MassDEP RTN 3-15009 and RTN 3-36365

DRAFT Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement

Parcel P-3: Tremont and Whittier Streets, Boston (Roxbury), Massachusetts

Submitted to:

Massachusetts Department of Environmental Protection 205B Lowell Street Wilmington, MA 01887

Submitted by:

GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

January 11, 2021

Project 2002082

Ryan S. Hoffman, P.G., LSP Senior Project Manager

Table of Contents

Exe	Executive Summary		
1.	Intro	duction	1
	1.1	Purpose	1
	1.2	Scope	1
	1.3	Submittals	
	1.4	Public Involvement	2
		1.4.1 PIP Activities	2
	1.5	Background	2 2 2 2 3
	1.6	Conceptual Site Model	3
		1.6.1 Site History and Description	4
		1.6.2 Potential Contaminant Sources and Contaminants of Concern	4
		1.6.3 Response Actions Conducted to Date	5 5
		1.6.4 Receptors and Potential Exposure Pathways	5
		1.6.5 Ecological Exposure Potential	5
2.	Gene	ral Disposal Site Information	6
	2.1	Site Location and Description	6
	2.2	Site Vicinity	6
	2.3	Natural Resource Areas and Surrounding Land Use	6 7 7
	2.4	Utilities	
	2.5	Disposal Site Map	8
3.	Dispo	osal Site History	9
	3.1	Ownership and Operation History	9
	3.2	Release History	10
	3.3	Oil and/or Hazardous Material Use and Storage History	11
	3.4	Waste Management History	11
	3.5	Environmental Permits and Compliance History	12
	3.6	Potentially Responsible Parties	12
4.	Inves	tigations and Response Actions	13
	4.1	Previous Investigations	13
		4.1.1 Phase I Initial Site Investigation/Tier Classification (1996-1998)	13
		4.1.2 Phase II Comprehensive Site Assessment and Phase III Remedial	
		Action Plan (2002)	13
	4.2	GEI Subsurface Investigations 2013-2017	14
		4.2.1 Geotechnical Soil Borings, 2013 and 2016	14
		4.2.2 Phase II Environmental Site Assessment, 2017	15
		4.2.2.1 Field Investigation and Soil Sampling	15

GEI Consultants, Inc.

i

		4.2.2.2 Well Installation and Groundwater Sampling	16
		4.2.2.3 Chemical Testing Results: Soil	17
		4.2.2.4 Chemical Testing Results: Groundwater	17
5.	Site I	Hydrogeology Characteristics	19
	5.1	Topography	19
	5.2	Geology	19
	5.3	Hydrogeology	20
6.	Natu	re and Extent of Contamination	21
	6.1	Nature of Contamination	21
		6.1.1 Soil	21
		6.1.2 Groundwater	21
	6.2	Source of Contamination	21
	6.3	Extent of Contamination	22
		6.3.1 Soil	22
		6.3.2 Groundwater	22
7.	Fate	and Transport, Migration Pathways, and Exposure Potential	23
	7.1	Environmental Fate and Transport Characteristics	23
	7.2	Migration Pathways and Exposure Potential	23
8.	Risk	Characterization	25
	8.1	Conceptual Site Model and Site Boundary	25
	8.2	Current and Reasonably Foreseeable Site Activity and Use	25
	8.3	Human Receptors and Exposure Pathways	25
		8.3.1 Hot Spots	26
	8.4	Environmental Receptors and Exposure Pathways	26
	8.5	Identification of Groundwater and Soil Categories	26
		8.5.1 Applicable Groundwater Categories	26
		8.5.2 Applicable Soil Categories	27
	8.6	Chemical Data Used in the Risk Characterization	28
		8.6.1 Contaminants of Concern	28
	8.7	Exposure Points	29
		8.7.1 Identification of EPCs	29
		8.7.2 Comparison of EPCs to MCP Standards	29
	8.8	Characterization of Risk to Safety	30
	8.9	Substantial Hazard Evaluation	30
		8.9.1 Human Health Substantial Hazard Evaluation	30
		8.9.2 Ecological Substantial Hazard Evaluation	31
	8.10	Method 1 Risk Characterization Conclusions	32
9.	Phas	e III Remedial Action Plan Addendum	33
	9.1	Previous Remedial Action Plan	33

	9.2	Purpose	33
	9.3	Remedial Action Alternative Objectives	33
	9.4	Site-Specific Considerations for Potential Alternatives	34
	9.5	Identification and Screening of Remedial Technologies	34
	9.6	Description of Remedial Technologies Retained for Detailed Evaluation	35
		9.6.1 Institutional Controls	35
		9.6.2 Capping	35
		9.6.3 Excavation and a Combination of Off-Site and On-Site Disposal	36
		9.6.4 Vapor Mitigation System	36
	9.7	Development of Remedial Action Alternatives (RAAs)	37
		9.7.1 RAA1: Site Maintenance	37
		9.7.2 RAA2: Hot Spot Excavation, Capping, and Institutional Controls	37
		9.7.3 RAA3: Excavation, Disposal, and Vapor Mitigation System	38
	9.8	Evaluation of Remedial Action Alternatives	38
		9.8.1 Effectiveness	39
		9.8.2 Short-Term and Long-Term Reliability	39
		9.8.3 Implementability	39
		9.8.4 Costs	40
		9.8.5 Risks	40
		9.8.6 Benefits	40
		9.8.7 Timeliness	40
		9.8.8 Effect on Non-Pecuniary Interests	40
	9.9	Selected Remedial Action Alternative	40
10.	Repre	esentativeness Evaluation and Data Usability Assessment	42
	10.1	Conceptual Site Model	42
	10.2	Field and Screening Data	42
		10.2.1 Sampling Rationale	42
		10.2.2 Sample Number, Spatial Distribution, and Sample Handling	43
		10.2.3 Temporal Distribution	43
		10.2.4 Data Completeness	43
		10.2.5 Data Inconsistency and Uncertainty	43
		10.2.6 Data Considered Unrepresentative	43
	10.3	Data Usability Assessment	43
		10.3.1 Analytical Data Usability Criteria	44
		10.3.2 Field Data Usability Criteria	45
		10.3.3 Rejected Data	45
		10.3.4 Conclusions	45
11.	Temp	orary Solution Statement	46
	11.1	Temporary Solution Performance Standard	46
	11.2	Temporary Solution Statement	46
	11.3	Definitive and Enterprising Steps Taken to Achieve a Permanent Solution	
		(310 CMR 40.1050[5])	46
		- 	

12.	Limitations	48
13.	References	49

Tables

12

- 1. Summary of Property Information
- 2. Summary of Past Chemical Storage
- 3. Groundwater Elevations and Well Construction
- 4. Chemical Testing Results Soil (W&S)
- 5. Chemical Testing Results Groundwater (W&S and GEI)
- 6. Chemical Testing Results Soil (GEI)
- 7. Minimum and Maximum Concentrations Soil
- 8. Minimum and Maximum Concentrations Groundwater
- 9. In-Situ Remedial Technologies
- 10. Ex-Situ Remedial Technologies
- 11. Initial Screening of Remedial Technologies
- 12. Summary of Remedial Action Alternatives
- 13. Detailed Evaluation of Remedial Action Alternatives

Figures

- 1. Site Location Map
- 2. MCP Site Investigation Plan
- 3. MassGIS Site Scoring Map
- 4. Test Pit and Monitoring Well Location Plan
- 5. Groundwater Elevation Contour Plan (3/05/2017)

Appendices

- A. MassDEP Transmittal Forms
- B. Public Notice Documents
- C. Historical Records
- D. Existing Site Drawings
- E. GEI Boring and Well Installation Logs
- F. Laboratory Data Reports
- G. Substantial Hazard Evaluation

RSH/ISG:jam

B:\Working\BOSTON PLANNING & DEV AGENCY (AKA BRA)\2002082 BPDA Parcel P3\01_ADMIN\Phase II&III+TSS\Parcel P-3 PhII&III+TSS Report_DRAFT 01-11-2021.docx

ΛQ

Executive Summary

GEI Consultants, Inc. prepared this Supplemental Phase II Comprehensive Site Assessment (CSA), Phase III Remedial Action Plan (RAP) Addendum, and Temporary Solution Statement (the Report) on behalf of the Boston Planning & Development Agency (BPDA) for the property identified as Parcel P-3 (the Property) at Whittier and Tremont Streets in Roxbury, Massachusetts (the Site). Two Massachusetts Department of Environmental Protection (MassDEP) disposal sites are on the Property. The disposal site is identified as Release Tracking Numbers (RTNs) 3-15009, originally notified to MassDEP in 1997 and RTN 3-36365 notified to MassDEP on July 16, 2020. RTN 3-36365 is being linked to RTN 3-15009 creating a combined disposal site (the Site).

The Site is approximately 7.7 acres. From the late 1800s to about the 1960s, the Site was occupied by not only residential properties, but also industrial, commercial, and manufacturing businesses that used and stored oil and hazardous materials (OHM).

In 1996-1997, the Boston Redevelopment Authority (BRA), predecessor to the BPDA, engaged Weston & Sampson (W&S) to conduct subsurface investigations on the eastern portions of the Site. The investigation identified total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and lead in excess of the applicable Massachusetts Contingency Plan (MCP: 310 CMR 40.0000) Reportable Concentrations for residential areas (RCS-1). The BRA reported the release to MassDEP on April 11, 1997 and the Site was assigned RTN 3-15009. The Site was classified as Tier II on April 10, 1998.

In 2002, W&S conducted Phase II investigations at the Property. The detected contaminants were predominantly total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and lead. As a result of this investigation, W&S identified the RTN 3-15009 disposal site as the eastern portion of the Property, except for the old Whittier Street Heath Center (WSHC) and its parking lot. In their Phase III Remedial Action Plan (RAP), W&S proposed excavating a "hot spot" of lead-contaminated soil on the southwest portion of the Site and placing an Activity and Use Limitation (AUL) on the remainder of the Site to restrict residential development. The lead hot spot was not excavated and an AUL was not prepared for the RTN 3-15009 disposal site. The next regulatory deadline for RTN 3-15009 was a Phase IV Remedial Implementation Plan (RIP) by 2003; which was never completed.

In 2017, on behalf of the then-designated developer, P-3 Partners, GEI conducted a subsurface investigation for due diligence, including test pit excavation, soil boring and monitoring well installation, and soil and groundwater sampling. The investigation was conducted within the boundaries of RTN 3-15009 but also on the western portion of the

Property. Based on the results of the investigation, concentrations of chlorinated volatile organic compounds (VOCs) including trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride in groundwater on the western portion of the Property exceeded the applicable MCP RCGW-2 standard. In addition, the concentrations of lead and PAHs in soil on the western portion of the Property exceeded the applicable MCP RCS-1 standard. This constituted a new MassDEP reportable condition for the property owner (BPDA).

The new groundwater and soil exceedances were reported to MassDEP by BPDA on July 16, 2020 and RTN 3-36365 was issued. This Report links RTN 3-36365 to the RTN 3-15009, enlarging the historic disposal site to incorporate both.

The soil contamination at the Property is VOCs, volatile and extractable petroleum hydrocarbons (VPH and EPH), PAHs, and metals. The groundwater contamination is chlorinated VOCs, PAHs, and metals. The source of the contamination observed in the soil is likely contaminants common in urban fill and possibly historic releases from former industrial use of the Site. Sources of groundwater contamination include historic industrial use of the Site, and possible upgradient sources of VOC contamination.

Based on the data collected at the Site as part of subsurface investigations, we concluded that a condition of No Significant Risk does not exist at the Site from exposure to soil and groundwater. However, a condition of No Substantial Hazard to human health exists at the Site. A Phase III study for the identification, evaluation, and selection of remedial alternatives was necessary.

We identified and evaluated remedial action alternatives (RAA) that are reasonably likely to achieve a Permanent or Temporary Solution and are feasible considering the expertise exists to effectively implement them.

Based on our evaluation, we recommend RAA1 for the Site, which is Site Maintenance.

- RAA1 will achieve a Temporary Solution and is more cost-effective than other RAAs that could potentially achieve a Permanent Solution.
- RAA1 is most compatible with both current operations as well as future redevelopment plans for the Site. Selecting this RAA will allow the BPDA to plan future use of the Site and to incorporate a potential future remediation of the Site into their development plans.

The selection of a Temporary Solution is appropriate for the Site based on the following requirements of the MCP [310 CMR 40.1050]:

• The source of contamination been characterized and is not a threat for migration.

- No Substantial Hazard exists at the Site.
- A Phase III evaluation of remedial alternatives has been completed.

This Report includes the Temporary Solution Statement. The Temporary Solution will remain in place while additional steps are implemented to achieve a Permanent Solution. The definitive and enterprising steps toward achieving a Permanent Solution at the Site are:

- Perform semi-annual inspections of the Site to document that no changes to the Site conditions and no unauthorized excavations have occurred.
- Evaluate the feasibility of removing the large, artificial mound of soil on the northeastern portion of the Site and re-grade the Site to make it less susceptible to illegal dumping. While this will not result in a condition of No Significant Risk and a Permanent Solution, it will position the Site to be more attractive for future development plans and ultimately a Permanent Solution. If performed, this soil management work would occur under a Release Abatement Measure (RAM) Plan.
- Within five years, the BPDA plans to decide on the redevelopment plans for the Property and Site. After the decision is made a Phase III RAP Addendum and Phase IV Remedy Implementation Plan (RIP), or a RAM Plan will be submitted to implement a remedy that will result in a Permanent Solution.

1. Introduction

GEI Consultants, Inc. prepared this Supplemental Phase II Comprehensive Site Assessment (CSA), Phase III Remedial Action Plan (RAP) Addendum, and Temporary Solution Statement (the Report) on behalf of the Boston Planning & Development Agency (BPDA) for the property identified as Parcel P-3 (the Property) and at Whittier and Tremont Streets in Roxbury, Massachusetts (the Site; Figs. 1 and 2). Two Massachusetts Department of Environmental Protection (MassDEP) disposal sites are on the Property; Release Tracking Numbers (RTNs) 3-15009, originally notified to MassDEP in 1997 and RTN 3-36365 notified to MassDEP on July 16, 2020. RTN 3-36365 is being linked to RTN 3-15009 creating a combined disposal site (the Site). This Report fulfills the requirements of the Massachusetts Contingency Plan (MCP; 310 CMR 40.0835, 40.0861, and 40.1050).

1.1 Purpose

The purpose of this Report is to:

- Combine the new disposal site (RTN 3-36365) on the western portion of the Property with the existing disposal site RTN 3-15009 on the eastern portion of the Property.
- Submit a Supplemental Phase II CSA and Phase III RAP Addendum for the disposal site RTN 3-15009, inclusive of RTN 3-36365.
- Return disposal site RTN 3-15009 to compliance by preparing a Temporary Solution Statement (TSS) Report.

1.2 Scope

The scope of this Temporary Solution included:

- Reviewing state site databases and municipal records.
- Reviewing the previously reports prepared for this Site by GEI and others.
- Summarizing subsurface investigation previously performed by GEI including installing soil borings and monitoring wells and collecting soil and groundwater samples.
- Conducting a Substantial Hazard Evaluation to evaluate the risk of harm posed to human health, public safety, welfare, and the environment.
- Evaluating remedial alternatives for the Site.
- Preparing this report.

1.3 Submittals

The Tier Classification Transmittal Forms (BWSC107 and BWSC107B), Comprehensive Response Action Transmittal Form (BWSC108), and the Temporary Solution Statement Form (BWSC104) were submitted electronically to MassDEP, and copies are in Appendix A.

The Tier Classification Transmittal Forms (BWSC107 and BWSC107B) submits:

- A notice linking RTN (3-36365) to the Tier Classified Site (3-15009) and
- An extension of the Tier Classification of RTN 3-15009 so that future response actions may occur.

The Comprehensive Response Action Transmittal Form (BWSC108) submits a Supplemental Phase II CSA and Phase III RAP Addendum.

The Temporary Solution Statement Form (BWSC104) submits a TSS Report returning disposal site RTN 3-15009 to compliance.

1.4 Public Involvement

As required by 310 CMR 40.1403, letters were distributed to the Chief Municipal Officer (Boston Mayor) and Board of Health (Boston Public Health Commission) notifying them of the availability of the Report. Copies of the notification letters are in Appendix B.

1.4.1 PIP Activities

Disposal site RTN 3-15009 was designated a Public Involvement Plan (PIP) site in 2005. A public meeting to discuss and present the draft Report was held on PENDING, 2021. Copies of the meeting notification letters sent to the PIP petitioners; a list of community members notified, PIP meeting minutes and a copy of the PIP meeting presentation are in Appendix B PENDING.

1.5 Background

In 1996-1997, the Boston Redevelopment Authority (BRA), predecessor to the BPDA, engaged Weston & Sampson (W&S) to conduct subsurface investigations on the eastern portions of the Site. The investigation identified total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and lead in soil in excess of the applicable MCP Reportable Concentrations for residential areas (RCS-1). The BRA reported the release to the MassDEP on April 11, 1997 and the Site was assigned RTN 3-15009. The Site was classified as Tier II on April 10, 1998.

In 2002, W&S conducted Phase II investigations at the Site. W&S collected soil and groundwater samples for analysis of volatile petroleum hydrocarbons (VPH) including target volatile organic compounds (VOCs), extractable petroleum hydrocarbons (EPH) including target PAHs, polychlorinated biphenyls (PCBs), and Resource Conservation and Recovery Act (RCRA) 8 metals. The detected contaminants were predominantly TPH, PAHs, and lead. As a result of this investigation, W&S identified the RTN 3-15009 disposal site as the eastern portion of the Property, except for the old Whittier Street Health Center (WSHC) and its parking lot (Fig. 2).

W&S prepared a combined Method 1 and 3 Risk Characterization for the RTN 3-15009 disposal site that indicated that a condition of No Significant Risk (NSR) did not exist. In their Phase III RAP, W&S proposed excavating a "hot spot" of lead-contaminated soil on the southeast portion of the Site and placing an Activity and Use Limitation (AUL) on the remainder of the Site to restrict residential development.

The lead hot spot was not excavated and an AUL was not prepared for the RTN 3-15009 disposal site. The next regulatory deadline for RTN 3-15009 was a Phase IV Remedial Implementation Plan (RIP) by 2003; which was never completed. On October 22, 2007, MassDEP issued a Notice of Noncompliance (NON-NE-07-3A146) to the BRA for failing to submit the Phase IV RIP, and a Response Action Outcome (RAO) Submittal.

In 2017, on behalf of the then-designated developer, P-3 Partners, GEI conducted a subsurface investigation for due diligence, including test pit excavation, soil boring and monitoring well installation, and soil and groundwater sampling. The investigation was conducted with the boundaries of RTN 3-15009 but also on the western portion of the Property. Based on the results of the investigation, concentrations of chlorinated VOCs including trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride in groundwater on the western portion of the Property exceeded the applicable MCP RCGW-2 standard. This constituted a new MassDEP reportable condition for the property owner (BPDA). The BPDA withdrew the developer designation from P-3 Partners in November 2019.

The new groundwater and soil exceedances were reported to MassDEP by BPDA on July 16, 2020 and RTN 3-36365 was issued. This Report links RTN 3-36365 to RTN 3-15009, enlarging the historic disposal site to incorporate both disposal sites and the former Whittier Street Health Center lot (Fig. 2).

1.6 Conceptual Site Model

We developed a conceptual site model based on the history and use of the Site and on the data collected during subsurface investigations.

1.6.1 Site History and Description

The Site was generally industrial in the late 19th and early 20th century; a health center was constructed on the eastern portion in 1933. After that, portions were used for a junk yard, a tavern, and a paved parking lot.

The Site is approximately 334,546 square feet or 7.7 acres. On the southeast portion of the Site (Fig. 2, east of Vernon street and south of an undeveloped road, formerly Hampshire Street) is the lead hot spot described by W&S and the former WSHC, a vacant, four-story brick building located. The building is surrounded by pavement, which is in poor condition and is fenced.

On the northeast portion of the Site (Fig. 2, east of Vernon Street and north of Hampshire Street) is a large artificial, mound of approximately 5 to 10 feet above the surrounding pavement, except for the northeast corner which is landscaped and at normal grade. The mound is mixed soil and debris including metal, concrete, and brick debris, tires, and trash. This area is entirely unpaved and is surrounded by a fence.

The western portion of the Site (Fig. 2, west of Vernon Street) is primarily paved asphalt parking lots, which are in good condition. There are also some landscaped areas and a small community garden (Whittier Community Garden) with raised planter beds.

The nearest surface water body is the Back Bay Fens, approximately 0.5 mile northwest. Surface water runoff is likely directed to the catch basins located on the Property.

The site geology is generally 3 to 17.5 feet of fill overlying approximately 5 to 10 feet of organic soil, overlying glacial outwash (up to 71.5 feet thick) which overlies highly weathered to slightly weathered Roxbury Conglomerate bedrock. Depth to groundwater measured from ground surface ranges from approximately 8 to 13 feet deep and groundwater flows from south to north toward the Back Bay Fens.

