

P-0534 June 4, 2021

Mr. Timothy Maus Massachusetts Department of Environmental Protection 8 New Bond Street Worcester, MA 01606

Re: Immediate Response Action Plan Modification No. 4 and Quarterly Status Report
6 Town Hall Drive, Princeton
RTN 2-21072

Dear Mr. Maus:

On behalf of the Town of Princeton (the "Town"), Tighe & Bond has prepared this Quarterly Status Report in accordance with the Massachusetts Department of Environmental Protection (MassDEP) Immediate Response Action Plan Modification No. 3 Conditional Approval dated February 2, 2021. This quarterly status report is being submitted to provide supplemental information since the submittal of IRA Status No. 3 on March 10, 2021. A Site Plan is included in Appendix A, for reference.

Status of Private Well Sampling

With the submittal of this Status Report, all potable wells within the Radius 1 through Radius 4A sampling areas have been sampled, with the exception of 27 and 31 Prospect Street, 18 Connor Lane and 38 Boylston Avenue, where we have not been able to contact their respective owners or access was not granted. 31 Prospect Street is a vacant property and has been condemned by the town. The most recent notification letters were sent to the owners of the other properties on April 29, 2021 by certified mail. The letter sent to the owner of 27 Prospect Street was returned as non-deliverable. The address used to send the letter was confirmed as the contact address maintained by the Town of Princeton. The letter for 18 Connor Lane was returned because the owner did not claim the certified mailing.

During an in-person interview on April 20, 2021, the owner of 38 Boylston Avenue indicated that they did not want their drinking water sampled because they have installed a treatment system to mitigate PFAS. On April 30, 2021, Tighe & Bond sent a letter to the owner to document the denial of our request and to again request access.

Copies of the letters sent to the property owners referenced above are included in Appendix B.

January 2021 Quarterly Private Well Sampling

At the time that IRA Status Report No. 3 was submitted, approximately 40 percent of the January quarterly sampling data was received from the laboratory. The remaining 60 percent of the January 2021 quarterly sampling data are included in Table 1, in Appendix C.

Laboratory results indicate that PFAS6 concentrations were detected above the MCL at 16 Boylston Avenue, as well as at 39 and 42 Hubbardston Road. Samples collected at 42 Hubbardston Road in July 2020 had PFAS6 detected but the concentration was below the MCL. Samples collected at 16 Boylston Avenue previously had PFAS6 concentrations just below the MCL during the three previous sampling events, and 39 Hubbardston Road was in foreclosure during most of 2020 and was sampled for the first time during the January 2021 quarterly round.

POET system installation was completed at 42 Hubbardston Road on March 2, 2021. POET system installations at 39 Hubbardston Road and 16 Boylston Avenue were completed on March 12 and March 23, 2021, respectively.

Samples collected from the properties at 17 Boylston Avenue, 6 Connor Lane, 18 Prospect Street, and 26 Prospect Street had PFAS6 concentrations below the MCL in January 2021 but were previously non-detect for PFAS6. Due to the new detections at these locations bottled water is being provided by the Town. Based on the detection of PFAS6 at 6 Connor Lane, the sample radius was increased by 500 feet. The only property within 500 feet of 6 Connor Lane is 18 Connor Lane, which as mentioned above has been contacted to request access for sampling.

The laboratory reports for the January 2021 potable well sampling that were not received prior to submittal of IRA Status Report No. 3 are included in the individual notification letters in Appendix E of this status report. The laboratory data will also be provided to MassDEP electronically in a "zip" file, as requested in the February 2, 2020 Immediate Response Action Plan Modification No. 3 Conditional Approval.

April Quarterly Private Well Sampling

Quarterly private well sampling of 94 potable wells was completed as part of the ongoing monitoring program between April 20 and May 6, 2021. Potable well samples were collected from the following locations, and all of these locations have been sampled at least once previously, with the exception of 7 Thompson Road, which was added to the sample radius after a detection of PFAS6 at 33 Allen Hill Road.

- 9, 12, 15, 19, 20, 32, 33 Allen Hill Road
- 7, 13, 16, 17, 21, 24, 30, 32, 40 Boylston Avenue
- 6 Connor Lane
- 4 Goodnow Road
- 11, 13, 14, 15, 21, 44 Gregory Hill Road
- 1, 5, 7, 15, 19, 23, 33, 35, 36, 39, 42, 43, 44, 46, 48, 52, 73, 81 Hubbardston Road
- 55, 57, 59, 70, 85, 105 Merriam Road
- 2, 6, 10, 14, 18, 19, 20, 21, 22, 29, 30, 33, 38, 52, 54, 58, 64 Mountain Road
- 5, 7, 11, 16, 17, 18, 21, 41 Prospect Street
- 2, 7, 8, 11, 12, 13, 15, 18, 23, 28, 29, 33, 37 Radford Road
- 7 Thompson Road
- 1, 10, 15, 16, 17, 20, 23 Worcester Road

All laboratory reports for the April 2021 potable well sampling have been received to date. Approximately 30 percent of the notification letters have been completed and sent to their respect property owners and are included in Appendix E of this status report. The remaining notification letters will be submitted with the next IRA Status report. The laboratory data will also be provided to MassDEP electronically in a "zip" file, as requested in the February 2, 2020 Immediate Response Action Plan Modification No. 3 Conditional Approval.

30 Boylston Avenue

Based on the laboratory results from the April Quarterly Potable Well Sampling, one new PFAS6 detection was observed at 30 Boylston Ave (2.1 ng/L). The owner of this property was offered bottled water but stated that they did not wish to receive this service.

7 Prospect Street

The PFAS6 concentration at 7 Prospect Street was reported at 21.9 ng/L on April 23, 2021, which is above the Method 1 GW-1 and MMCL of 20 ng/L. Based on this finding, the installation of a POET system is pending at this property.

Point-of-Entry Treatment System Status

POET systems are required for all locations with PFAS6 concentrations exceeding 20 ng/L. To date, 28 locations have been identified as requiring treatment. POET systems have been installed at 26 of these locations. Permitting for a treatment system at 14 Mountain Road is required due to its status as a public water supply (permit application is currently under review by MassDEP). As noted above, the recent detection of PFAS6 concentrations exceeding 20 ng/L was identified at 7 Prospect Street. The installation of a POET system at this locations is also pending.

14 Mountain Road

The property at 14 Mountain Road is currently registered as a public water supply, which requires a permit for POET installation. Tighe & Bond has designed the system and has submitted the design and permit application for the Town on behalf of the Princeton Congregational Church. The permit application and design were submitted to MassDEP on April 29, 2021 and is currently under their review. The Town will continue to provide bottled water to the church and signage is maintained at all fixtures indicating that tap water is "not for potable use."

POET Performance

POET system monitoring to date of midfluent and effluent samples has not detected breakthrough of the primary carbon vessel at any of the 26 locations where POETs have been installed. Of the 26 locations with POETs, at least three rounds of monitoring results show no PFAS detections in the midfluent or effluent samples at the following 22 locations:

- 7 and 12 Boylston Street
- 15 Gregory Hill Road
- 1, 5, 15 and 43 Hubbardston Road
- 6, 18, 19, 20, 21, 22, 29, 30, 51, 54, 58 and 64 Mountain Road
- 5 Prospect Street
- 12 and 15 Radford Road

Three locations, 16 Boylston Avenue, and 39 and 42 Hubbardston Road, will continue to be sampled monthly until three consecutive monthly rounds of data demonstrate system efficacy. The POET system at 7 Prospect Street will also be sampled monthly for three months once installation is completed.

Town Hall Campus Well Quarterly Sampling

WhiteWater is the licensed operator for the Town Hall well. The PFAS treatment system for this well is currently being designed. All of the sinks in the four municipal buildings on the

Town Hall campus have been labeled as "not for potable use" and bottled water is available in all of the buildings served by the well. The status of this treatment system will be updated in subsequent status reports.

WhiteWater provided PFAS results for Town Hall Well on May 11, 2021 for potable water samples collected on September 29, 2020, December 22, 2020, and February 17, 2021. PFAS6 concentrations on those dates were 299.5, 443.8, and 411.1 ng/L respectively. According to the laboratory report for the sample collected on September 29, 2021, the surrogate recoveries for several compounds were outside laboratory acceptance criteria; therefore, the sample was re-extracted. The PFAS result for the re-extracted sample was 307.1 ng/L and is considered as biased high. The Town Hall Well sampling data for the dates referenced above are included in Table 1, in Appendix C, and the associated laboratory reports obtained from White Water are included in Appendix D.

Notification of Environmental Sampling Results

In accordance with the MCP at 310 CMR 40.1403(10) a Notice of Environmental Sampling is required any time environmental samples are taken at a property in the course of investigating a release for which a notification to the Department has been made on behalf of someone other than the owner of the property, within 30 days of the date the sample results are issued by the laboratory. The Status Table B-1 in Appendix B provides a summary of the dates that laboratory reports were received, the dates when public notifications are due, and the dates when the notification letters were sent. Copies of the public notification letters sent since the submittal of IRA Status Report No. 3 are included in Appendix D. The BWSC-123 Forms and laboratory reports for the potable well sampling are included with the individual letters.

Verbal notifications of sample results were made within 24 hours to all residents (along with the notifications to MassDEP, and Town of Princeton).

Quarterly Stormwater Sampling

In accordance with the IRA Plan Modification No. 3 Conditional Approval dated February 2, 2021, seasonal stormwater sampling was completed near 41 Prospect Street and 30 Mountain Road on April 22 and 29, 2021, respectively.

The sample at 41 Prospect was collected after a rainstorm from a natural drainage swale approximately 50 feet west of the residence located at 41 Prospect Street. No flow was observed at the runoff sample location near 30 Mountain Road on that date.

The 30 Mountain Road runoff sample was collected from water that was flowing off the 30 Mountain Road property and over the exposed bedrock face along Mountain Road during a heavy rain event on April 29, 2021. This is the same bedrock face where water flowing from a pipe was previously sampled in March 2020 (the pipe was sealed by the 30 Mountain Road property owner in April 2020).

Laboratory results for these runoff samples indicated that PFAS was not detected in the sample collected near 41 Prospect Street on April 22, 2021. PFAS6 concentrations in the runoff at the Mountain Road location were detected at 2,490.4 ng/L. These results are lower than the results obtained from the sample collected from the pipe flow in March 2020 sample. An Imminent Hazard evaluation performed on the March 2020 results showed no IH condition; therefore, we can conclude that the April 2021 results also do not meet the threshold for an IH condition. Laboratory results for the stormwater samples are included in Table 1, in Appendix C, and the associated laboratory reports are included in Appendix D.

30 Mountain Road Soil Sampling

On May 25, 2021, Tighe & Bond collected six soil samples around the former Princeton Inn building at 30 Mountain Road. Two composite soil samples were also collected from the earthen floor of the basement of the Inn. In addition, the owner of 30 Mountain Road was able to make the potable well formerly associated with the Inn operable to the extent that a sample could be collected for PFAS analysis (the pump seized immediately after the sample was collected). Laboratory results for the soil and water samples collected on May 25, 2021 are currently pending and will be included in the next IRA Status Report.

Proposed IRA Plan Modification No. 4

With the POET monitoring and potable well sampling conducted to date, it is the opinion of Tighe & Bond that a reduction in potable well sampling and POET monitoring is appropriate for this site. This conclusion is based on our knowledge of sampling schedules at similar sites within the Commonwealth, as well as the following:

- 1. The horizontal extent of the disposal site has been defined to the north, east and west of the presumed release areas associated with the Town Campus and 30 Mountain Road, as shown in the attached Site Plan included in Appendix A. The southern limit of the disposal site appears to be in the vicinity of 6 Connor Lane, with only one potable well within 500 feet of that location, which is 18 Connor Lane. Efforts to collect a sample from 18 Connor Lane are ongoing.
- 2. All potable wells within the disposal site with PFAS6 concentrations above 20 ng/L have been addressed with the installation of POET systems, with the exception of 7 Prospect Street, the Town Campus Well and 14 Mountain Road. POET systems at these locations are pending installation and/or permitting. POET systems have proven to be effective with no breakthrough of the primary carbon vessel at any of the 22 POET systems where at least three rounds of data have been collected, the earliest of which was installed in January 2020.
- 3. All residents with potable wells that have PFAS6 concentrations below 20 ng/L but above laboratory detection limits are provided with bottled water by the town, except one owner who declined the offer of bottled water.
- 4. Based on the response actions completed to date, there is no Imminent Hazard condition associated with the release of PFAS at the disposal site.
- 5. A review of potable well data indicates that PFAS6 concentrations in potable well samples are relatively constant. There are only 3 locations where an increase in PFAS6 concentrations have been observed over time, 7 Prospect Street and 40 Boylston Avenue, and 85 Merriam Road. The most recent PFAS result at 7 Prospect Street was 21.9 ng/L on April 23, 2021. Based on this concentration a POET system is pending installation at this location. PFAS6 concentrations collected during the April sampling round at 40 Boylston Street and 85 Merriam Road were 14.9 and 11.1 ng/L respectively, which are below the Method 1 GW-1 standard and MMCL for PFAS6.

In consideration of the above conclusions we are requesting MassDEP's approval for the following revised sampling schedule:

 All potable well locations with PFAS6 concentrations below 20 ng/L will be sampled on a semi-annual basis (April and October). This will include those locations where at least one potable well sample has been collected and PFAS6 was not detected above laboratory detection limits. There are currently 70 locations that meet this criterion.

- There are currently eight potable well locations that have had PFAS6 concentrations detected above 100 ng/L during at least one sampling event. All of these locations have POET systems installed to mitigate PFAS and breakthrough of the primary carbon vessel has not been detected in the midfluent samples collected to date from all eight locations. Therefore, we propose that these eight POET locations be sampled on a semi-annual basis until breakthrough is observed on the primary carbon vessel, which, based on the influent concentrations and volumetric flow through the system, will allow us to develop performance curves for the GAC treatment and determine approximate carbon vessel lifespans, which will allow us to propose an informed monitoring schedule.
- There are currently 18 potable well locations that have PFAS6 concentrations between 20 ng/L and 100 ng/L. All 18 of these locations also have POET systems installed to mitigate PFAS and breakthrough of the primary vessel has not been detected in the midfluent samples collected to date from all 18 locations. Due to the lower PFAS concentrations at these locations, and the expected longer lifespan of the carbon, we propose that these 18 locations be sampled annually until January 2023 at which point they will be sampled semi-annually until breakthrough is observed on the primary carbon vessel.
- Locations where new POETs are installed are currently sampled on a monthly basis for 3 consecutive monthly rounds, to show that breakthrough does not occur, after which they are sampled quarterly. Based on the performance of these systems to date, we propose that new POET systems be sampled within the first month of installation to demonstrate effectiveness and then sampled annually thereafter.

Proposed Se	mi-annual Sampl	e Locations	Proposed Annual Sample Locations
15 Hubbardston (P)	14 Gregory Hill	16 Prospect	7 Boylston (P)
18 Mountain (P)	21 Gregory Hill	17 Prospect	12 Boylston (P)
19 Mountain (P)	44 Gregory Hill	18 Prospect	16 Boylston (P)
20 Mountain (P)	7 Hubbardston	21 Prospect	15 Gregory Hill (P)
22 Mountain (P)	19 Hubbardston	26 Prospect	1 Hubbardston (P)
29 Mountain (P)	23 Hubbardston	2 Radford	5 Hubbardston (P)
58 Mountain (P)	33 Hubbardston	7 Radford	39 Hubbardston (P)
64 Mountain (P)	35 Hubbardston	8 Radford	42 Hubbardston (P)
9 Allen Hill	36 Hubbardston	11 Radford	43 Hubbardston (P)
12 Allen Hill	44 Hubbardston	13 Radford	6 Mountain (P)
15 Allen Hill	46 Hubbardston	18 Radford	14 Mountain (POET Pending)
19 Allen Hill	48 Hubbardston	23 Radford	21 Mountain (P)
20 Allen Hill	52 Hubbardston	28 Radford	30 Mountain (P)
32 Allen Hill	73 Hubbardston	29 Radford	51 Mountain (P)
33 Allen Hill	81 Hubbardston	33 Radford	54 Mountain (P)
13 Boylston	55 Merriam	37 Radford	5 Prospect (P)
17 Boylston	57 Merriam	7 Thompson	7 Prospect (POET Pending)
21 Boylston	58 Merriam	1 Worcester	41 Prospect (P)
24 Boylston	59 Merriam	10 Worcester	12 Radford (P)
30 Boylston	70 Merriam	15 Worcester	15 Radford (P)
32 Boylston	85 Merriam	16 Worcester	
40 Boylston	105 Merriam	17 Worcester	
6 Connor	2 Mountain	20 Worcester	
18 Connor	10 Mountain	23 Worcester	
4 Goodnow	33 Mountain		
11 Gregory Hill	38 Mountain		
13 Gregory Hill	11 Prospect		

If the proposed potable well monitoring schedule is approved, the next sampling round will be performed in October 2021 and will include those potable well locations within the semi-annual schedule. Any new or recent POET systems will be sampled in the first month of operation and then annually thereafter. Please note that the reduction in sampling does not include the Town Campus public water supply well, which is operated by WhiteWater.

We are also requesting a modification to the requirement in the February 2021 IRA Modification Approval for quarterly runoff sampling. Unless there is earthwork performed at a property, no significant variations in contaminant concentrations in stormwater runoff are expected. The runoff near both 30 Mountain Road and 41 Prospect Street has been sampled and one shows significant PFAS concentrations in runoff (30 Mountain Road) and the other is non-detect (41 Prospect Street). We do not foresee these conditions changing due to the time of year, as the stormwater runoff area and flow path would be expected to be the same regardless of the season.

If you have any questions or require additional information, please contact me at 413.572.3227.

Very truly yours,

TIGHE & BOND, INC.

Jeffrey L. Arps, LSP

Director, Remediation & Field Services

cc: Sherry Patch, Town of Princeton

Appendices

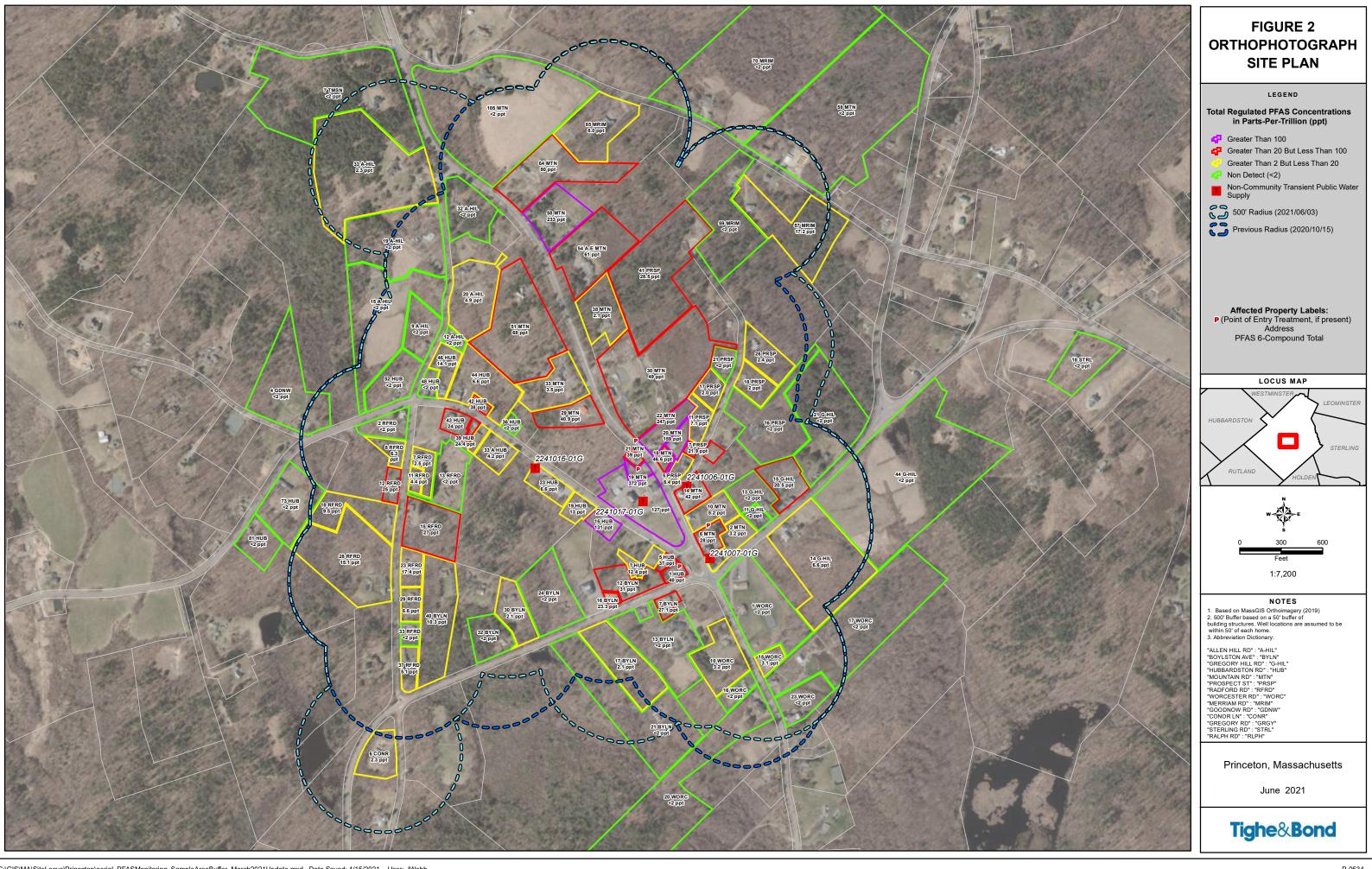
Appendix A - Figure 1 - Radius Map

Appendix B - Request for Access Letters

Appendix C – January 2021 Potable Well Summary

April 2021 Potable Well Summary

POET Status Summary


Table 1, Summary of PFAS Analytical Data

Appendix D – Laboratory Reports

Appendix E – Notification Letters (submitted under separate cover due to file size limitations)

J:\P\P0534 Princeton PSB\PFAS 2019\Quarterly Status 6-2021\Quarterly Status Report - Princeton PFAS 6-2021_REV3.docx

APPENDIX A

APPENDIX B

P-0534 June 4, 2021

Patrick Brady Karen Shadbegian 18 Connor Lane Princeton, Massachusetts 01541

Re: Residential Well Sampling 18 Connor Lane, Princeton

Dear Mr. Brady and Ms. Shadbegian,

On behalf of the Town of Princeton, Tighe & Bond has been performing environmental monitoring activities in the area of Town Hall Drive, Hubbardston Road, and Mountain Road. Both the Town and Tighe & Bond have previously sent letters to inform you that the town sampled the drinking water well that serves the Princeton Town Hall complex and detected elevated concentrations of "PFAS," a family of compounds consisting of per- and polyfluoroalkyl substances.

Because of these detections in the public water supply well, the Massachusetts Department of Environmental Protection (MassDEP) has required the Town to conduct sampling of all private wells within 500 feet of the Town Hall for PFAS, as well as any additional wells within 500 feet of a well with a detection of PFAS. Your property is within the area where Tighe & Bond is required to perform residential well sampling activities to satisfy the requirements of MassDEP. However, we have been unable to schedule a sampling date with you despite several attempts to contact you to schedule a sampling time at your home. We can schedule the sampling such that it is convenient for you, as necessary (nights and weekends included). Please let us know a convenient time for us to stop by to collect this sample. If we are unable to schedule this sampling, we are required to ask MassDEP to provide assistance with access.

If you have any questions about this process, please call me at 413-572-3227. Thank you very much for your cooperation in this matter.

Very truly yours,

TIGHE & BOND, INC.

Jeffrey L. Arps, LSP Director, Remediation & Field Services

Copy: Sherry Patch, Princeton Town Administrator Princeton Board of Health

P-0534 June 4, 2021

31 Prospect Street, LLC 58 Elm Street, Unit 12 Worcester, Massachusetts 01609

Re: Residential Well Sampling
27 Prospect Street, Princeton

To whom it may concern,

On behalf of the Town of Princeton, Tighe & Bond has been performing environmental monitoring activities in the area of Town Hall Drive, Hubbardston Road, and Mountain Road. Both the Town and Tighe & Bond have previously sent letters to inform you that the town sampled the drinking water well that serves the Princeton Town Hall complex and detected elevated concentrations of "PFAS," a family of compounds consisting of per- and polyfluoroalkyl substances.

Because of these detections in the public water supply well, the Massachusetts Department of Environmental Protection (MassDEP) has required the Town to conduct sampling of all private wells within 500 feet of the Town Hall for PFAS, as well as any additional wells within 500 feet of a well with a detection of PFAS. Your property is within the area where Tighe & Bond is required to perform residential well sampling activities to satisfy the requirements of MassDEP. However, we have been unable to schedule a sampling date with you despite several attempts to contact you to schedule a sampling time at your home. We can schedule the sampling such that it is convenient for you, as necessary (nights and weekends included). Please let us know a convenient time for us to stop by to collect this sample. If we are unable to schedule this sampling, we are required to ask MassDEP to provide assistance with access.

If you have any questions about this process, please call me at 413-572-3227. Thank you very much for your cooperation in this matter.

Very truly yours,

TIGHE & BOND, INC.

Jeffrey L. Arps, LSP

Director, Remediation & Field Services

Copy: Sherry Patch, Princeton Town Administrator

Princeton Board of Health

P-0534 May 3, 2021

Harold Rehrauer Ruth Rehrauer 38 Boylston Ave Princeton, Massachusetts 01541

Re: Residential Well Sampling 38 Boylston Ave, Princeton

Dear Mr. and Mrs. Rehrauer,

On behalf of the Town of Princeton, Tighe & Bond has been performing environmental monitoring activities in the area of Town Hall Drive, Hubbardston Road, and Mountain Road. Both the Town and Tighe & Bond have previously sent letters to inform you that the town sampled the drinking water well that serves the Princeton Town Hall complex and detected elevated concentrations of "PFAS," a family of compounds consisting of per- and polyfluoroalkyl substances.

Because of these detections in the public water supply well, the Massachusetts Department of Environmental Protection (MassDEP) has required the Town to conduct sampling of all private wells within 500 feet of the Town Hall for PFAS, as well as any additional wells within 500 feet of a well with a detection of PFAS. Your property is within the area where Tighe & Bond is required to perform residential well sampling activities to satisfy the requirements of MassDEP. However, on April 20, 2021 you indicated that you do not want your drinking water sampled because you have installed a treatment system to mitigate PFAS. Please understand that this sampling is being required by MassDEP regardless of any treatment systems you have installed. We are asking that you reconsider our request to sample your drinking water. We can schedule the sampling such that it is convenient for you, as necessary (nights and weekends included). Please let us know a convenient time for us to stop by to collect this sample. If we are unable to schedule this sampling, we are required to ask MassDEP to provide assistance with access.

If you have any questions about this process, please call me at 413-572-3227. Thank you very much for your cooperation in this matter.

Very truly yours,

TIGHE & BOND, INC.

Jeffrey L. Arps, LSP Director, Remediation & Field Services

Copy: Sherry Patch, Princeton Town Administrator Princeton Board of Health

APPENDIX C

		JANUAR	/ 2021 SAMPLING		
Sample Location	Date Sampled	Date Data Received	Final Letter Due Date	Date Final Letter Sent	MassDEP Submittal Status
1 Worcester	12/16/2020	1/4/2021	2/3/2021	1/25/2021	
20 Allen Hill 17 Boylston	1/18/2021 1/18/2021	2/5/2021 2/5/2021	3/7/2021 3/7/2021	3/6/2021 3/6/2021	1
23 Hubbardston	1/18/2021	2/5/2021	3/7/2021	3/6/2021	1
42 Hubbardston	1/19/2021	2/5/2021	3/7/2021	3/6/2021]
14 Hubbardston	1/19/2021	2/5/2021	3/7/2021	3/6/2021	
15 Allen Hill 19 Allen Hill	1/19/2021 1/19/2021	2/8/2021 2/8/2021	3/10/2021 3/10/2021	3/6/2021	-
24 Boylston	1/19/2021	2/8/2021	3/10/2021	3/6/2021 3/6/2021	1
11 Gregory Hill	1/19/2021	2/8/2021	3/10/2021	3/6/2021	1
13 Gregory Hill	1/19/2021	2/8/2021	3/10/2021	3/6/2021	
16 Boylston 40 Boylston	1/20/2021	2/9/2021 2/9/2021	3/11/2021 3/11/2021	3/6/2021	-
14 Gregory Hill	1/20/2021 1/20/2021	2/9/2021	3/11/2021	3/6/2021 3/6/2021	1
14 Gregory Hill	1/20/2021	2/9/2021	3/11/2021	3/6/2021	1
.05 Merriam	1/20/2021	2/9/2021	3/11/2021	3/6/2021	
88 Mountain	1/20/2021	2/9/2021 2/9/2021	3/11/2021 3/11/2021	3/6/2021	-
L6 Prospect 37 Radford	1/20/2021 1/20/2021	2/9/2021	3/11/2021	3/6/2021 3/6/2021	
20 Worcester	1/20/2021	2/9/2021	3/11/2021	3/6/2021	1
32 Boylston	1/20/2021	2/12/2021	3/14/2021	3/6/2021	
Goodnow	1/21/2021	2/12/2021	3/14/2021	3/6/2021	
36 Hubbardston 33 Mountain	1/21/2021 1/21/2021	2/12/2021 2/12/2021	3/14/2021 3/14/2021	3/6/2021 3/6/2021	-
29 Radford	1/21/2021	2/12/2021	3/14/2021	3/6/2021	1
17 Worcester	1/21/2021	2/12/2021	3/14/2021	3/6/2021]
Allen Hil	1/19/2021	2/15/2021	3/17/2021	3/17/2021	
12 Allen Hill	1/19/2021	2/15/2021	3/17/2021	3/17/2021	-
21 Boylston 27 Prospect	1/19/2021 1/19/2021	2/15/2021 2/15/2021	3/17/2021 3/17/2021	3/17/2021 3/17/2021	1
.6 Worcester	1/19/2021	2/15/2021	3/17/2021	3/17/2021	1
1 Gregory Hill	1/21/2021	2/16/2021	3/18/2021	3/17/2021]
57 Merriam	1/21/2021	2/16/2021	3/18/2021	3/17/2021	
8 Merriam	1/21/2021	2/16/2021	3/18/2021	3/17/2021	-
Radford .0 Worcester	1/21/2021 1/21/2021	2/16/2021 2/16/2021	3/18/2021 3/18/2021	3/17/2021 3/17/2021	1
9 Hubbardston	1/22/2021	2/23/2021	3/25/2021	3/17/2021	1
6 Hubbardston	1/22/2021	2/23/2021	3/25/2021	3/17/2021	1
'0 Merriam	1/22/2021	2/23/2021	3/25/2021	3/17/2021	
Mountain	1/22/2021	2/23/2021	3/25/2021	3/17/2021	
.8 Prospect 23 Radford	1/22/2021 1/22/2021	2/23/2021 2/23/2021	3/25/2021 3/25/2021	3/17/2021 3/17/2021	-
12 Boylston	1/29/2021	2/25/2021	3/27/2021	3/17/2021	1
3 Hubbardston	1/21/2021	2/25/2021	3/27/2021	3/17/2021	Submitted with 6/2024 Overtable State
8 Hubbardston	1/22/2021	2/25/2021	3/27/2021	3/17/2021	Submitted with 6/2021 Quarterly Star Report
35 Merriam	1/21/2021	2/25/2021	3/27/2021	3/17/2021	Керогі
.4 Mountain 28 Radford	1/22/2021 1/21/2021	2/25/2021 2/25/2021	3/27/2021 3/27/2021	3/17/2021 3/17/2021	1
Radford	1/21/2021	2/25/2021	3/28/2021	3/17/2021	1
2 Allen Hill	1/22/2021	2/26/2021	3/28/2021	3/17/2021	
.3 Boylston	1/22/2021	2/26/2021	3/28/2021	3/17/2021	
Connor	1/21/2021	2/26/2021	3/28/2021	3/17/2021	
.5 Gregory Hill .0 Mountain	1/29/2021 1/22/2021	2/26/2021 2/26/2021	3/28/2021 3/28/2021	3/17/2021	4
9 Mountain	1/29/2021	2/26/2021	3/28/2021	3/17/2021 3/17/2021	1
Prospect	1/19/2021	2/26/2021	3/28/2021	3/17/2021	1
Radford	1/21/2021	2/26/2021	3/28/2021	3/17/2021	
1 Radford	1/21/2021	2/26/2021	3/28/2021	3/17/2021	
3 Radford 8 Mountain	1/22/2021	2/26/2021	3/28/2021	3/17/2021	1
8 Mountain Hubbardston	1/29/2021 1/29/2021	3/1/2021 3/1/2021	3/31/2021 3/31/2021	3/31/2021 3/31/2021	1
9 Mountain	1/29/2021	3/1/2021	3/31/2021	3/31/2021	1
4 Mountain	1/29/2021	3/1/2021	3/31/2021	3/31/2021]
8 Radford	1/29/2021	3/1/2021	3/31/2021	3/31/2021	
5 Worcseter	1/29/2021	3/1/2021	3/31/2021	3/31/2021	-
3 Worcester Hubbardston	1/29/2021 1/29/2021	3/1/2021 3/8/2021	3/31/2021 4/7/2021	3/31/2021 4/7/2021	1
5 Hubbardston	1/29/2021	3/8/2021	4/7/2021	4/7/2021	1
1 Prospect	1/29/2021	3/8/2021	4/7/2021	4/7/2021]
2 Radford	1/29/2021	3/8/2021	4/7/2021	4/7/2021	
3 Radford	1/29/2021	3/8/2021	4/7/2021	4/7/2021 4/7/2021	-
O Mountain Prospect	1/29/2021 1/29/2021	3/8/2021 3/8/2021	4/7/2021 4/7/2021	4/7/2021	1
5 Radford	2/5/2021	3/9/2021	4/8/2021	4/7/2021	1
9 Hubbardston	1/23/2021	3/9/2021	4/8/2021	4/7/2021]
2 Hubbardston	1/29/2021	3/9/2021	4/8/2021	4/7/2021	
1 Mountain	2/5/2021	3/9/2021	4/8/2021	4/7/2021	-
1 Prospect 3 Hubbardston	1/28/2021 2/5/2021	3/9/2021 3/11/2021	4/8/2021 4/10/2021	4/7/2021 4/7/2021	1
3 Hubbardston 2 Mountain	2/5/2021	3/11/2021	4/10/2021	4/7/2021	1
1 Prospect	2/3/2021	3/17/2021	4/16/2021	4/13/2021	1
4 Mountain	2/11/2021	3/18/2021	4/17/2021	4/13/2021]
Hubbardston	2/5/2021	3/22/2021	4/21/2021	4/13/2021	
5 Merriam	2/5/2021	3/22/2021	4/21/2021	4/13/2021	-
Mountain 1 Mountain	2/5/2021	3/22/2021	4/21/2021	4/13/2021	-
1 Mountain 8 Mountain	2/5/2021 2/5/2021	3/22/2021 3/22/2021	4/21/2021 4/21/2021	4/13/2021 4/13/2021	1
0 Mountain	2/3/2021	3/23/2021	4/22/2021	4/13/2021	1
' Boylston	2/22/2021	3/29/2021	4/28/2021	4/13/2021	1

APRIL 2021 SAMPLING									
Sample Location	Date Sampled	Date Data Received	Final Letter Due Date	Date Final Letter Sent	MassDEP Submittal Status				
6 Boylston	5/27/2021		1/30/1900						
3 Mountain	4/16/2021	5/5/2021	6/4/2021						
5 Merriam	4/19/2021	5/10/2021	6/9/2021	F /27 /2024	Submitted with S/2024 Overhald State				
2 Allen Hill 0 Allen Hill	4/20/2021 4/20/2021	5/10/2021 5/10/2021	6/9/2021 6/9/2021	5/27/2021 5/27/2021	Submitted with 6/2021 Quarterly Statu Submitted with 6/2021 Quarterly Statu				
2 Allen Hill	4/20/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Statu				
' Boylston	4/20/2021	5/10/2021	6/9/2021						
0 Boylston	4/20/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Statu				
Connor	4/20/2021	5/10/2021	6/9/2021 6/9/2021	5/27/2021 5/27/2021	Submitted with 6/2021 Quarterly Statu				
1 Gregory Hill 3 Gregory Hill	4/21/2021 4/21/2021	5/10/2021 5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Statu Submitted with 6/2021 Quarterly Statu				
4 Gregory Hill	4/20/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Statu				
Hubbardston	4/21/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Statu				
8 Hubbardston	4/19/2021	5/10/2021	6/9/2021	- / /					
Mountain .0 Mountain	4/19/2021 4/19/2021	5/10/2021 5/10/2021	6/9/2021 6/9/2021	5/27/2021 5/27/2021	Submitted with 6/2021 Quarterly Statu Submitted with 6/2021 Quarterly Statu				
4 Mountain	4/20/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Statu				
.8 Mountain	4/20/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Statu				
1 Mountain	4/19/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Statu				
2 Mountain	4/19/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Status				
9 Mountain Prospect	4/20/2021 4/19/2021	5/10/2021 5/10/2021	6/9/2021 6/9/2021	5/27/2021 5/27/2021	Submitted with 6/2021 Quarterly Status Submitted with 6/2021 Quarterly Status				
7 Prospect	4/19/2021	5/10/2021	6/9/2021	3/2//2021	Submitted with 0/2021 Quarterly Status				
8 Prospect	4/19/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Status				
1 Prospect	4/19/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Status				
1 Prospect	4/21/2021	5/10/2021	6/9/2021	- 10	6.1. 10.1. 10.2. 645				
! Radford ! Radford	4/21/2021	5/10/2021	6/9/2021	5/27/2021 5/27/2021	Submitted with 6/2021 Quarterly Statu				
Radford Radford	4/21/2021 4/21/2021	5/10/2021 5/10/2021	6/9/2021 6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Status Submitted with 6/2021 Quarterly Status				
3 Radford	4/19/2021	5/10/2021	6/9/2021	3,27,2021					
37 Radford	4/20/2021	5/10/2021	6/9/2021						
.0 Worcester	4/19/2021	5/10/2021	6/9/2021	5/27/2021	Submitted with 6/2021 Quarterly Status				
33 Allen Hill I Goodnow	4/20/2021	5/12/2021	6/11/2021						
.5 Gregory Hill	4/20/2021 4/21/2021	5/12/2021 5/12/2021	6/11/2021 6/11/2021						
.3 Radford	4/21/2021	5/12/2021	6/11/2021						
5 Radford	4/21/2021	5/12/2021	6/11/2021						
9 Allen Hill	4/21/2021	5/14/2021	6/13/2021						
3 Hubbardston	4/22/2021	5/14/2021	6/13/2021						
8 Mountain 4 Mountain	4/21/2021 4/21/2021	5/14/2021 5/14/2021	6/13/2021 6/13/2021						
.6 Prospect	4/22/2021	5/14/2021	6/13/2021						
7 Worcester	4/22/2021	5/14/2021	6/13/2021						
.3 Boylston	4/26/2021	5/17/2021	6/16/2021						
21 Boylston	4/26/2021	5/17/2021	6/16/2021						
. Hubbardston 33 Hubbardston	4/23/2021 4/26/2021	5/17/2021 5/17/2021	6/16/2021 6/16/2021						
52 Hubbardston	4/26/2021	5/17/2021	6/16/2021						
9 Merriam	4/26/2021	5/17/2021	6/16/2021						
.9 Mountain	4/22/2021	5/17/2021	6/16/2021						
4 Mountain	4/23/2021	5/17/2021 5/17/2021	6/16/2021						
Prospect 1 Prospect	4/23/2021 4/21/2021	5/17/2021	6/16/2021 6/16/2021						
1 Radford	4/22/2021	5/17/2021	6/16/2021						
2 Radford	4/23/2021	5/17/2021	6/16/2021						
9 Radford	4/22/2021	5/17/2021	6/16/2021						
5 Allen Hill	4/23/2021	5/18/2021	6/17/2021	5 /07 /0004					
7 Boylston 4 Boylston	4/27/2021 4/27/2021	5/18/2021 5/18/2021	6/17/2021 6/17/2021	5/27/2021	Submitted with 6/2021 Quarterly Status				
6 Worcester	4/23/2021	5/18/2021	6/17/2021						
Allen Hil	4/27/2021	5/19/2021	6/18/2021						
2 Boylston	4/27/2021	5/19/2021	6/18/2021						
1 Mountain	4/26/2021	5/20/2021	6/19/2021	_	1				
1 Gregory Hill 4 Gregory Hill	4/26/2021 4/26/2021	5/20/2021 5/20/2021	6/19/2021 6/19/2021		1				
Hubbardston	4/27/2021	5/20/2021	6/19/2021						
5 Hubbardston	4/26/2021	5/20/2021	6/19/2021						
3 Hubbardston	4/27/2021	5/20/2021	6/19/2021						
0 Mountain	4/26/2021	5/20/2021	6/19/2021		<u> </u>				
8 Radford Worcester	4/26/2021 4/26/2021	5/20/2021 5/20/2021	6/19/2021 6/19/2021						
5 Worcseter	4/26/2021	5/20/2021	6/19/2021	 					
0 Worcester	4/26/2021	5/20/2021	6/19/2021						
3 Worcester	4/26/2021	5/20/2021	6/19/2021						
8 Radford	4/26/2021	5/21/2021	6/20/2021		<u> </u>				
6 Hubbardston 3 Radford	4/27/2021 4/26/2021	5/21/2021 5/21/2021	6/20/2021 6/20/2021						
8 Mountain	4/26/2021	5/21/2021	6/20/2021	 					
0 Boylston	5/6/2021	5/24/2021	6/23/2021						
5 Hubbardston	4/26/2021	5/24/2021	6/23/2021						
9 Hubbardston	4/30/2021	5/24/2021	6/23/2021						
9 Hubbardston	5/3/2021	5/24/2021	6/23/2021	_	1				
2 Hubbardston 6 Hubbardston	4/26/2021 4/26/2021	5/24/2021 5/24/2021	6/23/2021 6/23/2021	-					
3 Hubbardston	5/3/2021	5/24/2021	6/23/2021	_					
1 Hubbardston	5/3/2021	5/24/2021	6/23/2021						
0 Merriam	4/30/2021	5/24/2021	6/23/2021						
05 Merriam	4/26/2021	5/24/2021	6/23/2021						
Mountain 0 Mountain	4/26/2021	5/24/2021	6/23/2021						
0 Mountain Thompson	4/26/2021 5/6/2021	5/24/2021 5/24/2021	6/23/2021 6/23/2021		1				
4 Hubbardston	4/26/2021	5/24/2021	6/23/2021						
5 Merriam	4/26/2021	5/24/2021	6/23/2021						
7 Merriam	4/26/2021	5/24/2021	6/23/2021						

	POET SYSTEM STATUS	
Locations >20 ppt	System Status	Date Installed
7 Boylston	POET INSTALLED	3/1/2020
12 Boylston	POET INSTALLED	3/20/2020
16 Boylston	POET INSTALLED	3/23/2021
15 Gregory Hill	POET INSTALLED	2/26/2020
1 Hubbardston	POET INSTALLED	2/26/2020
5 Hubbardston	POET INSTALLED	1/28/2020
15 Hubbardston	POET INSTALLED	2/10/2020
39 Hubbardston	POET INSTALLED	3/12/2021
42 Hubbardston	POET INSTALLED	3/2/2021
43 Hubbardston	POET INSTALLED	3/20/2020
6 Mountain	POET INSTALLED	1/28/2020
14 Mountain	NEEDS A	A POET
18 Mountain	LARGE POET INSTALLED	2/10/2020
19 Mountain	LARGE POET INSTALLED	1/10/2020
20 Mountain	POET INSTALLED	2/11/2020
21 Mountain	POET INSTALLED	1/21/2020
22 Mountain	POET INSTALLED	9/3/2020
29 Mountain	POET INSTALLED	2/24/2020
30 Mountain	POET INSTALLED	2/15/2021
51 Mountain	POET INSTALLED	5/1/2020
54 Mountain	POET INSTALLED	6/2/2020
58 Mountain	POET INSTALLED	7/7/2020
64 Mountain	POET INSTALLED	2/18/2020
5 Prospect	POET INSTALLED	1/21/2020
7 Prospect	NEEDS A	A POET
41 Prospect	EXISTING POET	NA
12 Radford	POET INSTALLED	6/12/2020
15 Radford	POET INSTALLED	10/21/2020

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	Old Town Hall Well UNKNOWN 1/19/2021
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFNA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA)	20	38 11 250 4.8 17 150 ND(1.82) ND(1.82) ND(1.82) ND(1.82) ND(1.82) ND(1.82) ND(1.82) ND(1.82)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts									
Well Depth (feet)	Contingency Plan	UNKNOWN								
Sampling Date	GW-1 Standard	9/5/2019	9/27/2019	1/8/2020	6/23/2020	9/29/2020	9/29/2020	12/22/2020	2/17/2021	
	& MMCL						RERUN			
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		26.9	17	31.9	16.1	39.5	42.9	48.6	41.6	
Perfluorohexanoic acid (PFHxA)		ND (1.82)	ND (1.87)	2.86	1.48 (J)	2.92	4.51	5.1	5.45	
Perfluorohexanesulfonic acid (PFHxS)		94.4	78.1	168	81.7	234	225	329	305	
Perfluoroheptanoic acid (PFHpA)		ND (1.82)	ND (1.87)	2.47	1.25 (J)	1.30 (J)	1.9	4.27	4.67	
Perfluorooctanoic acid (PFOA)		3.92	3.18	9.52	4.48	8.4	12.3	15.9	14.6	
Perfluorooctanesulfonic acid (PFOS)		26.4	18.9	52.6	23.5	56.4	67.4	94.2	86.2	
Perfluorononanoic acid (PFNA)		ND (1.82)	ND (1.87)	ND (1.84)	ND (1.90)	0.555 (J)	0.985 (J)	0.904 (J)	1.17 (J)	
Perfluorodecanoic acid (PFDA)		ND (1.82)	ND (1.87)	ND (1.84)	ND (1.90)	ND (1.85)	ND (1.90)	ND (1.81)	ND (1.77)	
N-EtFOSAA		ND (1.82)	ND (1.87)	ND (1.84)	ND (1.90)	ND (1.85)	ND (1.90)	ND (1.81)	ND (1.77)	
Perfluoroundecanoic acid (PFUnA)		ND (1.82)	ND (1.87)	ND (1.84)	ND (1.90)	ND (1.85)	ND (1.90)	ND (1.81)	ND (1.77)	
N-MeFOSAA		ND (1.82)	ND (1.87)	ND (1.84)	ND (1.90)	ND (1.85)	ND (1.90)	ND (1.81)	ND (1.77)	
Perfluorododecanoic acid (PFDoA)		ND (1.82)	ND (1.87)	ND (1.84)	ND (1.90)	ND (1.85)	ND (1.90)	ND (1.81)	ND (1.77)	
Perfluorotridecanoic acid (PFTrDA)		ND (1.82)	ND (1.87)	ND (1.84)	ND (1.90)	ND (1.85)	ND (1.90)	ND (1.81)	ND (1.77)	
Perfluorotetradecanoic acid (PFTA)		ND (1.82)	ND (1.87)	ND (1.84)	ND (1.90)	ND (1.85)	ND (1.90)	ND (1.81)	ND (1.77)	
Total (All Compounds)		151.6	117.2	264.9	127.1	341.9	354.5	497.5	458.1	
Regulated Total	20	124.7	100.2	230.1	110.3	299.5	307.1	443.8	411.1	

Gray colored cells indicate those 6 compounds included in the regulated PFAS Total $\,$

ND = Not detected above the lab reporting limits shown in parentheses.

