2012 (1) 11/7/2012	11/7/2012	8/5/2013	11/1/2013	11/1/2013 4/10/2014 (2) 4/29/2014 (2)	4/29/2014 (2)
1,1,1-Trichloroethane	<39	<0.88	<1.5	<1.2	<0.94	<1.1	0.87	<0.92	<1.4	<7.7>	<1.1	<5.2	<1.1	<18	<1.1	<1.0
1, 1, 2, 2-Tetrachloro ethane	<9.8	<0.22	<0.38	<0.31	<0.23	<0.28	<0.22	<0.23	<0.36	<1.9	<0.27	<1.3	<0.28	<4.4	<0.27	<0.26
1,1,2-Trichloroethane	<39	<0.88	<1.5	<1.2	<0.94	<1.1	<0.86	<0.92	<1.4	<7.7>	<1.1	<5.2	<1.1	<18	<1.1	<1.0
1,1-Dichloroethane	<30	99:0>	<1.1	<0.93	<0.70	<0.84	<0.65	69:0>	<1.1	<5.8	<0.82	<3.9	<0.84	<13	<0.80	<0.78
1,1-Dichloroethene	<29	<0.65	<1.1	<0.91	69:0>	<0.83	<0.63	<0.68	<1.0	<5.6	<0.80	<3.8	<0.82	<13	<0.79	<0.76
1,2-Dibromoethane (EDB)		-			-	1	1	-		-	<0.31	-	1	1	1	<0.29
1,2-Dichlorobenzene						-	-	-		-	<2.4	-	-			<2.3
1,2-Dichloroethane	<30	99.0>	<1.1	<0.93	<0.70	<0.84	<0.65	69:0>	<1.1	<5.8	<0.82	<3.9	<0.84	<13	<0.80	<0.78
1,2-Dichloropropane	<33	<0.75	<1.3	<1.1	<0.80	>0.96	<0.73	<0.79	<1.2	<6.5	<0.93	<4.4	<0.95	<15	<0.91	<0.88
1,3-Dichlorobenzene				1	-	-			1	1	<2.4		-	-	-	<2.3
1,4-Dichlorobenzene											<2.4					<2.3
1,4-Dioxane					-	-	-	-		-	<9.1	-	-			9.8>
2-Butanone			-		-	-	-	-			3.2		1	1		14
2-Hexanone			-		-	-	-	-		-	<0.82	-	-			<0.78
4-Methyl-2-pentanone	1	-	-	ı	-	-	1	1	1	1	<1.6	-	-	-	1	4.1
Acetone	-	1	1	ı	1	-	1	330	290	240	210D	160	340D	440	95D	75D
Benzene	1	1	1	1	1	-		1	1	1	<0.64	-	1	1	-	<0.60
Bromodichloromethane	<9.8	<0.22	<0.38	<0.31	<0.23	<0.28	<0.22	<0.23	<0.36	<1.9	<0.27	<1.3	<0.28	4.4	<0.27	<0.26
Bromoform	<75	<1.7	<2.9	<2.4	<1.8	<2.1	<1.6	<1.8	<2.7	<15	<2.1	6.6>	<2.1	<34	<2.0	<2.0
Bromomethane	<28	<0.63	<1.1	68:0>	<0.67	<0.81	<0.62	99:0>	<1.0	<5.5	<0.78	<3.7	<0.80	<13	<0.77	<0.74
Carbontetrachloride	<4.6	0.33	0.52	0.64	0.61	0.62	0.55	0.57	0.59	<0.90	0.57	<0.61	0.51	<2.1	0.48	0.49
Chlorobenzene	<33	<0.75	<1.3	<1.1	<0.80	96:0>	<0.73	<0.79	<1.2	<6.5	<0.93	4.4	<0.95	<15	<0.91	<0.88
Chloroethane	<38	<0.85	<1.5	<1.2	06:0>	<1.1	<0.84	<0.89	<1.4	47.4	-	<5.0	<1.1	<17	<1.0	-
Chloroform	<32	<0.79	<1.4	<1.1	<0.84	<1.0	<0.78	<0.83	<1.3	6:9>	<0.98	<4.7	<1.0	<16	<0.97	<0.93
Chloromethane	<30	0.89	1.1	1.2	1.1	1.1	1.2	1.1	1.1	<5.8		<3.9	<0.84	<13	6.0	
cis-1,2-Dichloroethene	<29	<0.65	<1.1	<0.91	69.0>	<0.83	<0.63	<0.68	<1.0	9.5>	<0.80	<3.8	<0.82	<13	<0.79	<0.76
cis-1,3-Dichloropropene	99>	<1.5	<2.6	<2.1	<1.6	<1.9	<1.4	<1.5	<2.4	<13	<1.8	<8.7	<1.9	<29	<1.8	<1.7
Dibromochloromethane	<12	<0.28	<0.48	<0.39	<0.30	<0.36	<0.27	<0.29	<0.45	<2.4	<0.35	<1.7	<0.35	<5.6	<0.34	<0.33
Dichloromethane	<25	<0.56	<0.97	6.0	1.2	1.5	<0.55	0.64	<0.90	<4.9	<0.62	<3.3	<0.71	<11	<0.68	>0.66
Ethylbenzene		-	1	ı	1	-	-	<1.5	<2.3	<12	<1.7	<8.3	-	-		<1.6
Hexachlorobutadiene	1	1	1	ı	1	1	1	1	1	1	<5.5	-	1	1	-	<5.2
Methyltert-butylether		-	-	1	-	1	-	1	-	1	<1.4		1	-		<1.4
Naphthalene					-	1	-	-			<3.6	-	-	-		<3.5
Styrene			-	1	-	1	-	1	-	1	<1.7	-	1	-		<1.6
Tetrachloroethene	12	3.3	40	12	6	8.9	9.3	13	3.1	1.7	2.9	5.4	7.5	22	4.0	3.2
Toluene											1.8					1.3
trans-1,2-Dichloroethene	<29	<0.65	2.9	<0.91	<0.69	<0.83	<0.63	<0.68	<1.0	9.5>	2.5	<3.8	1.4	<13	<0.79	<0.76
Trans-1,3-Dichloropropene	<33	<0.74	<1.3	<1.0	<0.78	<0.94	<0.72	<0.77	<1.2	<6.4	<0.91	<4.4	<0.93	<15	<0.89	<0.86
Trichloroethene	<3.9	1.1	3.1	5.6	2.2	3.1	2	2.7	1.5	1.2	1.9	1.9	2.3	5.7	0.96	0.55
Trichlorofluoromethane	<41	1.1	1.7	2.1	2	1.6	1.4	1.9	1.7	<7.9	-	<5.4	1.8	<18	1.3	-
Vinyl chloride	<3.9	<0.088	<0.15	<0.12	<0.094	<0.090	<0.086	<0.092	<0.14	<0.77	<0.11	<0.52	<0.11	<1.8	<0.11	<0.10
m/p-xylene			-		-	-	:	<2.9	<4.5	<24	<3.5	<17	-			<3.3
o-Xylene			-	-		-	-	<1.5	<2.3	<12	<1.7	<8.3	-	-		<1.6
Xylene (total)	1	1	1	1	1	-	:	<2.9	<4.5	<24	<1.7	<17	1	-	-	<3.3

	1				2	, ,			
	PLDG2-/				4	BLDG3-1			
	Storage Room Building 2 Basement				Main Chem	Main Chemical Laboratory	ory		
CONSTITUENT (ug/m3)	4/10/2014 (2)	6/1/2009	6/1/2009 10/8/2009 2/9/2010	2/9/2010		8/5/2010	11/22/2010	2/22/2011	5/19/2010 8/5/2010 11/22/2010 2/22/2011 3/5/2012 (1)
1, 1, 1-Trichloroethane	<1.7	<75	<3.0	<4.6	<2.8	<1.5	<0.88	<0.91	<1.1
I, 1, 2, 2-Tetrachloro ethane	<0.43	<19	<0.74	<1.2	<0.70	<0.38	<0.22	<0.23	<0.27
I, 1, 2-Trich lo roethane	<1.7	<75	<3.0	<4.6	<2.8	<1.5	<0.88	<0.91	<1.1
1, 1-Dichloroethane	<1.3	<56	<2.2	<3.5	<2.1	<1.1	>0.66	<0.68	<0.82
1, 1-Dichloroethene	<1.2	<55	<2.2	<3.4	<2.0	<1.1	<0.65	<0.67	<0.80
1,2-Dibromoethane (EDB)							-		<0.31
1,2-Dichlorobenzene							-		<2.4
1,2-Dichloroethane	<1.3	>26	<2.2	<3.5	<2.1	<1.1	>0.66	<0.68	<0.82
1,2-Dichloropropane	<1.4	<63	<2.5	<3.9	<2.4	<1.3	<0.75	<0.78	<0.93
1,3-Dichlorobenzene	-	1	1	-	-	1	-	1	<2.4
1,4-Dichlorobenzene	-	-	1		-	1	-	-	<2.4
L,4-Dioxane	-						-		<9.1
2-Butanone							-		2.2
2-Hexanone							-		<0.82
4-Methyl-2-pentanone							-		<1.6
Acetone	87D	-	1		-	1	1	-	300D
Benzene	-						-		<0.64
Bromodichloromethane	<0.43	<19	<0.74	<1.2	<0.70	<0.38	<0.22	<0.23	<0.27
Bromoform	<3.2	<140	9:5>	<8.8	<5.3	<2.9	<1.7	<1.7	<2.1
Bromomethane	<1.2	<53	<2.1	<3.3	<2.0	<1.1	<0.63	<0.65	82.0>
Carbontetrachloride	0.46	<8.7	0.36	<0.54	85.0	0.3	0.55	0.58	95'0
Chlorobenzene	<1.4	<63	<2.5	<3.9	<2.4	<1.3	<0.75	<0.78	<0.93
Chloroethane	<1.6	<72	<2.9	<4.5	<2.7	<1.5	<0.85	<0.88	
Chloroform	<1.5	<67	<2.7	<4.2	<2.5	<1.4	<0.79	<0.82	<0.98
Chloromethane	<1.3	<56	<2.2	<3.5	<2.1	<1.1	1.1	1.2	
cis-1,2-Dichloroethene	<1.2	<55	<2.2	<3.4	<2.0	<1.1	<0.65	<0.67	<0.80
cis-1,3-Dichloropropene	<2.8	<120	<4.9	<7.7	<4.7	<2.5	<1.5	<1.5	<1.8
Dibromochloromethane	<0.54	<24	<0.94	<1.5	<0.88	<0.48	<0.28	<0.29	<0.35
Dichloromethane	<1.1	<47	<1.9	<2.9	<1.8	96.0	2.5	<0.58	<0.59
Ethylbenzene						:			<1.7
Hexachlorobutadiene		-	-		-	-	-	-	<5.5
Methyltert-butylether	-		-			-	-		<1.4
Naphthalene	-	-	-		-	1	-	-	<3.6
styrene	-		-			-	-		<1.7
Tetrachloroethene	0.36	18	23	3.8	0.72	7	1.1	1.3	3
oluene -									1.1
trans-1,2-Dichloroethene	<1.2	<55	<2.2	<3.4	<2.0	<1.1	0.67	<0.67	1.4
rans-1,3-Dichloropropene	<1.4	<62	<2.5	<3.9	<2.3	<1.3	<0.74	<0.76	<0.91
Frichloroethene	0.37	<7.5	8.2	4.4	<0.28	0.61	0.37	0.13	0.31
richlorofluoromethane	<1.8	<77	<3.1	<4.8	<2.9	<1.6	1.6	1.4	
/inyl chloride	<0.17	<7.5	<0.30	<0.46	<0.28	<0.15	<0.088	0.16	<0.11
n/p-xylene	-		-		-	1	-	-	<3.5
o-Xylene	-	-	1		-	1	-		<1.7
Xvlene (total)	1	ı	1	1	1	1	ı	1	<3.5

							BI	BLDG3-2						
						Chemic	al Laborato	Chemical Laboratory Bench Testing Room	sting Room					
CONSTITUENT (ug/m3)	6/1/2009	10/8/2009	2/9/2010	5/19/2010	8/5/2010	11/22/2010	2/22/2011	6/27/2011	10/6/2011	1/10/2012	11/22/2010 2/22/2011 6/27/2011 10/6/2011 1/10/2012 3/5/2012 (1)	8/5/2013	11/1/2013	11/1/2013 4/29/2014 (2)
1,1,1-Trichloroethane	<100	<4.5	<9.2	<6.1	<1.8	<1.0	<1.5	<3.4	<1.5	<18	<1.1	<3.6	<4.0	<2.3
1,1,2,2-Tetrachloroethane	<25	<1.1	<2.3	<1.5	<0.46	<0.26	<0.38	<0.85	<0.37	<4.6	<0.28	<0.90	<1.0	<0.57
1, 1, 2-Trich lo roethan e	<100	<4.5	<9.5	<6.1	<1.8	<1.0	<1.5	<3.4	<1.5	<18	<1.1	<3.6	<4.0	<2.3
1,1-Dichloroethane	<75	<3.4	6.9>	<4.6	<1.4	<0.78	<1.1	<2.6	<1.1	<14	<0.83	<2.7	<3.0	<1.7
1,1-Dichloroethene	<73	<3.3	<6.7	<4.5	<1.4	<0.77	<1.1	<2.5	<1.1	<13	<0.81	<2.6	<3.0	<1.7
1,2-Dibromoethane (EDB)	1	1	1	1	1	1	1	:	1	1	<0.31	1	1	<0.65
1,2-Dichlorobenzene	!	1	1	1	1	1	1	1	!	1	<2.4	1	1	<5.1
1,2-Dichloroethane	<75	<3.4	6.9>	<4.6	<1.4	<0.78	<1.1	<2.6	<1.1	<14	<0.83	<2.7	<3.0	<1.7
1,2-Dichloropropane	<85	<3.8	<7.8	<5.2	<1.6	<0.89	<1.3	<2.9	<1.2	<16	<0.94	<3.0	<3.4	<2.0
1,3-Dichlorobenzene	1	1	1	1	-	1	1	:	1	:	<2.4	1	1	<5.1
1,4-Dichlorobenzene	1	1	1	1	1	1	1	1	1	1	<2.4		1	<5.1
1,4-Dioxane	1	1	1	1	1	1	1	1	!	!	<9.2	1	1	<19
2-Butanone	1		1		-	1	1	1	1	1	3.6	1	1	19
2-Hexanone	1		1		-	1	1	1	!	!	<0.83	1	1	<1.7
4-Methyl-2-pentanone	1	1	1		-	1	1	1	1	1	<1.7	1	-	<3.4
Acetone	1	1	1	1	1	1	1	1900	400	550	410D	2900D	1100D	2000D
Benzene				-	-	-	-		-		<0.64			<1.3
Bromodichloromethane	<25	<1.1	<2.3	<1.5	<0.46	<0.26	<0.38	<0.85	<0.37	<4.6	<0.28	<0.90	<1.0	<0.57
Bromoform	<190	9.8>	<17	<12	<3.5	<2.0	<2.9	<6.5	<2.8	<35	<2.1	8.9>	9.7>	<4.4
Bromomethane	<72	<3.2	9.9>	<4.4	<1.3	<0.75	<1.1	<2.4	<1.0	<13	<0.79	<2.6	<2.9	<1.6
Carbontetrachloride	<12	<0.53	<1.1	<0.71	0.4	0.63	0.54	0.53	0.62	<2.1	0.56	0.58	0.52	0.46
Chlorobenzene	<85	<3.8	<7.8	<5.2	<1.6	<0.89	<1.3	<2.9	<1.2	<16	<0.94	<3.0	<3.4	<2.0
Chloroethane	<97	<4.4	<8.9	<5.9	<1.8	<1.0	<1.5	<3.3	<1.4	<18	1	<3.5	<3.9	-
Chloroform	<90	<4.1	<8.3	<5.5	<1.7	<0.94	<1.4	<3.1	<1.3	<17	<0.99	<3.2	<3.6	<2.1
Chloromethane	<75	<3.4	6.9>	<4.6	<1.4	1.2	1.2	<2.6	<1.1	<14	1	<2.7	<3.0	-
cis-1,2-Dichloroethene	<73	<3.3	<6.7	<4.5	<1.4	<0.77	<1.1	<2.5	<1.1	<13	<0.81	<2.6	<3.0	<1.7
cis-1,3-Dichloropropene	<170	<7.5	<15	<10	<3.1	<1.7	<2.5	<5.7	<2.4	<31	<1.8	<6.0	<6.7	<3.8
Dibromochloromethane	<32	<1.4	<2.9	<1.9	<0.59	<0.33	<0.48	<1.1	<0.46	<5.8	<0.35	<1.1	<1.3	<0.73
Dichloromethane	<63	<2.9	<5.8	<3.9	<1.2	0.82	<0.96	<2.2	<0.92	<12	<0.59	<2.3	<2.5	<1.5
Ethylbenzene	!	!	1	-	-	-	-	<5.4	<2.3	<29	<1.7	-	-	<3.6
Hexachlorobutadiene		-		-	-						<5.5			<11
Methyltert-butylether		:								:	<1.4			<3.0
Naphthalene	-	1	ı	-	-	-	1	1		1	<3.7	-	-	<7.7>
Styrene	-			1	1						<1.7			<3.6
Tetrachloroethene	46	6.4	3.7	2	2.3	3.1	1.3	1.2	1	<2.4	1.7	1.6	2.4	1.9
Toluene		-	-	-	-						1.4			13
trans-1,2-Dichloroethene	<73	<3.3	<6.7	<4.5	<1.4	<0.77	<1.1	<2.5	<1.1	<13	3	<2.6	<3.0	<1.7
Trans-1,3-Dichloropropene	<83	<3.8	<7.7>	<5.1	<1.5	<0.87	<1.3	<2.8	<1.2	<15	<0.92	<3.0	<3.4	<1.9
Trichloroethene	19	3.2	5.3	0.79	9.0	1.6	0.42	0.93	1.3	<1.8	1.2	0.58	1	0.37
Trichlorofluoromethane	<100	<4.7	<9.5	<6.3	<1.9	1.6	<1.6	<3.5	1.7	<19		<3.7	<4.2	
Vinyl chloride	<10	<0.45	<0.92	<0.61	<0.18	<0.10	<0.15	<0.34	<0.15	<1.8	<0.11	<0.36	<0.40	<0.23
m/p-xylene					-			<11	<4.6	<58	<3.5			<7.3
o-Xylene		1	1	1	-	-	1	<5.4	<2.3	<29	<1.7	-	-	<3.6
V / / //									700	C				

TABLE 9
Indoor Air Analytical Results
Building 3 Area
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

									BLDG3-3	33-3								
•									MID Sto	MID Stockroom								
	6/1/2009	10/8/2009	11/2/2009	6/1/2009 10/8/2009 11/2/2009 11/12/2009 12/21/2009 2/9/2010	12/21/2009	2/9/2010	5/19/2010 8/5/2010		1/22/2010 2	?/22/2011	6/27/2011	10/6/2011	1/10/2012	11/22/2010 2/22/2011 6/27/2011 10/6/2011 1/10/2012 3/5/2012 (1) 11/7/2012 8/5/2013 11/1/2013 4/29/2014 (2)	11/7/2012	8/5/2013	11/1/2013	1/29/2014 (2)
1,1,1-Trichloroethane	<9.5	<10	8.8>	<8.5	<4.6	<6.2	<0.91	<1.9	<0.85	<2.2	<1.7	<1.6	<11	<1.1	<2.2	<1.9	<1.8	<2.6
1,1,2,2-Tetrachloroethane	<2.4	<2.5	<2.2	<2.1	<1.2	<1.6	<0.23	<0.47	<0.21	<0.55	<0.43	<0.39	<2.7	<0.28	<0.54	<0.48	<0.45	<0.66
1,1,2-Trichloroethane	<9.5	<10	<8.8>	<8.5	<4.6	<6.2	<0.91	<1.9	<0.85	<2.2	<1.7	<1.6	<11	<1.1	<2.2	<1.9	<1.8	<2.6
1,1-Dichloroethane	<7.1	<7.5	9.9>	<6.4	<3.5	<4.7	<0.68	<1.4	<0.64	<1.6	<1.3	<1.2	<8.1	<0.84	<1.6	<1.4	<1.4	<2.0
1,1-Dichloroethene	<7.0	<7.3	<6.5	<6.2	<3.4	<4.6	<0.67	<1.4	<0.62	<1.6	<1.3	<1.2	<7.9	<0.82	<1.6	<1.4	<1.3	<1.9
1,2-Dibromoethane (EDB)							-							<0.32				<0.74
1,2-Dichlorobenzene		-				-	-	-			-			<2.5				<5.8
1,2-Dichloroethane	<7.1	<7.5	9.9>	<6.4	<3.5	<4.7	<0.68	<1.4	<0.64	<1.6	<1.3	<1.2	<8.1	<0.84	<1.6	<1.4	<1.4	<2.0
1,2-Dichloropropane	<8.1	<8.5	<7.5	<7.2	<3.9	<5.3	<0.78	<1.6	<0.72	<1.9	<1.5	<1.3	<9.2	<0.95	<1.8	<1.6	<1.5	<2.2
1,3-Dichlorobenzene	1	1	1	-	1	1	-		-	-	1	-	:	<2.5	-	:		<5.8
1,4-Dichlorobenzene														<2.5				<5.8
1,4-Dioxane						-	-	-			1		-	<9.4				<22
2-Butanone		-		-	-	-	-	-				-		4			-	5.1
2-Hexanone						-	-	-			-			<0.84				<2.0
4-Methyl-2-pentanone		-		-	-	-	-	-				-		<1.4			-	<3.9
Acetone	1	1	1	-	1	i	-	1	-	ì	810	340	240	370D	1400D	G098	400D	880D
Benzene		-					-	-				-	:	<0.65			-	<1.5
Bromodichloromethane	<2.4	<2.5	<2.2	<2.1	<1.2	<1.6	<0.23	<0.47	<0.21	<0.55	<0.43	<0.39	<2.7	<0.28	<0.54	<0.48	<0.45	<0.66
Bromoform	<18	<19	LT>	<16	8.8>	<12	<1.7	<3.6	<1.6	<4.2	<3.3	<3.0	<20	<2.1	<4.1	9.6>	<3.4	<5.0
Bromomethane	8:9>	<7.2	<6.3	<6.1	<3.3	<4.5	<0.65	<1.3	<0.61	<1.6	<1.2	<1.1	<7.7>	<0.80	<1.5	<1.4	<1.3	<1.9
Carbontetrachloride	<1.1	<1.2	<1.0	<0.99	<0.54	<0.73	0.5	0.52	0.57	0.54	0.54	0.55	<1.3	95.0	<0.25	0.52	0.58	0.45
Chlorobenzene	<8.1	<8.5	<7.5	<7.2	<3.9	<5.3	<0.78	<1.6	<0.72	<1.9	<1.5	<1.3	<9.2	<0.95	<1.8	<1.6	<1.5	<2.2
Chloroethane	<9.2	9.6>	<8.5	<8.2	<4.5	<6.0	<0.88	<1.8	<0.82	<2.1	<1.7	<1.5	<10		<2.1	<1.9	<1.7	-
Chloroform	<8.5	<9.0	<7.9	<7.7>	<4.2	<5.6	<0.82	<1.7	<0.77	<2.0	<1.6	<1.4	<9.7	<1.0	<1.9	<1.7	<1.6	<2.4
Chloromethane	<7.1	<7.5	9.9>	<6.4	<3.5	<4.7	96.0	<1.4	1.1	<1.6	<1.3	<1.2	<8.1	-	<1.6	<1.4	<1.4	
cis-1,2-Dichloroethene	<7.0	<7.3	<6.5	<6.2	<3.4	<4.6	<0.67	<1.4	<0.62	<1.6	<1.3	<1.2	<7.9	<0.82	<1.6	<1.4	<1.3	<1.9
cis-1,3-Dichloropropene	<16	<17	<15	<14	<7.7>	<10	<1.5	<3.1	<1.4	<3.7	<2.9	<2.6	<18	<1.9	<3.6	<3.2	<3.0	<4.4
Dibromochloromethane	<3.0	<3.2	<2.8	<2.7	<1.5	<2.0	<0.29	<0.59	<0.27	69.0>	<0.55	<0.50	<3.4	<0.36	<0.68	<0.61	<0.57	<0.83
Dichloromethane	<6.0	<6.3	<5.6	<5.4	<2.9	<4.0	<0.58	<1.2	0.58	<1.4	<1.1	<1.0	<6.8	<0.60	<1.4	<1.2	<1.1	<1.7
Ethylbenzene	:	-	-	-	1	i	-	:	-	-	<2.7	<2.5	<17	<1.8	<3.4	:	:	<4.2
Hexachlorobutadiene	-	-		-	-	i	-			-	-	-		<5.6	-			<13
Methyltert-butylether		:								-			:	<1.5				<3.5
Naphthalene	-	-		-	-	1	-	1	-	:	-	1		<3.7	1	-	-	<8.7
Styrene								-		-				<1.8				<4.1
Tetrachloroethene	23	750	520	470	2.1	3.7	0.63	1.2	1	98.0	0.83	0.83	<1.4	65	1.1	0.89	0.84	66
Toluene	-	1	-	1	-	1	-	-	-	1	1	-	1	2.8	-	-	-	5.4
trans-1,2-Dichloroethene	<7.0	<7.3	<6.5	<6.2	<3.4	<4.6	<0.67	<1.4	<0.62	<1.6	<1.3	<1.2	<7.9	2.4	<1.6	<1.4	<1.3	<1.9
Trans-1,3-Dichloropropene	<7.9	<8.3	<7.4	<7.1	<3.9	<5.2	<0.76	<1.6	<0.71	<1.8	<1.4	<1.3	<9.0	<0.94	<1.8	<1.6	<1.5	<2.2
Trichloroethene	9.8	360	220	180	0.69	4.4	0.42	0.32	0.41	0.34	0.35	0.7	<1.1	4	0.32	0.39	0.39	1.7
Trichlorofluoromethane	<9.8	<10	<9.1	<8.8	<4.8	<6.4	1.7	<1.9	1.5	<2.3	<1.8	<1.6	<11		<2.2	<2.0	<1.9	
Vinyl chloride	<0.95	<1.0	<0.88	<0.85	<0.46	<0.62	<0.091	<0.19	<0.085	<0.22	<0.17	<0.16	<1.1	<0.11	<0.22	<0.19	<0.18	<0.26
m/p-xylene	!	!	1	!	!	i	!	!	1	1	<5.5	<5.0	<34	<3.6	<6.9>	!	:	<8.3
o-Xylene	-		-	1	1	1	1	1	-	-	<2.7	<2.5	<17	<1.8	<3.4	-	1	<4.2
Xylene (total)		-	-	:	!		-		!	1	<5.5	<5.0	<34	<13.6	<6.9	!	-	<8.3

							BLDG3-4	4					
						Bui	Building 3 Machine Shop	nine Shop					
CONSTITUENT (ug/m3)	6/1/2009		7/16/2009 10/8/2009	2/9/2010	5/19/2010	8/5/2010	8/5/2010 11/22/2010 2/22/2011	2/22/2011	3/5/2012 (1)	11/7/2012	/8	11/1/2013	4/29/2014 (2)
, 1, 1-Trichloroethane	<110	21	12	<18	<3.5	<1.9	<5.4	<8.9	<1.1	<2.8	<2.6	<3.2	<3.1
l,1,2,2-Tetrachloroethane	<27	<1.2	<1.1	<4.6	<0.88	<0.48	<1.4	<2.2	<0.28	<0.70	<0.65	<0.81	<0.77
., 1, 2-Trichloroethane	<110	<4.6	<4.5	<18	<3.5	<1.9	<5.4	<8.9	<1.1	<2.8	<2.6	<3.2	<3.1
,1-Dichloroethane	<80	<3.5	<3.4	<14	<2.6	<1.4	<4.1	<6.7	<0.84	<2.1	<1.9	<2.4	<2.3
,1-Dichloroethene	<78	<3.4	<3.3	<14	<2.6	<1.4	<4.0	9.9>	<0.82	<2.1	<1.9	<2.4	<2.3
,2-Dibromoethane (EDB)	1	1	-	1	1	1	-		<0.32	1	1	-	<0.87
L, 2-Dichlorobenzene	1	1	1	1	1	i	-		<2.5	1	!	1	<6.8
.2-Dichloroethane	<80	<3.5	<3.4	<14	<2.6	<1.4	<4.1	<6.7	<0.84	<2.1	<1.9	<2.4	<2.3
1,2-Dichloropropane	06>	<3.9	<3.8	<16	<3.0	<1.6	<4.6	9.7>	<0.95	<2.4	<2.2	<2.7	<2.6
,3-Dichlorobenzene	!	1	1	-	1	1	-	-	<2.5	1	1	1	<6.8
.,4-Dichlorobenzene	1	1	1	1	1	1	1	1	<2.5	1	1	1	<6.8
l, 4-Dioxane	1	1	1	1	1	i	-	1	<9.3	1	!	1	<26
2-Butanone	1	1	1	:		;	-		2.5	1	:	1	11
2-Hexanone	1	1	1	1	1	i	-		<0.84	1	!	1	<2.3
4-Methyl-2-pentanone	!	1	1	1	1	1			<1.7	1	1	1	<4.6
Acetone	1	1	1	-	1	1	-	-	870D	2100D	1000D	780D	2300D
Benzene	1	1	1	1	1	;	-	-	<0.65	1	:	:	<1.8
Bromodichloromethane	<27	<1.2	<1.1	<4.6	<0.88	<0.48	<1.4	<2.2	<0.28	<0.70	<0.65	<0.81	<0.77
Bromoform	<200	<8.8	9.8>	<35	<6.7	<3.7	<10	<17	<2.1	<5.3	<4.9	<6.1	<5.8
Bromomethane	9/>	<3.3	<3.2	<13	<2.5	<1.4	<3.9	<6.4	<0.80	<2.0	<1.8	<2.3	<2.2
Carbontetrachloride	<12	<0.54	<0.53	<2.2	0.52	95.0	<0.63	<1.0	0.55	0.41	95.0	0.52	0.43
Chlorobenzene	06>	<3.9	<3.8	<16	<3.0	<1.6	<4.6	<7.6	<0.95	<2.4	<2.2	<2.7	<2.6
Chloroethane	<100	<4.5	<4.4	<18	<3.4	<1.9	<5.3	<8.6	1	<2.7	<2.5	<3.1	
Chloroform	<95	<4.2	<4.1	<17	<3.2	<1.7	<4.9	<8.0	<1.0	<2.5	<2.3	<2.9	<2.8
Chloromethane	<80	<3.5	<3.4	<14	<2.6	<1.4	<4.1	<6.7	-	<2.1	<1.9	<2.4	
cis-1,2-Dichloroethene	<78	<3.4	<3.3	<14	<2.6	<1.4	<4.0	9:9>	<0.82	<2.1	<1.9	<2.4	<2.3
cis-1,3-Dichloropropene	<180	<7.7>	<7.5	<31	<5.9	<3.2	<9.1	<15	<1.9	<4.7	<4.3	<5.4	<5.1
Dibromochloromethane	<34	<1.5	<1.4	<5.9	<1.1	<0.61	<1.7	<2.8	<0.35	<0.89	<0.82	<1.0	<0.97
Dichloromethane	<9>	<2.9	<2.9	<12	<2.2	<1.2	<3.4	<5.7	<0.60	<1.8	<1.6	<2.0	<1.9
Ethylbenzene		!	-	-	1	1	-	<14	<1.8	<4.5	:	-	<4.9
Hexachlorobutadiene		1	-	1	1	1	1	1	<5.6	-	1	-	<15
Methyltert-butylether	-	-	-	-	-	-	-		<1.5		-		<4.1
Naphthalene	-	1	-	-	1	1		1	<3.7	-	1	-	<10
Styrene		-			1	-		-	<1.7		-	-	<4.8
Tetrachloroethene	72	25	8.2	3	6.0	2.1	1.8	1.2	5.9	1.8	6.0	1.6	5.7
Toluene		1	-		1	-		-	1.4	1			14
trans-1,2-Dichloroethene	<78	<3.4	<3.3	<14	<2.6	<1.4	<4.0	9:9>	2.4	<2.1	<1.9	<2.4	<2.3
rans-1,3-Dichloropropene	88>	<3.9	<3.8	<15	<2.9	<1.6	<4.5	<7.5	<0.93	<2.3	<2.2	<2.7	<2.6
Trichloroethene	30	10	5.4	2.1	0.4	0.25	0.7	68:0>	0.7	0.4	<0.26	0.55	<0.31
richlorofluoromethane	<110	<4.8	<4.7	<19	<3.6	<2.0	<5.6	<9.2	1	<2.9	<2.7	<3.3	1
/inyl chloride	<11	<0.46	<0.45	<1.8	<0.35	<0.19	<0.54	<0.89	<0.11	<0.28	<0.26	<0.32	<0.31
n/p-xylene	-	!	-	1	1	1	-	<28	<3.6	<8.9	!	-	<9.8
o-Xylene	-	-	-		-	-		<14	<1.8	<4.5	1		<4.9
Xvlene (total)	!	1	1	1	1	1	1	<28	<3.6	6.8	!	1	865

TABLE 9 Indoor Air Analytical Results Building 3 Area Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

				BI	BLDG3-5				BLDG3-6
			Bo	iler room, B	Boiler room, Building 3 Basement	ement			Building 3 Storage Room
CONSTITUENT (ug/m3)	6/1/2009	10/8/2009		5/19/2010	8/5/2010	2/9/2010 5/19/2010 8/5/2010 11/22/2010 2/22/2011	2/22/2011	3/5/2012 (1)	6/27/2011
1,1,1-Trichloroethane	<0.91	<0.91	<0.88	<0.89	<1.8	<1.1	<0.88	<1.1	<1.8
1,1,2,2-Tetrachloroethane	<0.23	<0.23	<0.22	<0.22	<0.46	<0.26	<0.22	<0.26	<0.45
1, 1, 2-Trichloroethane	<0.91	<0.91	<0.88	68'0>	<1.8	<1.1	<0.88	<1.1	<1.8
1,1-Dichloroethane	<0.68	<0.68	>0.66	<0.67	<1.4	<0.79	<0.66	<0.79	<1.4
1,1-Dichloroethene	99.0>	99:0>	<0.65	99'0>	<1.3	<0.78	<0.65	<i>22</i> .0>	<1.3
1,2-Dibromoethane (EDB)								08:0>	
1,2-Dichlorobenzene								<2.3	***
1,2-Dichloroethane	<0.68	<0.68	99:0>	29.0>	<1.4	<0.79	<0.66	62'0>	<1.4
1,2-Dichloropropane	<0.77	<0.77	<0.75	92'0>	<1.6	<0.90	<0.75	06:0>	<1.5
1,3-Dichlorobenzene	:							<2.3	***
1,4-Dichlorobenzene	1	1	-	-	-		-	<2.3	
1,4-Dioxane								8.8>	***
2-Butanone								<1.1	
2-Hexanone	1	1	1	-	-			<0.79	
4-Methyl-2-pentanone	:		-					<1.6	***
Acetone								Z00D	008
Benzene								<0.61	
Bromodichloromethane	<0.23	<0.23	<0.22	<0.22	<0.46	<0.26	<0.22	<0.26	<0.45
Bromoform	<1.7	<1.7	<1.7	<1.7	<3.5	<2.0	<1.7	<2.0	<3.4
Bromomethane	<0.65	<0.65	<0.63	<0.64	<1.3	<0.76	<0.63	<0.75	<1.3
Carbontetrachloride	0.77	0.46	0.65	0.45	0.46	0.64	0.59	0.55	0.55
Chlorobenzene	<0.77	<0.77	<0.75	<0.76	<1.6	<0.90	<0.75	<0.90	<1.5
Chloroethane	<0.88	<0.88	<0.85	98'0>	<1.8	<1.0	<0.85		<1.8
Chloroform	<0.82	<0.82	62:0>	08'0>	<1.7	<0.95	<0.79	<0.95	<1.6
Chloromethane	0.95	1	1.1	0.86	<1.4	1.3	1.2		<1.4
cis-1,2-Dichloroethene	<0.66	>0.66	<0.65	>0.66	<1.3	<0.78	<0.65	<0.77	<1.3
cis-1,3-Dichloropropene	<1.5	<1.5	<1.5	<1.5	<3.1	<1.8	<1.5	<1.8	<3.0
Dibromochloromethane	<0.29	<0.29	<0.28	<0.28	<0.58	<0.33	<0.28	<0.33	<0.57
Dichloromethane	<0.57	<0.57	<0.56	<0.57	1.9	<0.67	<0.56	09:0>	<1.1
Ethylbenzene								<1.7	6'7>
Hexachlorobutadiene								<5.3	
Methyltert-butylether								<1.4	
Naphthalene	:		-					<3.5	***
Styrene	1	1	1	1	1		-	<1.7	
Tetrachloroethene	7	1.1	5.2	6.0	4.2	1.1	1.1	1.9	0.67
Toluene	1	1	1	1	1		-	0.88	
trans-1,2-Dichloroethene	<0.66	>0.66	<0.65	>0.66	<1.3	<0.78	<0.65	0.98	<1.3
Trans-1,3-Dichloropropene	<0.76	<0.76	<0.74	<0.75	<1.5	<0.88	<0.74	88.0>	<1.5
Trichloroethene	2.5	0.38	2	680'0>	0.19	0.12	<0.088	0.22	0.4
Trichlorofluoromethane	1.7	1.2	1.7	1.6	<1.9	1.7	1.4		<1.9
Vinyl chloride	<0.091	<0.091	<0.088	<0.089	<0.18	<0.11	<0.088	<0.11	<0.18
m/p-xylene								<3.4	<5.8
o-Xylene	1	1	-	-	-			<1.7	<2.9
Xylene (total)	-	-	1	1		1	1	<3.4	<5.8

Notes < indicates chemical not detected, and concentration is less than reporting limit (value shown). ug/m 3 = micrograms per cubic meter.