1.6.2 Potential Contaminant Sources and Contaminants of Concern

The source of the contamination in the soil is likely contaminants common in urban fill and potentially historic releases from former industrial use of the Site. Sources of groundwater contamination include historic industrial use of the Site, and possible upgradient sources of contamination.

The primary contaminants in soil are lead, petroleum hydrocarbons and PAHs. The primary contaminants in groundwater are TCE, cis-1,2-DCE, and vinyl chloride.

1.6.3 Response Actions Conducted to Date

No response actions have been conducted at the Site. In 2002, W&S proposed excavating a "hot spot" of lead-contaminated soil and placing an AUL on the remainder of the Site to restrict residential development, but these actions were not performed.

1.6.4 Receptors and Potential Exposure Pathways

Potential exposure pathways at the Site based on the distribution of Site contaminants include:

- Ingestion and dermal contact with soil and inhalation of soil-derived fugitive dust by a future commercial worker, resident, trespasser, visitor, landscaper, utility worker, and construction worker if the Site is redeveloped. Under current conditions much of the eastern portion of the Site is unpaved, except for around the former WSHC, but it is fenced, and the western portion is paved or landscaped; therefore, the potential for soil exposure is limited.
- Dermal contact with groundwater by a future construction worker on the western portion of the Site.
- Inhalation of air in an excavation by a future construction worker on the western portion of the Site.
- Inhalation of indoor air by potential future building occupants on the western portion of the Site.

1.6.5 Ecological Exposure Potential

About half of the ground surface at the Site is exposed soil with weed growth and about half is paved or landscaped. There are no known environmental receptors at the Site. The Back Bay Fens is approximately 0.5 mile northwest of the Site and impacts to surface water and sediment are unlikely.

2. General Disposal Site Information

In accordance with 310 CMR 40.0835(4)(a,b), the following general Site information is provided.

2.1 Site Location and Description

The Site is at the intersection of Tremont Street and Whittier Street in Boston, Massachusetts (Fig. 1). The Site is vacant and owned by the BPDA. The latitude and longitude of the Site are 42°19'59.88"N and 71° 5'21.33"W, and UTM coordinates for the Site are 4,688,888mN and 327,826mE. The City of Boston Assessor's database identifies the Site as parcel #902980100.

The Site is approximately 334,546 square feet or 7.7 acres. The Site is bounded by Tremont Street to the north, Whittier Street to the east, Downing Street to the south, and an unnamed road to the west that accesses the parking lots behind the Madison Park High School. Additionally, Vernon Street bisects the eastern and western portions of the Site. In the eastern portion of the Site, an undeveloped road, formerly Hampshire Street, bisects the Site north of the former WSHC building (Fig. 2).

The former WSHC, a vacant, four-story brick building, is on the southeast portion of the Site (Fig. 2, east of Vernon street and south of Hampshire Street). The building is surrounded by pavement, which is in poor condition and a fence. A large artificial mound, approximately 5 to 10 feet above the surrounding pavement, except for the northeast corner, which is landscaped and at normal grade, is on the northeast portion of the Site (Fig. 2, east of Vernon Street and north of Hampshire Street). The mound is mixed soil and debris including metal, concrete, and brick debris, tires, and trash. This area is entirely unpaved and is surrounded by a fence.

The western portion of the Site (Fig. 2, west of Vernon Street) is primarily paved asphalt parking lots, which are in good condition. In this area there are also some landscaped areas and a small community garden (Whittier Community Garden) with raised planter beds.

2.2 Site Vicinity

The current use of the abutting properties are primarily residential apartments, vacant buildings, school buildings, a church, a police department, a health center, and commercial companies. The address, assessor's parcel identification number, owner, and use of each of the abutting properties are in Table 1.

2.3 Natural Resource Areas and Surrounding Land Use

Based on our review of the MassGIS Natural Resources Map for the Site (Fig. 3) and City of Boston assessor's maps, the environmental setting and potential sensitive receptors at the Site and in its vicinity include:

- Residential Population: The Site is in an urban area of Boston. We estimate that there are more than 1,000 residents within 0.5-mile of the Site.
- On-site Workers: There are fewer than 10 workers at the Site.
- <u>Institutions</u>: There are no institutions, as defined by the MCP, within 500 feet of the Site boundary. However, Madison Park High School is approximately 100 feet southwest and upgradient of the Site and the current WSHC is approximately 100 feet northwest and upgradient of the Site.
- <u>Drinking Water Supplies</u>: There are no known drinking water supplies (Zone II areas, Interim Wellhead Protection Areas, Zone A areas, Potentially Productive Aquifers [PPA], or private wells) or Sole Source Aquifers within 500 feet of the Site.
- <u>Surface Waters and Wetlands</u>: There are no surface water bodies or wetlands within 0.5 mile of the Site. The Back Bay Fens is approximately 0.5 mile to the northwest.
- <u>Fish Habitat</u>: The Back Bay Fens, approximately 0.5 mile from the site, is presumed fish habitat.
- Area of Critical Environmental Concern (ACEC): According to the MassGIS map, the Site is not located in an ACEC.
- Threatened or Endangered Species: According to the MassGIS map, there are no Natural Heritage and Endangered Species Program Estimated Habitats for Rare Wetlands Wildlife within 500 feet of the Site. According to the Massachusetts Natural Heritage Atlas, there are no priority habitats of rare species, estimated habitats of rare wildlife, or certified vernal pools within 0.5 mile of the Site.
- <u>Protected Open Space</u>: According to the MassGIS map, there is one public park, associated with Roxbury Community College, approximately 300 feet south of the Site.

2.4 Utilities

The Site has aboveground electrical lines leading to it, as well as inactive public water and sewer lines. The 48-inch brick Boston Water and Sewer Commission sewer interceptor (Stony Brook Interceptor) is at the Site and whose alignment is generally coincident with Hampshire Street (paper street only). Existing utilities are on engineering drawings in Appendix D.

2.5 Disposal Site Map

A Disposal Site Map, including the Site boundaries is shown on Fig. 2. The original RTN 3-15009 disposal Site boundary is shown as well as the newly enlarged RTN 3-15009 disposal Site boundary that incorporates the new RTN 3-36365 and the former WSHC.

3. Disposal Site History

In accordance with 310 CMR 40.0835(4)(c), the following is a summary of the ownership and operations history, release history, OHM use and storage history, waste management history, environmental permits and compliance history, and the potentially responsible party (PRP) for the Site.

3.1 Ownership and Operation History

Historical use of the Property was obtained from Sanborn Fire Insurance Maps (Sanborn Maps) from 1888 to 2002, aerial photographs taken periodically from 1938 to 2012, and City of Boston Inspectional Services Department records. Sanborn Maps, aerial photographs, and historic city records are in Appendix C. Additional site history was provided in the 2002 W&S Phase II CSA.

According to the 1888 Sanborn Map, many residential, industrial, and commercial manufacturing companies occupied the Property. Located on the northern portion of the Property south of Tremont Street were Tremont Foundry Machine Co., Eastern Electric Cable Co., St. John's Episcopal Church, and various stores and residential buildings. In the central portion of the Property, there were one to two-story residential and commercial buildings, along with the Roxbury Carpet Co. which was located adjacent to Vernon Street to the west. According to the Sanborn Map, coal and dye materials were stored in the four-story warehouse occupied by Roxbury Carpet Co. South of Roxbury Carpet Co., A.J. Tower, an "oil clothing manufactory," occupied three to four-story warehouse buildings.

By 1919, Tremont Foundry Machine Co. and Eastern Electric Cable Co. were replaced by smaller manufacturing and machine shops. A scrap iron yard and marketplace were on the northern portion of the Property. The Roxbury Carpet Co. had 4,500-gallon, 20,000-gallon, and 1,000-gallon tanks of unspecified contents along with many transformers. A.J. Tower Oil Clothing Manufactory also had a 500-gallon gasoline and a 4,500-gallon pressurized tank. The remaining developments on the Property remain largely unchanged as residential. Culvert Street to the east of the Property was changed to Whittier Street.

According to the 1950 Sanborn Map from 1950, many of the residences and stores were demolished in the southeastern portion of the Property and the four-story WSHC was constructed in 1933. It housed clinics, offices, a solarium, and a basement. Roxbury Carpet Co. no longer operated on the Property. An additional five oil tanks were in the eastern portion of A.J. Tower Co. and two laundry business were developed in the northern portion of the Property.

By 1988, all the structures on the Property were demolished and the Property remained vacant apart from the former WSHC located at 20 Whittier Street and a 1-story store located at 1182-1184 Tremont Street. According to permits provided by the City of Boston Inspectional Services Department, 1182-1184 Tremont Street was occupied by a restaurant known as Connolly's Tavern. Additionally, a playground was built west of the health center on the Property.

By 1998, Connolly's Tavern was demolished, and the Property remains largely unchanged and undeveloped apart from vacant WSHC located at 20 Whittier Street.

3.2 Release History

The BRA, predecessor to the BPDA, engaged W&S to conduct subsurface investigations on the eastern portion of the Property in 1996 and 1997. The investigation identified TPH, PAHs, and lead in excess of the RCS-1 standards. The BRA reported the release to the MassDEP on April 11, 1997 and the Site was assigned RTN 3-15009. The Site was classified as Tier II on April 10, 1998.

In 2002, W&S conducted Phase II investigations at the Site. W&S collected soil and groundwater samples for analysis of VPH, EPH, PCBs, and RCRA 8 metals. The detected contaminants were predominantly TPH, PAHs, and lead. As a result of this investigation, W&S identified the RTN 3-15009 disposal site as the eastern portion of the Property except for the former WSHC and its parking lot (Fig. 2).

W&S also conducted a combined Method 1 and 3 Risk Characterization for the RTN 3-15009 disposal site. The risk characterization indicated that a condition of NSR did not exist at the Site. In their Phase III RAP, W&S proposed excavating a hot spot of lead-contaminated soil on the southeast portion of the RTN 3-15009 disposal site and placing an AUL on the northern portion of the disposal site to restrict residential development.

The lead hot spot was not excavated and the AUL was not prepared. The next regulatory deadline for the RTN 3-150009 disposal site was a Phase IV RIP by 2003; which was not completed.

In 2017, on behalf of the then-designated developer, P-3 Partners, GEI conducted a subsurface investigation. Based on the results of our investigation, concentrations of chlorinated VOCs including TCE, cis-1,2-DCE, and vinyl chloride in groundwater on the western portion of the Property exceeded the applicable MCP RCGW-2 standard. This constituted a new MassDEP reportable condition for the property owner (BPDA).

In addition, the concentration of lead and PAHs in soil samples collected from one test pit and one soil boring were greater than the RCS-1 standard. The test pit was within the boundary of the RTN 3-15009 disposal site, but the boring was in the western portion of the Property which had not been reported to MassDEP. However, the lead and PAHs concentrations are consistent with the coal and coal ash observed in the upper 8 to 10 feet of soil.

The new groundwater and soil exceedances were reported to MassDEP by BPDA on July 16, 2020 and the release was assigned RTN 3-36365. This Report links RTN 3-36365 to the RTN 3-15009, enlarging the historic disposal site to incorporate both (Fig. 2).

3.3 Oil and/or Hazardous Material Use and Storage History

No direct history of the use and storage of OHM was available. OHM use and storage information and related response actions was obtained from previous reports and historic documents. A list of historic storage tanks is in Table 2.

During W&S's 1997 site reconnaissance and records review, W&S identified permits for seven historic storage tanks that were located on the Site. These historic storage tanks included a 3,000-gallon fuel oil underground storage tank (UST), or possible aboveground storage tank (AST) in the basement of the former WSHC (Table 2). No permits were identified for the abandonment or removal of these storage tanks. Other tanks, which may not have been permitted, have also been identified (Table 2). In addition, W&S observed solid waste including fill, construction, and demolition debris, across the Site.

On behalf of P-3 Partners, in 2016 GEI performed an ASTM Phase I Environmental Site Assessment and we observed a fill and vent pipe for a fuel storage tank along the site of the former WSHC building. Site reconnaissance conducted inside the former WSHC building identified the boiler room in a sub-basement; however, the boiler room was filled with water and the presence of the fuel storage tank could not be verified. Other items observed inside the building include old transformers and miscellaneous debris.

3.4 Waste Management History

A large, artificial, mound of mixed soil and debris (brick, concrete, etc.) is on the northeast corner of the Site. The source of this mound is unknown, but it is likely from unauthorized dumping of construction debris and excavated soil from another construction site. The mound has been on the Site for at least 25 years. W&S sampled the mound as part of their Phase I ISI investigation and the results of the testing are in Section 4.

We did not identify any other current waste management practices relevant to the Site, and there are no known records or reports of on-site historical waste management.

3.5 Environmental Permits and Compliance History

W&S, on behalf of the BRA, submitted the Phase II CSA and Phase III RAP to MassDEP in 2002. The Phase IV RIP and Permanent or Temporary Solution report (a Class A or C Response Action Outcome) were due for RTN 3-15009 by April 2003. These reports were not submitted. The last MCP Report submitted to MassDEP was the 2002 Phase II CSA.

In accordance with the requirements of the Massachusetts Environmental Policy Act (MEPA), a former development project proponent (P-3 Partners) filed an Environmental Notification Form (ENF) and Draft Environmental Impact Report (DEIR). However, P-3 Partners is no longer affiliated with the project or Property.

3.6 Potentially Responsible Parties

The BPDA is the Potentially Responsible Party (PRP) for the Site, including both RTN 3-15009 and 3-36365.

4. Investigations and Response Actions

In accordance with 310 CMR 40.0835(4)(d), the following is a summary of previous subsurface investigations.

4.1 Previous Investigations

4.1.1 Phase I Initial Site Investigation/Tier Classification (1996-1998)

The BRA retained W&S to perform a Phase I Initial Site Investigation at the Property in 1996. During their site reconnaissance and records review, permits for seven historic storage tanks were identified. These historic storage tanks included a 3,000-gallon fuel oil UST in the basement of the former WSHC (Table 2). No permits were identified for the abandonment or removal of these storage tanks. In addition, W&S observed dumping of solid waste including fill, construction, and demolition debris throughout the site.

Between November 1996 to March 1997, W&S excavated 7 test pits, advanced 31 soil borings, and installed 12 monitoring wells throughout the eastern portion of the Site. Fig. 2 shows the locations of W&S's explorations. They submitted soil and groundwater samples to AMRO Environmental Laboratories Corporation (AMRO) of Merrimack, New Hampshire, for an analysis of TPH, VOCs, PAHs, and RCRA 8 metals. W&S's soil and groundwater data are summarized in Tables 4 and 5, respectively.

Soil samples collected from the fill mound on the northeastern portion of the Site contained TPH, PAHs, and lead in excess of RCS-1 standards. Some PAHs exceeded RCS-1 standards below the pavement southwest of the former WSHC.

The BRA reported the release to MassDEP on April 11, 1997. MassDEP assigned RTN 3-15009. W&S classified the Site as Tier II on April 10, 1998 and submitted the Phase I ISI Report/Tier Classification to MassDEP. The Numerical Ranking System (NRS) for the disposal site was 143. The disposal site was limited to the eastern portion of the Property (Fig. 2).

4.1.2 Phase II Comprehensive Site Assessment and Phase III Remedial Action Plan (2002)

BRA retained W&S to perform a Phase II CSA and prepare a Phase III Remedial Action Plan (RAP) for the Site. This was limited to the eastern portion of the Property. W&S conducted additional subsurface investigations, including advancing soil borings, installing monitoring wells, and collecting soil and groundwater samples for analysis of VPH with targets,

EPH with targets, PCBs, and RCRA 8 metals. Fig. 2 shows the locations of W&S's explorations. W&S's soil and groundwater data are summarized in Tables 4 and 5, respectively.

Contaminants in the urban fill and soil mound were predominantly TPH, PAHs, and lead east of Vernon Street (Fig. 2). One soil sample (B211) collected east of Vernon Street also exceeded the Toxicity Characteristic Leaching Procedure (TCLP) hazardous waste threshold for lead. As a result of the chemical testing at the Property, W&S identified the RTN 3-15009 disposal site as the area north and west of the former WCHC, bounded to west by Vernon Street (Fig. 2). The former WSHC and its parking lot were not included in the RTN 3-15009 site boundary, nor was the portion of Property west of Vernon Street.

W&S prepared a combined Method 1 and 3 Risk Characterization for the RTN 3-15009 disposal site. The risk characterization indicated that a condition of NSR did not exist, due to the lead contamination in the soil west of the former WSHC. W&S proposed excavating the lead-contaminated soil and placing an AUL on the northern portion of the disposal site, to restrict residential development.

The lead hot spot was not excavated and the AUL was not prepared. The next regulatory deadline for the site was a Phase IV RIP by 2003; which was never completed.

4.2 GEI Subsurface Investigations 2013-2017

4.2.1 Geotechnical Soil Borings, 2013 and 2016

GEI observed Northern Drill Service, Inc. (Northern) of Northborough, Massachusetts drill two borings (B101 and B102) between July 25, 2013 and July 27, 2013. The borings were advanced using wash-rotary techniques with driven casing and drilling mud. The boring locations are shown in Fig. 4.

GEI observed New England Boring Contractors of Derry, New Hampshire drill ten borings (B201 through B210) between June 28, 2016 and July 19, 2016. The borings were advanced using wash-rotary techniques with driven casing and drilling mud. The boring locations are shown in Fig. 4.

Standard Penetration Tests (SPTs) were performed and split spoon samples were generally collected at 5-foot intervals. All SPTs were performed using a safety hammer with a rope and cathead. Recovered split-spoon soil samples were placed in jars and sent to our laboratory for verification of field classification. Individual sample descriptions are in the boring logs in Appendix E.

Rock core samples were collected using an NX-size, double-tube core barrel with a diamond bit yielding 2-inch-diameter rock core samples. Core runs were a maximum of 5 feet long. Sample descriptions are in the boring logs in Appendix E. GEI also performed nine grain size analyses on granular soil samples and five moisture content analyses on fine-grained soil samples collected from the borings to verify field descriptions.

4.2.2 Phase II Environmental Site Assessment, 2017

In February 2017, GEI prepared an ASTM Phase II ESA, to evaluate potential releases of OHM associated with the industrial history of the Site, particularly on the western portion (west of Vernon Street; Fig. 4).

4.2.2.1 Field Investigation and Soil Sampling

GEI observed Northern excavate seven test pits (TP101, TP103 to TP108) (Fig. 4). The test pits were excavated to depths ranging from 2 to 10 feet deep and logged for soil type, debris, and buried structures. Test pits logs are in Appendix E.

The fill contained abundant concrete and brick in a fine to coarse sandy matrix. We observed several pipes and historic structures during excavations. A buried concrete pipe was observed in TP-103, a competent brick layer was observed in TP-104, and a concrete foundation was observed 5.0 ft northeast of TP-104. TP-105, on the northeastern side of the Property, contained a layer of degraded concrete approximately 8 feet deep. Steel and copper pipes were observed in TP-106 and TP-107.

GEI also observed Northern advance seven soil borings (B301 through B303 and B305 through B308) (Fig. 4). The borings were advanced through the water table using hollow stem augers (HSA) to a depth of 20 to 30 feet below ground surface and completed as groundwater monitoring wells. Boring logs and monitoring well installation logs are in Appendix E.

The soil samples from each split spoon were screened for VOCs using a photoionization detector (PID), with a 10.6 eV bulb. The SPTs were conducted continuously from the ground surface to the groundwater table and at 5-foot intervals from the groundwater table to the bottom of each boring.

Soil samples for chemical analysis were collected from both the test pits and the borings. The samples were collected to characterize shallow soils and deeper soils near historic industrial operations. Soil samples were collected for laboratory analysis based upon field test data and visual/olfactory evidence of OHM. In general, one soil sample was collected from each boring and test pit.

Soil samples from test pits were generally collected from 0 to 3 feet and submitted to Alpha Analytical of Westborough, Massachusetts for analysis of PCBs and either RCRA 8 metals or MCP 14 metals. Soil samples from borings were collected from the interval with the highest PID reading, or from the water table, and generally analyzed for VOCs, VPH, and EPH.

Additional soil samples were collected for pre-characterization from TP-105 and B308. One soil sample was characterized from TP-105 within the upper fill and two soil samples were characterized from B308, one sample from within upper fill and one sample from within the underlying glacial outwash.

4.2.2.2 Well Installation and Groundwater Sampling

Northern completed the seven borings as monitoring wells using 2-inch diameter PVC and 10 feet of slotted well screen. The monitoring wells were advanced through the fill layer and screened across the estimated water table.

The monitoring wells were backfilled from the bottom to above the screened sections using clean sand and sealed above that with bentonite chips. They were finished with 4-inch steel road boxes mounted flush with the ground surface and surrounded by a concrete pad. Monitoring well installation logs are in Appendix E.

We developed the seven newly installed monitoring wells after the completion of drilling and one existing monitoring well B205(OW) by purging them with a submersible pump. A well was considered developed when 10 well volumes were removed, when water removed from the well was relatively free of fine-grained material, or after the well ran dry.

Between March 2 and March 5, 2017, we collected groundwater samples, and surveyed the vertical elevations of the eight monitoring wells. We surveyed the vertical elevations of the monitoring wells relative to an onsite benchmark. The benchmark used was the top of the fire hydrant located adjacent to B(MW)305.