Bolded values exceed the prposed Method 1 Standard

MMCL is Massachusetts Maximun Containment Level

Values reported with a (J) qualifier are estimated values. If the reported J value is greater than or equal to 1/3 the MRL and < MRL"one-half the MRL is used for the concentration of that compound in the summation

TABLE 1 PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts Contingency	M	W-6	MW-7DR	MW-10A	MW-10D	MW-14	MW-18R	MW-101	MW-102	MW-102 DUP		Equipment Blank			Trip Blank			Field Blank	
	Plan GW-1																			
Sampling Date	Standard &	6/23/2020	1/12/2021	1/12/2021	1/2/2020	1/2/2020	1/2/2020	1/2/2020	1/12/2021	1/12/2021	1/12/2021	1/2/2020	6/23/2020	1/12/2021	1/2/2020	6/23/2020	1/12/2021	1/2/2020	6/23/2020	1/12/2021
	MMCL																			
EPA 537.1 (ng/L)																				
Perfluorobutanesulfonic acid (PFBS)		4.6	10	16	5.3	7.2	21	3.9	25	66	65	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		11	2.3	4.1	4.1	3.6	2.1	2.8	3.3	11	11	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		9.9	13	130	22	39	200	17	200	740	750	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		3.2	ND (2.0)	3.6	2.1	3.3	ND (2.0)	2.1	3	5.1	5.1	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		15	2.8	7.4	4.5	8.6	6.5	3.1	8.6	16	16	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	6.3	27	4	28	140	7	53	250	270	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Hexafluoropropylene oxide dimer acid (HFPO-DA)		3.8	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		47.5	34.4	188.1	42.0	89.7	369.6	35.9	292.9	1088.1	1117.1	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Regulated Total	20	28.1	22.1	168	32.6	78.9	346.5	29.2	264.6	1011.1	1041.1	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet)	Massachusetts Contingency Plan	Mountain Rd Runoff			
Sampling Date	GW-1 Standard &		4/29/2021		
Sampling Date	MMCL	2/27/2020	4/23/2021		
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		58	20		
Perfluorohexanoic acid (PFHxA)		88	24		
Perfluorohexanesulfonic acid (PFHxS)		710	350		
Perfluoroheptanoic acid (PFHpA)		23	6.2		
Perfluorooctanoic acid (PFOA)		100	32		
Perfluorooctanesulfonic acid (PFOS)		2,800	2,100		
Perfluorononanoic acid (PFNA)		3.1	ND (2.0)		
Perfluorodecanoic acid (PFDA)		6.2	2.2		
N-EtFOSAA		3.1	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)		
N-MeFOSAA		3.9	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)		
Total (All Compounds)		3795.3	2534.4		
Regulated Total		3642.3	2490.4		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet)	Massachusetts Contingency Plan GW-1 Standard &	9 Allen Hill Rd UNKNOWN 2/12/2020 7/23/2020 1/19/2021				
Sampling Date	MMCL	2/12/2020	7/25/2020	1/19/2021		
FPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFDOA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA) Total (All Compounds) Regulated Total		ND (2.0) ND (2.0) ND (2.0)	ND (2.0) ND (2.0) ND (2.0)	ND (2.0) ND (2.0) ND (2.0)		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan	12 Allen Hill Rd							
Well Depth (feet)		GINNIOWIN							
Sampling Date	GW-1 Standard &	2/14/2020	2/14/2020 7/27/2020		4/20/2021				
	MMCL								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		2.2	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		5.8	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		4.2	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		12.2	ND (2.0)	ND (2.0)	ND (2.0)				
Regulated Total	20	12.2	ND (2.0)	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	15 Allen Hill Road						
Well Depth (feet)	Contingency Plan		UNKNOWN					
Sampling Date	GW-1 Standard &	4/28/2020	10/1/2020	1/19/2021				
	MMCL							
EPA 537.1 (ng/L)								
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)				
Regulated Total		ND (2.0)	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	Contingonay Plan							
Well Depth (feet)	Contingency Plan	ONKNOWN							
Sampling Date	6W-1 Standard &	4/28/2020	10/1/2020	1/19/2021	4/21/2021				
	MMCL								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	20 Allen Hill Road								
Well Depth (feet)	Contingency Plan	400								
Sampling Date	GW-1 Standard &	5/8/2020	10/2/2020	1/18/2021	4/20/2021					
	MMCL									
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanoic acid (PFHxA)		3	ND (2.0)	2.5	ND (2.0)					
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroheptanoic acid (PFHpA)		2.3	ND (2.0)	2.5	ND (2.0)					
Perfluorooctanoic acid (PFOA)		3	ND (2.0)	2.4	ND (2.0)					
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Total (All Compounds)		8.3	ND (2.0)	7.4	ND (2.0)					
Regulated Total	20	5.3	ND (2.0)	4.9	ND (2.0)					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts		32 Allei	ո Hill Rd						
Well Depth (feet)	Contingency Plan	ONKNOWN								
Sampling Date	GW-1 Standard &	2/2/2020	7/22/2020	1/22/2021	4/20/2021					
	MMCL									
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Regulated Total		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	angu Plan								
Well Depth (feet)	Contingency Plan		UNKN	IOWN						
Sampling Date	GW-1 Standard &	10/30	/2020	12/16/2020	4/20/2021					
	MMCL		DUPLICATE							
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanesulfonic acid (PFOS)		47	8	2.3	ND (2.0)					
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Total (All Compounds)		47	8	2.3	ND (2.0)					
Regulated Total		47	8	2.3	ND (2.0)					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

	Massachusetts								7 Boyls	ton Ave							
	Contingency Plan		-		-		NOT RECORDED			14,911			23,425			32,192	,
Sampling Date	GW-1 Standard &		1/27/2020		3/1/2020		3/17/2020			5/1/2020			6/18/2020			7/29/2020	
	MMCL		DUPLICATE	FIELD BLANK	POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)																	
Perfluorobutanesulfonic acid (PFBS)		3.6	3.7	ND (2.0)		4.1	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)	4.3	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		16	17	ND (2.0)		20	ND (2.0)	ND (2.0)	12	ND (2.0)	ND (2.0)	22	ND (2.0)	ND (2.0)	23	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		2.7	ND (2.0)	14		2.8	ND (2.0)	ND (2.0)	2.5	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		4.5	6.2	4.7		6.2	ND (2.0)	ND (2.0)	3.3	ND (2.0)	ND (2.0)	4.9	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		26.8	26.9	18.7	1 1	33.1	ND (2.0)	ND (2.0)	20.0	ND (2.0)	ND (2.0)	33.9	ND (2.0)	ND (2.0)	31.2	ND (2.0)	ND (2.0)
Regulated Total	20	23.2	23.2	18.7		29.0	ND (2.0)	ND (2.0)	17.8	ND (2.0)	ND (2.0)	29.6	ND (2.0)	ND (2.0)	27.1	ND (2.0)	ND (2.0)

Parameter	Massachusetts		7 Boylston Ave (continued)								
Flow Meter Reading (gallons)	Contingency Plan		30,276			65,073			79,651		
Sampling Date	GW-1 Standard &	11/6/2020				2/22/2021			4/20/2021		
	MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	
EPA 537.1 (ng/L)											
Perfluorobutanesulfonic acid (PFBS)		3.4	ND (2.0)	ND (2.0)	4.4	ND (2.0)	ND (2.0)	3.5	ND (2.0)	ND (2.0)	
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanesulfonic acid (PFHxS)		19	ND (2.0)	ND (2.0)	26	ND (2.0)	ND (2.0)	22	ND (2.0)	ND (2.0)	
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	3.1*	2.1*	ND (2.0)	ND (2.0)	2.1*	ND (2.0)	
Perfluorooctanoic acid (PFOA)		3.9	ND (2.0)	ND (2.0)	3	ND (2.0)	ND (2.0)	3.8	ND (2.0)	ND (2.0)	
Perfluorooctanesulfonic acid (PFOS)		6.6	ND (2.0)	ND (2.0)	6.9	ND (2.0)	ND (2.0)	6.4	ND (2.0)	ND (2.0)	
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
N-EtFOSAA	1	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Total (All Compounds)		32.9	ND (2.0)	ND (2.0)	40.3	ND (2.0)	ND (2.0)	35.7	ND (2.0)	ND (2.0)	
Regulated Total	20	29.5	ND (2.0)	ND (2.0)	35.9	ND (2.0)	ND (2.0)	32.2	ND (2.0)	ND (2.0)	

NOTES:
Gray colored cells indicate those 6 compounds included in the regulated PFAS Total
ND = Not detected above the lab reporting limits shown in parentheses.
Bolded values exceed the proposed Method 1 Standard
MMCL is Massachustes Maximum Contaminant Level

* PFHpA also detected in both the field blank and trip blank, therefore the reported result is considered invalid. Confirmed as laboratory contaminate. Result is not included in total.

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts							12 Boyl	ston Ave						
Flow Meter Reading (gallons)	Contingency Plan	-	-		4,939			9,900			13,469			24,535	
Sampling Date	GW-1 Standard	1/10/2020	3/20/2020		5/1/2020			6/23/2020			7/31/2020			11/6/2020	
	& MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		9.1		7.5	ND (2.0)	ND (2.0)	8.9	ND (2.0)	ND (2.0)	7.7	ND (2.0)	ND (2.0)	7.5	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	2.1	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		14		14	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)	17	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		5.7		5.9	ND (2.0)	ND (2.0)	6.8	ND (2.0)	ND (2.0)	4.7	ND (2.0)	ND (2.0)	6	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		6.4		5.7	ND (2.0)	ND (2.0)	6.4	ND (2.0)	ND (2.0)	5.9	ND (2.0)	ND (2.0)	6.6	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		35.2		33.1	ND (2.0)	ND (2.0)	42.2	ND (2.0)	ND (2.0)	35.3	ND (2.0)	ND (2.0)	38.1	ND (2.0)	ND (2.0)
Regulated Total	20	26.1		25.6	ND (2.0)	ND (2.0)	31.2	ND (2.0)	ND (2.0)	27.6	ND (2.0)	ND (2.0)	30.6	ND (2.0)	ND (2.0)

Parameter	Massachusetts	12 B	12 Boylston Ave (Continued)					
Flow Meter Reading (gallons)	Contingency Plan		33,116					
Sampling Date	GW-1 Standard & MMCL		1/29/2021					
	& WINCL	INF	MID	EFF				
EPA 537.1 (ng/L)								
Perfluorobutanesulfonic acid (PFBS)		8.7	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		18	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		5.5	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		6.2	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		38.4	ND (2.0)	ND (2.0)				
Regulated Total		29.7	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts			13 Boylston Ave		
Well Depth (feet)	Contingency Plan			~100'		
Sampling Date	GW-1 Standard &	1/8/2020	5/28/2020	10/7/2020	1/22/2021	4/26/2021
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.8
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.8
Regulated Total		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.8

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts									
Well Depth (feet)	Contingency Plan	ONKNOWN								
Sampling Date	GW-1 Standard & MMCL	1/9/2020	5/28/2020	10/7/2020	1/20/2021					
	WHALE									
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		5.3	6.2	5	6.6					
Perfluorohexanoic acid (PFHxA)		3.7	3.9	3.3	3.6					
Perfluorohexanesulfonic acid (PFHxS)		4.7	5.2	6	9.4					
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanoic acid (PFOA)		8	8.9	8.2	8.9					
Perfluorooctanesulfonic acid (PFOS)		7.2	5.5	4.2	5					
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Total (All Compounds)		28.9	29.7	26.7	33.5					
Regulated Total		19.9	19.6	18.4	23.3					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan			ston Ave							
Well Depth (feet)		GIAKINGWIA									
Sampling Date	GW-1 Standard &	1/8/2020	5/28/2020	10/7/2020	1/18/2021						
	MMCL										
EPA 537.1 (ng/L)											
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	2.1						
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	2.1						
Regulated Total		ND (2.0)	ND (2.0)	ND (2.0)	2.1						

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	21 Boylston Ave							
Well Depth (feet)	Contingency Plan		UNKI	IOWN					
Sampling Date	GW-1 Standard &	2/19/2020	7/22/2020	1/19/2021	4/26/2021				
	MMCL								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	24 Boylston Ave								
Well Depth (feet)	Contingency Plan	200								
Sampling Date	GW-1 Standard &	1/9/2020	5/29/2020	10/2/2020	1/19/2021					
	MMCL									
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Regulated Total		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	30 Boylston Ave UNKOWN 5/6/2021
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS)		ND (2.0)
Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS)		ND (2.0) ND (2.0)
Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)		ND (2.0) 2.1
Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA)		ND (2.0) ND (2.0)
Perfluorodecanoic acid (PFDA) N-EtFOSAA		ND (2.0) ND (2.0)
Perfluoroundecanoic acid (PFUnA) N-MeFOSAA		ND (2.0) ND (2.0)
Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTrDA)		ND (2.0) ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)
Total (All Compounds) Regulated Total	20	2.1 2.1

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	32 Boylston Ave				
Well Depth (feet)	Contingency Plan		UNKOWN			
Sampling Date	GW-1 Standard & MMCL	5/28/2020	10/7/2020	1/21/2021		
	IVIIVICL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorooctanoic acid (PFOA)		3.7	3.3	ND (2.0)		
Perfluorooctanesulfonic acid (PFOS)		2.9	2.3	ND (2.0)		
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)		
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)		
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)		
Total (All Compounds)		6.6	5.6	ND (2.0)		
Regulated Total		6.6	5.6	ND (2.0)		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	40 Boylston Ave						
Well Depth (feet)	Contingency Plan		UNKN	IOWN				
Sampling Date	GW-1 Standard & MMCL	4/28/2020	10/1/2020	1/20/2021	4/20/2021			
	IVIIVICE							
EPA 537.1 (ng/L)								
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	2.1			
Perfluorooctanoic acid (PFOA)		5.3	4.6	6	7.5			
Perfluorooctanesulfonic acid (PFOS)		3.9	3.8	4.3	5.3			
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Total (All Compounds)		9.2	8.4	10.3	14.9			
Regulated Total		9.2	8.4	10.3	14.9			

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	6 Connor Lane				
Well Depth (feet)	Contingency Plan GW-1 Standard &		UNKNOWN			
Sampling Date		8/31/2020	1/21/2021	4/20/2021		
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorohexanoic acid (PFHxA)		ND (2.0)	3.3	2.9		
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorooctanoic acid (PFOA)		ND (2.0)	2.3	2.9		
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)		
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)		
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)		
Total (All Compounds)		ND (2.0)	5.6	5.8		
Regulated Total	20	ND (2.0)	2.3	2.9		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	4 Goodnow Road						
Well Depth (feet)	Contingency Plan	UNKNOWN						
Sampling Date	GW-1 Standard &	4/28/2020	10/1/2020	1/21/2021	4/20/2021			
	MMCL							
EPA 537.1 (ng/L)								
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	9 Gregory Rd UNKNOWN 2/1/2020
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA)		ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter (5 - 1)	Massachusetts Contingency Plan	11 Gregory Hill Rd								
Well Depth (feet) Sampling Date	GW-1 Standard &	ONKNOWN								
Sampling Date	MMCL	1/22/2020	3/23/2020	10/1/2020	1/13/2021	4/21/2021				
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Regulated Total		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts									
Well Depth (feet)	Contingency Plan	UNKNOWN								
Sampling Date	GW-1 Standard	1/22/2020	5/29	/2020	10/1/2020	1/19/2021	4/21/2021			
	& MMCL			DUPLICATE						
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			

Gray colored cells indicate those 6 compounds included in the regulated PFAS Total $\,$

ND = Not detected above the lab reporting limits shown in parentheses.

Bolded values exceed the prposed Method 1 Standard

MMCL is Massachusetts Maximun Contaminant Level

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan	14 Gregory Hill Rd							
Well Depth (feet)				UNKNOWN					
Sampling Date	GW-1 Standard & MMCL	1/9/2020	5/29/2020	10/1/2020	1/20/2021	4/20/2021			
	IVIIVICE								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		2.6	2.9	3.6	2.7	3.9			
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	2.7	2.7	2.2			
Perfluorohexanesulfonic acid (PFHxS)		3.7	5.2	11	4.4	7.6			
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanoic acid (PFOA)		3.2	3.4	3.6	2.2	3.4			
Perfluorooctanesulfonic acid (PFOS)		2.5	2.7	3.7	ND (2.0)	2.7			
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Total (All Compounds)		12	14.2	21.9	9.3	17.6			
Regulated Total		9.4	11.3	18.3	6.6	13.7			
negulateu Total	20	J. T	11.5	10.5	0.0	13.7			

TABLE 1 PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

	Massachusetts		15 Gregory Hill Rd												
Flow Meter Reading (gallons)	Contingency Plan	-			5,368			68,471			104,009			189,140	
Sampling Date	GW-1 Standard &	1/13/2020	2/26/2020		3/11/2020			6/23/2020			7/31/2020			11/3/2020	
	MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		2.7		3.6	ND (2.0)	5.1	ND (2.0)	ND (2.0)							
Perfluorohexanoic acid (PFHxA)		2.9		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		5.2		6.6	ND (2.0)	12	ND (2.0)	ND (2.0)							
Perfluoroheptanoic acid (PFHpA)		4.7		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		5.1		2.2	ND (2.0)	2.4	ND (2.0)	ND (2.0)							
Perfluorooctanesulfonic acid (PFOS)		5.4		5.4	ND (2.0)	6.5	ND (2.0)	ND (2.0)							
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds) Regulated Total	20	26 20.4		17.8 14.2	ND (2.0) ND (2.0)	26.0 20.9	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)							

	Massachusetts									
Flow Meter Reading (gallons)	Contingency Plan		199,350			200,005				
Sampling Date	GW-1 Standard &		1/29/2021			4/21/2021				
	MMCL	INF	MID	EFF	INF	MID	EFF			
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		5	ND (2.0)	ND (2.0)	4.6	ND (2.0)	ND (2.0)			
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanesulfonic acid (PFHxS)		11	ND (2.0)	ND (2.0)	12	ND (2.0)	ND (2.0)			
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanoic acid (PFOA)		3.4	ND (2.0)	ND (2.0)	3.0	ND (2.0)	ND (2.0)			
Perfluorooctanesulfonic acid (PFOS)		6.1	ND (2.0)	ND (2.0)	6.5	ND (2.0)	ND (2.0)			
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Total (All Compounds)		25.5	ND (2.0)	ND (2.0)	26.1	ND (2.0)	ND (2.0)			
Regulated Total	20	20.5	ND (2.0)	ND (2.0)	21.5	ND (2.0)	ND (2.0)			

Gray colored cells indicate those 6 compounds included in the regulated PFAS Total

No = Not detected above the lab reporting limits shown in parentheses.

Bolded values exceed the proposed Method 1 Standard

MMCL is Massachusetts Maximun Contaminant Level

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	UNKNOWN							
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanesulfonic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan	44 Gregory Hill Rd					
Well Depth (feet)	GW-1 Standard &		UNKNOWN				
Sampling Date	MMCL	2/5/2020	7/22/2020	1/20/2021			
	IVIIVICE						
EPA 537.1 (ng/L)							
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)			
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)			
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)			
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)			
Regulated Total		ND (2.0)	ND (2.0)	ND (2.0)			

TABLE 1 PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts Contingency							1 Hubba	ardston Rd						
Flow Meter Reading (gallons)	Plan GW-1	-	-		865			1,311			3,896			6,577	
Sampling Date	Standard &	1/8/2020	2/26/2020		3/11/2020			5/1/2020			6/18/2020			7/29/2020	
	MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		7		5.7	ND (2.0)	ND (2.0)	6.4	ND (2.0)	ND (2.0)	6.5	ND (2.0)	ND (2.0)	6.4	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		22		19	ND (2.0)	ND (2.0)	21	ND (2.0)	ND (2.0)	24	ND (2.0)	ND (2.0)	23	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		3.4		3	ND (2.0)	ND (2.0)	3.1	ND (2.0)	ND (2.0)	2.9	ND (2.0)	ND (2.0)	2.9	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		6.1		5.6	ND (2.0)	ND (2.0)	5.7	ND (2.0)	ND (2.0)	6.2	ND (2.0)	ND (2.0)	5.6	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		38.5		33.3	ND (2.0)	ND (2.0)	36.2	ND (2.0)	ND (2.0)	39.6	ND (2.0)	ND (2.0)	37.9	ND (2.0)	ND (2.0)
Regulated Total	20	31.5		27.6	ND (2.0)	ND (2.0)	29.8	ND (2.0)	ND (2.0)	33.1	ND (2.0)	ND (2.0)	31.5	ND (2.0)	ND (2.0)

Parameter	Massachusetts Contingency		1 Hubbardston Rd									
Flow Meter Reading (gallons)	Plan GW-1		13,221			14,674			15,179			
Sampling Date	Standard &		11/13/2020			1/29/2021			4/23/2021			
	MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF		
EPA 537.1 (ng/L)												
Perfluorobutanesulfonic acid (PFBS)		8.5	ND (2.0)	ND (2.0)	9.5	ND (2.0)	ND (2.0)	7.5	ND (2.0)	ND (2.0)		
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	2.1	ND (2.0)	ND (2.0)	2.1	ND (2.0)	ND (2.0)		
Perfluorohexanesulfonic acid (PFHxS)		31	ND (2.0)	ND (2.0)	37	ND (2.0)	ND (2.0)	36	ND (2.0)	ND (2.0)		
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorooctanoic acid (PFOA)		3	ND (2.0)	ND (2.0)	3.7	ND (2.0)	ND (2.0)	5.3	ND (2.0)	ND (2.0)		
Perfluorooctanesulfonic acid (PFOS)		5.7	ND (2.0)	ND (2.0)	8.2	ND (2.0)	ND (2.0)	9.5	ND (2.0)	ND (2.0)		
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
N-EtFOSAA	1	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Total (All Compounds)		48.2	ND (2.0)	ND (2.0)	60.5	ND (2.0)	ND (2.0)	60.4	ND (2.0)	ND (2.0)		
Regulated Total	20	39.7	ND (2.0)	ND (2.0)	48.9	ND (2.0)	ND (2.0)	50.8	ND (2.0)	ND (2.0)		

TABLE 1
POET System Monitoring Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts Contingency		5 Hubbardston Road												
Flow Meter Reading (gallons)	Plan GW-1	1	-		1,131			5,143			11,960			22,710	
Sampling Date	Standard &	12/5/2019	1/28/2020		2/5/2020			3/5/2020			5/1/2020			6/30/2020	
Notes	MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		8.4		6.3	ND (2.0)	ND (2.0)	4.3	ND (2.0)	ND (2.0)	4.6	ND (2.0)	ND (2.0)	4.6	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)		ND (2.0)	ND (2.0)										
Perfluorohexanesulfonic acid (PFHxS)		29		25	ND (2.0)	ND (2.0)	11	ND (2.0)	ND (2.0)	15	ND (2.0)	ND (2.0)	17	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)										
Perfluorooctanoic acid (PFOA)		2.9		2.5	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)	2.9	ND (2.0)	ND (2.0)	2.6	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		7.3		6.9	ND (2.0)	ND (2.0)	4.9	ND (2.0)	ND (2.0)	4.8	ND (2.0)	ND (2.0)	5.5	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)										
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)										
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)										
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)										
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)										
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)										
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)										
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)										
															1 1
Total (All Compounds)		47.6		40.7	ND (2.0)	ND (2.0)	22.9	ND (2.0)	ND (2.0)	27.3	ND (2.0)	ND (2.0)	29.7	ND (2.0)	ND (2.0)
Regulated Total	20	39.2	J	34.4	ND (2.0)	ND (2.0)	18.6	ND (2.0)	ND (2.0)	22.7	ND (2.0)	ND (2.0)	25.1	ND (2.0)	ND (2.0)

Parameter	Massachusetts Contingency		5 Hubbardston Road									
Flow Meter Reading (gallons)	Plan GW-1		27,069			39,213		47,979				
Sampling Date	Standard &		8/5/2020			11/18/2020			2/5/2021			
Notes	MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF		
EPA 537.1 (ng/L)												
Perfluorobutanesulfonic acid (PFBS)		7	ND (2.0)	ND (2.0)	7	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)		
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorohexanesulfonic acid (PFHxS)		27	ND (2.0)	ND (2.0)	28	ND (2.0)	ND (2.0)	16	ND (2.0)	ND (2.0)		
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorooctanoic acid (PFOA)		2.5	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorooctanesulfonic acid (PFOS)		6.7	ND (2.0)	ND (2.0)	6.3	ND (2.0)	ND (2.0)	3.9	ND (2.0)	ND (2.0)		
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Total (All Compounds)		43.2	ND (2.0)	ND (2.0)	44.0	ND (2.0)	ND (2.0)	24.0	ND (2.0)	ND (2.0)		
Regulated Total	20	36.2	ND (2.0)	ND (2.0)	37.0	ND (2.0)	ND (2.0)	19.9	ND (2.0)	ND (2.0)		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts			7 Hubbardston Rd		
Well Depth (feet)	Contingency Plan			400'		
Sampling Date	GW-1 Standard &	12/5/2019	6/5/2020	10/1/2020	1/29/2021	4/21/2021
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		2.3	3.1	3.4	4.9	4.2
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		3.5	5.8	7.1	8.7	8.6
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		2.9	2.4	2.1	3.4	3.1
Perfluorooctanesulfonic acid (PFOS)		3.3	3.5	3.2	3.6	3.7
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		12	14.8	15.8	20.6	19.6
Regulated Total		9.7	11.7	12.4	15.7	15.4

TABLE 1
POET System Monitoring Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts		15 Hubbardston Road												
Flow Meter Reading (gallons)	Contingency Plan	,	-		Not Recorded			3,771			6,855			8,913	
Sampling Date	GW-1 Standard &	12/5/2019	2/11/2020		2/26/2020			5/1/2020			6/18/2020			7/30/2020	
Notes	MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		27		17	ND (2.0)	ND (2.0)	21	ND (2.0)	ND (2.0)	21	ND (2.0)	ND (2.0)	20	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		110		73	ND (2.0)	ND (2.0)	95	ND (2.0)	ND (2.0)	90	ND (2.0)	ND (2.0)	92	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		4.6		3.5	ND (2.0)	ND (2.0)	4.2	ND (2.0)	ND (2.0)	3	ND (2.0)	ND (2.0)	3.9	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		18		14	ND (2.0)	ND (2.0)	21	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)	19	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
													1		
Total (All Compounds)		159.6		107.5	ND (2.0)	ND (2.0)	141.2	ND (2.0)	ND (2.0)	132.0	ND (2.0)	ND (2.0)	134.9	ND (2.0)	ND (2.0)
Regulated Total	20	132.6		90.5	ND (2.0)	ND (2.0)	120.2	ND (2.0)	ND (2.0)	111.0	ND (2.0)	ND (2.0)	114.9	ND (2.0)	ND (2.0)

Parameter	Massachusetts	15 Hubbardston Road									
Flow Meter Reading (gallons)	Contingency Plan		13,958			18,399		22,074			
Sampling Date	GW-1 Standard &	11/6/2020				1/29/2021			4/26/2021		
Notes	MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	
EPA 537.1 (ng/L)											
Perfluorobutanesulfonic acid (PFBS)		21	ND (2.0)	ND (2.0)	27	ND (2.0)	ND (2.0)	27	ND (2.0)	ND (2.0)	
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanesulfonic acid (PFHxS)		110	ND (2.0)	ND (2.0)	120	ND (2.0)	ND (2.0)	120	ND (2.0)	ND (2.0)	
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorooctanoic acid (PFOA)		4	ND (2.0)	ND (2.0)	5	ND (2.0)	ND (2.0)	5	ND (2.0)	ND (2.0)	
Perfluorooctanesulfonic acid (PFOS)		17	ND (2.0)	ND (2.0)	25	ND (2.0)	ND (2.0)	25	ND (2.0)	ND (2.0)	
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Total (All Compounds)		152.0	ND (2.0)	ND (2.0)	177.0	ND (2.0)	ND (2.0)	177.0	ND (2.0)	ND (2.0)	
Regulated Total	20	131.0	ND (2.0)	ND (2.0)	150.0	ND (2.0)	ND (2.0)	150.0	ND (2.0)	ND (2.0)	

NOTES:
Gray colored cells indicate those 6 compounds included in the regulated PFAS Total
ND = Not detected above the lab reporting limits shown in parentheses.
Bolded values exceed the prposed Method 1 Standard

MMCL is Massachusetts Maximun Contaminant Level

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	19 Hubbardston Rd								
Flow Meter Reading (gallons)	Contingency Plan	-	-	-		-		-		-
Sampling Date	GW-1 Standard	12/5/2019		2/26/2020		6/5/2020		11/21/2020	1/23/2021	4/30/2021
	& MMCL		POET INSTALLED BY HOMEOWNER	EFFLUENT ONLY	INF	MID	EFF	INF	INF	INF
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		2.9		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	3.1	2.7	2.2
Perfluorohexanoic acid (PFHxA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		9.7		ND (2.0)	5.8	ND (2.0)	ND (2.0)	13	9.3	6.7
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		12.6		ND (2.0)	5.8	ND (2.0)	ND (2.0)	16.1	12	8.9
Regulated Total	20	9.7		ND (2.0)	5.8	ND (2.0)	ND (2.0)	13	9.3	6.7

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts											
Well Depth (feet)	Contingency Plan			UNKN	IOWN							
Sampling Date	GW-1 Standard	1/10/2020	1/27/2020	5/29/2020	10/2/2020	1/18/2021	4/22/2021					
EPA 537.1 (ng/L)	& MMCL											
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)										
Perfluorohexanoic acid (PFHxA)		ND (2.0)										
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)										
Perfluoroheptanoic acid (PFHpA)		ND (2.0)										
Perfluorooctanoic acid (PFOA)		4.9	5.0	4.1	2.6	3.9	4.7					
Perfluorooctanesulfonic acid (PFOS)		4.1	3.7	3.3	2.3	2.7	3.2					
Perfluorononanoic acid (PFNA)		ND (2.0)										
Perfluorodecanoic acid (PFDA)		ND (2.0)										
N-EtFOSAA		ND (2.0)										
Perfluoroundecanoic acid (PFUnA)		ND (2.0)										
N-MeFOSAA		ND (2.0)										
Perfluorododecanoic acid (PFDoA)		ND (2.0)										
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)										
Perfluorotetradecanoic acid (PFTA)		ND (2.0)										
Total (All Compounds)		9.0	8.7	7.4	4.9	6.6	7.9					
Regulated Total	20	9.0	8.7	7.4	4.9	6.6	7.9					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	33 Hubbardston Rd									
Well Depth (feet)	Contingency Plan	ONKNOWN									
Sampling Date	GW-1 Standard & MMCL	2/5/2020	7/23/2020	1/21/2021	4/26/2021						
504 527 4 (v. //)											
EPA 537.1 (ng/L)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS)		ND (2.0) ND (2.0)	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)						
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorooctanoic acid (PFOA)		ND (2.0)	2.1	ND (2.0)	2.1						
Perfluorooctanoic acid (PFOS)		2.5	2.1	ND (2.0)	2.4						
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
		, ,		, ,							
Total (All Compounds)		2.5	4.2	ND (2.0)	4.5						
Regulated Total	20	2.5	4.2	ND (2.0)	4.5						

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	35 Hubbardston Rd UNKNOWN 11/11/2020
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTDA) Total (All Compounds) Regulated Total		ND (2.0) ND (2.0) ND (2.0) ND (2.0) 7.5 8.4 ND (2.0) 15.9 15.9

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan	36 Hubbardston Rd							
Well Depth (feet)	GW-1 Standard &			IOWN					
Sampling Date		2/6/2020	7/22/2020	1/21/2021	4/27/2021				
	MMCL								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		ND (2.0)	5.4	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	5.0	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds) Regulated Total		ND (2.0) ND (2.0)	10.4 10.4	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)				
negulateu Total	20	ND (2.0)	10.4	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	39 Hubbardston Rd								
Well Depth (feet)	Contingency Plan	UNKI	UNKNOWN 540					1,566		
Sampling Date	GW-1 Standard	1/22/2021	3/12/2021		3/25/2021			5/3/2021		
	& MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		3.1		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanoic acid (PFHxA)		2.4		2.2	ND (2.0)	ND (2.0)	2.1	ND (2.0)	ND (2.0)	
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)		9.6	ND (2.0)	ND (2.0)	9.1	ND (2.0)	ND (2.0)	
Perfluoroheptanoic acid (PFHpA)		3.4		8.3	ND (2.0)	ND (2.0)	7.6	ND (2.0)	ND (2.0)	
Perfluorooctanoic acid (PFOA)		10.4		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorooctanesulfonic acid (PFOS)		11		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Total (All Compounds)		30.3	1	20.1	ND (2.0)	ND (2.0)	18.8	ND (2.0)	ND (2.0)	
Regulated Total	20	24.8]	17.9	ND (2.0)	ND (2.0)	16.7	ND (2.0)	ND (2.0)	

TABLE 1
PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts Contingency Plan		42 Hubbardston Rd									
Well Depth (feet)	GW-1 Standard			-		_		3,096			7,975	
Sampling Date	& MMCL	2/10/2020	7/23/	/2020	1/19/2021	3/2/2021		3/25/2021			4/26/2021	
	& WINCE			DUPLICATE		POET INSTALLED	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)												
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	2.1		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	4.1		2.3	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	6		3.1	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	7.8	7.2	20		14	ND (2.0)	ND (2.0)	11	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	7.9	8.5	12		13	ND (2.0)	ND (2.0)	9.2	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	15.7	15.7	44.2		32.4	ND (2.0)	ND (2.0)	22.9	ND (2.0)	ND (2.0)
Regulated Total	20	ND (2.0)	15.7	15.7	38.0		30.1	ND (2.0)	ND (2.0)	22.9	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts Contingency							43 Hubb	pardston						
Flow Meter Reading (gallons)	Plan GW-1	1	-		2,655			4,953			7,349			11,146	
Sampling Date	Standard &	12/12/2019	3/20/2020		5/8/2020			6/23/2020			7/31/2020			11/11/2020	
	MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		3.5		3.1	ND (2.0)	ND (2.0)	3.1	ND (2.0)	ND (2.0)	2.9	ND (2.0)	ND (2.0)	2.8	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		4.4		4.4	ND (2.0)	ND (2.0)	4.6	ND (2.0)	ND (2.0)	4.5	ND (2.0)	ND (2.0)	3.4	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		15		15	ND (2.0)	ND (2.0)	15	ND (2.0)	ND (2.0)	14	ND (2.0)	ND (2.0)	11	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		10		10	ND (2.0)	ND (2.0)	12	ND (2.0)	ND (2.0)	9.9	ND (2.0)	ND (2.0)	9.3	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		33		32.5	ND (2.0)	ND (2.0)	34.7	ND (2.0)	ND (2.0)	31.3	ND (2.0)	ND (2.0)	26.5	ND (2.0)	ND (2.0)
Regulated Total	20	29	1	29.4	ND (2.0)	ND (2.0)	31.6	ND (2.0)	ND (2.0)	28.4	ND (2.0)	ND (2.0)	23.7	ND (2.0)	ND (2.0)

Parameter Flow Meter Reading (gallons)	Massachusetts Contingency Plan GW-1		43 Hubbardston 15,057	
Sampling Date	Standard &		2/5/2021	
	MMCL	INF	MID	EFF
EPA 537.1 (ng/L)				
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		3.2	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		5.3	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		15	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		13	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		36.5	ND (2.0)	ND (2.0)
Regulated Total	20	33.3	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan	44 Hubbardston Rd							
Well Depth (feet)	GW-1 Standard &	GINKINGWIN							
Sampling Date	MMCL	2/10/2020	7/23/2020	1/19/2021	4/26/2021				
	IVIIVICE								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (4.0)	2.2	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (4.0)	2.1	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		ND (4.0)	7.1	3.3	2.8				
Perfluorooctanesulfonic acid (PFOS)		ND (4.0)	5.6	3.3	2.7				
Perfluorononanoic acid (PFNA)		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (4.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		ND (4.0)	17	6.6	5.5				
Regulated Total	20	ND (4.0)	14.8	6.6	5.5				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	46 Hubbardston Rd							
Well Depth (feet)	Contingency Plan								
Sampling Date	GW-1 Standard & MMCL	2/12/2020	7/23/2020	1/22/2021	4/26/2021				
	IVIIVICE								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	2.6	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	2.2	2.4	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	2.4	2.4	ND (2.0)				
Perfluorooctanoic acid (PFOA)		6.2	8.8	6	6.1				
Perfluorooctanesulfonic acid (PFOS)		6	6.2	5.7	4.9				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		12.2	19.6	19.1	11				
Regulated Total		12.2	17.4	14.1	11				
regulated Total	20	12.2	17.4	14.1	11				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan	48 Hubbardston Rd							
Well Depth (feet) Sampling Date	GW-1 Standard &	2/12/2020	7/23/2020	1/22/2021	3/3/2021	4/19/2021			
Sampling Date	MMCL	2/12/2020	7/23/2020	1/22/2021	3/3/2021	4/13/2021			
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)			
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			
Total (All Compounds)		ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)			
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)			

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	52 Hubbardston Rd							
Well Depth (feet)	Contingency Plan		1	5'					
Sampling Date	GW-1 Standard &	2/12/2020	9/18/2020	1/29/2021	4/26/2021				
	MMCL								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	6/11/2020	73 Hubbardston Ro UNKNOWN 10/2/2020	5/3/2021
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFDOA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts		81 Hubbardston Ro	I
Well Depth (feet)	Contingency Plan		500	
Sampling Date	GW-1 Standard &	4/28/2020	10/2/2020	5/3/2021
	MMCL			
EPA 537.1 (ng/L)				
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet)	Massachusetts Contingency Plan		am Road
Sampling Date	GW-1 Standard &	2/5/2021	4/26/2021
	MMCL		
EPA 537.1 (ng/L)			
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	ND (2.0)
Regulated Total	20	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts		57 Merriam Road									
Well Depth (feet)	Contingency Plan					UNKNOWN						
Sampling Date	GW-1 Standard &	4/28/2020	4/28/2020	10/1,	2/24	2/24/2021						
	MMCL		EFF	INF	EFF	INF	EFF	INF	EFF	INF		
EPA 537.1 (ng/L)												
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	-	2.3	-	3.4*	ND (2.0)	ND (2.0)		
Perfluorooctanoic acid (PFOA)		2.5	ND (2.0)	ND (2.0)	-	6.7	-	5.1	ND (2.0)	4.6		
Perfluorooctanesulfonic acid (PFOS)		4.3	ND (2.0)	ND (2.0)	-	8.7	-	7.2	ND (2.0)	6.6		
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	-	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)		
Total (All Compounds)		6.8	ND (2.0)	ND (2.0)	-	17.7	-	12.3	ND (2.0)	11.2		
Regulated Total	20	6.8	ND (2.0)	ND (2.0)	-	17.7	-	12.3	ND (2.0)	11.2		

Gray colored cells indicate those 6 compounds included in the regulated PFAS Total

ND = Not detected above the lab reporting limits shown in parentheses.