D = Result is from a diluted sample.
System Startup occurred in January 2010

(1) = sample collected following scheduled temporary SVE system shutdown from 2/27/12 to 3/5/12

(2) = sample collected following scheduled temporary SVE system shutdown from 4/3/14 to 4/29/14

Table 10
Operation and Maintenance Data
Building 3 VE System
Former Varian Facility Site
1150 Sohler Road
Beverly, Massachusetts

9	1	I								_	_	_	_	
Effluent Percent Reduction ⁽¹⁾		%66<	%66<	%66<	%66<	%66<	%66<	%66<	%66<	%66<	%66<	%66<	%66<	%66<
Total Flow Rate	cfm	160	175	175	175	175	175	170	165	175	170	175	175	175
Carbon Effluent	VOC (ppm)	Q	QN	QN	QN	QN	QN	ND	QN	QN	QN	QN	QN	QN
Carbon Midpoint	VOC (ppm)	QN	1.20	QN	1.9	QN	2.0	ND	QN	QN	QN	QN	QN	ND
Carbon Influent	VOC (ppm)	3.1	8.70	7.4	21.2	9.3	18.6	ND	5.6	13.9	10.4	3.5	16.6	6.9
VP7	VOC (ppm)	8.0	0.80	0.2	4.2	2.5	4.0	1.0	1.800	5.3	QN	QN	QN	1.3
BLDG3-VP7	Vacuum ("wc)	0.011	0.01	0.015	0.029	0.019	0.025	0.025	0.015	800.0	+0.016	+0.003	+0.011	+0.12
-VP6	VOC (ppm)	9	52.80	22	129	20	105	2	18	21	15	37	39	18
BLDG3-VP6	Vacuum ("wc)	0.009	0.20	0.021	0.015	0.016	0.012	0.029	0.039	0.115	0.112	0.118	0.1	0.11
3-VP5	VOC (ppm)	7	06.9	8	20	9	19	3	1	4.5	QN	QN	QN	2
BLDG3-VP5	Vacuum ("wc)	0	0.01	600.0	0.008	0.005	0.01	0.01	0.026	0.056	990.0	0.075	0.054	0.085
BLDG3-VP3	(mdd)	3.6	3.50	4.5	12.6	5.2	12.2	2.0	1.8	1.6	0.0	ΠN	0.0	1.0
BLDG	Vacuum ("wc)	0.012	0.02	0.023	0.020	0.022	0.023	0.027	0.023	0.027	0.029	0.029	0.027	0.030
BLDG3-VP2	(mdd)	2.3	4.50	2.1	10.6	1.4	10.2	0.4	0.4	1.8	QN	QN	QN	0.5
BLDG	Vacuum ("wc)	0.023	0.03	0.035	0.035	0.04	0.037	0.046	0.042	0.054	0.056	0.061	0.062	0.062
DG3-VP1	(mdd)	1.7	7.40	3	9.5	0.2	6	6.0	0.4	2.2	QN	Q	Q	0.3
BLD(Vacuum ("wc)	0.063	0.18	0.200	0.205	0.202	0.200	0.250	0.340	0.910	906.0	0.875	0.831	0.828
Extraction Well BLD3-SVE4	(mdd)	ΑN	ΑN	ΑN	Ν	Ν	AA	NA	AN	Ν	Ν	ΑN	20.1	3
Extrac	Vacuum ("wc)	ΑN	Ν	ΑN	Ν	Ν	AN	NA	NA	Ν	Ν	Ν	1.42	1.2
Extraction Well BLD3-SVE3	VOC (ppm)	ΑN	ΑN	ΝA	ΑN	Ν	ΑN	NA	ΑN	ΑN	Ν	ΑN	56.4	13.5
Extrac	Vacuum ("wc)	A	ΑN	NA	ΑN	Ν	ΑN	NA	ΑN	ΑN	Ν	ΑN	1.39	1.28
Extraction Well BLD3-SVE2	(ppm)	2.7	1.20	12.1	34.3	14.6	33.5	ND	4.4	22.8	5.3	1	7.5	6.1
Extrac	Vacuum ("wc)	5.97	6.97	7.34	7.43	7.804	7.3	7.9	14.54	6.79	6.67	6.95	5.89	5.58
Extraction Well BLD3-SVE1	(ppm)	2.5	3.70	4.5	10.1	4.6	10	ND	1.5	2	QN	QN	QN	QN
Extra	Vacuum ("wc)	7.45	8.29	7.62	2.66	8.046	7.5	8.1	5.24	2.78	2.76	2.809	2.54	2.45
		4/3/2014	5/1/2014	5/28/2014	6/13/2014	6/24/2014	7/8/2014	7/24/2014	8/7/2014	8/19/2014	9/3/2014	9/25/2014	9/25/2014	9/29/2014

"we's inches of water column

VOC = votalite organic compounds measured with a photoionization detector

ppm = parts per million

cfm = cubic feet per minute

ND = non-detect

NA = not applicable

(1) = target of gas VOC reduction is 85% per MassDEP policy (MADEP. 1994)

(2) = Second set of measurements on September 25, 2014 after vapor extraction started at BLDG3-SVE3 and BLDG3-SVE4

Table 11
Soil Vapor Analytical Results
Building 3 SVE System
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

	BLDG3-SVE-INF		BLDG3-SVE1	-SVE1			BLDG	BLDG3-SVE2		BLDG3-SVE3	BLDG3-SVE4
CONSTITUENT (ug/m3)	7/8/2014	2/4/2011	1/24/2012	7/8/2014	9/25/2014	8/6/2009	2/4/2011	1/24/2012	7/8/2014	9/25/2014	9/25/2014
1,1,1-Trichloroethane	<0.80	<20	<21	<3.7 UJ	7	096>	<1700	<940	<1600	<11	<11
1,1,2,2-Tetrachloroethane	<0.20	<4.9	<5.2	<0.92 UJ	<1	<240	<430	<240	<390	<14	<14
1,1,2-Trichloroethane	<0.80	<20	<21	<3.7 UJ	<1	096>	<1700	<940	<1600	<11	<11
1,1-Dichloroethane	<0.60	-	<16	<2.8 UJ	<0.8	<720	<1300	<710	<1200	8>	8>
1,1-Dichloroethene	<0.59	-	<15	<2.7 UJ	<0.8	<700	<1300	<690	<1200	8>	8>
1,2-Dibromoethane (EDB)	<0.23	<5.5		<1.0 UJ	<2		<490		<450	<15	<15
1,2-Dichlorobenzene	<1.8	<43		<8.1 UJ	<1		008E>	-	<3500	<12	<12
1,2-Dichloroethane	<0.60	<15	<16	<2.8 UJ	<0.8	<720	<1300	<710	<1200	8>	8>
1,2-Dichloropropane	<0.68	<17	<18	<3.1 UJ	6:0>	<820	<1500	<800	<1300	6>	6>
1,3-Dichlorobenzene	0.068	<43	-	<8.1 UJ	<1	-	<3800	-	<3500	<12	<12
1,4-Dichlorobenzene	<1.8	<43		<8.1 UJ	<1		008E>		<3500	<12	<12
1,4-Dioxane	<6.7	<160		<31 UJ	<0.7	-	<14000	-	<13000	<i>L</i> >	<7>
2-Butanone	96:0	-		3.21	63	-	<1900	-	<1700	3200	13000
2-Hexanone	0.13	<15		0.31J	<0.8	-	<1300	1	<1200	89	8>
4-Methyl-2-pentanone	<1.2	<29	-	<5.5 UJ	<0.8	-	<2600		<2400	8>	8>
Acetone	21	230	089	39	290 J	-	<14000	<7800	5503	1700	3700
Benzene	0.076	<11		0.25J	<0.6	-	<1000	1	<920	9>	9>
Bromodichloromethane	<0.20	<4.9	<5.2	<0.92 UJ	<1	<240	<430	<240	<390	<13	<13
Bromoform	<1.5	<37	68>	<7.0 UJ	<2	<1800	<3300	<1800	<3000	<21	<21
Bromomethane	<0.58		<15	<2.6 UJ	<0.8	069>	<1200	<670	<1100	8>	8>
Carbontetrachloride	0.079	6.2	<2.4	0.47 J	<1	<110	<200	<110	<180	<13	<13
Chlorobenzene	<0.68	<17	<18	<3.1 UJ	<0.9	<820	<1500	<800	<1300	6>	6>
Chloroethane	-	-	<20			086>		<910			
Chloroform	<0.72	<18	<19	0.25J	<1	098>	<1600	<850	<1400	<10	<10
Chloromethane	-	-	<16			<720		<710	-		
cis-1,2-Dichloroethene	<0.59	1	<15	<2.7 UJ	<0.8	002>	<1300	069>	<1200	120	8>
cis-1,3-Dichloropropene	<1.3	<33	<32	<6.2 UJ	<0.9	<1600	<2900	<1600	<2600	6>	6>
Dibromochloromethane	<0.25	<6.2	9:9>	<1.2 UJ	<2	00E>	<550	<300	<500	<17	<17
Dichloromethane	0.38J	-	<13	0.36J	7	<610	<1100	<600	<1000	<7>	<7
Ethylbenzene	0.065J	<31	<33	0.092J	<0.9		<2700	<1500	<2500	6>	6>
Hexachlorobutadiene	<4.0	<98		<18 UJ	<2		<8700	-	<7900	<21	<21
Methyltert-butylether	<1.1	-		<4.9 UJ	<0.7		<2300		<2100	/>	<7>
Naphthalene	<2.7	<65		<12 UJ	<1		<5800		<5200	<10	<10
Styrene	<1.3	<31		<5.8 UJ	<0.8		<2700		<2500	8>	8>
Tetrachloroethene	3.6	1500	160	0.331	240	3€0000	130000	73000	00066	410000	00069
Toluene	0.28J	<13		0.691	1		<1200		<1100	8>	8>
trans-1,2-Dichloroethene	0.051J	-	<15	0.13J	<0.8	<200	<1300	069>	<1200	8	8>
Trans-1,3-Dichloropropene	<0.67	<16	<17	<3.1 UJ	<0.9	008>	<1400	<780	<1300	6>	6>
Trichloroethene	0.061J	1200	43	<0.37 UJ	3	32000D	21000	6700	2900	2000	200
Trichlorofluoromethane	-	-	<21			<990		<970	-	-	-
Vinyl chloride	0.057J	-	<2.1	<0.37 UJ	<0.5	96>	<170	<94	<160	<5	<5
m/p-xylene	0.18J	<62	99>	0.23J	<2	-	<5500	<3000	<5000	<17	<17
o-Xylene	0.055J	<31	<33	0.073J	<0.9	-	<2700	<1500	<2500	6>	6>
Xylene (total)	0.235J	<62	>66	0.303J	<2	-	<5500	<3000	<5000	<17	<17

Notes:

Notes:

ugma = micrograms per cubic meter.

<3.1 = not detected above listed detection limit

-- = constituent not sampled for.

D - results reported from a diluted sample

J - estimated value

TABLE 12 VOC Mass Removal Estimate Summary Building 3 SVE System Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Sample Date	Vapor Influent Concentration (ppm(v))	Flow (scfm)	Days Operational	VOC Mass Removal Rate (lb./day)	Total VOC Mass Removed (lb.)
12/10/2009	17.0	97	0	0.00	0.0
12/11/2009	15.1	97	1 1	0.93	0.9
12/14/2009	19.0	102	4	1.05	4.1
12/16/2009	27.5	120	6	1.67	7.4
12/18/2009	23.0	125	8	1.89	11.2
12/21/2009	6.6	125	11	1.11	14.5
12/23/2009	6.5	127	13	0.50	15.5
12/29/2009	6.6	125	19	0.49	18.5
1/6/2010	10.0	140	27	0.70	24.0
1/19/2010	58.0	133	28	2.72	26.7
2/4/2010	21.8	141	55	3.36	80.6
2/18/2010	21.8	140	69	1.83	106
3/5/2010	20.4	140	84	1.77	133
3/19/2010	9.7	138	98	1.25	150
			108		150
3/29/2010	10.4 9.5	146		0.88 0.87	169
4/12/2010		146	120		
4/27/2010	11.8	138	135	0.88	183
5/11/2010	2.4	133	149	0.57	191
5/27/2010	18.9	150	165	0.96	206
6/8/2010	29.6	150	177	2.18	232
6/25/2010	21.7	149	194	2.28	271
7/7/2010	21.7	149	206	1.93	294
7/9/2010	53.0	130	208	2.91	300
7/19/2010	32.6	129	218	3.32	333
8/2/2010	35.0	125	230	2.54	364
8/16/2010	0.0	131	244	1.38	383
8/30/2010	41.0	144	258	1.77	408
9/14/2010	27.1	145	273	2.97	452
9/28/2010	11.7	145	287	1.69	476
10/13/2010	21.0	147	302	1.44	498
10/26/2010	15.0	137	315	1.48	517
11/9/2010	34.0	138	329	2.03	545
11/24/2010	12.5	144	344	2.00	575
12/7/2010	19.0	139	355	1.31	590
12/22/2010	20.7	139	368	1.65	611
12/28/2010	12.7	160	374	1.60	621
1/3/2011	14.3	154	380	1.24	628
1/18/2011	15.4	160	395	1.42	650
2/4/2011	8.9	160	412	1.16	669
2/15/2011	3.0	160	423	0.57	676
2/22/2011	10.0	172	430	0.67	680
3/4/2011	7.2	172	440	0.89	689
3/15/2011	7.7	172	451	0.77	698
3/29/2011	35.0	167	465	2.13	728
4/12/2011	9.0	165	479	2.18	758
4/25/2011	5.8	165	492	0.73	768
5/10/2011	10.8	165	507	0.82	780
5/27/2011	18.5	163	524	1.43	804
6/7/2011	10.7	163	535	1.43	820
6/20/2011	7.5	164	548	0.89	832
7/7/2011	6.5	162	565	0.68	843
7/22/2011	2.9	161	580	0.45	850
8/1/2011	0.2	162	590	0.15	852
8/15/2011	2.0	163	604	0.11	853
9/6/2011	11.0	164	626	0.64	867
9/20/2011	10.0	164	640	1.03	882
10/3/2011	3.5	164	653	0.66	890
10/20/2011	2.3	164	670	0.29	895

TABLE 12 VOC Mass Removal Estimate Summary Building 3 SVE System Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Sample Date	Vapor Influent Concentration	Flow (scfm)	Days Operational	VOC Mass Removal Rate (lb./day)	Total VOC Mass Removed (lb.)
•	(ppm(v))			• • • • • • • • • • • • • • • • • • • •	` '
11/2/2011	6.5	161	683	0.43	901
11/15/2011 12/5/2011	1.6 6.6	135 122	695 714	0.33 0.30	905 910
12/5/2011	10.7	122	714	0.30	910
1/4/2012	0.1	149	742	0.48	926
1/24/2012	12.5	149	760	0.56	935
2/6/2012	0.0	143	772	0.54	942
2/21/2012	0.0	139	785	0.00	942
3/15/2012	5.5	144	795	0.45	946
3/28/2012	4.6	148	808	0.45	952
4/5/2012	4.4	149	816	0.40	955
4/17/2012	15.5	147	828	0.87	966
5/8/2012	11.5	157	849	1.27	992
5/22/2012	0.4	137	863	0.49	999
6/4/2012	0.0	156	876	0.02	1,000
6/19/2012	11.4	149	891	0.69	1,010
7/12/2012	18.5	149	914	1.33	1,041
7/24/2012	11.5	149	925	1.34	1,055
8/10/2012	6.3	149	942	0.79	1,069
8/22/2012	6.7	149	954	0.58	1,076
9/7/2012	7.7	135	970	0.58	1,085
9/18/2012	5.2	141	981	0.55	1,091
10/12/2012	5.7	152	1005	0.50	1,103
10/26/2012	5.6	152	1019	0.51	1,110
11/7/2012	5.8	152	1031	0.52	1,116
11/21/2012	2.2	152	1045	0.37	1,122
12/7/2012	3.4	153	1061	0.26	1,126
12/21/2012	9.4	152	1075	0.58	1,134
1/4/2013	3.8	139	1088	0.55	1,141
1/17/2013	7.0	144	1101	0.47	1,147
2/7/2013	11.0	135	1122	0.73	1,162
2/27/2013	12.0	134	1142	0.92	1,181
3/15/2013	7.5	135	1158	0.79	1,193
3/29/2013	4.5	134	1172	0.48	1,200
4/8/2013	10.3 5.9	134 138	1182 1203	0.59 0.67	1,206 1,220
4/29/2013 5/10/2013	6.0	137	1203	0.67	1,220
5/24/2013	3.7	132	1214	0.38	1,231
6/5/2013	7.9	132	1240	0.46	1,237
6/20/2013	3.0	132	1255	0.43	1,243
7/12/2013	6.1	132	1277	0.36	1,251
7/17/2013	6.8	132	1282	0.51	1,253
7/25/2013	4.3	133	1290	0.44	1,257
8/9/2013	8.0	146	1305	0.54	1,265
8/23/2013	5.9	141	1319	0.59	1,273
9/17/2013	7.8	137	1344	0.56	1,287
9/27/2013	10.2	126	1354	0.68	1,294
10/14/2013	5.1	147	1371	0.67	1,306
10/25/2013	9.5	147	1382	0.64	1,313
11/5/2013	7.7	148	1393	0.76	1,321
11/18/2013	8.1	146	1406	0.69	1,330
12/5/2013	7.2	148	1423	0.68	1,342
12/18/2013	9.4	139	1435	0.69	1,350
1/8/2014	4.0	135	1455	0.54	1,361
1/27/2014	6.0	134	1474	0.40	1,368
2/4/2014	0.0	150	1482	0.27	1,371
2/20/2014	0.0	149	1498	0.00	1,371
3/4/2014	3.1	151	1510	0.14	1,372

TABLE 12 VOC Mass Removal Estimate Summary Building 3 SVE System Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Sample Date	Vapor Influent Concentration (ppm(v))	Flow (scfm)	Days Operational	VOC Mass Removal Rate (lb./day)	Total VOC Mass Removed (lb.)
3/20/2014	4.5	149	1526	0.34	1,378
4/3/2014	3.1	150	1540	0.34	1,382
5/1/2014	8.7	162	1542	0.54	1,384
5/28/2014	7.4	161	1569	0.78	1,405
6/13/2014	21.2	160	1585	1.37	1,426
6/24/2014	9.3	159	1596	1.45	1,442
7/8/2014	18.6	159	1610	1.33	1,461
7/25/2014	0.0	154	1627	0.86	1,476
8/7/2014	5.6	150	1640	0.25	1,479
8/19/2014	13.9	160	1652	0.93	1,490
9/3/2014	10.4	154	1667	1.12	1,507
9/25/2014	3.5	158	1689	0.66	1,521
9/25/2014	16.6	158	1689	0.00	1,521
9/29/2014	6.9	158	1693	1.11	1,526

Notes:

ppm = parts per million

scfm = standard cubic feet per minute (see note 6)

lbs./day = pounds per day

lbs. = pounds

VOC = volatile organic compounds

- 1. Vapor influent concentrations as measured with a photoionization detector (PID).
- Total VOC mass removed (lbs.) is calculated by multiplying the VOC Mass Removal Rate (lbs./day) on the sampling date by the # of operating days between visits.
- 3. VOS mass removal rate (lbs./day) = average VOC level between current and previous monitoring (ppm)/ 10E6 x 1 lbmole/379.4 cu ft. x (158lbs/lbmole) x flow (ft^3/min) x (1440 min/day)
- 4. 158 lbs./lbmole is the weighted average molecular weight of the primary contaminants in the soil vapor (80% Tetrachloroethene, 19% Trichloroethene, and 1% acetone based on analytical results from recovered soil vapor).
- 5. VOC concentration not monitored on 2/4/10, assumed concentration noted on 2/18/10.
- 6. Flow rate (scfm) is calculated with the following equation: 128.8 x Flow coefficient (K) x pipe diameter^2 (in) x sqrt (psia x differential pressure (IWC)/(Temp (F) + 460) x Sp Gr @ 60°F) to adjust for system operating temperature the second 9/25/14 monitoring was conducted after extraction from BLDG3-SVE3 and BLDG3-SVE4 was started

					BLDG5-1									BLDG5-2				
													S	Shipping Area	e			
CONSTITUENT (ug/m3)	8/22/2011	10/7/2011	1/9/2012	4/18/2013	8/5/2013	11/1/2013	1/27/2014	6/17/2014	9/24/2014	8/22/2011	10/7/2011	1/9/2012	4/18/2013	8/5/2013	11/1/2013	1/27/2014	6/17/2014	9/24/2014
1,1,1-Trichloroethane	<3.1	9.9>	<9.3	<91	<41	<9.4	<4.7	<20	<1	<1.4	<1.6	<94	<45	<16	<28	<6.2	<18	1>
1,1,2,2-Tetrachloroethane	<0.78	<1.7	<2.3	<23	<10	<2.4	<1.2	<4.9	<1	<0.34	<0.40	<24	<11	<4.1	6.9>	<1.6	<4.5	1>
1,1,2-Trichloroethane	<3.1	9.9>	<9.3	<91	<41	4.6>	<4.7	<20	<1	<1.4	<1.6	<94	<45	<16	<28	<6.2	<18	1>
1,1-Dichloroethane	<2.3	<5.0	<7.0	89>	<31	<7.1	<3.5	<15	<0.8	<1.0	<1.2	<71	<34	<12	<21	<4.7	<14	8.0>
1,1-Dichloroethene	<2.3	<4.8	<6.8	99>	<30	6.9>	<3.5	<14	<0.8	<1.0	<1.2	69>	<33	<12	<20	<4.5	<13	8.0>
1,2-Dibromoethane (EDB)	-	-	-		-	-	<1.3	<5.5	<2	-	1	1	-	-	-	<1.8	<5.1	<2>
1,2-Dichlorobenzene	-	-					<10	<43	<1		-	1		-	-	<14	<40	1>
1,2-Dichloroethane	<2.3	<5.0	<7.0	89>	<31	<7.1	<3.5	<15	<0.8	<1.0	<1.2	<71	<34	<12	<21	<4.7	<14	<0.8
1,2-Dichloropropane	<2.7	<5.6	<7.9	<77>	<35	<8.0	<4.0	<17	6.0>	<1.2	<1.4	08>	<38	<14	<23	<5.3	<15	6.0>
1,3-Dichlorobenzene	1	-			-		<10	<43	<1		-					<14	<40	<1
1,4-Dichlorobenzene							<10	<43	<1							<14	<40	1>
1,4-Dioxane	-	-					<39	<160	<0.7		-	1			-	<52	<150	2.0>
2-Butanone							92	220	340							92	270	220
2-Hexanone							<3.5	<15	<0.8							<4.7	<14	8.0>
4-Methyl-2-pentanone	-	-	-		-		14	49	100				-	-		16	62	89
Acetone		9200	10000D	3300	1000	3400D	270D	4100D	310		2000	3300	1400	640	870	180	099	110
Benzene							<2.7	<11	9.0>							<3.6	<11	9.0>
Bromodichloromethane	<0.78	<1.7	<2.3	<23	<10	<2.4	<1.2	<4.9	<1	<0.34	<0.40	<24	<11	<4.1	6.9>	<1.6	<4.5	1>
Bromoform	<5.9	<13	<18	<170	<78	<18	<8.9	<37	<2	<2.6	<3.1	<180	<85	<31	<52	<12	<34	<2>
Bromomethane	<2.2	<4.7	<6.7	<65	<29	<6.8	<3.4	<14	<0.8	<0.97	<1.2	89>	<32	<12	<20	<4.4	<13	8:0>
Carbontetrachloride	0.61	<0.77	<1.1	<11	<4.8	<1.1	<0.55	<2.3	<1	0.59	0.63	<11	<5.2	<1.9	<3.2	<0.72	<2.1	<1>
Chlorobenzene	<2.7	<5.6	<7.9	<77	<35	<8.0	<4.0	<17	<0.9	<1.2	<1.4	<80	<38	<14	<23	<5.3	<15	6.0>
Chloroethane	<3.0	<6.4	<9.0	<88	<39	<9.1	1	1	1	<1.3	<1.6	<91	<43	<16	<27	-	1	1
Chloroform	<2.8	<5.9	<8.4	<81	<37	<8.5	<4.2	<18	<1	<1.2	<1.5	<85	<40	<15	<25	<5.6	<16	<1
Chloromethane	<2.3	<5.0	<7.0	<68	<31	<7.1	1	1	1	<1.0	<1.2	<71	<34	<12	<21	-	ı	1
cis-1,2-Dichloroethene	<2.3	<4.8	<6.8	>99	<30	6.9>	<3.5	<14	1	2.4	1.3	69>	<33	<12	<20	<4.5	<13	6.0
cis-1,3-Dichloropropene	<5.2	<11	<16	<150	<68	<16	<7.9	<33	<0.9	<2.3	<2.7	<160	<75	<27	<46	<10	<30	6.0>
Dibromochloromethane	<0.99	<2.1	<2.9	<29	<13	<3.0	<1.5	<6.2	<2	<0.43	<0.51	<30	<14	<5.2	<8.7	<2.0	<5.7	<2
Dichloromethane	<2.0	<4.2	<5.9	6.5J	<26	<6.0	<3.0	<12	28	<0.86	<1.0	09>	3.61	<10	<17	<3.9	<11	9
Ethylbenzene	<4.9	<10	<15	<140	-		<7.5	<31	2	<2.1	<2.6	<150	1.91	-	-	<9.8	<29	1
Hexachlorobutadiene	1	1	1	-	-	-	<24	<98	<2	1	1	1	-	-	-	<31	06>	<2
Methyltert-butylether	-	-			-		<6.2	<26	<0.7							<8.2	<24	2.0>
Naphthalene	1	1		-	-	-	<16	<65	<1	1	1	1	-	-	-	<21	<60	7
Styrene	1	1	1	-	-	-	<7.4	<31	<0.8	1	-	1	-	-	-	<9.7	<28	<0.8
Tetrachloroethene	3.1	3.7	7.4	<12	6.3	7.3	1.2	6.9	8	12	7.5	14	2.91	8.2	9.2	2.7	11	2
Toluene	-	1	1	-	-	-	<3.2	<13	2	-	-	-	-	-	-	<4.2	<12	2
trans-1,2-Dichloroethene	<2.3	<4.8	<6.8	99>	<30	6.9>	<3.5	<14	<0.8	<1.0	<1.2	69>	<33	<12	<20	<4.5	<13	8'0>
Trans-1, 3-Dichloropropene	<2.6	<5.5	<7.8	<75	<34	6.7>	<3.9	<16	<0.9	<1.1	<1.3	6/>	<37	<14	<23	<5.2	<15	6'0>
Trichloroethene	5.6	5.1	8.9	4.11	11	12	2.2	7.2	6	14	8.4	17	4.41	12	12	4	11	9
Trichlorofluoromethane	<3.2	<6.8	<9.6>	<94	<42	<9.7	1	1	1	8.2	4	<97	4.11	<17	<28	-	1	1
Vinyl chloride	<0.31	<0.66	<0.93	<9.1	<4.1	<0.94	<0.47	<2.0	<0.5	<0.14	<0.16	<9.4	<4.5	<1.6	<2.8	<0.62	<1.8	<0.5
m/p-xylene	<9.9	<21	<30	4.91	-	1	<15	<62	8	5.6	8	<300	7.7	1	1	<20	<57	2
o-Xylene	<4.9	<10	<15	<140	-	i	<7.5	<31	2	<2.1	<2.6	<150	2.31	1	1	<9.8	<29	1
Xylene (total)	<9.9	<21	<15	4.91			<15	<62	10	5.6	8	<300	101	-		<20	<57	9

:. ug/m3 = Micrograms per cubic meter.

D = Result from a diluted sample.

J = Estimated value.

--- = not analyzed

<3.1 = not detected above listed detection limit.

SVE system startup in March 2013 Notes:

				BLDG5-3						BLDG5-4		BLDG5-5	BLU	BLDG5-6	BLDG8-1
			Š	Sanding Room	,				P	Production Area	ea ea				
8/22/2011	10/7/2011	1/8	4/18/2013	8/5/2013	11/1/2013	1/27/2014	6/17/2014	9/24/2014	8/22/2011	8/22/2011 10/7/2011	1/9/2012	4/1/2014	4/1/2014	9/24/2014	4/1/2014
<1.7	<1.6	<3.6	<29	<1.2	<8.2	<3.2	<10	<1	<1.1	<1.8	<26	<2.6	<0.95	<1	<0.86
<0.44	<0.41	<0.91	<7.2	<0.30	<2.0	<0.80	<2.5	<1	<0.28	<0.44	9.9>	<0.65	<0.24	<1	<0.22
<1.7	<1.6	<3.6	<29	<1.2	<8.2	<3.2	<10	<1	<1.1	<1.8	<26	<2.6	<0.95	<1	>0.86
<1.3	<1.2	<2.7	<22	<0.91	<6.1	<2.4	<7.5	<0.8	<0.83	<1.3	<20	<2.0	<0.71	<0.8	<0.65
<1.3	<1.2	<2.7	<21	<0.89	0.9>	<2.3	<7.3	<0.8	<0.81	<1.3	<19	<1.9	<0.69	<0.8	<0.63
1	1	-	-	1	-	<0.91	<2.8	<2	1	-		<0.74	<0.27	<2	<0.24
1		1	1	1	1	<7.0	<22	<1		1	!	<5.7	<2.1	7	<1.9
<1.3	<1.2	<2.7	<22	<0.91	<6.1	<2.4	<7.5	<0.8	<0.83	<1.3	<20	<2.0	<0.71	<0.8	<0.65
<1.5	<1.4	<3.1	<25	<1.0	6.9>	<2.7	<8.5	<0.0>	<0.94	<1.5	<22	<2.2	<0.80	6:0>	<0.73
1	1	1	1	1	1	<7.0	<22	7		1	!	<5.7	<2.1	7	<1.9
1	1	1	1	1	1	<7.0	<22	7		1	-	<5.7	<2.1	7	<1.9
1	:	1	1	;	1	<27	<83	<0.7		1	-	<22	<7.9	<0.7	<7.2
1	1	1	1	1	1	97	380	18		1	1	95	34	14	5.6
-	1	-	-	1	-	<2.4	<7.5	<0.8		-		<2.0	<0.71	<0.8	<0.65
1	1	!	1	1	1	25	91	2		1	1	12	5.1	2	<1.3
1	1200	3400D	1000	400D	2100D	330D	1000D	570	-	1000	029	3900D	440D	620	Q98
1	1	1	1	:	1	<1.9	<5.8	9:0>	1	1	-	<1.5	<0.55	9.0>	<0.50
<0.44	<0.41	<0.91	<7.2	<0.30	<2.0	<0.80	<2.5	<1	<0.28	<0.44	9.9>	<0.65	<0.24	√1	<0.22
<3.3	<3.1	6.9>	<55	<2.3	<15	<6.1	<19	<2	<2.1	<3.3	<50	<4.9	<1.8	<2	<1.6
<1.3	<1.2	<2.6	<21	<0.87	<5.8	<2.3	<7.1	<0.8	<0.79	<1.3	<19	<1.9	<0.68	<0.8	<0.62
0.55	0.58	0.58	<3.4	0.53	<0.95	0.54	<1.2	<1	0.59	0.63	<3.1	0.41	98'0	7	0.28
<1.5	<1.4	<3.1	<25	<1.0	6.9>	<2.7	<8.5	<0.0>	<0.94	<1.5	<22	<2.2	<0.80	6:0>	<0.73
<1.7	<1.6	<3.5	<28	<1.2	<7.9				<1.1	<1.7	<25				
<1.6	<1.5	<3.3	<26	<1.1	<7.3	<2.9	<9.0	<1	<1.0	<1.6	<24	<2.3	<0.85	<1	<0.78
<1.3	<1.2	<2.7	1.7J	<0.91	<6.1	-		-	1	<1.3	<20				1
1.5	<1.2	<2.7	<21	<0.89	<6.0	<2.3	<7.3	<0.8	<0.81	<1.3	<19	<1.9	1.7	<0.8	<0.63
<2.9	<2.7	<6.0	<48	<2.0	<14	<5.3	<17	<0.0>	<1.8	<2.9	<44	<4.3	<1.6	<0.9	<1.4
<0.55	<0.52	<1.1	<9.2	<0.39	<2.6	<1.0	<3.2	<2	<0.35	<0.56	<8.3	<0.82	<0.30	<2	<0.27
<1.1	<1.0	<2.3	5.63	<0.77	6.4	<2.0	<6.3	57	<0.70	<1.1	<17	<1.6	<0.60	5	<0.55
<2.8	<2.6	<5.7	1.5J			<5.1	<16	<0.0>	<1.8	<2.8	<42	<4.1	<1.5	1	<1.4
	-	-	-	-		<16	<50	<2	-	-	-	<13	<4.7	<2	<4.3
1	1	-	-	1	-	<4.2	<13	<0.7	-	-	-	<3.4	<1.2	<0.7	<1.1
-	1	-	-	1	-	<11	<33	<1	-	-	-	<8.7	<3.2	<1	<2.9
!	1	-	1	-		<5.0	<16	<0.8	-	-	-	<4.1	<1.5	<0.8	<1.4
3.8	3.1	4.2	<3.9	1.8	3.8	6.0	3.3	<1	0.78	1	<3.5	<0.35	0.81	<1	0.14
						<2.2	8.9>	2				<1.8	1.8	4	98.0
<1.3	<1.2	<2.7	<21	<0.89	0.9>	<2.3	<7.3	<0.8	<0.81	<1.3	<19	<1.9	1.9	<0.8	<0.63
Frans-1,3-Dichloropropene <1.5	<1.4	<3.0	<24	<1.0	<6.8	<2.7	<8.3	<0.0>	<0.92	<1.5	<22	<2.2	<0.79	<0.9	<0.72
12	17	18	1.7J	8.5	10	2.1	3.5	<1	2.9	2.1	<2.6	0.79	5.2	√1	0.85
2.9	2.1	<3.7	2.21	2.5	<8.4	-	1	-	1.7	<1.8	<27	-	-	-	1
<0.17	<0.16	<0.36	<2.9	<0.12	<0.82	<0.32	<1.0	<0.5	<0.11	<0.18	<2.6	<0.26	<0.095	<0.5	<0.086
7.1	<5.2	<12	5.91	1	1	<10	<32	2	<3.5	<5.6	<83	<8.3	3.2	4	<2.8
<2.8	<2.6	<5.7	2.11	-		<5.1	<16	<0.0>	<1.8	<2.8	<42	<4.1	<1.5	0.9	<1.4
7.7	<5.7	<5.7	0			/10	/22	٢	,	9		ç			0

Notes: ug/m3 = Micrograms per cubic meter.

D = Result from a diluted sample.
J = Estimated value.
--- not analyzed
<3.1 = not detected above listed detection limit.
SVE system startup in March 2013

TABLE 14
Sub-Slab Soil Vapor Analytical Results
Building 5 Area
Former Varian Facility Site
150 Sohler Road
Beverly, Massachusets

					9	20010			Beverly, P	Beverly, Massachusetts	tts					673 33418					
•					OA Area	Area									Paint Mi	Paint Mixing Storage Room	Room				
CONSTITUENT (ug/m3)	2/21/2011	6/4/2011	8/22/2011	10/7/2011	1/9/2012	2/21/2011 6/4/2011 8/22/2011 10/7/2011 1/9/2012 4/18/2013 8/	5/2013	11/1/2013 1/27/2014 6/17/2014	/27/2014 6		2/21/2011 6/4/2011 8/22/2011	/4/2011 8/		10/7/2011	/9/2012 4	/18/2013 8	1/9/2012 4/18/2013 8/5/2013 11/1/2013	1/1/2013 1	1/27/2014 6/17/2014 9/24/2014	/17/2014 9	/24/2014
	<31	<350	<290	99>	<80	<43	<3.0	<19	<1.2		<44	<25		<3.5	<16	<1.2	<1.1	<1.9	<1.1	<4.0	_
1,1,2,2-Tetrachloroethane	<7.8	<88>	<72	<16	<20	<11	<0.76	<4.8	<0.30	<10	<11	<6.2	<1.2	<0.87	<4.0	<0.30	<0.27	<0.49	<0.27	<1.0	^7
1,1,2-Trichloroethane	<31	<350	<290	<66	<80	<43	<3.0	<19	<1.2	<41	<44	<25	<5.0	<3.5	<16	<1.2	<1.1	<1.9	<1.1	<4.0	\
1,1-Dichloroethane	<24	<260	<220	<49	<60	<33	<2.3	<14	<0.90	<31	<33	<19	<3.7	<2.6	<12	<0.90	<0.81	<1.5	<0.82	<3.0	<0.8
1,1-Dichloroethene	<23	<260	<210	<48	<59	<32	<2.2	<14	<0.88	<30	<32	<18	<3.6	<2.5	<12	<0.88	<0.79	<1.4	<0.80	<2.9	<0.8
1,2-Dibromoethane (EDB)	<8.9	-			<23	-	1	-	<0.34	<12	<12	;	1	1	<4.5	:	-	;	<0.31	<1.1	<2
1,2-Dichlorobenzene	69>				<180				<2.6	06>	<97				<35				<2.4	<8.8>	<1
1,2-Dichloroethane	<24	<260	<220	<49	09>	<33	<2.3	<14	<0.90	<31	<33	<19	<3.7	<2.6	<12	<0.90	<0.81	<1.5	<0.82	<3.0	<0.8
1,2-Dichloropropane	<27	<300	<250	<56	89>	<37	<2.6	<16	<1.0	<35	<37	<21	<4.2	<2.9	<14	<1.0	<0.92	<1.7	<0.93	<3.4	<0.9
1,3-Dichlorobenzene	69>	1		-	<180	-	1	1	<2.6	06>	<97	;	1	1	<35	:	1	1	<2.4	<8.8	9
1,4-Dichlorobenzene	69>	:	:	-	<180	1			<2.6	06>	<97	1	:	:	<35	:	1	:	<2.4	<8.8	<1
1,4-Dioxane		:			0/9>	-			<10	<340	1	1	:	:	<130	1	:	1	<9.1	<33	<0.7
2-Butanone	09	:	1	1	98>	1	1	1	22	45	<48	1	1	:	300	:	1	1	65D	200	230
2-Hexanone	<24	-	-		09>	-			2.3	<31	<33	;	1	:	110	:	:	1	8.9	15	3
4-Methyl-2-pentanone	<47	:	-	-	<120	1	1	1	4.8	<62	99>	1	1	:	24	:	1	i	63	86	62
Acetone	<260	<2900	-	670	<670	1300	1500D	1500D	40	096	<370	<210	-	840	320	Q89	45D	89	39	91	190
Benzene	<18	:	1	1	<47	1	1	1	<0.70	<24	<26	1	1	:	<9.3	:	1	1	<0.64	<2.3	1
Bromodichloromethane	<7.8	88>	<72	<16	<20	<11	<0.76	<4.8	<0.30	<10	<11	<6.2	<1.2	<0.87	<4.0	<0.30	<0.27	<0.49	<0.27	<1.0	^
Bromoform	09>	0/9>	<550	<120	<150	<82	<5.8	<37	<2.3	<78	<84	<47	<9.4	9.9>	<30	<2.3	<2.1	<3.7	<2.1	<7.6	<2
Bromomethane	<22	<250	<210	<47	<57	<31	<2.2	<14	<0.86	<29	<32	<18	<3.6	<2.5	<11	<0.86	<0.77	<1.4	<0.78	<2.9	<0.8
Carbondisulfide	<18	:				-			1	;	<25	1	:	:	:	1	:	:	:	1	:
Carbontetrachloride	<3.7	<41	<34	<7.7>	<9.3	<5.1	0.57	<2.3	0.52	<4.8	<5.1	<2.9	<0.58	0.64	<1.9	0.62	0.52	0.53	0.59	0.49	\ \
Chlorobenzene	<27	<300	<250	<56	89>	<37	<2.6	<16	<1.0	<35	<37	<21	<4.2	<2.9	<14	<1.0	<0.92	<1.7	<0.93	<3.4	<0.9
Chloroethane	<30	<340	<280	<64	1	<42	<2.9	<19	1	1	<43	<24	<4.8	<3.4	1	<1.2	<1.0	<1.9	1	1	1
Chloroform	<28	<320	<260	<59	<72	<39	<2.7	<17	<1.1	<37	<40	<22	<4.5	<3.1	<14	<1.1	<0.97	<1.7	<0.99	<3.6	<1
Chloromethane	<24	<260	<220	<49		<33	<2.3	<14			<33	<19	<3.7	<2.6		<0.90	<0.81	<1.5			
cis-1,2-Dichloroethene	47	420	400	130	96	<32	<2.2	<14	<0.88	<30	<32	<18	9.9	5.1	<12	<0.88	<0.79	<1.4	0.84	<2.9	<0.8
cis-1,3-Dichloropropene	<52	<580	<480	<110	<130	<72	<5.1	<32	<2.0	89>	<74	<41	<8.3	<5.8	<27	<2.0	<1.8	<3.2	<1.8	<6.7	<0.9
Dibromochloromethane	<9.9	<110	<92	<21	<25	<14	96.0>	<6.1	<0.38	<13	<14	<7.8	<1.6	<1.1	<5.1	<0.38	<0.34	<0.62	<0.35	<1.3	<2
Dichloromethane	<20	<220	<180	<42	<51	<27	<1.9	<12	92.0>	<26	<28	<16	<3.1	<2.2	<10	<0.76	<0.68	8.5	<0.69	<2.5	2
Ethylbenzene	<50	-	<460	<100	<130	69>	1	-	<1.9	<65	<70	;	<7.9	8.1	<25	2.5	-	;	3.1	<6.3	10
Freon 113	<8.9	-							-	:	<12		-		-	-		:		-	-
Hexachlorobutadiene					<400				<6.0	<210					<80			:	<5.5	<20	<2
Methyltert-butylether	<41	:			<110	-	1	-	<1.6	<54	<58	1	1	:	<21	:	i	i	<1.4	<5.3	<0.7
Naphthalene		:			<270	-			<4.0	<140			-	:	<53			-	<3.7	<13	<1
Styrene	<49				<130	-			<1.9	<64	69>	:	:	:	<25	:	:	i	<1.7	<6.3	<0.8
Tetrachloroethene	390	0066	5200	790	2700	<5.8	2.9	7.6	2	8.2	150	230	47	25	140	22	9	5.1	25	8.1	4
Toluene	44	:			<55	-	1	1	3.1	<28	<30	1	1	:	24	:	:	1	9.4	15	27
trans-1, 2-Dichloroethene	<23	<260	<210	<48	<59	<32	<2.2	<14	<0.88	<30	<32	<18	<3.6	<2.5	<12	<0.88	<0.79	<1.4	<0.80	<2.9	<0.8
Trans-1,3-Dichloropropene	<26	<290	<240	<55	<i>L</i> 9>	<36	<2.5	<16	<1.0	<34	<37	_	<4.1	<2.9	<13	<1.0	<0.90	<1.6	<0.91	<3.3	<0.9
Trichloroethene	2100	31000	26000	5100	2800	5.1	5.9	14	2.4	8.7	2300	2000	1200D	410D	1300D	80	17	17	73	10	13
Trichlorofluoromethane	<32	<360	<300	<68		<45	4	<20			<46	<26	<5.1	<3.6		2.6	3.3	3.1			
Vinyl acetate	<260										<370										
Vinyl chloride	<3.1	<35	<29	<6.6	<8.0	<4.3	<0.30	<1.9	<0.12	<4.1	<4.4	<2.5	0.51	1.2	<1.6	<0.12	<0.11	<0.19	<0.11	<0.40	<0.5
m/p-xylene	<100	-	<920	<210	<250	<140			4.5	<130	<140		17	28	<51	9.5		:	11	19	39
o-Xylene	<50	1	<460	<100	<130	69>		ı	<1.9	<65	<70	1	<7.9	11	<25	2.3	;	1	4.1	6.4	15
Xylene (total)	<100	!	<920	<210	<250	<140	1	1	4.5	<130	<140	1	17	39	<51	12	:	;	15	25	24
	Notes	119/m3 = M	19/m3 = Micrograms ner cubic meter	er cubic me	Per																

Notes: ug/m3 = Micrograms per cubic meter.