Table 3 summarizes the monitoring well construction and the groundwater level measurements. Based on groundwater measurements, groundwater flows south to north across the Site. The groundwater gradient appears to be steeper on the southern side of the Property, between B(MW)306 and B(MW)307, and shallower to the east (Fig. 5).

Each well was sampled with a peristaltic pump, using low-flow methods. The groundwater samples were submitted to Alpha for chemical testing of VOCs, EPH, and VPH. One sample, from B(MW)307, was tested for groundwater discharge permit requirements.

4.2.2.3 Chemical Testing Results: Soil

The chemical testing results for soil associated with the western portion of the Site are summarized in Table 6 and the laboratory data report is in Appendix F. The chemical testing results for soil associated with the eastern portion of the Site (original RTN 3-15009) were summarized in the 2002 W&S Phase II CSA and are also presented in Table 4 of this Report.

Results indicated the presence of the following at concentrations above the laboratory reporting limit:

- VOCs: Benzene, TCE.
- <u>PAHs</u>: Acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, dibenzofuran, di-n-butyl phthalate, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2-methylnaphthalene, naphthalene, phenanthrene, and pyrene.
- <u>EPH</u>: C₁₁–C₁₂ aromatics, C₁₉–C₃₆ aliphatics, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene.
- PCBs: Aroclor 1254
- Pesticides: Endosulfan II.
- Total Petroleum Hydrocarbons.
- <u>Metals</u>: Arsenic, barium, beryllium, chromium, lead, mercury, nickel, vanadium, and zinc.

Based on the soil chemical testing results, we identified lead and four PAHs above the RCS-1 reporting standard: benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene.

4.2.2.4 Chemical Testing Results: Groundwater

The chemical testing results for groundwater associated with the western portion of the Site are summarized in Table 5 and the laboratory data report is in Appendix F. The chemical testing results for groundwater associated with the eastern portion of the Site (original RTN 3-15009) were summarized in 2002 W&S Phase II CSA and are also presented in Table 5 of this Report.

Results indicated the presence of the following in wells B(MW)302, B(MW)305, B(MW)306, B(MW)307, and B(MW)308 at concentrations above the laboratory reporting limit:

- <u>VOCs</u>: Tetrachloroethene (PCE), TCE, cis-1,2- DCE, 1,-2-dichloroethene, ethyl ether, 1,4-dioxane, p-isopropyltoluene, vinyl chloride.
- <u>PAHs</u>: Acenaphthene, fluoranthene, fluorene, 2-methylnaphthalene, phenanthrene, and pyrene.
- <u>EPH</u>: Acenaphthene, anthracene, fluoranthene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene, and pyrene.
- Metals: Cadmium, copper, and nickel.

Based on the groundwater chemical testing results, we identified three chlorinated VOCs at or above the RCGW-2 standard: TCE, cis-1,2-DCE, and vinyl chloride. Exceedances of RCGW-2 for TCE were detected in B(MW)302, B(MW)306, and B(MW)308. Additionally, B(MW)306 also contained vinyl chloride and cis,1,2-DCE above the RCGW-2.

5. Site Hydrogeology Characteristics

In accordance with 310 CMR40.0835(4)(d), the following is a summary of the geologic, hydrologic, and topographic conditions at the Site.

5.1 Topography

The Site is in an area that is naturally level; however, a large, artificial, mound of mixed soil and debris (brick, concrete, etc.) is on the northeast corner of the Site. Based on the United States Geological Survey (USGS) Topographic Quadrangle (7.5 x 15 Minute Series), the surface elevation is approximately 40 feet above National Geodetic Vertical Datum (NGVD). Surface water runoff is likely directed to the catch basins located on the Property.

5.2 Geology

The soil layers encountered in the borings are described below, starting at the ground surface. This description incorporates the results of both the geotechnical and environmental drilling programs. The soil conditions are known only at the boring locations. Conditions between borings may differ significantly from those shown in the subsurface profiles and described below.

- <u>Asphalt/Concrete</u> A 6-inch-thick layer of asphalt or concrete was encountered at the ground surface at borings B302(MW) and B305(MW). However, most of the site is unpayed.
- <u>Topsoil</u> A 6 to 12-inch layer of brown soil with roots and sand was present in the test pits in the landscaped areas and in B301(MW), B303(MW), B306(MW) and B308(MW).
- <u>Fill</u> A 3- to 17.5-foot-thick layer of miscellaneous fill was encountered in all of the borings. The fill generally consisted of fine to coarse sand with varying amounts of gravel to widely graded gravel with varying amounts of silt, sand, and clay. Brick, concrete, coal ash, and asphalt fragments were very common throughout the fill; however, odors or staining associated with OHM were not observed. PID readings ranged from 0.0 to 55.0 parts per million.
- Organic Soil A 5 to 10-foot-thick layer of organic soil was encountered beneath the fill, approximately 9 to 12 feet deep, in B302(MW) and B303(MW). The organic soil consisted of black organic silt with layers of peat or brown to gray peat with silt lenses.

- Glacial Outwash A layer of glacial outwash consisting of sand and gravel was encountered in all of the borings, overlain either by the fill or by the peat. The layer thickness varied from 25 to 65 feet in the most recent borings. Up to 71.5 feet of glacial outwash was encountered in B102. The glacial outwash tended to be thinner on the southwest portion of the site and thicker in the northeast portion of the site. The glacial outwash generally consisted of widely graded to narrowly graded sand with silt and gravel. The silt and gravel content varied across the site.
- Weathered Bedrock/Bedrock Highly weathered to slightly weathered Roxbury Conglomerate was encountered below the glacial till. The Roxbury Conglomerate is a sedimentary rock with clasts (rounded to subrounded gravel to boulder size rocks) set in a finer-grained (sand and silt size particles) sedimentary matrix. In most of the borings, the upper 5 to 15 feet of bedrock was moderately to highly weathered. The weathering appeared to affect the sand matrix more than the clasts resulting in recoveries of rounded to subrounded gravel missing the sand and silt matrix that was washed away due to the coring process. Typically, the degree of weathering decreased with depth which resulted in better recoveries with depth. Recoveries and Rock Quality Designations (RQDs) ranged from 17% to 100% and from 0% to 69%, respectively.

Boring logs and monitoring well installation logs are in Appendix F.

5.3 Hydrogeology

A groundwater contour map is in Fig. 5. Depth to groundwater measured from ground surface on March 5, 2017 ranged from approximately 8 to 13 feet deep. Based on the results of GEI's groundwater elevation survey, groundwater flows from south to north toward the Back Bay Fens (Fig. 5).

6. Nature and Extent of Contamination

6.1 Nature of Contamination

6.1.1 Soil

The nature of soil contamination is VOCs, VPH, EPH (including PAHs), and metals, particularly lead. Low levels of PCBs and one pesticide were also present. The contamination is generally consistent with urban fill soils containing debris with coal and coal ash. The soil chemical testing results are summarized in Tables 4 and 6. Minimum and maximum concentrations detected in the soil samples are in Table 7.

The following contaminants in soil exceed the applicable MCP Method 1 S-1 cleanup standards: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, TPH, lead.

The results of GEI's soil investigation are generally consistent with the findings in the 2002 W&S Phase II CSA.

6.1.2 Groundwater

The nature of groundwater contamination is VOCs, EPH, PAHs, and metals. In particular, PCE, TCE cis-1,2-DCE, and vinyl chloride were detected in one or more of the wells (B(MW)302, B(MW)305, B(MW)306, B(MW)307, and B(MW)308) above laboratory reporting limits. The groundwater chemical testing results are summarized in Table 5. Minimum and maximum concentrations detected in the groundwater samples are in Table 8.

The following contaminants in groundwater exceed the applicable MCP Method 1 GW-2 cleanup standards: TCE, cis-1,2-DCE, and vinyl chloride.

The results of GEI's groundwater investigation are generally consistent with the findings in the 2002 W&S Phase II CSA, except for GEI's additional identification of chlorinated VOCs in groundwater.

6.2 Source of Contamination

The source of the contamination in the soil is likely contaminants common in urban fill and potentially historic releases from former industrial use of the Site. Sources of groundwater contamination include historic industrial use of the Site, and possible upgradient sources.

6.3 Extent of Contamination

6.3.1 Soil

Visual and olfactory evidence of contamination in soil generally was fill containing coal, coal ash, clinkers, glass, brick, and metal fragments. Visual evidence of contaminated soil is summarized in the boring logs in Appendix F.

All the soil borings and test pits contained fill material consistent with the identification of PAHs, EPH, and metals consistent with coal and coal ash, or urban fill. This material was 3 to 17 feet thick across the Site and can be described as ubiquitous.

6.3.2 Groundwater

Groundwater contamination above laboratory reporting limits was identified in B(MW)302, B(MW)305, B(MW)306, B(MW)307, and B(MW)308. VOCs, PAHs, and metals were identified in B(MW)307, and VOCs in B(MW)302, B(MW)305, B(MW)306, B(MW)307, and B(MW)308.

The extent of groundwater contamination was determined by examining the contaminant concentrations and the direction of groundwater flow. B(MW)306, the well with the greatest number of VOCs in excess of the Method 1 GW-2 standard, is one of the most upgradient wells (Fig. 5). B(MW)308 is immediately downgradient of B(MW)306. The other well with VOC contamination, B(MW)302, is also located on an upgradient edge of the property, and relatively distant from known sources of on-site contamination, including the former junk and scrap metal yard. These occurrences suggest that VOC contamination is migrating onto the Site from elsewhere. B(MW)307, located near the center of the Site, did not contain VOCs greater than the Method 1 standards, but did contains PAHs and metals that can be attributed to urban fill or the historic industrial use of the Site. The most downgradient well, B(MW)205 did not contain groundwater contamination above laboratory detection limits.

7. Fate and Transport, Migration Pathways, and Exposure Potential

In accordance with 310 CMR 40.0835(4)(e.g.), the following is a summary of environmental fate and transport characteristics, migration pathways, and exposure potential.

7.1 Environmental Fate and Transport Characteristics

The characteristics affecting fate and transport of organic contaminants include specific gravity, vapor pressure, solubility, partitioning coefficients, and biodegradability.

VOCs were identified in soil and groundwater at the Site. The dominant fate and transport mechanisms for VOC compounds are groundwater flow, volatilization, and biodegradation. Some VOC compounds exhibit relatively high vapor pressure or solubility and have the potential to volatilize into the soil vapor or dissolve into the groundwater.

EPH and PAHs were detected in soil and groundwater. The dominant fate and transport processes for EPH, including PAHs, include diffusion, groundwater flow, adsorption to soil particles, volatilization to the soil vapor, and biodegradation. EPH and PAH compounds generally exhibit low vapor pressures, low solubility, and high organic compound/water partitioning coefficients (K_{oc}). These characteristics indicate that they are less likely to volatilize into the soil vapor or dissolve into the groundwater. These compounds exhibit strong binding characteristics, resulting in relative immobility in soils. A high K_{oc} value also precludes substantial influx into plants from soil-bound PAHs.

Metals were detected in soil and groundwater. Metals detected in soil consist primarily of Arsenic, barium, beryllium, chromium, lead, mercury, nickel, vanadium, and zinc. Metals detected in groundwater consist primarily of cadmium, copper, and nickel. The potential migration of metals in groundwater is limited by their low solubility and their tendency to adsorb to soil particles or precipitate out of groundwater.

7.2 Migration Pathways and Exposure Potential

Contaminants in soil and groundwater appear to be associated with historic industrial use of the Site and possibly migration onto the Site from upgradient sources.

The depth to groundwater ranges from approximately 8 to 13 feet and flows generally north, toward the Back Bay Fens, which are more than 0.5 mile away. Groundwater is not used for

drinking at or within 500 feet of the Site. None of the groundwater contaminants exceeds the Method 1 GW-3 standards.

Vapor intrusion may be a significant exposure pathway under future conditions because the Property may be developed for commercial and residential use. Chlorinated VOCs have been detected in groundwater contamination in excess of the GW2 standards in three wells.

The exposure potential posed by OHM in soil and groundwater also includes dermal contact and incidental ingestion of soil, inhalation of soil-derived fugitive dust, and dermal contact with groundwater. The Site is only partially paved so the potential human receptors include trespassers and utility workers.

There is no surface water or sediment within 500 feet of the Site; therefore, it is not likely that either media has been affected.

There are no sensitive environmental receptors or natural resource areas at or within 500 feet of the Site. Therefore, there is minimal exposure potential for these receptors.

8. Risk Characterization

We used a Method 1 Risk Characterization to evaluate the risk of harm to human health, public welfare, safety, and the environment posed by the western portion of the Site. A Method 1 Risk Characterization is appropriate because the contamination is limited to soil and groundwater and contaminants known to bioaccumulate are not present within 2 feet of the ground surface.

We also performed a Substantial Hazard Evaluation to support a Temporary Solution.

8.1 Conceptual Site Model and Site Boundary

The CSM developed for the Site is in Section 1.6.

8.2 Current and Reasonably Foreseeable Site Activity and Use

The Site is currently owned by the BPDA. The former WSHC is a vacant, four-story brick building located in the southeast portion of the Site. Vernon Street bisects the eastern and western portions of the Property. In the eastern portion of the Property, an undeveloped road, formerly Hampshire Street, bisects the Site north of the former WSHC building. A large, artificial, mound of mixed soil and debris is located on the northeastern portion of the Site.

The Site may be redeveloped in the future for commercial and/or multi-family residential uses.

8.3 Human Receptors and Exposure Pathways

Receptors include future residents, current and future commercial worker, current and future trespasser, future construction worker, or current and future emergency utility worker. Potential pathways for human exposure to contaminants detected at the western portion of the Site include inhalation, dermal contact, and incidental ingestion of contaminants.

The following assumptions were used for the risk characterization:

- There are no current or foreseeable limitations on activities and uses.
- There are no current or foreseeable uses of groundwater as drinking water.

8.3.1 Hot Spots

Hot spots must be considered distinct exposure points. The MCP (310 CMR 40.0006) defines a hot spot as a "discrete area" where concentrations are "substantially higher than those present in the surrounding area":

- If the concentration is 10 to 100 times greater than the average concentration in the surrounding area, then a hot spot is present unless the potential exposure to receptors is no greater than in the surrounding area; or
- If the concentration is 100 times greater than in the surrounding area, then a hot spot is present.

GEI conducted a discrete exposure area analysis for soil. There are elevated lead concentrations in the vicinity of Hampshire Street, at soil sample locations B-202 and B-211 collected from 5 to 7 feet below ground surface. Since there is an active utility along Hampshire Street, there is evidence of greater exposure potential to subsurface soil during a utility repair at this portion of the Site. Accordingly, based on this analysis, GEI has identified soil located at 5 to 7 feet below ground surface in the vicinity of sample locations B-202 and B-211 as a soil hot spot. This is the same hot spot identified by W&S in 2002.

GEI did not identify any other hot spots at the Site.

8.4 Environmental Receptors and Exposure Pathways

The Site is in an urban area and would not likely represent a potentially significant habitat. There are no known wetlands, vernal pools, ponds, lakes, or reservoirs within 500 feet of the Site. The Site is not located in an ACEC. There are no significant natural resource areas within the Site boundary. There are no sensitive environmental receptors or natural resource areas at or within 500 feet of the Site. This includes both biota and species of concern, threatened species, and endangered species; therefore, there is minimal exposure potential for environmental receptors.

8.5 Identification of Groundwater and Soil Categories

8.5.1 Applicable Groundwater Categories

Under the MCP there are three categories for groundwater (GW-1, GW-2, and GW-3) which correspond to the following three distinct types of exposures:

• GW-1 applies to groundwater assumed to be a current or future source of drinking water.

- GW-2 applies to groundwater considered to be a potential source of vapors that could migrate through the soil and concentrate in the indoor air of existing, occupied buildings.
- GW-3 applies to groundwater that is assumed to discharge to surface water. All groundwater in Massachusetts is classified as GW-3.

The Site is not located within a MassDEP-approved WPA (Zone II Area), MassDEP Interim WPA, or PPA, and there are no public water supplies within 500 feet of the Site. There are no known private drinking water wells within 500 feet of the Site. Therefore, groundwater is not categorized as GW-1. The depth to groundwater at the Site is approximately 8 to 13 feet deep, but there are no occupied buildings at the Site. However, since occupied buildings are possible in the foreseeable future, these were conservatively considered as a potential exposure pathway. Accordingly, groundwater is categorized as GW-2. All groundwater in the Commonwealth is classified as GW-3. Based on this information, the applicable groundwater categories for the Site are GW-2 and GW-3.

8.5.2 Applicable Soil Categories

Soil can be classified into one of three categories (S-1, S-2, or S-3). Category S-1 soil represents the highest potential exposure because it assumes the unrestricted use of the soil (i.e., residential or daycare), whereas category S-3 soil represents the lowest potential for exposure.

Potential human receptors include trespassers and utility workers under current uses, and residents (including children), commercial workers, trespassers, and construction and utility workers under future uses. The potential pathways to exposure from contaminated soil include inhalation, dermal contact, and incidental ingestion of contaminants.

The Site is in a residential neighborhood and susceptible to trespassers, and a portion of the Site includes a parking lot. Under current conditions, trespasser activities (a potential child) are considered low frequency and high intensity, and in accordance with the soil category selection matrix provided in 310 CMR 40.0933(9), soil is accessible (0 to 3 feet) and is category S-1. Under current conditions, parking lot activities (an adult) are considered high frequency and low intensity, and in accordance with the soil category selection matrix provided in 310 CMR 40.0933(9), soil is accessible (0 to 3 feet) and is category S-2.

Because the future use of the Site has not been restricted, soil at the Site has been considered category S-1 for the risk characterization. The MCP requires that all soil at a site be evaluated as S-1 soil unless an AUL is placed on the site. An AUL is a deed restriction designed to prevent activities on a site that may cause a potential risk to human health, public welfare, or the environment. An AUL is not assumed for this Site. Soil at the Site is

characterized as S-1 for future use. Category S-1 considers soil to a depth of 15 feet deep as accessible to potential receptors. Beyond 15 feet deep, soil is considered inaccessible under the MCP.

8.6 Chemical Data Used in the Risk Characterization

Analytical data are available for Site surface and subsurface soil (generally collected between 0 to 13 feet, but some samples are from 15 to 24 feet). Analytical data included in the risk characterization are in Tables 4 and 6 (soil) and Table 5 (groundwater). Data deeper than 15 feet, which are also included in Tables 4 and 6, were not considered in the risk characterization since those soils are considered inaccessible under the MCP. Tables 7 and 8 present summary statistics for soil and groundwater data, respectively included in the risk characterization.

8.6.1 Contaminants of Concern

In accordance with the MassDEP's "Guidance for Disposal Site Risk Characterization," all chemicals detected at the Site should be considered COCs and should be carried through the risk assessment process unless one of the following conditions is true:

- The chemicals are present at a low frequency of detection and in low concentrations.
- The chemicals are present at levels that are consistent with "background" concentrations for the area, and there is no evidence that their presence is related to activities at the Site.
- The chemicals are field or laboratory contaminants.

Some compounds were excluded from the risk characterization:

- Three compounds detected at the Site (dibenzofuran and di-n-butyl phthalate in soil and ethyl ether in groundwater) were excluded from the risk characterization based on being present at a low frequency of detection and at low concentrations, and they are likely to pose de minimis risk and were not quantitatively evaluated.
- Seven petroleum compounds that do not have a Method 1 standard (n-, sec-, and tert-butylbenzene, n-isopropylbenzene, isopropylbenzene, and 1,2,4-trimethylbenzene in soil; and p-isopropyltoluene in groundwater) but are included as part of the VPH C₉-C₁₀ aromatic fraction were also excluded from the risk characterization based on being present at a low frequency of detection and at low concentrations. These compounds are likely to pose de minimis risk and were not quantitatively evaluated.

Endosulfan II in soil was excluded from the risk characterization based on being
present at a low frequency of detection and at a low concentration. Endosulfan II was
below the RCS-1 standard (by more than an order of magnitude) and it poses de
minimis risk.

Contaminants of concern (COCs) in soil include VOCs, EPH, PAHs, PCBs, pesticides, and metals. COCs in groundwater include VOCs, PAHs, and metals.

8.7 Exposure Points

Identification of exposure points is described in 310 CMR 40.0924. An exposure point refers to a location of potential contact between a human receptor and contaminated media.

8.7.1 Identification of EPCs

GEI calculated EPCs for each COC at each exposure point. Soil EPCs were set equal to the 90% Chebychev Upper Confidence Limit (UCL), in consideration of information MassDEP has provided for the pending, proposed 2019 MCP amendments. These soil EPCs are considered a conservative estimate of the true mean. Chemical data included soil samples collected from depths generally ranging from 0 to 13 feet. GEI concluded that samples collected from across the Site represent the spatial distribution of contamination. Therefore, the soil EPCs are unlikely to substantially underestimate the true mean concentrations. The calculated soil EPCs are in Table 7.

GEI also identified the average concentrations at B-202 and B-211 as the lead hot spot EPCs.