Bolded values exceed the prposed Method 1 Standard

MMCL is Massachusetts Maximun Contaminant Level

^{*} PFHpA also detected in both the field blank and trip blank, therefore the reported result is considered invalid. Confirmed as laboratory contaminate. Result is not included in total. Reference lab reports 21B0096_2 and 21B0997_2

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet)	Massachusetts Contingency Plan	58 Merriam Rd UNKNOWN			
Sampling Date	GW-1 Standard &	10/6/2020	1/21/2021		
	MMCL				
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)		
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)		
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)		
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)		
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)		
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)		
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)		
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)		
N-EtFOSAA		ND (2.0)	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)		
N-MeFOSAA		ND (2.0)	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)		
Total (All Compounds)		ND (2.0)	ND (2.0)		
Regulated Total	20	ND (2.0)	ND (2.0)		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	59 Merriam Rd UNKNOWN 4/28/2020 10/1/2020 4/26/2021				
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS)	IVIIVICE	ND (2.0) ND (2.0) ND (2.0)	ND (2.0) ND (2.0) ND (2.0)	ND (2.0) ND (2.0) ND (2.0)		
Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFDOA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA) Total (All Compounds) Regulated Total		ND (2.0) ND (2.0) ND (2.0) ND (2.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0)		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	70 Merriam Rd			
Well Depth (feet)	Contingency Plan 167				
Sampling Date	GW-1 Standard &	4/28/2020	10/8/2020	1/22/2021	4/30/2021
	MMCL				
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	85 Merriam Rd			
Well Depth (feet)	Contingency Plan	UNKNOWN			
Sampling Date	GW-1 Standard &	2/26/2020	7/22/2020	1/21/2021	4/19/2021
	MMCL				
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	2	2.0
Perfluorooctanoic acid (PFOA)		4.1	5.1	4.8	5.9
Perfluorooctanesulfonic acid (PFOS)		2.7	2.9	3	3.2
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		6.8	8.0	9.8	11.1
Regulated Total		6.8	8.0	9.8	11.1

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	105 Merriam Rd			
Well Depth (feet)	Contingency Plan	ONKNOVIV			
Sampling Date	GW-1 Standard &	2/28/2020	7/21/2020	1/20/2021	4/26/2021
	MMCL				
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan			2 Mountain Rd		
Well Depth (feet) Sampling Date	GW-1 Standard &	1/7/2020	6/5/2020	10/7/2020	1/22/2021	4/26/2021
oumphing suice	MMCL	1,7,2020	0, 3, 2020	10///2020	1, 22, 2021	1, 20, 2021
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	2	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	2.1	ND (2.0)	3.2	3.8
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	2.1	ND (2.0)	5.2	3.8
Regulated Total		ND (2.0)	2.1	ND (2.0)	3.2	3.8

TABLE 1 POET System Monitoring Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts		6 Mountain Road												
Flow Meter Reading (gallons)	Contingency Plan	-	-		1,557			Not Recorded			20,718			25,830	
Sampling Date	GW-1 Standard	12/5/2019	1/28/2020		2/5/2020			3/5/2020			5/8/2020			6/23/2020	
Notes	& MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		8.4		3.7	ND (2.0)	ND (2.0)	5.8	ND (2.0)	ND (2.0)	4.3	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.5	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		23		12	ND (2.0)	ND (2.0)	17	ND (2.0)	ND (2.0)	14	ND (2.0)	ND (2.0)	16	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		2.4		2.1	ND (2.0)	ND (2.0)	2.5	ND (2.0)	ND (2.0)	2.5	ND (2.0)	ND (2.0)	8.2	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		4.7		4.1	ND (2.0)	ND (2.0)	5	ND (2.0)	ND (2.0)	4	ND (2.0)	ND (2.0)	11	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	3.2	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		38.5		21.9	ND (2.0)	ND (2.0)	30.3	ND (2.0)	ND (2.0)	24.8	ND (2.0)	ND (2.0)	45.0	ND (2.0)	ND (2.0)
Regulated Total	20	30.1		18.2	ND (2.0)	ND (2.0)	24.5	ND (2.0)	ND (2.0)	20.5	ND (2.0)	ND (2.0)	38.4	ND (2.0)	ND (2.0)
negatated rotal		-312			(2.0)	(2.0)	_ 233	(2.0)	(2.0)	_515	(2.0)	(2.0)	-534	(2.0)	(2.0)

Parameter	Massachusetts												
Flow Meter Reading (gallons)	Contingency Plan		31,079			Not Recorded			71,731			84,195	
Sampling Date	GW-1 Standard		7/29/2020			11/6/2020			2/5/2021			4/19/2021	
Notes	& MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)													
Perfluorobutanesulfonic acid (PFBS)		3.7	ND (2.0)	ND (2.0)	5.5	ND (2.0)	ND (2.0)	6.6	ND (2.0)	ND (2.0)	6.4	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		13	ND (2.0)	ND (2.0)	21	ND (2.0)	ND (2.0)	28	ND (2.0)	ND (2.0)	29	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)	2.6	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		3.5	ND (2.0)	ND (2.0)	5.1	ND (2.0)	ND (2.0)	5.7	ND (2.0)	ND (2.0)	5.8	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		20.2	ND (2.0)	ND (2.0)	33.8	ND (2.0)	ND (2.0)	43.0	ND (2.0)	ND (2.0)	43.8	ND (2.0)	ND (2.0)
Regulated Total	20	16.5	ND (2.0)	ND (2.0)	28.3	ND (2.0)	ND (2.0)	36.4	ND (2.0)	ND (2.0)	37.4	ND (2.0)	ND (2.0)

TABLE 1 PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts			10 Mou	ntain Rd		
Well Depth (feet)	Contingency Plan			UNKI	NOWN		
Sampling Date	GW-1 Standard	12/5/2019	6/11/2020	10/7/2020	1/21/2021	2/15/2021	4/19/2021
	& MMCL	RAW	RAW	RAW	RAW	TREATED	RAW
EPA 537.1 (ng/L)							
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	2.5	ND (2.0)	2.2	ND (2.0)	2.6
Perfluorohexanoic acid (PFHxA)		ND (2.0)					
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	4.5	3.2	3.8	ND (2.0)	5.5
Perfluoroheptanoic acid (PFHpA)		ND (2.0)					
Perfluorooctanoic acid (PFOA)		ND (2.0)	3.4	ND (2.0)	2.3	ND (2.0)	2.7
Perfluorooctanesulfonic acid (PFOS)		2.0	3.0	ND (2.0)	2.1	ND (2.0)	3.3
Perfluorononanoic acid (PFNA)		ND (2.0)					
Perfluorodecanoic acid (PFDA)		ND (2.0)					
N-EtFOSAA		ND (2.0)					
Perfluoroundecanoic acid (PFUnA)		ND (2.0)					
N-MeFOSAA		ND (2.0)					
Perfluorododecanoic acid (PFDoA)		ND (2.0)					
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)					
Perfluorotetradecanoic acid (PFTA)		ND (2.0)					
Total (All Compounds)		2.0	13.4	3.2	10.4	ND (2.0)	14.1
Regulated Total	20	2.0	10.9	3.2	8.2	ND (2.0)	11.5

Gray colored cells indicate those 6 compounds included in the regulated PFAS Total ND = Not detected above the lab reporting limits shown in parentheses.

Bolded values exceed the prposed Method 1 Standard

MMCL is Massachusetts Maximun Contaminant Level

TABLE 1 PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts Contingency Plan				ntain Rd		
Well Depth (feet)				50	00'		
Sampling Date	GW-1 Standard & MMCL	1/9/2020	1/22/2020	5/29/2020	11/11/2020	1/22/2021	4/20/2021
EPA 537.1 (ng/L)							
Perfluorobutanesulfonic acid (PFBS)		7.4	8.7	7.8	7.7	10	8.5
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		30	35	33	34	46	42
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		2.6	2.3	3.3	2.5	3.6	3.3
Perfluorooctanesulfonic acid (PFOS)		6.1	7.8	7	5.1	9.3	8.0
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		46.1	53.8	51.1	49.3	68.9	61.8
Regulated Total		38.7	45.1	43.3	41.6	58.9	53.3

Gray colored cells indicate those 6 compounds included in the regulated PFAS Total ND = Not detected above the lab reporting limits shown in parentheses.

Bolded values exceed the prposed Method 1 Standard

MMCL is Massachusetts Maximun Contaminant Level

TABLE 1 POET System Monitoring Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts							18 Mounta	in Road						
Flow Meter Reading (gallons)	Contingency Plan	-	-		229			1,237			5,737			11,780	
Sampling Date	GW-1 Standard	1/10/2020	2/11/2020		2/14/2020			3/11/2020			5/1/2020			6/18/2020	
Notes	& MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		25		20	ND (2.0)	ND (2.0)	27	ND (2.0)	ND (2.0)	15	ND (2.0)	ND (2.0)	7.9	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		3.4		2.8	ND (2.0)	ND (2.0)	3.1	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		150		110	ND (2.0)	ND (2.0)	160	ND (2.0)	ND (2.0)	88	ND (2.0)	ND (2.0)	44	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		6.4		5.6	ND (2.0)	ND (2.0)	6.4	ND (2.0)	ND (2.0)	4.9	ND (2.0)	ND (2.0)	3.1	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		61.0		50	ND (2.0)	ND (2.0)	61	ND (2.0)	ND (2.0)	36	ND (2.0)	ND (2.0)	24	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		245.8		188.4	ND (2.0)	ND (2.0)	257.5	ND (2.0)	ND (2.0)	143.9	ND (2.0)	ND (2.0)	79.0	ND (2.0)	ND (2.0)
Regulated Total	20	217.4		165.6	ND (2.0)	ND (2.0)	227.4	ND (2.0)	ND (2.0)	128.9	ND (2.0)	ND (2.0)	71.1	ND (2.0)	ND (2.0)

Parameter	Massachusetts	18 Mountain Rd											
Flow Meter Reading (gallons)	Contingency Plan		20,025			27,827			34,958			39,421	
Sampling Date	GW-1 Standard		7/29/2020			11/3/2020			1/29/2021			4/20/2021	
Notes	& MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)													
Perfluorobutanesulfonic acid (PFBS)		6.8	ND (2.0)	ND (2.0)	4.8	ND (2.0)	ND (2.0)	10	ND (2.0)	ND (2.0)	24	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		42	ND (2.0)	ND (2.0)	28	ND (2.0)	ND (2.0)	55	ND (2.0)	ND (2.0)	160	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		2.4	ND (2.0)	ND (2.0)	2.6	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)	6.3	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		21	ND (2.0)	ND (2.0)	16	ND (2.0)	ND (2.0)	32	ND (2.0)	ND (2.0)	58	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		72.2	ND (2.0)	ND (2.0)	51.4	ND (2.0)	ND (2.0)	101.1	ND (2.0)	ND (2.0)	250.5	ND (2.0)	ND (2.0)
Regulated Total	20	65.4	ND (2.0)	ND (2.0)	46.6	ND (2.0)	ND (2.0)	91.1	ND (2.0)	ND (2.0)	224.3	ND (2.0)	ND (2.0)

Parameter	Massachusetts		19 Mountain Rd NA NA - 400 6.533 12.367												
Flow Meter Reading (gallons)	Contingency Plan	NA					400			6,533			12,367		
Sampling Date	GW-1 Standard	12/4/2019	1/10/2020		1/10/2020			1/17/2020			1/31/2020			3/3/2020	
Notes	& MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		32		9.2	ND (2.0)	ND (2.0)	28	ND (2.0)	ND (2.0)	6.3	ND (2.0)	ND (2.0)	7.1	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		5.1		ND (2.0)	ND (2.0)	ND (2.0)	4.4	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		220		58	ND (2.0)	ND (2.0)	190	ND (2.0)	ND (2.0)	38	ND (2.0)	ND (2.0)	39	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		2.5		ND (2.0)	ND (2.0)	ND (2.0)	2.3	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		11		3.5	ND (2.0)	ND (2.0)	8.9	ND (2.0)	ND (2.0)	3	ND (2.0)	ND (2.0)	3.1	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		190		48	ND (2.0)	ND (2.0)	140	ND (2.0)	ND (2.0)	32	ND (2.0)	ND (2.0)	28	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		460.6		118.7	ND (2.0)	ND (2.0)	373.6	ND (2.0)	ND (2.0)	79.3	ND (2.0)	ND (2.0)	77.2	ND (2.0)	ND (2.0)
Regulated Total	20	421		109.5	ND (2.0)	ND (2.0)	341.2	ND (2.0)	ND (2.0)	73	ND (2.0)	ND (2.0)	70.1	ND (2.0)	ND (2.0)

Parameter	Massachusetts		19 Mountain Rd													
Flow Meter Reading (gallons)	Contingency Plan		25,926			32,780			40,864			58,721			77,051	
Sampling Date	GW-1 Standard		5/8/2020			6/18/2020			7/29/2020			11/3/2020			1/29/2021	
Notes	& MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)																
Perfluorobutanesulfonic acid (PFBS)		11	ND (2.0)	ND (2.0)	42	ND (2.0)	ND (2.0)	12	ND (2.0)	ND (2.0)	28	ND (2.0)	ND (2.0)	13	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		2.6	ND (2.0)	ND (2.0)	8	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	5.5	ND (2.0)	ND (2.0)	3.3	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		71	ND (2.0)	ND (2.0)	350	ND (2.0)	ND (2.0)	80	ND (2.0)	ND (2.0)	210	ND (2.0)	ND (2.0)	81	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	3.7	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.5	ND (2.0)	ND (2.0)	2.1	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		4.2	ND (2.0)	ND (2.0)	12	ND (2.0)	ND (2.0)	4	ND (2.0)	ND (2.0)	9.9	ND (2.0)	ND (2.0)	6.2	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		44	ND (2.0)	ND (2.0)	230	ND (2.0)	ND (2.0)	55	ND (2.0)	ND (2.0)	150	ND (2.0)	ND (2.0)	71	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
														1		
Total (All Compounds)		132.8	ND (2.0)	ND (2.0)	645.7	ND (2.0)	ND (2.0)	151.0	ND (2.0)	ND (2.0)	405.9	ND (2.0)	ND (2.0)	176.6	ND (2.0)	ND (2.0)
Regulated Total	20	119.2	ND (2.0)	ND (2.0)	595.7	ND (2.0)	ND (2.0)	139.0	ND (2.0)	ND (2.0)	372.4	ND (2.0)	ND (2.0)	160.3	ND (2.0)	ND (2.0)

Parameter	Massachusetts		19 Mountain Rd	
Flow Meter Reading (gallons)	Contingency Plan		92,089	
Sampling Date	GW-1 Standard		4/22/2021	
Notes	& MMCL	INF	MID	EFF
EPA 537.1 (ng/L)				
Perfluorobutanesulfonic acid (PFBS)		21	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		6.1	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		170	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		2.3	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		9.2	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		130	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		338.6	ND (2.0)	ND (2.0)
Regulated Total	20	311.5	ND (2.0)	ND (2.0)

TABLE 1
POET System Monitoring Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts Contingency		295 - 13,640 16,740												
Flow Meter Reading (gallons)	Plan GW-1	1	-		295			-			13,640			16,740	
Sampling Date	Standard &	1/10/2020	2/11/2020		2/14/2020			3/17/2020			6/18/2020			7/29/2020	
Notes	MMCL		POET INSTALLED	INF	MID	EFF									
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		12		14	ND (2.0)	ND (2.0)	15	ND (2.0)	ND (2.0)	19	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)		2.1	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		60		74	ND (2.0)	ND (2.0)	78	ND (2.0)	ND (2.0)	120	ND (2.0)	ND (2.0)	110	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		3.5		4.1	ND (2.0)	ND (2.0)	4.2	ND (2.0)	ND (2.0)	5.2	ND (2.0)	ND (2.0)	4.3	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		22		28	ND (2.0)	ND (2.0)	30	ND (2.0)	ND (2.0)	44	ND (2.0)	ND (2.0)	44	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
				-											
Total (All Compounds)		97.5		122.2	ND (2.0)	ND (2.0)	127.2	ND (2.0)	ND (2.0)	190.9	ND (2.0)	ND (2.0)	176.3	ND (2.0)	ND (2.0)
Regulated Total	20	86		106.1	ND (2.0)	ND (2.0)	112.2	ND (2.0)	ND (2.0)	169.2	ND (2.0)	ND (2.0)	158.3	ND (2.0)	ND (2.0)

Parameter	Massachusetts Contingency					20 Mountain Road	I			
Flow Meter Reading (gallons)	Plan GW-1		25,895			31,955			39,074	
Sampling Date	Standard &		11/18/2020			1/29/2021			4/26/2021	
Notes	MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		18	ND (2.0)	ND (2.0)	22	ND (2.0)	ND (2.0)	17	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		2.9	ND (2.0)	ND (2.0)	3.1	ND (2.0)	ND (2.0)	3.1	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		110	ND (2.0)	ND (2.0)	130	ND (2.0)	ND (2.0)	97	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		6.1	ND (2.0)	ND (2.0)	6.4	ND (2.0)	ND (2.0)	4.9	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		43	ND (2.0)	ND (2.0)	51	ND (2.0)	ND (2.0)	38	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		180.0	ND (2.0)	ND (2.0)	212.5	ND (2.0)	ND (2.0)	160.0	ND (2.0)	ND (2.0)
Regulated Total	20	159.1	ND (2.0)	ND (2.0)	187.4	ND (2.0)	ND (2.0)	139.9	ND (2.0)	ND (2.0)

NOTES:
Gray colored cells indicate those 6 compounds included in the regulated PFAS Total
ND = Not detected above the lab reporting limits shown in parentheses.
Bolded values exceed the prposed Method 1 Standard

Parameter	Massachusetts							21 Mou	ntain Rd						
Flow Meter Reading (gallons)	Contingency Plan	NA	NA		161			3,726			5,410			14,256	
Sampling Date	GW-1 Standard &	12/5/2020	1/21/2020		1/24/2020			1/31/2020			2/7/2020		3/17/2020		
Notes	MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		8.2		7.5	ND (2.0)	ND (2.0)	5.5	ND (2.0)	ND (2.0)	4.3	ND (2.0)	ND (2.0)	7.4	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		2.4		2.0	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)	3.2	ND (2.0)	ND (2.0)	3	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		53		47	ND (2.0)	ND (2.0)	37	ND (2.0)	ND (2.0)	28	ND (2.0)	ND (2.0)	46	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.1	ND (2.0)	ND (2.0)	3.2	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		5.4		4.6	ND (2.0)	ND (2.0)	5.7	ND (2.0)	ND (2.0)	5.4	ND (2.0)	ND (2.0)	4.7	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		44		37	ND (2.0)	ND (2.0)	35	ND (2.0)	ND (2.0)	26	ND (2.0)	ND (2.0)	35	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		113		98.1	ND (2.0)	ND (2.0)	85.4	ND (2.0)	ND (2.0)	69.0	ND (2.0)	ND (2.0)	99.3	ND (2.0)	ND (2.0)
Regulated Total	20	102.4		88.6	ND (2.0)	ND (2.0)	77.7	ND (2.0)	ND (2.0)	61.5	ND (2.0)	ND (2.0)	88.9	ND (2.0)	ND (2.0)

									21 Mountain Rd							
Parameter	Massachusetts								21 Wouldain Nu							
Flow Meter Reading (gallons)	Contingency Plan		28,173			63,830			78,724			112,079			135,525	-
Sampling Date	GW-1 Standard &		5/8/2020			6/30/2020			7/31/2020			11/6/2020			2/5/2021	
Notes	MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)																
Perfluorobutanesulfonic acid (PFBS)		4	ND (2.0)	ND (2.0)	4.5	ND (2.0)	ND (2.0)	5.6	ND (2.0)	ND (2.0)	3.1	ND (2.0)	ND (2.0)	4.6	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		2.4	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		25	ND (2.0)	ND (2.0)	29	ND (2.0)	ND (2.0)	37	ND (2.0)	ND (2.0)	19	ND (2.0)	ND (2.0)	27	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		5.4	ND (2.0)	ND (2.0)	5.0	ND (2.0)	ND (2.0)	4.5	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)	5.4	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		21	ND (2.0)	ND (2.0)	24	ND (2.0)	ND (2.0)	25	ND (2.0)	ND (2.0)	16	ND (2.0)	ND (2.0)	21	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		57.8	ND (2.0)	ND (2.0)	64.7	ND (2.0)	ND (2.0)	72.1	ND (2.0)	ND (2.0)	42.2	ND (2.0)	ND (2.0)	62.7	ND (2.0)	ND (2.0)
Regulated Total		51.4	ND (2.0)	ND (2.0)	58	ND (2.0)	ND (2.0)	66.5	ND (2.0)	ND (2.0)	39.1	ND (2.0)	ND (2.0)	55.4	ND (2.0)	ND (2.0)

Parameter Flow Meter Reading (gallons)	Massachusetts Contingency Plan							
Sampling Date	GW-1 Standard &		4/19/2021					
Notes	MMCL	INF	MID	EFF				
EPA 537.1 (ng/L)								
Perfluorobutanesulfonic acid (PFBS)		3.2	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		23	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		4.5	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		18	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		48.7	ND (2.0)	ND (2.0)				
Regulated Total	20	45.5	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts								ntain Rd						
Flow Meter Reading (gallons)	Contingency Plan		-		544			1,009			1,131			1,156	
Sampling Date	GW-1 Standard & MMCL	7/31/2020	9/3/2020		9/10/2020			11/18/2020			2/5/2021			4/19/2021	
	& MINICL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		86		85	ND (2.0)	ND (2.0)	29	ND (2.0)	ND (2.0)	85	ND (2.0)	ND (2.0)	85	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		8.7		15	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)	15	ND (2.0)	ND (2.0)	13	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		490		570	ND (2.0)	ND (2.0)	160	ND (2.0)	ND (2.0)	570	ND (2.0)	ND (2.0)	530	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		3.7		5.8	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	5.8	ND (2.0)	ND (2.0)	5.6	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		16		18	ND (2.0)	ND (2.0)	7.9	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)	23	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		180		170	ND (2.0)	ND (2.0)	79	ND (2.0)	ND (2.0)	170	ND (2.0)	ND (2.0)	220	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
									1	1			1		l
Total (All Compounds)		784.4		863.8	ND (2.0)	ND (2.0)	280	ND (2.0)	ND (2.0)	863.8	ND (2.0)	ND (2.0)	876.6	ND (2.0)	ND (2.0)
Regulated Total	20	689.7		763.8	ND (2.0)	ND (2.0)	246.9	ND (2.0)	ND (2.0)	763.8	ND (2.0)	ND (2.0)	778.6	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts							29 Mou	ntain Rd						
Flow Meter Reading (gallons)	Contingency Plan	-			-				-		-		3,090		
Sampling Date	GW-1 Standard	1/8/2020	2/24/2020		3/11/2020			5/8/	2020		6/3/2020		6/30/2020		7/14/2020
	& MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	EFF DUPLICATE	EFF	INF	MID	EFF	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		9.6		6.7	ND (2.0)	ND (2.0)	4	ND (2.0)	2.9	2	ND (2.0)	4.9	ND (2.0)	4.2	ND (2.0)
Perfluorohexanoic acid (PFHxA)		2.5		2	ND (2.0)	ND (2.0)	2	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.1	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		59		41	ND (2.0)	ND (2.0)	21	ND (2.0)	16	10	ND (2.0)	25	ND (2.0)	23	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		5.3		5.1	ND (2.0)	ND (2.0)	4.4	ND (2.0)	3.5	2.2	ND (2.0)	4.7	ND (2.0)	4.5	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		53		38	ND (2.0)	ND (2.0)	27	ND (2.0)	21	13	ND (2.0)	21	ND (2.0)	22	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		129.4		92.8	ND (2.0)	ND (2.0)	58.4	ND (2.0)	43.4	27.2	ND (2.0)	55.6	ND (2.0)	55.8	ND (2.0)
Regulated Total	20	117.3		84.1	ND (2.0)	ND (2.0)	52.4	ND (2.0)	40.5	25.2	ND (2.0)	50.7	ND (2.0)	49.5	ND (2.0)
Regulated Total	20	117.3	-	84.1	ND (2.0)	ND (2.0)	52.4	ND (2.0)	40.5	25.2	ND (2.0)	50.7	ND (2.0)	49.5	ND (2.0)

Parameter	Massachusetts 29 Mountain Rd Contingency Plan 5 301 25 532 32 995											
Flow Meter Reading (gallons)						25,532						
Sampling Date	GW-1 Standard & MMCL		7/29/2020			1/29/2021			4/20/2021			
	& MINICL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF		
EPA 537.1 (ng/L)												
Perfluorobutanesulfonic acid (PFBS)		5.2	ND (2.0)	ND (2.0)	3.8	ND (2.0)	ND (2.0)	4	ND (2.0)	ND (2.0)		
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorohexanesulfonic acid (PFHxS)		30	ND (2.0)	ND (2.0)	21	ND (2.0)	ND (2.0)	22	ND (2.0)	ND (2.0)		
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorooctanoic acid (PFOA)		3.8	ND (2.0)	ND (2.0)	3.9	ND (2.0)	ND (2.0)	4.7	ND (2.0)	ND (2.0)		
Perfluorooctanesulfonic acid (PFOS)		22	ND (2.0)	ND (2.0)	16	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)		
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		
Total (All Compounds)		61.0	ND (2.0)	ND (2.0)	44.7	ND (2.0)	ND (2.0)	48.7	ND (2.0)	ND (2.0)		
Regulated Total	20	55.8	ND (2.0)	ND (2.0)	40.9	ND (2.0)	ND (2.0)	44.7	ND (2.0)	ND (2.0)		

TABLE 1 PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts					30 Mou	ntain Rd				
Flow Meter Reading (gallons)	Contingency Plan	-	-	-	-		37			80	
Sampling Date	GW-1 Standard	1/27/2020	6/5/2020	10/13/2020	2/15/2021		2/22/2021			3/22/2021	
	& MMCL				POET INSTALLED	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)											
Perfluorobutanesulfonic acid (PFBS)		<2.0	<2.0	3.2		2.2	ND (2.0)	ND (2.0)	2.9	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		<2.0	<2.0	2.9		2.1	ND (2.0)	ND (2.0)	2.8	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		4.4	3.9	22		16	ND (2.0)	ND (2.0)	16	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	2.3		ND (2.0)	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		6.1	4.6	8.6		8.1	ND (2.0)	ND (2.0)	8.2	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		5.4	4.1	16		13	ND (2.0)	ND (2.0)	13	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		15.9	12.6	52.7		41.4	ND (2.0)	ND (2.0)	45.6	ND (2.0)	ND (2.0)
Regulated Total		15.9	12.6	46.6	1	37.1	ND (2.0)	ND (2.0)	39.9	ND (2.0)	ND (2.0)
Regulated Total	20	13.9	12.0	40.0		37.1	ND (2.0)	ND (2.0)	33.3	ND (2.0)	ND (2.0)

Gray colored cells indicate those 6 compounds included in the regulated PFAS Total

ND = Not detected above the lab reporting limits shown in parentheses.

Bolded values exceed the propsed Method 1 Standard

MMCL is Massachusetts Maximun Contaminant Level

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan	33 Mountain Rd UNKNOWN								
Well Depth (feet)										
Sampling Date	GW-1 Standard &	2/7/2020	7/22/2020	1/21/2021	4/16/2021					
	MMCL									
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	2.5	2.2					
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Total (All Compounds)		ND (2.0)	ND (2.0)	2.5	2.2					
Regulated Total	20	ND (2.0)	ND (2.0)	2.5	2.2					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts		38 Mou	ntain Rd	
Well Depth (feet)	Contingency Plan				
Sampling Date	GW-1 Standard &	2/14/2020	7/21/2020	1/20/2021	4/27/2021
	MMCL				
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	3	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		2.2	2.4	2.1	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		2.2	5.4	2.1	ND (2.0)
Regulated Total		2.2	5.4	2.1	ND (2.0)

Parameter	Massachusetts Contingency								51 Mountain Rd							
Flow Meter Reading (gallons)	Plan GW-1	-	-			11			1,080			3,312			11,491	
Sampling Date	Standard &	2/12/2020	5/1/2020		5/28,	/2020			6/23/2020			7/31/2020		11/11/2020		
	MMCL		POET INSTALLED	INF	MID	EFF	EFF DUPLICATE	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)																
Perfluorobutanesulfonic acid (PFBS)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		6.9		6.1	ND (2.0)	ND (2.0)	ND (2.0)	5.1	ND (2.0)	ND (2.0)	6.8	ND (2.0)	ND (2.0)	6.6	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		9.5		9.4	ND (2.0)	ND (2.0)	ND (2.0)	9.0	ND (2.0)	ND (2.0)	11	ND (2.0)	ND (2.0)	9.2	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		29		29	ND (2.0)	ND (2.0)	ND (2.0)	28	ND (2.0)	ND (2.0)	30	ND (2.0)	ND (2.0)	30	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		24		23	ND (2.0)	2.9	ND (2.0)	21	ND (2.0)	ND (2.0)	24	ND (2.0)	ND (2.0)	26	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (4.0)		3	ND (2.0)	ND (2.0)	ND (2.0)	2.6	ND (2.0)	ND (2.0)	3.2	ND (2.0)	ND (2.0)	3.1	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		69.4		70.5	ND (2.0)	2.9	ND (2.0)	65.7	ND (2.0)	ND (2.0)	75.0	ND (2.0)	ND (2.0)	74.9	ND (2.0)	ND (2.0)
Regulated Total	20	62.5		64.4	ND (2.0)	2.9	ND (2.0)	60.6	ND (2.0)	ND (2.0)	68.2	ND (2.0)	ND (2.0)	68.3	ND (2.0)	ND (2.0)

Parameter Flow Meter Reading (gallons)	Massachusetts Contingency Plan GW-1		51 Mountain Rd 18,344 2/5/2021	
Sampling Date	Standard & MMCL	INF	MID	EFF
FA 537. Inp(I) Perfluorobatementionic acid (PFBS) Perfluorobatementionic acid (PFBS) Perfluorobatemic acid (PFHA) Perfluorobatemic acid (PFHA) Perfluorobatemic acid (PFHA) Perfluoroctanesis acid (PFDA) Perfluoroctanesis acid (PFDA) Perfluoroctanesis acid (PFDA) Perfluoroctanesis acid (PFDA) Perfluorotdecanoic acid (PFTDA)		ND (2.0) 4.1 ND (2.0) 7.8 25 18 2.2 ND (2.0)	ND (2.0)	ND (2-0)
Total (All Compounds) Regulated Total		57.1 53.0	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts							54 Mou	ntain Rd						
Flow Meter Reading (gallons)	Contingency Plan	-	-	15,502				42,195			59,957			108,792	
Sampling Date	GW-1 Standard	2/26/2020	6/2/2020		6/22/2020			8/5/2020			9/2/2020		11/18/2020		
	& MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		5.2		5.0	ND (2.0)	ND (2.0)	4.2	ND (2.0)	ND (2.0)	4.3	ND (2.0)	ND (2.0)	5.7	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		7.6		7.9	ND (2.0)	ND (2.0)	6.7	ND (2.0)	ND (2.0)	7.4	ND (2.0)	ND (2.0)	9.6	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		20		24	ND (2.0)	ND (2.0)	23	ND (2.0)	ND (2.0)	24	ND (2.0)	ND (2.0)	27	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		18		24	ND (2.0)	ND (2.0)	22	ND (2.0)	ND (2.0)	21	ND (2.0)	ND (2.0)	22	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (4.0)		2.5	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)	2.9	ND (2.0)	ND (2.0)	2.6	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		50.8] [63.4	ND (2.0)	ND (2.0)	58.1	ND (2.0)	ND (2.0)	59.6	ND (2.0)	ND (2.0)	66.9	ND (2.0)	ND (2.0)
Regulated Total	20	45.6	1	58.4	ND (2.0)	ND (2.0)	53.9	ND (2.0)	ND (2.0)	55.3	ND (2.0)	ND (2.0)	61.2	ND (2.0)	ND (2.0)

Parameter	Massachusetts			54 Mou	ntain Rd		
Flow Meter Reading (gallons)	Contingency Plan		159,296			191,908	
Sampling Date	GW-1 Standard		2/15/2021			4/23/2021	
	& MMCL	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)							
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		4.7	ND (2.0)	ND (2.0)	6.8	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		8	ND (2.0)	ND (2.0)	10	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		23	ND (2.0)	ND (2.0)	32	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		23	ND (2.0)	ND (2.0)	30	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		2.5	ND (2.0)	ND (2.0)	3.3	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		61.2	ND (2.0)	ND (2.0)	82.1	ND (2.0)	ND (2.0)
Regulated Total	20	56.5	ND (2.0)	ND (2.0)	75.3	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts							58 Mou	ntain Rd						
Flow Meter Reading (gallons)	Contingency Plan				2,131			8,428			22,138			50,278	
Sampling Date	GW-1 Standard	2/26/2020	7/7/2020		7/14/2020			7/31/2020			8/31/2020			11/6/2020	
	& MMCL		POET INSTALLED	INF	MID	EFF									
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	15	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		19		19	ND (2.0)	ND (2.0)	3.6	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	11	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	28	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		29		31	ND (2.0)	ND (2.0)	6	ND (2.0)	ND (2.0)	94	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		89		95	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)	270	ND (2.0)	ND (2.0)	67	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		210		230	ND (2.0)	ND (2.0)	35	ND (2.0)	ND (2.0)	19	ND (2.0)	ND (2.0)	130	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		20		20	ND (2.0)	ND (2.0)	3.5	ND (2.0)	ND (2.0)	5.7	ND (2.0)	ND (2.0)	14	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		6.2		6.9	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	4.2	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (4.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		373.2	1	401.9	ND (2.0)	ND (2.0)	66.1	ND (2.0)	ND (2.0)	431.7	ND (2.0)	ND (2.0)	244.2	ND (2.0)	ND (2.0)
Regulated Total	20	354.2		382.9	ND (2.0)	ND (2.0)	62.5	ND (2.0)	ND (2.0)	416.7	ND (2.0)	ND (2.0)	233.2	ND (2.0)	ND (2.0)

Parameter	Massachusetts			58 Mou	ntain Rd		
low Meter Reading (gallons)	Contingency Plan		66,979			81,707	
Sampling Date	GW-1 Standard		2/5/2021			4/21/2021	
	& MMCL	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)							
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		5	ND (2.0)	ND (2.0)	15	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		9	ND (2.0)	ND (2.0)	26	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		23	ND (2.0)	ND (2.0)	83	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		44	ND (2.0)	ND (2.0)	180	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		6.3	ND (2.0)	ND (2.0)	16	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	4.4	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)				
Total (All Compounds)		87.7	ND (2.0)	ND (2.0)	324.4	ND (2.0)	ND (2.0)
Regulated Total	20	82.7	ND (2.0)	ND (2.0)	309.4	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency							64 Mou	ntain Rd						
Flow Meter Reading (gallons)	Plan GW-1	-	-		Not Recorded			11,667			27,440			38,902	
Sampling Date	Standard &	1/30/2020	2/18/2020		3/3/2020			5/8/2020			6/18/2020			7/29/2020	
	MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		14		20	ND (2.0)	ND (2.0)	15	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)	2	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		19		23	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)	22	ND (2.0)	ND (2.0)	2.6	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		34		44	ND (2.0)	ND (2.0)	34	ND (2.0)	ND (2.0)	43	ND (2.0)	ND (2.0)	5.3	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		22		20	ND (2.0)	ND (2.0)	15	ND (2.0)	ND (2.0)	20	ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		2.5	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)	2.3	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		89		109.5	ND (2.0)	ND (2.0)	84.2	ND (2.0)	ND (2.0)	105.3	ND (2.0)	ND (2.0)	12.4	ND (2.0)	ND (2.0)
Regulated Total	20	75		89.5	ND (2.0)	ND (2.0)	69.2	ND (2.0)	ND (2.0)	87.3	ND (2.0)	ND (2.0)	10.3	ND (2.0)	ND (2.0)

Parameter	Massachusetts Contingency					64 Mountain Rd				
Flow Meter Reading (gallons)	Plan GW-1		75,168			86,631			97,368	
Sampling Date	Standard &		11/6/2020			1/29/2021			4/21/2021	
	MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		14	ND (2.0)	ND (2.0)	18	ND (2.0)	ND (2.0)	11	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		18	ND (2.0)	ND (2.0)	24	ND (2.0)	ND (2.0)	12	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		43	ND (2.0)	ND (2.0)	53	ND (2.0)	ND (2.0)	19	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		16	ND (2.0)	ND (2.0)	22	ND (2.0)	ND (2.0)	12	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		3.1	ND (2.0)	ND (2.0)	5.1	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		94.1	ND (2.0)	ND (2.0)	124.5	ND (2.0)	ND (2.0)	54.0	ND (2.0)	ND (2.0)
Regulated Total	20	80.1	ND (2.0)	ND (2.0)	104.1	ND (2.0)	ND (2.0)	43.0	ND (2.0)	ND (2.0)

TABLE 1 POET System Monitoring Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts							5 Prospe	ect Street						
Flow Meter Reading (gallons)	Contingency Plan	NA	NA		127			182			188			47,737	
Sampling Date	GW-1 Standard	1/13/2020	1/21/2020		1/24/2020			1/31/2020			2/7/2020			6/18/2020	
Notes	& MMCL		POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		9.4		2.4	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		32		6.6	ND (2.0)	ND (2.0)	2.5	ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)	7	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		6.2		3	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.8	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		47.6		12.0	ND (2.0)	ND (2.0)	2.5	ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)	12.2	ND (2.0)	ND (2.0)
Regulated Total	20	38.2		9.6	ND (2.0)	ND (2.0)	2.5	ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)	9.8	ND (2.0)	ND (2.0)

Parameter	Massachusetts								5 Prospect Street							
Flow Meter Reading (gallons)	Contingency Plan		47,737			70,000			156,306			174,265			188,495	
Sampling Date	GW-1 Standard		6/18/2020			7/27/2020			11/6/2020			1/29/2021			4/19/2021	
Notes	& MMCL	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)																
Perfluorobutanesulfonic acid (PFBS)		2.4	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)	2.3	ND (2.0)	ND (2.0)	4.6	ND (2.0)	ND (2.0)	4.2	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		7	ND (2.0)	ND (2.0)	5.6	ND (2.0)	ND (2.0)	6	ND (2.0)	ND (2.0)	14	ND (2.0)	ND (2.0)	17	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)	2.2	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		2.8	ND (2.0)	ND (2.0)	2.6	ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		12.2	ND (2.0)	ND (2.0)	10.4	ND (2.0)	ND (2.0)	10.7	ND (2.0)	ND (2.0)	24.9	ND (2.0)	ND (2.0)	27.5	ND (2.0)	ND (2.0)
Regulated Total	20	9.8	ND (2.0)	ND (2.0)	8.2	ND (2.0)	ND (2.0)	8.4	ND (2.0)	ND (2.0)	20.3	ND (2.0)	ND (2.0)	23.3	ND (2.0)	ND (2.0)

Gray colored cells indicate those 6 compounds included in the regulated PFAS Total

ND = Not detected above the lab reporting limits shown in parentheses.
Bolded values exceed the prposed Method 1 Standard
MMCL is Massachusetts Maximun Contaminant Level

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts			7 Prospect St		
Well Depth (feet)	Contingency Plan			UNKNOWN		
Sampling Date	GW-1 Standard &	12/9/2019	6/5/2020	10/16/2020	1/19/2021	4/23/2021
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		3.1	2.7	2.9	3.4	3.7
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		8.8	11	11	11	15
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		4.5	6	5.2	5	6.9
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		16.4	19.7	19.1	19.4	25.6
Regulated Total		13.3	17.0	16.2	16.0	21.9
		2.0				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts				11 Prospect St			
Well Depth (feet)	Contingency Plan				~137'			
Sampling Date	GW-1 Standard & MMCL	1/8/2020		2/20/2020		9/10/2020	1/28/2021	4/21/2021
	WINICL		INF	MID	EFF	INF	INF	INF
EPA 537.1 (ng/L)								
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		2.1	3.3	ND (2.0)	ND (2.0)	3.4	4.7	5.8
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		2.3	2.5	ND (2.0)	ND (2.0)	3.7	3.5	4.1
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		4.4	5.8	ND (2.0)	ND (2.0)	7.1	8.2	9.9
Regulated Total		4.4	5.8	ND (2.0)	ND (2.0)	7.1	8.2	9.9

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet)	Massachusetts Contingency Plan			16 Prospect St 255'		
Sampling Date	GW-1 Standard &	1/22/2020	6/5/2020	10/8/2020	1/20/2021	4/22/2021
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Regulated Total		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan			17 Prospect St		
Well Depth (feet)				UNKNOWN		
Sampling Date	GW-1 Standard &	1/8/2020	6/5/2020	10/8/2020	1/19/2021	4/20/2021
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		2.8	ND (2.0)	2.0	2.0	2.4
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		2.8	ND (2.0)	2.0	2.0	2.4
Regulated Total		2.8	ND (2.0)	2.0	2.0	2.4
			(=:5)			