D = Result reported from a diluted sample.

--- = Not sampled for.

<31 = not detected above listed detection limit.

SVE system startup in March 2013

TABLE 14
Sub-Slab Soil Vapor Analytical Results
Building 5 Area
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

	ıne	11 6/4/2011				die Bee					l									
Mathematical Mat	ine	11 5/1/2011			S	Inding Koor	<u>-</u>						Hall				Shipping Area	Area		
1. 1. 1. 1. 1. 1. 1. 1.		TO2/4/0 TT	8/22/2013	1 10/7/2011		4/18/2013	8/5/2013	11/1/2013 1	/27/2014 6	5/17/2014 9	1/24/2014	1/27/2014	6/17/2014	9/24/2014			11/1/2013 1/27/2014 6/17/2014 9/24/2014	1/27/2014 6	/17/2014 9	/24/201
6 6 6 7 7 8 6 6 7 7 8 6 7	+	<8400	<5700	<220		<24	<2.9	<9.5	<5.8	<17	<1	<0.89	<8.7	<1	<1.2		<1.9	<1.4	<2.2	7
Carbon C	0030	+	<1400	<55	<84	<6.0	<0.74	<2.4	<1.5	<4.2	∀ .	<0.22	<2.2	<1	<0.31	06:0>	<0.47	<0.34	<0.55	₽.
C1000 C2000 C200	\2000 1000	+	<5700	<220	<330	<24	<2.9	<9.5	<5.8	<17	7 9	<0.89	<8.7	<1	<1.2	<3.6	<1.9	41.4	<2.2	7 ₹
1,	<1900	+	<4200	<160	<240	<18	<2.2	<7.0	<4.4	<12	<0.8	<0.66	<6.4	<0.8	<0.93	<2.6	<1.4 <1.4	<1.0	<1.6	×0.8
		-	1	1	<95	1	1	1	<1.6	<4.8	<2	<0.25	<2.5	<2	1	-	1	<0.39	<0.62	<2
C1200 C1300 C1300 <th< td=""><td></td><td>!</td><td>!</td><td>1</td><td><730</td><td>1</td><td>1</td><td>1</td><td><13</td><td><37</td><td><1</td><td><2.0</td><td><19</td><td><1</td><td>1</td><td>1</td><td>1</td><td><3.0</td><td><4.9</td><td>^1</td></th<>		!	!	1	<730	1	1	1	<13	<37	<1	<2.0	<19	<1	1	1	1	<3.0	<4.9	^1
C-5000 C-10, C-5000 C-20, C-	<1900		<4300	<170	<250	<18	<2.2	<7.2	<4.4	<13	<0.8	<0.67	<6.5	<0.8	<0.93	<2.7	<1.4	<1.0	<1.7	<0.8
C-5500 C-10. C-1	<2200	Н	<4900	<190	<280	<20	<2.5	<8.1	<4.9	<14	<0.9	<0.76	<7.4	<0.9	<1.1	<3.1	<1.6	<1.2	<1.9	6:0>
5500 11. <td><5600</td> <td></td> <td>:</td> <td></td> <td><730</td> <td></td> <td></td> <td></td> <td><13</td> <td><37</td> <td>13</td> <td><2.0</td> <td><19</td> <td>2</td> <td></td> <td></td> <td>-</td> <td><3.0</td> <td><4.9</td> <td>2</td>	<5600		:		<730				<13	<37	13	<2.0	<19	2			-	<3.0	<4.9	2
4.2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	<5600		:	-	<730	1			<13	<37	<1	<2.0	<19	<1			-	<3.0	<4.9	^1
4.2800 <	1	1		1	<2800	1	1	-	<48	<140	<0.7	<7.5	<73	<0.7	1		1	<11	<18	<0.7
C4300 C4200 C4200 <th< td=""><td><2800</td><td></td><td>!</td><td>1</td><td><360</td><td>1</td><td>1</td><td>1</td><td>12</td><td>36</td><td>46</td><td>∞</td><td><9.4</td><td>17</td><td>1</td><td>1</td><td>1</td><td>20</td><td>27</td><td>150</td></th<>	<2800		!	1	<360	1	1	1	12	36	46	∞	<9.4	17	1	1	1	20	27	150
C3800 </td <td><1900</td> <td>!</td> <td>1</td> <td> </td> <td><250</td> <td>1</td> <td>1</td> <td>1</td> <td><4.4</td> <td><13</td> <td>2</td> <td>0.91</td> <td><6.5</td> <td><0.8</td> <td>1</td> <td> </td> <td>1</td> <td>3.2</td> <td><1.7</td> <td>ж</td>	<1900	!	1		<250	1	1	1	<4.4	<13	2	0.91	<6.5	<0.8	1		1	3.2	<1.7	ж
C12000 C70000		!	!	1	<500	1	1	1	<8.7	<25	9	<1.3	<13	2	1		1	8.9	7.2	46
Cuiton C		-		<1800	<2800	840	190D	280D	95	360	300	<7.5	<73	52 J	44	99	73D	35	41	140
6400 C1000	<1500	┢	:	-	<190				<3.4	<9.9	2	<0.52	<5.1	9.0>				2	<1.3	2
Current Curr		<2100	<1400	<55	<84	<6.0	<0.74	<2.4	<1.5	<4.2	₽	0.23	<2.2	<1	<0.31	<0.90	<0.47	<0.34	<0.55	7
(480) (480) <th< td=""><td><4900</td><td>┝</td><td><11000</td><td><420</td><td><630</td><td><46</td><td><5.6</td><td><18</td><td><11</td><td><32</td><td><2</td><td><1.7</td><td><17</td><td><2</td><td><2.4</td><td><6.8</td><td><3.5</td><td><2.6</td><td><4.2</td><td><2</td></th<>	<4900	┝	<11000	<420	<630	<46	<5.6	<18	<11	<32	<2	<1.7	<17	<2	<2.4	<6.8	<3.5	<2.6	<4.2	<2
1,500 1,50	<1800		<4100	<160	<240	<17	<2.1	<6.8	<4.2	<12	<0.8	<0.64	<6.2	<0.8	68:0>	<2.6	<1.3	<0.99	<1.6	<0.8
4300 4300 4500 <th< td=""><td><1500</td><td>\dashv</td><td>1</td><td>1</td><td>-</td><td>1</td><td>1</td><td>-</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></th<>	<1500	\dashv	1	1	-	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1
	<300	\dashv	<670	<26	<39	<2.8	0.56	<1.1	<0.68	<2.0	7	0.5	<1.0	<1	0.57	0.62	0.54	0.59	0.49	^ 1
C-5500 C-5100 C	<2200	\dashv	<4900	<190	<280	<20	<2.5	<8.1	<4.9	<14	<0.9	<0.76	<7.4	<0.9	<1.1	<3.1	<1.6	<1.2	<1.9	6:0>
	<2500	\dashv	<5500	<210	1	<23	<2.9	<9.2	i	1	1	1	1	1	<1.2	<3.5	<1.8	1	1	1
Column C	<2300	-	<5100	<200	<300	<22	<2.7	<8.6	<5.2	<15	7	5.6	<7.8	<1	<1.1	<3.2	<1.7	<1.2	<2.0	7
1,100 1,10		\dashv	<4300	<170	1	<18	<2.2	<7.2	i	1	ı	1	1		<0.93	<2.7	<1.4	1	-	1
		\dashv	<4200	<160	<240	<18	<2.2	<7.0	<4.3	<12	<0.8	16	<6.4	<0.8	2.1	<2.6	<1.4	<1.0	<1.6	<0.8
4810 42700 41800 470 4110 476 4093 43.0 418 454 42 40.28 428 42 40.39 411 4160 4180 410 4100 4180 4190		\dashv	<9500	<370	<560	<40	<4.9	<16	<9.7	<28	<0.9	<1.5	<15	<0.9	<2.1	<6.0	<3.1	<2.3	<3.7	<0.9
Color Colo	1	\dashv	<1800	<70	<110	<7.6	<0.93	<3.0	<1.8	<5.4	<2	<0.28	<2.8	<2	<0.39	<1.1	<0.59	<0.44	<0.70	<2
CA100 C9100 C350 C530 C530 C438 C920 C427 C12 C14	<1600	_	<3600	<140	<210	<15	<1.9	9.2	<3.7	<11	5	<0.57	<5.5	350	<0.78	<2.3	5.9	<0.87	<1.4	3
730 <td><4100</td> <td>!</td> <td><9100</td> <td><350</td> <td><530</td> <td><38</td> <td>-</td> <td>-</td> <td><9.2</td> <td><27</td> <td>10</td> <td><1.4</td> <td><14</td> <td>3</td> <td>11</td> <td></td> <td>-</td> <td>11</td> <td>10</td> <td>7</td>	<4100	!	<9100	<350	<530	<38	-	-	<9.2	<27	10	<1.4	<14	3	11		-	11	10	7
Column C			!	1	1	1	1	1	1	!	1	1	1	1	1	1	1	1	1	1
Color Colo		1	1	i	<1700		1	-	<29	<85	<2	<4.5	<44	<2		1	1	6.9>	<11	<2
		!	!	1	<440	1	1	-	<7.7>	<22	<0.7	<1.2	<11	9	:	1	1	<1.8	<2.9	<0.7
Columbra Columbra		1	:	1	<1100	-	1	1	<19	<56	<1 -	<3.0	<29	\ \			1	<4.6	<7.4	7
Signo Sign	<4000	+	- 0007	- 000	<520		1 6	1 3	<9.1	97>	×0.8	<1.4	<14 2:	×0.8	1 3	- 6	1 6	11	18	×0.8
CALTON C	0300	+	14000	1400	2100	TOO	7007	31	TVO	710	30	TO	74	7	3.1	770	170	60	40	11
Color Colo	$\frac{1}{1}$	+	1		<230		1	-	16	24	29	3.1	<5.9	6	1	-		26	21	23
	1	+	<4200	<160	<240	<18	<2.2	<7.0	<4.3	<12	<0.8	<0.66	<6.4	<0.8	<0.91	<2.6	<1.4	<1.0	<1.6	<0.8
130000 470000 340000 22000 22000 1100 7200 190 8500 580 220 29 14 7 3.5 5.9 245000 28700 2570 2.2 2.3 2.4 2.2 2.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 24500 2870 2.2 2.3 2.4 2.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 24500 2870 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 24500 287	$^+$	+	<4800	<180	<280	<20	<2.5	<7.9	<4.8	<14	<0.9	<0.75	<7.3	<0.9	<1.0	<3.0	<1.6	<1.1	<1.8	6:0>
<2,500 <8,700 <2,500 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200 <2,200<	1	\dashv	340000	20000	22000	1100	720D	190	850D	280	220	29	14	7	3.5	5.9	14	5.1	9	4
		+	<5900	<230	1	<25	<3.0	6.6>	-	1	1	1	1		2.7	<3.7	3.1	1	-	1
<840 <570 <22 <33 <2.4 <0.29 <0.95 <0.58 <1.7 <0.65 <0.089 <0.87 <0.5 <0.18 <0.36 <18000	<21000	4	!	1	-	1	1	1	1	1	:	1	1	1	:	1	1	1	-	1
	<260	_	<570	<22	<33	<2.4	<0.29	<0.95	<0.58	<1.7	<0.5	<0.089	<0.87	<0.5	0.18	<0.36	<0.19	0.16	<0.22	<0.5
<9100 <350 <530 <38 <9.2 <27 15 1.9 <14 4 15 13	<8100	1	<18000	4	<1100	<76	i	i	<19	<54	38	4.3	<28	11	35	i	ı	34	35	25
<18000 <700 <1100 <76 <19 <54 53 62 <28 15	<4100		<9100	_	<530	<38	1	1	<9.2	<27	15	1.9	<14	4	15	1	1	14	15	10
100 CC +C\ CI\ CI\ CI\ CI\ CI\ CI\ CI\ CI\ CI\ CI\ CI\	<8100	!	<18000		<1100	<76	-		<19	<54	53	6.2	<28	15	20		-	48	20	35

s: ug/m3 = Micrograms per cubic meter.
D = Result reported from a diluted sample.
--- = Not sampled for.
<31 = not detected above listed detection limit.
SVE system startup in March 2013 Notes:

TABLE 14
Sub-Slab Soil Vapor Analytical Results
Building 5 Area
Former Varian Facility Site
150 Sohier Road Beverly, Massachusetts

			BLDG5-5V6	2-200		
(Com) and the state of the stat	1/10/1017	0/1/2012	Shippir		g Area	,,,,,,,,,,
CONSTITUTENT (ug/ms)	4/18/2013	8/5/2013	700		6/1//2014	9/24/2014
1,1,1-Incnioroetnane	2000	1200	067	1900	080	490
1,1,2,2-Teulaciiloi Deulaile	7,00	4.20 7.30	70.7	CIV	\0.0 \2E	17 7
1,1,2-IIICIIIOIOEUIAIIE	0015	4700	175	5100	4,500	1000
L, I-Dicnioroethane	2700	TPOO	0081	3.100	TPOO	1800
1,1-Dichloroethene	480	340	270	069	280	350
1,2-Dibromoethane (EDB)				<17	<10	<15
1,2-Dichlorobenzene			-	<130	<78	<12
1,2-Dichloroethane	<76	<28	<20	7 77	<27	8>
1,2-Dichloropropane	98>	<32	<23	05>	<30	6>
1,3-Dichlorobenzene	1			<130	<78	<12
1,4-Dichlorobenzene	1		-	<130	<78	<12
1,4-Dioxane	1			<490	<290	96
2-Butanone	1			<64	<38	30
2-Hexanone	1		1	<44	<27	8>
4-Methyl-2-pentanone	1			88>	<53	8>
Acetone	<850	<310	<220	<490	<290	f 89
Benzene	1			<34	<21	9>
Bromodichloromethane	<25	<9.4	<6.7	<15	<8.8>	<13
Bromoform	<190	<71	<51	<110	<i>29></i>	<21
Bromomethane	<73	<27	<19	<42	<25	8>
Carbondisulfide		-	1	1	1	1
Carbontetrachloride	<12	<4.4	<3.1	6.9>	<4.1	<13
Chlorobenzene	98>	<32	<23	<50	<30	6>
Chloroethane	86>	<36	>26			
Chloroform	<92	<34	<24	<53	<32	<10
Chloromethane	<76	<28	<20			
cis-1,2-Dichloroethene	3200	1800	1200	1900	950	290
cis-1,3-Dichloropropene	<170	<63	<45	86>	<59	6>
Dibromochloromethane	<32	<12	<8.5	<19	<11	<17
Dichloromethane	<64	<24	<17	<37	<22	8
Ethylbenzene	<160		-	<93	<56	6>
Freon 113	:	-			-	:
Hexachlorobutadiene			-	<290	<180	<21
Methyltert-butylether	1			<77>	<47	<7
Naphthalene				<200	<120	<10
Styrene	-			<92	<55	8>
Tetrachloroethene	570	1200	440	640	420	6
Toluene			-	<40	<24	19
trans-1,2-Dichloroethene	<75	<28	<20	<43	<26	8>
Trans-1,3-Dichloropropene	<85	<31	<22	<49	<29	6>
Trichloroethene	0006	3300	1300	1900	970	390
Trichlorofluoromethane	<110	<39	<28		-	
Vinyl acetate						
Vinyl chloride	85	81	110	130	19	<2
m/p-xylene	<320			<190	<110	23
o-Xylene	<160	-		£6>	95>	6
	000			001,	0 7 7	

: ug/m3 = Micrograms per cubic meter.

D = Result reported from a diluted sample.

--- = Not sampled for.

<31 = not detected above listed detection limit.

SVE system startup in March 2013 Notes:

Table 15
Operation and Maintenance Data
Budling S VE System
Former Varian Facility Site
110 Sobiler Road
Beverly, Massachusetts

# S	ction	% 6	%€	%66<	%66<	%66<	%66<	%66<	%66<	%(%€	%66<	%66<	%66<	%(%(
VOC Off- gas	r Reduction	%66<	%66<	56<	56<	56<	56<	56<	56<	%66<	%66<	56<	56<	56<	%66<	%66<
Carbon Effluent	Total Vapor Flow (cfm) ⁽¹⁾	106	157	160	106	101	101	120	101	111	115	115	160	160	160	162
	(mdd)	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN
Carbon Midpoint	(mdd)	ND	QN	QN	ΩN	QN	QN	QN	QN	QN	QN	QN	ND	QN	ΠN	QN
Carbon	(mdd)	∞	0.5	QN	0.312	9	1.5	QN	1.4	QN	ND	ND	ND	2.9	0.1	0.5
Bldg5-SV6	VOC (ppm)	4.8	3.9	0.5	ND	5.5	6.4	1.5	9.9	0.4	0.7	ND	NA	ND	0.1	1.7
Bldg	Vacuum ("wc)	+0.101	0.147	0.151	0.258	0.286	0.275	0.018	0.278	0.32	968.0	0.359	NA	0.055	89.0	+0.018
Bldg5-SV5	VOC (ppm)	1.4	1.7	QN	QN	13.5	2.7	9.0	2.5	QN	QN	QN	NA	QN	QN	9.0
Bldg	Vacuum ("wc)	0.077	0.129	0.133	0.223	0.231	0.238	0.039	0.232	0.298	0.358	0.363	NA	0.29	0.279	0.09
Bldg5-SV4	VOC (ppm)	9.0	1.1	QΝ	QΝ	5.1	2.4	QΝ	2.4	ΔN	ΠN	ΠN	ΝA	QΝ	QΝ	0.7
Bldg5	Vacuum ("wc)	ND	0.01	0.01	0.008	+0.009	+0.01	+0.007	0.04	+0.009	+0.004	+0.008	NA	+0.006	+0.006	+0.003
Bldg5-SV3	VOC (ppm)	2.3	3.2	0.7	ND	12.4	8.4	2.3	6.3	ΔN	ND	ND	NA	0.5	ND	1.6
Bldg	Vacuum ("wc)	QN	QN	0.007	0.007	0.008	0.007	0.009	0.008	0.011	0.01	0.01	NA	0.002	0.005	0.004
-SV2	VOC (ppm)	1.5	9.0	QN	QN	10	2.1	QN	2	1.6	0	QN	NA	QN	QN	0.7
Bldg5-SV2	Vacuum ("wc)	0.428	0.581	809.0	0.037	0.033	0.033	0.749	0.031	0.042	0.03	0.034	NA	0.015	0.032	0.313
Bldg5-SV1	VOC (ppm)	1	0.7	QN	QN	10.7	1.7	QN	1.5	QN	QN	QN	NA	QN	QN	9.0
Bldg	Vacuum ("wc)	965'0	0.82	0.817	0.002	0.001	0.002	26'0	0.005	0	0.002	ΠN	NA	0	+0.003	0.44
Extraction Well BLDG5-SVE4	Vacuum ("wc)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	OFF	8.174	8.34	7.89	6.437
Extract	(mdd)	NA	ΝA	ΝA	ΝA	ΝA	ΝA	ΝA	ΝA	NA	NA	OFF	0.4	ΠN	ΠN	0.1
Extraction Well BLDG5-SVE3	Vacuum ("wc)	12.042	16	16.68	OFF	OFF	OFF	22.4	OFF	OFF	OFF	OFF	OFF	OFF	0	8.917
Extract	(mdd)	1.1	0.5	QΝ	34O	34O	OFF	QΝ	OFF	34O	34O	34O	JJO	OFF	0.32	0.3
Extraction Well BLDG5-SVE2	Vacuum ("wc)	12.432	16.45	17.21	30.25	30.31	31.84	OFF	31.96	37.7	39.76	NA	NA	12.7	12.55	OFF
Extracti	(mdd)	0.7	0.4	QN	QN	2.4	8.0	OFF	0.7	QN	QN	QN	ND	QN	QN	OFF
ion Well 5-SVE1	Vacuum ("wc)	12.41	16.5	17.27	30.51	30.57	32.06	23.2	32.15	39.1	40.31	NA	NA	13.29	13.25	9.194
Extraction Well BLDG5-SVE1	(mdd)	3.8	5.9	6.0	QN	8.7	6	3.3	6.3	QN	QN	0.4	0.4	1.9	3.3	12
Location	Date	4/3/2014	4/15/2014	5/1/2014	5/15/2014	5/28/2014	6/13/2014	6/24/2014	7/8/2014	7/24/2014	8/7/2014	8/11/2014	8/11/2014 ⁽³⁾	8/19/2014	9/3/2014	9/29/2014

TABLE 16 **VOC Mass Removal Estimate Summary** Building 5 SVE System Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

	Vapor Influent			VOC Mass	Total VOC
	Concentration	Flow	Days	Removal Rate	Mass Removed
Sample Date	(ppm(v))	(scfm)	Operational	(lb./day)	(lb.)
3/11/2013	5.0	185	0	0.00	0.0
3/13/2013	45.0	178	2	2.26	4.5
3/18/2013	3.9	182	7	2.26	15.8
3/25/2013	2.8	182	14	0.31	18.0
4/8/2013	0.9	192	28	0.18	20.5
4/29/2013	0.7	192	49	0.08	22.1
5/10/2013	0.7	189	60	0.07	22.9
5/20/2013	0.7	177	70	0.06	23.5
5/24/2013	0.7	177	74	0.06	23.8
6/5/2013	0.7	174	86	0.06	24.6
6/20/2013	0.7	174	101	0.06	25.5
7/12/2013	0.9	173	123	0.07	27.1
7/25/2013	4.9	163	136	0.24	30.2
8/9/2013	0.8	148	151	0.21	33.4
8/23/2013	3.7	147	165	0.17	35.8
9/17/2013	3.8	151	190	0.29	43.0
10/14/2013	1.3	168	217	0.22	48.9
10/25/2013	3.6	172	228	0.21	51.2
11/5/2013	2.7	178	239	0.28	54.4
11/18/2013	1.5	173	252	0.19	56.8
12/5/2013	1.5	173	269	0.13	59.0
12/18/2013	1.5	138	280	0.11	60.2
1/8/2014	1.5	103	301	0.08	61.8
1/27/2014	0.4	104	320	0.05	62.8
2/4/2014	0.3	103	328	0.02	62.9
2/20/2014	0.2	106	344	0.01	63.2
3/4/2014	1.6	97	356	0.04	63.7
3/20/2014	1.7	107	372	0.09	65.1
4/3/2014	8.0	100	386	0.25	68.6
4/15/2014	0.5	145	398	0.31	72.3
5/1/2014	0.0	149	414	0.02	72.6
5/15/2014	0.3	97	428	0.01	72.7
5/28/2014	6.0	92	441	0.15	74.7
6/13/2014	1.5	92	457	0.18	77.5
6/24/2014	0.0	109	468	0.04	78.0
7/8/2014	1.4	107	482	0.04	78.5
7/24/2014	0.0	98	498	0.03	79.0
8/7/2014	0.0	101	512	0.00	79.0
8/12/2014	0.0	101	517	0.00	79.0
8/19/2014	2.9	148	524	0.11	79.8
9/3/2014	0.1	147	539	0.11	81.5
9/29/2014	0.5	147	565	0.02	82.1

Notes:

ppm = parts per million scfm = standard cubic feet per minute (see note 5)

lbs./day = pounds per day

- VOC = volatile organic compounds

 1. Vapor influent concentrations as measured with a photoionization detector (PID).
- 2. Total VOC mass removed (lbs.) is calculated by multiplying the VOC Mass Removal Rate (lbs./day) on the sampling date by the # of operating days between visits.
- 3. VOC mass removal rate (lbs./day) = average VOC level between current and previous monitoring (ppm)/ 10E6 x 1 lbmole/379.4 cu ft. x (134lbs/lbmole) x flow (ft⁴3/min) x (1440 min/day)
 4. 134 lbs./lbmole is the weighted average molecular weight of the primary contaminants in the soil vapor (93% Trichloroethene and
- 7% Tetrachloroethene based on analytical results from recovered soil vapor).
- 5. Flow rate (scfm) is calculated with the following equation: 128.8×10^{-1} x pipe diameter 2 (in) x $sqrt \ (psia \ x \ differential \ pressure \ (IWC)/(Temp \ (F) + 460) \ x \ Sp \ Gr \ @ \ 60^{\circ}F) to \ adjust \ for \ system \ operating \ temperature$

Table 17
Soil Vapor Analytical Results
Building 5 SVE System
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

		10	DI DOE CAE IN						PI DCE CVE1							PIDGE CVES			
	6/20/2013	11/5/2013 1/27/2014 5/15/2014	1/27/2014		9/3/2014	9/8/2012	3/20/2013	9/8/2012 3/20/2013 6/20/2013 11/5/2013		1/27/2014	5/15/2014	9/3/2014 9,	/8/2012 3/	5/15/2014 9/3/2014 9/8/2012 3/20/2013 6/20/2013		. L	1/27/2014 5/13/2014 9/3/2014	5/13/2014	9/3/2014
CONSTITUENT (ug/m³)	(3)	(4)	(5)			(1)	(2)	(3)			(9)	(2)	(1)	(2)			(5)	(9)	(7)
1,1,1-Trichloroethane	<24	<55	<24	<9.1	<1	<3400	<1400	<920	<1800	<450	<91	<11	<71	<32	<10	<10	7.8	5.1	<1
1,1,2,2-Tetrachloroethane	0.9>	<14	<5.9	<2.3	<1	098>	<360	<230	<450	<110	<23	<14	<18	<7.9	<2.5	<2.6	<1.2	<1.2	<1
1,1,2-Trichloroethane	<24	<55	<24	<9.1	7	<3400	<1400	<920	<1800	<450	<91	<11	<71	<32	<10	<10	<5.0	<4.7	^
1,1-Dichloroethane	<18	<41	<18	<6.8	<0.8	<2600	<1100	069>	<1400	<340	89>	8>	<53	<24	<7.6	<7.7>	<3.7	<3.5	<0.8
1,1-Dichloroethene	<18	<41	<17	<6.7	<0.8	<2500	<1000	<670	<1300	<330	<67	8>	<52	<23	<7.5	<7.5	<3.7	<3.4	<0.8
1,2-Dibromoethane (EDB)	-	-	<6.7	<2.6	<2	1	!	:	1	<130	<26	<15	:	-	-	-	<1.4	<1.3	<2
1,2-Dichlorobenzene	1	1	<52	<20	<1	ı	i	1	1	<1000	<200	<12	1	1	:	1	<11	<10	<1
1,2-Dichloroethane	<18	<41	<18	<6.8	<0.8	<2600	<1100	069>	<1400	<340	<68	%	<53	<24	9.7>	<7.7>	<3.7	<3.5	<0.8
1,2-Dichloropropane	<21	<47	<20	<7.7>	<0.9	<2900	<1200	<780	<1500	<390	<77	6>	09>	<27	<8.7	<8.7	<4.2	<4.0	<0.9
1,3-Dichlorobenzene		-	<52	<20	7	:	-	:		<1000	<200	<12				-	<11	<10	7
1,4-Dichlorobenzene	1		<52	<20	\	1	1	1	1	<1000	<200	<12	1	1	1	1	<11	<10	^ 1
1,4-Dioxane	1	1	<200	<76	1	1	1	1	:	<3800	<760	1	1			1	<42	<39	1
2-Butanone	-	-	78	20	2	1				<490	66>	21				1	53	51	10
2-Hexanone			<18	<6.8	<0.8	1	1	1		<340	89>	8>	:			-	<3.7	<3.5	<0.8
4-Methyl-2-pentanone	1	1	<36	<14	<0.8				1	089>	<140	8		1	1	1	<7.5	13	2
Acetone	440	530	240	130	13	<29000	<12000	<7700	<15000	<3800	<760	73	790	790	380	310	82	06	15
Benzene		-	<14	<5.3	9.0>	:	-	:		<260	<53	9>				-	<2.9	<2.7	9.0>
Bromodichloromethane	0.9>	<14	<5.9	<2.3	<1	098>	<360	<230	<450	<110	<23	<13	<18	6.7>	<2.5	<2.6	<1.2	<1.2	\
Bromoform	<46	<110	<45	<17	<2	<6500	<2700	<1700	<3400	<860	<170	<21	<130	09>	<19	<19	<9.5	<8.9	<2
Bromomethane	<17	<40	<17	<6.5	<0.8	<2500	<1000	099>	<1300	<320	<65	8>	<51	<23	<7.3	<7.3	<3.6	<3.3	<0.8
Carbondisulfide	1	1	1	1	9.0>	ı	i	1	1	1	ı	9>	1	1	:	i	1	1	9.0>
Carbontetrachloride	<2.8	<6.5	<2.8	<1.1	<1	<400	<170	<110	<210	<53	<11	<13	<8.3	<3.7	<1.2	<1.2	<0.58	<0.54	7
Chlorobenzene	<21	<47	<20	<7.7	<0.9	<2900	<1200	<780	<1500	<390	<77>	6>	09>	<27	<8.7	<8.7	<4.2	<4.0	<0.9
Chloroethane	<23	<53	-	-	<0.5	<3300	<1400	<890	<1800	-	1	<5	89>	<31	8.6>	6.6>	-	1	<0.5
Chloroform	<22	<50	<21	<8.2	<1	<3100	<1300	<830	<1600	<410	<82	<10	<64	<28	<9.2	<9.2	<4.5	<4.2	<1
Chloromethane	<18	<41	1	1	<0.4	<2600	<1100	069>	<1400	1	1	<4	<53	<24	<7.6	<7.7>	-	1	<0.4
cis-1,2-Dichloroethene	52	06	42	73	14	<2500	<1000	970	<1300	430	230	300	<52	<23	47	120	89	53	6
cis-1,3-Dichloropropene	<40	<92	<39	<15	<0.9	<5700	<2400	<1500	<3000	<760	<150	6>	<120	<53	<17	<17	<8.3	<7.8	<0.9
Dibromochloromethane	<7.7>	<18	<7.5	<2.9	<2	<1100	<450	<290	<570	<140	<29	<17	<22	<10	<3.2	<3.2	<1.6	<1.5	<2
Dichloromethane	<15	<35	<15	<5.8	9	14000	<910	<580	<1100	<290	<58	27	<45	<20	<6.4	<6.5	<3.2	<3.0	2
Ethylbenzene	<38	:	<37	<14	<0.9	<5400	<2300	<1500	:	<720	<140	6>	<110	<20	<16	-	<7.9	<7.4	<0.9
Freon 113		-	-	-	2	1	1	1	-	-		40	1			-	-	:	<2
Hexachlorobutadiene		:	<120	<45		:	:	:	:	<2300	<460	-		:	:	-	<25	<23	-
Methyltert-butylether		-	<31	<12	<0.7	1	:	:	:	<600	<120	<7	;	:	:		9.9>	<6.1	<0.7
Naphthalene	1	1	<79	<30	:	1	1	:	:	<1500	<300	:	1	:	:	1	<17	<16	1
Styrene	1		<37	<14	<0.8	1	1	1	:	<710	<140	%			1		<7.8	<7.3	<0.8
Tetrachloroethene	300	1100	320	280	140	26000	8800	2800	18000	3900	920	3000	1700	110	140	250	350	200	98
Toluene			<16	<6.2	<0.8	1	1	:		<310	<62	& %		:	:	:	<3.4	<3.2	<0.8
trans-1,2-Dichloroethene	<18	<41	<17	<6.7	<0.8	<2500	<1000	<670	<1300	<330	<67	∞	<52	<23	<7.5	<7.5	<3.7	<3.4	<0.8
Trans-1, 3-Dichloropropene	<20	<46	<20	<7.6	<0.9	<2900	<1200	<770	<1500	<380	<76	6>	<59	<26	<8.5	<8.5	<4.2	<3.9	<0.9
Trichloroethene	2500D	6100D	1300	0096	330	240000	98000	70000	150000	35000	00066	30000	2800	330	190	270	310	260	40
Trichlorofluoromethane	<25	<57	1	1	2 J	<3600	<1500	<950	<1900	1	1	<11	<73	<33	<11	<11	1	:	2
Vinyl Acetate	:	-	1	1	<0.7	1	1	1	1	:	1	<7	1	1	1	1	1	1	6.0
Vinyl chloride	<2.4	<5.5	<2.4	<0.91	<0.5	<340	<140	<92	<180	<45	<9.1	<5	<7.1	<3.2	<1.0	<1.0	1.7	<0.47	<0.5
m/p-xylene	<77>	:	<75	<29	<2	<11000	<4600	<2900	:	<1400	<290	<17	<230	<100	<32	1	<16	<15	<2
o-Xylene	<38	1	<37	<14	<0.9	<5400	<2300	<1500	1	<720	<140	6>	<110	<50	<16	1	<7.9	<7.4	<0.9
Xylene (total)	<38	:	<75	<29	:	<11000	<4600	<2900	:	<1400	<290	i	<230	<100	<32	:	<16	<15	:

Table 17
Soil Vapor Analytical Results
Building 5 SVE System
Former Varian Facility Site
150 Sohier Road
Beverly, Massachusetts

		DED 3-3 VE3		
	6/20/2013	11/5/2013	1/27/2014	9/3/2014
CONSTITUENT (ug/m³)	(3)	(4)	(2)	(7)
1,1,1-Trichloroethane	<30	<20	<12	<1
1,1,2,2-Tetrachloroethane	<7.4	<5.1	<3.1	<1
1,1,2-Trichloroethane	<30	<20	<12	<1
1,1-Dichloroethane	<22	<15	<9.2	<0.8
1,1-Dichloroethene	<22	<15	<9.0	<0.8
1, 2-Dibromoethane (EDB)	-	:	<3.5	<2
1, 2-Dichlorobenzene		-	<27	<1
1,2-Dichloroethane	<22	<15	<9.2	<0.8
1, 2-Dichloropropane	<25	<17	<10	6.0>
1,3-Dichlorobenzene		-	<27	^ 1
1,4-Dichlorobenzene	!	I	<27	^ 1
1,4-Dioxane	!	1	<100	1
2-Butanone	-	-	130	16
2-Hexanone	-	-	<9.2	<0.8
4-Methyl-2-pentanone	1	1	18	2
Acetone	1000	750	330	40
Benzene	-	1	<7.2	9.0>
Bromodichloromethane	<7.4	<5.1	<3.1	^ 1
Bromoform	<57	<38	<23	<2
Bromomethane	<21	<15	<8.8	<0.8
Carbondisulfide	!	I	1	9.0>
Carbontetrachloride	<3.5	<2.4	<1.4	\
Chlorobenzene	<25	<17	<10	6.0>
Chloroethane	<29	<20	-	<0.5
Chloroform	<27	<18	<11	<1
Chloromethane	<22	<15	-	<0.4
cis-1, 2-Dichloroethene	<22	<15	<9.0	<0.8
cis-1, 3-Dichloropropene	<50	<34	<20	<0.9
Dibromochloromethane	<9.4	<6.4	<3.9	<2
Dichloromethane	<19	<13	<7.8	5
Ethylbenzene	<47	-	<19	6:0>
Freon 113	:	-		<2
Hexachlorobutadiene			<61	
Methyltert-butylether	:	1	<16	<0.7
Naphthalene	-	-	<41	-
Styrene	!	1	<19	<0.8
Tetrachloroethene	74	420	160	59
Toluene	!	I	<8.4	<0.8
trans-1,2-Dichloroethene	<22	<15	<9.0	<0.8
Trans-1,3-Dichloropropene	<25	<17	<10	6:0>
Trichloroethene	220	1100	430	7
Trichlorofluoromethane	<31	<21	:	2
Vinyl Acetate	1	I	1	<0.7
Vinyl chloride	<3.0	<2.0	<1.2	<0.5
m/p-xylene	<95	I	<39	<2
o-Xylene	<47	1	<19	6.0>
Xylene (total)	<47		<39	

Notes: ug/m3 = micrograms per cubic meter. <3.1 = not detected above listed detection limit.