For groundwater EPCs, we used the maximum concentration of each detected COC in all monitoring wells. Groundwater EPCs are in Table 8.

8.7.2 Comparison of EPCs to MCP Standards

Some EPCs for contaminants considered COCs as part of this risk characterization are above the applicable Method 1 S-1/GW-2 and S-1/GW-3 Standards for Site-wide soil (benzo(a)pyrene, lead) and the lead hot spot in soil (PAHs and lead), and Method 1 GW-2 Standards but not GW-3 Standards for groundwater (TCE, cis-1,2-DCE, vinyl chloride). Therefore, in accordance with 310 CMR 40.0973(7), a condition of NSR to health, public welfare, and the environment does not exist.

The lead EPC in the lead hot spot (10,000 mg/kg) also exceeds the MCP upper concentration limit (6,000 mg/kg) as defined in 310 CMR 40.0996.

8.8 Characterization of Risk to Safety

All risk characterizations must also characterize any potential risks to safety (310 CMR 40.0941(2)). The purpose of this characterization is to identify risks that may currently or in the foreseeable future pose a threat of physical harm or bodily injury to people. The risks evaluated in this assessment include threat of fire or explosion, and the presence of corrosive, reactive or flammable uncontained materials.

No potential risks to safety associated with soil contamination were identified at the western portion of the Site. No rusted or corroded drums or containers, open pits, lagoons, or other dangerous structures have been identified as being present at the western portion of the Site. None of the data revealed compounds present at levels that may volatilize to flammable limits or above Lower Explosive Limit (LEL) concentrations.

The Site does not pose a threat of physical harm or bodily injury and does not present dangerous or nuisance conditions. The Site poses a condition of NSR to safety.

8.9 Substantial Hazard Evaluation

We conducted a Substantial Hazard Evaluation (SHE) because a Temporary Solution is being considered as one of the Remedial Action Alternatives (refer to Section 9). The Substantial Hazard Evaluation is summarized below.

The Substantial Hazard Evaluation focuses on the potential exposures to human and environmental receptors over a short period of time, considering the current use of the property and the surrounding environment.

8.9.1 Human Health Substantial Hazard Evaluation

Under current Site use, potential current receptors include trespassers, workers using the parking lot, and emergency utility workers making a hypothetical emergency repair of the utility along Hampshire Street.

The MCP requires that a SHE exposure period be set at a duration of 5 years, plus time since reporting. Since the Site was assigned an RTN by MassDEP in April 1997, the SHE exposure period would be approximately 28.5 years at the time of this SHE, which exceeds the default GEI NSR exposure for commercial workers (25 years) and the MassDEP NSR exposure for a trespasser and emergency utility worker (7 years and 1 day, respectively). Since the intent of a SHE is a short-term exposure evaluation, the default GEI and MassDEP exposure periods were retained.

The SHE focuses on exposure under current conditions. The commercial worker and trespasser exposure scenarios relied on soil EPCs for soil located from 0 to 3 feet, which is considered currently accessible under the MCP. GEI also conservatively assumed that no pavement exists at the Site for this SHE. Soil EPCs for the emergency utility worker scenario are conservatively based on maximum concentrations throughout the Site, to be protective of exposure to deeper soils during a hypothetical excavation. Utility workers were also assumed to have dermal exposure with groundwater during an excavation, and maximum groundwater EPCs were used for the evaluation.

Tables G-1 through G-15 summarize the exposure assumptions, toxicity information, and quantitative risk estimates for the human health SHE. The current trespasser (non-cancer sub-chronic Hazard Index (HI) = 0.2, chronic HI = 0.08, and Estimated Lifetime Cancer Risk [ELCR] = 2E-6), commercial worker (non-cancer sub-chronic HI = 0.2, chronic HI = 0.1, and ELCR = 6E-6, and emergency utility worker (sub-chronic HI = 0.01, ELCR = 4E-09) are below MCP non-cancer (HI = 1) and cancer (ELCR = $1E^{-5}$) risk limits. Therefore, in accordance with the MCP (310 CMR 40.0956(1)(a), a condition of No Substantial Hazard to human health exists at the Site.

8.9.2 Ecological Substantial Hazard Evaluation

The focus of the Ecological Substantial Hazard Evaluation shall be on any environmental resource areas, such as wetlands, aquatic and terrestrial habitats, and fisheries, which exist at the Site.

In accordance with the MCP (310 CMR 40.0956(2)), a condition of No Substantial Hazard to the environment would exist if steps have been taken to eliminate or mitigate the following conditions, where applicable, affecting an environmental resource at the site:

- (a) Evidence of stressed biota attributable to the release at the disposal site, including, without limitation, fish and wildlife kills or abiotic conditions;
- (b) The visible presence of oil, tar or other separate phase hazardous material in soil within three feet of the ground surface over an area equal to or greater than two acres, or over an area equal to or greater than 1,000 square feet in sediment within one foot of sediment surface;
- (c) Continuing discharge of contaminated groundwater to surface water where levels of the oil or hazardous material attributable to the release already exceed Massachusetts Surface Water standards;
- (d) Continuing discharge of contaminated groundwater to surface water where surface water and/or sediment concentrations of oil or hazardous material attributable to the release already pose a significant risk;

- (e) Migration of oil or hazardous material to additional environmental media, or resource area where resultant exposures would have the potential to pose a significant risk of harm in the future; and
- (f) Ecological risk or harm such that recovery would be substantially more difficult or would require more time if conditions were to remain unremediated for even a short period of time.

There are no known species of concern, threatened species, or endangered species near the Site. The Site is in an urban area and does not represent a potentially significant habitat. As a result, the Site does not contain a suitable habitat for terrestrial organisms.

The closest surface water body is the Muddy River, located approximately 5,000 feet to the northwest. Concentrations of COCs in groundwater at the Site are not expected to pose a significant risk of harm to aquatic organisms in the Muddy River.

The incomplete exposure pathways for environmental receptors indicate a condition of No Substantial Hazard to the environment exists at the Site.

8.10 Method 1 Risk Characterization Conclusions

The conclusions of the Method 1 Risk Characterization are as follows:

- A condition of NSR of harm to human health, public welfare and the environment from exposure to soil and groundwater does not exist because the EPCs for some contaminants in soil and groundwater are above applicable Method 1 standards.
- A condition of NSR of harm to safety exists.
- There is no Imminent Hazard or Substantial Hazard condition.
- A Phase III RAP is required to evaluate remedial alternatives that are reasonably likely to achieve a level of NSR (Section 9).

9. Phase III Remedial Action Plan Addendum

In accordance with the MCP (310 CMR 40.0850), this section summarizes the identification, evaluation, and selection of the Comprehensive Remedial Action Alternative (RAA).

9.1 Previous Remedial Action Plan

In 2002, on behalf of the BPDA, W&S submitted a Phase III RAP for RTN 3-15009 that recommended an RAA to achieve a Permanent Solution for the eastern portion of the Site. In the RAP, several RAAs were evaluated to address the following identified risks: risk to human health due to petroleum hydrocarbons, PAHs, and lead in soil on the eastern portion of the Site and risk to public welfare due to the presence of lead hot spots in soil on the eastern portion of the Site. The Phase III RAP identified removal of the lead hot spot and implementation of an AUL to restrict residential development as the selected RAA for the eastern portion of the Site.

As previously described in the current Report (see Section 1.3), additional soil and groundwater contamination was identified on the western portion of the Property, which was reported to MassDEP on July 16, 2020 (RTN 3-36365). The RTN 3-15009 disposal Site has been enlarged to incorporate the conditions associated with RTN 3-36365. This current Report includes a Phase III RAP Addendum to evaluate feasible alternatives to address the contamination on the entire Site.

9.2 Purpose

The MCP requires the identification and evaluation of RAAs that are reasonably likely to achieve a Permanent or Temporary Solution considering the OHM present, media contaminated, and site characteristics. An evaluation of RAAs is required because significant risk has been identified to human health, public welfare and the environment from exposure to soil and groundwater at the Site.

9.3 Remedial Action Alternative Objectives

The ultimate remedial objective for the entire Site is to attain a condition of NSR through the implementation of a Permanent Solution. This objective can be achieved by eliminating the exposure pathway to human receptors to the contaminants at the Site. If attaining a Permanent Solution is not feasible, then a Temporary Solution can be implemented since there is no Substantial Hazard at the Site.

9.4 Site-Specific Considerations for Potential Alternatives

The following conditions unique to the Site were considered in evaluating potential technologies that can be implemented at the Site.

- The Site is abutted by apartments, a high school community center, and a health center.
- A large, artificial, mound of mixed soil and debris is located on the northeastern portion of the Site.
- A major sewer line runs beneath the Site.
- The property may be redeveloped in the near future requiring major earthwork and construction activities.

9.5 Identification and Screening of Remedial Technologies

The goal of the initial screening is to identify remedial action technologies that are reasonably likely to be feasible considering the OHM present, media contaminated, and site characteristics. Remedial action technologies are reasonably likely to be feasible according to the MCP if:

- The technologies to be employed are reasonably likely to achieve a Permanent or Temporary Solution.
- The individuals with the expertise needed to effectively implement available solutions would be available, regardless of arrangements for securing their services.

To identify potentially feasible remedial technologies, GEI reviewed the Federal Remediation Technologies Roundtable (FRTR) database, reviewed vendor information, and considered our experiences at similar sites. A description of each primary technology considered for remediation is in Tables 9 and 10. The rationale for either retaining or eliminating a technology from further consideration is in Table 11.

The following are identified as the primary technologies/approaches that could be feasible in attaining a Temporary or Permanent Solution based on our initial screening of remedial technologies (Table 11).

- Institutional Controls
- Capping
- Excavation and off-site disposal
- Excavation and on-site disposal
- Vapor mitigation system

Several treatment options (including thermal treatment, biological treatments, chemical oxidation, monitored natural evaluation, phytoremediation, soil vapor extraction, soil washing, and solvent extraction) were eliminated from further consideration primarily due to the limited effectiveness and reliability of these technologies for metals. Some of these treatment options were also eliminated due to the heterogeneity of the soil and conditions at the Site such as the presence of utilities.

9.6 Description of Remedial Technologies Retained for Detailed Evaluation

9.6.1 Institutional Controls

Institutional controls are restrictions imposed on access to property or on the uses of a property, including natural resources and structures. Legal instruments, such as an AUL, impose such restrictions. Institutional controls may be used for environmental or health protection concerns, for example, prohibiting residential use, maintaining a cap, and specifying health and safety requirements during excavation and soil management. Under the MCP, a remedy using containment or isolation technologies (such as a cap) would require institutional controls.

The implementation of institutional controls would allow contaminated soil to remain in place. However, the exposure pathways to human or environmental receptors would be restricted. This alternative would create no additional risks to the community, workers, or the environment. Institutional controls are cost-effective, easily implemented, and may be used effectively in conjunction with other technologies. Long-term monitoring may be combined with institutional controls to assess the natural degradation and attenuation of contaminants.

9.6.2 Capping

Capping minimizes or eliminates the direct dermal contact, ingestion, and fugitive air emissions exposure risks by limiting the accessibility to the contaminated soil. Capping is likely to consist of placement of a physical barrier, such as a geotextile fabric and clean soil. Warning tape, with printed text such as "Warning: Contaminated Soil – Do Not Excavate," or a physical barrier such as a geogrid may be installed beneath the cap to prevent inadvertent excavation. This warning barrier would provide clear notice that excavation at the Site shall not be conducted by workers that are not familiar with health and safety controls and soil management procedures as specified by the AUL.

A more robust cap could be constructed to satisfy the requirements for an Engineered Barrier since the EPC for the lead hot spot exceeds the Upper Concentration Limits. The Engineered Barrier would include the necessary layers.

During the period of construction, there would be some short-term risk posed by potential dermal contact and potential migration of contaminants via storm water runoff. These short-term risks would be managed by requiring the contractor to implement and maintain the appropriate control measures.

The cap would require periodic maintenance to maintain its integrity. An engineered barrier would require a Financial Assurance Mechanism.

9.6.3 Excavation and a Combination of Off-Site and On-Site Disposal

Excavation and a combination of off-site disposal and on-site disposal would reduce or eliminate Site risks by removing contaminant mass. Therefore, excavation can potentially meet all remedial objectives for the Site.

The process would require the following key elements:

- Excavation of contaminated soil.
- Off-site disposal of contaminated soil.
- Reuse of excavated soil.
- Backfilling and restoration of excavation areas.

The removal of contaminated soil would be performed using standard excavation equipment. Emissions of fugitive dust, volatile compounds, and odors would require control measures during excavation. Some excavation dewatering may be expected because the contaminants are in fill which extends below the water table.

Excavated soil would be disposed of off-site in a secure landfill or other suitable location. Some excavated soil could be reused on site.

9.6.4 Vapor Mitigation System

Based on the CVOC concentrations in groundwater, vapor intrusion is a potential exposure pathway to future occupants of any future buildings. If a building is constructed at the Site, there is a need for a vapor mitigation system to address the potential for vapor intrusion into the building. A vapor mitigation system may include sub-slab venting and a vapor barrier, or the building waterproofing (if installed) may be a suitable alternative. If the vapor mitigation system includes sub-slab venting and a vapor barrier, the system will likely function as a passive system, but would have the potential to be retrofitted with a blower to operate as an active system.

9.7 Development of Remedial Action Alternatives (RAAs)

Based on our initial screening of remedial technologies identified in Section 9.4, we combined the retained technologies to develop the following RAAs:

- RAA 1: Site Maintenance
- RAA 2: Hot Spot Excavation, Capping, and Institutional Controls
- RAA 3: Excavation, Disposal, and Vapor Mitigation System

A summary of the RAAs is presented in Table 12. A description of each RAA is presented below.

9.7.1 RAA1: Site Maintenance

RAA1 is Site Maintenance along with semi-annual inspections of the Site to document that conditions have not changed.

Site Maintenance is applicable, and the Site is eligible for a Temporary Solution, as per 310 CMR 40.1050, because:

- No Substantial Hazard exists (refer to Section 8.10)
- The source of contamination has been characterized and is not a threat for migration, and
- A Phase III Evaluation has been completed.

A Temporary Solution applies to sites where response actions to achieve a Permanent Solution are feasible and are to be conducted. Remediation to achieve a Permanent Solution would be incorporated into future development plans for the Site.

9.7.2 RAA2: Hot Spot Excavation, Capping, and Institutional Controls

RAA2 is:

- Removal of surface debris and vegetation.
- Removal of pavement (in poor condition) on eastern portion of the Site
- Excavation of lead hot spot.
- Disposal of contaminated soil in landfill.
- Grading of the Site to facilitate drainage.
- Installation of a geotextile filter fabric to prevent soil from migrating to the surface.
- Installation of a marking layer (orange snow fence) and warning tape to prevent unwanted excavation activities.

- Placement of 24 inches of gravel borrow.
- Placement of 12 inches of topsoil and finishing with hydroseeding.
- Implementation of an AUL.

The purpose of excavation is to remove the lead spot from the Site to eliminate exposure pathways and avoid the need for an Engineered Barrier. The purpose of the cap is to isolate contaminants to eliminate exposure pathways. This alternative will result in a Permanent Solution with Conditions.

RAA2 would include retaining the paved parking lots on the western portion of the Site.

9.7.3 RAA3: Excavation, Disposal, and Vapor Mitigation System

RAA3 is:

- Excavation of contaminated soil across the Site, including the lead hot spot.
- Disposal of contaminated soil in landfill(s).
- Installation of vapor mitigation system (after building construction).
- Implementation of an AUL.

The purpose of excavation is to remove contaminant mass from the Site to eliminate exposure pathways. This alternative would be implemented in conjunction with a future redevelopment of the Site where soil excavation is necessary for building construction and a vapor mitigation system would be installed. This alternative will likely result in a Permanent Solution with Conditions to maintain the vapor mitigation system.

RAA3 assumes the BPDA has a clear plan for future use of the Site to incorporate a potential future remediation of the Site into their development plans.

9.8 Evaluation of Remedial Action Alternatives

A comparative, qualitative evaluation of the RAAs was performed in accordance with the following detailed evaluation criteria specified in 310 CMR 40.0858:

- Effectiveness in achieving a Permanent or Temporary Solution
- Short-term and long-term reliability
- Difficulty in implementation
- Cost
- Risk
- Benefits

- Timeliness
- Effect on non-pecuniary interests

The detailed evaluation of the alternatives is presented in Table 13. The evaluation consists of ranking the alternatives against the eight evaluation criteria required by 310 CMR 40.0858. As shown in Table 13, the overall scores for the retained alternatives are as follows (a lower score is preferred):

Remedial Action Alternative	Score
RAA1: Site Maintenance	14
RAA2: Hot Spot Excavation, Capping, and Institutional Controls	15
RAA3: Excavation, Disposal, and Vapor Mitigation System	16

A comparison of the RAAs for each of the eight criteria, based on the evaluation from Table 13, is summarized below:

9.8.1 Effectiveness

RAA2 and RAA3 are more effective than RAA1 because they result in containment or removal of contamination and they both result in a Permanent Solution. Regarding soil, RAA2 is less effective than RAA3 because, although it attains a Permanent Solution, the contamination remains at the Site and so would be restricted with an AUL. RAA3 would also require an AUL to maintain the vapor mitigation system. RAA1 is the least effective because it does not reduce contaminant mass at the Site and results in a Temporary Solution.

9.8.2 Short-Term and Long-Term Reliability

All RAAs are expected to be reliable and successful. RAA1 and RAA2 would require site inspections to verify that conditions at the Site have remained unchanged, and RAA3 would require maintenance and monitoring due to the vapor mitigation system. There is some uncertainty for whether the vapor mitigation system can operate passively.

9.8.3 Implementability

RAA1 is the easiest to implement because it would maintain existing conditions to achieve a Temporary Solution and is fully compatible with current site use. The remaining RAAs would be more difficult to implement. RAA3 requires Property redevelopment plans and a designated developer, neither of which are currently identified.

9.8.4 Costs

RAA1 is the most cost-effective and costs increasing with each successive RAA, with RAA3 having the highest relative cost. RAA1 requires the least consumption of energy resources, where as RAA2 and RAA3 would both result in moderate (RAA2) or high (RAA3) energy consumption during the intermediate period of construction due to on-site equipment use and trucking activities.

9.8.5 Risks

All RAAs are approximately equal in risk with the minor short-term risks posed by construction operations (for RAA3) offset by the risk of the contamination left in place (for RAA1 and RAA2).

9.8.6 Benefits

RAA3 have more favorable benefits because this alternative would reduce the contamination and provide for the beneficial reuse of the Site. However, RAA1 and RAA2 are fully compatible with current site use.

9.8.7 Timeliness

All RAAs are expected to eliminate any uncontrolled sources. RAA2 and RAA3 are timelier to contain or reduce contamination at the Site and achieve a condition of No Significant Risk. RAA1 would not achieve a condition of No Significant Risk but would achieve a condition of No Substantial Hazard.

9.8.8 Effect on Non-Pecuniary Interests

RAA1 is more favorable in the short-term because there would be no disruption to the community. RAA2 and RAA3 would cause some disruption in the short-term. RAA3 is more favorable over the long-term because the result of the remediation would be an improvement to the area.

9.9 Selected Remedial Action Alternative

RAA1 is the recommended remedy for the Site because:

- RAA1 will achieve a Temporary Solution and is more cost-effective than other RAAs that could potentially achieve a Permanent Solution.
- RAA1 is most compatible with both current operations as well as future redevelopment plans for the Site which are possible but not likely in the near term.

By selecting RAA1, the BPDA can incorporate remediation into future Site development plans.

The selection of a Temporary Solution is appropriate for the Site based on the following requirements of the MCP [310 CMR 40.1050]:

- No Substantial Hazard exists (refer to Section 8.10)
- The source of contamination been characterized and is not a threat for migration.
- A Phase III evaluation of remedial alternatives has been completed.

10. Representativeness Evaluation and Data Usability Assessment

The purpose of a Representativeness Evaluation and Data Usability Assessment (REDUA) is to evaluate the extent to which a data set meets specific site characterization and data usability objectives. The Data Usability Assessment must document that the data relied upon are scientifically valid and defensible, and of a sufficient level of precision, accuracy, and completeness to support the Temporary Solution. The Representativeness Evaluation must document the adequacy of the spatial and temporal data sets used to support the Temporary Solution. This REDUA also meets the requirements of MassDEP's Policy No. "WSC-07-350: MCP Representative Evaluations and Data Usability Assessments," dated September 2007 (MassDEP 2007).

10.1 Conceptual Site Model

The CSM developed for the Site is in Section 1.6.

10.2 Field and Screening Data

W&S and GEI collected field and screening data during sample collection activities associated with subsurface investigations. Field screening of soil samples was observing visual and olfactory conditions. In addition, GEI measured total VOCs using a PID and the MassDEP jar-headspace method. GEI documented these conditions in the field at the time of sample collection. Results of these field and screening data appeared generally consistent with the laboratory data used to support the respective Risk Characterizations and therefore this Temporary Solution Statement.