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts			18 Prospect St		
Well Depth (feet)	Contingency Plan			UNKNOWN		
Sampling Date	GW-1 Standard &	1/8/2020	6/5/2020	10/8/2020	1/22/2021	4/19/2021
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	2.0	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	2.0	ND (2.0)
Regulated Tota		ND (2.0)	ND (2.0)	ND (2.0)	2.0	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan									
Well Depth (feet)		ONNIVOWIN								
Sampling Date	GW-1 Standard &	2/5/2020	7/22/2020	1/29/2021	4/19/2021					
	MMCL									
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Total (All Compounds) Regulated Total		ND (2.0) ND (2.0)	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan		26 Prospect St				
Well Depth (feet)	GW-1 Standard &	UNKNOWN					
Sampling Date	MMCL	2/6/2020	7/23/2020	3/3/2021			
EPA 537.1 (ng/L)							
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	2.4			
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)			
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)			
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)			
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)			
Total (All Compounds)		ND (2.0)	ND (2.0)	2.4			
Regulated Total	20	ND (2.0)	ND (2.0)	2.4			

TABLE 1 PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts		41 Prospect Street										
Flow Meter Reading (gallons)	Contingency Plan	-				164,724			Not Recorded			167,619	
Sampling Date	GW-1 Standard	5/15/2020	10/13/2020	12/22/2021		12/30/2020			2/15/2021			3/25/2021	
	& MMCL			EXISTING POET ACTIVE	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)													
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	2.6		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	4.6		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	14		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	9.9		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	31.1		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Regulated Total	20	ND (2.0)	28.5		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)

Parameter Flow Meter Reading (gallons) Sampling Date	Massachusetts Contingency Plan GW-1 Standard	41 Prospect Street 169,007 4/21/2021				
	& MMCL	INF	MID	EFF		
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanoic acid (PFHxA) Perfluorobexanoic acid (PFHxA) Perfluorobexanoic acid (PFHxA) Perfluorobexanoic acid (PFHA) Perfluoroctanoic acid (PFDA) Perfluoronoctanoic acid (PFDA) Perfluoronomoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EFGSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTDA) Perfluorotridecanoic acid (PFTDA)		ND (2.0)	ND (2.0)	ND (2.0)		
Total (All Compounds) Regulated Total		ND (2.0) ND (2.0)	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	41 Prospect Street Runoff
Flow Meter Reading (gallons)	Contingency Plan	-
Sampling Date	GW-1 Standard	4/22/2021
	& MMCL	
EPA 537.1 (ng/L)		
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)
N-EtFOSAA		ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)
N-MeFOSAA		ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)
Total (All Compounds)		ND (2.0)
Regulated Total	20	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	2 Radford Rd							
Well Depth (feet)	Contingency Plan								
Sampling Date	GW-1 Standard &	2/19/2020	11/30/2021	1/21/2021	4/21/2021				
	MMCL								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Regulated Total		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan									
Well Depth (feet)										
Sampling Date	GW-1 Standard &	2/28/2020	7/21/2020	1/21/2021	4/21/2021					
	MMCL									
EPA 537.1 (ng/L)										
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	2.7					
Perfluorooctanesulfonic acid (PFOS)		2.3	3.2	2.5	3.2					
Perfluorononanoic acid (PFNA)		ND (2.0)	2.7	ND (2.0)	ND (2.0)					
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)					
Total (All Compounds)		2.3	5.9	2.5	5.9					
Regulated Total		2.3	5.9	2.5	5.9					

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts								
Well Depth (feet)	Contingency Plan								
Sampling Date	GW-1 Standard &	2/28/2020	7/21/2020	1/21/2021	4/21/2021				
	MMCL								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		3.9	4.1	3.9	5.4				
Perfluorooctanesulfonic acid (PFOS)		2.5	3.1	2.4	3.6				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		6.4	7.2	6.3	9.0				
Regulated Total	20	6.4	7.2	6.3	9.0				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts		ford Rd						
Well Depth (feet)	Contingency Plan	_							
Sampling Date	GW-1 Standard &	2/14/2020	7/22/2021	1/21/2021	4/22/2021				
	MMCL								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		2.7	3.1	2.3	3.7				
Perfluorooctanesulfonic acid (PFOS)		2.3	3.1	2.1	2.9				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds)		5.0	6.2	4.4	6.6				
Regulated Total		5.0	6.2	4.4	6.6				
negulated Total	20	5.0	0.2	7.7	0.0				

TABLE 1 PFAS Drinking Water Summary Princeton, Massachusetts RTN 2-21072

Parameter	Massachusetts		12 Radford Rd												
Flow Meter Reading (gallons)	Contingency Plan	-		879				1,943			3,465			6,539	
Sampling Date	GW-1 Standard	5/1/2020	6/16/2020		6/30/2020			7/31/2020			8/31/2020			11/3/2020	
	& MMCL		POET INSTALLED	INF	MID	EFF									
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		2.4		2.7	ND (2.0)	ND (2.0)	2.3	ND (2.0)	ND (2.0)	2.9	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		3.2		3.2	ND (2.0)	ND (2.0)	3.3	ND (2.0)	ND (2.0)	4.2	ND (2.0)	ND (2.0)	3.7	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		11		9.8	ND (2.0)	ND (2.0)	11	ND (2.0)	ND (2.0)	13	ND (2.0)	ND (2.0)	13	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		8.3		7.5	ND (2.0)	ND (2.0)	8.9	ND (2.0)	ND (2.0)	8.5	ND (2.0)	ND (2.0)	8.7	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		24.9		23.2	ND (2.0)	ND (2.0)	25.5	ND (2.0)	ND (2.0)	28.6	ND (2.0)	ND (2.0)	28.1	ND (2.0)	ND (2.0)
Regulated Total	20	22.5]	20.5	ND (2.0)	ND (2.0)	23.2	ND (2.0)	ND (2.0)	25.7	ND (2.0)	ND (2.0)	25.4	ND (2.0)	ND (2.0)

Parameter	Massachusetts						
low Meter Reading (gallons)	Contingency Plan		9,916			15,126	
Sampling Date	GW-1 Standard		1/29/2021			4/23/2021	
	& MMCL	INF	MID	EFF	INF	MID	EFF
PA 537.1 (ng/L)							
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		3.4	ND (2.0)	ND (2.0)	2.9	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		5.1	ND (2.0)	ND (2.0)	4.1	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		14	ND (2.0)	ND (2.0)	14	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		10	ND (2.0)	ND (2.0)	9.9	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds		32.5	ND (2.0)	ND (2.0)	30.9	ND (2.0)	ND (2.0)
Regulated Tota	1 20	29.1	ND (2.0)	ND (2.0)	28.0	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan								
Well Depth (feet)		UNKNOWN							
Sampling Date	GW-1 Standard &	3/4/2020	7/21/2020	1/22/2021	4/21/2021				
	MMCL								
EPA 537.1 (ng/L)									
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)				
Total (All Compounds) Regulated Total		ND (2.0) ND (2.0)	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)	ND (2.0) ND (2.0)				
Regulated Total	20	(2.0)	(2.0)	(2.0)	(2.0)				

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts														
Flow Meter Reading (Gallons)	Contingency Plan GW-1 Standard & MMCL	-	-	381		1,947		4,504		7,391					
Sampling Date		9/18/2020	10/21/2020	10/30/2020		12/4/2020			2/5/2021			4/21/2021			
			POET INSTALLED	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF	INF	MID	EFF
EPA 537.1 (ng/L)															
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		3		2.2	ND (2.0)	ND (2.0)	2.4	ND (2.0)	ND (2.0)	2.9	ND (2.0)	ND (2.0)	2.7	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		4.3		3.4	ND (2.0)	ND (2.0)	3.2	ND (2.0)	ND (2.0)	4.3	ND (2.0)	ND (2.0)	3.8	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		15		12	ND (2.0)	ND (2.0)	14	ND (2.0)	ND (2.0)	12	ND (2.0)	ND (2.0)	13	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		11		8.8	ND (2.0)	ND (2.0)	8.9	ND (2.0)	ND (2.0)	9	ND (2.0)	ND (2.0)	8.2	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
			1				1			1					
Total (All Compounds)		33.3	1	26.4	ND (2.0)	ND (2.0)	28.5	ND (2.0)	ND (2.0)	28.2	ND (2.0)	ND (2.0)	27.7	ND (2.0)	ND (2.0)
Regulated Total	20	30.3	1	24.2	ND (2.0)	ND (2.0)	26.1	ND (2.0)	ND (2.0)	25.3	ND (2.0)	ND (2.0)	25.0	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan	18 Radford				
Well Depth (feet)						
Sampling Date	GW-1 Standard &	9/18/2020	1/29/2021	4/26/2021		
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	2.0	ND (2.0)		
Perfluorohexanoic acid (PFHxA)		ND (2.0)	2.7	2.2		
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	2.3	ND (2.0)		
Perfluorooctanoic acid (PFOA)		5.2	6.5	6		
Perfluorooctanesulfonic acid (PFOS)		4.3	5.0	3.7		
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)		
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)		
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)		
Total (All Compounds)		9.5	18.5	11.9		
Regulated Total	20	9.5	13.8	9.7		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Contingency Plan	23 Radford Rd				
Well Depth (feet)						
Sampling Date	GW-1 Standard &	7/22/2020	1/22/2021	4/26/2021		
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	2.8	ND (2.0)		
Perfluorohexanoic acid (PFHxA)		2.2	2.4	ND (2.0)		
Perfluorohexanesulfonic acid (PFHxS)		2.8	3	ND (2.0)		
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	2.3	ND (2.0)		
Perfluorooctanoic acid (PFOA)		6.5	6.4	5.2		
Perfluorooctanesulfonic acid (PFOS)		5.5	5.7	4.1		
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)		
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)		
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)		
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)		
Total (All Compounds)		17.0	22.6	9.3		
Regulated Total		14.8	17.4	9.3		
negulateu Total	20	14.0	17.4	9.3		

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	28 Radford Rd UNKNOWN 1/30/2020 7/21/2020 1/21/202			
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFTDA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA)		2.1 ND (2.0) 2.7 ND (2.0) 5.4 7 ND (2.0) ND (2.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0) 4.6 4.0 ND (2.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0) 4.8 3.8 ND (2.0)	

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts Continuous Rich				
Well Depth (feet)	Contingency Plan			IOWN	
Sampling Date	GW-1 Standard &	3/17/2020	7/21/2020	1/21/2021	4/22/2021
	MMCL				
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		3.2	2.4	3.3	3.3
Perfluorooctanesulfonic acid (PFOS)		3.5	2.8	3.3	3.4
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		6.7	5.2	6.6	6.7
Regulated Total	20	6.7	5.2	6.6	6.7

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	33 Radford Rd				
Well Depth (feet)	Contingency Plan		UNKN	IOWN		
Sampling Date	GW-1 Standard &	5/29/2020	10/8/2020	1/29/2021	4/19/2021	
	MMCL					
EPA 537.1 (ng/L)						
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	2.2	ND (2.0)	
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Total (All Compounds)		ND (2.0)	ND (2.0)	2.2	ND (2.0)	
Regulated Total		ND (2.0)	ND (2.0)	2.2	ND (2.0)	
Regulated Total	20	(2.0)	145 (2.0)	2.2	145 (2.0)	

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts				
Well Depth (feet)	Contingency Plan		7	0'	
Sampling Date	GW-1 Standard &	4/28/2020	10/8/2020	1/20/2021	4/20/2021
	MMCL				
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	2.6	2.8
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		2.1	2.5	2.5	2.2
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		2.1	2.5	5.1	5.0
Regulated Total	20	2.1	2.5	5.1	5.0

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	7 Thompson Road
Well Depth (feet)	Contingency Plan	
Sampling Date	GW-1 Standard &	5/6/2021
	MMCL	
EPA 537.1 (ng/L)		
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)
N-EtFOSAA		ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)
N-MeFOSAA		ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)
Total (All Compounds)		ND (2.0)
Regulated Total		ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet)	Massachusetts Contingency Plan	1 Worcester Rd UNKNOWN			
Sampling Date	GW-1 Standard &	1/7/2020	6/11/2020	12/16/2020	
Sampling Bate	MMCL	1,1,2020	0) 11) 2020	12/10/2020	
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorooctanoic acid (PFOA)		ND (2.0)	2.5	ND (2.0)	
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	
Total (All Compounds)		ND (2.0)	2.5	ND (2.0)	
Regulated Total	20	ND (2.0)	2.5	ND (2.0)	

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter (fact)	Massachusetts Contingency Plan	No.					
Well Depth (feet) Sampling Date	GW-1 Standard & MMCL		6/11/2020	UNKNOWN 10/16/2020	1/21/2021	4/19/2021	
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFTDA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA)		ND (2.0) 3.8 ND (2.0) 8 3.6 2.3 2.7 ND (2.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0) 3.0 ND (2.0)	ND (2.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0) 3.2 ND (2.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0) 3.1 ND (2.0)	
Regulated Total	20	16.6	3.0	ND (2.0)	3.2	3.1	

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	3/6/2020	1/29/2021	
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA) Total (All Compounds) Regulated Total		ND (2.0) ND (2.0) ND (2.0) ND (2.0) 3.1 ND (2.0) ND (3.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0) 3.1 ND (2.0) ND (3.0)	ND (2.0) 2.1 ND (2.0) 2.2 4 ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet) Sampling Date	Massachusetts Contingency Plan GW-1 Standard & MMCL	2/5/2020	UNKNOWN 7/29/2020 1/19/2021		
EPA 537.1 (ng/L) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA)		ND (2.0) ND (2.0) ND (2.0) ND (2.0) 2.2 ND (2.0) 2.2 2.2 2.2	ND (2.0) ND (2.0) ND (2.0) ND (2.0) 2.6 ND (2.0) 2.6 2.6 2.6	ND (2.0)	

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	17 Worcester Rd			
Well Depth (feet)	Contingency Plan		UNKN	IOWN	
Sampling Date	GW-1 Standard &	2/10/2020	7/21/2020	1/22/2021	4/22/2021
	MMCL				
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter	Massachusetts	20 Worcester Rd			
Well Depth (feet)	Contingency Plan				
Sampling Date	GW-1 Standard &	3/17/2020	7/21/2020	1/20/2021	
	MMCL				
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	

TABLE 1
PFAS Drinking Water Summary
Princeton, Massachusetts
RTN 2-21072

Parameter Well Depth (feet)	Massachusetts Contingency Plan	23 Worcester Rd UNKNOWN			
Sampling Date	GW-1 Standard &	2/5/2020	7/21/2020	1/29/2021	
Sampling Date	MMCL	2/3/2020	772172020	1/23/2021	
EPA 537.1 (ng/L)					
Perfluorobutanesulfonic acid (PFBS)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanoic acid (PFHxA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorohexanesulfonic acid (PFHxS)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroheptanoic acid (PFHpA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorooctanoic acid (PFOA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorooctanesulfonic acid (PFOS)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorononanoic acid (PFNA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorodecanoic acid (PFDA)		ND (2.0)	ND (2.0)	ND (2.0)	
N-EtFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluoroundecanoic acid (PFUnA)		ND (2.0)	ND (2.0)	ND (2.0)	
N-MeFOSAA		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorododecanoic acid (PFDoA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotridecanoic acid (PFTrDA)		ND (2.0)	ND (2.0)	ND (2.0)	
Perfluorotetradecanoic acid (PFTA)		ND (2.0)	ND (2.0)	ND (2.0)	
Total (All Compounds)		ND (2.0)	ND (2.0)	ND (2.0)	
Regulated Total	20	ND (2.0)	ND (2.0)	ND (2.0)	

APPENDIX D

May 17, 2021

Michael Scherer Tighe & Bond, Inc. - Worcester 120 Front St. Worcester, MA 01608-2303

Project Location: 41 Prospect., Princeton, MA

Client Job Number: Project Number: P-0534

Laboratory Work Order Number: 21D1244

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on April 22, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
21D1244-01	5
Sample Preparation Information	6
QC Data	7
Semivolatile Organic Compounds by - LC/MS-MS	7
B281356	7
Flag/Qualifier Summary	8
Certifications	9
Chain of Custody/Sample Receipt	10

Tighe & Bond, Inc. - Worcester

120 Front St.

REPORT DATE: 5/17/2021

Worcester, MA 01608-2303 ATTN: Michael Scherer PURCHASE ORDER NUMBER:

PROJECT NUMBER: P-0534

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21D1244

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 41 Prospect., Princeton, MA

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

41 Prospect Runoff 21D1244-01 Drinking Water EPA 537.1

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 537.1

Qualifications:

PF-01

Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.

Analyte & Samples(s) Qualified:

d5-NEtFOSAA

21D1244-01[41 Prospect Runoff]

PF-09

Laboratory fortified blank/laboratory control sample recovery outside of control limits. This compound was biased high and was not detected in the sample.

in the sample.

Analyte & Samples(s) Qualified:

N-EtFOSAA

B281356-BS1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington Technical Representative

Lua Watslengton

Project Location: 41 Prospect., Princeton, MA Sample Description: Work Order: 21D1244

Date Received: 4/22/2021

Field Sample #: 41 Prospect Runoff

Sampled: 4/22/2021 10:30

Sample ID: 21D1244-01
Sample Matrix: Drinking Water

		5	Semivolatile O	rganic Comp	ounds by - I	LC/MS-MS				
Analyte	Results	RL	MCL/SMCL MA ORSG	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0		ng/L	1	0 -	EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluorohexanoic acid (PFHxA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluoroheptanoic acid (PFHpA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluorooctanoic acid (PFOA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluorooctanesulfonic acid (PFOS)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluorononanoic acid (PFNA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluorodecanoic acid (PFDA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
N-EtFOSAA	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluoroundecanoic acid (PFUnA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
N-MeFOSAA	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluorododecanoic acid (PFDoA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Perfluorotetradecanoic acid (PFTA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
11Cl-PF3OUdS (F53B Major)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
9Cl-PF3ONS (F53B Minor)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.0		ng/L	1		EPA 537.1	5/6/21	5/17/21 10:40	BLH
Surrogates		% Reco	very Rec	overy Limits		Flag/Qual				
13C-PFHxA	_	86.8		70-130	_				5/17/21 10:40	
M3HFPO-DA		91.1		70-130					5/17/21 10:40	
13C-PFDA		111		70-130					5/17/21 10:40	
d5-NEtFOSAA		132	*	70-130		PF-01			5/17/21 10:40	

Sample Extraction Data

Prep Method: EPA 537.1 Analytical Method: EPA 537.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21D1244-01 [41 Prospect Runoff]	B281356	250	1.00	05/06/21

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B281356 - EPA 537.1										
Blank (B281356-BLK1)				Prepared: 05	5/06/21 Analy	yzed: 05/14/2	21			
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L							
erfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
N-EtFOSAA	ND	2.0	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
N-MeFOSAA	ND	2.0	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
Hexafluoropropylene oxide dimer acid	ND	2.0	ng/L							
HFPO-DA)										
1Cl-PF3OUdS (F53B Major)	ND	2.0	ng/L							
Cl-PF3ONS (F53B Minor)	ND	2.0	ng/L							
,8-dioxa-3H-perfluorononanoic acid ADONA)	ND	2.0	ng/L							
Surrogate: 13C-PFHxA	32.3		ng/L	40.0		80.7	70-130			
Surrogate: M3HFPO-DA	31.8		ng/L	40.0		79.4	70-130			
Surrogate: 13C-PFDA	33.4		ng/L	40.0		83.4	70-130			
Surrogate: d5-NEtFOSAA	149		ng/L	160		93.1	70-130			
LCS (B281356-BS1)				Prepared: 05	5/06/21 Analy	yzed: 05/14/2	21			
Perfluorobutanesulfonic acid (PFBS)	17.8	2.0	ng/L	17.7		101	70-130			
Perfluorohexanoic acid (PFHxA)	18.3	2.0	ng/L	20.0		91.4	70-130			
Perfluorohexanesulfonic acid (PFHxS)	17.1	2.0	ng/L	18.2		93.9	70-130			
Perfluoroheptanoic acid (PFHpA)	17.6	2.0	ng/L	20.0		88.2	70-130			
Perfluorooctanoic acid (PFOA)	20.1	2.0	ng/L	20.0		101	70-130			
Perfluorooctanesulfonic acid (PFOS)	17.9	2.0	ng/L	18.5		96.8	70-130			
Perfluorononanoic acid (PFNA)	18.0	2.0	ng/L	20.0		90.2	70-130			
Perfluorodecanoic acid (PFDA)	18.1	2.0	ng/L	20.0		90.4	70-130			
N-EtFOSAA	26.2	2.0	ng/L	20.0		131 *	70-130			PF-09
Perfluoroundecanoic acid (PFUnA)	19.8	2.0	ng/L	20.0		98.8	70-130			
N-MeFOSAA	23.0	2.0	ng/L	20.0		115	70-130			
Perfluorododecanoic acid (PFDoA)	17.8	2.0	ng/L	20.0		89.0	70-130			
Perfluorotridecanoic acid (PFTrDA)	18.5	2.0	ng/L	20.0		92.3	70-130			
Perfluorotetradecanoic acid (PFTA)	19.3	2.0	ng/L	20.0		96.4	70-130			
Hexafluoropropylene oxide dimer acid HFPO-DA)	15.3	2.0	ng/L	20.0		76.6	70-130			
1Cl-PF3OUdS (F53B Major)	21.7	2.0	ng/L	18.8		115	70-130			
Cl-PF3ONS (F53B Minor)	18.8	2.0	ng/L	18.6		101	70-130			
,8-dioxa-3H-perfluorononanoic acid ADONA)	18.3	2.0	ng/L	20.0		91.6	70-130			
Surrogate: 13C-PFHxA	34.8		ng/L	40.0		87.0	70-130			
Surrogate: M3HFPO-DA	35.5		ng/L	40.0		88.7	70-130			
Surrogate: 13C-PFDA	35.0		ng/L	40.0		87.5	70-130			
Surrogate: d5-NEtFOSAA	157		ng/L	160		97.8	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
PF-01	Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.
PF-09	Laboratory fortified blank/laboratory control sample recovery outside of control limits. This compound was biased high and was not detected in the sample.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

ED 4			n .		TT7 .
EPA	537.1	l ın	Drini	kıng	Water

Perfluorobutanesulfonic acid (PFBS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorohexanoic acid (PFHxA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorohexanesulfonic acid (PFHxS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluoroheptanoic acid (PFHpA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorooctanoic acid (PFOA)	VT-DW,NJ,CT,ME,PA,MI,NY,NH,MA
Perfluorooctanesulfonic acid (PFOS)	VT-DW,NJ,CT,ME,PA,MI,NY,NH,MA
Perfluorononanoic acid (PFNA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorodecanoic acid (PFDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
N-EtFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluoroundecanoic acid (PFUnA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
N-MeFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorododecanoic acid (PFDoA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorotridecanoic acid (PFTrDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorotetradecanoic acid (PFTA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
11Cl-PF3OUdS (F53B Major)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
9Cl-PF3ONS (F53B Minor)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2021
CT	Connecticut Department of Publile Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2021
FL	Florida Department of Health	E871027 NELAP	06/30/2021
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2021
ME	State of Maine	MA00100	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2021
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2021
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2021
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

121-100 H	Phone: 413-525-2332			CHAIN OF CUSTODY RECORD	OY RECORD	39 Spruce St	39 Spruce Street				2000
	Fax: 413-525-6405					East Longine	adow, wa oro		ANALYSIS REOUESTED	JESTED	
	Email: info@contestlabs.com	7-Day	01	10-Day		Field Filtered			<u> </u>		2 December of Cont.
AND IN THE STATE OF THE STATE O	Tighe & Bond	PFAS 10-Day (sty	(std)	Due Date:	0	Lab to Filter					rieselvation code
120 F	120 Front Street, Worcester, MA 01608										Composition of the contract of
one:	508-754-2201	1-Day	3.	3-Day		Field Filtered					2. Canada de la Caracteria de la Caracte
Prin	Princeton Residential Well Sampling	2-Day	4	4-Day	0	Lab to Filter					VIAIS
oject Location:	Princeton, MA										G. ASS
oject Number:	P-0534	Format:		POF		EXCEL	EL S		****		PLASTIC
oject Manager:	M. Scherer	Other:									BACTENA ANTONIO
on Test Quote Name/Number:		CLP Like Data Pkg Required:	kg Required:		o			17	****		ENCORE
voice Recipient;	Tighe & Bond	Email To:						/£5 \	*****		and including the second secon
impled By:	M. Scherer	fax To#:						403			
Con Test Work Dröer#	Client Sample ID / Description 6	Beginning Ending Cate/Time	COMP/GRAB	'Matrix Conc Code Code	VIALS GLASS	PLASTIC BAC	BACTERIA ENCORE	hEOS/F			Glassware in the fridge? Y / N
1 41 8	PROSPECT RUNCT 4	4/21/4 1030	GRAB	n wo		2		×			Glassware in freezer? Y / N
		Sign.									Prepackaged Cooler? Y / N
											*Contest is not responsible for
											missing samples from prepacked coolers
									-		GW = Ground Water
						+					WW = Waste Water
											A = Air
The second secon											S. Soll
											SOL = Solid
1											define)
Speedby (signature)	Date/Time: Cli	Client Comments:									² Preservation Codes:
31.	8 1										= fced
Applicated by, signature	A W DO				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			MA MCP Required	e de la constante de la consta	Dienes ness the feeting design and an to design	M = Methanol N = Nitric Acid
sceived by: (agnature)	Date/Time/					MCP (ACP Certification Ferm Required	******	te sample conce	possible sample concentration within the Conc	5 = Surfuric Acro B = Sodium Bisulfate
2 (50	17 22 75						CT RCF		Code col	Code column above:	X = Sodium Hydroxide
miquosies by. (agliatale)	Caree - Line -					W. P.	Kur' uentration rom Kegured		ga, m. medialiti	n mga, m medidii. L - Low; L - Cieda; U - Unknown	Thiosulfate
ceived by: (signature)	Date/Time:						AA State DW Pequired	Т			define)
			åd	# OISMd				36	LAC and AIHA-I	MELAC and Altha LAP, LLC Accredited	
dinguished by: (signature)	Date/Time: Pro			# T	ō	4	ſ	į.	Other		
ceived hv: (signature)	Date/Time:	Goden Federal		municipatity 24 i	3 0	MWKA	Э С	WKIE U	1.	Chromatogram	
The second secon				Brownfield	ם נ	MBTA	: O		-	AIHA-LAP, LLC	Non Soxhlet
ib Comments:			·,			Disclaime	r: Con-Text	abs is not respon	neible for any	nmitted information	Disclaimer: Con Text Laks is not reconnsible for any emitted information on the Chain of Curtody. The
						Chain of C analyses th	istody is a le	gal document th	at must be con	nplete and accurate a	Chain of Custody is a legal document that must be completed an accurate and is used to determine what analyses of the laboratory will be form. Any missipp information is not the laboratory creek occurrence from the laboratory of the control of the laboratory of th
						Test yatue	s your partn	ership on each p	roject and will	try to assist with miss	Test values your partnership on each project and will try to assist with missing information. but will not
The second secon	Windows III Town								be held accountable.	ountable.	

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client 🔀								
Received By	V.		Date	4-22-2	/	Time	2200	
How were the samples	In Cooler	T	No Cooler		On Ice	T	No Ice	
received?	Direct from Samp	oling	•		- Ambient		Melted Ice	
Were samples within	·	By Gun #	2	-	Actual Tem	p - 4/1	•	
Temperature? 2-6°C	-	By Blank #	***************************************	•	Actual Tem			•
Was Custody S	eal Intact?	NA		ere Samnie	s Tampered			
Was COC Relir		Ť		•	ree With Sa		NA	•
Are there broken/		on any sam		F	,00 ,,,,,,,,,,,	inpico.		•
Is COC in ink/ Legible?		•			ved within h	olding time?	T	
Did COC include all	Client	T	Analysis	T		er Name		
pertinent Information?	Project		ID's	T	Collection	Dates/Times	7	
Are Sample labels filled	_	<u> </u>						
Are there Lab to Filters?	?	<u> </u>			s notified?			
Are there Rushes?		<u> </u>			s notified?			
Are there Short Holds?		<u> </u>		Who was	s notified?			
Is there enough Volume		<u> </u>			_			
Is there Headspace who	• •	NA T		MS/MSD?				
Proper Media/Container Were trip blanks receive		T		-	samples req	uired?	<u> </u>	
Do all samples have the		<u> </u>	Acid	On COC?	ν	Base		
Viets 1 4		NA	AGIG _			Dase .		and the Constitution of the State of the Sta
Unp-	1 Liter Amb.		1 Liter I	Plactic		16 oz	Amb	
HCL-	500 mL Amb.		500 mL			8oz Am		
Meoh-	250 mL Amb.		250 mL		2	4oz Am		
Bisulfate-	Flashpoint		Col./Ba			2oz Am		
DI-	Other Glass		Other F	Plastic		Enc	ore	
Thiosulfate-	SOC Kit		Plastic			Frozen:		
Sulfuric-	Perchlorate		Ziplo	ock		en venerinien in linde in dan beschieben.		
CONTRACTOR CONTRACTOR			Unitedal	ledia				
Apple 4								
Jnp- HCL-	1 Liter Amb.		1 Liter F			16 oz		(32. · · · · ·
Meoh-	500 mL Amb. 250 mL Amb.		500 mL			8oz Ami		
Bisulfate-	Col./Bacteria		250 mL Flashr			4oz Aml 2oz Aml		
DI-	Other Plastic		Other (Ence		
hiosulfate-	SOC Kit	-	Plastic			Frozen:	<u> </u>	
Sulfuric-	Perchlorate		Ziplo					
Comments:								

May 27, 2021

Michael Scherer Tighe & Bond, Inc. - Worcester 120 Front St. Worcester, MA 01608-2303

Project Location: 30 Mountain Rd, Princeton, MA

Client Job Number: Project Number: P-0534

Laboratory Work Order Number: 21E0125

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on May 4, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
21E0125-01	5
Sample Preparation Information	6
QC Data	7
Semivolatile Organic Compounds by - LC/MS-MS	7
B281760	7
Flag/Qualifier Summary	8
Certifications	9
Chain of Custody/Sample Receipt	10

Tighe & Bond, Inc. - Worcester

120 Front St.

REPORT DATE: 5/27/2021

Worcester, MA 01608-2303 ATTN: Michael Scherer PURCHASE ORDER NUMBER:

PROJECT NUMBER: P-0534

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21E0125

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 30 Mountain Rd, Princeton, MA

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

30 Mountain Rd Runoff 21E0125-01 Surface Water EPA 537.1

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 537.1

Qualifications:

PF-01

Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.

Analyte & Samples(s) Qualified:

13C-PFHxA

21E0125-01[30 Mountain Rd Runoff]

M3HFPO-DA

21E0125-01[30 Mountain Rd Runoff]

PF-09

Laboratory fortified blank/laboratory control sample recovery outside of control limits. This compound was biased high and was not detected in the sample.

Analyte & Samples(s) Qualified:

11Cl-PF3OUdS (F53B Minor)

B281760-BS1

S-01

The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.

Analyte & Samples(s) Qualified:

13C-PFDA

21E0125-01RE2[30 Mountain Rd Runoff]

13C-PFHxA

21E0125-01RE2[30 Mountain Rd Runoff]

d5-NEtFOSAA

21E0125-01RE2[30 Mountain Rd Runoff]

M3HFPO-DA

21E0125-01RE2[30 Mountain Rd Runoff]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

Lua Webblington

Project Location: 30 Mountain Rd, Princeton, MA Sample Description: Work Order: 21E0125

Date Received: 5/4/2021

d5-NEtFOSAA

d5-NEtFOSAA

Field Sample #: 30 Mountain Rd Runoff Sampled: 4/29/2021 19:30

Sample ID: 21E0125-01
Sample Matrix: Surface Water

Sample Matrix: Surface Water										
			Semivolati	le Organic Com	pounds by - l	LC/MS-MS				
			MCL/SMC	L				Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	20	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Perfluorohexanoic acid (PFHxA)	24	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Perfluorohexanesulfonic acid (PFHxS)	350	20		ng/L	10		EPA 537.1	5/12/21	5/24/21 20:20	BLH
Perfluoroheptanoic acid (PFHpA)	6.2	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Perfluorooctanoic acid (PFOA)	32	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Perfluorooctanesulfonic acid (PFOS)	2100	200		ng/L	100		EPA 537.1	5/12/21	5/26/21 16:28	BLH
Perfluorononanoic acid (PFNA)	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Perfluorodecanoic acid (PFDA)	2.2	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
N-EtFOSAA	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Perfluoroundecanoic acid (PFUnA)	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
N-MeFOSAA	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Perfluorododecanoic acid (PFDoA)	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Perfluorotetradecanoic acid (PFTA)	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Hexafluoropropylene oxide dimer acid	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
(HFPO-DA)				_						
11Cl-PF3OUdS (F53B Minor)	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
9Cl-PF3ONS (F53B Major)	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.0		ng/L	1		EPA 537.1	5/12/21	5/22/21 14:30	BLH
Surrogates		% Rec	covery	Recovery Limits	s	Flag/Qual				
13C-PFHxA		59.9	*	70-130		PF-01			5/22/21 14:30	
13C-PFHxA		88.0		70-130					5/24/21 20:20	
13C-PFHxA			*	70-130		S-01			5/26/21 16:28	
M3HFPO-DA		69.0	*	70-130		PF-01			5/22/21 14:30	
M3HFPO-DA		90.8		70-130					5/24/21 20:20	
M3HFPO-DA			*	70-130		S-01			5/26/21 16:28	
13C-PFDA		84.2		70-130					5/22/21 14:30	
13C-PFDA		91.8		70-130					5/24/21 20:20	
13C-PFDA			*	70-130		S-01			5/26/21 16:28	
d5-NEtFOSAA		91.6		70-130					5/22/21 14:30	

70-130 70-130

S-01

98.3

5/24/21 20:20

5/26/21 16:28

Sample Extraction Data

Prep Method: EPA 537.1 Analytical Method: EPA 537.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21E0125-01 [30 Mountain Rd Runoff]	B281760	250	1.00	05/12/21
21E0125-01RE1 [30 Mountain Rd Runoff]	B281760	250	1.00	05/12/21
21E0125-01RE2 [30 Mountain Rd Runoff]	B281760	250	1.00	05/12/21

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Reporting

		Reporting		Spike	Source		70KEC		KPD	_
analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B281760 - EPA 537.1										
lank (B281760-BLK1)				Prepared: 05	5/12/21 Analy	yzed: 05/21/2	.1			
erfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
erfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
erfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
erfluorononanoic acid (PFNA)	ND	2.0	ng/L							
erfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
-EtFOSAA	ND	2.0	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
-MeFOSAA	ND	2.0	ng/L							
erfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
exafluoropropylene oxide dimer acid	ND	2.0	ng/L							
ICl-PF3OUdS (F53B Minor)	ND	2.0	ng/L							
Cl-PF3ONS (F53B Major)	ND	2.0	ng/L							
8-dioxa-3H-perfluorononanoic acid ADONA)	ND	2.0	ng/L							
urrogate: 13C-PFHxA	38.6		ng/L	40.0		96.6	70-130			
urrogate: M3HFPO-DA	45.5		ng/L	40.0		114	70-130			
urrogate: 13C-PFDA	45.2		ng/L	40.0		113	70-130			
urrogate: d5-NEtFOSAA	167		ng/L	160		104	70-130			
CS (B281760-BS1)				Prepared: 05	5/12/21 Analy	yzed: 05/21/2	:1			
erfluorobutanesulfonic acid (PFBS)	15.8	2.0	ng/L	17.7		89.0	70-130			
erfluorohexanoic acid (PFHxA)	18.1	2.0	ng/L	20.0		90.7	70-130			
erfluorohexanesulfonic acid (PFHxS)	15.1	2.0	ng/L	18.2		83.2	70-130			
erfluoroheptanoic acid (PFHpA)	17.7	2.0	ng/L	20.0		88.3	70-130			
erfluorooctanoic acid (PFOA)	18.7	2.0	ng/L	20.0		93.7	70-130			
erfluorooctanesulfonic acid (PFOS)	16.9	2.0	ng/L	18.5		91.4	70-130			
erfluorononanoic acid (PFNA)	18.8	2.0	ng/L	20.0		94.0	70-130			
erfluorodecanoic acid (PFDA)	20.6	2.0	ng/L	20.0		103	70-130			
-EtFOSAA	23.8	2.0	ng/L	20.0		119	70-130			
erfluoroundecanoic acid (PFUnA)	21.1	2.0	ng/L	20.0		105	70-130			
-MeFOSAA	21.8	2.0	ng/L	20.0		109	70-130			
erfluorododecanoic acid (PFDoA)	18.6	2.0	ng/L	20.0		92.9	70-130			
erfluorotridecanoic acid (PFTrDA)	18.9	2.0	ng/L	20.0		94.5	70-130			
erfluorotetradecanoic acid (PFTA)	19.4	2.0	ng/L ng/L	20.0		97.1	70-130			
exafluoropropylene oxide dimer acid HFPO-DA)	20.0	2.0	ng/L	20.0		99.9	70-130			
ICI-PF3OUdS (F53B Minor)	25.3	2.0	ng/L	18.8		134 *	70-130			PF-09
CI-PF3ONS (F53B Major)	16.7	2.0	ng/L	18.6		89.9	70-130			-1 0
8-dioxa-3H-perfluorononanoic acid ADONA)	20.5	2.0	ng/L	18.8		109	70-130			
urrogate: 13C-PFHxA	38.4		ng/L	40.0		96.1	70-130			
urrogate: M3HFPO-DA	44.1		ng/L ng/L	40.0		110	70-130			
anogaa. 1913111 1 O-D/1			-	40.0		110	70-130			
urrogate: 13C-PFDA	44.0		ng/L							

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
PF-01	Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.
PF-09	Laboratory fortified blank/laboratory control sample recovery outside of control limits. This compound was biased high and was not detected in the sample.
S-01	The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

ED 4			n .		TT7 .
EPA	537.1	l ın	Drini	kıng	Water

Perfluorobutanesulfonic acid (PFBS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorohexanoic acid (PFHxA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorohexanesulfonic acid (PFHxS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluoroheptanoic acid (PFHpA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorooctanoic acid (PFOA)	VT-DW,NJ,CT,ME,PA,MI,NY,NH,MA
Perfluorooctanesulfonic acid (PFOS)	VT-DW,NJ,CT,ME,PA,MI,NY,NH,MA
Perfluorononanoic acid (PFNA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorodecanoic acid (PFDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
N-EtFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluoroundecanoic acid (PFUnA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
N-MeFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorododecanoic acid (PFDoA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorotridecanoic acid (PFTrDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorotetradecanoic acid (PFTA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
11Cl-PF3OUdS (F53B Minor)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
9Cl-PF3ONS (F53B Major)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2021
CT	Connecticut Department of Publile Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2021
FL	Florida Department of Health	E871027 NELAP	06/30/2021
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2021
ME	State of Maine	MA00100	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2021
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2021
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

SIEOIZE

Doc # 381 Rev 2_06262019

http://www.contestlabs.com

313								A Chrost	*	1079760 ". 0079701	6.0		
AU DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA C	Phone: 413-525-2332	•			CHAIN OF C	CHAIN OF CUSTOBY RECORD		East Longmeadow, MA 01028	, MA 01028			Δ.	Page 1 of 1
	Fax: 413-525-6405					j				ANAL	ANALYSIS REQUESTED		
	Tiobo & Bood		7-Day] [10-Day 🖂	O C	Held	Held Filtered				2	Preservation Code
Address:	120 Front Street, Worcester, MA 01608	W4 01608	ri Az iu way	T (Disc)	Due pate:	O.	Lab to ritter	ritter					Corrier Use Only
Phone:	508-754-2201		1.Day		2-Day	T	Field Filtered	ltorod					O'al Nimber O'
- 127 2.23	Princeton Residential Well Sampling) C) C	1 sh to Eiltor	iteres Eilbor					
Project Location:	Princeton MA				Î)	רשה גם	ristei					VIALS
Project Number	AL 30_0				343								GLASS
Project Manager	A Schorar		rormac		PQ*	3		EXCEL	3				PLASTIC
rioject Mariaget.	ואו. אלוופו פּיו		Other:										BACTERIA
Con-lest Quote Name/Number:			Š	ta Pkg Required:					1.71				ENCORE
Invoice Recipient:	Tighe & Bond		Email To:						E5 4				
Sampled By:	M. Scherer		Fax To #:						/O±				
Con-Test Work Orderif	Client Sample ID / Description	Beginning Date/Time	Ending Date/Titie	COMP/GRAB	Matrix Code	Cont. Code VIALS	GLASS PLASTIC	TC BACTERIA	ENCORE PEOS/P				Glassware in the fridge? Y / N
1 3	30 HOWNTAIN Ed ROWTH		19.50	GRAB		<u> </u>	2		×			T	Glassware in freezer? Y / N
	The same of the sa	į)								Prepackaged Cooler? Y / N
												-	*Contest is not responsible for
												<u></u>	missing samples from
				-									prepacked coolers
					· · · · · · · · · · · · · · · · · · ·								1 Matrix Codes
			eduaria con										GW - Ground Water
	WHAT PROPERTY AND ADDRESS OF THE PARTY AND ADD											-	DW = Drinking Water
												-	A = Air
				***************************************									St. « Studge
							N yddigaddyyd y						SOL = Solid
17111												I	define)
Reling Theody (Siggletone)	Date/Tirge:	Client Comments:	nents:							-			
Received by: (significate)	5 H 21 745											·	2 Preservation Codes:
Reliniuism by: (signature)	Sky (5) 1405				[125	Sept. (Al Requirements	20 E					M = Methanol N = Withic Acid
Received 18 Signature 10	- Time							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MA MLY Nequited		Please use the following codes to indicate		S = Suffuric Acid
X	コいながって	ا ا						WAY LECTING	SALT LECURCAGES FORM Required		possible sample concentration within the Conc		B = Sodium Bisuffate
Relinquished by: (sign dere)	Date/Time:	7				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ROF Caroffle	ROP Certification Form Required		H · High; M · Medium; L · Low; C · Clean; U		T = Sodium
										<u> </u>	Unknown		Iniosuitate O = Other (please
Received by: (signature)	Date/Time:							\$ ⁽ / ₄)	Ma State OW Required	m			define)
					PWSID #					J#13H	NELAC and Alba-LAP, LLC Accredited	p.a.	The state of the s
neunquisted by, (signature)	Bate/Ime:	Project Entity	£1	Î		****	!						4
Received by: (signature)	Nate/Time:		Government	3 0	Municipality	J (MWRA	D E	WRTA	TA Li	Chromatogram	£	☐ Soxhlet
			City	0 0	21 J Brownfield		school MBTA				AMA-LAP, LLC		☐ Non Soxhlet
Lab Comments:							Ž		1				
								ctanmer: Co n of Custod yses the lab	in-Test Labs I y is a legal d oratory will I	s not responsible occument that in perform. Any in the control occurs.	e for any omitted inform ust be complete and acci issing information is not i	ation on thurate and it	Usclaimer: Con-i est Labs is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Con-Test values wint natthership on earh profes and will trut to accept with microin information.
								of Carrier a	in the control of	ad Section Project	be held accountable.	Sincerni in	INDINIACION, DUL WIR TOL
The state of the s	MATERIAL DE LA CONTRACTION DEL CONTRACTION DE LA					- The state of the	-		- Control of the Cont	***************************************			The second secon

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

	take + Bond							·
Received By	O Solla		Date	514/2	21	Time	1405	
How were the sample received?	s In Cooler	***************************************	No Cooler		On Ice		No Ice	
received :	Direct from Sam	pling			Ambient		Melted Ice	
Were samples within	1	By Gun#	2		Actual Tem	p-2.4		
Temperature? 2-6°C	; T	By Blank #			Actual Tem	p -		
Was Custody	Seal Intact?	nla	We	re Sample:	s Tampered	with?	nla	
Was COC Re	linquished?	T	Does	Chain Ag	ree With Sa	mples?	T	
Are there broker	n/leaking/loose caps	on any sam	ples?	F				
Is COC in ink/ Legible	? ~	-	Were sam	ples recei	ved within h	olding time?		
Did COC include all	Client	Τ	Analysis	-4-	Sample	er Name		
pertinent Information	? Project		ID's	T	Collection	Dates/Times		
Are Sample labels fill	ed out and legible?	-	_					
Are there Lab to Filter	s?	F		Who was	notified?			
Are there Rushes?		F		Who was	notified?			
Are there Short Holds	?	F		Who was	notified?			
Is there enough Volum	ne?	T	•					
Is there Headspace w	here applicable?	n o	· •	MS/MSD?	F.			
Proper Media/Contain	ers Used?	T	······	s splitting	samples req	uired?	F	
Were trip blanks recei	ved?	Ŧ	,	On COC?	F	•		
Do all samples have the	he proper pH?		Acid _	N(o	······································	Base	n la	
Vials 1 #	: Containers							
Unp-	1 Liter Amb.	A STAN DE SELECTION DE CONTRACTOR DE CONTRAC	1 Liter F	Plastic		16 oz	Amb.	
HCL-	500 mL Amb.		500 mL	Plastic		8oz Am	b/Clear	
Meoh-	250 mL Amb.		250 mL	Plastic	2	4oz Am	b/Clear	
Bisulfate-	Flashpoint		Col./Ba	cteria		2oz Am	b/Clear	
DI-	Other Glass		Other F			Enc	ore	
Thiosulfate-	SOC Kit		Plastic			Frozen:		
Sulfuric-	Perchlorate		Ziplo	ck				
			Unused N	ledia				
Vieit #	- Committee							ł
Unp-	1 Liter Amb.		1 Liter F			16 oz		
HCL-	500 mL Amb.		500 mL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		8oz Am		
Meoh-	250 mL Amb.		250 mL l			4oz Ami		
Bisulfate-	Col./Bacteria		Flashp			2oz Am	 	
DI-	Other Plastic	,	Other C			Enc	ore	
Thiosulfate- Sulfuric-	SOC Kit Perchlorate		Plastic			Frozen:		
Comments:	Perchiorate		Ziplo	CK				
Comments:								

ANALYTICAL REPORT

Lab Number: L2000912

Client: White Water Inc.