—= constituent not sampled for.

(1) sample collected during pilot testing

(2) collected on day seven of system operation

(3) collected on day 239 of system operation

(4) collected on day 239 of system operation

(5) collected on day 320 of system operation

(6) collected on day 428 of system operation

(7) collected on day 539 of system operation

Sub-Slab Soil Vapor and Indoor Air Analytical Results Former Varian Facility Site Beverly, Massachusetts 150 Sohier Road 32 Tozer Road Table 18

		32 TOZER-1	ZER-1			32 TOZER-2	ZER-2			32 TO	32 TOZER-3		MassDEP
	5/28/2013	5/28/2013 10/24/2013	2/6/2014	4/17/2014	5/28/2013	5/28/2013 10/24/2013	2/6/2014	4/17/2014 5/28/2013	5/28/2013	10/24/2013	2/6/2014	4/17/2014	Commercial/
	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Industrial Indoor Air
CONSTITUENT (ug/m3)													Threshold Value (1)
1,1,1-Trichloroethane	<0.94	<1.2	<0.95	<0.93	<1.0	66:0>	<0.99	<0.94	<0.98	<1.0	<0.92	<0.86	4,600
1,1-Dichloroethane	<0.71	<0.92	<0.71	<0.70	<0.76	<0.74	<0.74	<0.70	<0.74	<0.77	<0.69	<0.65	440
1,1-Dichloroethene	<0.69	<0.90	<0.70	<0.68	<0.74	<0.73	<0.73	69.0>	<0.72	<0.76	<0.67	<0.63	180
cis-1,2-Dichloroethene	1.5	3.3	1.3	3.9	1.8	2.2	1.1	1.7	<0.72	<0.76	<0.67	<0.63	31
Tetrachloroethene	6.5	11	9.9	18	12	3.9	1.3	3.8	<0.13	0.33	0.25	0.26	4.1
trans-1,2-Dichloroethene	<0.69	<0.90	<0.70	<0.68	<0.74	<0.73	<0.73	69.0>	<0.72	<0.76	<0.67	<0.63	62
Trichloroethene	96.0	1.5	0.81	1.9	1.3	0.67	0.29	0.55	<0.098	<0.10	0.092	<0.086	1.8
Vinyl chloride	<0.094	<0.12	<0.095	<0.093	<0.10	<.099	<0.099	<0.094	<0.098	<0.10	<0.092	<0.086	1.3

		32 TOZER-SV3	ER-SV3			32 TOZER-SV4	ER-SV4			32 TOZ	32 TOZER-SV5		MassDEP
	5/28/2013		_		5/28/2013	5/28/2013 10/24/2013	2/6/2014	4/17/2014	5/28/2013	4/17/2014 5/28/2013 10/24/2013	2/6/2014	4/17/2014	Commercial/
	Soil Vapor	Soil Vapor Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Industrial Sub-Slab
CONSTITUENT (ug/m3)													Soil Gas Screening
1,1,1-Trichloroethane	<270	<110	<110	<370	<20	<5.0	<7.2	<0.83	<20	<1.3	<1.2	<0.91	320,000
1,1-Dichloroethane	<210	<79	<80	<280	<15	<3.7	<5.4	0.8	<15	<0.95	<0.87	<0.68	31,000
1,1-Dichloroethene	<200	<77>	<79	<270	<15	<3.7	<5.3	<0.61	<15	<0.93	<0.85	<0.67	13,000
cis-1,2-Dichloroethene	8,900	3,100	4,300	17,000	130	80	83	45	38	7.9	<0.85	<0.67	2,200
Tetrachloroethene	8,600	8,100	2,600	14,000	300	610	460	160	32	24	1.3	1.4	290
trans-1,2-Dichloroethene	<200	<77>	<79	<270	<15	<3.7	<5.3	<0.61	<15	<0.93	<0.85	<0.67	4,300
Trichloroethene	6,100	1,500	1,900	4,500	150	89	70	37	15	4.8	0.45	0.41	130
Vinyl chloride	<27	<11	<11	<37	<2.0	1.7	2.2	1.2	<2.0	<0.13	<0.12	<0.091	91

(1) Massachusetts DEP December 2011 Interim Final Vapor Intrusion Guidance (WSC-11-435) Table I.2 Commercial/Industrial Indoor Air Treshold Values (updated 3/7/13) (2) Massachusetts DEP December 2011 Interim Final Vapor Intrusion Guidance (WSC-11-435) Table II.2 Commercial/Industrial Sub-Slab Soil Gas Screening Values

(updated 3/7/13).

Detections are shown in bold.

ug/m3 = Micrograms per cubic meter.

<3.1 = not detected above listed detection limit.</p>

Shaded = Result exceeds applicable Massachusetts DEP threshold or screening value

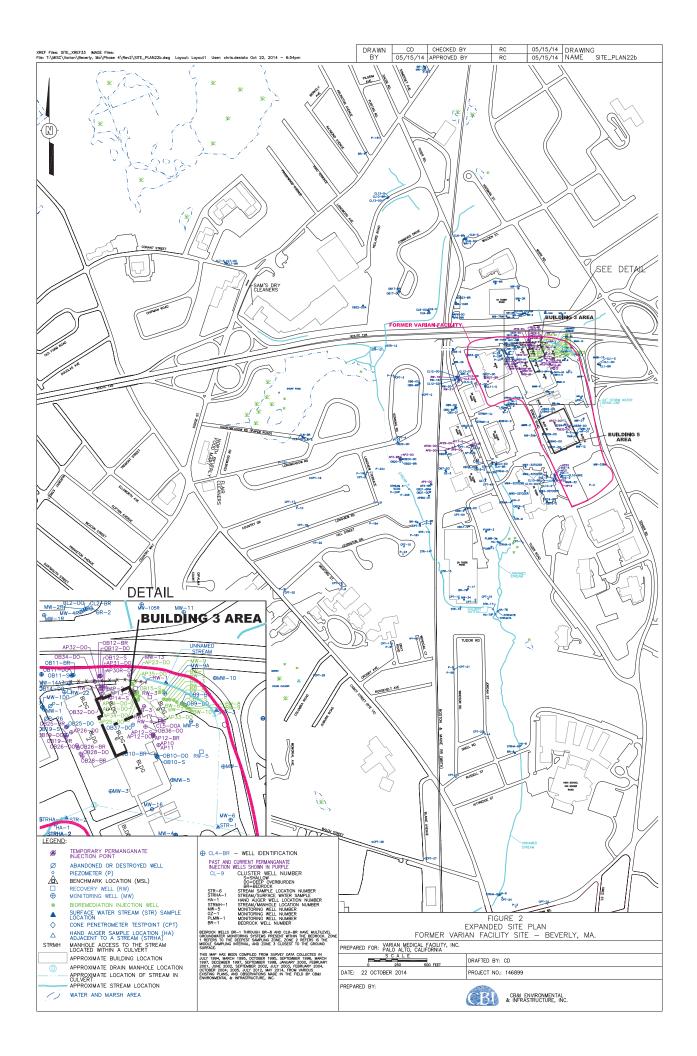
Table 19 Risk Evaluation - Indoor Air Exposures - Site Workers - 32 Tozer Road 2013 and 2014 Indoor Air Sampling

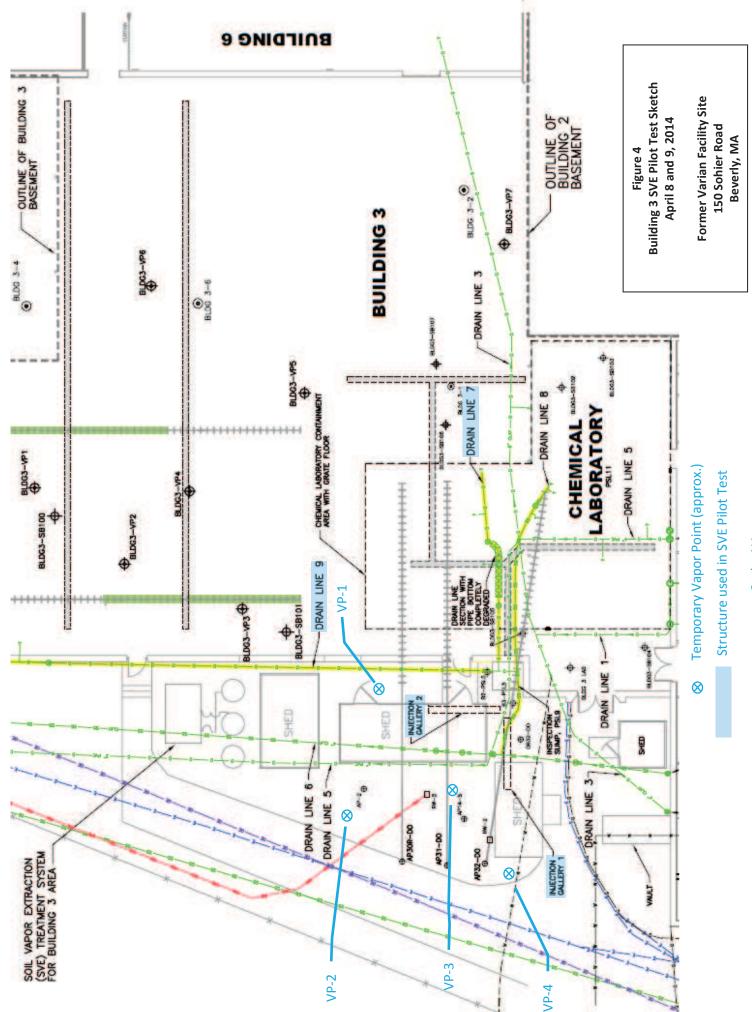
Former Varian Facility Site 150 Sohier Road Beverly, MA

EXPOSURE ESTIMATES:	·				
Inhalation of Volatiles	ADE	=	OHM _{air} * EF * E		
	LADE	=	OHM _{air} * EF		
	HI	=	ADE/RfC	Cumulative ELCR = 5E-06 Cumulative HI = 0.5	MassDEP Limit = 1E-05 MassDEP Limit = 1
	ELCR	=	LADE * UR	Cumulative HI = 0.5	Massber Lillit - I

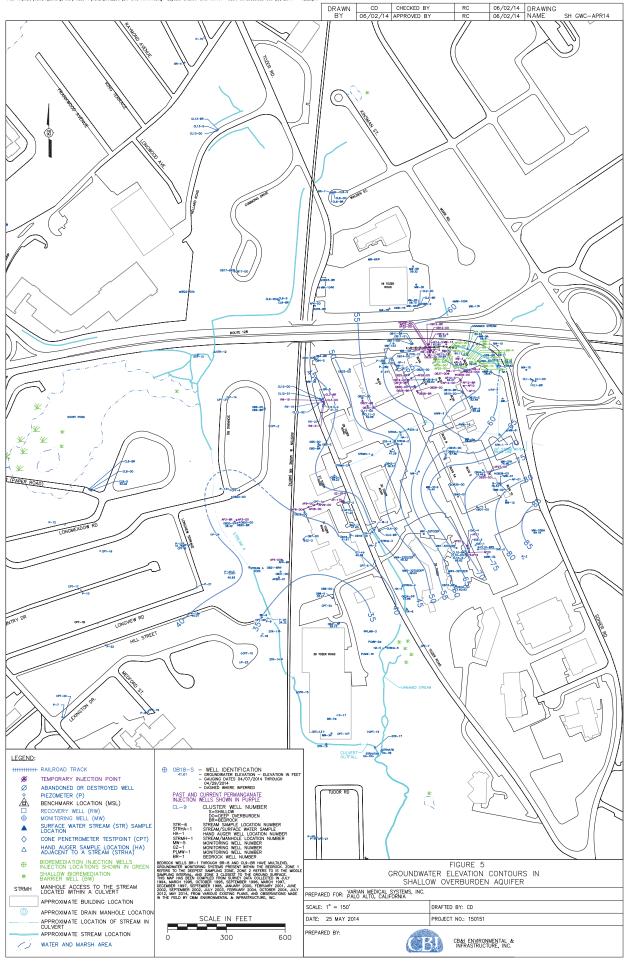
Parameter		Description	1		Units	Value	Reference
ADE	=	Average dai	ly exposure		m³/mg	See below	Calculated
LADE	=	Lifetime ave	rage daily exp	osure	μg/m³	See below	Calculated
HI	=	Hazard Inde	×		unitless	See below	Calculated
ELCR	=	Excess lifeti	me cancer ris	K	unitless	See below	Calculated
RfC	=	Inhalation re	eference conce	entration	mg/m³	See below	EPA (2014); MassDEP (2014)
UR	=	Inhalation U	nit Risk		m³/µg	See below	EPA (2013)
OHM _{air}	=	Concentration	on in air		µg/m³	See below	Measured
EF	=	Exposure fre	equency		days/year	250	5 days/week, 2 weeks vacation
ET	=	Exposure tir	ne		days/day	0.330	8 hours per day
ED	=	Exposure du	ıration		years	27.0	MassDEP (2014)
AP _{nc}	=	Averaging p	eriod, noncard	cinogens	days	9,855	ED*365
AP _c	=	Averaging p	eriod, carcino	gens	days	25,550	Lifetime
C1	=	Conversion	factor		mg/µg	1.00E-03	Constant
Compound	OHM _{air} *	RfC	UR	ADE	н	LADE	ELCR
Compound	Offiviair	Chronic	UK	ADE	_ ni	LADE	ELCR
Volatile Organic Compo	unds						
Tetrachloroethene	1.80E+01	4.00E-02	3.00E-06	4.07E-03	1.02E-01	1.57E+00	4.71E-06
Trichloroethene	1.90E+00	2.00E-03	4.10E-06	4.29E-04	2.15E-01	1.66E-01	6.79E-07
cis-1,2-Dichloroethene	3.90E+00	6.00E-03		8.82E-04	1.47E-01	3.40E-01	NC
TOTAL RISK					4.63E-01		5.39E-06

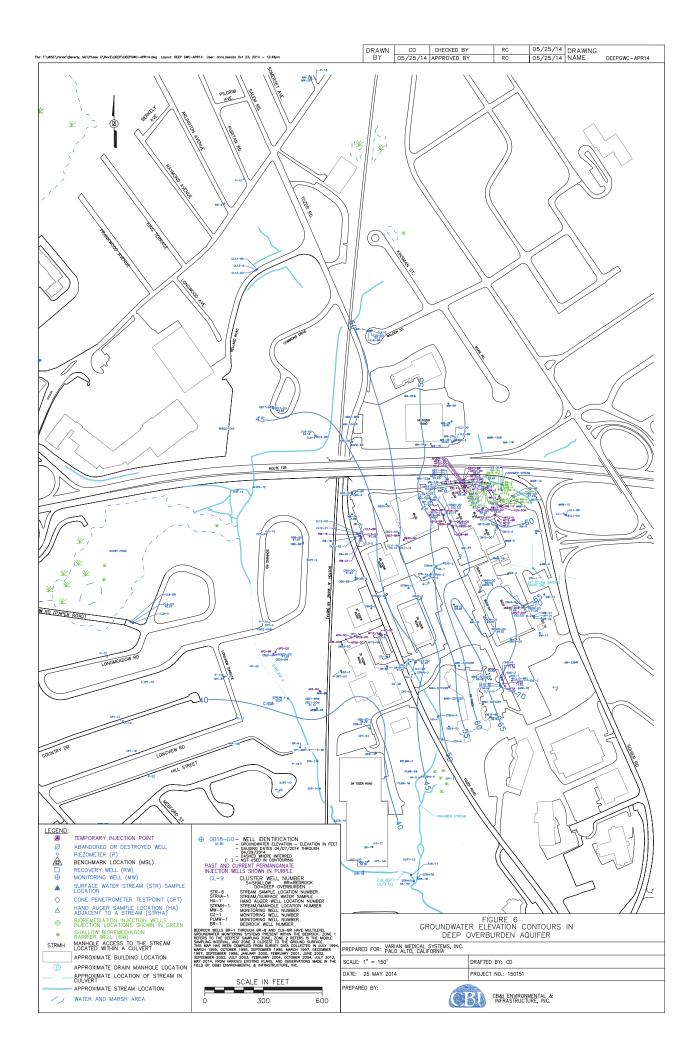
Notes:

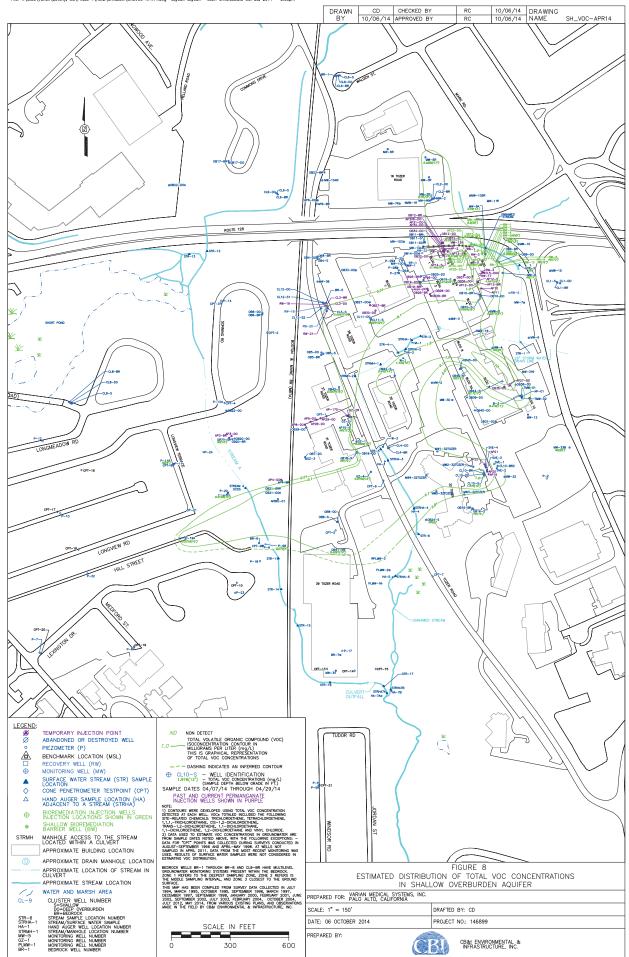

 $OHM_{air}\ is\ maximum\ indoor\ air\ result\ from\ 5/2013,\ 10/2013,\ 2/2014,\ and\ 4/2014\ sampling$


EPA 2014 - Integrated Risk Information System (IRIS)

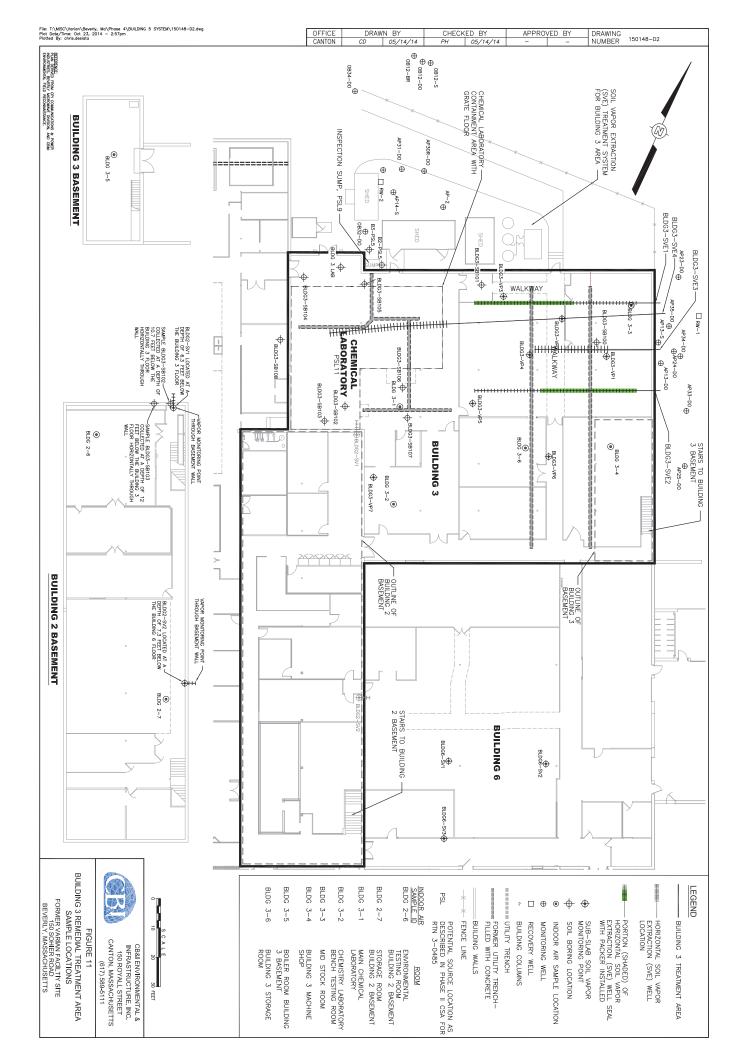
MassDEP 2014 - Short Forms (April)

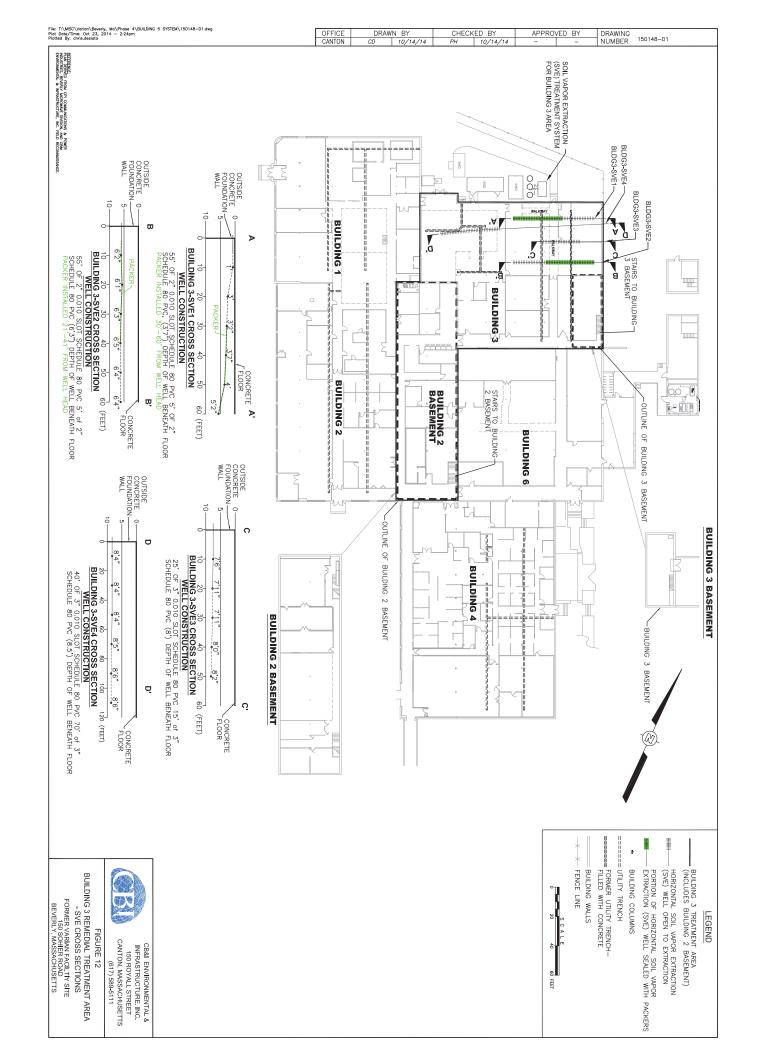


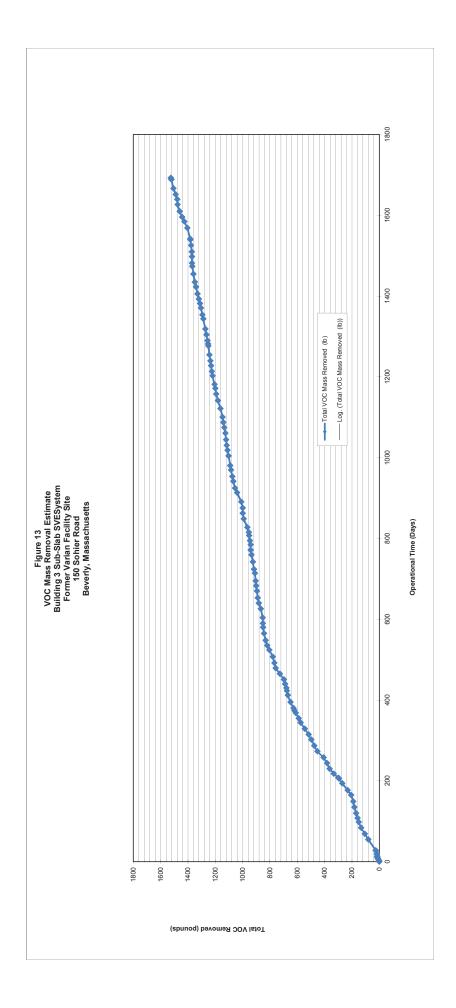

2014 chris.desiata Apr 02, User: Layout: Layout1 File: T:\MISC\Varian\Beverly, Ma\139340-01SITELOC.dwg

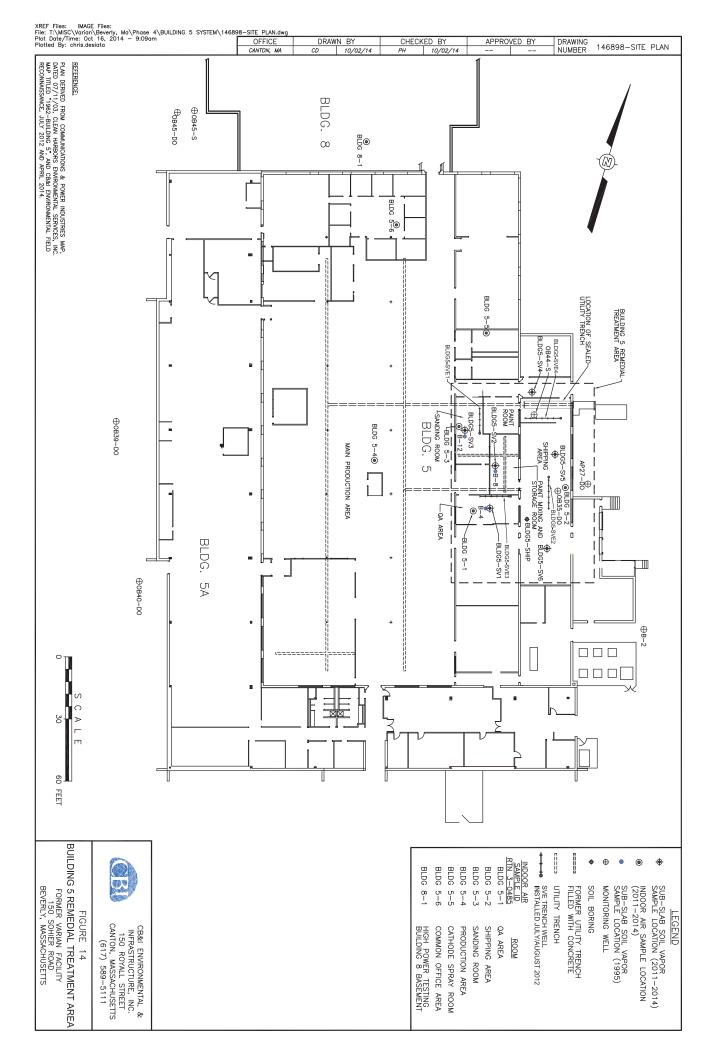


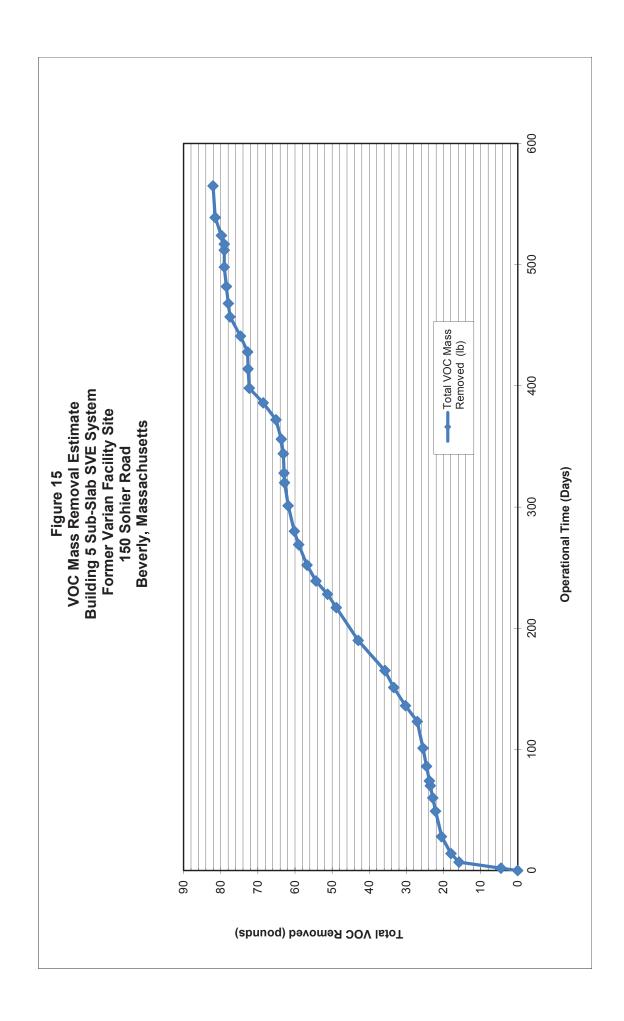
Scale: NA

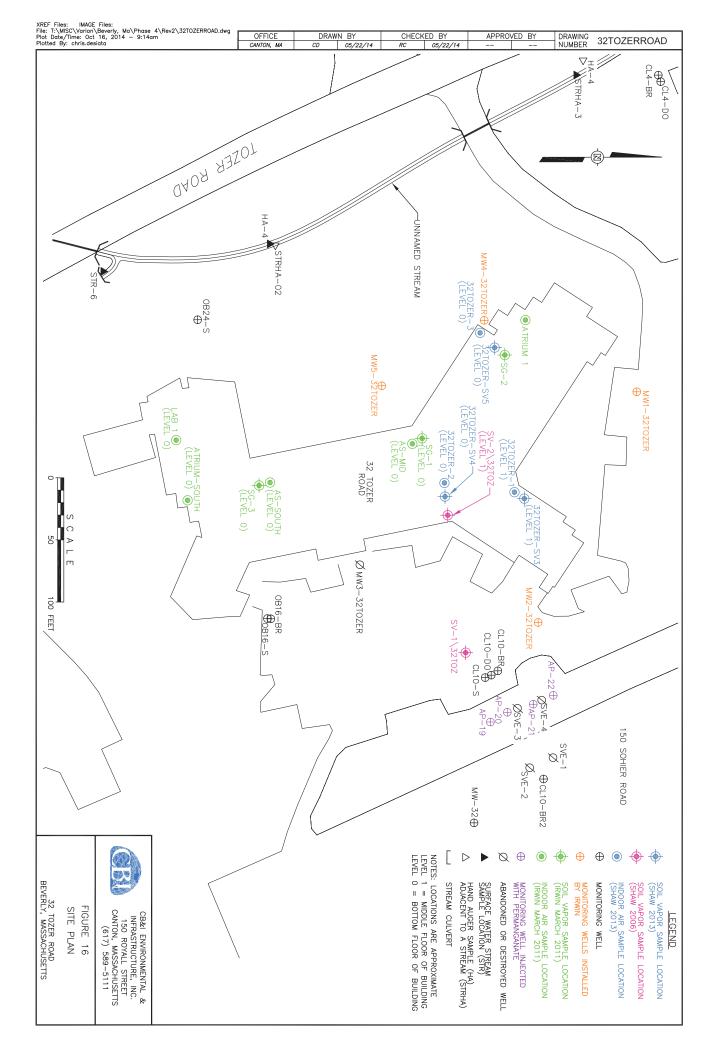







300


600



P:\Varian\Draff\Reports\Status\2014 October ROS status\Tables\Table 16 Bldg 5 SVE Mass Removal.xlsx

APPENDIX A

MADEP COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM (BWSC108) AND REMEDIAL MONITORING REPORT (RMR) CHECKLIST

eDEP Transaction Copy

Here is the file you requested for your records.

To retain a copy of this file you must save and/or print.