10.2.1 Sampling Rationale

W&S and GEI generally selected soil samples for laboratory analyses either based on visual and olfactory observations, field screening measurements, or available information regarding historical Site use. In accordance with MassDEP Policy #WSC-07-350 "MCP Representativeness Evaluations and Data Usability Assessments," it is GEI's opinion that soil sampling and laboratory analyses efforts were sufficient to delineate the disposal site boundary, identify background, calculate EPCs, assess "Hot Spots," identify exposure pathways and receptors, and demonstrate source elimination and control.

10.2.2 Sample Number, Spatial Distribution, and Sample Handling

The locations of all soil samples and monitoring wells are shown in Figs. 2 and 4. Samples collected, sample dates, sample depth intervals, sample testing methods, and chemical testing results are in Tables 4 and 5 (W&S) or in Tables 5 and 6 (GEI). Given the size of the Site and the nature of contamination, it is our opinion that the available data are adequate to define the Site and to be representative of Site conditions at the time of sampling.

Sample collection, preservation, and handling techniques were appropriate, as further described in Section 10.3.2.

10.2.3 Temporal Distribution

Based on the nature and extent of contamination present in soil, temporal sampling is not warranted for the Site.

Groundwater samples were collected from monitoring wells in 2017. Although seasonal effects were not evaluated, several monitoring wells contain contaminants above cleanup standards, requiring future remedial activities.

10.2.4 Data Completeness

The spatial distribution of samples was adequate to meet the data quality objectives. Data quality objectives included evaluating whether QA/QC targets were met by the laboratory (i.e., by using CAM protocols or comparable protocols prior to CAM). Comprehensive sets of field and analytical data for this Site are available and consist of data with no data gaps related to sample distribution or data quality. We did not identify data gaps related to sample distribution or data quality; therefore, the data set is considered complete.

10.2.5 Data Inconsistency and Uncertainty

GEI did not encounter or disregard any inconsistencies or uncertainties (e.g., Site assessment data inconsistent with historical information, field screening data/observations inconsistent with analytical data, use of data with analytical deficiencies) in the data used to support the Temporary Solution Statement.

10.2.6 Data Considered Unrepresentative

No data was considered unrepresentative of Site conditions.

10.3 Data Usability Assessment

The Data Usability Assessment has an analytical and a field component.

10.3.1 Analytical Data Usability Criteria

Soil and groundwater chemical testing data collected by W&S and used to support this Temporary Solution Statement were generated prior to the MassDEP Compendium of Analytical Methods (CAM) and the promulgation of associated MCP Wave 2 revisions (310 CMR 40.1056). However, these data included laboratory quality assurance and quality control parameters, as described in the 2002 W&S Phase II CSA, that are consistent with those identified in the MassDEP CAM. These data were collected in accordance with accepted geohydrological practices, were consistent with field observations, were representative of the conditions for the area of concern from which they were collected and are of a level of precision and accuracy necessary for the preparation of this Temporary Solution Statement.

GEI's soil and groundwater chemical testing data used to support this Temporary Solution Statement were generated pursuant to the MassDEP CAM and 310 CMR 40.1056 and meet the criteria for "Presumptive Certainty" as identified in WSC #10-320: "Compendium of Quality Assurance and Quality Control Requirements and Performance Standards for Selected Analytical Methods," dated July 1, 2010 (MassDEP, 2010). We reviewed data generated during our sampling efforts internally according to our Standard Operating Procedure and using the MassDEP Policy WSC #10-320 (MassDEP, 2010) and Region I, Environmental Protection Agency-Northeast (EPA-NE) "Data Validation Functional Guidelines for Evaluating Environmental Analyses," December 1996 Revision (EPA, 1996) as guidance. The internal data review included an assessment of the data reported by the laboratory for extraction efficiency (surrogate recovery), analytical accuracy (laboratory control spikes, etc.), and analytical precision (laboratory duplicates, laboratory control spike duplicates, field duplicates, etc.). Based on the internal GEI data review, we have identified the following:

- Duplicate precision was outside control limits for four soil samples collected in February 2017 for EPH fractions or pesticides, and the laboratory report indicates that the results are estimated. The EPH fractions were not detected above laboratory reporting limits (two orders of magnitude below the Method 1 cleanup standards) and pesticides were detected but at two to four orders of magnitude below the Method 1 cleanup standards.
- Matrix spike recovery were outside control limits for one groundwater sample
 collected in March 2017 for total cyanide, and the laboratory report indicates that the
 result is likely biased on the low side. The cyanide was not detected above the
 laboratory reporting limit (half an order of magnitude below the Method 1 cleanup
 standard).

These data are consistent with field observations, are representative of conditions that exist at the Site, and are of a level of precision and accuracy commensurate with the preparation of this Temporary Solution Statement.

10.3.2 Field Data Usability Criteria

MassDEP Policy WSC #07-350 (MassDEP, 2007) requires an evaluation documenting that parties provided the laboratory with a sufficient volume of sample, in an appropriate container, properly preserved and within a time that will not compromise analytical holding times for the analytes specified.

Laboratory analytical reports, including Chain-of-Custody forms for environmental samples collected from the Site by W&S were provided in previous regulatory reports submitted to MassDEP and by GEI are provided in the current Report. The laboratory analytical reports and Chain-of-Custody forms document that the proper sampling containers/preservatives were used, that samples were received intact and at an acceptable temperature, and that samples were received within acceptable holding times.

Accordingly, the analytical data used to support this Temporary Solution Statement meet the field requirements.

10.3.3 Rejected Data

No data associated were rejected.

10.3.4 Conclusions

In summary, the data set used to support this Temporary Solution Statement is scientifically valid and defensible and is of sufficient accuracy, precision and completeness. In addition, the data set is representative of the spatial distribution of sampling points.

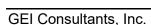
11. Temporary Solution Statement

A condition of No Substantial Hazard exists at the Site, and the Site is eligible for a Temporary Solution without the implementation of an AUL. A Temporary Solution is appropriate for the Site because response actions to achieve a Permanent Solution are feasible and are to be conducted in the future, but a Temporary Solution is currently more cost effective.

11.1 Temporary Solution Performance Standard

In accordance with 310 CMR 40.1003, a Temporary Solution is appropriate based on the following Site conditions:

- **Source Elimination or Control.** There are no unpermitted releases of OHM at the Site, and the sources of OHM at the Site are controlled.
- Migration Control. VOCs have been detected above Method 1 Standards in groundwater. Sources of groundwater contamination include historic industrial use of the Site, and possible upgradient sources of contamination. The highest VOC concentrations in groundwater have been measured at the western, upgradient, edge of the Site (wells B(MW)306 and B(MW)308). VOC concentrations in groundwater generally decrease in downgradient wells in the central and eastern portions of the Site. Accordingly, there is limited potential for off-site, downgradient migration of residual VOC contamination.
- NAPL. NAPL is not nor has it been visibly present at the Site. No detected concentrations of COCs would indicate the presence of NAPL.


11.2 Temporary Solution Statement

Based on the information presented in this report and consistent with the criteria listed in 310 CMR 40.1050[1](e)(2), a Temporary Solution Statement is appropriate for the Site, but a Permanent Solution is feasible in the future.

11.3 Definitive and Enterprising Steps Taken to Achieve a Permanent Solution (310 CMR 40.1050[5])

The Temporary Solution will remain in place while additional steps are implemented to achieve a Permanent Solution. The definitive and enterprising steps toward achieving a Permanent Solution at the Site are:

- Perform semi-annual inspections of the Site to document that no changes to Site conditions and no unauthorized excavations have occurred.
- Evaluate the feasibility of removing the large, artificial mound of soil on the northeastern portion of the Site and re-grade the Site to make it less susceptible to illegal dumping. While this will not result in a condition of No Significant Risk and a Permanent Solution, it will position the Site to be more attractive for future development plans and ultimately a Permanent Solution. If performed, this soil management work would occur under a RAM Plan.
- Within five years, the BPDA plans to make a decision on the redevelopment plans for the Property and Site. After the decision is made a Phase III RAP Addendum and Phase IV RIP, or a RAM Plan will be submitted to implement a remedy that will result in a Permanent Solution.

12. Limitations

This report was prepared for the use of BPDA, exclusively. Our conclusions are based on the information reported in this document. Additional information not available to GEI at the time this report was prepared may result in a modification of the findings of this investigation. This report has been prepared in accordance with generally accepted engineering and hydrogeological practices. No warranty, expressed or implied, is made.

13. References

- EDR (2016). The EDR Radius Map[™] Report with Geocheck[®], Tremont St./Whittier St., Boston, MA 02120 Inquiry Number 4513182.2s, Environmental Data Resources Inc., Shelton, Connecticut, January 14, 2016.
- EDR (2016). The EDR Aerial Photo Decade Package, Tremont St./Whittier St., Boston, MA 02120 Inquiry Number 4513182.5, Environmental Data Resources Inc., Shelton, Connecticut, January 14, 2016.
- EDR (2016). EDR Certified Sanborn® Map Report, Tremont St./ Whittier St., Boston, MA 02120 Inquiry Number 4513182.3, Environmental Data Resources Inc., Shelton, Connecticut, January 14, 2016.
- MassDEP, 2014. The Massachusetts Contingency Plan (MCP), 310 CMR 40.0000. April 25, 2014.
- Massachusetts Office of Geographic and Environmental Information, 2020. "Massachusetts Geographic Information System (MassGIS) Natural Resources Map." July 20, 2020.
- Weston & Sampson Engineers, Inc. 1998. "Phase I Initial Investigation/Tier Classification, Parcel P-3, RTN 3-15009," April 8, 1998.
- Weston & Sampson Engineers, Inc., 2002. "Phase II Comprehensive Site Assessment and Phase III Remedial Action Plan, Boston Redevelopment Authority, Parcel P-3, Roxbury, Massachusetts, Release Tracking Number (RTN) 3-15009," April 19, 2002.

Tables

Table 1. Summary of Property Information
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont Street & Whittier Streets
Boston, Massachusetts

Subject Property		Abutti	ng Property	
Address/ Parcel ID	Direction	Address	Parcel ID	Owner
	Eastern Abutter	1176-1158 Tremont Street	0902643000	Boston Housing Authority
	Northern Abutter	1175 Tremont Street	0902704050	Northeastern University
	Northern Abutter	1 Schroeder Place	0902771010	City of Boston
		1290 Tremont Street	0902980081	Bay State Physical Therapy
		1290 R Tremont Street	0902951000	Boston Edison Company
	Western Abutter	Linden Park Street	0902951025	Boston Redevelopment Authority
Tremont St /		Prentiss Street	0902819000	Mass Bay Transportation Authority
902980100		Tremont Street	0902980050	Commonwealth of Massachusetts
		Pawning Street	0902667000	
		Cabot Street	0902668000	
		Downing Street	0902678000	Boston Redevelopment Authority
	Southern Abutter	137 Vernon Street	0902676000	
		Vernon Street	0902677000	
		129 Vernon Street	0902674000	Good Shepherd Church of God
		55 Malcolm X Boulevard	0902980000	City of Boston

Notes:

1. Information obtained from the City of Boston Assessor's Office on-line database on July 20, 2020.

Table 2. Summary of Past Chemical Storage
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont Street & Whittier Streets
Boston, Massachusetts

Subject Property	Former Address within Property	Name of Registrant	Type of Fuel/Quantity	Number of Tanks	Date
	20 Whittier Street	City of Boston Health Unit	3,000-gallon fuel oil	1	6/30/1996
	1176 Tremont Street	Estate of William B Rice	1,500-gallon gasoline	1	12/24/2019
	1170 Hemont Street	Henry D. Mac Ritchie	acetylene and oxygen	1	10/9/1933
	1178-1180 Tremont Street	Greenlow Motor Parts	550-gallon fuel oil	1	10/23/1961
	1184 Tremont Street	Connolly's Café	Cert. of Occupancy	1	1/4/1983
	1186 Tremont Street	Paul George Realty	550-gallon fuel oil	1	NA
Tremont St /	1100 Hemont Street	Hub Refrigeration Co.	550-gallon fuel oil	1	3/16/1965
902980100	36-40 Culvert / Whittier Street	NA	Coal Storage	2	1888-1919
			Coal Storage	7	1888-1919
	84-130 Hampshire Street	Roxbury Carpet Company	20,000 gallon	1	1919-1964
			4,500-gallon pressurized	3	1919-1964
			Coal Storage	2	1919-1950
	30 Simmons Street	A.I. Tower Company	Oil tanks	5	1919-1964
	30 Similions Street	A.J. Tower Company	500-gallon gasoline	1	1919-1950
			4,500-gallon pressurized	2	1919-1964

Notes:

- 1. Information obtained from the Sanborn Fire Insurance Maps (Sanborn Maps) provided by Environmental Data Resources (EDR) reports for the property at Tremont St. & Whittier St. on January 14, 2016.
- 2. Information obtained from the Phase I Initial Investigation/Tier Classification Parcel P-3, Tremont / Whittier Street completed on April 1998 by Weston & Sampson Engineers, Inc.

Table 3. Groundwater Elevations and Well Construction
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont Street & Whittier Streets
Boston, Massachusetts

Well	Screened Strata	Screen Interval (ft. below ground surface)	Elevation Top of Riser Pipe (ft)	Elevation Ground Surface (ft)	Depth to Groundwater 03/05/17 (ft)	Elevation of Groundwater 03/05/17 (ft)
B(MW)301	Overburden	11.0 - 21.0	100.93	98.60	15.45	85.48
B(MW)302	Overburden	16.0 - 26.0	94.08	94.37	8.42	85.66
B(MW)303	Overburden	18.0 - 28.0	97.53	97.85	11.98	85.55
B(MW)305	Overburden	11.0 - 21.0	97.61	97.96	11.99	85.62
B(MW)306	Overburden	10.0 - 20.0	98.65	98.89	12.83	85.82
B(MW)307	Overburden	11.0 - 21.0	97.50	97.78	12.14	85.36
B(MW)308	Overburden	11.0 - 21.0	97.73	NM	12.16	85.57
B205(OW)	Overburden	28.9 - 38.9	102.96	100.15	17.44	85.52

General Notes:

- 1. NM = Not Measured.
- 2. ft. = feet.
- 3. Groundwater elevations are based on assumed benchmark elevation of 100.00 feet at top of fire hydrant near B(MW)305.

				Sa	Sample ID: Sample Date: ample Depth (ft) Sampled By:	WS-1 12/3/1996 8.5-10.5 W&S	WS-2 12/3/1996 10-12 W&S	WS-3 12/3/1996 15-17 W&S	WS-4 12/3/1996 10-12 W&S	WS-5 12/4/1996 10-12 W&S	WS-6 12/4/1996 10-12 W&S	WS-7 12/4/1996 10-12 W&S	WS-8 12/4/1996 17-17.5 W&S	WS-9 12/5/1996 18.5-19 W&S	WS-10 12/5/1996 17.5-18 W&S	WS-11 12/5/1996 20-22 W&S	WS-12 12/5/1996 11.5-12 W&S	B101-S1 Mar-97 1-2.5 W&S	B101-S2 Mar-97 4.5-6.5 W&S	B101-S3 Mar-97 7-9 W&S	B102-S1 Mar-97 1-3 W&S	B102-S2 Mar-97 4-6 W&S	B102-S3 Mar-97 7-9 W&S	B103-S1 Mar-97 1-3 W&S	B103-S2 Mar-97 4-6 W&S
Analyte	Method	Units	MCP RCS-1	Method 1 S-1/GW-2	Method 1 S-1/GW-3																				
Volatile Organics Compounds (VOCs)	8260C	mg/kg																NT	NT	NT	NT	NT	NT	NT	NT
Benzene			2	40	40	<0.025	<0.070	< 0.047	<0.070	<0.027	<0.024	<0.027	< 0.03	0.087	< 0.027	< 0.027	<0.034								
Trichloroethene			0.3	0.3	30	<0.025	<0.070	< 0.047	<0.070	<0.027	<0.024	<0.027	< 0.03	< 0.026	< 0.027	< 0.027	<0.034								
Xylenes, Total			100 NS	100 NS	500 NS	<0.025 <0.025	<0.070 <0.070	< 0.047 < 0.047	<0.070 <0.070	<0.027 <0.027	<0.024 <0.024	<0.027 <0.027	< 0.03 < 0.03	< 0.026 < 0.026	< 0.027 < 0.027	< 0.027 < 0.027	0.032 0.47								
n-Butylbenzene sec-Butylbenzene			NS	NS NS	NS NS	<0.025	<0.070	< 0.047	<0.070	<0.027	<0.024	<0.027	< 0.03	< 0.026	< 0.027	< 0.027	0.47								
tert-Butylbenzene			100	NS	NS	<0.025	<0.070	< 0.047	<0.070	<0.027	<0.024	<0.027	< 0.03	< 0.026	< 0.027	< 0.027	0.036								
Isopropylbenzene			1000	NS	NS	<0.025	<0.070	< 0.047	<0.070	<0.027	<0.024	<0.027	< 0.03	< 0.026	< 0.027	< 0.027	0.33								
Naphthalene			4	20	500	< 0.025	< 0.070	< 0.047	< 0.070	< 0.027	< 0.024	< 0.027	0.15	< 0.026	0.15	< 0.027	0.16								
n-Propylbenzene			100	NS	NS	<0.025	<0.070	< 0.047	<0.070	<0.027	<0.024	<0.027	< 0.03	< 0.026	< 0.027	< 0.027	0.76								
1,2,4-Trimethylbenzene			1000	NS	NS	<0.025	<0.070	< 0.047	<0.070	<0.027	<0.024	<0.027	< 0.03	< 0.026	< 0.027	< 0.027	0.07			L					
Volatile Petroleum Hydrocarbons (VPH)	VPH-04-1.1	mg/kg	400	100	400	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C9-C10 Aromatics C5-C8 Aliphatics, Adjusted			100 100	100 100	100 100																				
C9-C12 Aliphatics, Adjusted			1000	1000	1000																				
Semivolatile Organic Compounds (SVOCs)	8270D	mg/kg	1000	1000	.000	NT			NT	NT	NT	NT			NT	1									
Acenaphthene		· · ·	4	1000	1000		< 0.057	< 0.025					2	< 0.059		< 0.028	3.4	0.3	0.56	< 0.030	0.8	0.41	0.47	0.2	0.45
Acenaphthylene			1	600	10		< 0.057	< 0.025					12	0.18	_	< 0.028	0.8	< 0.14	0.22	< 0.030	< 0.28	0.96	0.14	< 0.055	< 0.055
Anthracene		1	1000	1000	1000		< 0.057	< 0.025					21	0.44		< 0.028	2.7	0.67	1.3	< 0.030	2.1	0.87	1.2	0.4	0.81
Benzo(a)anthracene		1	7	7	7		< 0.057	< 0.025					38	0.63		< 0.028	1.5	1.8	2.8	< 0.030	4.3	1.9	2.5	1	1.8
Benzo(a)pyrene		1	7	2	2	l	< 0.057	< 0.025		-	-		39 34	0.61		< 0.028	1.4	1.8	2.6	< 0.030	4	1.8	2.3	0.98	1.7
Benzo(b)fluoranthene Benzo(g,h,i)perylene		1	1000	7 1000	1000	 	< 0.057 < 0.11	< 0.025 < 0.050					13	0.56 0.19		< 0.028 < 0.056	1.2 < 0.072	1.3	1.7 2.2	< 0.030 < 0.030	2.9	1.2	1.6 1.4	0.65 0.64	1.2 0.97
Benzo(k)fluoranthene			70	70	70		< 0.057	< 0.025					35	0.19		< 0.028	1.3	1.5	1.9	< 0.030	2.9	1.3	1.6	0.68	1.3
Chrysene			70	70	70		< 0.057	< 0.025					44	0.69		< 0.028	1.7	1.9	2.9	< 0.030	4.3	1.9	2.4	1.1	1.8
Dibenzo(a,h)anthracene			0.7	0.7	0.7		< 0.11	< 0.050					4.7	< 0.012		< 0.056	< 0.072	0.48	0.75	< 0.030	1.1	0.5	0.57	0.25	0.4
Dibenzofuran			100	NS	NS		< 0.057	< 0.025					NT	NT		< 0.028	NT	NT	NT	NT	NT	NT	NT	NT	NT
Di-n-butylphthalate			50	NS	NS		< 0.057	< 0.025					NT	NT		< 0.028	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluoranthene			1000	1000	1000		< 0.057	< 0.025					92	1.6		< 0.028	4.1	3.8	5.7	0.042	9.6	5.6	7.4	2	5.2
Fluorene			1000	1000	1000		< 0.057	< 0.025					11	0.2		< 0.028	3.9	0.24	0.64	< 0.030	0.82	0.42	0.51	0.16	0.35
Indeno(1,2,3-cd)pyrene			7	7	7		< 0.11	< 0.050					14	0.2		< 0.056	< 0.072	1.3	1.8	< 0.030	3.2	1.3	1.4	0.62	0.98
2-Methylnaphthalene Naphthalene		-	0.7	80 20	300 500		< 0.057 < 0.057	< 0.025 < 0.025					4.3 8.2	0.06		< 0.028 < 0.028	23	< 0.14 < 0.14	0.32 0.28	< 0.030 < 0.030	< 0.28 0.55	0.15 0.28	0.16 0.25	< 0.055 0.061	0.12 0.19
Phenanthrene			10	500	500		< 0.057	< 0.025					93	1.5		< 0.028	11.1	3.2	5.4	0.06	7.9	4.6	6	1.8	4.6
Pyrene			1000	1000	1000		< 0.057	< 0.025					82	1.4	_	< 0.028	4.1	3.8	5.8	0.038	8.7	4.3	5.8	2.1	4.2
Extractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	mg/kg				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C9-C18 Aliphatics			1000	1000	1000																				
C11-C22 Aromatics, Adjusted			1000	1000	1000																				
C19-C36 Aliphatics			3000	3000	3000																				
Acenaphthene			4	1000	1000																				
Acenaphthylene			1000	600 1000	10 1000																				
Anthracene Benzo(a)anthracene			7	7	7																				
Benzo(a)pyrene			2	2	2																				
Benzo(b)fluoranthene			7	7	7																				
Benzo(g,h,i)perylene			1000	1000	1000																				
Benzo(k)fluoranthene			70	70	70																				
Chrysene			70	70	70																				
Dibenzo(a,h)anthracene			0.7	0.7	0.7																				
Fluoranthene		1	1000	1000	1000	l	l							-						<u> </u>					
Fluorene		1	1000 7	1000 7	1000	 															1	1			
Indeno(1,2,3-cd)Pyrene 2-Methylnaphthalene		1	0.7	80	300	l	 			1				1	1	1				 	1	1		 	
Naphthalene			4	20	500									1											
Phenanthrene		1	10	500	500									1											
Pyrene			1000	1000	1000																				
Chlorinated Herbicides	8151A	mg/kg	NS	NS	NS	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Organochlorine Pesticides	8081B	mg/kg				NT	NT	NT	NT	NT	NT	NT					NT	NT	NT	NT	NT	NT	NT	NT	NT
Endosulfan II		1	0.5	300	1								NT	NT	NT	NT	ļ				ļ	ļ			
Total Petroleum Hydrocarbons (TPH)		mg/kg	4000	4655	4555	150		4.00					500	150	40=0		0/22	500	252	No	440	222	500	400	070
TPH Rehishlaringted Biphonyla (BCRs)	8082A	mc#	1000	1000	1000	< 52 NT	< 110 NT	< 66 NT	< 110 NT	< 54 NT	< 45 NT	< 51 NT	500	< 56	1070	< 47	8400 NT	500 NT	350 NT	ND NT	440 NT	380 NT	560 NT	160 NT	270 NT
Polychlorinated Biphenyls (PCBs) PCBs, Total	0U02A	mg/kg	1	1	1	141	INI	INI	141	INI	INI	141	NT	NT	NT	NT	141	141	INI	191	INI	INI	INI	INI	INI
Total Metals		mg/kg	- 1	-		NT	 		NT	NT	NT	NT	181	1 1 1	INI	INI				 	 	 			
Antimony, Total	6010C	g/kg	20	20	20	.,,	NT	NT	.,,,			····	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Arsenic, Total	6010C	1	20	20	20		7.1	7.5		1	1	l	7.3	7.8	NT	8.1	4.4	NT	NT	NT	NT	NT	NT	NT	NT
Barium, Total	6010C	1	1000	1000	1000		62	57					240	160	NT	53	72	NT	NT	NT	NT	NT	NT	NT	NT
Beryllium, Total	6010C		90	90	90		NT	NT					NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6010C		70	70	70		< 5.5	< 4.2	7				4.5	< 2.7	NT	< 2.4	< 3.3	NT	NT	NT	NT	NT	NT	NT	NT
Cadmium, Total	6010C		100	100	100		54	84					23	14	NT	11	27	NT	NT	NT	NT	NT	NT	NT	NT
Cadmium, Total Chromium, Total		1	200	200	200		13	9.6					520	980	NT	51	120	210	360	46	200	150	200	170	110
Cadmium, Total Chromium, Total Lead, Total	6010C						< 0.033	0.059	l	1	1	I	3.07	0.204	NT	< 0.015	< 0.022	NT	NT	NT	NT	NT	NIT		NT
Cadmium, Total Chromium, Total Lead, Total Mercury, Total	7471B		20	20	20																		NT	NT	,
Cadmium, Total Chromium, Total Lead, Total Mercury, Total Nickel, Total	7471B 6010C		600	600	600		NT	NT					NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Cadmium, Total Chromium, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total	7471B 6010C 6010C		600 400	600 400	600 400		< 5.5	< 4.2					< 2.6	< 2.7	NT	< 2.4	< 3.3	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT
Cadmium, Total Chromium, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Silver, Total	7471B 6010C 6010C 6010C		600	600	600		< 5.5 < 5.2	< 4.2 < 4.1					< 2.6 < 2.8	< 2.7 < 2.6	NT NT	< 2.4 < 2.4	< 3.3 < 3.3	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT
Cadmium, Total Chromium, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total	7471B 6010C 6010C		600 400	600 400	600 400		< 5.5	< 4.2					< 2.6	< 2.7	NT	< 2.4	< 3.3	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT

- General Notes:

 1. In general, only analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
 2. <= less than reported detection limits.
 3. MCP = 310 CMR 40,0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.
 4. Method 1 Standards (e.g., S-1/GW-2) and UCLs, where identified, are cited from the MCP.
 6. ND = None detected above laboratory detection limit.
 7. mg/kg = milligrams per kilogram.
 8. Values in bold exceed Method 1 standards.

			1	s	Sample ID: Sample Date: ample Depth (ft) Sampled By:	B103-S3 Mar-97 7-9 W&S	B104-S1 Mar-97 1-3 W&S	B104-S2 Mar-97 4-6 W&S	B104-S3 Mar-97 7-9 W&S	B105-S1 Mar-97 1-3 W&S	B105-S2 Mar-97 4-6 W&S	B105-S3 Mar-97 7-9 W&S	B106-S1 Mar-97 1-3 W&S	B106-S2 Mar-97 4-6 W&S	B106-S3 Mar-97 7-9 W&S	B107-S1 Mar-97 1-3 W&S	B107-S2 Mar-97 4-6 W&S	B107-S3 Mar-97 7-9 W&S	B108-S1 Mar-97 1-3 W&S	B108-S2 Mar-97 4-6 W&S	B108-S3 Mar-97 7-9 W&S	B109-S1 Mar-97 1-3 W&S	B109-S2 Mar-97 4-6 W&S	B109-S3 Mar-97 7-9 W&S	B110-S1 Mar-97 1-3 W&S
				Method 1	Method 1																				
Analyte	Method		MCP RCS-1	S-1/GW-2	S-1/GW-3	NT	NIT	NIT	NIT	NIT	NIT	NIT	NT	NT	NIT	NIT	NT	NIT	NT	NIT	NIT	NIT	NT.	₩ NIT	NT
Volatile Organics Compounds (VOCs) Benzene	8260C	mg/kg	2	40	40	NT	NT	NT	NT	NT															
Trichloroethene			0.3	0.3	30																		 		
Xylenes, Total			100	100	500																		 		
n-Butylbenzene			NS	NS	NS																		1		
sec-Butylbenzene			NS	NS	NS																		1		Ì
tert-Butylbenzene			100	NS	NS																		,	1	
Isopropylbenzene			1000	NS	NS																				
Naphthalene			4	20	500																		1/		
n-Propylbenzene			100	NS	NS																		 	_	1
1,2,4-Trimethylbenzene	VPH-04-1.1	malka	1000	NS	NS	NT	NT	NT	NT	NT															
Volatile Petroleum Hydrocarbons (VPH) C9-C10 Aromatics	VPH-04-1.1	mg/kg	100	100	100	INI	INI	INI	INI	INI															
C5-C8 Aliphatics, Adjusted			100	100	100																		 		
C9-C12 Aliphatics, Adjusted			1000	1000	1000																		 		
Semivolatile Organic Compounds (SVOCs)	8270D	mg/kg	1000	1000	1000		1	1							1	1					1	1	 		
Acenaphthene	32.05	9,9	4	1000	1000	< 0.027	1	0.14	1.1	1.9	1.3	0.091	0.39	0.91	0.47	0.17	0.41	1	0.22	0.21	0.057	0.48	0.64	0.44	0.29
Acenaphthylene			1	600	10	< 0.027	0.24	0.041	0.24	0.35	< 0.28	< 0.055	0.11	0.16	0.11	< 0.058	< 0.11	0.12	< 0.058	0.09	< 0.055	0.088	0.083	0.092	0.04
Anthracene			1000	1000	1000	0.03	2	0.36	2.3	3.9	2.8	0.29	0.96	1.7	0.98	0.39	0.98	4.9	0.43	0.4	0.15	1.1	1.3	1	0.67
Benzo(a)anthracene			7	7	7	0.064	5.5	0.88	6	8.1	4.9	0.67	1.9	3.8	1.9	1.1	2.1	4.5	1.1	1.1	0.35	2	2.7	1.9	1.7
Benzo(a)pyrene			2	2	2	0.046	5.6	0.89	5.9	7.5	4.1	0.64	1.8	3.6	1.8	1	1.9	4.1	1.1	1.1	0.34	1.9	2.5	2	1.7
Benzo(b)fluoranthene			7	7	7	0.05	4.2	0.96	4.2	5.3	3.2	0.45	1.2	2	1.2	0.73	1.4	2.4	0.79	0.8	0.25	1.3	1.9	1.8	1.8
Benzo(g,h,i)perylene			1000	1000	1000	< 0.027	1.4	0.19	1.5	5.8	2.8	0.5	0.97	1.5	0.79	0.48	0.73	1.5	0.47	0.14	0.11	0.58	8.0	0.55	0.43
Benzo(k)fluoranthene			70	70	70	0.039	4.5	1	5	5.5	3.3	0.53	1.3	2.1	1.3	0.74	1.5	2.5	0.78	0.82	0.27	1.5	2.1	1.8	1.7
Chrysene			70	70	70	0.094	5.7	0.84	6.3	8.7	4.8	0.7	1.9	4	1.9	1.1	2.1	4.7	1.1	1.2	0.37	2	2.7	2	1.8
Dibenzo(a,h)anthracene			0.7	0.7	0.7	< 0.027 NT	0.65	0.078	0.67	2 NT	1	0.014	0.41	0.64	0.34	0.21	0.33	0.66	0.2 NT	0.19	< 0.055	0.29	0.4	0.25	0.21
Dibenzofuran			100	NS NC	NS	NT NT	NT NT	NT NT	NT NT	NT NT															
Di-n-butylphthalate Fluoranthene			50 1000	NS 1000	NS 1000	0.18	12	2	13	16	11	1.4	5.8	9.7	5.3	2.1	4.1	11	2.3	3.6	0.67	6	8	5.6	4.5
Fluorene		1	1000	1000	1000	< 0.027	1.1	0.15	1.1	1.9	1.5	0.11	0.41	0.82	0.44	0.14	0.38	0.88	0.18	0.22	< 0.055	0.48	0.64	0.43	0.26
Indeno(1,2,3-cd)pyrene			7	7	7	< 0.027	1.5	0.13	1.6	4.8	2.5	0.41	0.98	1.5	0.8	0.14	0.81	1.6	0.10	0.48	0.12	0.40	0.92	0.62	0.47
2-Methylnaphthalene			0.7	80	300	0.032	0.4	0.033	0.26	0.82	0.51	< 0.055	0.15	0.3	0.15	< 0.058	0.14	0.29	< 0.058	0.096	< 0.055	0.17	0.17	0.15	0.069
Naphthalene			4	20	500	0.048	0.7	0.051	0.61	1.6	1.1	0.071	0.25	0.56	0.27	0.085	0.2	0.4	0.07	0.19	< 0.055	0.28	0.29	0.32	0.11
Phenanthrene			10	500	500	0.19	9.6	1.2	12	15	11	1.2	5.1	6.9	4.6	1.7	4	9.7	1.8	3	0.6	5.4	6.7	4.9	2.4
Pyrene			1000	1000	1000	0.16	10	1.9	13	14	9.1	1.3	4.8	7.9	4.6	1.9	3.7	9	2	2.8	0.57	5	6.3	5.4	4.2
Extractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	mg/kg				NT	NT	NT	NT	NT															
C9-C18 Aliphatics			1000	1000	1000																		,	()	
C11-C22 Aromatics, Adjusted			1000	1000	1000																				
C19-C36 Aliphatics			3000	3000	3000																		1/		
Acenaphthene			4	1000	1000																		1/		
Acenaphthylene			1	600	10																		 		
Anthracene			1000 7	1000	1000																		 		
Benzo(a)anthracene			2	7	7																		ļ	\vdash	
Benzo(a)pyrene Benzo(b)fluoranthene			7	7	7																		 	\vdash	
Benzo(g,h,i)perylene		1	1000	1000	1000									1		1						1	 	\vdash	
Benzo(k)fluoranthene			70	70	70																		 	\vdash	
Chrysene			70	70	70																		†		1
Dibenzo(a,h)anthracene			0.7	0.7	0.7	1								1						1	1		ļ ,	$\overline{}$	
Fluoranthene		1	1000	1000	1000	1						- T	İ												
Fluorene			1000	1000	1000																		,		
Indeno(1,2,3-cd)Pyrene			7	7	7																				
2-Methylnaphthalene			0.7	80	300																	1	1	-	4
Naphthalene		1	4	20	500						ļ	ļ					ļ		ļ		ļ		 '	↓	
Phenanthrene		1	10	500	500																 	-	 '		
Pyrene Chloriested Harbisides	04544		1000	1000	1000	NIT	NIT.	NT	NIT	NIT.	hi -	bi=	N/T	NIT.	NIT.	N-T	NIT.	NIT.	NIT.	, i=	biT.	N-T	bit.	hi -	NIT.
Chlorinated Herbicides Organochlorine Pesticides	8151A	mg/kg	NS	NS	NS	NT NT	NT	NT	NT	NT NT	NT	NT	NT NT	NT NT	NT NT	NT NT	NT	NT	NT	NT NT	NT	NT NT	NT NT	NT NT	NT
Organochlorine Pesticides Endosulfan II	8081B	mg/kg	0.5	300	1	NT	NT	INI	NI	INI	NT	NT	INI	INI	NI	NI	NT	INI	NT	INI	NI	NT	NT	NT	INI
Total Petroleum Hydrocarbons (TPH)		ma/ka	V.5	300	-		1				1	1		1	1	1				-	+	l .	\vdash	 	
TPH TPH		mg/kg	1000	1000	1000	120	320	240	490	140	230	180	450	700	6700	140	2300	700	220	1600	110	230	330	170	170
Polychlorinated Biphenyls (PCBs)	8082A	mg/kg		1300	1000	NT	320	240	730	1,40	250	.00	430	.00	5700	140	2300	,00	220	1.300	110	200	550		- 170
PCBs, Total	0002A	g/kg	1	1	1	'\'	0.03	< 0.028	< 0.027	NT	NT	NT	NT	NT											
Total Metals		mg/kg					3.00	3.020	3.027	· · · · ·	T	T	- '''	- '''		· · · · ·				- '''	 '''	T			
Antimony, Total	6010C		20	20	20	NT	NT	NT	NT	NT															
Arsenic, Total	6010C		20	20	20	NT	NT	NT	NT	7.8	6.2	2.6	NT	NT	NT	NT	NT								
Barium, Total	6010C		1000	1000	1000	NT	NT	NT	NT	NT															
Beryllium, Total	6010C	1	90	90	90	NT	NT	NT	NT	NT															
Cadmium, Total	6010C		70	70	70	NT	NT	NT	NT	2.4	< 2.5	< 2.5	NT	NT	NT	NT	NT								
Chromium, Total	6010C		100	100	100	NT	NT	NT	NT	38	30	14	NT	NT	NT	NT	NT								
Lead, Total	6010C		200	200	200	57	270	270	98	940	330	49	150	330	350	280	290	190	450	190	110	190	130	280	240
Mercury, Total	7471B		20	20	20	NT	NT	NT	NT	0.321	0.475	0.332	NT	NT	NT	NT	NT								
		1	600	600	600	NT	NT	NT	NT	NT															
Nickel, Total	6010C					N.T.	N.I.T.	NT	NT	NT	NT	NT													
Selenium, Total	6010C		400	400	400	NT	NT																		
Selenium, Total Silver, Total	6010C 6010C		100	100	100	NT	NT	NT	NT	NT															
Selenium, Total Silver, Total Thallium, Total	6010C 6010C 6010C		100 8	100 8	100 8	NT NT	NT NT	NT NT	NT NT	NT NT															
Selenium, Total Silver, Total	6010C 6010C		100	100	100	NT	NT	NT	NT	NT															

- General Notes:

 1. In general, only analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
 2. <= less than reported detection limits.
 3. MCP = 310 CMR 40,0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.
 4. Method 1 Standards (e.g., S-1/GW-2) and UCLs, where identified, are cited from the MCP.
 6. ND = None detected above laboratory detection limit.
 7. mg/kg = milligrams per kilogram.
 8. Values in bold exceed Method 1 standards.