253B Worcester Road Charlton, MA 01507

ATTN: Andrew Donnelly Phone: (888) 377-7678

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified Report Date: 01/31/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Six Park Row, Mansfield, MA 02048 508-261-7467 (Fax) -- -- emccarter@mansfieldma.com

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified

Lab Number:

L2000912

Report Date: 01/31/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2000912-01	SAMPLE 1	DW	PRINCETON	01/08/20 10:00	01/09/20
L2000912-02	SAMPLE 1 FB	DW	PRINCETON	01/08/20 10:00	01/09/20

Project Name:PRINCETON TOWN CAMPUSLab Number:L2000912Project Number:Not SpecifiedReport Date:01/31/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:PRINCETON TOWN CAMPUSLab Number:L2000912Project Number:Not SpecifiedReport Date:01/31/20

Case Narrative (continued)

Sample Receipt

L2000912-02: A sample identified as "SAMPLE 1 FB" was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juan & Med Susan O' Neil

Title: Technical Director/Representative Date: 01/31/20

ORGANICS

SEMIVOLATILES

Project Name: PRINCETON TOWN CAMPUS **Lab Number:** L2000912

Project Number: Not Specified Report Date: 01/31/20

SAMPLE RESULTS

Lab ID: L2000912-01 Date Collected: 01/08/20 10:00

Client ID: SAMPLE 1 Date Received: 01/09/20 Sample Location: PRINCETON Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 122,537 Extraction Date: 01/10/20 07:50

Analyst: RS

01/24/20 04:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 537 -	Mansfield Lab						
Perfluorobutanesulfonic Acid (PFBS)	31.9		ng/l	1.84		1	
Perfluorohexanoic Acid (PFHxA)	2.86		ng/l	1.84		1	
Perfluoroheptanoic Acid (PFHpA)	2.47		ng/l	1.84		1	
Perfluorohexanesulfonic Acid (PFHxS)	168		ng/l	1.84		1	
Perfluorooctanoic Acid (PFOA)	9.52		ng/l	1.84		1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.84		1	
Perfluorooctanesulfonic Acid (PFOS)	52.6		ng/l	1.84		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.84		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.84		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.84		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.84		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.84		1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.84		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.84		1	
PFOA/PFOS, Total	62.1		ng/l	1.84		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	82		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	92		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	76		70-130	

Project Name: PRINCETON TOWN CAMPUS **Lab Number:** L2000912

Project Number: Not Specified Report Date: 01/31/20

SAMPLE RESULTS

Lab ID: L2000912-02 Date Collected: 01/08/20 10:00

Client ID: SAMPLE 1 FB Date Received: 01/09/20 Sample Location: PRINCETON Field Prep: Not Specified

Sample Depth:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 122,537 Extraction Date: 01/14/20 17:40
Analytical Date: 01/30/20 05:21

Analyst: RS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 537 - N	Mansfield Lab						
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.95		1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.95		1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.95		1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.95		1	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.95		1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.95		1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.95		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.95		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.95		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.95		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.95		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.95		1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.95		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.95		1	
PFOA/PFOS, Total	ND		ng/l	1.95		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	95		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	102		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	101		70-130	

L2000912

Project Name: PRINCETON TOWN CAMPUS Lab Number:

Project Number: Not Specified Report Date: 01/31/20

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537 Extraction Method: EPA 537

Analytical Date: 01/23/20 22:14 Extraction Date: 01/10/20 07:50

Analyst: RS

arameter	Result	Qualifier	Units	R	L	MDL	
erfluorinated Alkyl Acids by EPA 53	37 - Mansfie	eld Lab for	sample(s):	01	Batch:	WG1328708-1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.0	00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.0	00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.0	00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.0	00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.0	00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.0	00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.0	00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.0	00		
N-Methyl Perfluorooctanesulfonamidoacet Acid (NMeFOSAA)	ic ND		ng/l	2.0	00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.0	00		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.0	00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.0	00		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.0	00		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.0	00		
PFOA/PFOS, Total	ND		ng/l	2.0	00		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	82		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	90		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	83		70-130	

L2000912

Project Name: PRINCETON TOWN CAMPUS Lab Number:

Project Number: Not Specified Report Date: 01/31/20

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537 Extraction Method: EPA 537

Analytical Date: 01/30/20 02:31 Extraction Date: 01/14/20 17:40

Analyst: RS

Parameter	Result	Qualifier	Units	R	L	MDL	
Perfluorinated Alkyl Acids by EPA 53	37 - Mansfi	eld Lab for	sample(s):	02	Batch:	WG1330054-1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.0	00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.0	00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.0	00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.0	00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.0	00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.0	00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.0	00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.0	00		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.0	00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.0	00		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.0	00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.0	00		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.0	00		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.0	00		
PFOA/PFOS, Total	ND		ng/l	2.0	00		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	89		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	96		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	92		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified

Lab Number: L2000912

Report Date: 01/31/20

	LCS	LCSD	%Recovery		RPD Control Control
Parameter	%Recovery Q	ual %Recovery	Qual Limits	RPD	Qual Limits
Perfluorinated Alkyl Acids by EPA 537 - N	flansfield Lab Associated	sample(s): 01 Batch:	WG1328708-2 WG1328708	-3	
Perfluorobutanesulfonic Acid (PFBS)	91	95	70-130	4	30
Perfluorohexanoic Acid (PFHxA)	84	88	70-130	5	30
Perfluoroheptanoic Acid (PFHpA)	87	90	70-130	3	30
Perfluorohexanesulfonic Acid (PFHxS)	89	93	70-130	4	30
Perfluorooctanoic Acid (PFOA)	88	93	70-130	6	30
Perfluorononanoic Acid (PFNA)	91	96	70-130	5	30
Perfluorooctanesulfonic Acid (PFOS)	89	94	70-130	5	30
Perfluorodecanoic Acid (PFDA)	89	94	70-130	5	30
N-Methyl	83	84	70-130	1	30
Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)					
Perfluoroundecanoic Acid (PFUnA)	95	98	70-130	3	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	80	83	70-130	4	30
Perfluorododecanoic Acid (PFDoA)	103	110	70-130	7	30
Perfluorotridecanoic Acid (PFTrDA)	113	120	70-130	6	30
Perfluorotetradecanoic Acid (PFTA)	99	106	70-130	7	30

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	83		87		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	86		92		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	77		79		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified

Lab Number: L2000912

Report Date: 01/31/20

	LCS	LCSD	%Recovery		RPD
Parameter	%Recovery Q	ual %Recovery	Qual Limits	RPD	Qual Limits
Perfluorinated Alkyl Acids by EPA 537 - M	ansfield Lab Associated	d sample(s): 02 Batch	: WG1330054-2 WG1330054	-3	
Perfluorobutanesulfonic Acid (PFBS)	89	95	70-130	7	30
Perfluorohexanoic Acid (PFHxA)	85	88	70-130	3	30
Perfluoroheptanoic Acid (PFHpA)	90	94	70-130	4	30
Perfluorohexanesulfonic Acid (PFHxS)	89	94	70-130	5	30
Perfluorooctanoic Acid (PFOA)	90	97	70-130	7	30
Perfluorononanoic Acid (PFNA)	90	97	70-130	7	30
Perfluorooctanesulfonic Acid (PFOS)	87	92	70-130	6	30
Perfluorodecanoic Acid (PFDA)	89	96	70-130	8	30
N-Methyl	82	86	70-130	5	30
Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)					
Perfluoroundecanoic Acid (PFUnA)	93	101	70-130	8	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	90	93	70-130	3	30
Perfluorododecanoic Acid (PFDoA)	95	105	70-130	10	30
Perfluorotridecanoic Acid (PFTrDA)	94	100	70-130	6	30
Perfluorotetradecanoic Acid (PFTA)	88	97	70-130	10	30

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	94		96		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	98		99		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	97		93		70-130	

PRINCETON TOWN CAMPUS

Lab Number: L2000912

Project Number: Not Specified Report Date: 01/31/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Information		Initial Fir		Final Temp				Frozen		
	Container ID	Container Type	Cooler pH p	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
	L2000912-01A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.7	Υ	Absent		A2-537(14)
	L2000912-01B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.7	Υ	Absent		A2-537(14)
	L2000912-02A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.7	Υ	Absent		A2-537(14)

Project Name: PRINCETON TOWN CAMPUS

Project Number:

L2000912 01/31/20 Report Date:

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
	4.21 10	13/124/12 4
PERFLUOROALKANE SULFONAMIDES (FASAs)	5004	
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1

Project Name:PRINCETON TOWN CAMPUSLab Number:L2000912Project Number:Not SpecifiedReport Date:01/31/20

GLOSSARY

Acronyms

EPA

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from dilutions, concentrations of moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

oniy.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:PRINCETON TOWN CAMPUSLab Number:L2000912Project Number:Not SpecifiedReport Date:01/31/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:PRINCETON TOWN CAMPUSLab Number:L2000912Project Number:Not SpecifiedReport Date:01/31/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:PRINCETON TOWN CAMPUSLab Number:L2000912Project Number:Not SpecifiedReport Date:01/31/20

REFERENCES

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537, EPA/600/R-08/092. Version 1.1, September 2009.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 15

Page 1 of 1

Published Date: 8/15/2019 9:53:42 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ANALYTICAL REPORT

Lab Number: L2026828

Client: White Water Inc.

253B Worcester Road Charlton, MA 01507

ATTN: Andrew Donnelly Phone: (888) 377-7678

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified Report Date: 07/06/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified

Lab Number: Report Date: L2026828

07/06/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2026828-01	FINISH-TC001G WELL 1	DW	PRINCETON BAGG HALL	06/23/20 12:30	06/25/20
L2026828-02	FB	DW	PRINCETON BAGG HALL	06/23/20 12:30	06/25/20

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:07062015:13

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2026828-02: A sample identified as "FB" was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juxon & Med Susan O' Neil

Title: Technical Director/Representative Date: 07/06/20

ORGANICS

SEMIVOLATILES

Serial_No:07062015:13

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2026828

Project Number: Not Specified Report Date: 07/06/20

SAMPLE RESULTS

Lab ID: L2026828-01 Date Collected: 06/23/20 12:30

Client ID: FINISH-TC001G WELL 1 Date Received: 06/25/20 Sample Location: PRINCETON BAGG HALL Field Prep: Not Specified

Sample Depth:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 122,537 Extraction Date: 06/29/20 06:55
Analytical Date: 06/30/20 15:31

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Perfluorinated Alkyl Acids by EPA 537 - Mansfield Lab											
Perfluorobutanesulfonic Acid (PFBS)	16.1		ng/l	1.90	0.270	1					
Perfluorohexanoic Acid (PFHxA)	1.48	J	ng/l	1.90	0.250	1					
Perfluoroheptanoic Acid (PFHpA)	1.25	J	ng/l	1.90	0.247	1					
Perfluorohexanesulfonic Acid (PFHxS)	81.7		ng/l	1.90	0.455	1					
Perfluorooctanoic Acid (PFOA)	4.48		ng/l	1.90	0.592	1					
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.90	0.452	1					
Perfluorooctanesulfonic Acid (PFOS)	23.5		ng/l	1.90	0.467	1					
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.611	1					
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.888	1					
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.774	1					
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.903	1					
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.615	1					
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.90	0.482	1					
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.410	1					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	91		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	79		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	90		70-130	

Serial_No:07062015:13

06/23/20 12:30

Date Collected:

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2026828

Project Number: Not Specified Report Date: 07/06/20

SAMPLE RESULTS

O/tim EE REGGE

L2026828-02

Client ID: FB Date Received: 06/25/20

Sample Location: PRINCETON BAGG HALL Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 122,537 Extraction Date: 07/02/20 11:08
Analytical Date: 07/02/20 16:34

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by EPA 537 - Mansfield Lab									
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.90	0.271	1			
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.90	0.251	1			
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.90	0.248	1			
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.90	0.457	1			
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.90	0.595	1			
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.90	0.454	1			
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.90	0.469	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.614	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.892	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.778	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.907	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.617	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.90	0.484	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.412	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	88		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	90		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	91		70-130	

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2026828

Project Number: Not Specified Report Date: 07/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537 Extraction Method: EPA 537

Analytical Date: 06/30/20 14:48 Extraction Date: 06/29/20 06:55

Parameter	Result	Qualifier	Units	RI	L	MDL	
Perfluorinated Alkyl Acids by EPA 5	37 - Mansfie	eld Lab for	sample(s):	01	Batch:	WG1386958-1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.0	0	0.284	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.0	0	0.263	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.0	0	0.260	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.0	0	0.480	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.0	0	0.624	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.0	0	0.476	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.0	0	0.492	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.0	0	0.644	
N-Methyl Perfluorooctanesulfonamidoacet Acid (NMeFOSAA)	tic ND		ng/l	2.0	0	0.936	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.0	0	0.816	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	: ND		ng/l	2.0	0	0.952	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.0	0	0.648	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.0	0	0.508	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.0	0	0.432	

		Ad	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	89		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	92		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	101		70-130	

L2026828

Project Name: PRINCETON TOWN CAMPUS Lab Number:

Project Number: Not Specified Report Date: 07/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537 Extraction Method: EPA 537

Analytical Date: 07/02/20 16:08 Extraction Date: 07/02/20 11:08

Result	Qualifier	Units	RI	<u> </u>	MDL	
37 - Mansfi	eld Lab for	sample(s):	02	Batch:	WG1388424-1	
ND		ng/l	2.0	0	0.284	
ND		ng/l	2.0	0	0.263	
ND		ng/l	2.0	0	0.260	
ND		ng/l	2.0	0	0.480	
ND		ng/l	2.0	0	0.624	
ND		ng/l	2.0	0	0.476	
ND		ng/l	2.0	0	0.492	
ND		ng/l	2.0	0	0.644	
ic ND		ng/l	2.0	0	0.936	
ND		ng/l	2.0	0	0.816	
ND		ng/l	2.0	0	0.952	
ND		ng/l	2.0	0	0.648	
ND		ng/l	2.0	0	0.508	
ND		ng/l	2.0	0	0.432	
	37 - Mansfir	37 - Mansfield Lab for ND ND ND ND ND ND ND ND ND N	ND	ND	ND	ND

	Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	84		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	94		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	93		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified

Lab Number: L2026828

Report Date: 07/06/20

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits			
uramoto.	70.1000.0.9	<u></u>						
erfluorinated Alkyl Acids by EPA 537 - Mansfield Lab Associated sample(s): 01 Batch: WG1386958-2 WG1386958-3								
Perfluorobutanesulfonic Acid (PFBS)	111	118	70-130	6	30			
Perfluorohexanoic Acid (PFHxA)	101	117	70-130	15	30			
Perfluoroheptanoic Acid (PFHpA)	110	119	70-130	8	30			
Perfluorohexanesulfonic Acid (PFHxS)	106	112	70-130	6	30			
Perfluorooctanoic Acid (PFOA)	106	126	70-130	17	30			
Perfluorononanoic Acid (PFNA)	112	121	70-130	8	30			
Perfluorooctanesulfonic Acid (PFOS)	108	106	70-130	2	30			
Perfluorodecanoic Acid (PFDA)	94	110	70-130	16	30			
N-Methyl	105	110	70-130	5	30			
Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)								
Perfluoroundecanoic Acid (PFUnA)	114	125	70-130	9	30			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	110	118	70-130	7	30			
Perfluorododecanoic Acid (PFDoA)	116	129	70-130	11	30			
Perfluorotridecanoic Acid (PFTrDA)	111	125	70-130	12	30			
Perfluorotetradecanoic Acid (PFTA)	98	115	70-130	16	30			

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	99		103		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA) N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	101 104		105 103		70-130 70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified Lab Number: L2026828

Report Date: 07/06/20

	LCS	LCS		%Recovery		RP	
arameter	%Recovery C	Qual %Reco	very Qual	Limits	RPD	Qual Lim	nits
Perfluorinated Alkyl Acids by EPA 537 - Ma	ansfield Lab Associate	d sample(s): 02	Batch: WG138	8424-2 WG1388424	1-3		
Perfluorobutanesulfonic Acid (PFBS)	95	10	2	70-130	7	3	0
Perfluorohexanoic Acid (PFHxA)	87	95	i i	70-130	9	3	0
Perfluoroheptanoic Acid (PFHpA)	96	10	2	70-130	6	3	0
Perfluorohexanesulfonic Acid (PFHxS)	92	93	3	70-130	1	3	0
Perfluorooctanoic Acid (PFOA)	96	98	3	70-130	2	3	0
Perfluorononanoic Acid (PFNA)	95	10	4	70-130	9	3	0
Perfluorooctanesulfonic Acid (PFOS)	86	95	i	70-130	10	3	0
Perfluorodecanoic Acid (PFDA)	85	87	•	70-130	2	3	0
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	89	95	i	70-130	7	3	0
Perfluoroundecanoic Acid (PFUnA)	95	10	0	70-130	5	3	0
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	95	97	7	70-130	2	3	0
Perfluorododecanoic Acid (PFDoA)	108	11	7	70-130	8	3	0
Perfluorotridecanoic Acid (PFTrDA)	98	10	0	70-130	2	3	0
Perfluorotetradecanoic Acid (PFTA)	82	84	1	70-130	2	3	0

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	88		91		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	89		86		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	91		92		70-130

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS Lab Number:

L2026828

Project Number: Not Specified Report Date: 07/06/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EPA 537 - Mansfield FINISH-TC001G WELL 1	Lab Associated sample(s):	01 QC Batch ID:	WG1386958-5	QC Sample:	L2026828-01 Client ID:
Perfluorobutanesulfonic Acid (PFBS)	16.1	20.6	ng/l	25	30
Perfluorohexanoic Acid (PFHxA)	1.48J	1.68J	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	1.25J	1.49J	ng/l	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	81.7	98.1	ng/l	18	30
Perfluorooctanoic Acid (PFOA)	4.48	5.67	ng/l	23	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	23.5	29.2	ng/l	22	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

			Acceptance
Surrogate	%Recovery Qual	ifier %Recovery	Qualifier Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	91	98	70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	79	99	70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	90	90	70-130

Serial_No:07062015:13

PRINCETON TOWN CAMPUS Lab Number: L2026828

Project Number: Not Specified Report Date: 07/06/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2026828-01A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		5.0	Υ	Absent		A2-537(14)
L2026828-01B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		5.0	Υ	Absent		A2-537(14)
L2026828-02A	Plastic 250ml Trizma preserved	Α	NA		5.0	Υ	Absent		A2-537(14)

Serial_No:07062015:13 **Lab Number:** L2026 **Project Name:** L2026828 PRINCETON TOWN CAMPUS

Project Number: Report Date: 07/06/20

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2026828 **Report Date: Project Number:** Not Specified 07/06/20

GLOSSARY

Acronyms

LCSD

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

REFERENCES

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537, EPA/600/R-08/092. Version 1.1, September 2009.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 17

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Published Date: 4/28/2020 9:42:21 AM Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Serial No:07062015:13 Date Rec'd in Lab: 6/25/20 CHAIN OF CUSTODY ALPHA Job #: 62076828 **Billing Information** Report Information - Data Deliverables **Project Information** MANSFIELD, MA WESTBORO, MA Project Name: Princeton Town Campus Project Location: Princeton Bugg Hall ☐ Same as Client info PO #: TEL: 508-822-9300 TEL: 508-898-9220 ☐ EMAIL ☐ FAX N/A PerMuss DEP Request FAX: 508-898-9193 LIADEX ☐ Add'l Deliverables Client Information Regulatory Requirements/Report Limits Whitelbater Project #: Criteria State /Fed Program Project Manager: Address: ALPHA Quote #: **Turn-Around Time** Phone: Fax Standard ☐ RUSH (only confirmed if pre-approved!) Email: SAMPLE HANDLING Date Due: Time: These samples have been previously analyzed by Alpha Filtration Other Project Specific Requirements/Comments/Detection Limits: C Done □ Not needed Lab to do Preservation Lab to do (Please specify below) Sample Sampler's Collection ALPHA Lab ID Sample Specific Comments Sample ID Matrix Time Initials Date (Lab Use Only) Finish-TC0016 Well 16/23/2010 12:30 WH 26828-01 Please print clearly, legibly and com-Container Type pletely. Samples can not be logged Preservative in and turnaround time clock will not start until any ambiguities are resolved. Date/Time Date/Time Received By: Relinquished By: All samples submitted are subject to Alpha's Terms and Conditions. See reverse side. FORM NO: 01-01 (rev. 14-OCT-07) Page 21 of 21 6/25/00 16:05

ANALYTICAL REPORT

Lab Number: L2026828

Client: White Water Inc.

253B Worcester Road Charlton, MA 01507

ATTN: Andrew Donnelly Phone: (888) 377-7678

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified Report Date: 07/06/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified Lab Number:

L2026828

07/06/20

Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2026828-01	FINISH-TC001G WELL 1	DW	PRINCETON BAGG HALL	06/23/20 12:30	06/25/20
L2026828-02	FB	DW	PRINCETON BAGG HALL	06/23/20 12:30	06/25/20

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2026828-02: A sample identified as "FB" was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juxon & Med Susan O' Neil

Title: Technical Director/Representative Date: 07/06/20

ORGANICS

SEMIVOLATILES

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2026828

Project Number: Not Specified Report Date: 07/06/20

SAMPLE RESULTS

Lab ID: L2026828-01 Date Collected: 06/23/20 12:30

Client ID: FINISH-TC001G WELL 1 Date Received: 06/25/20 Sample Location: PRINCETON BAGG HALL Field Prep: Not Specified

Sample Depth:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 122,537 Extraction Date: 06/29/20 06:55
Analytical Date: 06/30/20 15:31

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 537 - N	Mansfield Lab						
Perfluorobutanesulfonic Acid (PFBS)	16.1		ng/l	1.90	0.270	1	
Perfluorohexanoic Acid (PFHxA)	1.48	J	ng/l	1.90	0.250	1	
Perfluoroheptanoic Acid (PFHpA)	1.25	J	ng/l	1.90	0.247	1	
Perfluorohexanesulfonic Acid (PFHxS)	81.7		ng/l	1.90	0.455	1	
Perfluorooctanoic Acid (PFOA)	4.48		ng/l	1.90	0.592	1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.90	0.452	1	
Perfluorooctanesulfonic Acid (PFOS)	23.5		ng/l	1.90	0.467	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.611	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.888	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.774	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.903	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.615	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.90	0.482	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.410	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	91		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	79		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	90		70-130	

06/23/20 12:30

Date Collected:

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2026828

Project Number: Not Specified Report Date: 07/06/20

SAMPLE RESULTS

O/tim EE REGGE

L2026828-02

Client ID: FB Date Received: 06/25/20

Sample Location: PRINCETON BAGG HALL Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 122,537 Extraction Date: 07/02/20 11:08
Analytical Date: 07/02/20 16:34

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537 - Ma	ansfield Lab					
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.90	0.271	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.90	0.251	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.90	0.248	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.90	0.457	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.90	0.595	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.90	0.454	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.90	0.469	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.614	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.892	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.778	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.907	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.617	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.90	0.484	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.412	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	88		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	90		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	91		70-130	

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2026828

Project Number: Not Specified Report Date: 07/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537 Extraction Method: EPA 537

Analytical Date: 06/30/20 14:48 Extraction Date: 06/29/20 06:55

Parameter	Result	Qualifier	Units	RI	L	MDL	
Perfluorinated Alkyl Acids by EPA 5	37 - Mansfie	eld Lab for	sample(s):	01	Batch:	WG1386958-1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.0	0	0.284	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.0	0	0.263	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.0	0	0.260	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.0	0	0.480	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.0	0	0.624	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.0	0	0.476	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.0	0	0.492	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.0	0	0.644	
N-Methyl Perfluorooctanesulfonamidoacet Acid (NMeFOSAA)	tic ND		ng/l	2.0	0	0.936	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.0	0	0.816	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	: ND		ng/l	2.0	0	0.952	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.0	0	0.648	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.0	0	0.508	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.0	0	0.432	

		Ad	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	89		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	92		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	101		70-130	

L2026828

Project Name: PRINCETON TOWN CAMPUS Lab Number:

Project Number: Not Specified Report Date: 07/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537 Extraction Method: EPA 537

Analytical Date: 07/02/20 16:08 Extraction Date: 07/02/20 11:08

Result	Qualifier	Units	RI	_	MDL	
37 - Mansfi	eld Lab for	sample(s):	02	Batch:	WG1388424-1	
ND		ng/l	2.0	0	0.284	
ND		ng/l	2.0	0	0.263	
ND		ng/l	2.0	0	0.260	
ND		ng/l	2.0	0	0.480	
ND		ng/l	2.0	0	0.624	
ND		ng/l	2.0	0	0.476	
ND		ng/l	2.0	0	0.492	
ND		ng/l	2.0	0	0.644	
ic ND		ng/l	2.0	0	0.936	
ND		ng/l	2.0	0	0.816	
ND		ng/l	2.0	0	0.952	
ND		ng/l	2.0	0	0.648	
ND		ng/l	2.0	0	0.508	
ND		ng/l	2.0	0	0.432	
	37 - Mansfid ND ND ND ND ND ND ND ND ND N	37 - Mansfield Lab for ND ND ND ND ND ND ND ND ND N	ND	ND	ND	ND

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	84		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	94		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	93		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified

Lab Number: L2026828

Report Date: 07/06/20

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
uramoto.	70.1000.0.9	<u></u>		74. 5	
Perfluorinated Alkyl Acids by EPA 537 -	Mansfield Lab Associated	sample(s): 01 Batch	: WG1386958-2 WG1386958	-3	
Perfluorobutanesulfonic Acid (PFBS)	111	118	70-130	6	30
Perfluorohexanoic Acid (PFHxA)	101	117	70-130	15	30
Perfluoroheptanoic Acid (PFHpA)	110	119	70-130	8	30
Perfluorohexanesulfonic Acid (PFHxS)	106	112	70-130	6	30
Perfluorooctanoic Acid (PFOA)	106	126	70-130	17	30
Perfluorononanoic Acid (PFNA)	112	121	70-130	8	30
Perfluorooctanesulfonic Acid (PFOS)	108	106	70-130	2	30
Perfluorodecanoic Acid (PFDA)	94	110	70-130	16	30
N-Methyl	105	110	70-130	5	30
Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)					
Perfluoroundecanoic Acid (PFUnA)	114	125	70-130	9	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	110	118	70-130	7	30
Perfluorododecanoic Acid (PFDoA)	116	129	70-130	11	30
Perfluorotridecanoic Acid (PFTrDA)	111	125	70-130	12	30
Perfluorotetradecanoic Acid (PFTA)	98	115	70-130	16	30

Surrogate	LCS %Recovery	LCSD Qual %Recovery	v Qual	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	99	103		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA) N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	101 104	105 103		70-130 70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: Not Specified Lab Number: L2026828

Report Date: 07/06/20

	LCS	LCSD	%Recovery		RPD
arameter	%Recovery Qu	ıal %Recovery	Qual Limits	RPD	Qual Limits
Perfluorinated Alkyl Acids by EPA 537 - Ma	ansfield Lab Associated	sample(s): 02 Batch	: WG1388424-2 WG1388424	-3	
Perfluorobutanesulfonic Acid (PFBS)	95	102	70-130	7	30
Perfluorohexanoic Acid (PFHxA)	87	95	70-130	9	30
Perfluoroheptanoic Acid (PFHpA)	96	102	70-130	6	30
Perfluorohexanesulfonic Acid (PFHxS)	92	93	70-130	1	30
Perfluorooctanoic Acid (PFOA)	96	98	70-130	2	30
Perfluorononanoic Acid (PFNA)	95	104	70-130	9	30
Perfluorooctanesulfonic Acid (PFOS)	86	95	70-130	10	30
Perfluorodecanoic Acid (PFDA)	85	87	70-130	2	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	89	95	70-130	7	30
Perfluoroundecanoic Acid (PFUnA)	95	100	70-130	5	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	95	97	70-130	2	30
Perfluorododecanoic Acid (PFDoA)	108	117	70-130	8	30
Perfluorotridecanoic Acid (PFTrDA)	98	100	70-130	2	30
Perfluorotetradecanoic Acid (PFTA)	82	84	70-130	2	30

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	88		91		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	89		86		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	91		92		70-130

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS Lab Number:

L2026828

Project Number: Not Specified Report Date: 07/06/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EPA 537 - Mansfield FINISH-TC001G WELL 1	Lab Associated sample(s):	01 QC Batch ID:	WG1386958-5	QC Sample:	L2026828-01 Client ID:
Perfluorobutanesulfonic Acid (PFBS)	16.1	20.6	ng/l	25	30
Perfluorohexanoic Acid (PFHxA)	1.48J	1.68J	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	1.25J	1.49J	ng/l	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	81.7	98.1	ng/l	18	30
Perfluorooctanoic Acid (PFOA)	4.48	5.67	ng/l	23	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	23.5	29.2	ng/l	22	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

			Acceptance
Surrogate	%Recovery Qual	ifier %Recovery	Qualifier Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	91	98	70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	79	99	70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	90	90	70-130

PRINCETON TOWN CAMPUS Lab Number: L2026828

Project Number: Not Specified Report Date: 07/06/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2026828-01A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		5.0	Υ	Absent		A2-537(14)
L2026828-01B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		5.0	Υ	Absent		A2-537(14)
L2026828-02A	Plastic 250ml Trizma preserved	Α	NA		5.0	Υ	Absent		A2-537(14)

Serial_No:07062015:13 **Lab Number:** L2026 **Project Name:** L2026828 PRINCETON TOWN CAMPUS

Project Number: Report Date: 07/06/20

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2026828 **Report Date: Project Number:** Not Specified 07/06/20

GLOSSARY

Acronyms

LCSD

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2026828Project Number:Not SpecifiedReport Date:07/06/20

REFERENCES

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537, EPA/600/R-08/092. Version 1.1, September 2009.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 17

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Published Date: 4/28/2020 9:42:21 AM Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Serial No:07062015:13 Date Rec'd in Lab: 6/25/20 CHAIN OF CUSTODY ALPHA Job #: 62076828 **Billing Information** Report Information - Data Deliverables **Project Information** MANSFIELD, MA WESTBORO, MA Project Name: Princeton Town Campus Project Location: Princeton Bugg Hall ☐ Same as Client info PO #: TEL: 508-822-9300 TEL: 508-898-9220 ☐ EMAIL ☐ FAX N/A PerMuss DEP Request FAX: 508-898-9193 LIADEX ☐ Add'l Deliverables Client Information Regulatory Requirements/Report Limits Whitelbater Project #: Criteria State /Fed Program Project Manager: Address: ALPHA Quote #: **Turn-Around Time** Phone: Fax Standard ☐ RUSH (only confirmed if pre-approved!) Email: SAMPLE HANDLING Date Due: Time: These samples have been previously analyzed by Alpha Filtration Other Project Specific Requirements/Comments/Detection Limits: C Done □ Not needed Lab to do Preservation Lab to do (Please specify below) Sample Sampler's Collection ALPHA Lab ID Sample Specific Comments Sample ID Matrix Time Initials Date (Lab Use Only) Finish-TC0016 Well 16/23/2010 12:30 WH 26828-01 Please print clearly, legibly and com-Container Type pletely. Samples can not be logged Preservative in and turnaround time clock will not start until any ambiguities are resolved. Date/Time Date/Time Received By: Relinquished By: All samples submitted are subject to Alpha's Terms and Conditions. See reverse side. FORM NO: 01-01 (rev. 14-OCT-07) Page 21 of 21 6/25/00 16:05

ANALYTICAL REPORT

Lab Number: L2041392

Client: White Water Inc.

253B Worcester Road Charlton, MA 01507

ATTN: Andrew Donnelly Phone: (888) 377-7678

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017
Report Date: 10/21/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

L2041392 Report Date: 10/21/20

Lab Number:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2041392-01	TC001G WELL 1	DW	6 TOWN HALL DRIVE, PRINCETON, MA	09/29/20 09:00	09/30/20
L2041392-02	TC001G WELL 1 FIELD BLANK	DW	6 TOWN HALL DRIVE, PRINCETON, MA	09/29/20 09:00	09/30/20

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017 Report Date: 10/21/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017 Report Date: 10/21/20

Case Narrative (continued)

Report Revision

October 21, 2020: Results for the field blank have been reported.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2041392-02: The sample identified as "trip blank" on the chain of custody was identified as "field blank" on the container label. At the client's request, the sample is reported as "TC001G WELL 1 FIELD BLANK".

Perfluorinated Alkyl Acids

L2041392-01: The surrogate recovery was outside the acceptance criteria for perfluoro-n-[1,2-13c2]decanoic acid (13c-pfda) (61%); however, re-extraction achieved the result with other surrogate exceedances, perfluoro-n-[1,2-13c2]hexanoic acid (13c-pfhxa) (134%). The results of both extractions are reported; however, all associated compounds are considered to have a potential bias.

L2041392-02 was activated and extracted with the method required holding time exceeded.

WG1421574-1: The surrogate recovery is above the acceptance criteria for perfluoro-n-[1,2-13c2]hexanoic acid (13c-pfhxa) (136%). Since the blank was non-detect for all target analytes, re-analysis was not required. WG1421574-2/-3: The LCS/LCSD recoveries, associated with L2041392-01, are within the 50-150% acceptance criteria for low level Perfluorinated Alkyl Acids except where noted.

The WG1421574-2/-3 LCS/LCSD recoveries, associated with L2041392-01, were above the acceptance criteria for perfluorooctanoic acid (pfoa) (152% LCS only), perfluorodecanoic acid (pfda) (160% LCS only), perfluoroundecanoic acid (pfuna) (154%/154%), and perfluorotetradecanoic acid (pfta) (182%/184%); however, re-extraction could not be performed due to lack of additional sample. The results of the original analysis are reported; however, all positive detects are considered to have a potentially high bias for these compounds. WG1421574-2/-3: The LCS/LCSD RPDs, associated with L2041392-01, are within the 50% acceptance

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392
Project Number: 2241017 Report Date: 10/21/20

Case Narrative (continued)

criteria for low level Perfluorinated Alkyl Acids.

The surrogate recoveries for the WG1421574-2 LCS, associated with L2041392-01, are outside the acceptance criteria for perfluoro-n-[1,2-13c2]hexanoic acid (13c-pfhxa) (143%) and perfluoro-n-[1,2-13c2]decanoic acid (13c-pfda) (140%).

The surrogate recoveries for the WG1421574-3 LCSD, associated with L2041392-01, are outside the acceptance criteria for perfluoro-n-[1,2-13c2]hexanoic acid (13c-pfhxa) (135%) and perfluoro-n-[1,2-13c2]decanoic acid (13c-pfda) (136%).

The WG1422636-2 LCS recoveries, associated with L2041392-02, were below the acceptance criteria for 9CI-PF3ONS, NMeFOSAA and NEtFOSAA; however, re-extraction could not be performed due to lack of additional sample. The results of the original analysis are reported; however, all associated targets are considered to have a potential bias for these compounds.