Username: KPERNILLA

Transaction ID: 692716

Document: BWSC108 Comp. Res. Action Transmittal Form & Phase I

Size of File: 932.75K

Status of Transaction: In Process

Date and Time Created: 11/10/2014:11:42:15 AM

Note: This file only includes forms that were part of your transaction as of the date and time indicated above. If you need a more current copy of your transaction, return to eDEP and select to "Download a Copy" from the Current Submittals page.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC 108

Releas	e T	racking	Number
2	1_	195	

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

A, SITE LOCATION	1.		
1. Site Name:	VARIAN-MICROWAVE DIV		
2. Street Address:	150 SOHIER RD		
3. City/Town:	BEVERLY	4. ZIP Code:	019150000
5. Check here if the	disposal site that is the source of th	e release is Tier Classified. Check the co	urrent Tier Classification Category:
☑ a. Tier	I □ b. Tier ID	□ c. Tier II	
B. THIS FORM IS B	EING USED TO: (check all that:	apply)	
1. Submit a Phase I	Completion Statement, pursuant to	310 CMR 40.0484.	
2. Submit a Revised	l Phase I Completion Statement, pu	ursuant to 310 CMR 40.0484.	
3. Submit a Phase I	I Scope of Work, pursuant to 310 C	MR 40.0834.	
4. Submit an interin 40.0500.	n Phase II Report. This report doe	s not satisfy the response action deadlin	ne requirements in 310 CMR
5. Submit a final Ph	ase II Report and Completion Stat	ement, pursuant to 310 CMR 40.0836.	
6. Submit a Revised	Phase II Report and Completion S	Statement, pursuant to 310 CMR 40.0836	<i>j</i> .
7. Submit a Phase I	II Remedial Action Plan and Comp	pletion Statement, pursuant to 310 CMR	40.0862.
8. Submit a Revised	l Phase III Remedial Action Plan a	nd Completion Statement, pursuant to 3	10 CMR 40.0862.
9. Submit a Phase I	V Remedy Implementation Plan, p	ursuant to 310 CMR 40.0874.	
10. Submit a Modif	ied Phase IV Remedy Implementat	ion Plan, pursuant to 310 CMR 40.0874.	
11. Submit an As-B	Built Construction Report, pursuant	to 310 CMR 40.0875.	
12. Submit a Phase	IV Status Report, pursuant to 310 (CMR 40.0877.	
13. Submit a Phase	IV Completion Statement, pursuan	t to 310 CMR 40.0878 and 40.0879.	
Specify the outc	come of Phase IV activities: (check	one)	
a. Phase V Op or Temporary		g of the Comprehensive Remedial Actio	on is necessary to achieve a Permanent
b. The require will be submit		e been met. A completed Permanent Solu	ution Statement and Report (BWSC104)
c. The requirements will be submit		e been met. A completed Temporary Sol	lution Statement and Report (BWSC104)

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

BWSC 108

D -1	T 1	7x T1

			•	,	
3	-	485			

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

B. THIS FORM IS BEING USED TO (cont.): (check all that apply) 14. Submit a Revised Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879. 15. Submit a Phase V Status Report, pursuant to 310 CMR 40.0892. [7] 16. Submit a Remedial Monitoring Report. (This report can only be submitted through eDEP.) a. Type of Report: (check one) П i. Initial Report ii. Interim Report iii. Final Report b. Frequency of Submittal: (check all that apply) i. A Remedial Monitoring Report(s) submitted monthly to address an Imminent Hazard. ii. A Remedial Monitoring Report(s) submitted monthly to address a Condition of Substantial Release Migration. iii. A Remedial Monitoring Report(s) submitted every six months, concurrent with a Status Report. iv. A Remedial Monitoring Report(s) submitted annually, concurrent with a Status Report. iii. Remedy Operation Status iv. Temporary Solution c. Status of Site: (check one) i. Phase IV ii. Phase V d. Number of Remedial Systems and/or Monitoring Programs: A separate BWSC108A, CRA Remedial Monitoring Report, must be filled out for each Remedial System and/or Monitoring Program addressed by this transmittal form. 17. Submit a Remedy Operation Status, pursuant to 310 CMR 40.0893. [V] 18. Submit a Status Report to maintain a Remedy Operation Status, pursuant to 310 CMR 40.0893(2). [7] 19. Submit a Transfer and/or a Modification of Persons Maintaining a Remedy Operation Status (ROS), pursuant to 310 CMR 40.0893(5) (check one, or both, if applicable). a. Submit a Transfer of Persons Maintaining an ROS (the transferee should be the person listed in Section D, "Person Undertaking Response Actions"). ightharpoonup b. Submit a Modification of Persons Maintaining an ROS (the primary representative should be the person listed in Section D. "Person Undertaking Response Actions"). c. Number of Persons Maintaining an ROS not including the primary representative: 20. Submit a Termination of a Remedy Operation Status, pursuant to 310 CMR 40.0893(6).(check one) a. Submit a notice indicating ROS performance standards have not been met. A plan and timetable pursuant to 310 CMR 40.0893(6) (b) for resuming the ROS are attached. b. Submit a notice of Termination of ROS. 21. Submit a Phase V Completion Statement, pursuant to 310 CMR 40.0894. Specify the outcome of Phase V activities: (check one) a. The requirements of a Permanent Solution have been met. A completed Permanent Solution Statement and Report (BWSC104) will be submitted to DEP. b. The requirements for a Temporary Solution have been met. A completed Temporary Solution Statement and Report (BWSC104) will be submitted to DEP. 22. Submit a Revised Phase V Completion Statement, pursuant to 310 CMR 40.0894. 23. Submit a **Temporary Solution Status Report**, pursuant to 310 CMR 40.0898. 24. Submit a Plan for the Application of Remedial Additives near a sensitive receptor, pursuant to 310 CMR 40.0046(3). a. Status of Site: (check one) iv. Temporary Solution ii. Phase V iii. Remedy Operation Status i. Phase IV

Massachusetts Department of Environmental Protection Rureau of Waste Site Cleanup

Bureau of Waste Site Cleanup

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

Release 7	Tracking Number
3 -	485

C. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

> if Section B indicates that a Phase II, Phase III, Phase IV or Phase V Completion Statement and/or a Termination of a Remedy Operation Status is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

> if Section B indicates that a **Phase II Scope of Work** or a **Phase IV Remedy Implementation Plan** is being submitted, the response action (s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

> if Section B indicates that an As-Built Construction Report, a Remedy Operation Status, a Phase IV, Phase V or Temporary Solution Status Report, a Status Report to Maintain a Remedy Operation Status, a Transfer or Modification of Persons Maintaining a Remedy Operation Status and/or a Remedial Monitoring Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP#:	9070			
2. First Name:	TIMOTHY W	·	3. Last Name:	KEMPER
4. Telephone:	617-515-3004	5. Ext.:	6. Email:	
7. Signature:	TIMOTHY W KEMPER			
8. Date:	11/10/2014 (mm/dd/yyyy)	_	9. LSP Stamp:	Electronic Seal

Revised: 09/03/2013

Bureau of Waste Site Cleanup

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

BWSC 108

Releas	se Tı	racking Number
3	-	485

D. FE	KSUN UI	NDEKTA	KING RESPO	NSE ACTIONS:			
1. Che	eck all that	apply:	a. change i	n contact name	□ b. с	change of address	c. change in the person undertaking response actions
2. Nar	ne of Orgai	nization:	VARIAN	MEDICAL SYSTEMS IN	VC .		
3. Cor	ntact First N	lame:	JOHN R			4. Last Name:	BUCHANAN
5. Stre	eet:	3120 HAN	SEN WAY M/S G-1	00		6. Title:	ENVIRONMENTAL AFFAIRS MANAGER
7. City	//Town:	PALO AL	.то	8. State	e: <u>C</u>	Α	9. ZIP Code: 943041030
10. Te	elephone:	650-424-	6103	11. Ext:		12. Email:	john.buchanan@varian.com
E. RE	LATION	SHIP TO	SITE OF PER	SON UNDERTAK	ING RE	SPONSE ACTIO	NS:
V	1. RP or PI	er [🛚 a. Owner	☐ b. Operator		e. Generator	d. Transporter
		abla	e. Other RP or PF	RP Specify:	OTHE	RPRPS	
	2. Fiducia	ary, Secure	ed Lender or Mur	nicipality with Exemp	pt Status (as defined by M.G.	.L. c. 21E, s. 2)
	3. Agency	y or Public	Utility on a Rigi	nt of Way (as defined	d by M.G.	L. c. 21E, s. 5(j))	
	4. Any O	ther Perso	on Undertaking F	Response Actions	Specia	fy Relationship:	
			•				
F. RE	QUIRED	ATTACI	HMENT AND S	UBMITTALS:			
⊽							were) subject to any order(s), permit(s) and/or nent identifying the applicable provisions thereof.
	2. Check l Phase Rep			of Municipal Officer	and the I	ocal Board of Hea	lth have been notified of the submittal of any
			tify that the Chie Action Plan.	f Municipal Officer	and the L	ocal Board of Hea	Ith have been notified of the availability of a
			tify that the Chie		and the L	ocal Board of Hea	Ith have been notified of the availability of a
5. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of any field work involving the implementation of a Phase IV Remedial Action.							
				edy Operation Status n making this submi)), check here to certify that a statement detailing
	7. If subm	itting a M the compl	odification of a Fiance history for	Remedy Operation Steach new person ma	tatus (as p aking this	er 310 CMR 40.08 submittal is attach	93(5)), check here to certify that a statement ed.
<u></u>			non-updatable i SC.eDEP@state.r		l on this f	orm is incorrect, e.	g, Release Address/Location Aid. Send
V	9. Check	here to ce	rtify that the LSP	Opinion containing	the mate	rial facts, data, and	other information is attached.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL

FORM & PHASE I COMPLETION STATEMENT
Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

B	W	S	1(18

Releas	se Ti	racking Number
3	-	485

G. CERTIFICATION OF PERSON UNDERTAKING RESPONSE ACTIONS:

1. I, JOHNRI	BUCHANAN	, attest und	er the pains a	nd penalties of perjury (i) that I have personally
form, (ii) the contained in this attestati am/is aware	at, based on my inquiry of those individuals i this submittal is, to the best of my knowledg on on behalf of the entity legally responsible	mmediately res ge and belief, tru e for this submi	ponsible for o ie, accurate ar ttal. I/the pers	any and all documents accompanying this transmittal btaining the information, the material information and complete, and (iii) that I am fully authorized to make son or entity on whose behalf this submittal is made fines and imprisonment, for willfully submitting false,
that I am ful receive oral	ly authorized to act on behalf of all persons j	performing resp	onse actions u	S), I attest under the pains and penalties of perjury under the ROS as stated in 310 CMR 40.0893(5)(d) to of response actions under the ROS, and to receive a
performing i		vare that there a	re significant	shall be deemed received by all the persons penalties, including, but not limited to, possible fines
2. By:	JOHN R BUCHANAN		3. Title:	ENVIRONMENTAL AFFAIRS MANAGER
	Signature	· · · · · · · · · · · · · · · · · · ·		
4. For:	VARIAN MEDICAL SYSTEMS INC		5. Date:	11/10/2014
	(Name of person or entity recorded in S	Section D)		(mm/dd/yyyy)
6. Check	k here if the address of the person providing	certification is o	different from	address recorded in Section D.
8. City/Town	n: .	9. State:		10. ZIP Code:
11. Telephor	ne: 12. Ext.:		13. Email:	
BILL SEC	ABLE YEAR FOR THIS DISPOSA TIONS OF THIS FORM OR DEP M	L SITE. YO 1AY RETUR	U MUST LI RN THE DO	URANCE FEE OF UP TO \$10,000 PER EGIBLY COMPLETE ALL RELEVANT DCUMENT AS INCOMPLETE. IF YOU FOR MISSING A REQUIRED DEADLINE.
Date Stan	np (DEP USE ONLY:)			
R	Received by DEP on 11/10/2014 11:25:49 AM			

Bureau of Waste Site Cleanup
CRA REMEDIAL MONITORING REPORT
Pursuant to 310 CMR 40.0800 (SUBPART H) Remedial System or Monitoring Pro

	* **/		
gram:	1	of:	3

D I	/V i	20	11	10	-A	

Release Tracking Number - 485

DESCRIPTION OF ACTIVE OPERATION AND MAINTENANCE ACTIVITY:	
Type of Active Operation and Maintenance Activity: (check all that apply)	
a. Active Remedial System: (check all that apply)	
☐ i. NAPL Recovery ☐ ii. Soil Vapor Extraction/Bioventing ☐ iii. Vapor-phase Carbon Adsorption	
☐ iv. Groundwater Recovery ☐ v. Dual/Multi-phase Extraction ☐ vi. Aqueous-phase Carbon Adsorption	
☐ vii. Air Stripping ☐ viii. Sparging/Biosparging ☐ ix. Cat/Thermal Oxidation	
x. Other Describe:	_
□ b. Active Exposure Pathway Elimination Measure Active Exposure Pathway Mitigation System to address (check one): □ i. Indoor Air □ ii. Drinking Water	
☑ c. Application of Remedial Additives: (check all that apply)	
☐ i. To the Subsurface ☐ ii. To Groundwater (Injection) ☐ iii. To the Surface	
☐ d. Active Remedial Monitoring Program Without the Application of Remedial Additives: (check all that apply; Sections C, I and E are not required; attach supporting information, data, maps and/or sketches needed by checking Section G5) ☐ i. Reactive Wall ☐ ii. Natural Attenuation ☐ iii. Other Describe:)
Mode of Operation: (check one)	
□ a. Continuous □ b. Intermittent □ c. Pulsed □ d. One-time Event Only □ e. Other:	
System Effluent/Discharge: (check all that apply)	_
☐ a. Sanitary Sewer/POTW	
□ b. Groundwater Re-infiltration/Re-injection: (check one) □ i. Downgradient □ ii. Upgradient	
□ c. Vapor-phase Discharge to Ambient Air: (check one) □ i. Off-gas Controls □ ii. No Off-gas Controls	
☐ d. Drinking Water Supply	
☐ e. Surface Water (including Storm Drains)	
☑ f. Other Describe: NA	
MONITORING FREQUENCY:	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014 (mm/dd/yyyy) (mm/dd/yyyy)	***************************************
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 (mm/dd/yyyy) To: 9/30/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one)	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable)	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month.	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe:	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) □ a. System Startup: (if applicable) □ i. Days 1, 3, 6, and then weekly thereafter, for the first month. □ ii. Other □ b. Post-system Startup (after first month) or Monitoring Program:	_
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) □ a. System Startup: (if applicable) □ i. Days 1, 3, 6, and then weekly thereafter, for the first month. □ ii. Other Describe: □ b. Post-system Startup (after first month) or Monitoring Program: □ i. Monthly □ ii. Quarterly	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: ii. Monthly iii. Quarterly iii. Annually	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Annually iii. Annually iv. Other Describe: MONTHLY	-
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. iii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly iii. Quarterly iii. Annually iii. Annually iiv. Other Describe: MONTHLY	_
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) □ a. System Startup: (if applicable) □ i. Days 1, 3, 6, and then weekly thereafter, for the first month. □ ii. Other Describe: □ b. Post-system Startup (after first month) or Monitoring Program: □ i. Monthly □ ii. Quarterly □ iii. Annually □ iv. Other Describe: MONTHLY 3. Check here to certify that the number of required monitoring events were conducted during the reporting period. EFFLUENT/DISCHARGE REGULATION: (check one to indicate how the effluent/discharge limits were established)	_
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Quarterly iii. Annually iv. Other Describe: MONTHLY 3. Check here to certify that the number of required monitoring events were conducted during the reporting period. EFFLUENT/DISCHARGE REGULATION: (check one to indicate how the effluent/discharge limits were established) 1. NPDES: (check one) a. Remediation General Permit b. Individual Permit	_
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: ii. Monthly iii. Quarterly iii. Annually iv. Other Describe: MONTHLY 3. Check here to certify that the number of required monitoring events were conducted during the reporting period. EFFLUENT/DISCHARGE REGULATION: (check one to indicate how the effluent/discharge limits were established) 1. NPDES: (check one) a. Remediation General Permit c. Emergency Exclusion Effective Date of Permit:	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Quarterly iii. Annually iv. Other Describe: MONTHLY 3. Check here to certify that the number of required monitoring events were conducted during the reporting period. EFFLUENT/DISCHARGE REGULATION: (check one to indicate how the effluent/discharge limits were established) 1. NPDES: (check one) a. Remediation General Permit b. Individual Permit	
MONTTORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: ii. Monthly iii. Quarterly iii. Annually iv. Other Describe: MONIHLY 3. Check here to certify that the number of required monitoring events were conducted during the reporting period. EFFLUENT/DISCHARGE REGULATION: (check one to indicate how the effluent/discharge limits were established) 1. NPDES: (check one) a. Remediation General Permit c. Emergency Exclusion MCP Citations(s):	
MONITORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. iii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: ii. Monthly iii. Quarterly iiii. Annually iv. Other Describe: MONTHLY 3. Check here to certify that the number of required monitoring events were conducted during the reporting period. EFFLUENT/DISCHARGE REGULATION: (check one to indicate how the effluent/discharge limits were established) 1. NPDES: (check one) a. Remediation General Permit c. Emergency Exclusion MCP Citations(s): 3. DEP Approval Letter Date of Letter:	
MONTTORING FREQUENCY: Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014 (mm/dd/yyyy) Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: ii. Monthly iii. Quarterly iii. Annually iv. Other Describe: MONIHLY 3. Check here to certify that the number of required monitoring events were conducted during the reporting period. EFFLUENT/DISCHARGE REGULATION: (check one to indicate how the effluent/discharge limits were established) 1. NPDES: (check one) a. Remediation General Permit c. Emergency Exclusion MCP Citations(s):	

BWSC108 -A

Bureau of Waste Site Cleanup CRA REMEDIAL MONITORING REPORT Pursuant to 310 CMR 40.0800 (SUBPART H)

Remedial System or Monitoring Program: 1

of: 3	
-------	--

Release Tracking Number 485

-	iediai wastewa	itor frouting	1	place for more than 30 da	-		
a. Name: c. License No:		1 T!	- E D-4	b. Grade			
c. License No:		d. Licens	e Exp. Date:	(mm/dd/yyyy)	_		
ian de la				(mm/dd/yyyy)			
2. Not Required							
3. Not Applicable	PMEDIAL CVC	TEM OD	CTIVE DE	MEDIAL MONITORIN	C DDOCD	AM DUDING	
ORTING PERIOD: (che			ICTIVE RE	WIEDIAL MONTFORIN	G PROGR	AMDUKING	•
•		• •	ne or more d	ays during the Reporting	Period.		
a. Days System was Fu	•			b. GW Recovere			
c. NAPL Recovered (ga				d. GW Discharge			<u> </u>
e. Avg. Soil Gas Recov):		f. Avg. Sparging		 i):	
2. Remedial Additives:	•				, (=		
	•						
a. No Remedial Addi		_	-				
		ves applied:	(total quant	ity applied at the site for t	he current r	eporting perio	d)
☐ i. Nitrogen/Phosph		·		ii. Peroxides:			1
Name of Additive	Date	Quantity	Units	Name of Additive	Date	Quantity	Units
		A	ļ				
		<u></u>					<u> </u>
		1			1		
iii. Microorganisms				iv. Other:			11-4-
☐ iii. Microorganisms	s: Date	Quantity	Units	iv. Other:	Date	Quantity	Units
·		Quantity	Units		Date	Quantity	Units
·		Quantity	Units		Date	Quantity	Units
·		Quantity	Units		Date	Quantity	Units
Name of Additive	Date			Name of Additive			
Name of Additive c. Chemical oxidatio i. Permanganates:	Date		ded: (total qu	Name of Additive antity applied at the site f □ ii. Peroxides:		nt reporting pe	eriod)
Name of Additive c. Chemical oxidatio i. Permanganates: Name of Additive	Date on/reduction add	litives appli		Name of Additive			
Name of Additive c. Chemical oxidatio i. Permanganates:	Date on/reduction add	litives appli	ded: (total qu	Name of Additive antity applied at the site f □ ii. Peroxides:	or the curre	nt reporting pe	eriod)
Name of Additive c. Chemical oxidatio i. Permanganates: Name of Additive	Date on/reduction add	litives appli	Units GALL	Name of Additive antity applied at the site f □ ii. Peroxides:	or the curre	nt reporting pe	eriod)
Name of Additive c. Chemical oxidatio i. Permanganates: Name of Additive SODIUM PERMAN	Date on/reduction add	litives appli	ed: (total qu	Name of Additive antity applied at the site f ☐ ii. Peroxides: Name of Additive	or the curre	nt reporting pe	eriod)
Name of Additive c. Chemical oxidatio i. Permanganates: Name of Additive SODIUM PERMAN iii. Persulfates:	Date on/reduction add Date UGA 9/10/2014	Quantity 1272.25	Units GALL	Name of Additive antity applied at the site f ii. Peroxides: Name of Additive iv. Other:	or the curre	nt reporting pe	eriod) Units
Name of Additive c. Chemical oxidatio i. Permanganates: Name of Additive SODIUM PERMAN	Date on/reduction add	litives appli	Units GALL	Name of Additive antity applied at the site f ☐ ii. Peroxides: Name of Additive	or the curre	nt reporting pe	eriod)
Name of Additive c. Chemical oxidatio i. Permanganates: Name of Additive SODIUM PERMAN iii. Persulfates:	Date on/reduction add Date UGA 9/10/2014	Quantity 1272.25	Units GALL	Name of Additive antity applied at the site f ☐ ii. Peroxides: Name of Additive ☐ iv. Other:	or the curre	nt reporting pe	eriod) Units

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup CRA REMEDIAL MONITORING REPORT Pursuant to 310 CMR 40.0800 (SUBPART H)

	medial System or Monitoring Program:	1	of:
--	--------------------------------------	---	-----

BWSC108	-A

Release Tracking Number 485

	Remedial S	ystem or N	Monitoring P	rogram:	1	of: 3		, 100	
E. STATUS OF A			STEM OR A	CTIVE	REMEDIA	L MONITORIN	G PROGR	AM DURING	
	•		quantity ann	lied at the	e site for the	current reportin	g neriod)		
	f Additive	Date	Quantity	Units		ne of Additive	Date	Quantity	Units
						•			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			<u> </u>					
			<u> </u>	1					<u> </u>
	k here if any a Date Applied, (ttach list of addi	tional additi	ves and include	le Name of
SHUTDOWNS					•	EDIAL MONIT	ODING DD	OCDAM: (a)	anals all that
pply)	OF ACTIVE	KEMEDL	ALSISIEM	OK AC.	IIVE KENI	EDIAL MONT	OKINGTN	OGRAM. (C)	ieck all that
	ve Remedial S	ystem had	unscheduled	shutdowi	ns on one or	· more occasions	during the	Reporting Per	iod.
a. Number o	of Unschedule	d Shutdow	ns:	ь. т	otal Numbe	er of Days of Un	scheduled S	Shutdowns:	
								_	
) for Unschedu								
2. The Activ	ve Remedial S	ystem had	scheduled sh	utdowns	on one or m	ore occasions di	uring the Re	porting Perio	d.
a. Number o	of Scheduled S	hutdowns		b. T	otal Numbe	er of Days of Scl	neduled Shu	itdowns:	
c. Reason(s) for Schedule	d Shutdow	ns:						
Reporting Perio						ım was permaneı	ntly shutdov	vn/discontinue	ed during the
h. No Fu	rther Effluent	Discharges	3.		`	••••			
	*	-		as planna	de sufficient	monitoring com	nlated to de	manstrata car	nnliance with
310 CMR 40		on of Kem	adai Addiliv	es piaime	u; summerem	monitoring com	preted to de	monstrate cor	прпансе with
🗆 d. No Fu	rther Submitta	ls Planned							
□ e. Other:	Describe:				· · · · · · · · · · · · · · · · · · ·				
S. SUMMARY ST	TATEMENTS:	(check all	that apply fo	or the cur	rent reporti	ng period)			
1. All Active Ipplicable.	Remedial Syste	em checks	and effluent a	analyses r	required by	the approved pla	n and/or pe	rmit were perf	formed when
2. There were ystem.	no significant	problems o	or prolonged	(>25% of	f reporting p	eriod) unschedu	led shutdov	vns of the Act	ive Remedial
✓ 3. The Active pplicable approve				Monitorii	ng Program	operated in conf	ormance wi	th the MCP, a	nd all
. Indicate any Op		-							
					-				
5. Check here	if additional/s	upporting	Information,	data, mar	os, and/or sl	tetches are attacl	ned to the fo	orm.	

Bureau of Waste Site Cleanup CRA REMEDIAL MONITORING REPORT Pursuant to 310 CMR 40.0800 (SUBPART H)

Remedial System or Monitoring Program: 2 of: 3

BWSC108 -A	

Release	Tracking Number
3 -	485

A. DESCRIPTION OF ACTIVE OPERATION AND MAINTENANCE ACTIVITY:
. Type of Active Operation and Maintenance Activity: (check all that apply)
a. Active Remedial System: (check all that apply)
☐ i. NAPL Recovery ☐ ii. Soil Vapor Extraction/Bioventing ☐ iii. Vapor-phase Carbon Adsorption
□ iv. Groundwater Recovery □ v. Dual/Multi-phase Extraction □ vi. Aqueous-phase Carbon Adsorption
☐ vii. Air Stripping ☐ viii. Sparging/Biosparging ☐ ix. Cat/Thermal Oxidation ☐ x. Other ☐ Describe: BLDG 3 SUB-SLAB SVE SYSTEM
□ b. Active Exposure Pathway Elimination Measure Active Exposure Pathway Mitigation System to address (check one): □ i. Indoor Air □ ii. Drinking Water
C. Application of Remedial Additives: (check all that apply)
☐ i. To the Subsurface ☐ ii. To Groundwater (Injection) ☐ iii. To the Surface
d. Active Remedial Monitoring Program Without the Application of Remedial Additives: (check all that apply; Sections C, D
and E are not required; attach supporting information, data, maps and/or sketches needed by checking Section G5)
☐ i. Reactive Wall ☐ ii. Natural Attenuation ☐ iii. Other Describe:
. Mode of Operation: (check one)
☑ a. Continuous ☐ b. Intermittent ☐ c. Pulsed ☐ d. One-time Event Only ☐ e. Other:
. System Effluent/Discharge: (check all that apply)
a. Sanitary Sewer/POTW
□ b. Groundwater Re-infiltration/Re-injection: (check one) □ i. Downgradient □ ii. Upgradient
☑ c. Vapor-phase Discharge to Ambient Air: (check one) ☑ i. Off-gas Controls ☐ ii. No Off-gas Controls
d. Drinking Water Supply
e. Surface Water (including Storm Drains)
f. Other Describe:
B. MONITORING FREQUENCY:
. Reporting period that is the subject of this submittal: From: 4/1/2014 To: 9/30/2014
(mm/dd/yyyy) (mm/dd/yyyy)
Number of monitoring events during the reporting period: (check one)
a. System Startup: (if applicable)
☐ i. Days 1, 3, 6, and then weekly thereafter, for the first month. ☐ ii. Other Describe:
Annal III Oblivi
b. Post-system Startup (after first month) or Monitoring Program:
☐ i. Monthly
☐ ii. Quarterly
□ iii. Annually ▼ iv. Other Describe: BI-WEEKLY
3. Check here to certify that the number of required monitoring events were conducted during the reporting period.
C. EFFLUENT/DISCHARGE REGULATION: (check one to indicate how the effluent/discharge limits were established) 1. NPDES: (check one) a. Remediation General Permit b. Individual Permit
c. Emergency Exclusion Effective Date of Permit:
(mm/dd/yyyy)
✓ 2. MCP Performance Standard MCP Citations(s): MADEP POLICY #WSC94-150
3. DEP Approval Letter Date of Letter:
(mm/dd/yyyy)
(mm/dd/yyyy)

BWSC108 -A

Bureau of Waste Site Cleanup
CRA REMEDIAL MONITORING REPORT

Release Tracking Number

a. Name:	edial Waste			place for more than 30 da b. Grade			
c. License No:		d. Licens	e Exp. Date				
				(mm/dd/yyyy)			
2. Not Required							
3. Not Applicable		VICENTA CON		TARRYLY MONHEODING	do odd o	A K DIDDIG	
TATUS OF ACTIVE REA ORTING PERIOD: (che			ACTIVE RE	EMEDIAL MONITORIN	G PROGR	AM DURING	
			ie or more d	days during the Reporting	Period.		
a. Days System was Fully Functional: 157				b. GW Recovere			
c. NAPL Recovered (ga				d. GW Discharge			
e. Avg. Soil Gas Recove		fm): 171		f. Avg. Sparging):	
2. Remedial Additives: (•				`		
	diation Add	itives applied	eporting Period (total quant	tity applied at the site for t ii. Peroxides:	he current r	eporting period	d)
□ b. Enhanced Bioreme □ i. Nitrogen/Phospho Name of Additive	diation Add	Quantity	-	tity applied at the site for t	he current r	Quantity	d) Units
Name of Additive iii. Microorganisms	diation Add orus: Date		(total quan	tity applied at the site for t ii. Peroxides: Name of Additive iv. Other:		Quantity	Units
i. Nitrogen/Phospho	diation Add orus: Date		(total quan	tity applied at the site for t ii. Peroxides: Name of Additive			
i. Nitrogen/Phospho Name of Additive iii. Microorganisms Name of Additive	diation Addorus: Date	Quantity	Units Units Units	tity applied at the site for till Peroxides: Name of Additive iv. Other: Name of Additive	Date	Quantity	Units
i. Nitrogen/Phospho Name of Additive iii. Microorganisms Name of Additive	diation Addorus: Date	Quantity	Units Units Units	tity applied at the site for t ii. Peroxides: Name of Additive iv. Other:	Date	Quantity	Units
i. Nitrogen/Phospho Name of Additive iii. Microorganisms Name of Additive	diation Addorus: Date	Quantity	Units Units Units	ii. Peroxides: Name of Additive iv. Other: Name of Additive	Date	Quantity	Units
i. Nitrogen/Phospho Name of Additive iii. Microorganisms Name of Additive c. Chemical oxidation i. Permanganates:	diation Add orus: Date Date Date	Quantity Quantity additives appl	Units Units Units	ii. Peroxides: Name of Additive iv. Other: Name of Additive	Date Date	Quantity Quantity nt reporting pe	Units Units
i. Nitrogen/Phospho Name of Additive iii. Microorganisms Name of Additive c. Chemical oxidation i. Permanganates:	diation Add orus: Date Date Date	Quantity Quantity additives appl	Units Units Units	ii. Peroxides: Name of Additive iv. Other: Name of Additive	Date Date	Quantity Quantity nt reporting pe	Units Units
i. Nitrogen/Phospho Name of Additive iii. Microorganisms Name of Additive c. Chemical oxidation i. Permanganates:	diation Add orus: Date Date Date	Quantity Quantity additives appl	Units Units Units	ii. Peroxides: Name of Additive iv. Other: Name of Additive anntity applied at the site for the site of Additive	Date Date	Quantity Quantity nt reporting pe	Units Units
i. Nitrogen/Phospho Name of Additive iii. Microorganisms Name of Additive c. Chemical oxidation i. Permanganates:	diation Add orus: Date Date Date	Quantity Quantity additives appl	Units Units Units	ii. Peroxides: Name of Additive iv. Other: Name of Additive	Date Date	Quantity Quantity nt reporting pe	Units Units

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup CRA REMEDIAL MONITORING REPORT

Rele	ase [Tracking	g Numbe
3	_	485	

BWSC108-A

	3		Pursuant to 310 CMR 40.0800 (SUBPART H) [3] - 485							
		Remedial Sy	ystem or Me	onitoring Pr	rogram:	2	of: 3			
REPORT	TING PEI	RIOD: (cont.)	ı				DIAL MONITOR		AM DURING	
1	,		_			site fo	r the current repor			· ·
	Name of	Additive	Date	Quantity	Units		Name of Additive	Date	Quantity	Units
										-
					ļ					
		there if any acate Applied, Q					ed. Attach list of acs.)	dditional additi	ves and include	le Name of
F. SHUTI apply)	DOWNS	OF ACTIVE	REMEDIA	L SYSTEM	OR ACT	TVE F	REMEDIAL MON	ITORING PR	OGRAM: (cl	neck all that
□1.7	The Active	e Remedial Sy	stem had u	nscheduled	shutdown	s on o	ne or more occasio	ons during the	Reporting Per	riod.
a. N	Number of	f Unscheduled	Shutdowns	3;	b. T	otal N	umber of Days of	Unscheduled S	hutdowns: _	
c. R	Reason(s)	for Unschedu	led Shutdov	wns:						
₹ 2.1	The Active	e Remedial Sy	stem had so	cheduled shu	utdowns o	on one	or more occasions	during the Re	porting Perio	d.
a. N	Number of	f Scheduled S	hutdowns:	1	b. T	otal N	umber of Days of	Scheduled Shu	tdowns: 20	3
c. R	Reason(s)	for Scheduled	d Shutdown	s: TEMPOR	RARY SHUT	DOWN	TO MONITOR STATIC	SITE CONDITION:	3	***************************************
Report	ing Period	l.		·		ring P	rogram was perma	nently shutdov	/n/discontinue	ed during the
а. Г	Date of Fin	nal System or	Monitoring	Program Sh	nutdown:		(mana/dd/zzzzz)			
							(mm/dd/yyyy)			
	o. No Furt	ther Effluent I	Discharges.							
	c. No Furt CMR 40.		on of Remed	lial Additive	es planned	l; suffi	cient monitoring c	ompleted to de	monstrate cor	npliance with
	d. No Furt	ther Submittal	s Planned.							
	e. Other:	Describe:								
G. SUMN	IARY ST	ATEMENTS:	(check all t	hat apply fo	r the curr	ent rej	porting period)			
☑ 1. All applicable		emedial Syste	m checks ar	nd effluent a	nalyses re	equire	d by the approved	plan and/or per	mit were per	formed when
2. The System.	ere were n	o significant p	problems or	prolonged ((>25% of	report	ing period) unsche	eduled shutdow	ns of the Act	ive Remedial
☑ 3. The applicable	e approval	conditions ar	nd/or permit	s.	Monitorin	g Prog	gram operated in co	onformance wi	th the MCP, a	nd all
4. Indicat	e any Ope	erational Prob	lems or Note	es:						

5. Check here if additional/supporting Information, data, maps, and/or sketches are attached to the form.

Bureau of Waste Site Cleanup CRA REMEDIAL MONITORING REPORT Pursuant to 310 CMR 40.0800 (SUBPART H) Remedial System or Monitoring Program: 3

)		
3	of:	3

BWSC108 -A	

Release Tracking Number - 485

1. Type of Active Operation and Maintenance Activity: (check all that ap	ply)
☑ a. Active Remedial System: (check all that apply)	
☐ i. NAPL Recovery ☐ ii. Soil Vapor Extraction/Bio	venting
☐ iv. Groundwater Recovery ☐ v. Dual/Multi-phase Extract	ion
□ vii. Air Stripping □ viii. Sparging/Biosparging	☐ ix. Cat/Thermal Oxidation
X. Other Describe: BUILDING 5 SUB-SLAB SVE SYSTEM	
☐ b. Active Exposure Pathway Elimination Measure	
Active Exposure Pathway Mitigation System to address (check of	one): 🗆 i. Indoor Air 💢 ii. Drinking Water
·	
c. Application of Remedial Additives: (check all that apply)	on) 🗀 iii. To the Surface
☐ i. To the Subsurface ☐ ii. To Groundwater (Injection	,
d. Active Remedial Monitoring Program Without the Application of	
and E are not required; attach supporting information, data, maps and \[\subseteq i. Reactive Wall \] \[\subseteq ii. Natural Attenuation \] \[\subseteq iii. Other \]	Describe:
1. 1. Reactive wall 1. II. Natural Attendation 1. III. Other	
2. Mode of Operation: (check one)	
	time Event Only
3. System Effluent/Discharge: (check all that apply)	
a. Sanitary Sewer/POTW	
	owngradient ii. Upgradient
☑ c. Vapor-phase Discharge to Ambient Air: (check one) ☑ i. C	ff-gas Controls 🔲 ii. No Off-gas Controls
□ d. Drinking Water Supply	
☐ e. Surface Water (including Storm Drains)	
f. Other Describe:	
B, MONITORING FREQUENCY:	
	1/2014 To: 9/30/2014
1. Reporting period that is the subject of this submittal: From: 4	10,
1. Reporting period that is the subject of this submittal: From: 4	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one)	(mm/dd/yyyy) (mm/dd/yyyy)
_	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one)	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one)	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month.	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one) \[\subseteq \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one) ☐ a. System Startup: (if applicable) ☐ i. Days 1, 3, 6, and then weekly thereafter, for the first month. ☐ ii. Other Describe: ☐ b. Post-system Startup (after first month) or Monitoring Program: ☐ i. Monthly	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one) □ a. System Startup: (if applicable) □ i. Days 1, 3, 6, and then weekly thereafter, for the first month. □ ii. Other Describe: □ b. Post-system Startup (after first month) or Monitoring Program: □ i. Monthly □ ii. Quarterly	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one) ☐ a. System Startup: (if applicable) ☐ i. Days 1, 3, 6, and then weekly thereafter, for the first month. ☐ ii. Other Describe: ☐ b. Post-system Startup (after first month) or Monitoring Program: ☐ i. Monthly ☐ ii. Quarterly ☐ iii. Annually	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Annually iv. Other Describe: BI-WEEKLY	(mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one) □ a. System Startup: (if applicable) □ i. Days 1, 3, 6, and then weekly thereafter, for the first month. □ ii. Other Describe: □ b. Post-system Startup (after first month) or Monitoring Program: □ i. Monthly □ ii. Quarterly □ iii. Annually □ iv. Other Describe: BI-WEEKLY □ 3. Check here to certify that the number of required monitoring even	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Annually iv. Other Describe: BI-WEEKLY 3. Check here to certify that the number of required monitoring even. C. EFFLUENT/DISCHARGE REGULATION: (check one to indicate here.)	(mm/dd/yyyy) (mm/dd/yyyy) as were conducted during the reporting period. bow the effluent/discharge limits were established)
2. Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Annually iii. Annually iii. Other Describe: BI-WEEKLY 3. Check here to certify that the number of required monitoring even C. EFFLUENT/DISCHARGE REGULATION: (check one to indicate here.) 1. NPDES: (check one)	(mm/dd/yyyy) (mm/dd/yyyy)
2. Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Annually iv. Other Describe: BI-WEEKLY 3. Check here to certify that the number of required monitoring even. C. EFFLUENT/DISCHARGE REGULATION: (check one to indicate here.)	(mm/dd/yyyy) (mm/dd/yyyy) as were conducted during the reporting period. by the effluent/discharge limits were established) limits by the conducted during the reporting period.
2. Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Annually iii. Annually iv. Other Describe: BI-WEEKLY 3. Check here to certify that the number of required monitoring even: C. EFFLUENT/DISCHARGE REGULATION: (check one to indicate here.) 1. NPDES: (check one) a. Remediation General Permit c. Emergency Exclusion	(mm/dd/yyyy) (mm/dd/yyyy) ss were conducted during the reporting period. by the effluent/discharge limits were established) by Individual Permit Effective Date of Permit:
2. Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Annually iii. Annually iv. Other Describe: BI-WEEKLY 3. Check here to certify that the number of required monitoring event. C. EFFLUENT/DISCHARGE REGULATION: (check one to indicate here.) 1. NPDES: (check one) a. Remediation General Permit c. Emergency Exclusion	(mm/dd/yyyy) (ss were conducted during the reporting period. by the effluent/discharge limits were established) limit by by limit by li
2. Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Annually iv. Other Describe: BI-WEEKLY 3. Check here to certify that the number of required monitoring even: C. EFFLUENT/DISCHARGE REGULATION: (check one to indicate here.) 1. NPDES: (check one) a. Remediation General Permit c. Emergency Exclusion 2. MCP Performance Standard MCP Citations(s): MADEP F. 3. DEP Approval Letter Date of Letter:	(mm/dd/yyyy) (ss were conducted during the reporting period. by the effluent/discharge limits were established) limit by by limit by li
2. Number of monitoring events during the reporting period: (check one) a. System Startup: (if applicable) i. Days 1, 3, 6, and then weekly thereafter, for the first month. ii. Other Describe: b. Post-system Startup (after first month) or Monitoring Program: i. Monthly ii. Quarterly iii. Annually iii. Annually iv. Other Describe: BI-WEEKLY 3. Check here to certify that the number of required monitoring event. C. EFFLUENT/DISCHARGE REGULATION: (check one to indicate here.) 1. NPDES: (check one) a. Remediation General Permit c. Emergency Exclusion	(mm/dd/yyyy) (ss were conducted during the reporting period. by the effluent/discharge limits were established) limit by by limit by li

BWSC108-A

Bureau of Waste Site Cleanup CRA REMEDIAL MONITORING REPORT Pursuant to 310 CMR 40.0800 (SUBPART H)

Remedial System or Monitoring Program:

	c	[-
3	OI:	3

Release Tracking Number

485

D. WAS	STEWATER TREATM	ENT PLAI	NT OPERATO	R: (check	one)			
	•	dial Waste	water Treatme	ent Plant in	place for more than 30 da	•		
	. Name:				b. Grade	:		
С	. License No:		d. Licens	e Exp. Date		_		
	•				(mm/dd/yyyy)			
	. Not Required							
	. Not Applicable							
				CTIVE RI	EMEDIAL MONITORIN	G PROGR	AM DURING	
	RTING PERIOD: (chec					D ' 1		
				ie or more	lays during the Reporting			
	. Days System was Fully		al: 183		b. GW Recovere			
	. NAPL Recovered (gals				d. GW Discharge			
e	. Avg. Soil Gas Recover	y Rate (sc	fm): 128		f. Avg. Sparging	Rate (scfm	1):	
\square 2	. Remedial Additives: (c	heck all the	at apply)					
	☐ a. No Remedial Additi☐ b. Enhanced Bioremed☐ i. Nitrogen/Phosphor	iation Add	-		tity applied at the site for t ii. Peroxides:	he current r	eporting perio	d)
	Name of Additive	Date	Quantity	Units	Name of Additive	Date	Quantity	Units
							-	
		1				***************************************		
	iii. Microorganisms:				iv. Other:			
	Name of Additive	Date	Quantity	Units	Name of Additive	Date	Quantity	Units
Γ	c. Chemical oxidation/	reduction a	additives appli	ed: (total q	nantity applied at the site f	or the curre	nt reporting pe	eriod)
	i. Permanganates:		* *	` *	ii. Peroxides:		1 01	,
	Name of Additive	Date	Quantity	Units	Name of Additive	Date	Quantity	Units
	☐ iii. Persulfates:				☐ iv. Other:			
	Name of Additive	Date	Quantity	Units	Name of Additive	Date	Quantity	Units
			-					

Bureau of Waste Site Cleanup CRA REMEDIAL MONITORING REPORT

Pursuant to 310 CMR 40.0800 (SUBPART H)