				s	Sample ID: Sample Date: ample Depth (ft) Sampled By:	B110-S2 Mar-97 4-6 W&S	B110-S3 Mar-97 7-9 W&S	B111-S1 Mar-97 1-3 W&S	B111-S2 Mar-97 4-6 W&S	B111-S3 Mar-97 7-9 W&S	B112-S1 Mar-97 1-3 W&S	B112-S2 Mar-97 4-6 W&S	B112-S3 Mar-97 7-9 W&S	B113-S1 Mar-97 1-3 W&S	B113-S2 Mar-97 4-6 W&S	B113-S3 Mar-97 7-9 W&S	B114-S1 Mar-97 1-3 W&S	B114-S2 Mar-97 4-6 W&S	B114-S3 Mar-97 7-9 W&S	B115-S1 Mar-97 1-3 W&S	B115-S2 Mar-97 4-6 W&S	B115-S3 Mar-97 7-9 W&S	B116-S1 Mar-97 1-3 W&S	B117-S1 Mar-97 1-3 W&S	B201(D 1/10/200 10-12 W&S
				Method 1	Method 1																				
Analyte	Method	Units	MCP RCS-1	S-1/GW-2	S-1/GW-3																				
/olatile Organics Compounds (VOCs) Benzene	8260C	mg/kg	-	40	40	NT	NT	NT	NT																
Trichloroethene			0.3	0.3	30																	-	+		_
Xylenes, Total			100	100	500																		+	 	+
n-Butylbenzene			NS	NS	NS									1								<u> </u>	†		-
sec-Butylbenzene			NS	NS	NS																		-		
tert-Butylbenzene			100	NS	NS																				
Isopropylbenzene			1000	NS	NS																				
Naphthalene			4	20	500																				
n-Propylbenzene			100	NS	NS					1														 	
1,2,4-Trimethylbenzene folatile Petroleum Hydrocarbons (VPH)	VPH-04-1.1	ma/ka	1000	NS	NS	NT	NT	NT	NT																
C9-C10 Aromatics	VFП-04-1.1	mg/kg	100	100	100	INI	INI	INI -	INI																
C5-C8 Aliphatics, Adjusted			100	100	100																	<u> </u>	†		-
C9-C12 Aliphatics, Adjusted			1000	1000	1000																				
emivolatile Organic Compounds (SVOCs)	8270D	mg/kg																							NT
Acenaphthene			4	1000	1000	0.19	0.49	0.1	0.35	1	0.46	0.16	20	1.1	0.86	2.6	1	9.3	4.4	< 0.56	1.1	0.51	0.79	1.2	
Acenaphthylene			1 1	600	10	0.059	< 0.29	< 0.055	< 0.27	< 0.29	0.082	0.042	0.77	0.29	0.47	0.36	< 0.28	< 1.4	0.7	< 0.56	0.18	0.17	0.17	0.25	
Anthracene		1	1000	1000	1000	0.46	1.2	0.29	0.91	1.7	0.89	0.4	0.59	1.9	2.1	4.9	2	13	8.8	0.57	2	1.2	1.5	2.6	+
Benzo(a)pyrene			7 2	2	2	1.1	2.5 2.5	0.94 0.94	1.9	3.7	2.2 2.2	0.84	39 35	6.1 5.6	7.3	9.5 8.7	4.2 3.9	26 25	15 14	1.5 1.3	4.3 4	2.7 2.6	3.3 3.1	5.1 4.5	+
Benzo(a)pyrene Benzo(b)fluoranthene		1	7	7	7	1.2	2.5	0.94	1.9	2.7	2.2	0.83	29	4.8	5.6	7.6	3.9	20	11	1.3	3.4	2.0	2.4	4.5 3	+
Benzo(g,h,i)perylene		1	1000	1000	1000	0.27	0.52	0.73	1.6	3	0.53	0.03	6.4	1.1	1.4	1.8	2.1	16	10	< 0.56	0.84	0.65	0.68	0.91	+
Benzo(k)fluoranthene		1	70	70	70	1.2	2.7	0.73	1.5	3	2.4	0.88	29	5	6.6	8.5	3.2	21	10	1.1	3.8	2.3	2.7	3.7	+
Chrysene		<u> </u>	70	70	70	1.1	2.7	0.96	2.1	4.2	2.3	0.9	40	6.6	8.2	10	4.4	26	15	1.6	4.4	3.1	3.5	5.2	
Dibenzo(a,h)anthracene			0.7	0.7	0.7	0.12	< 0.29	0.27	0.41	0.9	0.25	0.081	3	0.49	0.7	0.89	< 0.57	5.7	3.5	< 0.56	0.42	0.29	0.34	0.48	
Dibenzofuran			100	NS	NS	NT	NT	NT																	
Di-n-butylphthalate			50	NS	NS	NT	NT	NT	_																
Fluoranthene			1000	1000	1000	3.1	5.3	1.9	4.7	9.3	6.2	2.1	96	13	15	21	9.3	66	36	3	9.9	6.2	7.6	11	
Fluorene			1000 7	1000	1000	0.2	0.63	0.086	0.36	0.86	0.45	0.17	17	1,1	0.82	2.1	0.85	6.4	4.4	< 0.56	0.922	0.54 0.7	0.76	1.3	4
Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene			0.7	80	7 300	0.29 0.61	0.58 < 0.29	0.69 < 0.055	1.3 < 0.27	2.5 < 0.29	0.6 0.12	0.21	7.2 4.1	0.28	1.6 0.22	2.1 0.78	1.8 < 0.28	15 < 1.4	8.9 1.6	< 0.56 < 0.56	0.94 0.27	0.7	0.79 0.23	0.34	-
Naphthalene			4	20	500	0.01	< 0.29	0.055	< 0.27	0.49	0.12	0.03	14	0.36	0.35	1.6	< 0.28	4.3	3	< 0.56	0.43	0.32	0.23	0.42	+
Phenanthrene			10	500	500	2.3	5	1.2	3.7	8.1	5.4	1.3	110	12	10	20	9.5	53	36	2.2	8.6	4.8	7.2	11	+
Pyrene			1000	1000	1000	2.8	6.6	1.7	4.1	8.2	5.9	2.2	80	13	15	20	9.6	48	30	2.8	8.6	5.7	7.3	9.9	-
extractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	mg/kg				NT	NT	NT	1																
C9-C18 Aliphatics			1000	1000	1000																				< 53
C11-C22 Aromatics, Adjusted			1000	1000	1000																				290
C19-C36 Aliphatics			3000	3000	3000																				< 53
Acenaphthene			4	1000	1000						_													 	6.3
Acenaphthylene			1	600	10						_													 	0.2° 8.9
Anthracene Benzo(a)anthracene			1000	1000	1000 7						·						1					-	-	 	17
Benzo(a)pyrene			2	2	2						1											-	-	 	14
Benzo(b)fluoranthene			7	7	7																		+		19
Benzo(g,h,i)perylene			1000	1000	1000																	 	1		7.8
Benzo(k)fluoranthene			70	70	70																		-		5.5
Chrysene			70	70	70																				16
Dibenzo(a,h)anthracene			0.7	0.7	0.7																				2.6
Fluoranthene			1000	1000	1000							V		L											41
Fluorene		1	1000	1000	1000		ļ										ļ								4.9
Indeno(1,2,3-cd)Pyrene			7	7	7		_			1				-			 								9.5
2-Methylnaphthalene			0.7	80	300	—	 							1									+		0.8
Naphthalene Phenanthrene		+	10	20 500	500 500						+	1		1	 				 			 	+		37
Pyrene		1	1000	1000	1000					1	 	1							 			 	 		31
hlorinated Herbicides	8151A	mg/kg		NS	NS	NT	NT	NT	NT																
rganochlorine Pesticides	8081B	mg/kg	<u> </u>	1	1	NT	NT	NT	NT																
Endosulfan II			0.5	300	1						<u></u>	<u> </u>		<u></u>	<u></u>				<u></u>						
otal Petroleum Hydrocarbons (TPH)		mg/kg																							NT
TPH			1000	1000	1000	140	1100	190	200	1300	500	190	970	290	360	730	480	910	450	140	280	2400	110	110	
olychlorinated Biphenyls (PCBs)	8082A	mg/kg					L				L	L			L									<u> </u>	
PCBs, Total			1	1	1	NT	< 0.028	< 0.028	0.057	NT	NT	NT	NT	NT	NT										
otal Metals	*****	mg/kg				N/T		1.00					N.T	N.T	N	N=	N	h	N.	N-7	N/T				
Antimony, Total	6010C	1	20	20	20	NT	NT	NT	NT	NT NT	NT NT	NT	NT NT	NT	NT NT	NT	NT NT	NT	NT	NT NT	NT	NT	NT	NT	TN TN
Arsenic, Total Barium, Total	6010C 6010C	+	20	20	20 1000	NT NT	NI NT	NT NT	NT NT	NI NT	NT NT	NT NT	NT NT	NT NT	N I										
Barium, Total Beryllium, Total	6010C 6010C	1	1000 90	1000 90	90	NT	NT NT	NT NT	NT NT	NT NT	NT NT	N N													
Cadmium, Total	6010C	+	70	70	70	NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	N.						
Chromium, Total	6010C	1	100	100	100	NT	NT	NT	N.																
Lead, Total	6010C	1	200	200	200	220	670	200	230	1400	150	970	5000	300	230	340	390	790	470	170	590	1200	300	270	55
Mercury, Total	7471B		20	20	20	NT	NT	NT	N																
Nickel, Total	6010C		600	600	600	NT	NT	NT	N																
Selenium, Total	6010C		400	400	400	NT	NT	NT	N																
Silver, Total	6010C		100	100	100	NT	NT	NT	N																
Thallium, Total	6010C		8	8	8	NT	NT	NT	N																
	6010C		400	400	400	NT	I NIT	NT	N																
Vanadium, Total Zinc, Total	6010C		1000	1000	1000	NT	NT NT	NT NT	NT	N															

- General Notes:

 1. In general, only analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
 2. <= less than reported detection limits.
 3. MCP = 310 CMR 40,0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.
 4. Method 1 Standards (e.g., S-1/GW-2) and UCLs, where identified, are cited from the MCP.
 6. ND = None detected above laboratory detection limit.
 7. mg/kg = milligrams per kilogram.
 8. Values in bold exceed Method 1 standards.

GEI Consultants, Inc.

				Sa	Sample ID: Sample Date: ample Depth (ft) Sampled By:	B201(D) 1/10/2001 10-12 (DUP) W&S	B201(D) 1/10/2001 22-24 W&S	B202(S) 1/10/2001 5-7 W&S	B203(S) 1/10/2001 5-7 W&S	B204(S) 1/10/2001 5-7 W&S	B205(S) 1/10/2001 3-5 W&S	B206(S) 1/10/2001 3-5 W&S	B207(S) 1/10/2001 3-5 W&S	SS-1 3/29/2001 0-0.5 W&S	SS-2 3/29/2001 0-0.5 W&S	SS-3 3/29/2001 0-0.5 W&S	SS-4 3/29/2001 0-0.5 W&S	SS-4 3/29/2001 0-0.5 (DUP) W&S	SP-1 3/29/2001 2 W&S	SP-1 3/29/2001 2 (DUP2) W&S	SP-2 3/29/2001 2 W&S	SP-3 3/29/2001 2 W&S	B208 9/5/2001 5-7 W&S	B209 9/5/2001 6-8 W&S	B209 9/5/2001 10-12 W&S
Analyte	Method	Units	MCP RCS-1	Method 1 S-1/GW-2	Method 1 S-1/GW-3																				
olatile Organics Compounds (VOCs)	8260C	mg/kg				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Benzene		1	2	40	40																				
Trichloroethene Xylenes, Total		-	0.3 100	0.3 100	30 500																				
n-Butylbenzene		1	NS	NS	NS NS																				
sec-Butylbenzene			NS	NS	NS										/										
tert-Butylbenzene			100	NS	NS																				
Isopropylbenzene			1000	NS	NS																				
Naphthalene			4	20	500																				
n-Propylbenzene 1,2,4-Trimethylbenzene		-	100 1000	NS NS	NS NS																				
olatile Petroleum Hydrocarbons (VPH)	VPH-04-1.1	mg/kg	1000	INO	INO	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT					NT	NT	NT
C9-C10 Aromatics	***************************************	gr.vg	100	100	100									- 11					< 0.69	< 0.69	< 0.73	< 0.67			
C5-C8 Aliphatics, Adjusted			100	100	100														< 2.8	< 2.8	< 2.9	< 2.7			
C9-C12 Aliphatics, Adjusted			1000	1000	1000														< 0.69	< 0.69	< 0.73	< 0.67			
emivolatile Organic Compounds (SVOCs)	8270D	mg/kg				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Acenaphthylene		1	4	1000 600	1000 10				-	1	+	 		-									-	 	
Acenaphthylene Anthracene	-	1	1000	1000	1000			 	 	1	1			 									 		
Benzo(a)anthracene		1	7	7	7						1														
Benzo(a)pyrene		1	2	2	2																				
Benzo(b)fluoranthene			7	7	7																				
Benzo(g,h,i)perylene			1000	1000	1000																				_
Benzo(k)fluoranthene			70	70	70																				
Chrysene			70	70	70					-															
Dibenzo(a,h)anthracene Dibenzofuran		1	0.7 100	0.7 NS	0.7 NS				1	 	1														
Di-n-butylphthalate			50	NS	NS NS																				
Fluoranthene			1000	1000	1000																				
Fluorene			1000	1000	1000						1														
Indeno(1,2,3-cd)pyrene			7	7	7																				
2-Methylnaphthalene			0.7	80	300																				
Naphthalene			4	20	500																				
Phenanthrene Pyrene		-	10 1000	500 1000	500 1000										_										
extractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	mg/kg	1000	1000	1000													NT					NT	NT	NT
C9-C18 Aliphatics	2	g.n.g	1000	1000	1000	< 58	< 130	< 53	< 57	< 61	< 50	< 110	< 56	< 63	< 61	< 59	< 59		< 55	< 57	< 60	< 54			
C11-C22 Aromatics, Adjusted			1000	1000	1000	300	< 130	520	110	< 61	< 50	< 110	< 56	100	190	170	< 59		73	< 57	66	92			
C19-C36 Aliphatics			3000	3000	3000	< 58	< 130	< 53	< 57	< 61	< 50	< 110	< 56	< 63	< 61	< 59	< 59		< 55	65	< 60	55			
Acenaphthene			4	1000	1000	5.1	< 0.65	5	1.2	< 0.31	< 0.25	< 0.56	< 0.28	0.87	1.6	1.3	0.35		0.89	0.36	0.47	1.2			
Acenaphthylene			1	600	10	0.76 8.6	< 0.65 < 0.65	1.3	< 0.29	< 0.31 0.5	< 0.25	< 0.56 < 0.56	< 0.28 0.46	0.62 2.2	< 0.30 3.7	0.67 3.4	< 0.30 1.1		< 0.28 1.7	< 0.29 0.99	< 0.30 0.95	0.3 2.3			
Anthracene Benzo(a)anthracene		1	1000 7	1000	1000	16	< 0.65	19	4	1	< 0.25 < 0.25	1.4	1.1	5.2	9.4	7.1	2.8		3.9	2.3	2.2	4.3			
Benzo(a)pyrene		1	2	2	2	14	< 0.65	15	3.7	0.9	< 0.25	1.3	0.94	5	8.7	6.8	2.5		3.7	2	1.9	4.2			
Benzo(b)fluoranthene			7	7	7	18	< 0.65	17	4.3	1.1	< 0.25	1.7	1.3	6.4	12	8.3	3.3		4.9	2.6	2.4	5.1			
Benzo(g,h,i)perylene			1000	1000	1000	8.4	< 0.65	8.4	2.3	0.55	< 0.25	0.83	0.58	3.1	6.1	4	1.5		2.2	1.2	1.2	2.5			
Benzo(k)fluoranthene			70	70	70	5.1	< 0.65	5.9	1.5	0.34	< 0.25	< 0.56	0.33	2.2	4.4	3.2	1.1		1.5	0.81	0.64	2			
Chrysene		1	70	70	70	15	< 0.65	18	3.8	0.99	< 0.25	1.4	1	4.8	9.1	6.3	2.6		3.6	2.2	2.3	4.1			
Dibenzo(a,h)anthracene		1	0.7 1000	0.7	0.7	2.6 41	< 0.65 < 0.65	2.6 41	0.62	< 0.31	< 0.25 < 0.25	< 0.56	< 0.28 2.3	0.83 11	1.6 20	1.1 14	0.042 5.3		0.55 7.9	0.34 4.4	0.32 3.9	0.6 8.6	-	 	
Fluoranthene Fluorene		1	1000	1000	1000 1000	41	< 0.65	41	0.96	< 0.31	< 0.25	< 0.56	< 0.28	11	1.4	1.4	0.41		7.9 0.73	0.32	0.378	1.3	 		
Indeno(1,2,3-cd)Pyrene		1	7	7	7	9.7	< 0.65	9.2	2.6	0.59	< 0.25	0.97	0.62	3.7	7	4.6	1.8		2.4	1.3	1.2	2.8			
2-Methylnaphthalene			0.7	80	300	1.3	< 0.65	2.6	0.57	< 0.31	< 0.25	< 0.56	< 0.28	< 0.32	< 0.30	< 0.35	< 0.30		< 0.28	< 0.29	< 0.30	0.31			
Naphthalene			4	20	500	3.4	< 0.65	4	0.74	< 0.31	< 0.25	< 0.56	< 0.28	< 0.32	0.31	0.69	< 0.30		< 0.28	< 0.29	< 0.30	0.29			
Phenanthrene			10	500	500	37	< 0.65	48	9.7	2.1	< 0.25	1.6	1.9	9.6	18	12	4.4		7.1	3.8	4.2	8			
			1000	1000	1000	32 NT	< 0.65	40 NT	8.2	2	< 0.25	2.6	2.1	9	16	11 NT	4.7	NIT.	6.8	4.1	4.1	7.3	NIT.	NIT	NIT
Pyrene	04514	"	NIC	NIC		NT	NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
hlorinated Herbicides	8151A 8081B	mg/kg	NS	NS	NS	NT					I INT	181	191	141	141	141	141	141	141	141	141	181	INI	141	INI
hlorinated Herbicides Irganochlorine Pesticides	8151A 8081B	mg/kg mg/kg			NS 1	NT	NI	INI	- 1				l	I											
hlorinated Herbicides Organochlorine Pesticides Endosulfan II		mg/kg	NS 0.5	NS 300		NT NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
hlorinated Herbicides Organochlorine Pesticides Endosulfan II		mg/kg mg/kg mg/kg				NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chlorinated Herbicides Prganochlorine Pesticides Endosulfan II Total Petroleum Hydrocarbons (TPH) TPH Totylchlorinated Biphenyls (PCBs)		mg/kg	0.5	300 1000	1 1000																				
hlorinated Herbicides rganochlorine Pesticides Endosulfan II otal Petroleum Hydrocarbons (TPH) TPH olychlorinated Biphenyls (PCBs) PCBs, Total	8081B	mg/kg mg/kg mg/kg	0.5	300	1	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT 0.048	NT < 0.028	NT 0.068	NT < 0.027	NT NT	NT NT	NT NT
hlorinated Herbicides rganochlorine Pesticides Endosulfan II otal Petroleum Hydrocarbons (TPH) TPH olychlorinated Biphenyls (PCBs) PCBs, Total otal Metals	8081B 8082A	mg/kg mg/kg	0.5 1000	300 1000 1	1 1000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.048	< 0.028	0.068	< 0.027	NT	NT	NT
hlorinated Herbicides rganochlorine Pesticides Endosulfan II otal Petroleum Hydrocarbons (TPH) TPH olychlorinated Biphenyls (PCBs) PCBs, Total otal Metals Antmony, Total	8081B 8082A 6010C	mg/kg mg/kg mg/kg	0.5 1000 1	300 1000 1	1 1000	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.048 NT	< 0.028	0.068 NT	< 0.027	NT NT	NT NT	NT NT
nlorinated Herbicides rganochlorine Pesticides Endosulfan II bital Petroleum Hydrocarbons (TPH) TPH Jychlorinated Biphenyls (PCBs) PCBs, Total tal Metals Antimony, Total Arsenic, Total	8081B 8082A 8082A 6010C 6010C	mg/kg mg/kg mg/kg	0.5 1000 1 20 20	300 1000 1 20 20	1 1000 1 20 20	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	0.048 NT 15	< 0.028 NT 11	0.068 NT 20	< 0.027 NT 9.1	NT NT NT	NT NT NT	NT NT NT
alorinated Herbicides ganochlorine Pesticides Endosulfan II tal Petroleum Hydrocarbons (TPH) TPH Jychlorinated Biphenyls (PCBs) PCBs, Total tal Metals Antimony, Total Arsenic, Total Barium, Total	8081B 8082A 8082A 6010C 6010C 6010C	mg/kg mg/kg mg/kg	0.5 1000 1 20 20 1000	300 1000 1 20 20 1000	1 1000 1 20 20 1000	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	0.048 NT 15 61	< 0.028 NT 11 69	0.068 NT 20 54	< 0.027 NT 9.1 47	NT NT NT NT	NT NT NT NT	NT NT NT NT
nlorinated Herbicides granochlorine Pesticides Endosulfan II tal Petroleum Hydrocarbons (TPH) TPH TPH Hydrolared Biphenyls (PCBs) PCBs, Total tal Metals Antimony, Total Arsenic, Total Barium, Total Beryllium, Total	8081B 8082A 6010C 6010C 6010C 6010C	mg/kg mg/kg mg/kg	0.5 1000 1 20 20 1000 90	300 1000 1 20 20 1000 90	1 1000 1 20 20 1000 90	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT NT	0.048 NT 15 61 NT	< 0.028 NT 11 69 NT	0.068 NT 20 54 NT	< 0.027 NT 9.1 47 NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT
hlorinated Herbicides rganochlorine Pesticides Endosulfan II stal Petroleum Hydrocarbons (TPH) TPH obychlorinated Biphenyls (PCBs) PCBs, Total stal Metals Antimony, Total Arsenic, Total Barlum, Total	8081B 8082A 8082A 6010C 6010C 6010C	mg/kg mg/kg mg/kg	0.5 1000 1 20 20 1000	300 1000 1 20 20 1000	1 1000 1 20 20 1000	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	0.048 NT 15 61	< 0.028 NT 11 69	0.068 NT 20 54	< 0.027 NT 9.1 47	NT NT NT NT	NT NT NT NT	NT NT NT NT
nlorinated Herbicides rganochlorine Pesticides Endosulfan II bital Petroleum Hydrocarbons (TPH) TPH Joychlorinated Biphenyls (PCBs) PCBs, Total bital Metals Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total	8081B 8082A 6010C 6010C 6010C 6010C 6010C	mg/kg mg/kg mg/kg	0.5 1000 1 20 20 1000 90 70	300 1000 1 20 20 1000 90 70	1 1000 1 20 20 1000 90 70	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT T	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT N	NT NT NT NT NT NT	NT NT NT NT NT NT NT NT 200	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT	NT NT	0.048 NT 15 61 NT < 0.63 28 85	< 0.028 NT 11 69 NT < 0.68	0.068 NT 20 54 NT < 0.74	< 0.027 NT 9.1 47 NT < 0.68 12 160	NT	NT NT NT NT NT NT NT NT NT 33	NT NT NT NT NT NT NT NT S55	
hlorinated Herbicides rganochlorine Pesticides Endosulfan II btal Petroleum Hydrocarbons (TPH) TPH Dychlorinated Biphenyls (PCBs) PCBs, Total btal Metals Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chemium, Total Lead, Total Mercury, Total Lead, Total	8081B 8082A 6010C 6010C 6010C 6010C 6010C 6010C 7471B	mg/kg mg/kg mg/kg	0.5 1000 1 20 20 1000 90 70 100 200 20	300 1000 1 20 20 1000 90 70 100 200 200	1 1000 1 20 20 1000 90 70 100 200 200	NT	NT N	NT	NT NT NT N	NT N	NT NT	NT NT NT NT	0.048 NT 15 61 NT < 0.63 28 85 0.34	< 0.028 NT 11 69 NT < 0.68 23 120 0.41	0.068 NT 20 54 NT < 0.74 16 170 0.45	<0.027 NT 9.1 47 NT <0.68 12 160 0.16	NT NT NT NT NT NT NT ST NT	NT N	NT						
hlorinated Herbicides rganochlorine Pesticides Endosulfan II otal Petroleum Hydrocarbons (TPH) TPH obychlorinated Biphenyls (PCBs) PCBs, Total otal Metals Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Lead, Total Mercury, Total Nickel, Total	8081B 8082A 6010C 6010C 6010C 6010C 6010C 6010C 6010C 7471B 6010C	mg/kg mg/kg mg/kg	0.5 1000 1 20 20 1000 70 100 200 2	300 1000 1 20 20 1000 90 70 100 200 20 600	1 1000 1 20 20 1000 90 70 100 200 200 600	NT	NT N	NT	NT NT NT	NT N	NT NT	NT NT NT NT	0.048 NT 15 61 NT < 0.63 28 85 0.34 NT	<0.028 NT 11 69 NT <0.68 23 120 0.41 NT	0.068 NT 20 54 NT < 0.74 16 170 0.45 NT	<0.027 NT 9.1 47 NT <0.68 12 160 0.16 NT	NT	NT N	NT N						
hlorinated Herbicides rganochlorine Pesticides Endosulfan II otal Petroleum Hydrocarbons (TPH) TPH Olychlorinated Biphenyls (PCBs) PCBs, Total otal Metals Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Lead, Total Mercury, Total Mickel, Total Selenium, Total	8081B 8082A 6010C 6010C 6010C 6010C 6010C 6010C 7471B 6010C 6010C 6010C	mg/kg mg/kg mg/kg	0.5 1000 1 20 20 1000 90 70 1000 200 200 6000 400	300 1000 1 20 20 1000 90 70 100 200 200 200 400	1 1000 1 20 20 1000 90 70 1000 200 200 200 400	NT	NT	NT N	NT NT NT N	NT N	NT NT	NT NT NT NT	0.048 NT 15 61 NT <0.63 28 85 0.34 NT <10	<0.028 NT 11 69 NT <0.68 23 120 0.41 NT <111	0.068 NT 20 54 NT < 0.74 16 170 0.45 NT < 12	<0.027 NT 9.1 47 NT <0.68 12 160 0.16 NT <<11	NT	NT	NT						
hlorinated Herbicides rganochlorine Pesticides Endosulfan II otal Petroleum Hydrocarbons (TPH) TPH olychlorinated Biphenyls (PCBs) PCBs, Total otal Metals Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cardmium, Total Ceromium, Total Lead, Total Mercury, Total Mercury, Total Selenium, Total Selenium, Total	8081B 8082A 6010C	mg/kg mg/kg mg/kg	0.5 1000 1 20 20 1000 90 70 100 20 600 400 100	300 1000 1 20 20 1000 90 70 100 200 200 600 400 100	1 1000 1 20 20 1000 90 70 100 20 20 600 400 100	NT	NT	NT	NT NT NT N	NT N	NT NT	NT NT NT NT	0.048 NT 15 61 NT < 0.63 28 85 0.34 NT < 10 < 1.8	<0.028 NT 11 69 NT < 0.68 23 120 0.41 NT < 11 < 1.9	0.068 NT 20 54 NT < 0.74 16 170 0.45 NT < 12 < 2.1	<0.027 NT 9.1 47 NT <0.68 12 160 0.16 NT <11 <1.9	NT	NT	NT						
nlorinated Herbicides rganochlorine Pesticides Endosuflan II total Petroleum Hydrocarbons (TPH) TPH typknlorinated Biphenyls (PCBs) PCBs, Total tatal Metals Antimony, Total Arsenic, Total Barlum, Total Beryllium, Total Cadmium, Total Cadmium, Total Lead, Total Mercury, Total Mercury, Total Nickel, Total Selenium, Total	8081B 8082A 6010C 6010C 6010C 6010C 6010C 6010C 7471B 6010C 6010C 6010C	mg/kg mg/kg mg/kg	0.5 1000 1 20 20 1000 90 70 1000 200 200 6000 400	300 1000 1 20 20 1000 90 70 100 200 200 200 400	1 1000 1 20 20 1000 90 70 1000 200 200 200 400	NT	NT	NT N	NT NT NT N	NT N	NT NT	NT NT NT NT	0.048 NT 15 61 NT <0.63 28 85 0.34 NT <10	<0.028 NT 11 69 NT <0.68 23 120 0.41 NT <111	0.068 NT 20 54 NT < 0.74 16 170 0.45 NT < 12	<0.027 NT 9.1 47 NT <0.68 12 160 0.16 NT <<11	NT	NT	NT						