The WG1422636-3 LCSD recovery, associated with L2041392-02, was below the acceptance criteria for PFHxS; however, re-extraction could not be performed due to lack of additional sample. The results of the original analysis are reported; however, all associated targets are considered to have a potential bias for these compounds.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Vuxon & Mel Susan O' Neil

Title: Technical Director/Representative Date: 10/21/20

ORGANICS

SEMIVOLATILES

10/21/20

Report Date:

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017

SAMPLE RESULTS

Lab ID: L2041392-01 Date Collected: 09/29/20 09:00

Client ID: TC001G WELL 1 Date Received: 09/30/20

Sample Location: 6 TOWN HALL DRIVE, PRINCETON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 133,537.1 Extraction Date: 10/08/20 06:13
Analytical Date: 10/08/20 16:03

Analyst: SH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lat)				
Perfluorobutanesulfonic Acid (PFBS)	39.5		ng/l	1.85	0.263	1
Perfluorohexanoic Acid (PFHxA)	2.92		ng/l	1.85	0.244	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	3.70	0.418	1
Perfluoroheptanoic Acid (PFHpA)	1.30	J	ng/l	1.85	0.241	1
Perfluorohexanesulfonic Acid (PFHxS)	234		ng/l	1.85	0.444	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.85	0.066	1
Perfluorooctanoic Acid (PFOA)	8.40		ng/l	1.85	0.578	1
Perfluorononanoic Acid (PFNA)	0.555	J	ng/l	1.85	0.441	1
Perfluorooctanesulfonic Acid (PFOS)	56.4		ng/l	1.85	0.455	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.85	0.596	1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.85	0.255	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.85	0.866	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85	0.755	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85	0.881	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85	0.600	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.85	0.194	1
Perfluorotridecanoic Ácid (PFTrDA)	ND		ng/l	1.85	0.470	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85	0.400	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	76		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	70		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	61	Q	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	79		70-130	

10/21/20

Report Date:

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017

SAMPLE RESULTS

Lab ID: L2041392-01 RE Date Collected: 09/29/20 09:00

Client ID: TC001G WELL 1 Date Received: 09/30/20

Sample Location: 6 TOWN HALL DRIVE, PRINCETON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 133,537.1 Extraction Date: 10/13/20 17:30
Analytical Date: 10/14/20 10:50

Analyst: SH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab)				
Perfluorobutanesulfonic Acid (PFBS)	42.9		ng/l	1.90	0.269	1
Perfluorohexanoic Acid (PFHxA)	4.51		ng/l	1.90	0.249	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	3.79	0.428	1
Perfluoroheptanoic Acid (PFHpA)	1.90		ng/l	1.90	0.246	1
Perfluorohexanesulfonic Acid (PFHxS)	225		ng/l	1.90	0.455	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.90	0.068	1
Perfluorooctanoic Acid (PFOA)	12.3		ng/l	1.90	0.591	1
Perfluorononanoic Acid (PFNA)	0.985	J	ng/l	1.90	0.451	1
Perfluorooctanesulfonic Acid (PFOS)	67.4		ng/l	1.90	0.466	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.610	1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.90	0.261	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.887	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.773	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.902	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.614	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.90	0.199	1
Perfluorotridecanoic Ácid (PFTrDA)	ND		ng/l	1.90	0.481	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.409	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	134	Q	70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	113		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	120		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	80		70-130

10/21/20

Report Date:

Project Name: Lab Number: PRINCETON TOWN CAMPUS L2041392

Project Number: 2241017

SAMPLE RESULTS

Date Collected: 09/29/20 09:00

Lab ID: L2041392-02 Date Received: Client ID: TC001G WELL 1 FIELD BLANK 09/30/20

Sample Location: 6 TOWN HALL DRIVE, PRINCETON, MA Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Dw

Extraction Date: 10/15/20 20:30 Analytical Method: 133,537.1 Analytical Date: 10/16/20 19:43

Analyst: SH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lat)				
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.73	0.246	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.73	0.228	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	3.46	0.392	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.73	0.225	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.73	0.416	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.73	0.062	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.73	0.541	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.73	0.412	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.73	0.426	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.73	0.558	1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.73	0.238	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.73	0.811	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.73	0.707	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.73	0.825	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.73	0.561	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.73	0.182	1
Perfluorotridecanoic Ácid (PFTrDA)	ND		ng/l	1.73	0.440	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.73	0.374	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	92	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	89	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	94	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	91	70-130	

Project Name: PRINCETON TOWN CAMPUS **Lab Number:** L2041392

Project Number: 2241017 Report Date: 10/21/20

Method Blank Analysis Batch Quality Control

Analytical Method: 133,537.1 Extraction Method: EPA 537

Analytical Date: 10/08/20 12:55 Extraction Date: 10/08/20 06:13

Analyst: SH

Parameter	Result	Qualifier	Units	RL		MDL
Perfluorinated Alkyl Acids by EPA 53	37.1 - Mans	sfield Lab f	or sample(s):	01	Batch:	WG1419607-1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.284
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.263
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	4.00		0.452
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.260
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.480
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		0.072
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		0.624
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.476
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.492
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.644
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		0.275
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00		0.936
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.816
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		0.952
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.648
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		0.210
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.508
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.432

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	85	70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	84	70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	78	70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	92	70-130

Project Name: PRINCETON TOWN CAMPUS **Lab Number:** L2041392

Project Number: 2241017 Report Date: 10/21/20

Method Blank Analysis Batch Quality Control

Analytical Method: 133,537.1 Extraction Method: EPA 537

Analytical Date: 10/14/20 10:06 Extraction Date: 10/13/20 17:30

Analyst: SH

Result	Qualifier	Units	RL		MDL
37.1 - Man	sfield Lab f	or sample(s):	01	Batch:	WG1421574-1
ND		ng/l	2.00		0.284
ND		ng/l	2.00		0.263
ND		ng/l	4.00		0.452
ND		ng/l	2.00		0.260
ND		ng/l	2.00		0.480
ND		ng/l	2.00		0.072
ND		ng/l	2.00		0.624
ND		ng/l	2.00		0.476
ND		ng/l	2.00		0.492
ND		ng/l	2.00		0.644
ND		ng/l	2.00		0.275
c ND		ng/l	2.00		0.936
ND		ng/l	2.00		0.816
ND		ng/l	2.00		0.952
ND		ng/l	2.00		0.648
ND		ng/l	2.00		0.210
ND		ng/l	2.00		0.508
ND		ng/l	2.00		0.432
	ND N	ND N	ND	ND	ND

			Acceptance		
Surrogate	%Recovery	Qualifier	Criteria		
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	136	Q	70-130		
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	123		70-130		
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	130		70-130		
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	106		70-130		

Project Name: PRINCETON TOWN CAMPUS **Lab Number:** L2041392

Project Number: 2241017 Report Date: 10/21/20

Method Blank Analysis Batch Quality Control

Analytical Method: 133,537.1 Extraction Method: EPA 537

Analytical Date: 10/16/20 18:59 Extraction Date: 10/15/20 20:30

Analyst: SH

arameter	Result	Qualifier	Units	RL		MDL
erfluorinated Alkyl Acids by EPA 53	37.1 - Man	sfield Lab fo	or sample(s):	02	Batch:	WG1422636-1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.284
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.263
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	4.00		0.452
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.260
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.480
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		0.072
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		0.624
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.476
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.492
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.644
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9Cl-PF3ONS)	ND		ng/l	2.00		0.275
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00		0.936
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.816
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		0.952
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.648
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		0.210
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.508
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.432

		A		
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	101		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	93		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	109		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	88		70-130	

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2041392

Report Date: 10/21/20

Parameter	LCS %Recovery	LCSD Qual %Recover		covery nits RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab Assoc	siated sample(s): 01 E	Batch: WG1419607-2			
Perfluorobutanesulfonic Acid (PFBS)	82	-	70-	130 -	30	
Perfluorohexanoic Acid (PFHxA)	77	-	70-	130 -	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	79	-	70-	130 -	30	
Perfluoroheptanoic Acid (PFHpA)	78	-	70-	130 -	30	
Perfluorohexanesulfonic Acid (PFHxS)	83	-	70-	130 -	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	82	-	70-	130 -	30	
Perfluorooctanoic Acid (PFOA)	86	-	70-	130 -	30	
Perfluorononanoic Acid (PFNA)	83	-	70-	130 -	30	
Perfluorooctanesulfonic Acid (PFOS)	80	-	70-	130 -	30	
Perfluorodecanoic Acid (PFDA)	83	-	70-	130 -	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	80	-	70-	130 -	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	79	-	70-	130 -	30	
Perfluoroundecanoic Acid (PFUnA)	77	-	70-	130 -	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	80	-	70-	130 -	30	
Perfluorododecanoic Acid (PFDoA)	75	-	70-	130 -	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	83	-	70-	130 -	30	
Perfluorotridecanoic Acid (PFTrDA)	90	-	70-	130 -	30	
Perfluorotetradecanoic Acid (PFTA)	105	-	70-	130 -	30	

Project Name: PRINCETON TOWN CAMPUS

Lab Number:

L2041392

Project Number: 2241017

Report Date:

10/21/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	l imits	RPD	Qual	l imits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 Batch: WG1419607-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	81				70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	82				70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	76				70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	88				70-130

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2041392

Report Date: 10/21/20

arameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	RPD Qual Limits	i .
erfluorinated Alkyl Acids by EPA 537.1	- Mansfield Lab Ass	sociated sample((s): 01 B	atch: WG142	21574-2 WG1421	574-3		
Perfluorobutanesulfonic Acid (PFBS)	110		104		70-130	6	30	
Perfluorohexanoic Acid (PFHxA)	150		150		70-130	0	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	122		136		70-130	11	30	
Perfluoroheptanoic Acid (PFHpA)	142		146		70-130	3	30	
Perfluorohexanesulfonic Acid (PFHxS)	107		98		70-130	9	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	150		148		70-130	1	30	
Perfluorooctanoic Acid (PFOA)	152	Q	150		70-130	1	30	
Perfluorononanoic Acid (PFNA)	148		150		70-130	1	30	
Perfluorooctanesulfonic Acid (PFOS)	112		108		70-130	4	30	
Perfluorodecanoic Acid (PFDA)	160	Q	150		70-130	6	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	90		114		70-130	24	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	100		96		70-130	4	30	
Perfluoroundecanoic Acid (PFUnA)	154	Q	154	Q	70-130	0	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	90		96		70-130	6	30	
Perfluorododecanoic Acid (PFDoA)	140		148		70-130	6	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	112		70		70-130	46	30	
Perfluorotridecanoic Acid (PFTrDA)	142		146		70-130	3	30	
Perfluorotetradecanoic Acid (PFTA)	182	Q	184	Q	70-130	1	30	

Project Name: PRINCETON TOWN CAMPUS

Lab Number: L2041392

Project Number: 2241017

Report Date: 10/21/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 Batch: WG1421574-2 WG1421574-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	143	Q	135	Q	70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	122		122		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	140	Q	136	Q	70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	105		98		70-130

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2041392

Report Date: 10/21/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
erfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab Ass	sociated sampl	e(s): 02 Ba	tch: WG142	2636-2 WG14226	36-3		
Perfluorobutanesulfonic Acid (PFBS)	78		73		70-130	7	30	
Perfluorohexanoic Acid (PFHxA)	86		86		70-130	0	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	80		80		70-130	0	30	
Perfluoroheptanoic Acid (PFHpA)	102		96		70-130	6	30	
Perfluorohexanesulfonic Acid (PFHxS)	76		69	Q	70-130	10	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	85		82		70-130	4	30	
Perfluorooctanoic Acid (PFOA)	101		103		70-130	2	30	
Perfluorononanoic Acid (PFNA)	88		83		70-130	6	30	
Perfluorooctanesulfonic Acid (PFOS)	78		71		70-130	9	30	
Perfluorodecanoic Acid (PFDA)	84		82		70-130	2	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	69	Q	70		70-130	1	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	63	Q	71		70-130	12	30	
Perfluoroundecanoic Acid (PFUnA)	86		87		70-130	1	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	63	Q	76		70-130	19	30	
Perfluorododecanoic Acid (PFDoA)	98		96		70-130	2	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	71		70		70-130	1	30	
Perfluorotridecanoic Acid (PFTrDA)	96		95		70-130	1	30	
Perfluorotetradecanoic Acid (PFTA)	123		119		70-130	3	30	

Project Name: PRINCETON TOWN CAMPUS

Lab Number:

L2041392

Project Number: 2241017

Report Date:

10/21/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 02 Batch: WG1422636-2 WG1422636-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	92		92		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	88		89		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	102		99		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	75		88		70-130	

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2041392

Report Date:

10/21/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by E	PA 537.1 -	Mansfield Lab	Associated	sample(s): 01	QC Bato	h ID: WG1	1419607-3 C	QC Samp	le: L20413	19-01	Client ID	: MS Sample
Perfluorobutanesulfonic Acid (PFBS)	ND	126	98.5	78		-	-		70-130	-		30
Perfluorohexanoic Acid (PFHxA)	ND	142	106	75		-	-		70-130	-		30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	142	103	73		-	-		70-130	-		30
Perfluoroheptanoic Acid (PFHpA)	ND	142	101	71		-	-		70-130	-		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	129	98.8	76		-	-		70-130	-		30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	134	93.8	70		-	-		70-130	-		30
Perfluorooctanoic Acid (PFOA)	ND	142	105	74		-	-		70-130	-		30
Perfluorononanoic Acid (PFNA)	ND	142	104	73		-	-		70-130	-		30
Perfluorooctanesulfonic Acid (PFOS)	ND	131	103	78		-	-		70-130	-		30
Perfluorodecanoic Acid (PFDA)	ND	142	105	74		-	-		70-130	-		30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	132	95.4	72		-	-		70-130	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	142	103	73		-	-		70-130	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	142	98.6	70		-	-		70-130	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	142	107	76		-	-		70-130	-		30
Perfluorododecanoic Acid (PFDoA)	ND	142	92.3	65	Q	-	-		70-130	-		30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	134	102	76		-	-		70-130	-		30
Perfluorotridecanoic Acid (PFTrDA)	ND	142	108	76		-	-		70-130	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	142	123	87		-	-		70-130	-		30

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2041392

Report Date:

10/21/20

	Native	MS	MS	MS		MSD	MSD	Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery (Qual Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1419607-3 QC Sample: L2041319-01 Client ID: MS Sample

	MS	3	MSD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery Qualifier	Criteria	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	76			70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	88			70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	69	Q		70-130	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	78			70-130	

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2041392

Report Date:

10/21/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by E	PA 537.1 -	Mansfield Lab	Associated	sample(s): 02	QC Bate	ch ID: WG	1422636-4	QC Sample: L20441	71-01	Client ID: MS Sample
Perfluorobutanesulfonic Acid (PFBS)	0.358J	128	95.6	75		-	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	0.322J	144	101	70		-	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	144	94.1	65	Q	-	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	0.287J	144	111	77		-	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	0.609J	132	92.2	70		-	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	136	128	94		-	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	1.58J	144	119	81		-	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	ND	144	99.2	69	Q	-	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	1.32J	134	108	81		-	-	70-130	-	30
Perfluorodecanoic Acid (PFDA)	ND	144	117	81		-	-	70-130	-	30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	134	90.6	67	Q	-	-	70-130	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	144	102	71		-	-	70-130	-	30
Perfluoroundecanoic Acid (PFUnA)	ND	144	104	72		-	-	70-130	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	144	108	75		-	-	70-130	-	30
Perfluorododecanoic Acid (PFDoA)	ND	144	103	71		-	-	70-130	-	30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	136	102	75		-	-	70-130	-	30
Perfluorotridecanoic Acid (PFTrDA)	ND	144	111	77		-	-	70-130	-	30
Perfluorotetradecanoic Acid (PFTA)	ND	144	161	112		-	-	70-130	-	30

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2041392

Report Date:

10/21/20

	Native	MS	MS	MS		MSD	MSD		Recovery	,		RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1422636-4 QC Sample: L2044171-01 Client ID: MS Sample

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	76		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	91		70-130
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	84		70-130

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

L2041392 10/21/20 Report Date:

Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPI Qual Lim		
Perfluorinated Alkyl Acids by EPA 537.1 - Mansf Sample	ield Lab Associated sample(s):	01 QC Batch ID:	WG1419607-4	QC Sample:	: L2041324-01	Client ID:	DUP
Perfluorobutanesulfonic Acid (PFBS)	1.58J	1.69J	ng/l	NC	3	30	
Perfluorohexanoic Acid (PFHxA)	6.56	5.91	ng/l	10	3	30	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	3	30	
Perfluoroheptanoic Acid (PFHpA)	5.55	5.21	ng/l	6	3	30	
Perfluorohexanesulfonic Acid (PFHxS)	0.600J	0.624J	ng/l	NC	3	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	3	30	
Perfluorooctanoic Acid (PFOA)	13.3	12.1	ng/l	9	3	30	
Perfluorononanoic Acid (PFNA)	0.600J	0.514J	ng/l	NC	3	30	
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC	3	30	
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	3	30	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	3	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	3	30	
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	3	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	3	30	
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	3	30	
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND	ND	ng/l	NC	3	30	
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	3	30	
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	3	30	

L2041392

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Lab Number:

Report Date: 10/21/20

Project Number: 2241017

RPD

Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1419607-4 QC Sample: L2041324-01 Client ID: DUP Sample

Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	58	Q	52	Q	70-130	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	52	Q	50	Q	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	58	Q	56	Q	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	80		86		70-130	

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2041392

Report Date: 10/21/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EPA 537.1 - Mansfie Sample	•		WG1422636-5		: L2044171-03 Client ID: DUP
Perfluorobutanesulfonic Acid (PFBS)	1.49J	1.44J	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	5.82	6.40	ng/l	9	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	3.71	4.09	ng/l	10	30
Perfluorohexanesulfonic Acid (PFHxS)	1.86	2.06	ng/l	10	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	11.3	12.1	ng/l	7	30
Perfluorononanoic Acid (PFNA)	1.34J	1.62J	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	14.4	14.0	ng/l	3	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

L2041392

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** PRINCETON TOWN CAMPUS

Project Number: Report Date: 10/21/20 2241017

RPD Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1422636-5 QC Sample: L2044171-03 Client ID: DUP

Sample

Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	75		84		70-130	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	68	Q	71		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	76		81		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NFtFOSAA)	87		88		70-130	

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017 **Report Date:** 10/21/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information				Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2041392-01A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		4.3	Υ	Absent		A2-537.1(14)
L2041392-01B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		4.3	Υ	Absent		A2-537.1(14)
L2041392-02A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		4.3	Υ	Absent		A2-537.1(14)
L2041392-02B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	NA	NA			Υ	Absent		A2-537.1(14)

Project Name: PRINCETON TOWN CAMPUS L2041392

Project Number: 2241017 Report Date: 10/21/20

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES	115.5005	
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS	LIEDO DA	40050 40.0
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6
•		

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Report Date: Project Number: 2241017 10/21/20

GLOSSARY

Acronyms

DL

LCSD

LOD

MS

- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2041392Project Number:2241017Report Date:10/21/20

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2041392Project Number:2241017Report Date:10/21/20

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2041392Project Number:2241017Report Date:10/21/20

REFERENCES

Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537.1, EPA/600/R-18/352. Version 1.0, November 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10212009:39

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	Manual Programme	Water SOLUTIONS		REP	UTINE SAMPLE PEAT SAMPLE HR RUSH?	WAF S	AL SAMPLE AMPLE ASON SAMPLE
253B Worcester Road	, Charlton MA 01507	Phone: (888) 377-7678	Fax: (508) 248-2	SPECIALIN			
	ton Town Campus		: -	-	terly per client		
PWS PHONE #: (97	78) 464 2100	Is the source treated Sample after treatm		NO NO	DINGS: Cu Ft.	or (Gal)	
LOCATION	CAMPLET	OCATION	SAMPLE	TIME CHLORINE	PEAS		NOTES (# of Bottles

LOCATION	SAMPLE LOCATION	SAMPLE TYPE		CHLORINE RESIDUAL	PFAS				NOTES (# of Bottles
TC001G	Well 1	Finish	09:00	NA	1	2	Bottle	50	OneKit
							Plu	strip	Blank
								,	
						_			
						-			
						_			

Custody Transfer Name & Signature		DATE	TIME
Sampler:	William Hibbs	9/29/2020	09:00
Relinquished by:	Wille Alle.	9/30/2020	1305
Received by:	Rob Maes to An	9 30 20	13:05
Relinquished by:	Rob Maesto At	9/30/20	21:00
Received by:	12	9/2012	24

Page 12 10 SE EMAIL THIS REPORT WITH RESULTS & INVOICE TO: ADonnelly@RHWhite.com and CAstephen@RHWhite.com

Massachusetts Department of Environmental Protection - Drinking Water Program **PFAS**

Per- and Polyfluoroalkyl Substances (PFAS) Report

I. PWS INFORMATION: Please refer to your MassDEP Water Quality Sampling Schedule (WQSS) to help complete this form

Page 1 of 2

PWS ID #:		2241017				City	/ / Town:	PRINCETON					
PWS Name:		PRINCETO	N TOWN CA	MPUS				P	WS Class	: COM	□ NTN	IC [TNC 🖂
MassDEP Location (LOC) ID#		N	lassDEP Locati	on Name			Sam	ple Informa	ation	Date Colle	ected	C	ollected By
TC001G	WE	LL 1					☐ (M)ultip 図 (S)ingle		R)aw F)inished	09/29/	20		W.H.
Routine or	Original, Resubmitted or							mitted Repo					
Special Sample			mation Report	6 4		. ,	eason for Re			(2) Collec	tion Date	of Or	iginal Sample
⊠ RS □ SS		Original Res				<u> </u>	Reanalysis						
SAMPLE COMME	:NTS -	Such as, if a Ma	nifold/Multiple sa	imple, list the s	our	ce(s) that wer	e on-line durir	ng sample o	ollection or if	this is a field i	reagent bla	ank	
II. ANALYTICA	AL L	ABORATOR	Y INFORMA	TION:									
Primary Lab Ce	ert. #:	M-MA086	Primar	y Lab Name:	:	Alpha Ana	lytical			Sub	contract	ed? (Y/N) Y
Analysis Lab C	ert. #	: M-MA030	Analys	is Lab Name	:	Alpha Ana	lytical						
If Analysis Lab			MassDEP or U	J.S.									
EPA, list certific	catio	n authority:											
Lab Method		Date Extracted Date Dilution Analyzed Factor							Lab Sample	IDs#			
507.4					Pı	imary Lab: L2041392-01							
537.1		10/08/20	10/08/20	1	Si	ubcontract	ed Lab:	L2041392-01					
								Result ¹	Result ²	MCL*	MDL		MRL
CAS#			REGULATED P	FAS CONTAM	IINA	ANTS		ng/L	Qualifier		ng/L		ng/L
1763-23-1	1 P	erfluorooctane S	Sulfonic Acid (P	FOS)				56.4			0.455	5	1.85
335-67-1	1 P	erfluorooctanoio	Acid (PFOA)					8.40			0.578	3	1.85
355-46-4	4 P	erfluorohexane	Sulfonic Acid (F	PFHxS)				234			0.444	ļ	1.85
375-95-1	1 P	erfluorononanoi	c Acid (PFNA)					0.555	J		0.441	ı	1.85
375-85-9	P	erfluorohepatan	oic Acid (PFHp	A)				1.30	J		0.241	ı	1.85
335-76-2	2 P	erfluorodecanoi	c acid (PFDA)					ND			0.596	3	1.85
` Re	sults	OS, PFOA, PF at or above the d by a Result (MRL; do not i	nclude estima	ated			298.8		20	1		-
		ι	INREGULATED	PFAS CONTA	MIN	NANTS							
375-73-5	5 P	erfluorobutane s	sulfonic acid (P	FBS)				39.5			0.263	3	1.85
307-55-1	1 P	erfluorododecar	noic acid (PFDo	A)				ND			0.600)	1.85
307-24-4	4 P	erfluorohexanoi	c acid (PFHxA)					2.92			0.244	1	1.85
376-06-7	7 P	erfluorotetradec	anoic acid (PF1	A)				ND			0.400)	1.85
72629-94-8	3 P	erfluorotridecan	oic acid (PFTrD	A)				ND			0.470)	1.85
2058-94-8	3 P (erfluoroundecar	noic acid (PFUn	A)				ND			0.755	5	1.85
2991-50-6	6 N	ethyl perfluoro	octanesulfonam	idoacetic acid	N) k	EtFOSAA)		ND		-	0.881		1.85
2355-31-9) N	methyl perfluor	ooctanesulfona	midoacetic ac	cid (NMeFOSAA)	ND			0.866	3	1.85
763051-92-9	9 11	l-chloroeicosafl	uoro-3-oxaunde	ecane-1-sulfor	nic a	acid (11CI-PF	3OUdS)	ND			0.194	1	1.85
756426-58-1	1 9-	chlorohexadeca	fluoro-3-oxano	ne-1-sulfonic	acio	d (9CI-PF3ON	IS)	ND			0.255	5	1.85
919005-14-4	4 4,	8-dioxa-3H-perf	luorononanoic	acid (ADONA)				ND			0.066	3	1.85
13252-13-6	6 H	exafluoropropyl	ene oxide dime	r acid (HFPO-I	DA)			ND			0.418	3	3.70

Rev. 9/9/2020

¹ A field reagent blank (FRB) must be analyzed and reported on a separate PFAS form if any PFAS are detected above the MRL. ² All qualifiers must be described under Lab Analysis Comments on page 2.

Massachusetts Department of Environmental Protection - Drinking Water

PFAS

Per- and Polyfluoroalkyl Substances (PFAS) Report

PWS ID#:	2241017
	22 .1017

Lab Sample ID#:

Primary Lab:	L2041392-01
Subcontracted Lab:	L2041392-01

CAS#	UNREGULATED PFAS CONTAMINANTS	Result ¹ ng/L	Result ² Qualifier	MCL * ng/L	MDL ng/L	MRL ng/L
				-		

Surrogate Name	% Recovery (70 – 130%)	Alternate Surrogate (must document reason for change)
¹³ C ₂ -PFHxA	76	
¹³ C ₂ -PFDA	61	
d₅-NEtFOSAA	79	
¹³ C ₃ -HFPO-DA	70	

	Note: 13C3-HFPO-DA is not rec	quired for EPA	Method 537 v1.1				
In addition to the S	SUR above you must attach the results of	the ongoing Q	C results as specified by the method	for the sample's extra	ction batch.		
⊠ Laboratory and	alytical report with QC attached (check	one item belo	ow).				
	ociated QC criteria reported within controls Standards (SUR), Laboratory Fortified B				FRB),		
	ociated sample and/or QC batch criteria r	not met. See La	ab Analysis Comments below and na	arrative in attached rep	ort.		
Lab Analysis Con	nments: (include sample/method parame	eters outside o	f or affecting QC controls/limits and r	esult qualifiers)			
Result Qualifier	Qualifier Description						
J	The target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit.						
Other Analysis Comments:	L2041392-01: The surrogate recovery was or extraction achieved the result with other surro extractions are reported; however, all associa	gate exceedanc	es,perfluoro-n-[1,2-13c2]hexanoic acid (1				
* MCL or proposed N	4CL						
I certify under penaltie	es of law that I am the person authorized to fill o		mary Lab Director Signature:	Joseph W.	ukins		
	ormation contained herein is true, accurate an extent of my knowledge.	Id	Date:	10/21/2	20		
the month in which	hese results electronically, mail <u>TWO</u> cop ch you received this report <u>or</u> no later than s COVID-19 state of emergency, in additi	า 10 days after	the end of the reporting period, which	chever is sooner. Note	that during the		
MassDEP REVIEW	V STATUS (Initial & Date)						
☐ Accepted	☐ Disapproved	Review Comments			☐ WQTS Data Entered		

Massachusetts Department of Environmental Protection - Drinking Water Program **PFAS**

Per- and Polyfluoroalkyl Substances (PFAS) Report

I. PWS INFORMATION: Please refer to your MassDEP Water Quality Sampling Schedule (WQSS) to help complete this form

Page 1 of 2

PWS ID #:		2241017	2241017 City / Town:				/ / Town:	PRINCETON					
PWS Name:		PRINCETO	N TOWN CA	MPUS				P	WS Class	: COM	□ NTN	IC 🗆	TNC ⊠
MassDEP Location (LOC) ID#		N	lassDEP Locati	on Name			Sam	ple Informa	tion	Date Colle	ected	Co	ollected By
TC001G	WE	LL 1					☐ (M)ultip 図 (S)ingle		R)aw F)inished	09/29/	20		W.H.
Routine or	Original, Resubmitted or					If Resubi	nitted Repor	t, list below	:				
Special Sample			mation Report	6 4			eason for Re			(2) Collec	tion Date	of Or	iginal Sample
⊠ RS □ SS		Original Res				- '	Reanalysis						
SAMPLE COMME	:NIS -	Such as, if a Ma	nitoid/iviuitipie sa	imple, list the s	our	ce(s) that wer	e on-line durir	ng sample co	ollection or if t	nis is a field i	reagent bia	ank	
II. ANALYTICA	AL L	ABORATOR'	Y INFORMA	TION:									
Primary Lab Ce	ert. #:	M-MA086	Primar	y Lab Name:	:	Alpha Ana	lytical			Sub	contract	ed? (Y/N) Y
Analysis Lab C	ert. #	: M-MA030	Analys	is Lab Name	:	Alpha Ana	lytical						
If Analysis Lab			MassDEP or U	J.S.									
EPA, list certific	catio	n authority:											
Lab Method		Date Extracted	Date Analyzed	Dilution Factor				ı	.ab Sample I	Ds#			
E27.4		10/10/20 P				rimary Lab: L2041392-01RE							
537.1		10/13/20	10/14/20	1	Sı	ubcontract	ed Lab:	L2041392-01RE					
								Result ¹	Result ²	MCL*	MDL		MRL
CAS#			REGULATED P	FAS CONTAM	IINA	ANTS		ng/L	Qualifier		ng/L		ng/L
1763-23-1	1 P e	erfluorooctane S	Sulfonic Acid (P	FOS)				67.4			0.466	3	1.90
335-67-1	1 Pe	erfluorooctanoio	Acid (PFOA)					12.3			0.591	ı	1.90
355-46-4	4 P	erfluorohexane	Sulfonic Acid (F	PFHxS)				225		_	0.455	5	1.90
375-95-1	1 P e	erfluorononanoi	c Acid (PFNA)					0.985	J		0.451	1	1.90
375-85-9	Pe	erfluorohepatan	oic Acid (PFHp.	A)				1.90			0.246	3	1.90
335-76-2		erfluorodecanoi						ND			0.610)	1.90
` Re	sults	FOS, PFOA, PF at or above the od by a Result (MRL; do not i	nclude estima	ated			306.6		20	-		-
		U	INREGULATED	PFAS CONTA	MIN	NANTS							
375-73-5	5 P 6	erfluorobutane s	sulfonic acid (P	FBS)				42.9			0.269)	1.90
307-55-1	1 Pe	erfluorododecar	noic acid (PFDo	A)				ND			0.614	1	1.90
307-24-4	4 Pe	erfluorohexanoi	c acid (PFHxA)					4.51			0.249)	1.90
376-06-7	7 Pe	erfluorotetradec	anoic acid (PF1	A)				ND			0.409)	1.90
72629-94-8	3 P	erfluorotridecan	oic acid (PFTrD	A)				ND			0.481		1.90
2058-94-8	3 P	erfluoroundecar	noic acid (PFUn	A)				ND			0.773	3	1.90
2991-50-6	6 N -	ethyl perfluoro	octanesulfonam	idoacetic acid	N) k	EtFOSAA)		ND		_	0.902	2	1.90
2355-31-9) N	-methyl perfluor	ooctanesulfona	midoacetic ac	cid (NMeFOSAA)	ND			0.887	7	1.90
763051-92-9	9 11	l-chloroeicosafl	uoro-3-oxaunde	ecane-1-sulfon	nic a	acid (11CI-PF	3OUdS)	ND			0.199)	1.90
756426-58-1	1 9-	chlorohexadeca	fluoro-3-oxano	ne-1-sulfonic	acio	i (9CI-PF3ON	IS)	ND			0.261		1.90
919005-14-4	4,	8-dioxa-3H-perf	luorononanoic	acid (ADONA)				ND			0.068	3	1.90
13252-13-6	6 H	exafluoropropyl	ene oxide dime	r acid (HFPO-I	DA)	·		ND			0.428	3	3.79

Rev. 9/9/2020

¹ A field reagent blank (FRB) must be analyzed and reported on a separate PFAS form if any PFAS are detected above the MRL. ² All qualifiers must be described under Lab Analysis Comments on page 2.

Massachusetts Department of Environmental Protection - Drinking Water

PFAS

Per- and Polyfluoroalkyl Substances (PFAS) Report

PWS ID#:	2241017	

Lab Sample ID#:

Primary Lab:	L2041392-01RE
Subcontracted Lab:	L2041392-01RE

CAS#	UNREGULATED PFAS CONTAMINANTS	Result ¹ ng/L	Result ² Qualifier	MCL * ng/L	MDL ng/L	MRL ng/L
				-		

Surrogate Name	% Recovery (70 – 130%)	Alternate Surrogate (must document reason for change)
¹³ C ₂ -PFHxA	134	
¹³ C ₂ -PFDA	120	
d₅-NEtFOSAA	80	
¹³ C ₃ -HFPO-DA	113	

	Note: ¹³ C ₃ -HFPO-DA is not rec	quired for EPA	Method 537 v1.1		
In addition to the S	SUR above you must attach the results of	the ongoing QC	C results as specified by the method	for the sample's extract	ction batch.
□ Laboratory and □	alytical report with QC attached (check	one item belo	ow).		
	sociated QC criteria reported within controls Standards (SUR), Laboratory Fortified B				FRB),
	sociated sample and/or QC batch criteria r	not met. See La	ab Analysis Comments below and n	arrative in attached rep	ort.
Lab Analysis Con	nments: (include sample/method parame	eters outside of	or affecting QC controls/limits and	result qualifiers)	
Result Qualifier	Qualifier Description				
J	The target analyte concentration is belo	w the quantitat	ion limit (RL), but above the Method	Detection Limit.	
Other Analysis Comments:	L2041392-01: The surrogate recovery was or extraction achieved the result with other surrogate extractions are reported; however, all associations are reported.	ogate exceedance	es,perfluoro-n-[1,2-13c2]hexanoic acid (1		
* MCL or proposed M	MCL				
I certify under penaltie	es of law that I am the person authorized to fill o		nary Lab Director Signature:	Joseph Wi	ackens
	iormation contained herein is true, accurate an extent of my knowledge.	nd	Date:	10/21/2	
the month in which	these results electronically, mail <u>TWO</u> cop ch you received this report <u>or</u> no later than s COVID-19 state of emergency, in additi	n 10 days after	the end of the reporting period, whi	chever is sooner. Note	that during the
MassDEP REVIEW	V STATUS (Initial & Date)				
☐ Accepted	Disapproved	Review Comments			☐ WQTS Data Entered

Massachusetts Department of Environmental Protection - Drinking Water Program PFAS

Per- and Polyfluoroalkyl Substances (PFAS) Report

I. PWS INFORMATION: Please refer to your MassDEP Water Quality Sampling Schedule (WQSS) to help complete this form

Page 1 of 2

PWS ID #:		2241017	,			City	/ / Town:	PRIN	NCET	ON					
PWS Name:		PRINCETO	INCETON TOWN CAMPUS]	PW	S Class:	COI	M 🗌 N	TNC [TNC		
MassDEP Location (LOC) ID# MassDEP Location Name				Sample Information Date Collected				Collected I	Ву						
FIELD BLANK							09/2	29/20		W.H.					
Routine or		Original	, Resubmitted o	r				If Re	submi	tted Repor	t, list be	low:	-		
Special Sample		Confir	mation Report			(1) R	leason for Re	esubmis	ssion		(2) Co	llection D	ate of O	riginal Sa	mple
⊠ RS □ SS		Original 🗌 Res	submitted C	Confirmation		Resample	Reanalysi	s 🗌 Re	eport Co	orrection					
SAMPLE COMME	NTS -	Such as, if a Ma	anifold/Multiple sa	ample, list the s	ourc	ce(s) that wer	e on-line duri	ng samp	ole colle	ection or if the	his is a fi	eld reagen	t blank		
II. ANALYTICA	AL L	ABORATOR	Y INFORMA	TION:											
Primary Lab Ce						Alpha Ana	lytical					Subcontra	acted?	(Y/N)	Y
. Illiary Lab Co	,, ,, ,, ,,			, Lub Humo	•	7.10.1.1.1	,							(1714)	
Analysis Lab C	ert.#	M-MA030	Analys	is Lab Name):	Alpha Ana	lytical								
If Analysis Lab			MassDEP or I	J.S.											
EPA, list certific	catio	n authority:													
Lab Method	ı	Date Extracted	Date Analyzed	Dilution Factor					Lal	b Sample II	Ds#				
			10/10/00		Pr	rimary Lab	:			I	L2041	392-02			
537.1		10/15/20	10/16/20	1	Sı	ubcontract	ed Lab:			I	_2041	392-02			
CAS#			REGULATED F	PFAS CONTAN	IINA	NTS		ng/	/L	Result ² Qualifier				ng/L	
1763-23-1	1 P	erfluorooctane	Sulfonic Acid (F	PFOS)								0.	426	1.73	
335-67-1	1 P	erfluorooctanoi	c Acid (PFOA)					NI	D			0.	541	1.73	
355-46-4	4 P	erfluorohexane	Sulfonic Acid (I	PFHxS)				NI	D			0.	416	1.73	
375-95-1	1 P	erfluorononano	ic Acid (PFNA)					NI	D		_	0.	412	1.73	
375-85-9	P	erfluorohepatar	noic Acid (PFHp	A)				NI	D			0.	225	1.73	
335-76-2	2 P	erfluorodecano	ic acid (PFDA)												
Re	sults	at or above the	e MRL; do not	include estima	ated						20		-	-	
ues						IANTS									
375-73-5	5 P	erfluorobutane	sulfonic acid (P	FBS)				N	D			0.	 246	1.73	
307-55-1	-	erfluorododeca	`	•				NE	D					1.73	_
307-24-4		erfluorohexano	•					NE	D					1.73	
376-06-7	7 P	erfluorotetradeo	canoic acid (PF	ГА)				NE	D			0.	374	1.73	
72629-94-8	3 P	erfluorotridecar	noic acid (PFTrI	DA)				NE	D			0.	440	1.73	
2058-94-8	3 P	erfluoroundeca	noic acid (PFUn	nA)				N	D			0.	707	1.73	
2991-50-6		-ethyl perfluoro	octanesulfonan	nidoacetic acid	d (NI	EtFOSAA)		NI	D		-			1.73	
2355-31-9					•	•)	NE	D					1.73	_
763051-92-9	-							NE	D					1.73	
756426-58-1	1 9-	-chlorohexadec	afluoro-3-oxano	ne-1-sulfonic	acid	I (9CI-PF3ON	IS)	NE	D			0.	238	1.73	\neg
919005-14-4	1 4,	8-dioxa-3H-perl	fluorononanoic	acid (ADONA)				NE	D			0.	062	1.73	\exists
13252-13-6	6 H	exafluoropropy	lene oxide dime	er acid (HFPO-	DA)			NE	D			0.	392	3.46	

Rev. 9/9/2020

¹ A field reagent blank (FRB) must be analyzed and reported on a separate PFAS form if any PFAS are detected above the MRL. ² All qualifiers must be described under Lab Analysis Comments on page 2.

Massachusetts Department of Environmental Protection - Drinking Water

PFAS

Per- and Polyfluoroalkyl Substances (PFAS) Report

PWS ID#:	2241017	
	22 11017	

Lab Sample ID#:

Primary Lab:	L2041392-02
Subcontracted Lab:	L2041392-02

CAS#	UNREGULATED PFAS CONTAMINANTS	Result ¹ ng/L	Result ² Qualifier	MCL * ng/L	MDL ng/L	MRL ng/L
				-		

Surrogate Name	% Recovery (70 – 130%)	Alternate Surrogate (must document reason for change)
¹³ C ₂ -PFHxA	92	
¹³ C ₂ -PFDA	94	
d₅-NEtFOSAA	91	
¹³ C ₃ -HFPO-DA	89	

	Note: ¹³ C ₃ -HFPO-DA is not re	quired for EPA	Method 537 v1.1		
In addition to the S	UR above you must attach the results of	the ongoing Q0	C results as specified by the method	for the sample's extra	ction batch.
□ Laboratory ana	alytical report with QC attached (check	one item belo	ow).		
	ociated QC criteria reported within contro Standards (SUR), Laboratory Fortified B		• • • • • • • • • • • • • • • • • • • •	,	FRB),
	ociated sample and/or QC batch criteria	not met. See La	ab Analysis Comments below and n	arrative in attached rep	ort.
Lab Analysis Com	nments: (include sample/method param	eters outside of	or affecting QC controls/limits and	result qualifiers)	
Result Qualifier	Qualifier Description				
J	The target analyte concentration is belo	ow the quantitat	tion limit (RL), but above the Method	Detection Limit.	
Other Analysis Comments:	L2041392-02 was activated and	d extracted v	with the method required hold	ding time exceeded	d.
* MCL or proposed M	ICL				
I certify under penaltie	es of law that I am the person authorized to fill or prmation contained herein is true, accurate a		nary Lab Director Signature:	Joseph W.	cukins
	extent of my knowledge.		Date:	10/21/2	20
the month in whice Massachusetts	hese results electronically, mail <u>TWO</u> cop ch you received this report <u>or</u> no later tha s COVID-19 state of emergency, in addit	n 10 days after	the end of the reporting period, whi	chever is sooner. Note	that during the
MassDEP REVIEW	/ STATUS (Initial & Date)	Review			□wqts
☐ Accepted	Disapproved	Comments			Data Entered

WhiteWater water & wastewater solutions		ROUTINE SAMPLE REPEAT SAMPLE 24 HR RUSH?	WAF SAMPLE PRESEASON SAMPLE	
WS ID #: 2241017 PWS CLASS: TNC JOB/SO # WS NAME: Princeton Town Campus	Fax: (508) 248-2895	SPECIAL NOTES: PFAS Quarterly per client		
WS ADDRESS: 6 Town Hall Drive, Princeton, MA 01541 WS PHONE #: (978) 464 2100 Sample after treatments	X	METER READINGS: Cu Ft. or 6		
		CITI ODINE	Section and a section of the section	

SAMPLE LOCATION	SAMPLE TYPE	TIME	CHLORINE RESIDUAL	PFAS			NOTES (# of Bottles
Well 1	Finish	09:00	NA	1	2	Bottles	= OneKit
		0-2-2				Plus	Trip Blank
						, ,	V.
			8				
		SAMPLE LOCATION TYPE	SAMPLE LOCATION TYPE	SAMPLE LOCATION TYPE RESIDUAL	SAMPLE LOCATION TYPE RESIDUAL PAS	SAMPLE LOCATION TYPE RESIDUAL PEAS	Well 1 Finish 04:00 NA V 2 Bottles

Custody Transfer	Name & Signature	DATE	TIME
Sampler:	William Hibbs	9/29/2020	09:00
Relinquished by:	Wille Alla.	9/30/2020	1305
Received by:	Rob Maes to An	9 30 20	13:05
Relinquished by:	Rob Maesto At	9/30/20	21:00
Received by:	n	10012	264

ANALYTICAL REPORT

Lab Number: L2041392

Client: White Water Inc.

253B Worcester Road Charlton, MA 01507

ATTN: Andrew Donnelly Phone: (888) 377-7678

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017
Report Date: 10/21/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

L2041392 Report Date: 10/21/20

Lab Number:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2041392-01	TC001G WELL 1	DW	6 TOWN HALL DRIVE, PRINCETON, MA	09/29/20 09:00	09/30/20
L2041392-02	TC001G WELL 1 FIELD BLANK	DW	6 TOWN HALL DRIVE, PRINCETON, MA	09/29/20 09:00	09/30/20

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017 Report Date: 10/21/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017 Report Date: 10/21/20

Case Narrative (continued)

Report Revision

October 21, 2020: Results for the field blank have been reported.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2041392-02: The sample identified as "trip blank" on the chain of custody was identified as "field blank" on the container label. At the client's request, the sample is reported as "TC001G WELL 1 FIELD BLANK".

Perfluorinated Alkyl Acids

L2041392-01: The surrogate recovery was outside the acceptance criteria for perfluoro-n-[1,2-13c2]decanoic acid (13c-pfda) (61%); however, re-extraction achieved the result with other surrogate exceedances, perfluoro-n-[1,2-13c2]hexanoic acid (13c-pfhxa) (134%). The results of both extractions are reported; however, all associated compounds are considered to have a potential bias.

L2041392-02 was activated and extracted with the method required holding time exceeded.

WG1421574-1: The surrogate recovery is above the acceptance criteria for perfluoro-n-[1,2-13c2]hexanoic acid (13c-pfhxa) (136%). Since the blank was non-detect for all target analytes, re-analysis was not required. WG1421574-2/-3: The LCS/LCSD recoveries, associated with L2041392-01, are within the 50-150% acceptance criteria for low level Perfluorinated Alkyl Acids except where noted.

The WG1421574-2/-3 LCS/LCSD recoveries, associated with L2041392-01, were above the acceptance criteria for perfluorooctanoic acid (pfoa) (152% LCS only), perfluorodecanoic acid (pfda) (160% LCS only), perfluoroundecanoic acid (pfuna) (154%/154%), and perfluorotetradecanoic acid (pfta) (182%/184%); however, re-extraction could not be performed due to lack of additional sample. The results of the original analysis are reported; however, all positive detects are considered to have a potentially high bias for these compounds. WG1421574-2/-3: The LCS/LCSD RPDs, associated with L2041392-01, are within the 50% acceptance

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392
Project Number: 2241017 Report Date: 10/21/20

Case Narrative (continued)

criteria for low level Perfluorinated Alkyl Acids.

The surrogate recoveries for the WG1421574-2 LCS, associated with L2041392-01, are outside the acceptance criteria for perfluoro-n-[1,2-13c2]hexanoic acid (13c-pfhxa) (143%) and perfluoro-n-[1,2-13c2]decanoic acid (13c-pfda) (140%).