Remedial System or Monitoring Program: 3

of:	3
	~

1	5 Y	N 2	ΙU	Jδ	- F	1

Release Tracking Number 485

-		pnea: (total	quantity app	ned at th	e site fo	or the current reportin	g perioa)		
-	Name of Additive	Date	Quantity	Units		Name of Additive	Date	Quantity	Units
-					_	· · · · · · · · · · · · · · · · · · ·			
				-					
Ad	ditive, Date Applied,	Quantity A _l	plied and Un	its (in ga	ls. or It	ed. Attach list of addi s.) REMEDIAL MONIT			
y)								•	
☐ 1. T	he Active Remedial S	System had	unscheduled	shutdow	ns on c	ne or more occasions	during the l	Reporting Per	riod.
a. N	umber of Unschedule	d Shutdow	ns:	b. 7	Γotal N	umber of Days of Un	scheduled S	hutdowns: _	
c. R	eason(s) for Unsched	uled Shutd	owns:						
2. T	he Active Remedial S	System had	scheduled sh	utdowns	on one	or more occasions de	uring the Re	porting Perio	d.
	umber of Scheduled					umber of Days of Scl			
	eason(s) for Schedule		***************************************			•			
	` ,								·
eportii	ng Period.					rogram was permane	ntly shutdow	n/discontinue	ed during t
a. D	ate of Final System o	r Monitorir	g Program S	hutdown	:	(mm/dd/yyyy)	-		
yeare _						(mm/dd/yyyy)			
Jb	. No Further Effluent	Discharge	5.						
	No Further Applicat CMR 40.0046.	ion of Rem	edial Additiv	es planne	d; suff	cient monitoring com	pleted to dea	monstrate cor	npliance w
□d	. No Further Submitte	ıls Planned							
Пе	Other: Describe:							***************************************	
SUMM	ARY STATEMENTS	check al	that apply fo	or the cur	rent re	porting period)			
1. All Alicable.	•	em checks	and effluent a	analyses i	require	d by the approved pla	n and/or per	mit were perf	ormed wh
2. Thei tem.	e were no significant	problems	or prolonged	(>25% o	f repor	ing period) unschedu	led shutdow	ns of the Act	ive Remed
	Active Remedial Sys approval conditions a			Monitori	ng Prog	gram operated in conf	ormance wit	h the MCP, a	nd all
ndicate	any Operational Prol	olems or No	otes:						

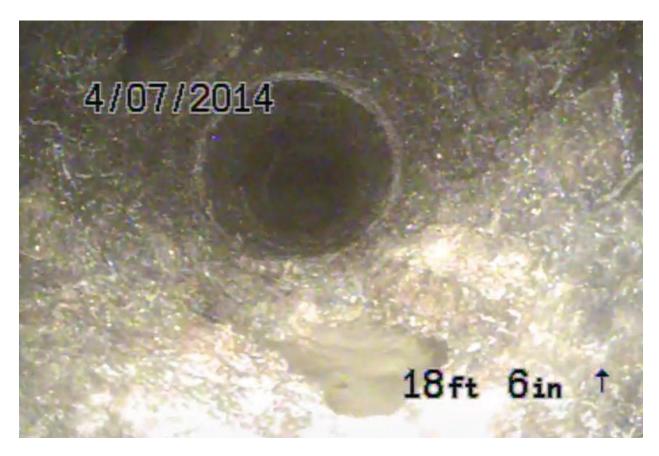
Attachment to BWSC 108 150 Sohier Road, Beverly, MA RTN 3-0485

Approvals from the Massachusetts Department of Environmental that this submittal is subject to include:

- "Approval to Apply Remedial Additive; MGL.c.21E & 310 CMR 40.0000" issued on August 18, 2004 (for permanganate addition activities)
- "Approval to Apply Remedial Additive; MGL.c.21E & 310 CMR 40.0000" issued on November 20, 2006 (for bioremediation activities)

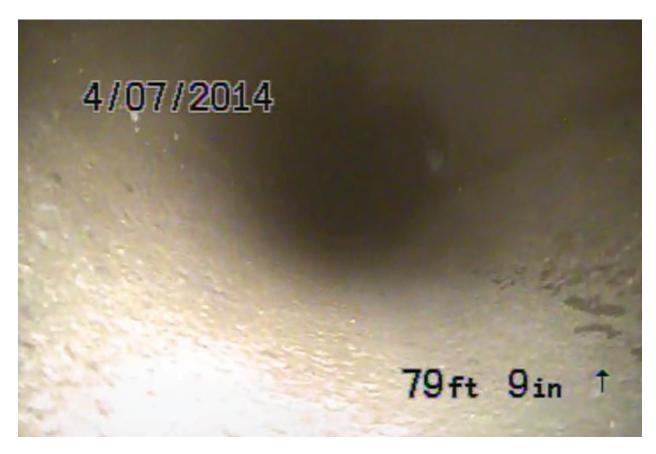
APPENDIX B

DRAIN LINE ASSESSMENT BUILDING 3 AND 5


Screen shot 1: four-inch cast iron drain line 7 at Building 3 with wall deposits and sediment before cleaning

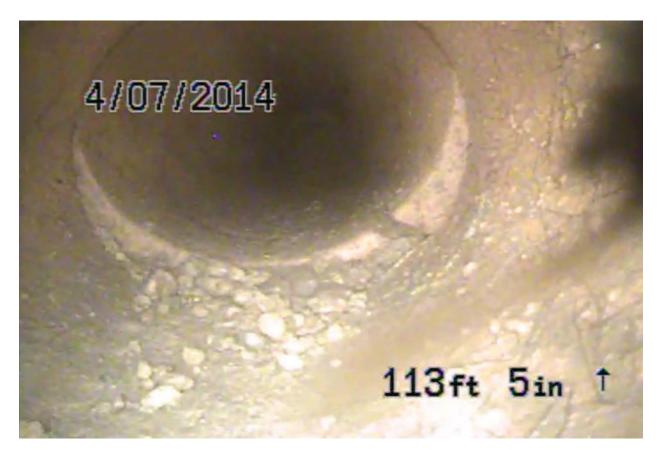
Screen shot 2: four-inch cast iron drain line 7 at Building 3 after cleaning

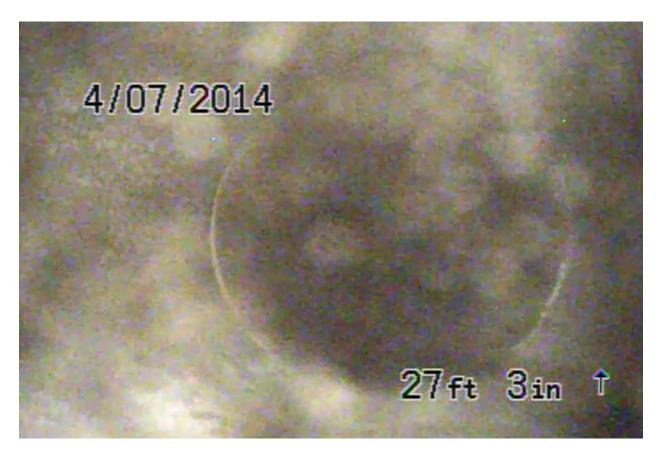
Screen shot 3: four-inch cast iron drain line 7 at Building 3 with crack and hole in bottom of pipe, approximately 9 feet from former sump


Screen shot 4: four-inch cast iron drain line 7 at Building 3 with unknown connection (left) and hole in bottom of pipe, approximately 18 feet from former sump

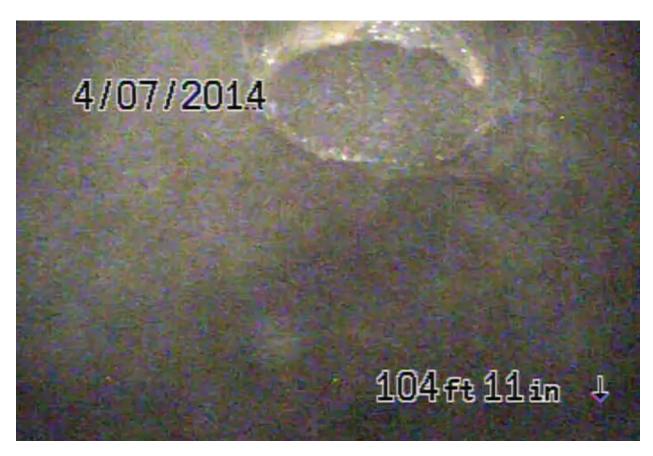
Screen shot 5: four-inch cast iron drain line 7 at Building 3 with bottom of third of pipe completely deaerated, approximately 20 feet from former sump

Screen shot 6: four-inch clay drain line 9 at Building 3

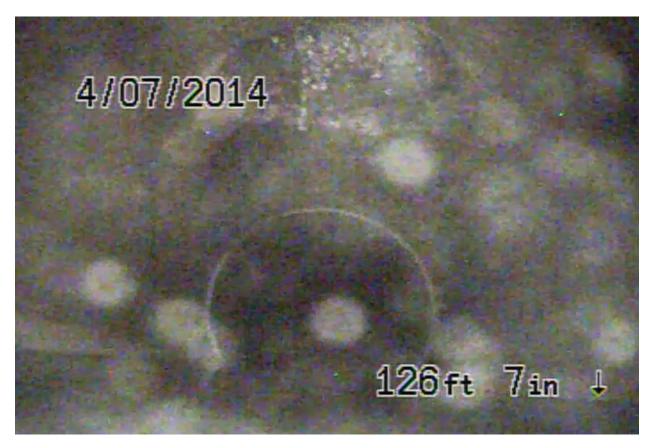

Screen shot 7: four-inch clay drain line 9 at Building 3 with potential connection on right, approximately 80 feet from former sump


Screen shot 8: four-inch clay drain line 9 at Building 3 with potential break on right, approximately 100 feet from former sump

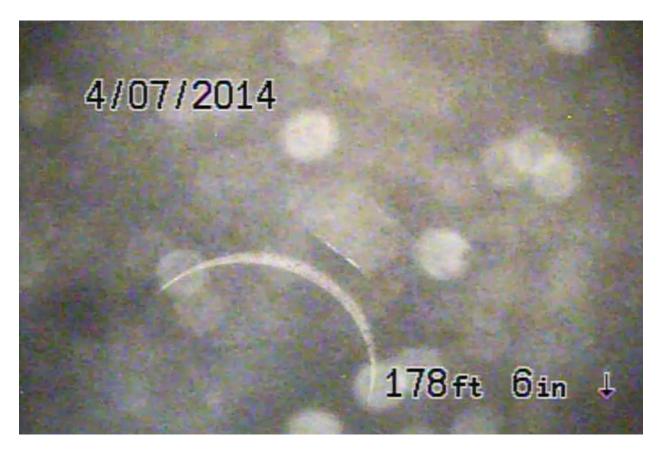
Screen shot 9: four-inch clay drain line 9 at Building 3 with significantly off-set joint, approximately 110 feet from former sump

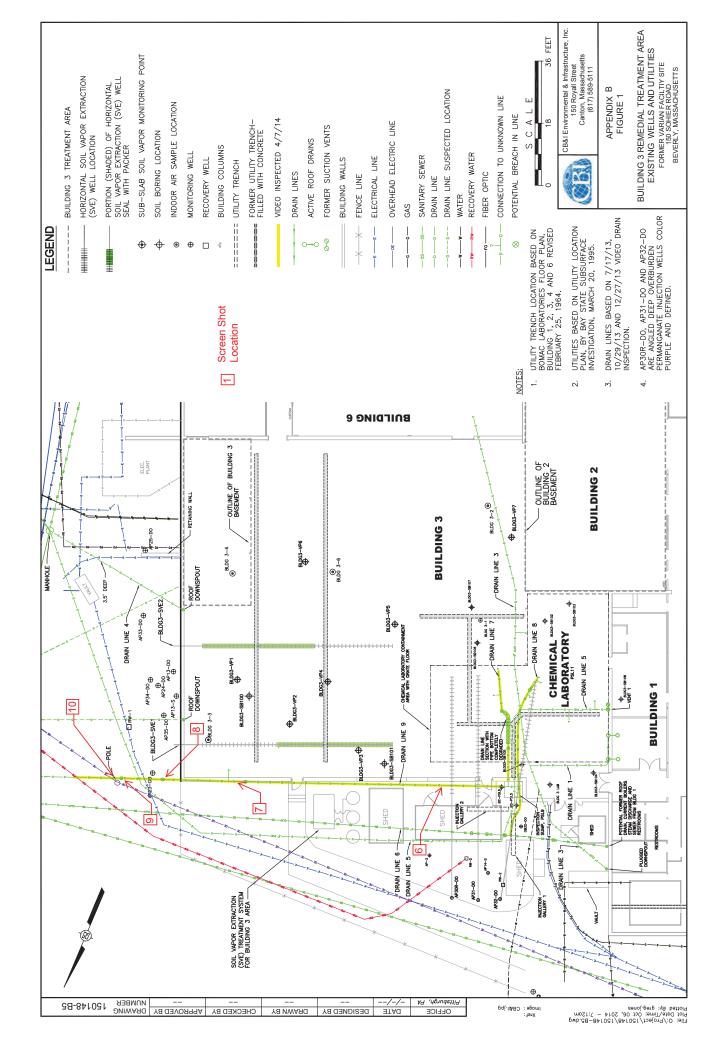

Screen shot 10: four-inch clay drain line 9 at Building 3 with off-set and cracked joint, approximately 113 feet from former sump

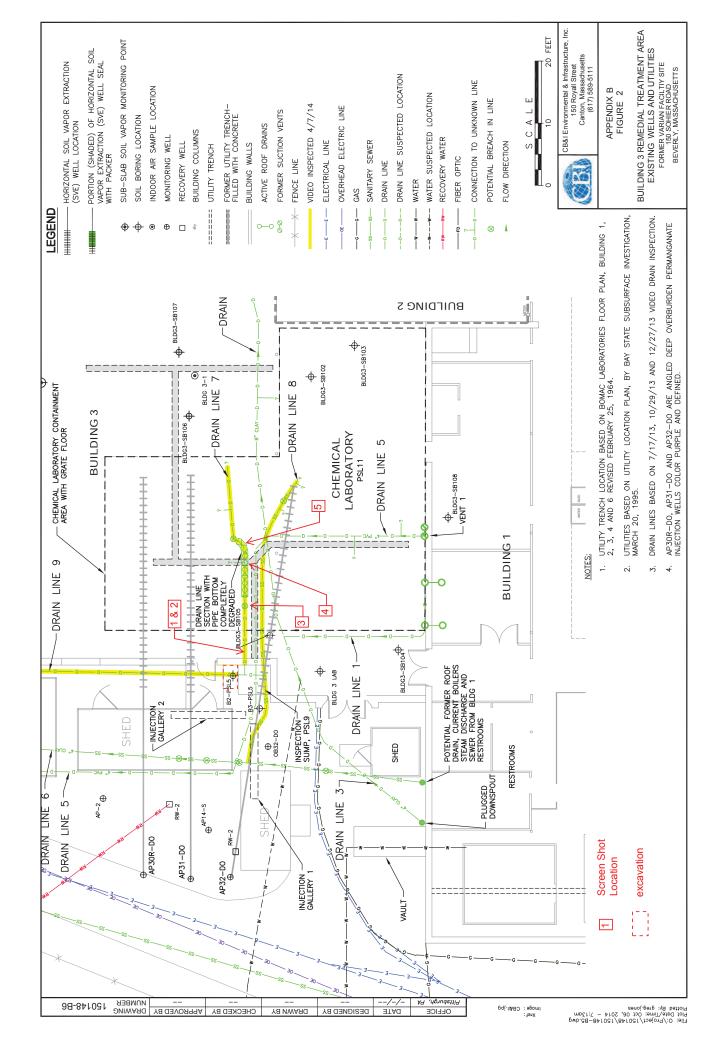
Screen shot 11: ten-inch clay drain line 10 at Building 5

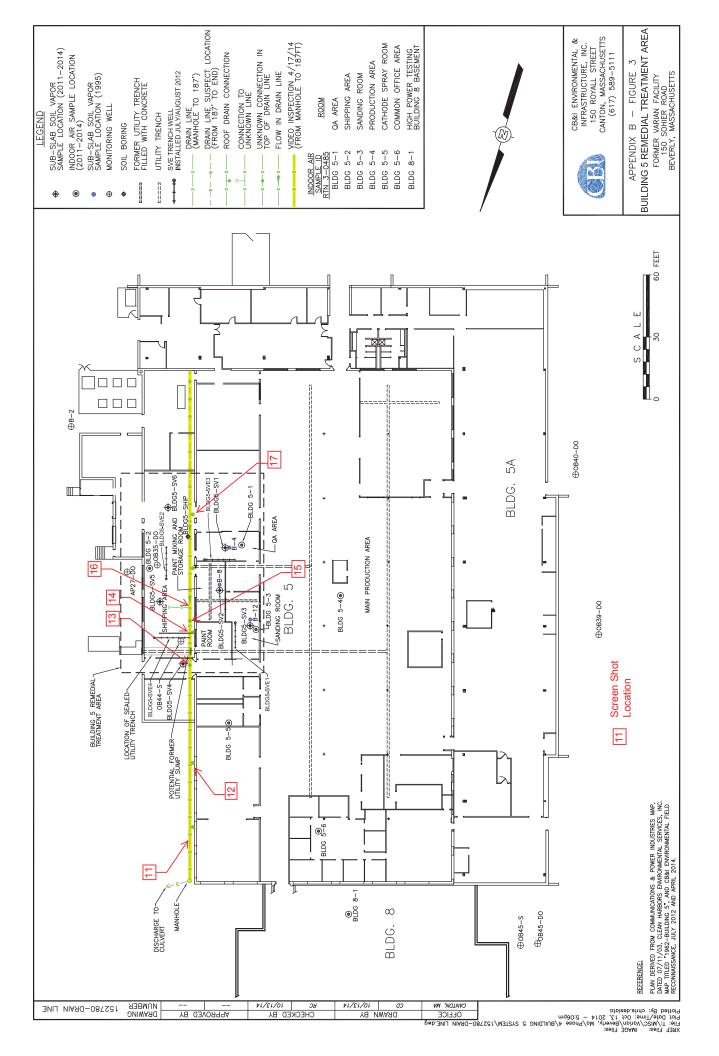

Screen shot 12: ten-inch clay drain line 10 at Building 5 with potential roof drain connection at upper right, approximately 57 feet from manhole

Screen shot 13: ten-inch clay drain line 10 at Building 5 with potential connection at top, approximately 104 feet from manhole


Screen shot 14: ten-inch clay drain line 10 at Building 5 with potential roof drain connection at upper right, approximately 120 feet from manhole


Screen shot 15: ten-inch clay drain line 10 at Building 5 with potential connection at top, approximately 126 feet from manhole




Screen shot 16: ten-inch clay drain line 10 at Building 5 with potential connection on left, approximately 132 feet from manhole

Screen shot 17: ten-inch clay drain line 10 at Building 5 with potential roof drain connection upper right, approximately 178 feet from manhole

APPENDIX C COPIES OF WASTE MAINFESTS

717245

16% Please print or type. (Form designed for use on elite (12-pitch) typewriter.) Form Approved. OMB No. 2050-0039 4. Manifest Tracking Number 1."Generator ID Number 2. Page 1 of 3. Emergency Response Phone UNIFORM HAZARDOUS **WASTE MANIFEST** 5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing address) R. Cadurelle // VARIAN MEDICAL BYSTEMS, INC 150 SOHIER ROAD-TRIMENT FAC MAW D&! gir ite. 150 ROYALL STREET BEVERLY, MA 01915 CANTON, MA 02021 Generator's Phone: 517. 589-6107. 6g Transporter 1 Company Name U.S. EPA ID Number N J D O 8 O 6 3 1 VEOLIA ES TECHNICAL SOLUTIONS 7. Transporter 2 Company Name U.S. EPA ID Number 257/6 INC 8. Designated Facility Name and Site Address U.S. EPA ID Number VECULA ES TECUMICAL SOUTH HIGHWAY 73 3.5 MILES W. OF TAYLOR'S BAYOU PORT ARTHUR, TX 77640 Facility's Phone: 400 736 2821 T X D O O O 8 3 8 8 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12, Unit 9a 13. Waste Codes and Packing Group (if any)) Quantity Wt./Vol. ŀМ No. Type NA3077, HAZARDOUS WASTE, SQLID, n.o.s. F002 GENERATOR (TRICHLOROETHYLENE), 9, III DM 400 p OUTS609H . 4 14. Special Handling Instructions and Additional Information HR Service Contracted by VESTS **CERTIFICATE OF DESTRUCTION REQURED** GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a).(if I am a large quantity generator) or (b) (if I am a small quantity generator) is true Generator's/Offeror's Printed/Typed Name Month Day Year Import to U.S. Port of entry/exi Export from U.S. Date leaving U.S. Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Year TRANSPOR Transporter 2 Printed/Typ Signatur Day Year 18. Discrepancy 18a. Discrepancy Indication Space ____ Туре __ Partial Rejection Full Rejection. Quantity Residue Manifest Reference Number: U.S. EPA ID Number 18b. Alternate Facility (or Generator) Facility's Phone: DESIGNATED 18c. Signature of Alternate Facility (or Generator) Month Year Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Nam Day

Dia). •	int or type, (Form designed for use on elite (12-pitch) typewriter.)			ang samang Paga	ang a ma		n Approved.	OMP No	2050 0020
The last		FORM HAZARDOUS WASTE MANIFEST 21. Generator ID Number (Continuation Sheet)	· ·	, 22. Page,	23. Manif	est Tracking Nun	nber		at water	2050-0039
	24. 0	Generator's Name Vavion medical Systems	4						e gerig	
	25. 1	Transporter 3 Company Name Valle 85 Technic	ral di	Solution	<u> </u>	U.S. EPA ID N	A	NJU JULIN	781X.	31869
	26.	Transporter Company Name	MAR	by The	<u>c</u>	0.5, EPAID!	1109	88 218	791	
	27a. HM	27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))	,	28. Contai No.	ners Type	29, Total Quantity	30. Unit Wt./Vol.	31, \	Waste Codes	<u> </u>
	, 4 t	The same of the second of the	र्भे क्षिक क्षेत्रक	jedna nije naje.	·····································	Marie ya Salanda kata kata kata kata kata kata kata ka	ं वास्त्रीहरू	Charles To anticke	deridaner verali dish	na dalah dan saka saka saka saka saka saka saka sa
	-				ě			e garnisave genjereko	ndaga (Tilliota, qui a signification e estillos	ours and a sold of the stage and all professions.
					11. 11.			as arranales secret		er en
ENERATOR -								MARY RECOGNISION AND AND ASSESSMENT	manus (manus musik	anne en managame
- GENE									and the second second second second	rans compared in the same of t
	KALS KALS	Control of the Contro	edicabillitis and an	oli vara kes	District States	STATE OF STATE OF		escula de Asi Ermadenson		notation of the Contract of th
Cer sea	rice with the	and have a place and a process of the control of th	ر النام الموسطولية بيان والم	Attemption of the state of the	Midaphan puncher	datiga jirandayid si sajab ayba yasani danda.	ndesilyay is pi n * News	Topo bergad of Thomas	and and a second and	and the second second
			graphy a series of	ing or medicine		englight of the control		rhad bear standard on cases		samming construction to the same
									ongeritation to the contract of the	N2005
57									***************************************	En de manne au roll and armeann a
	32. S	pecial Handling Instructions and Additional Information								
<u> </u>	.00 T				•					
TRANSPORTER	Printe	ransporter 5 Acknowledgment of Receipt of Materials and Typed Name	Signature	r Da		Ida	800	Mor	nth Day	Year
TRANS		ansporterAcknowledgment of Receipt of Materials d/Typed Name	Signature	. ,				Mor	nth Day	Year
DESIGNATED FACILITY	35. Di	iscrepancy								
SIGNATED	36. H	azardous Waşte Report Management Method Codes (i.e., codes for hazardous waste treatment, dis	posal, and re	cycling systems)			1. (
	Form	8700-22A (Rev. 3-05). Previous editions are obsolete.				DESIGNATE	ED FAC	u trv ré) CENE	DATOD

The Control of the Co

:... 経済:

ease print or type. (Form designed for use on elite (12-pitch) typewriter.)	Pengaran and Pan	augusten in	7			MB No. 2050-
WASTE MANIFEST MAR 00000 6734	3. Emergency Respon	9300	The state of the s	619	750	8 FL
VARIAN MEDICAL SISTEMS PTO CID 92	Generator's Site Addres	Aug ion Aug noth	FACILITY	s)		
Generator's Phone: 650 4/24-6/03	150 50 Beven	WICH BE	01915			
6. Transporter 1 Company Name	W. C.	11 1-111	U.S. EPAID N	lumber	100	,
HORWITH TRUCKS INC					4874	
7. Transporter 2 Company Name			U.S. EPA ID N	umber		
8. Designated Facility Name and Site Address & VOQUA WINEST TEXTIFICATION OF SECTION OF	C		U.S. EPA ID N	lumber		
2523 MUTAHAR STREET PAINLER, AZ 85344			1425.0	100	11-92.2	
Facility's Phone: 122 1964 5759	10 200		1AZD9	100000000000	11203	
9a. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))	10. Cont	Type	11. Total Quantity	12. Unit Wt./Vol.	13. W	aste Codes
_ INASOTT, HAZARDANS WASTE SOLID, NOS	110.	1700	10/3 (n= 0	1	Foo2	Mark 190
X (SOLVENIS)	12	DM	2000	P	La Company	
2,		A 100 000	The lambage			Section 1
The birth of the second of the	Mary 1	6 011	to Million I.			
3	Manager Park	Total Control				
high and madelines are a facility of the control of		d range				
A DESCRIPTION OF THE PROPERTY		The state of				10/10/10/10
4.				1		11.
And a subject of the company of the subject of the best of the subject of the sub		Philips	The second second	1		THE RESERVE
14. Special Handling Instructions and Additional Information		The same	Manufacture 1	1	-1-310	7500
15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment at	Prof. b # e fully and accurately o	described above	e by the proper sh	pping name	, and are class	ified, packaged,
marked and labeled/placarded, and are in all respects in proper condition for transport according to applica Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowle I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity gener Generator's/Offeror's Printed/Typed Name	dgment of Consent. ator) or (b) (if I am a si			ii export si	Monti	
Raymond I. Cadosette Agend for VMS	04	1/6	EC.		15	121
Transporter signature (for exports only):		entry/exit: aving U.S.:	Podne i -	1	V-71-100-01-51	
17. Transporter Acknowledgment of Receipt of Materials						
Transporter 1 Printed/Typed Name Signa	alure	00			Month	Day Y
/Transporter 2 Printed/Typed Name Signa	ature	markelant for	and the same		Monti	h Day Y
Transported 2 i miles types traine			1			
18. Discrepancy		MI CO	Seminal exp	1-11-11	n nithing	
18a. Discrepancy Indication Space Quantity Type	Residue	A CALL STREET	Partial Rej	ection		Full Rejection
18b. Alternate Facility (or Generator)	Manifest Referen	ce Number:	U.S. EPA ID N	lumber		
100, Allemate Facility (of Generator)		1000				*
Facility's Phone:			in physics is			
A MARINI M A TOMORY						
18c. Signature of Alternate Facility (or Generator)	eta la		* di qui A	1	Mon	th Day
18c. Signature of Alternate Facility (or Generator)	and recycling eveterne		* di din vi		Mon	th Day
	and recycling systems)	4.		Mon	th Day
18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, 1. 2. 3.	Kara-da ke-Jelak	mort result	4.		Mon	th Day
Signature of Alternate Facility (or Generator) Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, 2. 3. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manife	Kara-da ke-Jelak	mort result	4.		Mon	

1	_	FORM HAZARDOUS WASTE MANIFEST (Continuation Sheet) 21. Generator ID Number	1	22. Page	23. Mani	fest Tracking Nu	mber	2.33	6 Ve 5
	24. 0	Senerator's Name Vor 110m Modical							
		Transporter 5 Company Name V Q O (()				U.S. EPA ID I	Number	631	369
	26. 1	Transporter Company Name				0.0. EFAID	Number .		
	27a. HM	27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))	•	28. Contair	ners Type	29. Total Quantity	30. Unit Wt./Vol.	31.\	Waste Codes .
								भ्य केन्द्र क्षेत्रक स्त्राप्त के खा	
	:								
			,	:				** A SET TO FIRST WAS TRANSPORTED TO A TO	priest a label-unitaria compania unitaria (
GENERATOR								18 18 \$ office relatives where	
	,		,					regional Large C Pa April 100	
	. 14	A STAND							NE SETTE THE STATE OF SETTEMBER AND SETTEMBE
					,			,	
									and the state of t
								3544 Sant 1000 (100)	
	32. S	pecial Handling Instructions and Additional Information						erre i di prome e di distribi	
						,			
TRANSPORTER	Printe	MAT HOKEMS	nature	₹0	J	Adla	W)	Mor	oth Day Year,
TRAN	Printe	ansporterAcknowledgment of Receipt of Materials d/Typed Name Sig	nature					Mor	nth Day Year
DESIGNATED FACILITY	35, Di	screpancy	,						
GNATED	36. Ha	azardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal	l, and recy	rcling systems)				•	
DES				<u> </u>					

Form Approved. OMB No. 2050-0039 Please print or type. (Form designed for use on elite (12-pitch) typewriter.) 4. Manifest Tracking Number 1, Generator ID Number 2. Page 1 of 3. Emergency Response Phone UNIFORM HAZARDOUS WASTE MANIFEST MAR 0 0 0 0 0 6 7 3 4 (877) 813-0087 5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing address) VARIAN MEDICAL SYSTEMS, INC 150 SOHIER ROAD-TRIMENT FAC VARIAN MEDICAL SYSTEMS C/O CB&I ATTN: RAY CADORETTE 150 ROYALL STREET BEVERLY, MA 01915 Generator's Phone: 617 559-5103 CANTON, MA 02021 U.S. EPA ID Number 6. Transporter 1 Company Name VEOLIA ES TECHNICAL SOLUTIONS N 1 D 0 8 0 6 3 1 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address veolla es technical schutions HIGHWAY 73 3.5 MILES W. OF TAYLOR'S BAYOU PORT ARTHUR, TX 77640 8 3 Facility's Phone: 409 736-2321 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) Quantity Wt./Vol. НM No. Type MA3082, HAZARIKUUS WASTE, LIQUID, 11.0.8., X (TETRACHLOROETHYLENE), 9, III 3 DM 1200 \mathbf{p} CUTSTIBH NABORZ, HAZARDOUR WARTE, LIQUID, n.o.s., (TRICHLOROETH YLENE), 9, III F002 X DA 400 CUTSIOH 14 NA3077, HAZARDOUS WASTE, SOLID, n.o.s., (LEAD, F001 THTRACHLOROETHYLENE), 9, III D M 400 1 D003 OUTS30H 14. Special Handling Instructions and Additional Information BR. Service Contracted by VESTS + 1) ERG: 171 W:563653 A:PTAVESUI2 20 BRG: 171 W:122982 A:PTAVES012, 3) ERO:171 W:563649 A:PTA563649 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPAAcknowledgment of Consent. l certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Month Generator's/Offeror's Printed/Typed Name Day Year Date leaving U.S.: Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Month Transporter 1 Printed/Typed Name Signature Month Day Year Transporter 2-Printed/Typed Name OMES. 18. Discrepancy 18a, Discrepancy Indication Space Full Rejection Residue 」 Partial Rejection Manifest Reference Number: U.S. EPA ID Number 18b. Alternate Facility (or Generator) DESIGNATED FACILITY Facility's Phone: Month Year 18c. Signature of Alternate Facility (or Generator) Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a

nas

Printed/Typed Name

Month

300	riea	1000		designed for use on ell				Trans.				n Abbioxed	. UNB NO.	2000-0009
	\uparrow		(Continua	US WASTE MANIFES tion Sheet)	T 21. Generator ID I		(07-244)	22. Page	2 23. Mani	ifest Tracking Nur	mber	234	a.V.6	
旃		24. (Generator's Name			2 - 6 L	01	na na manana Na	विक्या कृती से प्राप्त					
				ian Me	,		ms c/a		4	U.S. EPA ID I	Vumher		,	
		25.	Transporter	Company Name	edia E	316	chnico	1501	stions	<u>771 i</u>	009	3063	3136	9
		26.	Transporter	Company Name	THE		Thomogen	T Fu	<u>C.</u>	U.S, EPA IĎ I		12-1398	<u>}\s&&</u>	m/
i sans		27a. HM	27b. U.S. DOT De and Packing Grou	scription (including Proper o (if any))	Shipping Name, Hazard	Class, ID Numbe	r, o radio Dovo ka Toda associ	28. Cont		29. Total Quantity	30. Unit		Waste Codes	
3,414	(r)	3,24	s कहार केलीजीक र जागी एसीपर इ	fareninghilingsfluknisher om	en many sample conference for	and the the shot.	neopodaj sto is liebaj fici	क्षाप्रांतिक स्थापन क्षेत्रकृतिहर्तिक	er bildhad wax	- brooks damed two		t al language		
						•								
							9							
								·						
i, ir					e Germande As		188							error and a market species of make
2.00	R -	<u> </u>			et Politikijde Prije Desember	1		and the factor	E Description	ang Janes V.S.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	48.00	est And	. A. 10. 15
	GENERATOR				i m								W	
	E GE				W								N. A.	entra esperante de response de
% 第			W A VE		7		A STATE OF THE STA	ASSET ASSET	enservice.		ent in the second			
				r.								APPENDENT APPLICATION OF A		ere sample on a second open ere.
ı			, , , , , , , , , , , , , , , , , , ,	100h	>	4								**:
		h.		1 W	and the second					**************************************	The Co.	a. Bassan 2		
		APCES Authorit	Aught Author (1980).		त्यात्र के प्रकार के अध्यक्षित्र के जिल्ला इंदर के प्रकार के इंडिक्ट के किया के प्रकार	gang och och gang bestär den den gang.	Burg eticse sing in signification (Bis 100)	र्ट-हें प्रकार के कार्री हुई र	ता पर्यावस्तिकिते हे हरे	Charle di And Late Constant agree	માં કાંગ્રેસ્ટ્રેસ્ટ્રેક્ટ્રેક્ટ્રેક્ટ્રેક્ટ્રેસ્ટ્રેક્ટ્ટ્રેક્ટ્રેફ્ટ્રેફ્ટ્સ્ટ્રેક્ટ્સ્ટ્રેફ્ટ્રેફ્ટ્સ્ટ્રેક્ટ્સ્ટ્રેક્ટ્સ્ટ્રેફ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેક્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્સ્ટ્સ્ટ્રેફ્ટ્સ્ટ્સ્ટ્સ્ટ્રેફ્ટ્સ્ટ્સ્ટ્રેફ્ટ્સ્ટ્રેફ્ટ્સ્ટ્સ્ટ્	A LINES TO SERVICE STATES	en and the first of the second	ig sa gad greja teo jednje kodi sa Stationista kao kao na sa sa sa
ļ.,														
	100	10000000000000000000000000000000000000	The state of the s											v - v e v e v e v e v e v e v e v e v e v
						The state of the s							responses solved the subsequent	
		32. S	pecial Handling Instr	uctions and Additional Info	malion		The Mark of the Control of the Contr			State of the state	2.16			
		MY: Ti		e V		a la sa e a e se compest		*** 有相称 有限等				作物學	vitality of	
čķ.	Ψ ~	33. T	ransporterA	cknowledgment of Receipt			<u> </u>							
	TRANSPORTER	Print	ed/Typed Name	ou Blow	Lere	No	Signature	zitta	report of	Ren	300	Mod	oth Pay	Year
	ANS		ransporterA	cknowledgment of Receipt	of Materials		Signature			N. Sandar	K.	Moi	nth Day	Year
	_	15	c/laj /	NELLON.	l righ	,	he.	lly 11.	1501	hr.		16		1 1 1 1
		JJ. D	овстерансу	and the same of the same of the same	ing and an area of the second	4			4.4		<u>.</u>	. 1. <u></u>	. 2 m . m	en sydne.
	D FAC	1 d .	ा (एक गाव के प्रक्रम अकेट्स स्टब्स् 	AND AND TO A STREET BY A				<u>.</u>		, 				
	DESIGNATED FACILITY	36. H	lazardous Waste Rep	ort Management Method (Codes (i.e., codes for ha	zardous waste tre	eatment, disposal, and n	ecycling systems)						
	ESI-		· · ·			1	•		· .		1	•		Ţ
L			, ", },	4 1 4	5 7 g t , 7			· 3 ·	1 1 10				1.0	2 4

Ple	ase prin	it or type. (Form desi	gned for use on el	lite (12-pitch) type	writer.)				*#ţ,			n Approved.	OMB No.	2050-0039
\uparrow	l WA	ORM HAZARDOUS	PHA CK	10 UU 67.	34	2. Page 1 of	3. Emer	rgency Respons	e Phoné 7300	4. Manifest		umber 1750	9 F	-LE
П	5. Gen	erator's Name and Mail	ing Address(/A Riv	an MEDICAL	- 新性精制5件	CAFI	Generat	or's Site Address	(if different t	nan mailing addres	ss)	- 1		
Ш	1 11	WIN THE	THE IST	ROJANETIO	CEC	- G1 4		A81918	to MES	5.4 6 (5.7%) 1984 - John C				
	ŀ		2400	THA JUAN CE	2021			150 3	FRANKE K	港區.)				
Ш	Genera	ator's Phone: 6 30 Naisporter 1 Company Nai	-424-61	03	•			Edve.	1 L T, 11	148, (7)	15			
										U.S. EPA ID I	Vumber	· 11 - 12 3 1	, ,	
	for fi	DEMILLER	wicks to) C								4574		
Ш	/. Iran	sporter 2 Company Na	me							U.S. EPA ID N	vumber			
	8 Desi	ignated Facility Name a	nd Site Address		2 Tr 2 14 1 14 6 1	1 128 43 :	e e e e e e e e e e e e e e e e e e e			U.S. EPA ID I	Mumhor			
Н	0,000	ignatou i domey itamo d	2.0	renda PC	AMA STATA	prin I bate. P	done 4			0.0, 217(3)	tumoi			
			74	RKER. AZ	199 3W							صبعتات بدا	a = 20%	
	Facility	's Phone: 928-				<i>,</i>				AZD	982	4412	65	
	9a. HM	9b. U.S. DOT Descrip and Packing Group (if	tion (including Proper any))	r Shipping Name, Ha	zard Class, ID Number,			10. Conta	iners Type	11. Total Quantity	12. Unit Wt./Vol.	13.	Waste Code	s
	[1	INASOTT.	ingarnoit	5 W/1577 :	SOLUGIANOS			110,	Турс	Add S. 7.	111111111	F.00Z		
킪	χl	(SOLVERT)	· 6					10	700 A 3	See	-	1 3 1		
R	1/4	9, MI						1 400	DM	profes and				
GENERATOR		2.												
10							,		-		*7			
	<u> </u>	3.			A AAAA SAAA		5 (1.05)				<u> </u>			
		· ·												
1.2		4.				1.1								
	14 Sp	ecial Handling Instructio	ns and Additional Inf	ormation								<u> </u>		
П	16	I) Spent V	Arm Cak	S.O. 1							i		•.	
		'					a station of the state of the s	Pru	a a a			,	1	
		T					•	-		SIZRH		12/11	<u> 15 ° </u>	
		ENERATOR'S/OFFERI												
Ш		xporter, I certify that the certify that the waste mi							all quantity de	nerator) is true.				
Н	Genera	tor's/Offeror's Printed/T		Idonalioa III 40 Ol TC	Zozier (d) (ii r diii d idig		nature.	tea de la	7 3 mps	- muse		Mon		
↓	Kar	Vannd I.	Calviet	Fe. Aga	A for V	145		567	/ (* =	Agentines and a		1-7	718	1/4
INT	16. Inte	rnational Shipments	Import	5,94		Export from I	J.S.	Port of er				72756		
		orter signature (for exp				•		Daté leav	ing U.S.:					
巴		nsporter Acknowledgme orter 1 Printed/Typed Na		nais		Sigi	nature ,	1 1				Mon	th Day	Year
TR ANSPORTER	1)	100	237 m			IŠ	Jak.	Line	a. January			10		in set som
ANS	Transpo	orter 2 Printed/Typed Na				Sig	nature					Mon	th Day	Year
TR/														
†	18. Disc	crepancy					-							
	18a. Di	screpancy Indication Sp	ace Quan	tity	Туре			Residue		Partial Reje	ection		Full Reje	ection
							.,	mife at Deferre	Alexante a					
_	18b. Alt	ernate Facility (or Gene	rator)				Ma	nifest Reference	e Number;	U.S. EPA ID N	lumber			.
등						· F								
FA		s Phone:					<u> </u>							
DESIGNATED FACILITY	18c. Sig	gnature of Alternate Fac	ility (or Generator)									Mor I	nth Day I	Year
GN	10 Hav	ardous Waste Report N	lanagement Method	Codes lie ander fo	ir hazardone waeto trad	tment dienoest	and roce	reling eveteme)						1
)ESI	1. 1182	andone stable Lebolt IA	ianayamani weliidd	2. 2.	n nazaruous wasie ileai	3.	, and rec)	omy systems)	•	4.				
		ignated Facility Owner	or Operator: Certifica	tion of receipt of haz	ardous materials covere			t as noted in Iter	n 18a					
	Printed/	Typed Name				Sigı ı	nature					· Mon	ith Day	Year
I 🔻						- 1						I	- 1	1 . 1

www.enpro.com

www.hazardouswaste.com

www.enpro.com

www.tsdf.com

NON HAZARDOUS . 1. Generator's	US EPA ID No.	Manifest	2. Page 1			
WASTE MANIFEST MARIO	0 0 0 0 6 7 3 4	<u> 3 1 1 3 3</u>	of 1			
3. Generator's Name and Mailing Address	Attn: Ray	mond Cadorette	A. 11011-1 1020	rdous Manif	est Docu 1	ment Number
Varian Medical Systems, Inc			NHZ001	014 - 4 - 4 - 4 - 4		LJJ
c/o C B & I , 150 Royal Street			B. S.G.I. (Ge 150 Sohier	n, Site Addr Road	ess)	
Canton MA 02021 4. Generator's Phone (6 1 7) 5 8 9 - 6 1 0 2			Beverly M	101915	na ng Wi Ng Akhada	
5. Transporter 1 Company Name	6. US EPA I		C. S.T.I. (Lic. D. Transport	7 Telephone 1 Tele	070	ACE AEOE
ENPRO SERVICES, INC.	MAD980	3/7/0/0/0/4	E. S.T.I. (Lic.		978-	465-1595
7. Transporter 2 Company Name	8. US EPA I	D Number	F. Transporte			
	10 US EDA	D Number	G. State Fac			A Company of the Comp
9. Designated Facility Name and Site Address	10. US EPA	D Number	SAME			5
ENPRO SERVICES OF MAINE, INC. 106 MAIN STREET			4324442444		n dijelik orde	
SOUTH PORTLAND ME 04106	MED01191	01511101619	H. Facility's 207-799	-0850		eri Missauk
	- Proceedings 1800 to the control of	12. Cor		13.	14.	Herbys Total
11. US DOT Description (Including Proper Shipping Name, Haz	ard Class, and ID Number)	No.	Type	Total Quantity	Unit Wt/Vol	
a. NON DOT, NON RCRA REGULATED MATERI	Al					State NONE
a. NON DOT, NON KCKA KEGGEATED WATER	, 10	أصب أ		1000 0 20	D	State
		00	3040	1800		NONE
b.						State
						State
						State
c.						Sidle
				1 1 1		State
						State
d.						
		1		1.1.1		State
About	र्मे कार्यक्रमण व संविद्याल		K. Handling	Codes for	Wastes I	isted Above
J. Additional Descriptions for Materials Listed Above (S) SOIL CUTTINGS; VMS-001;			Interim	Fir		Interim Final
a ME-0714-05070	b.		a			b
	a thairman ann an		c.	1	1	d.
C.	d.			i	!	ţ .
15_Special Handling Instructions and Additional Information ER CONTACT: 1)// ENPRO PO: 28						-
ER CONTACT: 1)// ENPRO PO: 28	3167					
INC 24 HOURS -		Point of Depa	arture:	ENF	RO JO	B# 7872-14
(800) 966-1102 16. GENERATOR'S CERTIFICATION: I hereby declare that the state of t	ne contents of this consigni			ibed above	by prope	er shipping name
16. GENERATOR'S CERTIFICATION: I hereby declare that the and are classified, packed, marked, all abeled, and are and are classified.	in all respects in proper co	ondition for transpo	rt by highway a	according to	applical	ole international and
national government regulations, and all applicable state to	avis and regulationer					
			0			
	Signature	-A			^	Month Day Year
Printed/Typed Name	r VMS	K [][]	mi			0) 25/19
A demonstrated Receipt of Receipt of Materials			an in terrescope de militar a conserva li de marque de la conserva de la conserva de la conserva de la conserva	**************************************	ensett producer en	Date
	Signature	1)_	11		1	Month Day Year
Printed typed Name				_	le	024549
18. Transporter 2 Acknowledgement of Receipt of Materials						Date
R	Signature				/	Month Day Year
T Printed/Typed Name E .				terreda en engagne transferar en en englist i		
19. Discrepancy Indication Space						
F						
A C						
20. Facility Owner or Operator: Certification of receipt of waste	materials covered by this	manifest except as	noted in Item 1	9.	Г	Date
20. Facility Owner or Operator: Certification of receipt of waste						Month Day Yea
Printed/Typed Name	Signature	in A my		-fi		1217116

ORIGINAL-RETURN TO GENERATOR

APPENDIX D

DRILLING LOGS

Monitoring Well

OB-45-DOPage: 1 of 2

Description Surface	Project .	Varian Beve	rly				_ 0\	wnerVarian Medical Systems, Inc.	COMMENTS
Top of Casing 16 48 ft.				hier Road					ND = Not detected
Top of Casing Dia 2 in. Length 55 ft. Type/Size PVC/Slot 0.010 in. Type PVC Casing Dia 2 in. Length 55 ft. Type/Size PVC/Slot 0.010 in. Type PVC Casing Dia 2 in. Length 55 ft. Type PVC Diagnormal 2 in. Length 55 ft. Length 55 ft. Type PVC Diagnormal 2 in. Length 55 ft. Leng								•	*PID response may have been
Screen: Dia 2 In. Length 15 ft. Type/Size PVC/Size 0.010 in. Type Size PVC Size 0.010 in. Type Size 0.010 in. Type Size PVC Size 0.010 in. Type Size 0.010 in. Type Size PVC Size 0.010 in. Type Size 0.010 in. Type Size PVC Size 0.010 in. Type Size 0.010 in. T	Top of Ca	sing _76.48	3 ft	Water L	evel Ini	tial <i>NA</i>	١	Static _ <i>NA</i> Diameter _ <i>4 in.</i>	due to moisture.
Casing Dia 2 m. Length 34 ft. Type PVC Fill Matrial Ma				Lenath	15 ft.				
Fill Material Method Brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Fill Material Drill Co. IDS Method Hollow Stem Auger Drill Co. IDS Method Hollow Stem Auger Date 4/15/14 Permit # NA Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Hand clear to 5' SAND and loose GRAVEL (Fill) FILL Hand clear to 5' SAND and loose GRAVEL (Fill) FILL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel The company of the coarse gravel The coarse									
Drilli Co. TOS Method Hollow Stem Auger Checked by R. Cadoverte Log by Date Dailey Date 4/15/14 Permit # NA Checked by R. Cadoverte License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Hand clear to 5' SAND and loose GRAVEL (Fill) Reliable Dailey							Ri	a/Core Hollow Stem Auger	
Driller G. Caovette Log By Dele Dailey Date 4/15/14 Permit # NA Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Hand clear to 5' SAND and loose GRAVEL (Fill)									
Checked By R. Cadorette License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Hand clear to 5' SAND and loose GRAVEL (Fill) ND 25% 33/2 28 CL Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel The structure of the coarse gravel of the coarse gravel The structure of the coarse gravel of the coarse gravel of the coarse gr									
Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Hand clear to 5' SAND and loose GRAVEL (Fill) ND 25% 32 CL ND 45% 30 CL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel ND 35% 28 CL Light brown, dry, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") ND 35% 28 CL Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel									
Hand clear to 5' SAND and loose GRAVEL (Fill) FILL Hand clear to 5' SAND and loose GRAVEL (Fill) ND 25% 35 28 CL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel FILL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, dry, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/A" to 3/A") ND 35% 28 35 CL Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/A" to 3/A") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	П			II		LICCITO	TVO.		
Hand clear to 5' SAND and loose GRAVEL (Fill) FILL Hand clear to 5' SAND and loose GRAVEL (Fill) ND 25% 35 28 CL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel FILL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, dry, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/A" to 3/A") ND 35% 28 35 CL Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/A" to 3/A") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel		uo			£ Z	U	ass.	Description	
Hand clear to 5' SAND and loose GRAVEL (Fill) FILL Hand clear to 5' SAND and loose GRAVEL (Fill) ND 25% 35 28 CL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel FILL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, dry, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/A" to 3/A") ND 35% 28 35 CL Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/A" to 3/A") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	epth (ft.)	Vell	opm)	lple scov	C Co	aphi -og	CE	·	
Hand clear to 5' SAND and loose GRAVEL (Fill) FILL Hand clear to 5' SAND and loose GRAVEL (Fill) ND 25% 35 28 CL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel FILL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, dry, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/A" to 3/A") ND 35% 28 35 CL Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/A" to 3/A") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel		Com	<u> </u>	San % Re	Blow	G	ISC:		
SAND and loose GRAVEL (Fill) FILL Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4")				• • • • • • • • • • • • • • • • • • • •				Geologic Descriptions are Based C	on the USCS.
SAND and loose GRAVEL (Fill) FILL Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4")									
SAND and loose GRAVEL (Fill) FILL Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4")									
SAND and loose GRAVEL (Fill) FILL Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4")									
SAND and loose GRAVEL (Fill) Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel SAND and loose GRAVEL (Fill) Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel SAND and loose GRAVEL (Fill) Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel SAND and loose GRAVEL (Fill) Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel Light brown, dry, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	- o -	4 4 4				XXXXX		Lland algerta E'	
FILL A 4 -								Hand clear to 5	
Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel ND 25% 35								SAND and loose GRAVEL (Fill)	
Light brown, dry, very stiff CLAY; some poorly sorted, coarse gravel ND 25% 35 CL Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, dry, very stiff CLAY to 12' Light brown, dry, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") ND 35% 38 CL Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	- 2 -								
ND 25% 35 28 CL							FILL		
ND 25% 35 28 CL									
ND 25% 35 28 CL	4 -								
ND 25% 35 28 CL	-				22 M			Light brown dry very stiff CLAV: some nor	orly corted accress gravel
BOOLE 10 - 10 - 10 - 15 Sign of the state			ND					Light brown, dry, very still CLAY, some poo	ony sorteu, coarse graver
Solution of the state of the st	6 -		ND	25%			CL		
Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") ND ND 15 27 30 CL Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	-				28				
Gray, dry, boulder to 11.5' Light brown, dry, very stiff CLAY to 12' Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") ND ND 15 27 30 CL Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	_ 8 -								
ND 45% 30 30 CL Light brown, dry, very stiff CLAY to 12' Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") ND 35% 28 30 CL Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	"								
ND 45% 30 30 CL Light brown, dry, very stiff CLAY to 12' Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") ND 35% 28 30 CL Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	<u> </u>								
ND 45% 30 CL Light brown, dry, very stiff CLAY to 12' Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") ND 35% 28 30 CL Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	- 10 -				15 🗸	V///XV	-	Gray dry boulder to 11.5'	
Light brown, dry, very stiff CLAY to 12' Light brown, dry, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") ND ND ND ND ND ND ND ND ND N			ND					Gray, dry, boulder to 11.5	
Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") ND 35% 28 30 CL Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel			IND	45%			CI	Light have your day, your offf OLAV to 101	
Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	→ 12 -				30 _	(///////	CL	Light brown, dry, very still CLAY to 12	
Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, very stiff CLAY; some fine and coarse, poorly sorted gravel (1/4" to 3/4") Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	112/1								
Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	E 4								
Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	- 14 -								
Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	SO-				18 🗸	///////	\parallel	Light brown damp very stiff CLAY: some t	ine and coarse poorly
Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	<u>-</u> 16 -		ND				CI	sorted gravel (1/4" to 3/4")	inc and coarse, poorly
Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	GB 10		110	35%				,	
Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel					30 _	<i>///////</i>			
Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	∄- 18 -								
Light brown, damp, stiff, SANDY CLAY; some well sorted fine gravel	2014								
1									
1	® 20 −				17 M	(///////		Light brown damp stiff SANDY CLAV: so	me well sorted fine gravel
1	Rev		ND	450	35 🛆		СІ	Eight brown, dump, dum, or the rocket, so	How borton line graver
Continued Next Page			,,,,	45%					
Continued Next Page	일 - 22 -				55	V1.1111111			
Continued Next Page	MMC -								
Continued Next Page	ŏ 								
	₹ 24 -							Continued Next Page	

Drilling Log

Monitoring Well

roject _ ocation	Varian Beve Building 5,		hier Roa	d, Bever	ly, Massa		vner <u>Varian Medical Systems, Inc.</u> etts Proj. No. <u>150151</u>
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
24 —	X/4 X/4						Continued
- - 26 —		ND	60%	29 50		SW	Light brown, damp, very hard, SAND; some well sorted fine gravel (spoon refusal at 26.5' - 27')
28 —							
- - 30 — -		ND	40%	22 18 27		SW	Gray, dry, very hard, poorly sorted, coarse, SAND; some well sorted, coarse gravel
32 —				37			
- 34 —							
- -				57 🔀	62/13. 12		Light gray, dry to slightly damp, coarse GRAVEL with some light
36 —		ND	25%	42 35		GC	brownish gray, interbedded clay lenses (approximately 0.5" - 1" in thickness)
-				120	6 <i>>}</i> }, <i>S</i>		
38 —							
40 —				13 🔀			Brown, dry, medium SAND, some well sorted, coarse GRAVEL
-		ND	35%	120		SW	(spoon refusal at 41')
42 —							
44 —							
-				17 X 25			Brown, wet, poorly sorted, medium SAND; some poorly sorted, fine gravel
46 —		5.3*	30%	50		SW	gravei
48 —							
							End of exploration at 49 feet below surface grade
50 —							
52 —							
_							
54 —							
56 —							

Monitoring Well **OB-4**

Page: 1 of 1

Project _	Varian Beve	rly				_ 0\	wner Varian Medical Systems, Inc.	COMMENTS
Location	Building 5,	150 Sol	hier Road	, Bever	rly, Mass	achus	etts Proj. No. <u>150151</u>	ND = Not detected
Surface El	ev. 76.8 ft	t	Total Ho	ole Dept	th <u>17</u>	0 ft.	North East	
Top of Cas	sing _76.57	ft.	Water L	evel Ini	itial <i>NA</i>		Static <u> 11.4 ft.</u> Diameter <u>4 in.</u>	
Screen: Di			Length				Type/Size PVC/Slot 0.010 in.	
	a <u>2 in.</u>						Type <i>PVC</i>	
	Native,					Ri	g/Core Hollow Stem Auger	
Drill Co.							item Auger	
	G. Caovette						Date <u>4/14/14</u> Permit # <u>NA</u>	
	By R. Cade							
	1		I					
_	Well		Sample ID % Recovery	Blow Count Recovery	.≌	lass.	Description	
Depth (ft.)	Well	PID (ppm)	ecco.	% C	Graphic Log	S C	(Color, Texture, Structu	ure)
	Cor		Sal R	Blo	O	USCS Class	Geologic Descriptions are Based of	
							32	
├ 0 -							Hand clear to 5'	
-							SAND and loose GRAVEL (Fill)	
_ 2 _							SAND and loose SIVAVEE (Fill)	
-						FILL		
-								
- 4 -								
				10 X			Light brown, dry, very stiff CLAY; some poor	orly sorted, coarse gravel
 6 −		ND	40%	26		CL		
-				23				
8 -								
-								
_ 10 -				🖂	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
'				12 X 27			Light brown, dry, very stiff CLAY; little fine of potential boulder at 11.5'.)	gravel (Spoon refusal on
<u>~</u>		ND	25%			CL	potential bodider at 11.5.)	
12 -				L				
6/12/14								
[E] 14 —								
2014_BLDG5.GPJ_IT_CORP.GDT				15 📝	///////		Light brown, damp, very stiff CLAY; some f	ine and coarse noorly
= - 16 -		ND		22 🚶		CL	sorted gravel (1/4" to 1")	ine and coarse, poonly
10 -		IND	60%	32 35			,	
- 1365.0				33	<i>[]]]]]]</i>		End of exploration at 17 feet below explored	and de
<u> </u> 18 -							End of exploration at 17 feet below surface	grade
2014								
Rev: 8/9/13								
Rev.								
- 1								
SHAW COMMERCIAL - 24 -								
- J								
ŏ ≱ – 24 –	<u> </u>							
SHA								

Vapor Extraction Well

BLDG3-SVE3

Page: 1 of 1

	Varian Beve						wner <u>Varian Medical Systems, Inc.</u>	COMMENTS
Location	Building 5,	150 Soh	nier Road, B	Bever	ly, Massa	achus	etts Proj. No152728	Note: Nature of method prevents
Surface Ele	ev. NA		Total Hole	Dept	h <u>40.</u>	0 ft.	North East	soil sampling or head space. Soil description is a rough estimate
Top of Cas	ing <i>NA</i>		Water Leve	el Init	tial <i>NA</i>	ı	Static <i>NA</i> Diameter	based on slurry consistency. Head space measured as
Screen: Dia	a <u>3 in.</u>		Length _2	25 ft.			Type/Size	composite of drill cuttings upon
								well completion.
							g/Core Ditch Witch 2720	
	Directional							
							Date _9/15/14 Permit # _NA	
				П				
	ion		e Z	Blow Count Recovery	ပ	ass.	Description	
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	0 S	Graphic Log	USCS Class.	·	-)
	Com	1 3	San % Re	Blov	g	SC	(Color, Texture, Structur Geologic Descriptions are Based or	
			0,	_		ر ا	Geologic Descriptions are based or	the 0505.
- o -	<u> </u>							
							Foundation wall 6 inches concrete.	
10								
-								
_ 20 _						SM	Brown, SILTY SAND mixture with abundant	gravel
20						SIVI	Brown, Gizi i Grand managandana	9.0.0
-								
- 30 -								
		276.6						
10								
40								
-								
- 50 -							Herizontal well completed with coreon cons	avimataly 0 foot balayy
							Horizontal well completed with screen, approbuilding floor, to a distance of 40 feet from b	uilding foundation wall.
								g
 60 −								
-								
- 70 -								
,								
₽ 80 -								
<u> </u>								
<u> </u>								
90 –								
100 —								
įL]								
110 —								
=								
120 —								
130 —								

Vapor Extraction Well

BLDG3-SVE4

Page: 1 of 1

Project _	Varian Beve	rly			_ 0\	wner Varian Medical Systems, Inc.	COMMENTS
Location	Building 5,	150 Soh	nier Road, Be	verly, Massa	achus	etts Proj. No. <u>152728</u>	Note: Nature of method prevents
Surface E	lev. NA		Total Hole D	epth	0.0 ft.	North East	soil sampling or head space. Soil description is a rough estimate
Top of Cas	sing <i>NA</i>		Water Level	Initial NA		Static Diameter	based on slurry consistency. Head space measured as
						Type/Size <i>PVC/0.010 in.</i>	composite of drill cuttings upon
Casing: Di	ia <u>3 in.</u>		Length 70	Oft.		Type	well completion.
						g/Core Ditch Witch 2720	
						ary	
						Date _9/15/14 Permit # _NA	
	_{By} Raymo						
		1					
	Well		Sample ID % Recovery	Recovery Graphic Log	ass.	Description	
Depth (ft.)	Well	PID (ppm)	eco\	Recovery Graphic Log	USCS Class.	(Color, Texture, Structur	0)
	Con	_ 3	Sar % R	<u>8</u> 9	JSC	Geologic Descriptions are Based or	· ·
			_			Geologie Bescriptions are Based of	1 1110 0000.
<u></u> − 0 −	[A 9] [A 9]			7777		Foundation well Cinches concrete	
-						Foundation wall 6 inches concrete	
<u> </u>							
10							
<u> </u>							
_ 20 -							
-							
_ 30 -							
_ 30 _							
<u> </u>							
 40 -							
-						Drawing damag CLAVEY CANID games group	J
- 50 -						Brown, dense, CLAYEY SAND, some grave	2 I
30							
<u> </u>					SC		
 60 -							
-							
- 70 -							
. ′							
-	1 = 1	417					
- 80 –							
 - 90 -							
100 –							
3							
: - 110 -							
						Horizontal well completed with screen, appr	oximately 8.5 feet below
-	1					building floor, to a distance of 110 feet from	building foundation wall.
<u> </u>	1 1						
3├ -							
 130							

APPENDIX E

GROUNDWATER GAUGING RESULTS, PHYSICAL PARAMETER DATA

WATER LEVEL MONITORING DATA

Devery, Massacriusetts												
Location Date		Reference Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)	Notes							
AP-12-BR	04/10/14	71.32	16.63	54.69								
AP-12-DO	04/10/14	71.30	9.99	61.31								
AP-12-S	04/10/14	71.44	7.17	64.27								
AP-13-DO	04/18/14	68.86	13.53	55.33								
AP-13-DO	07/21/14	68.86	15.58	53.28	DTB = 52.00'							
AP-13-S	04/10/14	68.98	9.09	59.89								
AP-14-S	04/21/14	74.97	11.17	63.80								
AP-15-S	04/08/14	45.88	4.63	41.25								
AP-19	04/11/14	81.30	10.88	70.42								
AP-19	07/22/14	81.30	12.96	68.34								
AP-19	08/14/14	81.30	NM	NA NA								
AP-19	09/23/14	81.30	NM	NA								
AP-20	04/11/14	81.43	9.60	71.83								
AP-20	07/22/14	81.43	13.39	68.04								
AP-20	08/14/14	81.43	NM	NA								
AP-20	09/23/14	81.43	NM	NA								
AP-21	04/11/14	81.50	9.91	71.59								
AP-21	07/22/14	81.50	NM	NA	Well inaccessible.							
AP-21	08/14/14	81.50	NM	NA								
AP-21	09/23/14	81.50	NM	NA								
AP-22	04/11/14	81.96	11.87	70.09								
AP-22	07/22/14	81.96	15.93	66.03								
AP-22	08/14/14	81.96	NM	NA								
AP-22	09/23/14	81.96	NM	NA								
AP-23-DO	04/18/14	69.46	9.97	59.49	1							
AP-23-DO	07/21/14	69.46	12.93	56.53	DTB = 48.62'							
711 20 00	01721714	03.40	12.93	30.33	D1B - 40.02							
AP-24-DO	04/18/14	69.56	9.19	60.37								
AP-24-DO	07/21/14	69.56	11.84	57.72	DTB = 48.48'							
AP-25-DO	04/18/14	65.58	2.04	63.54								
AP-25-DO	07/21/14	65.58	6.87	58.71	DTB = 47.81'							
AP-26-DO	04/16/14	73.99	12.82	61.17								
AP-26-DO	07/22/14	73.99	14.81	59.18								
AP-26-DO	08/14/14	73.99	15.40	58.59								
AP-26-DO	09/23/14	73.99	16.37	57.62								
AP-27-DO	07/21/14	77.34	16.80	60.54								
AP-27-DO	07/22/14	77.34	16.80	60.54								
AP-27-DO	08/14/14	77.34	17.41	59.93								
AP-27-DO	09/23/14	77.34	18.69	58.65								

Location	Date	Reference Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)	Notes
AP-30R-DO	04/08/14	NA	18.46	NA	
AP-30R-DO	07/21/14	NA	NM	NA	
AP-32-DO	07/22/14	NA	NM	NA	
AP-32-DO	08/14/14	NA	NM	NA	
AP-32-DO	09/23/14	NA	NM	NA	
AP-33-DO	04/18/14	66.49	5.99	60.50	
AP-33-DO	07/21/14	66.49	9.40	57.09	DTB = 38.19'
AP-34-DO	04/18/14	68.33	7.86	60.47	
AP-34-DO	07/21/14	68.33	10.57	57.76	DTB = 36.81'
AP-35-DO	04/18/14	68.92	8.45	60.47	
AP-35-DO	07/21/14	68.92	11.26	57.66	DTB = 36.69'
APBIO-01	04/21/14	42.19	1.06	41.13	
B-2	04/11/14	80.40	2.07	78.33	
	1	!			
B-3	04/10/14	66.23	6.55	59.68	
BR-1_ZONE1	04/21/14	58.60	8.96	49.64	
BR-1_ZONE2	04/21/14	58.60	8.91	49.69	
BR-1_ZONE3	04/21/14	58.60	8.83	49.77	
BR-3_ZONE1	04/21/14	62.36	18.05	44.31	
BR-3_ZONE2	04/21/14	62.36	NM	NA	Obstruction at 20.30'.
BR-3_ZONE3	04/21/14	62.36	NM	NA	Obstruction at 10.30'.
BR-5_ZONE1	04/11/14	51.04	4.45	46.59	
BR-5_ZONE2	04/11/14	51.04	4.45	46.59	
BR-5_ZONE3	04/11/14	51.04	8.55	42.49	
BR-6_ZONE1	04/11/14	38.33	0.00	38.33	
BR-6_ZONE2	04/11/14	38.33	0.00	38.33	
BR-6_ZONE3	04/11/14	38.33	0.00	38.33	
BR-7_ZONE1	04/21/14	35.15	0.00	35.15	
BR-7_ZONE2	04/21/14	35.15	0.00	35.15	
BR-7_ZONE3	04/21/14	35.15	0.00	35.15	
BW-05	04/10/14	65.17	6.06	59.11	
BW-06	04/10/14	65.44	6.39	59.05	
BW-08	04/10/14	65.44	6.39	59.05	

Beverly, Massachusetts								
Location	Date	Reference Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)	Notes			
BW-09	04/10/14	65.30	6.48	58.82				
CL02-BR	04/11/14	62.79	5.40	57.39	DTB = 81.10'			
CL02-BR	04/29/14	62.79	6.29	56.50	DTB = 81.10'			
CL02-DO CL02-DO	07/22/14 08/14/14	62.76 62.76	8.07	54.69				
CL02-DO	09/23/14	62.76	7.93 8.80	54.83 53.96				
	1		· · · · · · · · · · · · · · · · · · ·					
CL03-DO	04/09/14	50.40	8.61	41.79				
CL03-DO CL03-DO	07/22/14 08/14/14	50.40	9.43	40.97				
CL03-DO	09/23/14	50.40 50.40	9.71 10.43	40.69 39.97				
	00/20/14	30.40	10.43	39.91				
CL03-S	04/07/14	50.21	8.47	41.74				
CL04-BR	04/10/14	47.78	5.61	42.17				
CL04-DO	04/10/14	47.42	5.12	42.30				
CL06-BR	04/07/14	58.41	8.63	49.78				
CL06-DO	04/07/14	58.75	8.04	50.71				
CL08-BR_ZONE1	04/11/14	48.28	8.01	40.27				
CL08-BR_ZONE2	04/11/14	48.28	4.78	43.50				
CL08-BR_ZONE3	04/11/14	48.28	4.79	43.49				
CL08-DO	04/09/14	47.85	5.28	42.57				
CL09-BR_ZONE1	04/11/14	47.65	10.15	37.50				
CL09-BR_ZONE2	04/11/14	47.65	2.91	44.74				
CL09-BR_ZONE3	04/11/14	47.65	3.30	44.35				
CL09-DO	04/07/14	47.43	4.27	43.16				
CL10-BR	04/10/14	72.28	3.83	68.45				
CL10-DO	04/10/14	72.54	3.55	68.99				
CL10-DO	07/22/14	72.54	5.96	66.58				
CL10-DO	08/14/14	72.54	6.23	66.31				
CL10-DO	09/23/14	72.54	7.60	64.94				
CL10-S	04/10/14	72.54	3.72	68.82				
CL11-DO	04/11/14	68.72	18.58	50.14				
CL11-S	04/11/14	68.46	15.50	52.96				
GZ-1	04/08/14	48.28	6.68	41.60				
GZ-4	04/08/14	45.13	4.45	40.68				

Location		Beverly, Massachusetts								
MW-002R 04/11/14 62.59 3.24 59.35 DTB = 42.35' MW-002R 04/29/14 62.59 3.89 58.70 DTB = 10.75' MW-003R 04/07/14 61.28 1.76 59.52 DTB = 10.75' MW-004 04/10/14 70.07 11.20 58.87 DTB = 10.75' MW-004R 04/11/14 62.63 2.99 59.64 DTB = 10.75' MW-005 04/10/14 69.64 14.16 55.48 MW-005R 04/07/14 62.96 3.64 59.32 MW-008 04/10/14 68.96 10.09 58.87 MW-009 04/08/14 63.48 3.15 60.33 MW-009 072/174 63.48 5.70 57.78 DTB = 21.23' MW-009A 04/10/14 63.86 4.45 59.41 MW-013 04/09/14 63.18 61.73 MW-013 04/09/14 75.59 13.86 61.73 MW-014 66.82 13.12 53.70 M	Location	Date	Elevation	to Water	Elevation	Notes				
MW-002R 04/29/14 62.59 3.89 58.70 DTB = 10.75 MW-003R 04/07/14 61.28 1.76 59.52 MW-004 04/10/14 70.07 11.20 58.87 MW-004R 04/11/14 62.63 2.99 59.64 DTB = 10.75 MW-005 04/10/14 69.64 14.16 55.48 MW-005R 04/07/14 62.96 3.64 59.32 MW-008 04/10/14 68.96 10.09 58.87 MW-009 04/08/14 63.48 3.15 60.33 MW-009 07/21/14 63.48 5.70 57.78 DTB = 21.23 MW-009 04/08/14 69.11 8.86 60.25 MW-013 04/09/14 69.11 8.86 60.25 MW-013 04/09/14 75.59 13.86 61.73 MW-030 04/11/14 78.01 3.55 74.46 MW-031 04/11/14 78.01 3.55 74.46 MW-032 08/14/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 7.59 74.86 MW-032 08/14/14 82.44 7.59 74.86 MW-032 08/14/14 82.44 7.59 74.86 MW-033 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 53.30 0.00 35.30 MW-035 04/09/14 70.83 7.16 63.67 MW-036 04/09/14 70.83 7.16 63.67 MW-037 04/09/14 70.83 7.16 63.67 MW-2_32-TOZER 04/10/14 70.83 7.46 63.37 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 04/10/14 54.61 5.57 49.04 MW-3_32 04/09/14 54.35 11.97 42.38 MW-3_32-TOZER 04/10/14 54.61 5.57 49.04 MW-3_32-TOZER 04/10/14 54.61 5.57 49.04 OB-0-0-D 04/09/14 54.35 11.97 42.38	MW-002	04/11/14	80.08	11.09	68.99					
MW-002R 04/29/14 62.59 3.89 58.70 DTB = 10.75 MW-003R 04/07/14 61.28 1.76 59.52 MW-004 04/10/14 70.07 11.20 58.87 MW-004R 04/11/14 62.63 2.99 59.64 DTB = 10.75 MW-005 04/10/14 69.64 14.16 55.48 MW-005R 04/07/14 62.96 3.64 59.32 MW-008 04/10/14 68.96 10.09 58.87 MW-009 04/08/14 63.48 3.15 60.33 MW-009 07/21/14 63.48 5.70 57.78 DTB = 21.23 MW-009 04/08/14 69.11 8.86 60.25 MW-013 04/09/14 69.11 8.86 60.25 MW-013 04/09/14 75.59 13.86 61.73 MW-030 04/11/14 78.01 3.55 74.46 MW-031 04/11/14 78.01 3.55 74.46 MW-032 08/14/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 7.59 74.86 MW-032 08/14/14 82.44 7.59 74.86 MW-032 08/14/14 82.44 7.59 74.86 MW-033 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 53.30 0.00 35.30 MW-035 04/09/14 70.83 7.16 63.67 MW-036 04/09/14 70.83 7.16 63.67 MW-037 04/09/14 70.83 7.16 63.67 MW-2_32-TOZER 04/10/14 70.83 7.46 63.37 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 04/10/14 54.61 5.57 49.04 MW-3_32 04/09/14 54.35 11.97 42.38 MW-3_32-TOZER 04/10/14 54.61 5.57 49.04 MW-3_32-TOZER 04/10/14 54.61 5.57 49.04 OB-0-0-D 04/09/14 54.35 11.97 42.38	MW 003B	04/11/14	62.50	2.24	E0.25	DTD = 42.25!				
MW-003R 04/07/14 61.28 1.76 59.52 MW-004 04/10/14 70.07 11.20 58.87 MW-004R 04/10/14 62.83 2.99 59.84 DTB = 10.76° MW-005 04/10/14 69.84 14.16 55.48 MW-005R MW-005R 04/07/14 62.98 3.64 59.32 MW-008 04/10/14 68.98 10.09 58.87 MW-009 04/08/14 63.48 3.15 66.33 MW-009 07/21/14 63.48 5.70 57.78 DTB = 21.23° MW-009A 04/10/14 63.86 4.45 59.41 DTB = 21.23° MW-013 04/09/14 75.59 13.86 61.73 DTB = 21.23° MW-014A 04/09/14 75.59 13.86 61.73 MW-014 MW-030 04/11/14 79.87 5.43 74.44 MW-030 MW-031 04/11/14 78.01 3.55 74.85 MW-040 MW-032										
MW-004 04/10/14 70.07 11.20 58.87 MW-004R 04/11/14 62.63 2.99 59.64 DTB = 10.75' MW-005 04/10/14 69.64 14.16 55.48 MW-005R MW-007/14 62.96 3.64 59.32 MW-008 O4/10/14 68.96 10.09 58.87 MW-009 04/08/14 63.48 3.15 60.33 DTB = 21.23' MW-009A 04/10/14 63.48 5.70 57.78 DTB = 21.23' MW-009A 04/10/14 63.86 4.45 59.41 DTB = 21.23' MW-013 04/09/14 69.11 8.86 60.25 MW-01 MW-014A 04/09/14 75.59 13.86 61.73 MW-01 MW-016 04/10/14 66.82 13.12 53.70 MW-03 MW-031 04/11/14 78.01 3.55 74.48 MW-03 MW-032 08/14/14 82.44 9.76 72.68 MW-03 MW-034	WW-002R	04/29/14	62.59	3.89	58.70	DTB = 10.75				
MW-004R 04/11/14 62.63 2.99 59.64 DTB = 10.75' MW-005 04/10/14 69.64 14.16 55.48 MW-005R 04/07/14 69.96 3.64 59.32 MW-008 04/10/14 68.96 10.09 58.87 MW-009 04/08/14 63.48 5.70 57.78 DTB = 21.23' MW-009A 04/10/14 63.86 4.45 59.41 MW-013 04/09/14 69.11 8.86 60.25 MW-014A 04/09/14 75.59 13.86 61.73 MW-016 04/10/14 66.82 13.12 53.70 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 78.01 3.55 74.46 MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/23/14 82.44 9.76 72.68 MW-032 09/23/14 82.44 9.76 72.68 MW-033 04/11/14	MW-003R	04/07/14	61.28	1.76	59.52					
MW-005 04/10/14 69.64 14.16 55.48 MW-005R 04/07/14 62.96 3.64 69.32 MW-008 04/10/14 68.96 10.09 58.87 MW-009 04/08/14 63.48 3.15 60.33 MW-009 07/21/14 63.48 5.70 57.78 DTB = 21.23* MW-009A 04/10/14 63.86 4.45 59.41 DTB = 21.23* MW-013 04/09/14 69.11 8.86 60.25 MW-014 MW-014A 04/09/14 75.59 13.86 61.73 MW-016 MW-016 04/10/14 66.82 13.12 53.70 MW-030 MW-030 04/11/14 79.87 5.43 74.44 MW-031 MW-031 04/11/14 78.01 3.55 74.46 MW-032 09/23/14 82.44 7.59 74.85 MW-032 09/23/14 82.44 9.76 72.68 MW-034 MW-034 04/09/14 35.30 0.00 35.30	MW-004	04/10/14	70.07	11.20	58.87					
MW-005R 04/07/14 62.96 3.64 59.32 MW-008 04/10/14 68.96 10.09 58.87 MW-009 04/08/14 63.48 3.15 60.33 MW-009 07/21/14 63.48 5.70 57.78 DTB = 21.23* MW-009A 04/10/14 63.86 4.45 59.41 MW-013 04/09/14 69.11 8.86 60.25 MW-014 MW-014 66.82 13.12 53.70 MW-016 04/10/14 66.82 13.12 53.70 MW-030 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 79.87 5.43 74.44 MW-032 08/14/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 9.76 72.68 MW-032 08/14/14 82.44 9.76 72.68 MW-033 09/23/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 M	MW-004R	04/11/14	62.63	2.99	59.64	DTB = 10.75'				
MW-008 04/10/14 68.96 10.09 58.87 MW-009 04/08/14 63.48 3.15 60.33 MW-009 07/21/14 63.48 5.70 57.78 DTB = 21.23' MW-009A 04/10/14 63.86 4.45 59.41 MW-013 MW-013 04/09/14 69.11 8.86 60.25 MW-014A 04/09/14 75.59 13.86 61.73 MW-016 04/10/14 66.82 13.12 53.70 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 78.01 3.55 74.46 MW-032 08/14/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-038 04/11/14 91.16 1.98 89.18 MW-039 04/09/14 35.30 0.00 35.30 MW-232-TOZER 04/09/14	MW-005	04/10/14	69.64	14.16	55.48					
MW-009 04/08/14 63.48 3.15 60.33 MW-009 07/21/14 63.48 5.70 57.78 DTB = 21.23' MW-009A 04/10/14 63.86 4.45 59.41 MW-013 04/09/14 69.11 8.86 60.25 MW-014A 04/09/14 75.59 13.86 61.73 MW-016 04/10/14 66.82 13.12 53.70 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 78.01 3.55 74.46 MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 7.59 74.85 MW-032 09/23/14 82.44 9.76 72.68 MW-033 09/23/14 82.44 9.76 72.68 MW-034 04/09/14 35.30 0.00 35.30 MW-2_32-TOZER 04/10/14 70.83 7.16 63.67 MW-2_32-TOZER 04/10/14 70.83 </td <td>MW-005R</td> <td>04/07/14</td> <td>62.96</td> <td>3.64</td> <td>59.32</td> <td></td>	MW-005R	04/07/14	62.96	3.64	59.32					
MW-009 07/21/14 63.48 5.70 57.78 DTB = 21.23' MW-009A 04/10/14 63.86 4.45 59.41 MW-013 04/09/14 69.11 8.86 60.25 MW-014A 04/09/14 75.59 13.86 61.73 MW-016 04/10/14 66.82 13.12 53.70 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 78.01 3.55 74.46 MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 7.16 63.67 MW-2_32-TOZER 09/23/14 70.83	MW-008	04/10/14	68.96	10.09	58.87					
MW-009 07/21/14 63.48 5.70 57.78 DTB = 21.23' MW-009A 04/10/14 63.86 4.45 59.41 MW-013 04/09/14 69.11 8.86 60.25 MW-014A 04/09/14 75.59 13.86 61.73 MW-016 04/10/14 66.82 13.12 53.70 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 78.01 3.55 74.46 MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 7.16 63.67 MW-2_32-TOZER 09/23/14 70.83	MW-009	04/08/14	63.48	3.15	60.33					
MW-013 04/09/14 69.11 8.86 60.25 MW-014A 04/09/14 75.59 13.86 61.73 MW-016 04/10/14 66.82 13.12 53.70 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 78.01 3.55 74.46 MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 7.16 63.67 MW-2_32-TOZER 09/23/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 7.46 62.37 MW-4_32-TOZER 04/10/14 54.54 <td< td=""><td>MW-009</td><td></td><td></td><td></td><td></td><td>DTB = 21.23'</td></td<>	MW-009					DTB = 21.23'				
MW-013 04/09/14 69.11 8.86 60.25 MW-014A 04/09/14 75.59 13.86 61.73 MW-016 04/10/14 66.82 13.12 53.70 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 78.01 3.55 74.46 MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 7.16 63.67 MW-2_32-TOZER 09/23/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 7.46 62.37 MW-4_32-TOZER 04/10/14 54.54 <td< td=""><td>MW-009A</td><td>04/10/14</td><td>63.86</td><td>4.45</td><td>59.41</td><td></td></td<>	MW-009A	04/10/14	63.86	4.45	59.41					
MW-016 04/10/14 66.82 13.12 53.70 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 78.01 3.55 74.46 MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61	MW-013	04/09/14	69.11	8.86	60.25					
MW-016 04/10/14 66.82 13.12 53.70 MW-030 04/11/14 79.87 5.43 74.44 MW-031 04/11/14 78.01 3.55 74.46 MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61	MW-014A	04/09/14	75.59	13.86	61.73					
MW-031 04/11/14 78.01 3.55 74.46 MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 4.35 66.48 MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01<	MW-016	04/10/14			53.70					
MW-032 07/22/14 82.44 7.59 74.85 MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 4.35 66.48 MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-4_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75	MW-030	04/11/14	79.87	5.43	74.44					
MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 4.35 66.48 MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75	MW-031	04/11/14	78.01	3.55	74.46					
MW-032 08/14/14 82.44 8.27 74.17 MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 4.35 66.48 MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75	MW-032	07/22/14	82 44	7 50	74.85					
MW-032 09/23/14 82.44 9.76 72.68 MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 4.35 66.48 MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75										
MW-033B 04/11/14 91.16 1.98 89.18 MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 4.35 66.48 MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75										
MW-034 04/09/14 35.30 0.00 35.30 MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 4.35 66.48 MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75	WW 002	00/20/11	02.44	5.70	72.00					
MW-036 04/07/14 52.64 10.95 41.69 MW-2_32-TOZER 04/10/14 70.83 4.35 66.48 MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75	MW-033B	04/11/14	91.16	1.98	89.18					
MW-2_32-TOZER 04/10/14 70.83 4.35 66.48 MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75	MW-034	04/09/14	35.30	0.00	35.30					
MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75	MW-036	04/07/14	52.64	10.95	41.69					
MW-2_32-TOZER 07/22/14 70.83 7.16 63.67 MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75	MW-2_32-TOZER	04/10/14	70.83	4.35	66.48					
MW-2_32-TOZER 08/14/14 70.83 7.46 63.37 MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75										
MW-2_32-TOZER 09/23/14 70.83 8.46 62.37 MW-4_32-TOZER 04/10/14 54.54 5.22 49.32 MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75										
MW-5_32-TOZER 04/10/14 54.61 5.57 49.04 OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75				+						
OB-04-DO 04/09/14 54.35 11.97 42.38 OB-05-BR 04/08/14 49.01 7.26 41.75	MW-4_32-TOZER	04/10/14	54.54	5.22	49.32					
OB-05-BR 04/08/14 49.01 7.26 41.75	MW-5_32-TOZER	04/10/14	54.61	5.57	49.04					
	OB-04-DO	04/09/14	54.35	11.97	42.38					
OB-05-DO 04/08/14 49.06 7.43 41.63	OB-05-BR	04/08/14	49.01	7.26	41.75					
	OB-05-DO	04/08/14	49.06	7.43	41.63					