The surrogate recoveries for the WG1421574-3 LCSD, associated with L2041392-01, are outside the acceptance criteria for perfluoro-n-[1,2-13c2]hexanoic acid (13c-pfhxa) (135%) and perfluoro-n-[1,2-13c2]decanoic acid (13c-pfda) (136%).

The WG1422636-2 LCS recoveries, associated with L2041392-02, were below the acceptance criteria for 9CI-PF3ONS, NMeFOSAA and NEtFOSAA; however, re-extraction could not be performed due to lack of additional sample. The results of the original analysis are reported; however, all associated targets are considered to have a potential bias for these compounds.

The WG1422636-3 LCSD recovery, associated with L2041392-02, was below the acceptance criteria for PFHxS; however, re-extraction could not be performed due to lack of additional sample. The results of the original analysis are reported; however, all associated targets are considered to have a potential bias for these compounds.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Vuxon & Mel Susan O' Neil

Title: Technical Director/Representative Date: 10/21/20

ORGANICS

SEMIVOLATILES

10/21/20

Report Date:

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017

SAMPLE RESULTS

Lab ID: L2041392-01 Date Collected: 09/29/20 09:00

Client ID: TC001G WELL 1 Date Received: 09/30/20

Sample Location: 6 TOWN HALL DRIVE, PRINCETON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 133,537.1 Extraction Date: 10/08/20 06:13
Analytical Date: 10/08/20 16:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lat)				
Perfluorobutanesulfonic Acid (PFBS)	39.5		ng/l	1.85	0.263	1
Perfluorohexanoic Acid (PFHxA)	2.92		ng/l	1.85	0.244	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	3.70	0.418	1
Perfluoroheptanoic Acid (PFHpA)	1.30	J	ng/l	1.85	0.241	1
Perfluorohexanesulfonic Acid (PFHxS)	234		ng/l	1.85	0.444	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.85	0.066	1
Perfluorooctanoic Acid (PFOA)	8.40		ng/l	1.85	0.578	1
Perfluorononanoic Acid (PFNA)	0.555	J	ng/l	1.85	0.441	1
Perfluorooctanesulfonic Acid (PFOS)	56.4		ng/l	1.85	0.455	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.85	0.596	1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.85	0.255	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.85	0.866	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85	0.755	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85	0.881	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85	0.600	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.85	0.194	1
Perfluorotridecanoic Ácid (PFTrDA)	ND		ng/l	1.85	0.470	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85	0.400	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	76		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	70		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	61	Q	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	79		70-130	

10/21/20

Report Date:

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017

SAMPLE RESULTS

Lab ID: L2041392-01 RE Date Collected: 09/29/20 09:00

Client ID: TC001G WELL 1 Date Received: 09/30/20

Sample Location: 6 TOWN HALL DRIVE, PRINCETON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Dw Extraction Method: EPA 537

Analytical Method: 133,537.1 Extraction Date: 10/13/20 17:30
Analytical Date: 10/14/20 10:50

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lat)				
Perfluorobutanesulfonic Acid (PFBS)	42.9		ng/l	1.90	0.269	1
Perfluorohexanoic Acid (PFHxA)	4.51		ng/l	1.90	0.249	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	3.79	0.428	1
Perfluoroheptanoic Acid (PFHpA)	1.90		ng/l	1.90	0.246	1
Perfluorohexanesulfonic Acid (PFHxS)	225		ng/l	1.90	0.455	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.90	0.068	1
Perfluorooctanoic Acid (PFOA)	12.3		ng/l	1.90	0.591	1
Perfluorononanoic Acid (PFNA)	0.985	J	ng/l	1.90	0.451	1
Perfluorooctanesulfonic Acid (PFOS)	67.4		ng/l	1.90	0.466	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.610	1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.90	0.261	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.887	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.773	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.902	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.614	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.90	0.199	1
Perfluorotridecanoic Ácid (PFTrDA)	ND		ng/l	1.90	0.481	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.409	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	134	Q	70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	113		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	120		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	80		70-130

10/21/20

Report Date:

Project Name: Lab Number: PRINCETON TOWN CAMPUS L2041392

Project Number: 2241017

SAMPLE RESULTS

Date Collected: 09/29/20 09:00

Lab ID: L2041392-02 Date Received: Client ID: TC001G WELL 1 FIELD BLANK 09/30/20

Sample Location: 6 TOWN HALL DRIVE, PRINCETON, MA Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Dw

Extraction Date: 10/15/20 20:30 Analytical Method: 133,537.1 Analytical Date: 10/16/20 19:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lat)				
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.73	0.246	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.73	0.228	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	3.46	0.392	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.73	0.225	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.73	0.416	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.73	0.062	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.73	0.541	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.73	0.412	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.73	0.426	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.73	0.558	1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.73	0.238	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.73	0.811	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.73	0.707	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.73	0.825	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.73	0.561	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.73	0.182	1
Perfluorotridecanoic Ácid (PFTrDA)	ND		ng/l	1.73	0.440	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.73	0.374	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	92	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	89	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	94	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	91	70-130	

Project Name: PRINCETON TOWN CAMPUS **Lab Number:** L2041392

Project Number: 2241017 Report Date: 10/21/20

Method Blank Analysis Batch Quality Control

Analytical Method: 133,537.1 Extraction Method: EPA 537

Analytical Date: 10/08/20 12:55 Extraction Date: 10/08/20 06:13

	MDL		RL	Units	Qualifier	Result	Parameter
7-1	WG1419607-	Batch:	01	or sample(s):	field Lab f	537.1 - Mans	Perfluorinated Alkyl Acids by EPA 53
	0.284		2.00	ng/l		ND	Perfluorobutanesulfonic Acid (PFBS)
	0.263		2.00	ng/l		ND	Perfluorohexanoic Acid (PFHxA)
	0.452		4.00	ng/l		ND	Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)
	0.260		2.00	ng/l		ND	Perfluoroheptanoic Acid (PFHpA)
	0.480		2.00	ng/l		ND	Perfluorohexanesulfonic Acid (PFHxS)
	0.072		2.00	ng/l		ND	4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)
	0.624		2.00	ng/l		ND	Perfluorooctanoic Acid (PFOA)
	0.476		2.00	ng/l		ND	Perfluorononanoic Acid (PFNA)
	0.492		2.00	ng/l		ND	Perfluorooctanesulfonic Acid (PFOS)
	0.644		2.00	ng/l		ND	Perfluorodecanoic Acid (PFDA)
	0.275		2.00	ng/l		ND	9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9Cl-PF3ONS)
	0.936		2.00	ng/l		etic ND	N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)
	0.816		2.00	ng/l		ND	Perfluoroundecanoic Acid (PFUnA)
	0.952		2.00	ng/l		c ND	N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)
	0.648		2.00	ng/l		ND	Perfluorododecanoic Acid (PFDoA)
	0.210		2.00	ng/l		- ND	11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)
	0.508		2.00	ng/l		ND	Perfluorotridecanoic Acid (PFTrDA)
	0.432		2.00	ng/l		ND	Perfluorotetradecanoic Acid (PFTA)
	0.816 0.952 0.648 0.210 0.508		2.00 2.00 2.00 2.00 2.00	ng/l ng/l ng/l ng/l		ND c ND ND ND	Acid (NMeFOSAA) Perfluoroundecanoic Acid (PFUnA) N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA) Perfluorododecanoic Acid (PFDoA) 11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS) Perfluorotridecanoic Acid (PFTrDA)

		Α	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	85		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	84		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	78		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	92		70-130	

Project Name: PRINCETON TOWN CAMPUS **Lab Number:** L2041392

Project Number: 2241017 Report Date: 10/21/20

Method Blank Analysis Batch Quality Control

Analytical Method: 133,537.1 Extraction Method: EPA 537

Analytical Date: 10/14/20 10:06 Extraction Date: 10/13/20 17:30

Result	Qualifier	Units	RL		MDL
37.1 - Man	sfield Lab f	or sample(s):	01	Batch:	WG1421574-1
ND		ng/l	2.00		0.284
ND		ng/l	2.00		0.263
ND		ng/l	4.00		0.452
ND		ng/l	2.00		0.260
ND		ng/l	2.00		0.480
ND		ng/l	2.00		0.072
ND		ng/l	2.00		0.624
ND		ng/l	2.00		0.476
ND		ng/l	2.00		0.492
ND		ng/l	2.00		0.644
ND		ng/l	2.00		0.275
c ND		ng/l	2.00		0.936
ND		ng/l	2.00		0.816
ND		ng/l	2.00		0.952
ND		ng/l	2.00		0.648
ND		ng/l	2.00		0.210
ND		ng/l	2.00		0.508
ND		ng/l	2.00		0.432
	ND N	ND N	ND	ND	ND

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	136	Q	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	123		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	130		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	106		70-130	

Project Name: PRINCETON TOWN CAMPUS **Lab Number:** L2041392

Project Number: 2241017 Report Date: 10/21/20

Method Blank Analysis Batch Quality Control

Analytical Method: 133,537.1 Extraction Method: EPA 537

Analytical Date: 10/16/20 18:59 Extraction Date: 10/15/20 20:30

arameter	Result	Qualifier	Units	RL		MDL
erfluorinated Alkyl Acids by EPA 53	37.1 - Man	sfield Lab fo	or sample(s):	02	Batch:	WG1422636-1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.284
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.263
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	4.00		0.452
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.260
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.480
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		0.072
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		0.624
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.476
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.492
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.644
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9Cl-PF3ONS)	ND		ng/l	2.00		0.275
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00		0.936
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.816
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		0.952
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.648
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		0.210
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.508
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.432

		A	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	101		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	93		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	109		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	88		70-130	

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2041392

Report Date: 10/21/20

Parameter	LCS %Recovery	LCSD Qual %Recover		covery nits RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab Assoc	siated sample(s): 01 E	Batch: WG1419607-2			
Perfluorobutanesulfonic Acid (PFBS)	82	-	70-	130 -	30	
Perfluorohexanoic Acid (PFHxA)	77	-	70-	130 -	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	79	-	70-	130 -	30	
Perfluoroheptanoic Acid (PFHpA)	78	-	70-	130 -	30	
Perfluorohexanesulfonic Acid (PFHxS)	83	-	70-	130 -	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	82	-	70-	130 -	30	
Perfluorooctanoic Acid (PFOA)	86	-	70-	130 -	30	
Perfluorononanoic Acid (PFNA)	83	-	70-	130 -	30	
Perfluorooctanesulfonic Acid (PFOS)	80	-	70-	130 -	30	
Perfluorodecanoic Acid (PFDA)	83	-	70-	130 -	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	80	-	70-	130 -	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	79	-	70-	130 -	30	
Perfluoroundecanoic Acid (PFUnA)	77	-	70-	130 -	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	80	-	70-	130 -	30	
Perfluorododecanoic Acid (PFDoA)	75	-	70-	130 -	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	83	-	70-	130 -	30	
Perfluorotridecanoic Acid (PFTrDA)	90	-	70-	130 -	30	
Perfluorotetradecanoic Acid (PFTA)	105	-	70-	130 -	30	

Project Name: PRINCETON TOWN CAMPUS

Lab Number:

L2041392

Project Number: 2241017

Report Date:

10/21/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	l imits	RPD	Qual	l imits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 Batch: WG1419607-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	81				70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	82				70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	76				70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	88				70-130

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2041392

Report Date: 10/21/20

arameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	RPD Qual Limits	i .
erfluorinated Alkyl Acids by EPA 537.1	- Mansfield Lab Ass	sociated sample((s): 01 B	atch: WG142	21574-2 WG1421	574-3		
Perfluorobutanesulfonic Acid (PFBS)	110		104		70-130	6	30	
Perfluorohexanoic Acid (PFHxA)	150		150		70-130	0	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	122		136		70-130	11	30	
Perfluoroheptanoic Acid (PFHpA)	142		146		70-130	3	30	
Perfluorohexanesulfonic Acid (PFHxS)	107		98		70-130	9	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	150		148		70-130	1	30	
Perfluorooctanoic Acid (PFOA)	152	Q	150		70-130	1	30	
Perfluorononanoic Acid (PFNA)	148		150		70-130	1	30	
Perfluorooctanesulfonic Acid (PFOS)	112		108		70-130	4	30	
Perfluorodecanoic Acid (PFDA)	160	Q	150		70-130	6	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	90		114		70-130	24	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	100		96		70-130	4	30	
Perfluoroundecanoic Acid (PFUnA)	154	Q	154	Q	70-130	0	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	90		96		70-130	6	30	
Perfluorododecanoic Acid (PFDoA)	140		148		70-130	6	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	112		70		70-130	46	30	
Perfluorotridecanoic Acid (PFTrDA)	142		146		70-130	3	30	
Perfluorotetradecanoic Acid (PFTA)	182	Q	184	Q	70-130	1	30	

Project Name: PRINCETON TOWN CAMPUS

Lab Number: L2041392

Project Number: 2241017

Report Date: 10/21/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 Batch: WG1421574-2 WG1421574-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	143	Q	135	Q	70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	122		122		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	140	Q	136	Q	70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	105		98		70-130

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2041392

Report Date: 10/21/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
erfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab Ass	sociated sampl	e(s): 02 Ba	tch: WG142	2636-2 WG14226	36-3		
Perfluorobutanesulfonic Acid (PFBS)	78		73		70-130	7	30	
Perfluorohexanoic Acid (PFHxA)	86		86		70-130	0	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	80		80		70-130	0	30	
Perfluoroheptanoic Acid (PFHpA)	102		96		70-130	6	30	
Perfluorohexanesulfonic Acid (PFHxS)	76		69	Q	70-130	10	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	85		82		70-130	4	30	
Perfluorooctanoic Acid (PFOA)	101		103		70-130	2	30	
Perfluorononanoic Acid (PFNA)	88		83		70-130	6	30	
Perfluorooctanesulfonic Acid (PFOS)	78		71		70-130	9	30	
Perfluorodecanoic Acid (PFDA)	84		82		70-130	2	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	69	Q	70		70-130	1	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	63	Q	71		70-130	12	30	
Perfluoroundecanoic Acid (PFUnA)	86		87		70-130	1	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	63	Q	76		70-130	19	30	
Perfluorododecanoic Acid (PFDoA)	98		96		70-130	2	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	71		70		70-130	1	30	
Perfluorotridecanoic Acid (PFTrDA)	96		95		70-130	1	30	
Perfluorotetradecanoic Acid (PFTA)	123		119		70-130	3	30	

Project Name: PRINCETON TOWN CAMPUS

Lab Number:

L2041392

Project Number: 2241017

Report Date:

10/21/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 02 Batch: WG1422636-2 WG1422636-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	92		92		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	88		89		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	102		99		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	75		88		70-130	

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2041392

Report Date:

10/21/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by E	PA 537.1 -	Mansfield Lab	Associated	sample(s): 01	QC Bato	h ID: WG1	1419607-3 C	QC Samp	le: L20413	19-01	Client ID	: MS Sample
Perfluorobutanesulfonic Acid (PFBS)	ND	126	98.5	78		-	-		70-130	-		30
Perfluorohexanoic Acid (PFHxA)	ND	142	106	75		-	-		70-130	-		30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	142	103	73		-	-		70-130	-		30
Perfluoroheptanoic Acid (PFHpA)	ND	142	101	71		-	-		70-130	-		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	129	98.8	76		-	-		70-130	-		30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	134	93.8	70		-	-		70-130	-		30
Perfluorooctanoic Acid (PFOA)	ND	142	105	74		-	-		70-130	-		30
Perfluorononanoic Acid (PFNA)	ND	142	104	73		-	-		70-130	-		30
Perfluorooctanesulfonic Acid (PFOS)	ND	131	103	78		-	-		70-130	-		30
Perfluorodecanoic Acid (PFDA)	ND	142	105	74		-	-		70-130	-		30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	132	95.4	72		-	-		70-130	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	142	103	73		-	-		70-130	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	142	98.6	70		-	-		70-130	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	142	107	76		-	-		70-130	-		30
Perfluorododecanoic Acid (PFDoA)	ND	142	92.3	65	Q	-	-		70-130	-		30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	134	102	76		-	-		70-130	-		30
Perfluorotridecanoic Acid (PFTrDA)	ND	142	108	76		-	-		70-130	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	142	123	87		-	-		70-130	-		30

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2041392

Report Date:

10/21/20

	Native	MS	MS	MS		MSD	MSD	Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery (Qual Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1419607-3 QC Sample: L2041319-01 Client ID: MS Sample

	MS	3	MSD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery Qualifier	Criteria	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	76			70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	88			70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	69	Q		70-130	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	78			70-130	

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2041392

Report Date:

10/21/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by E	PA 537.1 -	Mansfield Lab	Associated	sample(s): 02	QC Bate	ch ID: WG	1422636-4	QC Sample: L20441	71-01	Client ID: MS Sample
Perfluorobutanesulfonic Acid (PFBS)	0.358J	128	95.6	75		-	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	0.322J	144	101	70		-	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	144	94.1	65	Q	-	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	0.287J	144	111	77		-	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	0.609J	132	92.2	70		-	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	136	128	94		-	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	1.58J	144	119	81		-	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	ND	144	99.2	69	Q	-	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	1.32J	134	108	81		-	-	70-130	-	30
Perfluorodecanoic Acid (PFDA)	ND	144	117	81		-	-	70-130	-	30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	134	90.6	67	Q	-	-	70-130	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	144	102	71		-	-	70-130	-	30
Perfluoroundecanoic Acid (PFUnA)	ND	144	104	72		-	-	70-130	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	144	108	75		-	-	70-130	-	30
Perfluorododecanoic Acid (PFDoA)	ND	144	103	71		-	-	70-130	-	30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	136	102	75		-	-	70-130	-	30
Perfluorotridecanoic Acid (PFTrDA)	ND	144	111	77		-	-	70-130	-	30
Perfluorotetradecanoic Acid (PFTA)	ND	144	161	112		-	-	70-130	-	30

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2041392

Report Date:

10/21/20

	Native	MS	MS	MS		MSD	MSD		Recovery	,		RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1422636-4 QC Sample: L2044171-01 Client ID: MS Sample

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	76		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	91		70-130
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	84		70-130

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

L2041392 10/21/20 Report Date:

Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPI Qual Lim		
Perfluorinated Alkyl Acids by EPA 537.1 - Mansf Sample	ield Lab Associated sample(s):	01 QC Batch ID:	WG1419607-4	QC Sample:	: L2041324-01	Client ID:	DUP
Perfluorobutanesulfonic Acid (PFBS)	1.58J	1.69J	ng/l	NC	3	30	
Perfluorohexanoic Acid (PFHxA)	6.56	5.91	ng/l	10	3	30	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	3	30	
Perfluoroheptanoic Acid (PFHpA)	5.55	5.21	ng/l	6	3	30	
Perfluorohexanesulfonic Acid (PFHxS)	0.600J	0.624J	ng/l	NC	3	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	3	30	
Perfluorooctanoic Acid (PFOA)	13.3	12.1	ng/l	9	3	30	
Perfluorononanoic Acid (PFNA)	0.600J	0.514J	ng/l	NC	3	30	
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC	3	30	
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	3	30	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	3	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	3	30	
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	3	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	3	30	
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	3	30	
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND	ND	ng/l	NC	3	30	
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	3	30	
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	3	30	

L2041392

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Lab Number:

Report Date: 10/21/20

Project Number: 2241017

RPD

Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1419607-4 QC Sample: L2041324-01 Client ID: DUP Sample

Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	58	Q	52	Q	70-130	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	52	Q	50	Q	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	58	Q	56	Q	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	80		86		70-130	

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2041392

Report Date: 10/21/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EPA 537.1 - Mansfie Sample	•		WG1422636-5		: L2044171-03 Client ID: DUP
Perfluorobutanesulfonic Acid (PFBS)	1.49J	1.44J	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	5.82	6.40	ng/l	9	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	3.71	4.09	ng/l	10	30
Perfluorohexanesulfonic Acid (PFHxS)	1.86	2.06	ng/l	10	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	11.3	12.1	ng/l	7	30
Perfluorononanoic Acid (PFNA)	1.34J	1.62J	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	14.4	14.0	ng/l	3	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

L2041392

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** PRINCETON TOWN CAMPUS

Project Number: Report Date: 10/21/20 2241017

RPD Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1422636-5 QC Sample: L2044171-03 Client ID: DUP

Sample

Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	75		84		70-130	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	68	Q	71		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	76		81		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NFtFOSAA)	87		88		70-130	

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Project Number: 2241017 **Report Date:** 10/21/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2041392-01A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		4.3	Υ	Absent		A2-537.1(14)
L2041392-01B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		4.3	Υ	Absent		A2-537.1(14)
L2041392-02A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		4.3	Υ	Absent		A2-537.1(14)
L2041392-02B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	NA	NA			Υ	Absent		A2-537.1(14)

Project Name: PRINCETON TOWN CAMPUS L2041392

Project Number: 2241017 Report Date: 10/21/20

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES	115.5005	
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS	LIEDO DA	40050 40.0
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6
•		

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2041392

Report Date: Project Number: 2241017 10/21/20

GLOSSARY

Acronyms

DL

LCSD

LOD

MS

- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2041392Project Number:2241017Report Date:10/21/20

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2041392Project Number:2241017Report Date:10/21/20

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2041392Project Number:2241017Report Date:10/21/20

REFERENCES

Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537.1, EPA/600/R-18/352. Version 1.0, November 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10212009:39

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	Manual Programme	Water SOLUTIONS		REP	UTINE SAMPLE PEAT SAMPLE HR RUSH?	WAF S	AL SAMPLE AMPLE ASON SAMPLE
253B Worcester Road	, Charlton MA 01507	Phone: (888) 377-7678	Fax: (508) 248-2	SPECIALIN			
	ton Town Campus		: -	-	terly per client		
PWS PHONE #: (97	78) 464 2100	Is the source treated Sample after treatm		NO NO	DINGS: Cu Ft.	or (Gal)	
LOCATION	CAMPLET	OCATION	SAMPLE	TIME CHLORINE	PEAS		NOTES (# of Bottles

LOCATION	SAMPLE LOCATION	SAMPLE TYPE		CHLORINE RESIDUAL	PFAS				NOTES (# of Bottles
TC001G	Well 1	Finish	09:00	NA	1	2	Bottle	50	OneKit
							Plu	STrip	Blank
								,	
						_			
						-			
						_			

Custody Transfer	Name & Signature	DATE	TIME	
Sampler:	William Hibbs	9/29/2020	09:00	
Relinquished by:	Wille Alle.	9/30/2020	1305	
Received by:	Rob Maes to An	9 30 20	13:05	
Relinquished by:	Rob Maesto At	9/30/20	21:00	
Received by:	12	9/2012	24	

Page 12 10 SE EMAIL THIS REPORT WITH RESULTS & INVOICE TO: ADonnelly@RHWhite.com and CAstephen@RHWhite.com

ANALYTICAL REPORT

Lab Number: L2057462

Client: White Water Inc.

253B Worcester Road Charlton, MA 01507

ATTN: Andrew Donnelly Phone: (888) 377-7678

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017
Report Date: 01/05/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2057462

Report Date: 01/05/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2057462-01	TC001G WELL1	DW	6 TOWN HALL DRIVE, PRINCETON, MA	12/22/20 08:15	12/23/20
L2057462-02	TC001G WELL1-FB	DW	6 TOWN HALL DRIVE, PRINCETON, MA	12/22/20 08:15	12/23/20

Project Name:PRINCETON TOWN CAMPUSLab Number:L2057462Project Number:2241017Report Date:01/05/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:01052114:34

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2057462
Project Number: 2241017 Report Date: 01/05/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Alycia Mogayzel

Authorized Signature:

Title: Technical Director/Representative Date: 01/05/21

ALPHA

ORGANICS

SEMIVOLATILES

Serial_No:01052114:34

01/05/21

Dilution Factor

Project Name: Lab Number: PRINCETON TOWN CAMPUS L2057462

Project Number: 2241017

SAMPLE RESULTS

Date Collected: 12/22/20 08:15

Report Date:

Lab ID: L2057462-01 Date Received: Client ID: 12/23/20 TC001G WELL1

Sample Location: Field Prep: 6 TOWN HALL DRIVE, PRINCETON, MA Not Specified

Sample Depth:

Parameter

Extraction Method: EPA 537.1 Matrix: Dw

Result

Extraction Date: 01/02/21 07:00 133,537.1 Analytical Method: Analytical Date: 01/04/21 21:47

Analyst: LV

Parameter	Result	Quaimer	Units	KL	MIDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab)					
Perfluorobutanesulfonic Acid (PFBS)	48.6		ng/l	1.81	0.257	1	
Perfluorohexanoic Acid (PFHxA)	5.10		ng/l	1.81	0.238	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	3.62	0.409	1	
Perfluoroheptanoic Acid (PFHpA)	4.27		ng/l	1.81	0.235	1	
Perfluorohexanesulfonic Acid (PFHxS)	329		ng/l	1.81	0.434	1	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.81	0.065	1	
Perfluorooctanoic Acid (PFOA)	15.9		ng/l	1.81	0.564	1	
Perfluorononanoic Acid (PFNA)	0.904	J	ng/l	1.81	0.430	1	
Perfluorooctanesulfonic Acid (PFOS)	94.2		ng/l	1.81	0.445	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.81	0.582	1	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.81	0.249	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.81	0.543	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.81	0.387	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.81	0.506	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.81	0.586	1	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.81	0.190	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.81	0.459	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.81	0.391	1	
PFAS, Total (6)	443		ng/l	1.81	0.235	1	

Qualifier

Units

RL

MDL

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	89	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	72	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	80	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	97	70-130	

Serial_No:01052114:34

01/05/21

Project Name: Lab Number: PRINCETON TOWN CAMPUS L2057462

Project Number: 2241017 **Report Date:**

SAMPLE RESULTS

Lab ID: Date Collected: 12/22/20 08:15 L2057462-02

Client ID: TC001G WELL1-FB Date Received: 12/23/20 Sample Location: Field Prep: 6 TOWN HALL DRIVE, PRINCETON, MA Not Specified

Sample Depth:

Extraction Method: EPA 537.1 Matrix: Dw

01/03/21 13:10 **Extraction Date:** 133,537.1 Analytical Method: Analytical Date: 01/04/21 18:18

Analyst: LV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 - N	lansfield Lab)				
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.86	0.264	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.86	0.245	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	3.72	0.420	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.86	0.242	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.86	0.446	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.86	0.067	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.86	0.580	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.86	0.442	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.86	0.457	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.86	0.599	1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.86	0.256	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.86	0.558	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.86	0.398	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.86	0.521	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.86	0.602	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.86	0.195	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.86	0.472	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.86	0.402	1
PFAS, Total (6)	ND		ng/l	1.86	0.242	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	98	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	86	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	97	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	93	70-130	

L2057462

Project Name: PRINCETON TOWN CAMPUS Lab Number:

Project Number: 2241017 Report Date: 01/05/21

Method Blank Analysis Batch Quality Control

 Analytical Method:
 133,537.1
 Extraction Method:
 EPA 537.1

 Analytical Date:
 01/04/21 20:03
 Extraction Date:
 01/02/21 07:00

Analyst: LV

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by EPA 5	37.1 - Mans	field Lab fo	or sample(s):	01	Batch:	WG1450958-1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.284	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.263	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	4.00		0.452	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.260	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.480	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		0.072	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		0.624	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.476	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.492	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.644	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		0.275	
N-Methyl Perfluorooctanesulfonamidoace Acid (NMeFOSAA)	ic ND		ng/l	2.00		0.600	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.428	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	: ND		ng/l	2.00		0.560	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.648	
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		0.210	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.508	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.432	
PFAS, Total (6)	ND		ng/l	2.00		0.260	

		Acceptance		
Surrogate	%Recovery	Qualifier Criter	ia ———	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	100	70-130		
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	86	70-130		
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	99	70-130		
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	97	70-130		

L2057462

Project Name: PRINCETON TOWN CAMPUS Lab Number:

Project Number: 2241017 Report Date: 01/05/21

Method Blank Analysis Batch Quality Control

133,537.1

01/04/21 16:24

Analyst: LV

Analytical Method:

Analytical Date:

Extraction Method: EPA 537.1
Extraction Date: 01/03/21 13:10

arameter	Result	Qualifier	Units	RL		MDL
erfluorinated Alkyl Acids by EPA 53	37.1 - Mans	field Lab f	or sample(s):	02	Batch:	WG1451084-1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.284
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.263
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	4.00		0.452
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.260
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.480
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		0.072
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		0.624
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.476
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.492
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.644
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		0.275
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00		0.600
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.428
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		0.560
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.648
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		0.210
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.508
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.432
PFAS, Total (6)	ND		ng/l	2.00		0.260

	Acceptano	e
%Recovery	Qualifier Criteria	
109	70-130	
93	70-130	
102	70-130	
100	70-130	
	109 93 102	%Recovery Qualifier Criteria 109 70-130 93 70-130 102 70-130

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2057462

Report Date: 01/05/21

Parameter	LCS %Recovery	Qual	LCSD %Recove		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab Ass	ociated samp	le(s): 01	Batch:	WG1450	958-2				
Perfluorobutanesulfonic Acid (PFBS)	112		-			70-130	-		30	
Perfluorohexanoic Acid (PFHxA)	101		-			70-130	-		30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	86		-			70-130	-		30	
Perfluoroheptanoic Acid (PFHpA)	106		-			70-130	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	110		-			70-130	-		30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	100		-			70-130	-		30	
Perfluorooctanoic Acid (PFOA)	109		-			70-130	-		30	
Perfluorononanoic Acid (PFNA)	105		-			70-130	-		30	
Perfluorooctanesulfonic Acid (PFOS)	97		-			70-130	-		30	
Perfluorodecanoic Acid (PFDA)	103		-			70-130	-		30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	93		-			70-130	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	100		-			70-130	-		30	
Perfluoroundecanoic Acid (PFUnA)	113		-			70-130	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	106		-			70-130	-		30	
Perfluorododecanoic Acid (PFDoA)	109		-			70-130	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	92		-			70-130	-		30	
Perfluorotridecanoic Acid (PFTrDA)	106		-			70-130	-		30	
Perfluorotetradecanoic Acid (PFTA)	110		-			70-130	-		30	

Project Name: PRINCETON TOWN CAMPUS

Lab Number:

L2057462

Project Number: 2241017

Report Date:

01/05/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 Batch: WG1450958-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	96				70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	86				70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	97				70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	99				70-130

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2057462

Report Date: 01/05/21

Parameter	LCS %Recovery	Qual	LCSD %Recove	ery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab Ass	ociated sampl	e(s): 02	Batch:	WG14510)84-2				
Perfluorobutanesulfonic Acid (PFBS)	115		-			70-130	-		30	
Perfluorohexanoic Acid (PFHxA)	108		-			70-130	-		30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	98		-			70-130	-		30	
Perfluoroheptanoic Acid (PFHpA)	122		-			70-130	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	120		-			70-130	-		30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	102		-			70-130	-		30	
Perfluorooctanoic Acid (PFOA)	114		-			70-130	-		30	
Perfluorononanoic Acid (PFNA)	120		-			70-130	-		30	
Perfluorooctanesulfonic Acid (PFOS)	127		-			70-130	-		30	
Perfluorodecanoic Acid (PFDA)	100		-			70-130	-		30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	88		-			70-130	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	104		-			70-130	-		30	
Perfluoroundecanoic Acid (PFUnA)	100		-			70-130	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	94		-			70-130	-		30	
Perfluorododecanoic Acid (PFDoA)	118		-			70-130	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	70		-			70-130	-		30	
Perfluorotridecanoic Acid (PFTrDA)	106		-			70-130	-		30	
Perfluorotetradecanoic Acid (PFTA)	112		-			70-130	-		30	

Project Name: PRINCETON TOWN CAMPUS

Lab Number:

L2057462

Project Number: 2241017

Report Date:

01/05/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 02 Batch: WG1451084-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	110				70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	94				70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	105				70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	97				70-130

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2057462

Report Date:

01/05/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	r rpd	RPD Qual Limits
Perfluorinated Alkyl Acids by E	PA 537.1 -	Mansfield Lab	Associated	sample(s): 01	QC Bato	h ID: WG1	1450958-3 C	C Sample: L2057	460-01	Client ID: MS Sample
Perfluorobutanesulfonic Acid (PFBS)	ND	32.9	38.8	118		-	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	ND	37.1	40.1	108		-	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	37.1	34.5	93		-	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	ND	37.1	43.5	117		-	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	33.9	36.9	109		-	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	35	37.5	107		-	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	ND	37.1	46.6	126		-	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	ND	37.1	43.7	118		-	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	ND	34.4	34.5	100		-	-	70-130	-	30
Perfluorodecanoic Acid (PFDA)	ND	37.1	37.3	101		-	-	70-130	-	30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	34.5	32.3	94		-	-	70-130	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	37.1	34.4	93		-	-	70-130	-	30
Perfluoroundecanoic Acid (PFUnA)	ND	37.1	42.0	113		-	-	70-130	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	37.1	35.1	95		-	-	70-130	-	30
Perfluorododecanoic Acid (PFDoA)	ND	37.1	42.4	114		-	-	70-130	-	30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	35	32.2	92		-	-	70-130	-	30
Perfluorotridecanoic Acid (PFTrDA)	ND	37.1	41.2	111		-	-	70-130	-	30
Perfluorotetradecanoic Acid (PFTA)	ND	37.1	44.6	120		-	-	70-130	-	30

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2057462

Report Date:

01/05/21

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	/ Qual Limits	RPD	Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1450958-3 QC Sample: L2057460-01 Client ID: MS Sample

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifie	er % Recovery Qualifier	Criteria	
	92		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	89		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	112		70-130	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	108		70-130	

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2057462

Report Date: 01/05/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EID: MS Sample	EPA 537.1 -	Mansfield Lab	Associated	l sample(s): 02	QC Batch ID: WG ²	1451084-3 W0	G1451084-4 QC Sa	ample:	L2057060-01 Client
Perfluorobutanesulfonic Acid (PFBS)	ND	1.65	1.74J	106	1.84	113	70-130	6	30
Perfluorohexanoic Acid (PFHxA)	ND	1.86	1.82J	98	1.94	106	70-130	6	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	1.86	1.60J	86	1.69J	92	70-130	5	30
Perfluoroheptanoic Acid (PFHpA)	ND	1.86	2.04	110	2.16	118	70-130	6	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	1.7	1.74J	103	1.80J	107	70-130	3	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	1.75	1.74J	99	1.76J	102	70-130	1	30
Perfluorooctanoic Acid (PFOA)	ND	1.86	2.19	118	2.24	122	70-130	2	30
Perfluorononanoic Acid (PFNA)	ND	1.86	2.00	108	2.16	118	70-130	8	30
Perfluorooctanesulfonic Acid (PFOS)	ND	1.72	1.60J	93	1.84	108	70-130	14	30
Perfluorodecanoic Acid (PFDA)	ND	1.86	1.78J	96	1.91	104	70-130	7	30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	1.73	1.93	111	2.20	129	70-130	13	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	1.86	1.37J	74	1.94	106	70-130	34	30
Perfluoroundecanoic Acid (PFUnA)	ND	1.86	1.93	104	2.50	136	70-130	26	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	1.86	2.08	112	1.54J	84	70-130	30	30
Perfluorododecanoic Acid (PFDoA)	ND	1.86	1.89	102	2.06	112	70-130	9	30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	1.75	1.60J	91	1.43J	83	70-130	11	30
Perfluorotridecanoic Acid (PFTrDA)	ND	1.86	1.71J	92	1.91	104	70-130	11	30
Perfluorotetradecanoic Acid (PFTA)	ND	1.86	1.74J	94	1.98	108	70-130	13	30

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2057462

Report Date:

01/05/21

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	/ Qual Limits	RPD	Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1451084-3 WG1451084-4 QC Sample: L2057060-01 Client ID: MS Sample

	MS	MSD	Acceptance
Surrogate	% Recovery Q	Qualifier % Recovery Qualifier	Criteria
- 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	84	86	70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	94	89	70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	96	96	70-130
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	96	96	70-130

L2057462

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Quality Control Lab Number:

Report Date: 01/05/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EPA 537.1 - Mansfiel Sample	d Lab Associated sample(s): 01 QC Batch ID:	WG1450958-4	QC Sampl	e: L2057460-03 Client ID: DUP
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	ND	ND	ng/l	NC	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/l	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/l	NC	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	ND	ND	ng/l	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30
PFOA/PFOS, Total	ND	ND	ng/l	NC	30
PFAS, Total (5)	ND	ND	ng/l	NC	30

L2057462

Lab Number:

Lab Duplicate Analysis
Batch Quality Control

PRINCETON TOWN CAMPUS Batch Quality

Project Number: 2241017 Report Date: 01/05/21

RPD
Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1450958-4 QC Sample: L2057460-03 Client ID: DUP

Sample

Project Name:

PFAS, Total (6) ND ND ng/l NC 30

Surrogate	%Recovery	Qualifier %Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	99	73		70-130	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	86	61	Q	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	100	70		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	102	87		70-130	

Serial_No:01052114:34

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2057462

Project Number: 2241017 Report Date: 01/05/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial F	Final	Temp			Frozen	
Container ID	Container Type	Cooler			Pres	Seal	Date/Time	Analysis(*)	
L2057462-01A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.2	Υ	Absent		A2-MA-537.1(14)
L2057462-01B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.2	Υ	Absent		A2-MA-537.1(14)
L2057462-02A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.2	Υ	Absent		A2-MA-537.1(14)
L2057462-02B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	NA	NA			Υ	Absent		-

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Serial_No:01052114:34 **Lab Number:** L2057 L2057462 01/05/21 Report Date:

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
,	55151	077 70 4
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
	PFMPA PFMBA	863090-89-5

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2057462 **Report Date: Project Number:** 2241017 01/05/21

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2057462Project Number:2241017Report Date:01/05/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2057462Project Number:2241017Report Date:01/05/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:01052114:34

Project Name:PRINCETON TOWN CAMPUSLab Number:L2057462Project Number:2241017Report Date:01/05/21

REFERENCES

Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537.1, EPA/600/R-18/352. Version 1.0, November 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:01052114:34

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

12/23/20

✓ ROUTINE SAMPLE	SPECIAL SAMPLE
REPEAT SAMPLE	WAF SAMPLE
24 HR RUSH?	PRESEASON SAMPLE

Serial_No:01052114:34

253B Word	ester Road, C	Charlton MA 01507 P	hone: (888) 377-7678 Fax	: (508) 248	3-2895	SPECIAL I		relient				
PWS ID #:	2241017	PWS CLASS: TI	NC JOB/SO #:		_				,			
PWS NAM	1E: Princeto	on Town Campus				Run	tie	ld Blo	ank			
PWS ADD	RESS: 6 To	wn Hall Drive, Prince	eton, MA 01541									
DWS DHO	NF #- (978) 464 2100				METER REA	ADINGS:	Cu Ft.	or Ga)		
PWS PHONE #: (978) 464 2100 DATE COLLECTED: 1/2/22/2020 Is the source treated? Sample after treatment			YES YES	NO NO	253860 253860							
LOCATION		SAMPLE LOCA	ATION	SAMPLE TYPE	TIME	CHLORINE	PFAS					NOTES (# of Bottles)
TC001G		Well 1		Finish	0815	_	1					2+2FB
					_	_					-	
	4				-							
				-	-							
	RE: D.	N 1	12/02/0- 1/02		-							
			12.23.20 15:00									
1	Re. VA	Beza AAL 1213	21/20 1500									
		Bezro AAL 12										
Custody Tr				& Signate	ıre					DA	ŢE	TIME
Sampler:		William	Hibbs							12/22	2020	0815
Relinquish	ed by:	a U	Jelly Hills							1425/20	A .	10/0
Received b	4.00	2301/							12/23/	20	1210	
Relinquish	1	20	vees							12/23	120	11415
Received b	,vd							12/73/	20	1415		

Massachusetts Department of Environmental Protection - Drinking Water Program PFAS

Per- and Polyfluoroalkyl Substances (PFAS) Report

I. PWS INFORMATION: Please refer to your MassDEP Water Quality Sampling Schedule (WQSS) to help complete this form

Page 1 of 2

Р	WS ID #:		2241017 City / Town						//Town:	PRINCETON							
Ρ	WS Name:		PRINCETON TOWN CAMPUS								PW	/S Class:	COM	□ NT	NC [☐ TNC 🖂	
-	MassDEP Location (LOC) ID#			MassD	EP Locati	on Name			Sar	nple l	nformati	on	Date Colle	ected	С	Collected By	
	TC001G	WEI	WELL 1					$\begin{array}{ c c c c c }\hline (\mathbf{M}) \text{ultiple} & \hline (\mathbf{R}) \text{aw} \\ \hline (\mathbf{S}) \text{ingle} & \hline (\mathbf{F}) \text{inished} & 12/22/20 \\ \hline \end{array}$				20		W.H.			
	Routine or		Origina							itted Repor	t, list below						
	RS SS	Confirmation Report ☐ Original ☐ Resubmitted ☐ Confirmation							eason for R				(2) Collec	tion Dat	te of O	riginal Sampl	е
	AMPLE COMME							Resample					nie ie a field i	reagent l	hlank		
3/	AIVIPLE COVINIE	.1413 -	Sucii as, ii a iv	iai iii Oiu/	iviuitipie sa	imple, list tile s	ouic	e(s) that wer	e on-line dui	iiiy sa	imple con	ection or it ti	iis is a lielu i	eagent	JIAITK		
_																	_
II.	. ANALYTICA	AL LA	ABORATO	RY INI	FORMA ⁻	ΓΙΟΝ:											
P	rimary Lab Ce	ert. #:	M-MA08	6	Primar	y Lab Name	: [Alpha Ana	lytical				Sub	contrac	ted?	(Y/N) Y	
Α	nalysis Lab C	ert. #:	M-MA03	0	Analysi	s Lab Name):	Alpha Ana	lytical								
ı£	Analysis Lab	io not	cortified by	, Mass		1.0	[
	PA, list certific			ivia55	DEP OF C	1.3.											
	Lab Method		Date Extracted		Date alyzed	Dilution Factor					La	b Sample II	Ds#				
			LXII acteu	Alle	aryzeu	1 actor	Pri	imary Lab:		1.20	57462	-01					
	537.1		01/02/21	01/	04/21	1			acted Lab: L2057462-01							_	
1													1				 7
	CAS#			REGI	JLATED P	FAS CONTAN	IINA	NTS			esult¹ ng/L	Result ² Qualifier	MCL* ng/L	MD ng/		MRL ng/L	
	1763-23-1	l Pe	rfluorooctane	Sulfon	ic Acid (P	FOS)					94.2			0.44	45	1.81	1
	335-67-1	l Pe	rfluorooctano	ic Acid	(PFOA)						15.9			0.56	ô4	1.81	I
	355-46-4	Pe	rfluorohexan	e Sulfor	nic Acid (F	PFHxS)					329			0.43	34	1.81	I
	375-95-1	Pe	rfluorononan	oic Aci	d (PFNA)					(0.904	J		0.43	30	1.81	1
	375-85-9	Pe	rfluorohepata	noic A	cid (PFHp	A)				,	4.27			0.23	35	1.81	
	335-76-2	2 Pe	rfluorodecan	oic acid	I (PFDA)						ND			0.58	32	1.81	
		sults a	it or above th	ne MRL	; do not i	PFHpA and P nclude estimanext column)	ated				443	1	20	-		-	
				UNREC	GULATED	PFAS CONTA	MIN	ANTS									
	375-73-5	Pe	rfluorobutane	sulfon	ic acid (PI	FBS)					48.6			0.25	57	1.81	1
	307-55-1	Pe	rfluorododec	anoic a	cid (PFDo	A)					ND			0.58	36	1.81	I
	307-24-4	Pe	rfluorohexan	oic acid	I (PFHxA)						5.10			0.23	38	1.81	I
	376-06-7	7 Pe	rfluorotetrade	ecanoic	acid (PFT	·A)					ND			0.39	91	1.81	
	72629-94-8	3 Pe	rfluorotrideca	noic ac	id (PFTrD	A)					ND			0.45	59	1.81	
	2058-94-8	B Pe	rfluoroundec	anoic a	cid (PFUn	A)					ND			0.38	37	1.81]
	2991-50-6	6 N -	ethyl perfluor	ooctan	esulfonam	idoacetic acid	d (NE	tFOSAA)			ND			0.50) 6	1.81]
	2355-31-9	N-1	methyl perflu	oroocta	nesulfona	midoacetic ad	cid (l	NMeFOSAA))		ND			0.54	43	1.81	
	763051-92-9	11	-chloroeicosa	fluoro-	3-oxaunde	cane-1-sulfor	nic a	cid (11CI-PF	3OUdS)		ND			0.19	90	1.81]
	756426-58-1	9-0	chlorohexade	cafluor	o-3-oxano	ne-1-sulfonic	acid	(9CI-PF3ON	IS)		ND			0.24	19	1.81]
	919005-14-4	4,8	3-dioxa-3H-pe	rfluoror	nonanoic a	acid (ADONA)					ND			0.06	35	1.81]
	13252-13-6	He	Hexafluoropropylene oxide dimer acid (HFPO-DA)								ND			0.40)9	3.62	

Rev. 9/9/2020

A field reagent blank (FRB) must be analyzed and reported on a separate PFAS form if any PFAS are detected above the MRL.