Reference Depth Groundwater							
Location	Date	Elevation	to Water	Elevation	Notes		
		(Feet)	(Feet)	(Feet)			
OB-06-BR	04/09/14	48.70	6.80	41.90			
OB-06-DO	04/09/14	49.21	7.24	41.97			
OB-08-DO	04/08/14	38.29	0.00	38.29			
OB-09-BR	04/10/14	65.25	7.95	57.30			
OB-09-DO	04/10/14	65.11	7.89	57.22			
OP 00 8	04/00/14	05.00			1		
OB-09-S	04/09/14	65.22	5.25	59.97	DTD 00 001		
OB-09-S	07/21/14	65.22	7.82	57.40	DTB = 20.99'		
OB-10-BR	04/10/14	71.04	16.58	54.46			
OB-10-S	04/10/14	70.91	8.43	62.48			
OB-11-BR	04/09/14	75.37	20.03	55.34			
OB-11-DO	04/09/14	75.50	17.87	57.63			
OB-12-BR	07/22/14	70.07	00.54	50.40	1		
		73.67	20.54	53.13			
OB-12-BR OB-12-BR	08/14/14 09/23/14	73.67	20.98	52.69			
OB-12-BR	09/23/14	73.67	21.63	52.04			
OB-12-DO	04/09/14	73.54	13.63	59.91			
OB-12-DO	07/22/14	73.54	15.96	57.58			
OB-12-DO	08/14/14	73.54	NM	NA			
OB-12-DO	09/23/14	73.54	NM	NA			
OB-12-S	04/09/14	73.46	11.45	62.01			
OB-14-DO	04/09/14	75.05	11.54	63.51			
OB-15-S	04/08/14	63.26	2.49	60.77			
OB-15-S	07/21/14	63.26	5.41	57.85	DTB = 19.66'		
OB-16-BR	04/10/14	67.61	0.96	66.65			
OB-16-S	04/10/14	67.69	6.76	60.93			
OB-17-BR	04/07/14	40.40	4.04	44.25	1		
	!	49.19	4.84	44.35			
OB-17-DO	04/07/14	48.86	3.00	45.86			
OB-18-DO	04/08/14	45.10	3.29	41.81			
OB-18-S	04/08/14	44.98	3.37	41.61			
OB-19-DO	04/16/14	74.28	18.37	55.91			
OB-19-DO	07/22/14	74.28	16.78	57.50			
OB-19-DO	08/14/14	74.28	17.33	56.95			
OB-19-DO	09/23/14	74.28	18.24	56.04			
OB-19-S	04/21/14	73.96	7.33	66.63			

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

			, ,	nassacnusetts	
Location	Date	Reference Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)	Notes
OB-20-BR	04/21/14	43.85	2.62	41.23	
OB-20-DO	04/21/14	43.98	2.70	41.28	
OB-20-S	04/21/14	43.79	5.47	38.32	
OB-21-BR	04/21/14	43.88	2.78	41.10	
OB-21-DO	04/21/14	43.28	2.16	41.12	
OB-23-BR	04/07/14	56.48	8.14	48.34	
		30.40	0.14	40.34	
OB-24-S	04/10/14	44.24	0.36	43.88	
OB-25-BR	04/16/14	74.26	22.05	52.21	
OB-25-BR	07/22/14	74.26	23.22	51.04	
OB-25-BR	08/14/14	74.26	32.51	41.75	
OB-25-BR	09/23/14	74.26	NM	NA	
OB-25-DO	04/09/14	74.52	20.79	53.73	
OB-25-DO	07/21/14	74.52	22.71	51.81	DTB = 68.74'
OB-25-DO	07/22/14	74.52	22.73	51.79	
OB-25-DO	08/14/14	74.52	23.15	51.37	
OB-25-DO	09/23/14	74.52	23.78	50.74	
OB-26-BR	04/16/14	74.44	20.93	53.51	
OB-26-DO	04/16/14	74.48	13.58	60.90	
OB-27-BR	04/11/14	71.68	25.66	46.02	
OB-27-DO	07/22/14	72.06	23.39	48.67	
OB-27-DO	08/14/14	72.06	23.93	48.13	
OB-27-DO	09/23/14	72.06	25.04	47.02	
OB-28-BR	04/16/14	74.35	20.91	53.44	
OB-32-DO	04/21/14	75.70	11.32	64.38	
OB-34-DO	07/22/14	75.10	16.78	58.32	
OB-34-DO	08/14/14	75.10	18.50	56.60	
OB-34-DO	09/23/14	75.10	18.38	56.72	
OB-35-DO	04/21/14	81.41	9.75	71.66	
OB-35-DO	07/22/14	81.41	NM	NA	
OB-35-DO	08/14/14	81.41	NM	NA	
OB-35-DO	09/23/14	81.41	NM	NA	
OB-36-DO	04/21/14	75.92	14.42	61.50	
OB-37-DO	04/21/14	75.86	17.61	58.25	
OB-38-DO	04/11/14	77.45	6.40	71.05	
OB-39-DO	04/11/14	79.01	14.99	64.02	
OB-39-DO	07/22/14	79.01	18.57	60.44	
OB-39-DO	08/14/14	79.01	19.24	59.77	
L			-		+

Feet = Measured below surface grade

NM = Not Measured

NA = Not Applicable

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Location	Date	Reference Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)	Notes
OB-39-DO	09/23/14	79.01	20.50	58.51	
OB-40-DO	04/11/14	80.26	15.74	64.52	
OB-41-S	04/08/14	33.26	4.11	29.15	
OB-42-S	04/09/14	51.40	5.03	46.37	
OB-43-S	04/08/14	52.58	4.35	48.23	
OB-44-S	04/21/14	81.49	6.50	74.99	
OB-44-S	07/22/14	81.49	7.08	74.41	
OB-44-S	08/14/14	81.49	7.58	73.91	
OB-44-S	09/23/14	81.49	7.31	74.18	
OB-45-DO	04/29/14	76.48	13.68	62.80	DTB = 41.10'
OB-45-DO	07/22/14	76.48	15.71	60.77	
OB-45-DO	08/14/14	76.48	16.29	60.19	
OB-45-S	04/29/14	76.57	8.77	67.80	DTB = 14.70'
OB-45-S	09/23/14	76.57	13.06	63.51	
P-09R	04/11/14	37.86	3.09	34.77	DTB = 4.54'
P-09R	04/29/14	37.86	3.54	34.32	DTB = 4.54'
P-11R	04/21/14	47.92	6.17	41.75	
P-19A	04/21/14	47.51	7.50	40.01	
P-20R	04/21/14	42.56	1.63	40.93	
RW-01_MW-18	04/09/14	63.32	7.42	55.90	
RW-01_MW-18	07/21/14	63.32	9.87	53.45	DTB = 36.68'
RW-22	04/09/14	75.15	20.54	54.61	
W-1	04/09/14	51.37	4.08	47.29	

Page 7 of 7

GROUNDWATER PHYSICAL PARAMETER DATA

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Site ID	Date	Color	ORP	рН	Specific Dissolved		
Olic ID		00101	(mV)	pri	Conductance (mS/cm)	Oxygen (mg/L)	
AP-13-DO	05/12/14	Clear	-48	6.77	0.001	19.24	
AP-13-DO	07/21/14	Clear					
AP-19	07/22/14	Clear	-17.4	7.40	0.300	0.80	
AP-19	08/14/14	Dark Purple					
AP-19	09/23/14	Light Purple					
AP-20	07/22/14	Clear	-55.7	7.00	0.502	0.93	
AP-20	08/14/14	Dark Purple					
AP-20	09/23/14	Dark Purple					
AP-21	08/14/14	Dark Purple					
AP-21	09/23/14	Dark Purple					
AP-22	07/22/14	Clear					
AP-22	08/14/14	Dark Purple					
AP-22	09/23/14	Dark Purple					
AP-23-DO	05/12/14	Clear	-309.1	9.41	10.19	0.35	
AP-23-DO	07/21/14	Clear	-130.6	6.52	5.327	0.38	
AP-23-DO	09/23/14	Clear					
AP-24-DO	05/12/14	Clear	-123	6.93	2.19	2.66	
AP-24-DO	07/21/14	Clear	-165.7	7.28	2.152	0.44	
AP-25-DO	07/21/14	Clear	-114.4	7.97	0.275	0.77	
AP-26-DO	07/22/14	Clear	572.2	7.01	0.357	5.87	
AP-26-DO	08/14/14	Clear	601.7	7.53	0.368	2.12	
AP-26-DO	09/23/14	Clear	500.3	7.04	0.361	3.82	
AP-27-DO	07/22/14	Clear	280.6	7.75	0.971	0.52	
AP-27-DO	08/14/14	Clear	197.6	7.87	0.958	0.69	
AP-27-DO	09/23/14	Clear	175.0	7.74	0.937	0.89	
AP-30R-DO	07/21/14	Light Purple					
AP-32-DO	07/22/14	Dark Purple					
AP-33-DO	05/12/14	Clear	-212	6.69	4.50	1.58	
AP-33-DO	07/21/14	Clear	-135.0	6.73	2.591	0.94	
AP-34-DO	05/12/14	Clear	-162.9	6.55	2.62	0.54	
AP-34-DO	07/21/14	Clear	-149.6	6.69	2.169	0.53	
AP-35-DO	05/12/14	Clear	-215.2	6.26	2.19	29.64	
AP-35-DO	07/21/14	Clear	-138.4	6.16	6.626	0.60	
CL02-DO	07/22/14	Clear	234.7	5.52	2.283	1.11	
CL02-DO	08/14/14	Clear	38.8	6.67	1.567	2.46	
CL02-DO	09/23/14	Clear	-69.9	6.78	1.528	0.53	
CL03-DO	07/22/14	Clear	246.7	6.28	0.160	0.39	
CL03-DO	08/14/14	Clear	124.1	6.85	0.162	11.60	
CL03-DO	09/23/14	Clear	67.3	6.92	0.164	0.82	
CL10-DO	07/22/14	Clear	610.9	7.05	1.177	8.67	
CL10-DO	08/14/14	Light Purple					
CL10-DO	09/23/14	Light Purple					

NOTES: -- = Not Analyzed mV=millivolts

GROUNDWATER PHYSICAL PARAMETER DATA

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

		-				
Site ID	Date	Color	ORP (mV)	pН	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)
MW-013	07/21/14	Clear	698.9	6.64	4.451	42.65
MW-032	07/22/14	Clear	113.8	7.01	0.042	0.58
MW-032	08/14/14	Clear	166.2	7.10	0.035	8.82
MW-032	09/23/14	Clear	-120.5	7.16	0.118	0.33
MW-2 32-TOZER	07/22/14	Clear	-72.2	6.57	3.008	0.95
MW-2 32-TOZER	08/14/14	Clear	16.3	6.31	3.430	0.12
MW-2_32-TOZER	09/23/14	Clear	19.9	6.64	3.275	0.67
OB-12-BR	07/22/14	Clear	91.0	9.60	0.097	0.89
OB-12-BR	08/14/14	Clear	62.9	9.78	0.098	0.53
OB-12-BR	09/23/14	Clear	13.6	10.19	0.100	0.95
OB-12-DO	07/22/14	Clear	221.7	7.77	0.347	35.33
OB-12-DO	08/14/14	Dark Purple				
OB-12-DO	09/23/14	Dark Purple				
OB-19-DO	07/22/14	Clear	-58.7	7.39	0.573	0.74
OB-19-DO	08/14/14	Clear	215.7	7.16	0.576	0.47
OB-19-DO	09/23/14	Clear	40.3	7.34	0.572	0.78
OB-25-BR	07/22/14	Clear	234.8	6.73	2.614	1.34
OB-25-BR	09/23/14	Dark Purple				
OB-25-DO	07/21/14	Clear	147.0	7.84	0.482	32.64
OB-25-DO	07/22/14	Clear	147.0	7.84	0.482	32.64
OB-25-DO	08/14/14	Clear	354.6	8.21	0.468	5.86
OB-25-DO	09/23/14	Clear	367.8	7.91	0.450	26.48
OB-27-DO	07/22/14	Clear	336.0	6.29	1.328	1.67
OB-27-DO	08/14/14	Clear	129.2	6.70	1.293	0.52
OB-27-DO	09/23/14	Clear	23.5	6.40	1.246	0.80
OB-34-DO	07/22/14	Clear	502.6	7.86	0.341	3.04
OB-34-DO	08/14/14	Clear	486.8	7.77	0.365	2.42
OB-34-DO	09/23/14	Clear	462.1	8.63	0.348	4.61
OB-35-DO	07/22/14	Dark Purple				
OB-35-DO	08/14/14	Dark Purple				
OB-35-DO	09/23/14	Dark Purple				
OB-39-DO	07/22/14	Clear	304.4	8.37	0.211	1.02
OB-39-DO	08/14/14	Clear	-91.4	7.91	0.304	0.36
OB-39-DO	09/23/14	Clear	216.3	8.05	0.531	0.49
OB-44-S	07/22/14	Clear				
OB-44-S	08/14/14	Clear				
OB-44-S	09/23/14	Clear				
OB-45-DO	07/22/14	Clear	197.3	7.98	0.525	0.87
OB-45-DO	08/14/14	Clear	-161.4	7.88	0.527	0.30
OB-45-DO	09/23/14	Clear	223.6	7.00	0.327	0.56
RW-01 MW-18	05/12/14		-379	10.18	8.19	6.62
RW-01_WW-18	07/21/14	Clear	+		+	
	07/21/14	Clear	-401.4	9.98	5.733	0.15
UNNAMED_STREAM	01122/14	Clear				

NOTES: -- = Not Analyzed mV=millivolts

ORP= Oxidation reduction potential S/m= Siemans per meter

Deg.C= Degrees Celcius

GROUNDWATER PHYSICAL PARAMETER DATA

Site ID	Date	Color	ORP (mV)	рН	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)
UNNAMED_STREAM	08/14/14	Clear				

APPENDIX F LABORATORY ANALYTICAL REPORTS

17 Princess Road Lawrenceville, NJ 08648

Tel: 609/895-5370 Fax: 609/895-1858

Reduced Deliverable Package

Prepared for Varian, Beverly MA

Lab ID 9108

Project Number:

77150151 03000000

Samples Received 9-Apr-14

Report 30-Apr-14

NJDEP Certified Lab 11001

Randi K Rothmel, PhD

Laboratory Director

Date

Table of Contents

1.0 General Information

Chain of custody Internal chains of custody Methodology Review Data Reporting Qualifiers

2.0 Sample Summary Results

3.0 QA/QC Report

1.0 General Information

Sample delivery Group 040914_2

Sample ID Table

Lab ID	Location ID

9108-1 AP13-DO(51')

9108- 2 AP23-DO(48')

9108- 3 AP24-DO(47')

9108- 4 AP33-DO(36')

9108- 5 AP34-DO(36')

9108- 6 AP35-DO(35')

9108- 7 MW-9 (20')

9108-8 OB15S (18')

Chain of Custody (s)

17 Princess Rd

Lawrenceville, NJ 08648	609-895-5370/ 609-895-1858	deral Services 11 C
Law	900	deral S

_
0
F
S
C
LJ_
0
Q
\mathbf{I}
4
\mathbf{C}

(50G 040知4」A Ref. Document#

	CB&I - Federal Services, LLC		Project N	Project Number/Cost code:	ode:	1	7 7150151	000000000 /	000			Page		ğ 	-	
	シラブ (************************************		Project	Project Name / Location:	ion:		Varian	/ Beverly, MA	y, MA	ı		4	Analyses Designation	20011005	3	
	ر اعد ا	- K&D	<u>u</u> .	Purchase Order #;	#		873489			<u> </u> 	_		-	reaches	2	
	Project Contact:	Project Contact: Raymond Cadorette 617-589-6102 (Name & phone #)	•		l						#H.					
	THE REAL PROPERTY AND ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY AND ADDRESS OF THE PERTY ADDR	THE PARTY OF THE P		Shipment Date:	ate:	セニダンナ	ナニ									q
	Send Report To:	Raymond Cadorette	Waybi	Waybill/Airbill Number:	Ser:										uc	əşs
	Phone/Fax Number:	617-589-6102		Lab Destination:	l E					•					oiter	ənb
	Address:	150 Royall Street	Lab Con	Contact Name / ph. #;	#						'ds	-			nioi	9 Ы ғ
	City/State:	Canton, MA 02021			3						səpi				kuj li	əwij
						S.I	<u> </u>	Pre	Preservative		0000				snoiti	լ pun
	Sempler's Name(s):		Collection	Collection Information				ł	3	_	00				ipp	, LOI
Lab No.	Sample ID Number	Sample Description	Date	Time	2/5	Matri to t stno:	onta 92li	1910 1901 10F	OS ²	əo	lsri9(A yn	∀ uır
	AP13-DO (51')	3	4.8.4	0891	Image: Control of the	-	1	١	1	ין וי	< 0				ı	ᆚ
7	AP23-DO (48')		y	0900	0	GW 1	1				- ¬			-		
3	AP24-DO (47")	The state of the s	gean so-reil actions.	1/00	0	GW C	=			, ,	• -					
ħ	AP33-DO (36')			1.200						,	}					
1				1000	9	- A				7	7					
٦	AP34-DO (36')			1345	O	GW 1	4			ح.	4-					
ا و	AP35-DO (35')		<i>y</i> ;	(332	O	GW 1	7			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7					
1	MW-9 (20°)			1300	O	GW 1	1-1			7	7					
∞	OB15-S (18')		3	1400		GW 1	=			7-	7					
					_											
		TOTAL													700	
Special I	Special Instructions:		Known Waste	Stream Circle:	-				-	ľ						
			RCRA PCB/dioxin P	CB/dioxin Py	PAH/oii	RAD	Corrosive	Flammable		Reactive C = Composite	G/C Codes	SI T	•	(ب	
			QC/Data Package Level Required;	ige Level Requ						<u> </u>		D.		0819 11 9	rab	
Relinduished By	ad Par	Т	- [=	É	1	NJ EDD	GIS EDD	Prelimina	ry data Q	C Pack	Preliminary data QC Package Codes	S			
1	an Keser	Date: 7.71.14 Time: 15.30	Received By:	W	A.			Date:	Date: 4/1/5	7///4/ 10:55	vel ! = da	Level I = data summary	1 >-			

Instructions: Do not Fill Shaded Areas; Check R&D Box if R&D samples Only

Relinquished By:

telinquished By:

Time:

6

Level III = New Jersey QC reduced deliverable

Level II = data summary + basic QC

10:15

Time: /

Date:

Received By:

Date: Time: Date:

Received By:

Time: Date: Time:

Cooler temperature upon arrival at Lab: Level IV = Full deliverable CLP package

7

CBI -Federal Services Analytical and Treatability Laboratories Internal Chain of Custody

Lab ID 9108

Relinquishing Analyst Initials ŏ Receiving Custodian Initials Pg Date/Time Returned C Relinquishing Receiving Custodian Initials \mathcal{J} Date/Time Removed 4114114 Perservative SON. 2010 ਰੇ Bottle Type 1 $\overline{\mathcal{D}}$ 50CD Parameter 3/2/10 Date Received: 108.50 M Sample ID 9105-1

Methodology Review

Dehalococcoides sp in groundwater

The microbial communities from the groundwater samples are screened for the presence of Dehalococcoides sp in groundwater by PCR-DNA methodology using a Roche Real-Time LightCycler

PCR instrumentation according to internal SOP. Results are reported in units of cells/ml

Samples are filtered within 7 days of receipt using Sterivex filter cassette (mMillipore SVGV010RS,0.22uM). Filters are then stored at -80°C until processed (cells lysed and DNA extracted) for performing qPCR to quantify *Dehalocococoides* sp DNA. The filter paper is placed in a bead beating tube and is extracted using the ZR Soil Microbe DNA MicroPrep (ZymoResearch) following the instructions provided by the Manufacture, and eluted in 100ul buffer. The number of *Dehalococoides* sp in the samples is determined based on the number of chromosomes detected in 2 ul of the eluted DNA via qPCR using a RAPID Real-Time LightCycler PCR instrument. A negative control and standard curve is generated using known quantities of dehalococoides DNA.

The standard curve is used to calculate the cells/ml in the test samples. Raw data is reported as a crossing threshold. Higher bacteria counts are associated with lower crossing thresholds

Reporting Qualifiers

- U- The compound was not detected at the indicated PQL concentration.
- J- Approximate concentration of the compound. Detection of compound above calculated MDL but below the PQL of the analytical method. 99% confidence that the compound is present.
- D- Diluted sample
- B- The analyte was observed in laboratory blank as well as the sample for EPA SW856 8260b and EPA 624 analysis
- E- Compound detected above the linear range of the curve. Value given is an estimated value.

2.0 Sample Results

101,	007/075-55/0
Fax:	609/895-1858

Sample Infor	mation	
Lab ID	9108-01	Date Sampled 04/08/2014
Sample ID	AP13-DO (51')	Time Sampled 10:30
		Date Received 04/09/2014
		Date Filtered 04/14/2014
Matrix	Aqueous	Amount Filtered (ml) 172.0

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Prep Factor*	Method Code
DHE (1)	04/22/2014	12:30	11	J	cells/ml	70	9	5.81	EISTLAW-ATL068
							crossi	ng threshold=	= 31.1

^{*} Preparation factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- ${\it (1) Not listed as a Certified paramaters under the NJDEP lab certification program.}$
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- (E) Estimated value beyond linear range

Tel; 609/895-5370 Fax: 609/895-1858

Sample Infor	mation	
Lab ID	9108-02	Date Sampled 04/08/2014
Sample ID	AP23-DO (48')	Time Sampled 9:00
		Date Received 04/09/2014
		Date Filtered 04/14/2014
Matrix	Aqueous	Amount Filtered (ml) 211.0

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Prep Factor*	Method Code
DHE (1)	04/22/2014	12:30	9	J	cells/ml	57	8	4.74	EISTLAW-ATL068
							crossi	ng threshold=	= 31.1

^{*} Preparation factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- ${\it (1) Not listed as a Certified parameters under the NJDEP lab certification program.}$
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- (E) Estimated value beyond linear range

Tel; 609/895-5370 Fax: 609/895-1858

Sample Infor	mation	
Lab ID	9108-03	Date Sampled 04/08/2014
Sample ID	AP24-DO (47')	Time Sampled 11:00
		Date Received 04/09/2014
		Date Filtered 04/14/2014
Matrix	Aqueous	Amount Filtered (ml) 498.0

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Prep Factor*	Method Code
DHE (1)	04/22/2014	12:30	3	J	cells/ml	24	3	2.01	EISTLAW-ATL068
							crossi	ng threshold=	= 31.4

^{*} Preparation factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- ${\it (1) Not listed as a Certified parameters under the NJDEP lab certification program.}$
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- (E) Estimated value beyond linear range

14 17 Princess Road Lawrenceville, New Jersey 08648 Tel; 609/895-5370 Fax: 609/895-1858

Sample Infor	mation	
Lab ID	9108-04	Date Sampled 04/08/2014
Sample ID	AP33-DO (36')	Time Sampled 12:00
		Date Received 04/09/2014
		Date Filtered 04/14/2014
Matrix	Aqueous	Amount Filtered (ml) 131.0

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Prep Factor*	Method Code
DHE (1)	04/22/2014	12:30	92	U	cells/ml	92	12	7.63	EISTLAW-ATL068
crossing threshold= none - not detected									

^{*} Preparation factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- ${\it (1) Not listed as a Certified paramaters under the NJDEP lab certification program.}$
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- (E) Estimated value beyond linear range

Tel; 609/895-5370 Fax: 609/895-1858

Sample Information						
Lab ID	9108-05	Date Sampled 04/08/2014				
Sample ID	AP34-DO (36')	Time Sampled 12:45				
		Date Received 04/09/2014				
		Date Filtered 04/14/2014				
Matrix	Aqueous	Amount Filtered (ml) 141.0				

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Prep Factor*	Method Code
DHE (1)	04/22/2014	12:30	85	U	cells/ml	85	11	7.09	EISTLAW-ATL068
crossing threshold= >32 nondetect									

^{*} Preparation factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- ${\it (1) Not listed as a Certified parameters under the NJDEP lab certification program.}$
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- (E) Estimated value beyond linear range

101,	007/075 55/0
Fax:	609/895-1858

Sample Information						
Lab ID	9108-06	Date Sampled 04/08/2014				
Sample ID	AP35-DO (35')	Time Sampled 13:30				
		Date Received 04/09/2014				
		Date Filtered 04/14/2014				
Matrix	Aqueous	Amount Filtered (ml) 130.0				

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Prep Factor*	Method Code
DHE (1)	04/22/2014	12:30	92	U	cells/ml	92	12	7.69	EISTLAW-ATL068
	crossing threshold= >32 nondetect								

^{*} Preparation factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- ${\it (1) Not listed as a Certified paramaters under the NJDEP lab certification program.}$
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- (E) Estimated value beyond linear range

101,	007/073-33/0
Fax:	609/895-1858

Sample Information					
Lab ID	9108-07	Date Sampled 04/08/2014			
Sample ID	MW-9 (20')	Time Sampled 15:00			
		Date Received 04/09/2014			
		Date Filtered 04/14/2014			
Matrix	Aqueous	Amount Filtered (ml) 85.0			

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Prep Factor*	Method Code
DHE (1)	04/22/2014	12:30	19	J	cells/ml	141	19	11.76	EISTLAW-ATL068
	crossing threshold= 31.3								

^{*} Preparation factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- ${\it (1) Not listed as a Certified paramaters under the NJDEP lab certification program.}$
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- (E) Estimated value beyond linear range

Fax: 609/895-1858

Sample Information					
Lab ID	9108-08	Date Sampled 04/08/2014			
Sample ID	OB15-S (18')	Time Sampled 14:00			
		Date Received 04/09/2014			
		Date Filtered 04/14/2014			
Matrix	Aqueous	Amount Filtered (ml) 80.0			

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Prep Factor*	Method Code
DHE (1)	04/22/2014	12:30	150	U	cells/ml	150	20	12.50	EISTLAW-ATL068
crossing threshold= none- non detect									

^{*} Preparation factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- (1) Not listed as a Certified paramaters under the NJDEP lab certification program.
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- (E) Estimated value beyond linear range

3.0 QC Summary

Sample Batch:DHE

Lab ID	Analysis dates	QC batch
9108- 1	4/22/2014	042214-DHE
9108- 2	4/22/2014	042214-DHE
9108- 3	4/22/2014	042214-DHE
9108- 4	4/22/2014	042214-DHE
9108- 5	4/22/2014	042214-DHE
9108- 6	4/22/2014	042214-DHE
9108- 7	4/22/2014	042214-DHE
9108-8	4/22/2014	042214-DHE

Calibration Summary: DHE

Calibration Standard:

	Calibration Date:	4/22/2014	12:30
Sample:	expected copy number	Crossing Threshold	copies observed
std 1	1.67E+08	7.	6 112,000,000
std 2	1.67E+07	10.	2 19,800,000
std 3	1.67E+06	13.	1 2,870,000
std 4	1.67E+05	16.	9 229,000
std6	1670	25.	9 573
std8	16	30.	6 25

curve = y=35.442-3.4597log(x) r2=0.995

QC Method Blank Summary: DHE

QC Batch	Date	Time	Parameter	Result	Qualifier	Units	MDL
042214-DHE	4/22/2014	12:30	DHE	10	U	cells/ml	1.6

17 Princess Road

Lawrenceville, NJ 08648

Tel: 609/895-5370 Fax: 609/895-1858

Reduced Deliverable Package

Prepared for Varian, Beverly MA

Lab ID 9187

Project Number:

77150151 03000000

Samples Received 7-Aug-14

Report 19-Aug-14

NJDEP Certified Lab 11001

Randi K Rothmel, PhD

Laboratory Director

Table of Contents

1.0 General Information

Chain of custody Internal chains of custody Methodology Review Data Reporting Qualifiers

2.0 Sample Summary Results

3.0 QA/QC Report

1.0 General Information

Sample ID Table

Lab ID	Location ID	SDG
9187- 1	AP23-DO(49')	080714_2
9187- 2	AP24-DO(46')	080714_2
9187- 3	AP33-DO(35')	080714_2
9187- 4	AP34-DO(33')	080714_2
9187- 5	AP35-DO(33')	080714 2

Chain of Custody (s)

Lièjjeru)è	Ohi lanoilibih ynh i emit bruosh mut		G = Grab	Level II.= data summary * basic OC Level III.= New Jersey CC reduced deliverable Level IV.= Full deliverable CLP package Cooler' temperature upon arrival at Cab:
y c	- C Celtaiococcoide		e Farmubbe Reactive C= Composite GIS EDD Preliminary data QC Package Codes Date \$76/19	Time 1/CC Level II = data summary + basic OC Data 2/7/1/ Level III = New Jorsey CC reduced delay Time 1/2/ Level IV = Full delayerable CLP package Data Cooler temperature uponarrival at to Time
Project Number Cost Code Project Name / Location Project Name / Location Portinase Order # Shipment Date: Shipment Date: Shipment Date: Lab Destination: Lab Contact Name / pp. # Red Contact Contact Name / pp. * Red Contact	HOLL HOLL	13 co	RAD Compare	
Projective. Projective. 88-6702 Projective. Projective. Projective. Projective. Projective.	mple D Number Sample Description Date O (46) O (46)		Known Waste RODA OCData Pack 1 1 Received By:	Time /6 MS Date Time: Caccivat By: Time: Time: Time:
	ample			

*Wassim.	Relinquishing Analyst Initials				A. Care Control of the Control of th				2		and the second					3		
stody Pg	Receiving Custodian Initials							- Annual Management	29									
ternal Chain of Cus	Date/Time Returned				? % <u>}</u>	En vinenne en			Thanks.									
aboratories In	Receiving Analyst Initials					animas e	6											
d Treatability L	Relinquishing Custodian Initials				5				0.9									
CBI -Federal Services Analytical and Treatability Laboratories Internal Chain of Custody Pg	Date/Time Removed				7.00			, , , , , , , , , , , , , , , , , , ,	() A () ()									
CBI -Federal S	Perservative	**	7000,000 (1.5 mag	>					/									
	Bottle Type				<u>J</u> .								***************************************					
187 Varian Ved: 817114	Parameter	Day bearing	North March		SPCK 2CT	gan vanne de			OPLI DHE									
1 1.51	Sample ID	/ /	a :	-34		- 6 -	, J		- '	u s	-\}-							Manifestation and the second s

Methodology Review

Dehalococcoides sp in groundwater

The microbial communities from the groundwater samples are screened for the presence of Dehalococcoides sp in groundwater by PCR-DNA methodology using a Roche Real-Time LightCycler

PCR instrumentation according to internal SOP. Results are reported in units of cells/ml

Samples are filtered within 7 days of receipt using Sterivex filter cassette (mMillipore SVGV010RS,0.22uM). Filters are then stored at -80°C until processed (cells lysed and DNA extracted) for performing qPCR to quantify *Dehalocococoides* sp DNA. The filter paper is placed in a bead beating tube and is extracted using the ZR Soil Microbe DNA MicroPrep (ZymoResearch) following the instructions provided by the Manufacture, and eluted in 100ul buffer. The number of *Dehalococoides* sp in the samples is determined based on the number of chromosomes detected in 2 ul of the eluted DNA via qPCR using a RAPID Real-Time LightCycler PCR instrument. A negative control and standard curve is generated using known quantities of dehalococoides DNA.

The standard curve is used to calculate the cells/ml in the test samples. Raw data is reported as a crossing threshold. Higher bacteria counts are associated with lower crossing thresholds

Reporting Qualifiers

- U- The compound was not detected at the indicated PQL concentration.
- J- Approximate concentration of the compound. Detection of compound above calculated MDL but below the PQL of the analytical method. 99% confidence that the compound is present.
- D- Diluted sample
- B- The analyte was observed in laboratory blank as well as the sample for EPA SW856 8260b and EPA 624 analysis
- E- Compound detected above the linear range of the curve. Value given is an estimated value.

2.0 Sample Results

Fax: 609/895-1858

Sample Information									
Lab ID	9187-01	Date Sampled 08/06/2014							
Sample ID	AP23-DO(46')	Time Sampled 10:30							
		Date Received 08/07/2014							
		Date Filtered 08/11/2014							
Matrix	Aqueous	Amount Filtered (ml) 227.0							

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Preparation Factor*	Method Code
DHE (1)	08/13/2014	11:00	3,170		cells/ml	10	1.6	4.41	EISTLAW-ATL068
	crossing threshold= 21.7								

^{*} Preparaton factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- ${\it (1) Not listed as a Certified paramaters under the NJDEP lab certification program.}$
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- $(E)\ Estimated\ value\ beyond\ linear\ range$

Tel; 609/895-5370 Fax: 609/895-1858

Sample Information									
Lab ID	9187-02	Date Sampled 08/06/2014							
Sample ID	AP24-DO(46')	Time Sampled 12:00							
		Date Received 08/07/2014							
		Date Filtered 08/11/2014							
Matrix	Aqueous	Amount Filtered (ml) 381.0							

Analysis									
Parameter	Date Analyzed	Time analyze	Concen tration	Qual (see below)	Units	PQL	MDL	Preparation Factor*	Method Code
DHE (1)	08/13/2014	11:00	5.6	J	cells/ml	10	1.6	2.62	EISTLAW-ATL068
	crossing threshold= 29.2								

^{*} Preparaton factor is based on volume actually filtered compared to maximum volume of 1,000 ml

- ${\it (1) Not listed as a Certified paramaters under the NJDEP lab certification program.}$
- (2) Not available as a certified parameter under the NJDEP lab certification program.
- () no qualification sample run undiluted
- (U) Compound not detected above method practical quantitation limit.
- (D) Sample analyzed at indicated dilution
- (J) Estimated value above MDL and less than PQL
- (E) Estimated value beyond linear range