² All qualifiers must be described under Lab Analysis Comments on page 2.

Massachusetts Department of Environmental Protection - Drinking Water

PFAS

Per- and Polyfluoroalkyl Substances (PFAS) Report

PWS ID#:	2241017	
PWS ID#:	2241017	

Lab Sample ID#:

Primary Lab:	L2057462-01
Subcontracted Lab:	L2057462-01

CAS#	UNREGULATED PFAS CONTAMINANTS	Result ¹	Result ²	MCL *	MDL	MRL
CA3#	UNREGULATED FFAS CONTAININAIVIS	ng/L	Qualifier	ng/L	ng/L	ng/L
				-		

Surrogate Name	% Recovery (70 – 130%)	Alternate Surrogate (must document reason for change)
¹³ C ₂ -PFHxA	89	
¹³ C ₂ -PFDA	80	
d ₅ -NEtFOSAA	97	
¹³ C ₃ -HFPO-DA	72	

	Note: ¹³ C ₃ -HFPO-DA is not rec	uired for EPA	Method 537 v1.1		
In addition to the S	UR above you must attach the results of	the ongoing Q0	C results as specified by the method	for the sample's extrac	ction batch.
□ Laboratory ana	llytical report with QC attached (check	one item belo	ow).		
	ociated QC criteria reported within contro Standards (SUR), Laboratory Fortified B		• • • • • • • • • • • • • • • • • • • •	•	FRB),
All asset	ociated sample and/or QC batch criteria r	not met. See La	ab Analysis Comments below and na	rrative in attached rep	ort.
Lab Analysis Com	ments: (include sample/method parame	eters outside of	or affecting QC controls/limits and re	esult qualifiers)	
Result Qualifier	Qualifier Description				
J	The target analyte concentration is belo	w the quantitat	tion limit (RL), but above the Method	Detection Limit.	
Other Analysis Comments:					
* MCL or proposed M	CL				_
I certify under penaltie	s of law that I am the person authorized to fill o		nary Lab Director Signature:	Joseph Wi	ukons
	ormation contained herein is true, accurate an extent of my knowledge.	па	Date:	1/5/21	
the month in which	nese results electronically, mail <u>TWO</u> cop th you received this report <u>or</u> no later than s COVID-19 state of emergency, in additi	n 10 days after	the end of the reporting period, which	hever is sooner. Note	that during the
MassDEP REVIEW	STATUS (Initial & Date)				
☐ Accepted	Disapproved	Review Comments			☐ WQTS Data Entered

Massachusetts Department of Environmental Protection - Drinking Water Program **PFAS**

Per- and Polyfluoroalkyl Substances (PFAS) Report

I. PWS INFORMATION: Please refer to your MassDEP Water Quality Sampling Schedule (WQSS) to help complete this form

Page 1 of 2

PWS ID #:		2241017 City / Town							PRINCETON						
PWS Name:		PRINCETON TOWN CAMPUS								PW	/S Class:	COM	☐ NTN	IC [TNC 🖂
MassDEP Location (LOC) ID#			MassD	EP Locati	on Name			Sar	nple l	nformatio	on	Date Collected		C	ollected By
TC001G	WEL	L 1 (FB)									12/22/	20		W.H.	
Routine or		Origina							itted Report						
Special Sample	Confirmation Report ☐ Original ☐ Resubmitted ☐ Confirmation						(1) R	eason for R			orrection	(2) Collec	tion Date	of Or	riginal Sample
SAMPLE COMME							•				<u> </u>	nis is a field i	reagent hi	ank	
<u> </u>				manapro od	p.o, not are c		(6) (110)	0 011 1110 001	9 00		0000011 01 11 11		ougo o.	<u> </u>	
II. ANALYTICA	AL LA	BORATOR	RY INI	FORMA ⁻	ΓΙΟΝ:										
Primary Lab Ce	ert. #:	M-MA086	6	Primar	y Lab Name:	:	Alpha Ana	lytical				Sub	contract	ed? ((Y/N) Y
Analysis Lab C	ert. #:	M-MA030)	Analysi	s Lab Name	:	Alpha Ana	lytical							
If Analysis Lab EPA, list certific			Mass	DEP or U	I.S.										
Lab Method	E	Date Extracted		Date alyzed	Dilution Factor					La	b Sample II	Os#			
537.1	0	1/03/21	01/	04/21	1	Pr	imary Lab	:		57462					
		1700/21	017	0-1/21	•	Sı	ıbcontract	ed Lab:	L20	57462	-02				
CAS#			REGI	ULATED P	FAS CONTAM	IINA	INTS			esult ¹ ng/L	Result ² Qualifier	MCL* ng/L	MDL ng/L		MRL ng/L
1763-23-1	1 Per	fluorooctane	Sulfor	nic Acid (P	FOS)					ND			0.457	7	1.86
335-67-1	1 Per	fluorooctano	ic Acid	I (PFOA)						ND			0.580)	1.86
355-46-4	4 Per	fluorohexan	Sulfo	nic Acid (F	PFHxS)					ND			0.446	3	1.86
375-95-1	1 Per	fluorononan	oic Aci	d (PFNA)						ND			0.442	2	1.86
375-85-9	Per	fluorohepata	noic A	cid (PFHp	A)					ND			0.242	2	1.86
335-76-2	2 Per	fluorodecan	oic acid	i (PFDA)						ND			0.599	9	1.86
	sults at	or above th	e MRL	_; do not i	PFHpA and Pinclude estimates next column)	ated						20	-		-
			UNRE	GULATED	PFAS CONTA	MIN	IANTS								
375-73-5	Per	fluorobutane	sulfon	nic acid (Pl	FBS)					ND			0.264	4	1.86
307-55-1	1 Per	fluorododec	anoic a	cid (PFDo	A)					ND			0.602	2	1.86
307-24-4	4 Per	fluorohexand	oic acid	d (PFHxA)						ND			0.245	5	1.86
376-06-7	7 Per	fluorotetrade	canoic	acid (PFT	A)					ND			0.402	2	1.86
72629-94-8	B Per	fluorotrideca	noic a	cid (PFTrD	A)					ND			0.472	2	1.86
2058-94-8	B Per	fluoroundec	anoic a	cid (PFUn	A)					ND			0.398	3	1.86
2991-50-6	6 N-e	thyl perfluor	ooctan	esulfonam	idoacetic acid	d (NE	EtFOSAA)			ND			0.52	1	1.86
2355-31-9	N-n	nethyl perfluo	oroocta	nesulfona	midoacetic ac	cid (NMeFOSAA)		ND			0.558	3	1.86
763051-92-9	-				cane-1-sulfon		•			ND			0.195	5	1.86
756426-58-1					ne-1-sulfonic		(9CI-PF3ON	IS)		ND			0.256		1.86
919005-14-4					acid (ADONA)					ND			0.067		1.86
13252-13-6	6 Hex	Hexafluoropropylene oxide dimer acid (HFPO-DA)								ND			0.420)	3.72

Rev. 9/9/2020

A field reagent blank (FRB) must be analyzed and reported on a separate PFAS form if any PFAS are detected above the MRL.

² All qualifiers must be described under Lab Analysis Comments on page 2.

Massachusetts Department of Environmental Protection - Drinking Water

PFAS

Per- and Polyfluoroalkyl Substances (PFAS) Report

PWS ID#:	2241017	

Lab Sample ID#:

Primary Lab:	L2057462-02
Subcontracted Lab:	L2057462-02

CAS#	UNREGULATED PFAS CONTAMINANTS	Result ¹ ng/L	Result ² Qualifier	MCL * ng/L	MDL ng/L	MRL ng/L
				-		

Surrogate Name	% Recovery (70 – 130%)	Alternate Surrogate (must document reason for change)
¹³ C ₂ -PFHxA	98	
¹³ C ₂ -PFDA	97	
d₅-NEtFOSAA	93	
¹³ C ₃ -HFPO-DA	86	

	Note: 13C ₃ -HFPO-DA is not rec	uired for EPA	Method 537 v1.1					
In addition to the SI	UR above you must attach the results of	the ongoing Q0	C results as specified by the method	for the sample's extrac	ction batch.			
☑ Laboratory analytical report with QC attached (check one item below).								
	☐ All associated QC criteria reported within control limits including Lab Reagent/Method Blank (LRB), Field Reagent Blank (FRB), Surrogate Standards (SUR), Laboratory Fortified Blank (LFB), Matrix Spike/Duplicate (LFSM/LFSMD or FD) and RPD.							
All asso	☐ All associated sample and/or QC batch criteria not met. See Lab Analysis Comments below and narrative in attached report.							
Lab Analysis Com	ments: (include sample/method parame	eters outside of	or affecting QC controls/limits and i	esult qualifiers)				
Result Qualifier	Qualifier Description							
J	The target analyte concentration is belo	w the quantitat	ion limit (RL), but above the Method	Detection Limit.				
Other Analysis Comments:								
* MCL or proposed M	CL							
	s of law that I am the person authorized to fill o		nary Lab Director Signature:	Joseph Wi	ukins			
	rmation contained herein is true, accurate ar extent of my knowledge.	10	Date:	1/5/21				
the month in whic	If not submitting these results electronically, mail <u>TWO</u> copies of this report to your MassDEP Regional Office no later than 10 days after the end of the month in which you received this report <u>or</u> no later than 10 days after the end of the reporting period, whichever is sooner. Note that during the Massachusetts COVID-19 state of emergency, in addition to submitting by mail reports may be emailed to program.director-dwp@mass.gov.							
MassDEP REVIEW	STATUS (Initial & Date)							
☐ Accepted	Disapproved	Review Comments			☐ WQTS Data Entered			

12/23/20

✓ ROUTINE SAMPLE	SPECIAL SAMPLE
REPEAT SAMPLE	WAF SAMPLE
24 HR RUSH?	PRESEASON SAMPLE

			manusco e e	24	нк козн	r	PRESEASON	SAIVIPLE
PWS ID #: 2 PWS NAME PWS ADDRE PWS PHONE	ESS: 6 Town Hall Drive, Princeton, MA 01541 E#: (978) 464 2100 Is the source treated?	YES	(20)	METER REA	Field	Blank Cuft. or Gal		
	ECTED: 12/2/2020 Sample after treatmen		(NO)		386	0		
LOCATION CODE	SAMPLE LOCATION	SAMPLE TYPE	TIME	CHLORINE RESIDUAL	PFAS			NOTES (# of Bottles)
TC001G	Well 1	Finish	0815	NA	1			2+2FB
		71						
0	250 D. O. A - AM 12/23/20 1603							
The state of the s	Rd. Kills crudina (2.23.20 15:00							
	Re. 1/2 Beza AAl 12/23/20 1500							
R	Pal. M/2 Be 200 AAL 12/23/20 1603							
Custody Tran	nsfer Nan	ne & Signatu	re				DATE	TIME
Sampler:	William Hibbs						12/22/2020	0815
Relinquished	The state of the s						1425/20	10/0
Received by:	301/a 10 191	AV					12/23/20	1210
Relinquished	d by:						12/23/20	1915
Received by	Received by						12/73/20	1415

ANALYTICAL REPORT

Lab Number: L2108968

Client: White Water Inc.

253B Worcester Road Charlton, MA 01507

ATTN: Andrew Donnelly Phone: (888) 377-7678

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017
Report Date: 03/04/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2108968

Report Date:

03/04/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2108968-01	TC001G WELL 1	DW	6 TOWN HALL DRIVE, PRINCETON, MA 01541	02/17/21 08:15	02/24/21
L2108968-02	TC001G WELL 1 FB	DW	6 TOWN HALL DRIVE, PRINCETON, MA 01541	02/17/21 08:15	02/24/21

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2108968
Project Number: 2241017 Report Date: 03/04/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.			

Serial_No:03042116:17

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2108968
Project Number: 2241017 Report Date: 03/04/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids

WG1469510-1R: The sample was re-analyzed due to QC failures in the original analysis. The results of the re-analysis are reported.

WG1469510-2: The LCS recoveries, associated with L2108968-01 and -02, are within the 50-150% acceptance criteria for low level Perfluorinated Alkyl Acids, except where noted.

The WG1469510-2 LCS recovery, associated with L2108968-01 and -02, is above the acceptance criteria for n-ethyl perfluorooctanesulfonamidoacetic acid (netfosaa) (170%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juxon & Med Susan O' Neil

Title: Technical Director/Representative Date: 03/04/21

ORGANICS

SEMIVOLATILES

Serial_No:03042116:17

Project Name: Lab Number: PRINCETON TOWN CAMPUS L2108968

Project Number: 2241017 **Report Date:** 03/04/21

SAMPLE RESULTS

Lab ID: Date Collected: 02/17/21 08:15 L2108968-01

Date Received: Client ID: 02/24/21 TC001G WELL 1 Field Prep:

Sample Location: 6 TOWN HALL DRIVE, PRINCETON, MA 01541 Not Specified

Result

Sample Depth:

Parameter

Extraction Method: EPA 537.1 Matrix: Dw

Extraction Date: 03/02/21 04:08 133,537.1 Analytical Method: Analytical Date: 03/02/21 19:58

Analyst: LV

Parameter	Result	Quaimer	Units	KL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab							
Perfluorobutanesulfonic Acid (PFBS)	41.6		ng/l	1.77	0.251	1	
Perfluorohexanoic Acid (PFHxA)	5.45		ng/l	1.77	0.233	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	1.77	0.400	1	
Perfluoroheptanoic Acid (PFHpA)	4.67		ng/l	1.77	0.230	1	
Perfluorohexanesulfonic Acid (PFHxS)	305		ng/l	1.77	0.425	1	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.77	0.063	1	
Perfluorooctanoic Acid (PFOA)	14.6		ng/l	1.77	0.552	1	
Perfluorononanoic Acid (PFNA)	1.17	J	ng/l	1.77	0.421	1	
Perfluorooctanesulfonic Acid (PFOS)	86.2		ng/l	1.77	0.435	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.77	0.570	1	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.77	0.243	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.77	0.531	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.77	0.379	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.77	0.495	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.77	0.573	1	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.77	0.186	1	
Perfluorotridecanoic Ácid (PFTrDA)	ND		ng/l	1.77	0.449	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.77	0.382	1	
PFAS, Total (6)	410		ng/l	1.77	0.230	1	

Qualifier

Units

RL

MDL

Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	91	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	83	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	92	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	87	70-130	

Serial_No:03042116:17

03/04/21

Report Date:

Project Name: Lab Number: PRINCETON TOWN CAMPUS L2108968

Project Number: 2241017

SAMPLE RESULTS

Lab ID: Date Collected: 02/17/21 08:15 L2108968-02

Client ID: TC001G WELL 1 FB Date Received: 02/24/21

Sample Location: 6 TOWN HALL DRIVE, PRINCETON, MA 01541 Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537.1 Matrix: Dw

03/02/21 04:08 **Extraction Date:** 133,537.1 Analytical Method: Analytical Date: 03/02/21 20:07

Analyst: LV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab							
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.92	0.273	1	
Perfluorohexanoic Acid (PFHxA)	0.769	J	ng/l	1.92	0.253	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	1.92	0.435	1	
Perfluoroheptanoic Acid (PFHpA)	0.577	J	ng/l	1.92	0.250	1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.92	0.462	1	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.92	0.069	1	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.92	0.600	1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.92	0.458	1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.92	0.473	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.92	0.619	1	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	1.92	0.265	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.92	0.577	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.92	0.412	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.92	0.538	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.92	0.623	1	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	1.92	0.202	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.92	0.488	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.92	0.415	1	
PFAS, Total (6)	ND		ng/l	1.92	0.250	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	91		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	95		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	100		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	94		70-130	

L2108968

Project Name: PRINCETON TOWN CAMPUS Lab Number:

Project Number: 2241017 Report Date: 03/04/21

Method Blank Analysis Batch Quality Control

 Analytical Method:
 133,537.1
 Extraction Method:
 EPA 537.1

 Analytical Date:
 03/03/21 10:13
 Extraction Date:
 03/02/21 04:08

Analyst: JW

Parameter	Result	Qualifier	Units	RL	ME	DL
Perfluorinated Alkyl Acids by EPA 53	37.1 - Mans	sfield Lab f	or sample(s):	01-02	Batch:	WG1469510-1 R
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.2	284
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00	0.2	263
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	2.00	0.4	152
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.2	260
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.4	180
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00	0.0	072
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.6	624
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.4	476
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.4	192
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.6	644
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00	0.2	275
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00	0.6	600
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.4	128
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00	0.8	560
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.6	648
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00	0.2	210
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.9	508
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.4	132
PFAS, Total (6)	ND		ng/l	2.00	0.2	260

Surrogate	%Recovery	Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	93	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	96	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	87	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	99	70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number: L2108968

Report Date: 03/04/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 537.1 - I	Mansfield Lab Asso	ociated sampl	e(s): 01-02 B	atch: WG1	469510-2				
Perfluorobutanesulfonic Acid (PFBS)	90		-		70-130	-		30	
Perfluorohexanoic Acid (PFHxA)	132		-		70-130	-		30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	116		-		70-130	-		30	
Perfluoroheptanoic Acid (PFHpA)	126		-		70-130	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	114		-		70-130	-		30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	91		-		70-130	-		30	
Perfluorooctanoic Acid (PFOA)	120		-		70-130	-		30	
Perfluorononanoic Acid (PFNA)	116		-		70-130	-		30	
Perfluorooctanesulfonic Acid (PFOS)	97		-		70-130	-		30	
Perfluorodecanoic Acid (PFDA)	94		-		70-130	-		30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	99		-		70-130	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	98		-		70-130	-		30	
Perfluoroundecanoic Acid (PFUnA)	120		-		70-130	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	170	Q	-		70-130	-		30	
Perfluorododecanoic Acid (PFDoA)	132		-		70-130	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	93		-		70-130	-		30	
Perfluorotridecanoic Acid (PFTrDA)	130		-		70-130	-		30	
Perfluorotetradecanoic Acid (PFTA)	114		-		70-130	-		30	

Lab Control Sample Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Lab Number:

L2108968

Project Number: 2241017

Report Date:

03/04/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01-02 Batch: WG1469510-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	90				70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	96				70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	97				70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	93				70-130

Matrix Spike Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2108968

Report Date:

03/04/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by E Sample	PA 537.1 - N	Mansfield Lab	Associated	l sample(s): 01-0	2 QC	Batch ID: V	VG1469510-3	QC Sample: L210	08418-01	Client ID: MS
Perfluorobutanesulfonic Acid (PFBS)	16.9	1.6	18.6	106		-	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	2.39	1.8	4.07	93		-	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	1.8	2.02	112		-	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	1.66J	1.8	3.46	192	Q	-	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	0.615J	1.65	2.52	153	Q	-	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	1.7	1.69J	99		-	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	3.84	1.8	5.73	105		-	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	0.543J	1.8	2.38	132		-	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	4.56	1.67	6.23	100		-	-	70-130	-	30
Perfluorodecanoic Acid (PFDA)	ND	1.8	1.73J	96		-	-	70-130	-	30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	1.68	1.58J	94		-	-	70-130	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	1.8	1.62J	90		-	-	70-130	-	30
Perfluoroundecanoic Acid (PFUnA)	ND	1.8	2.05	114		-	-	70-130	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	1.8	1.76J	98		-	-	70-130	-	30
Perfluorododecanoic Acid (PFDoA)	ND	1.8	2.23	124		-	-	70-130	-	30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	1.7	1.55J	91		-	-	70-130	-	30
Perfluorotridecanoic Acid (PFTrDA)	ND	1.8	2.05	114		-	-	70-130	-	30
Perfluorotetradecanoic Acid (PFTA)	ND	1.8	2.02	112		-	-	70-130	-	30

Matrix Spike Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

L2108968

Report Date:

03/04/21

	Native	MS	MS	MS		MSD	MSD	Recovery	,	RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual Limits	RPD	Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG1469510-3 QC Sample: L2108418-01 Client ID: MS Sample

	MS	MS MSD			Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
- - - - - - - - - - - - - - - - - - -	105				70-130	_
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	91				70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	99				70-130	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	98				70-130	

L2108968

Lab Duplicate Analysis Batch Quality Control

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

Lab Number:

Report Date: 03/04/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EPA 537.1 - Mansfie DUP Sample	ld Lab Associated sample	(s): 01-02 QC Batch ID:	: WG1469510-4	QC Sa	mple: L2108418-03 Client ID:
Perfluorobutanesulfonic Acid (PFBS)	5.53	5.66	ng/l	2	30
Perfluorohexanoic Acid (PFHxA)	3.15	2.89	ng/l	9	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	1.83	1.44J	ng/l	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	0.549J	ND	ng/l	NC	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	3.44	2.96	ng/l	15	30
Perfluorononanoic Acid (PFNA)	0.659J	0.505J	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	1.58J	1.44J	ng/l	NC	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

Lab Duplicate Analysis
Batch Quality Control

PRINCETON TOWN CAMPUS Batch Quality Contro

Lab Number:

L2108968 03/04/21

Report Date:

RPD Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG1469510-4 QC Sample: L2108418-03 Client ID: DUP Sample

Surrogate	%Recovery 0	Qualifier %Recovery (Acceptance Qualifier Criteria	
		camino, fortebovery		
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	102	93	70-130	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	103	93	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	101	92	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	87	95	70-130	

Project Name:

Project Number:

2241017

Serial_No:03042116:17

PRINCETON TOWN CAMPUS Lab Number: L2108968

Project Number: 2241017 Report Date: 03/04/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2108968-01A	Plastic 250ml Trizma preserved	Α	NA		5.4	Υ	Absent		A2-MA-537.1(14)
L2108968-01B	Plastic 250ml Trizma preserved	Α	NA		5.4	Υ	Absent		A2-MA-537.1(14)
L2108968-02A	Plastic 250ml Trizma preserved	Α	NA		5.4	Υ	Absent		A2-MA-537.1(14)

Project Name: PRINCETON TOWN CAMPUS

Project Number: 2241017

L2108968 03/04/21 Report Date:

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
,	55151	077 70 4
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
	PFMPA PFMBA	863090-89-5

Project Name: PRINCETON TOWN CAMPUS Lab Number: L2108968 **Report Date: Project Number:** 2241017 03/04/21

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2108968Project Number:2241017Report Date:03/04/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report. Initial pH reflects pH of container determined up

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:PRINCETON TOWN CAMPUSLab Number:L2108968Project Number:2241017Report Date:03/04/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:03042116:17

Project Name:PRINCETON TOWN CAMPUSLab Number:L2108968Project Number:2241017Report Date:03/04/21

REFERENCES

Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537.1, EPA/600/R-18/352. Version 1.0, November 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:03042116:17

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 18

Pre-Qualtrax Document ID: 08-113

Page 1 of 1

Published Date: 2/16/2021 5:32:02 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

253B Worcester Road, Charlton MA 01507 Phone: (888) 377-7678 Fax: (508) 248-2895

2/24/2	Serial_No:03042116:17
✓ ROUTINE SAMPLE	SPECIAL SAMPLE
REPEAT SAMPLE	WAF SAMPLE
24 HR RUSH?	PRESEASON SAMPLE
SPECIAL NOTES:	

Cu Ft. or Gal

PWS ID #: 2241017	PWS CLASS: TNC	JOB/SO #:
DWS NAME: Princetor	Town Campus	

PWS ADDRESS: 6 Town Hall Drive, Princeton, MA 01541

PWS PHONE #: (978) 464 2100

Is the source treated?

YES

DATE COLLECTED: 2 17.21

Sample after treatment?

NO NO YES

0262750

METER READINGS:

PFAS Quarterly per client

RUN FIELD BLANK

LOCATION CODE	SAMPLE LOCATION	SAMPLE TYPE	TIME	CHLORINE RESIDUAL	PFAS		NOTES (# of Bottles
TC001G	Well 1	Finish	0815	NA	/		2 + BLANK
	17 Kew for 2/24/21 2	0.90					

Custody Transfer	Name & Signature	DATE	TIME
Sampler:	BILL HIBBS	2-17-21	0815
Relinquished by:	1 1 6/00	2-17-21	1400
	Dalle ADC	0-24-21	14:04
Received by:	Maria Davis OA	15-125-0	16:00
Relinquished by:	The state of the s	2/24/21	16:00
Received by:	goin fen	010 401	10.00

Page EASE EMAIL THIS REPORT WITH RESULTS & INVOICE TO: ADonnelly@RHWhite.com and CAstephen@RHWhite.com

Massachusetts Department of Environmental Protection - Drinking Water Program **PFAS**

Per- and Polyfluoroalkyl Substances (PFAS) Report

Page 1 of 4

I. PWS INFO	. PWS INFORMATION: Please refer to your MassDEP Water Quality Sampling Schedule (WQSS) to help complete this form													
PWS ID #:		2241017			City	y / Town:	PR	INCET	CETON					
PWS Name	:	PRINCETO	N TOWN CAP	ИPUS				PW	S Class:	СОМ	□ NT	NC 🗆	TNC	\boxtimes
MassDEP Location (LOC) ID#		N	MassDEP Location	n Name		Sar	nple Ir	nformatio	on	Date Coll	ected	Co	ollected	Ву
TC001G	w	ell 1				☐ (M)ulti 図 (S)ing		⊠ (R)a □ (F)i		02/17/	/21		ВН	
Routine or		Original	Resubmitted or			_	If I	Resubmi	tted Repor	t, list below	<u>.</u> :			
Special Sample	•		mation Report		(1) R	leason for R				(2) Collec		te of Or	iginal Sa	ample
⊠RS □S	S 🛛	Original 🗌 Res	submitted Cor	nfirmation	Resample	Reanalys	sis 🗌	Report Co	orrection					
SAMPLE COM	WENTS	- Such as, if a Ma	nifold/Multiple sam	ple, list the s	ource(s) that wer	e on-line dur	ing sai	mple colle	ection or if the	his is a field	reagent l	blank		
		,		, ,	()			•						
II ANALVTI	CAL	LABORATOR	Y INFORMATI	ON.										
II. ANALT II	CAL	LABUKATUK	INFORMATI	ON.										
Primary Lab	Cert. #	#: M-MA086	Primary	Lab Name	: Alpha An	alytical La	Labs Subcontracted? (Y/N) Y					Υ		
Analysis Lab	Cert.	#: M-MA030) Analysis	Lab Name	e: Alpha Ar	alytical La	abs							
If Analysis L EPA, list cer			MassDEP or U.S	S .										
Lab Method		Date Extracted	Date Analyzed	Dilution Factor				Lal	b Sample II	Ds#				
537.1		03/02/21	03/02/21	1	Primary Lab	nary Lab: L2108968-01								
337.1		03/02/21	03/02/21	ı	Subcontract	ed Lab:			l	_210896	2108968-01			
CAS#			REGULATED PF	AS CONTAM	MINANTS			esult¹ ng/L	Result ² Qualifier	MCL*	MD ng/		MRL ng/L	- 1
1763-2	3-1	Perfluorooctane \$	Sulfonic Acid (PFC	OS)			8	36.2			0.43	35	1.77	,
335-6	-67-1 Perfluorooctanoic Acid (PFOA)				1	4.6			0.54	52	1.77	,		

CAS#	REGULATED PFAS CONTAMINANTS	Result¹ ng/L	Result ² Qualifier	MCL* ng/L	MDL ng/L	MRL ng/L
1763-23-1	Perfluorooctane Sulfonic Acid (PFOS)	86.2			0.435	1.77
335-67-1	Perfluorooctanoic Acid (PFOA)	14.6			0.552	1.77
355-46-4	Perfluorohexane Sulfonic Acid (PFHxS)	305			0.425	1.77
375-95-1	Perfluorononanoic Acid (PFNA)	1.17	J		0.421	1.77
375-85-9	Perfluorohepatanoic Acid (PFHpA)	4.67			0.230	1.77
335-76-2	Perfluorodecanoic acid (PFDA)	ND			0.570	1.77
` Resu	FPFOS, PFOA, PFHxS, PFNA, PFHpA and PFDA; only include lits at or above the MRL; do not include estimated Results as ribed by a Result Qualifier in the next column)	410		20	-	-
	UNREGULATED PFAS CONTAMINANTS		-			
375-73-5	Perfluorobutane sulfonic acid (PFBS)	41.6			0.251	1.77
307-55-1	Perfluorododecanoic acid (PFDoA)	ND			0.573	1.77
307-24-4	Perfluorohexanoic acid (PFHxA)	5.45			0.233	1.77
376-06-7	Perfluorotetradecanoic acid (PFTA)	ND			0.382	1.77
72629-94-8	Perfluorotridecanoic acid (PFTrDA)	ND			0.449	1.77
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND			0.379	1.77
2991-50-6	N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND			0.495	1.77
2355-31-9	N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND			0.531	1.77
763051-92-9	3051-92-9 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)				0.186	1.77
756426-58-1	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	ND			0.243	1.77
919005-14-4	4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND			0.063	1.77
13252-13-6	Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND			0.400	1.77

A field reagent blank (FRB) must be analyzed and reported on a separate PFAS form if any PFAS are detected above the MRL.

² All qualifiers must be described under Lab Analysis Comments on page 2.

Massachusetts Department of Environmental Protection - Drinking Water Program **PFAS**

Per- and Polyfluoroalkyl Substances (PFAS) Report

Page 2 of 4

PWS	ID#:

2241017

Lab Sample ID#:

Primary Lab:	L2108968-01
Subcontracted Lab:	L2108968-01

CAS#	UNREGULATED PFAS CONTAMINANTS	Result ¹ ng/L	Result ² Qualifier	MCL * ng/L	MDL ng/L	MRL ng/L
				-		

Surrogate Name	% Recovery (70 – 130%)	Alternate Surrogate (must document reason for change)
¹³ C ₂ -PFHxA	91	
¹³ C ₂ -PFDA	92	
d₅-NEtFOSAA	87	
¹³ C ₃ -HFPO-DA	83	

	Note: ¹³ C ₃ -HFPO-DA is not req	uired for EPA N	Method 537 v1.1					
In addition to the S	above you must attach the results of the ongoing QC results as specified by the method for the sample's extraction batch.							
□ Laboratory ana	alytical report with QC attached (check	ical report with QC attached (check one item below).						
	associated QC criteria reported within control limits including Lab Reagent/Method Blank (LRB), Field Reagent Blank (FRB), Surrogate lards (SUR), Laboratory Fortified Blank (LFB), Matrix Spike/Duplicate (LFSM/LFSMD or FD) and RPD.							
	ociated sample and/or QC batch criteria n	ot met. See Lal	b Analysis Comments below and narra	tive in attached report	t.			
Lab Analysis Com	nments: (include sample/method parame	ters outside of	or affecting QC controls/limits and resu	ılt qualifiers)				
Result Qualifier	Qualifier Description							
J	The target analyte concentration is below t	he quantitation	limit (RL), but above the Method Detection	n Limit.				
Other Analysis Comments:								
* MCL or proposed M	ICL							
	es of law that I am the person authorized to fill o		mary Lab Director Signature:	Joseph W.	ackens			
	formation contained herein is true, accurate a extent of my knowledge.	na	Date:	3/5/21	1			
month in whic	If not submitting these results electronically, mail <u>TWO</u> copies of this report to your MassDEP Regional Office no later than 10 days after the end of the month in which you received this report <u>or</u> no later than 10 days after the end of the reporting period, whichever is sooner. Note that during the Massachusetts COVID-19 state of emergency, in addition to submitting by mail reports may be emailed to program.director-dwp@mass.gov.							
MassDEP REVIEW	/ STATUS (Initial & Date)							
☐ Accepted	Disapproved	Review Comments			☐ WQTS Data Entered			

Massachusetts Department of Environmental Protection - Drinking Water Program **PFAS**

Per- and Polyfluoroalkyl Substances (PFAS) Report

Page 3 of 4

I.	I. PWS INFORMATION: Please refer to your MassDEP Water Quality Sampling Schedule (WQSS) to help complete this form												
F	PWS ID #:		2241017			City	y / Town:	PRINCETON					
F	PWS Name:		PRINCETO	N TOWN CAN	IPUS			PV	VS Class:	СОМ] NTN	IC 🗌 TNO	\boxtimes
	MassDEP Location (LOC) ID#		N	MassDEP Location	Name		Sai	mple Informat	on	Date Collec	ted	Collected	I By
	TC001G	We	II 1-FB				☐ (M)ult 図 (S)ing)aw)inished	02/17/2	1	ВН	
	Routine or		Original	Resubmitted or			-	If Resubn	itted Report	t, list below:	-		
s	special Sample			nation Report		(1) F	Reason for F	Resubmission	<u></u>	(2) Collecti	on Date	of Original S	ample
	RS □SS		Original 🗌 Res	ubmitted Cor	firmation	Resample	Reanalys	sis Report (Correction				
S	AMPLE COMME	NTS -	Such as, if a Ma	nifold/Multiple sam	ple, list the s	ource(s) that we	re on-line du	ring sample col	lection or if the	nis is a field re	agent bla	ank	
II	I. ANALYTIC	AL L	ABORATOR'	Y INFORMATI	ON:								
P	Primary Lab Ce	ert. #:	M-MA086	Primary	Lab Name	: Alpha Ar	nalytical La	Labs Subcontracted? (Y/N) Y					Υ
Δ	Analysis Lab C	ert. #	: M-MA030	Analysis	Lab Name	e: Alpha Ar	nalytical La	abs					
	f Analysis Lab PA, list certifi			MassDEP or U.S	S .								
	Lab Method		Date Extracted	Date Analyzed	Dilution Factor			L	ab Sample II	Os#			
	537.1		03/02/21	02/02/24	4	Primary Lab	:		L	_2108968-	-02		
	557.1		03/02/21	03/02/21	Subcontracted Lab:			L2108968-02					
	CAS#			REGULATED PF	AS CONTAIN	MINANTS		Result ¹ ng/L	Result ² Qualifier	MCL* ng/L	MDL ng/L		_
	1763-23-1	1 P	erfluorooctane S	Sulfonic Acid (PFC	OS)			ND			0.473	3 1.9	2
	225 67 4	205 C7 A Bouffy and a state A state (DECA)					ND			0.600	1.9	2	

CAS#	REGULATED PFAS CONTAMINANTS	Result ¹ ng/L	Result ² Qualifier	MCL* ng/L	MDL ng/L	MRL ng/L
1763-23-1	Perfluorooctane Sulfonic Acid (PFOS)	ND			0.473	1.92
335-67-1	Perfluorooctanoic Acid (PFOA)	ND			0.600	1.92
355-46-4	Perfluorohexane Sulfonic Acid (PFHxS)	ND			0.462	1.92
375-95-1	Perfluorononanoic Acid (PFNA)	ND			0.458	1.92
375-85-9	Perfluorohepatanoic Acid (PFHpA)	0.577	J		0.250	1.92
335-76-2	Perfluorodecanoic acid (PFDA)	ND			0.619	1.92
` Resu	PFOS, PFOA, PFHxS, PFNA, PFHpA and PFDA; only include lts at or above the MRL; do not include estimated Results as ribed by a Result Qualifier in the next column)			20	-	-
	UNREGULATED PFAS CONTAMINANTS		-			
375-73-5	Perfluorobutane sulfonic acid (PFBS)	ND			0.273	1.92
307-55-1	Perfluorododecanoic acid (PFDoA)	ND			0.623	1.92
307-24-4	Perfluorohexanoic acid (PFHxA)	0.769	J		0.253	1.92
376-06-7	Perfluorotetradecanoic acid (PFTA)	ND			0.415	1.92
72629-94-8	Perfluorotridecanoic acid (PFTrDA)	ND			0.488	1.92
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND			0.412	1.92
2991-50-6	N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND			0.538	1.92
2355-31-9	N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND			0.577	1.92
763051-92-9	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	ND			0.202	1.92
756426-58-1	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	ND			0.265	1.92
919005-14-4	4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND			0.069	1.92
13252-13-6	Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND			0.435	1.92

A field reagent blank (FRB) must be analyzed and reported on a separate PFAS form if any PFAS are detected above the MRL.

² All qualifiers must be described under Lab Analysis Comments on page 2.

Massachusetts Department of Environmental Protection - Drinking Water Program

PFAS

Per- and Polyfluoroalkyl Substances (PFAS) Report

Page 4 of 4

PWS ID#:	2241017	

Lab Sample ID#:

Primary Lab:	L2108968-02
Subcontracted Lab:	L2108968-02

CAS#	UNREGULATED PFAS CONTAMINANTS	Result ¹ ng/L	Result ² Qualifier	MCL * ng/L	MDL ng/L	MRL ng/L
				-		

Surrogate Name	% Recovery (70 – 130%)	Alternate Surrogate (must document reason for change)
¹³ C ₂ -PFHxA	91	
¹³ C ₂ -PFDA	100	
d₅-NEtFOSAA	94	
¹³ C ₃ -HFPO-DA	95	

Note: ¹³C₃-HFPO-DA is not required for EPA Method 537 v1.1

	Note: ™C₃-HFPO-DA is not req	juired for EPA i	Method 537 VI.I		
In addition to the S	SUR above you must attach the results of t	the ongoing Q(C results as specified by the method	for the sample's extract	ction batch.
☑ Laboratory ana	alytical report with QC attached (check	one item beld	ow).		
	sociated QC criteria reported within control standards (SUR), Laboratory Fortified Bl				(FRB),
⊠ All ass	sociated sample and/or QC batch criteria n	not met. See La	ab Analysis Comments below and n	arrative in attached rep	ort.
Lab Analysis Con	nments: (include sample/method parame	eters outside of	f or affecting QC controls/limits and	result qualifiers)	
Result Qualifier	Qualifier Description				
J	The target analyte concentration is below t	the quantitation	limit (RL), but above the Method Dete	ection Limit.	
	 				
	<u> </u>				
Other Analysis Comments:					
* MCL or proposed M	1CL				
I certify under penaltie	es of law that I am the person authorized to fill o		nary Lab Director Signature:	Joseph W	rukins
	ormation contained herein is true, accurate an extent of my knowledge.	ld	Date:	3/5/21	
the month in whic	hese results electronically, mail <u>TWO</u> cop. ch you received this report <u>or</u> no later than s COVID-19 state of emergency, in additio	n 10 days after	the end of the reporting period, whi	chever is sooner. Note	that during the
MassDEP REVIEW	V STATUS (Initial & Date)	1			_
☐ Accepted	Disapproved	Review Comments			☐ WQTS Data Entered

2/24/21	L2108968
✓ ROUTINE SAMPLE	SPECIAL SAMPLE
REPEAT SAMPLE	WAF SAMPLE
24 HR RUSH?	PRESEASON SAMPLE

2/24/21

PWS ID #: 2241017	PWS CLASS:	TNC	_ JOB/SO #:		
PWS NAME: Princetor PWS ADDRESS: 6 Tow		nceton, M	A 01541		
L MA UPPHEASE S					
PWS PHONE #: (978)	464 2100	2002	source treated?	YES	NO

SPECIAL NOTES:		
PFAS Quarterly per o	dient	
RUN FIE	20 BLANK	
	T. 10 T.	
METER READINGS:	Cu Ft. or Gal	
0262750)	

LOCATION CODE	SAMPLE LOCATION	SAMPLE TYPE	TIME	CHLORINE RESIDUAL	PFAS	NOTES (# of Bottles
TC001G	Well 1	Finish	0815	NA	/	2 + FIGURE
	17 Keen for 2/24/21 20	9O				

Custody Transfer	Name & Signature	DATE	TIME
Sampler:	BILL HIGHS	2-17-21	0815
Relinquished by:	1 21 6/00	2-17-21	1400
Received by:	Hay DAVIS AAC	0-24-21	14:04
Relinquished by:	Manu DAVIS AAC	2-79-21	16:00
Received by:	Kein few	2/24/21	16:00

PLEASE EMAIL THIS REPORT WITH RESULTS & INVOICE TO: ADonnelly@RHWhite.com and CAstephen@RHWhite.com

APPENDIX E

Appendix E will be submitted to MassDEP under separate cover due to file size limitations.