- General Notes:

 1. In general, only analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
 2. <= less than reported detection limits.
 3. MCP = 310 CMR 40,0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.
 4. Method 1 Standards (e.g., S-1/GW-2) and UCLs, where identified, are cited from the MCP.
 6. ND = None detected above laboratory detection limit.
 7. mg/kg = milligrams per kilogram.
 8. Values in bold exceed Method 1 standards.

GEI Consultants, Inc. Page 4 of 5 Project 2002082 January 2021

Table 4. Chemical Testing Results - Soil (Weston & Sampson)
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont Street & Whittier Streets
Boston, Massachusetts

		_		Sa	Sample ID: Sample Date: ample Depth (ft) Sampled By:	B210 9/5/2001 5-7 W&S	B211 9/5/2001 5-7 W&S	B212 9/5/2001 5-7 W&S
				Method 1	Method 1			
Analyte	Method	Units	MCP RCS-1	S-1/GW-2	S-1/GW-3			
Volatile Organics Compounds (VOCs)	8260C	mg/kg				NT	NT	NT
Stitle Organics Compounds (VOCs) 8260C mg/kg NT NT NT								
	tert-Butylbenzene							
Isopropylbenzene			1000	NS	NS			
Naphthalene			4	20	500			
n-Propylbenzene			100 1000	NS	NS			
1,2,4-Trimethylbenzene /olatile Petroleum Hydrocarbons (VPH)	VPH-04-1.1	mg/kg	1000	NS	NS	NT	NT	NT
C9-C10 Aromatics	VFH-04-1.1	IIIg/kg	100	100	100	INI	INI	INI
C5-C8 Aliphatics, Adjusted			100	100	100			
C9-C12 Aliphatics, Adjusted			1000	1000	1000			
Semivolatile Organic Compounds (SVOCs)	8270D	mg/kg				NT	NT	NT
Acenaphthene			4	1000	1000			
Acenaphthylene			1	600	10			
Anthracene Renze (a) anthracene		1	1000	1000	1000			
Benzo(a)anthracene Benzo(a)pyrene		1	7 2	7 2	7 2			
Benzo(b)fluoranthene	_	+	7	7	7		 	
Benzo(g,h,i)perylene		1	1000	1000	1000			
Benzo(k)fluoranthene			70	70	70			
Chrysene			70	70	70			
Dibenzo(a,h)anthracene			0.7	0.7	0.7			
Dibenzofuran			100	NS	NS			
Di-n-butylphthalate			50	NS	NS			
Fluoranthene			1000	1000	1000			
Fluorene			1000	1000	1000			
Indeno(1,2,3-cd)pyrene			7	7	7			
2-Methylnaphthalene			0.7	80 20	300 500			
Naphthalene Phenanthrene			10	500	500			
Pyrene			1000	1000	1000			
Extractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	mg/kg	1000	1000	.000	NT	NT	NT
C9-C18 Aliphatics			1000	1000	1000			
C11-C22 Aromatics, Adjusted			1000	1000	1000			
C19-C36 Aliphatics			3000	3000	3000			
Acenaphthene			4	1000	1000			
Acenaphthylene			1	600	10			
Anthracene			1000	1000	1000			
Benzo(a)anthracene Benzo(a)pyrene			7 2	7 2	7 2			
Benzo(b)fluoranthene			7	7	7			
Benzo(g,h,i)perylene			1000	1000	1000			
Benzo(k)fluoranthene			70	70	70			
Chrysene			70	70	70			
Dibenzo(a,h)anthracene			0.7	0.7	0.7			
Fluoranthene			1000	1000	1000			
Fluorene			1000	1000	1000			
Indeno(1,2,3-cd)Pyrene		1	7	7	7			
2-Methylnaphthalene		1	0.7	80	300			
Naphthalene		1	4	20	500			<u> </u>
Phenanthrene Pyrene		1	10 1000	500 1000	500 1000			
Chlorinated Herbicides	8151A	mg/kg	NS	NS	NS	NT	NT	NT
Organochlorine Pesticides	8081B	mg/kg	NO	140	140	NT	NT	NT
Endosulfan II	00015	mg/kg	0.5	300	1	IVI		- 141
otal Petroleum Hydrocarbons (TPH)		mg/kg	0.0			NT	NT	NT
TPH			1000	1000	1000			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Polychlorinated Biphenyls (PCBs)	8082A	mg/kg						
PCBs, Total			1	1	1	NT	NT	NT
otal Metals		mg/kg						
Antimony, Total	6010C		20	20	20	NT	NT	NT
Arsenic, Total	6010C	1	20	20	20	NT	NT	NT
Barium, Total	6010C		1000	1000	1000	NT	NT	NT
Beryllium, Total	6010C	1	90	90	90	NT	NT	NT
Cadmium, Total Chromium, Total	6010C 6010C	-	70 100	70 100	70 100	NT NT	NT NT	NT NT
Lead, Total	6010C	1	200	200	200	250	13000	33
Mercury, Total	7471B	1	200	200	200	NT NT	NT	NT NT
Nickel, Total	6010C	1	600	600	600	NT	NT	NT
Selenium, Total	6010C	1	400	400	400	NT	NT	NT
Silver, Total	6010C		100	100	100	NT	NT	NT
Thallium, Total	6010C		8	8	8	NT	NT	NT
		1	400	400	400	NT	NT	NT
Vanadium, Total	6010C		400	400	400		INI	

- General Notes:

 1. In general, only analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
 2. <= less than reported detection limits.
 3. MCP = 310 CMR 40,0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.
 4. Method 1 Standards (e.g., S-1/GW-2) and UCLs, where identified, are cited from the MCP.
 6. ND = None detected above laboratory detection limit.
 7. mg/kg = milligrams per kilogram.
 8. Values in bold exceed Method 1 standards.

GEI Consultants, Inc. Page 5 of 5 Project 2002082

Second Process Seco						Well ID:	WS-1	ı w	/S-2	T W	S-3	WS-4	. w	/S-5	WS-6	. w	S-7	WS-8
Part																		
March Marc																		
March Marc				Screen	Interval (ft helow													
Margin M				00.00		Sampled By:												
Margin M																		
Second Continue																		
The content of the			Units	RCGW-2	GW-2	GW-3												
The content of the	MCP Volatile Organic Compounds (VOCs)	8260C	ug/l				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
				50	50													
1	Vinyl chloride			2	2	50000												
1-1 1 1 1 1 1 1 1 1	Trichloroethene			5	5													
Prince	cis-1,2-Dichloroethene			20	20	50000												
Prince	1,2-Dichloroethene (total)			20	20	50000												
Company Comp	Ethyl ether				NS													
Description	1,4-Dioxane			NS	6000	50000												
Description	Volatile Organic Compounds (VOCs) by GC/MS	8260C	ug/l						NT		NT			NT			NT	
Property				50	50	20000	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0		9.1	< 2.0		< 2.0
Technological Model 19	p-Isopropyltoluene			100		NS	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0		< 2.0	< 2.0		< 2.0
West September	Tetrachloroethene			50	50	30000	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0		< 2.0	< 2.0		< 2.0
West September				5	5	5000	< 2.0	< 2.0		< 2.0		< 2.0	2.2		< 2.0	< 2.0		< 2.0
1. 1. 1. 1. 1. 1. 1. 1.		8260C BY SIM	ug/l				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Variety Number Variety	1,4-Dioxane			NS	6000	50000			<u> </u>			<u> </u>						<u> </u>
GCCC GCCCC GCCCC GCCC GCCC GCCCC GCCC GCCC GCCC GCCC	Volatile Petroleum Hydrocarbons (VPH)	VPH-04-1.1	ug/l				NT	NT		NT		NT	NT		NT	NT		NT
Color Colo	C9-C10 Aromatics								< 25		< 25			< 25			< 25	
GENERAL PROPERTY OF THE PROPER	C5-C8 Aliphatics, Adjusted				3000	50000			< 100		< 100			< 100			< 100	
According	C9-C12 Aliphatics, Adjusted			5000	5000	50000			< 25		< 25			< 25			< 25	
According		8100 or 8270D BY SIM	ug/l				NT		NT	NT	NT	NT NT		NT	NT	NT	NT	
Pursenting																		
Process	Fluoranthene			200	NS	200		ND					ND					ND
Proceedings	Anthracene			30	NS	30		ND					ND					ND
Person	Fluorene			40	NS	40		ND					ND					ND
Thinkingstandame Privale Priva	Phenanthrene			10000	NS	10000		ND					ND					ND
Extractions (PPP)	Pyrene			20	NS	20		ND					ND					ND
Extraction Persistent Per	1-Methylnaphthalene			NS	NS	NS		ND					ND					ND
CAS-18 AppleAce	Extractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	ug/l				NT	NT		NT		NT	NT		NT	NT		NT
CSS-CD Alphandes 50000 NS	C9-C18 Aliphatics			5000	5000	50000												
C11-C2 Amendrack Adjusted 5000 5000 5000 400	C19-C36 Aliphatics			50000														
2.46ery/apphrabmene				5000														
Accorpinement	Naphthalene			700	700	20000			< 1.0					< 0.10			< 0.10	
Phospite	2-Methylnaphthalene			2000	2000	20000			< 1.0								< 0.10	
Presentence	Acenaphthene					10000												
Anthropies																		
Finantheme											< 0.10			< 0.10			< 0.10	
Pyrete				00														
Microstractables by GC																		
1,2 Directoneshare				20	NS	20												
Polychiorinated Biphamys (PQBs) by GC			ug/l				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total PCBs				2	2	50000												
Total Marian Ugil		608	ug/l				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Arsenic Total 6020A				5	5	10												
Assence, Total 6020A 900 NS 900 \$00			ug/l				NT		NT	NT		NT			NT	NT		
Barlum, Total			 															
Cannium, Total			1															
Chromium, Total 6020A 300 NS 300 <0.03 NT <0.03 NT <0.03 NT <0.03 NT <0.03 NT <0.03 NT NT NT NT NT NT NT N			1								NT							
Chopmium Hexavalent		6020A	1		NS	4		< 0.005			NT		< 0.005	NT			NT	< 0.005
Copper_Total Copp			1															
Iron, Total 200.7			1															
Lead, Total 6020A			1															
Mercury, Total 245.1 20 NS 20			1		NS			NT										
Nickel, Total G020A 200 NS 200 NT NT NT NT NT NT NT NT		6020A			NS						< 5.0		< 0.005	< 5.0	-		< 5.0	< 0.010
Selenium, Total 6020A 100 NS 100 < 0.025 NT < 0.025 NT < 0.025	Mercury, Total		_															
Silver, Total 6020A 7 NS 7 < 0.007 NT NT NT NT NT NT NT N			1			200			1						1	1		
Zinc, Total 6020A 900 NS 900 NT NT NT NT NT NT NT			1	100					1						1	1		
General Chemistry			1	7					1						1	1		
Solids, Total Suspended 2540D NS NS NS NS NT NT NT NT		6020A		900	NS	900		NT					NT		-	-		NT
Cyanide, Total 4500CN-CE 30 NS 30 NT			ug/l						NT		NT			NT	L		NT	
Chlorine, Total Residual 4500CL-D NS NS NS NT	Solids, Total Suspended		1															
TPH 8100M or 1664A NS NS NS ND														-				
Phenolics, Total 420.1 NS NS NS NT NT <td></td> <td></td> <td>1</td> <td></td>			1															
Anions by Ion Chromatography ug/l ug/l			1															
Anions by Ion Circomatography	Phenolics, Total	420.1	<u> </u>	NS	NS	NS	NT	NT		NT		NT	NT	-	NT	NT		NT
Chloride 300.0 NS NS NS NT			ug/l			L				l			L	L	<u> </u>	ļ	ļ	L
	Chloride	300.0	1	NS	NS	NS	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

- General Notes:

 1. Only analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.

 2. "<" = Analyte not detected at a concentration above the laboratory reporting limit.

 3. Method 1 standards are cited from the Massachusetts Contingency Plan 310 CMR 40.0000 (MCP), with revisions effective June 20, 2014.

 4. µg/L = micrograms per liter

 5. Values in bold exceed Method 1 standards.

 6. NS = No Method 1 standard established.

 7. µg/L = micrograms per liter

 8. ND = Analyte(s) not detected

 9. W&S results: VOCs by 8260, PAHs by 8100, TPH by 8100M; GEI results: VOCs by 8260C, PAHs by 8270-SIM, TPH by 1664A

 Qualifiers:

Qualifiers:

F- The result has a low bias due to matrix spike recovery below lower control limits.

Table 5. Chemical Testing Results - Groundwater (Weston & Sampson and GEI) Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement Parcel P-3, Tremont Street & Whittier Streets Boston, Mass

					Well ID:	W	VS-9	W	/S-10	WS-11		WS-12		WS-13	B205 (OW)	B(MW)301	B(MW)302
					Sample ID:	WS-9	WS-9	WS-10	WS-10	WS-11	WS-12	WS-12	WS-12	WS-13	B205 (OW)	B(MW)301	B(MW)302
					Sample Date:	12/12/1996	2/6/2001	12/12/1996	2/6/2001	12/12/1996	12/12/1996	12/12/1996	2/6/2001	9/10/2001	3/2/2017	3/5/2017	3/3/2017
			Screen	Interval (ft. below	ground surface)		Unknown	Unknown	Unknown	Unknown	Unknown	Unknown (DUP)	Unknown	Unknown	28.9 - 38.9	11 - 21	16 - 26
					Sampled By:	W&S	W&S	W&S	W&S	W&S	W&S	W&S	W&S	W&S	GEI	GEI	GEI
			· '														
Amelia	Method	Units	MCP RCGW-2	Method 1 GW-2	Method 1 GW-3												
Analyte			RCGVV-2	GVV-2	GW-S					N=	117					 ′	
MCP Volatile Organic Compounds (VOCs)	8260C	ug/l				NT	NT	NT	NT	NT	NT	NT	NT	NT		<u> </u>	
Tetrachloroethene			50	50	30000										<1	<1	19
Vinyl chloride			2	2	50000										< 1	<1	< 1
Trichloroethene			5	5	5000										<1	<1	5
cis-1,2-Dichloroethene			20	20	50000										<1	<1	7.2
1,2-Dichloroethene (total)			20	20	50000										<1	< 1	7.2
Ethyl ether			10	NS	NS										< 2	< 2	< 2
1,4-Dioxane			NS	6000	50000										NT	< 250	NT
Volatile Organic Compounds (VOCs) by GC/MS	8260C	ug/l	'				NT		NT				NT	NT	NT	NT	NT
Chloroform			50	50	20000	< 2.0		< 5.8		< 2.0	< 2.0	< 2.0				<u> </u>	
p-Isopropyltoluene			100	NS	NS	< 2.0		< 2.0		< 2.0	2.8	2.6				<u> </u>	
Tetrachloroethene			50	50	30000	< 2.0		< 2.0 < 2.0		< 2.0	< 2.0 < 2.0	< 2.0	·				
Trichloroethene			5	5	5000	< 2.0		< 2.0		< 2.0	< 2.0	< 2.0					
Volatile Organic Compounds (VOCs) by GC/MS-SIM	8260C BY SIM	ug/l	· ——			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,4-Dioxane			NS	6000	50000												
Volatile Petroleum Hydrocarbons (VPH)	VPH-04-1.1	ug/l				NT		NT		NT	NT	NT		NT			
C9-C10 Aromatics			4000	4000	50000		< 25		< 25				< 25		< 50	< 50	< 50
C5-C8 Aliphatics, Adjusted			3000	3000	50000		< 100		< 100				< 100		< 50	< 50	< 50
C9-C12 Aliphatics, Adjusted			5000	5000	50000		< 25		< 25				< 25		< 50	< 50	< 50
Semivolatile Organic Compounds (SVOCs) by GC/MS-SIM	8100 or 8270D BY SIM	ug/l		1			NT	NT	NT	NT			NT	NT	NT	NT	NT
Acenaphthene		ľ	6000	NS	10000	ND					ND	ND		1		†	1
Fluoranthene			200	NS	200	ND ND					ND ND	ND ND					
Anthracene			30	NS	30	ND					ND	ND				1	
Fluorene			40	NS	40	ND					ND ND	ND ND					
Phenanthrene			10000	NS	10000	ND					ND	ND ND					
Pyrene			20	NS	20	ND		1			ND ND	ND ND		1	+	 	
1-Methylnaphthalene			NS NS	NS	NS NS	ND		1	_		ND ND	ND ND		1	+	 	
Extractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	ug/l	110	140	140	NT		NT		NT	NT	NT		NT		+	
C9-C18 Aliphatics	2111-04-1.1	ug/i	5000	5000	50000		< 100		< 100			· · · · ·	< 100	· · · · · ·	< 100	< 100	< 100
C19-C36 Aliphatics		1	50000	NS	50000		< 100		< 100				< 100	1	< 100	< 100	< 100
C11-C22 Aromatics, Adjusted		1	5000	50000	5000		< 100		< 100			1	160	1	< 100	< 100	< 100
Naphthalene			700	700	20000		< 0.10		< 0.10			 	< 0.10	1	< 0.4	< 0.412	< 0.4
2-Methylnaphthalene		1	2000	2000	20000		< 0.10		< 0.10			1	< 0.10	1	< 0.4	< 0.412	< 0.4
									< 0.10						< 0.4		
Acenaphthene			6000 40	NS NS	10000 40		< 0.10 < 0.10		< 0.10				< 0.10 < 0.10		< 0.4	< 0.412 < 0.412	< 0.4 < 0.4
Fluorene			10000	NS NS	10000		< 0.10		< 0.10				< 0.10		< 0.4	< 0.412	< 0.4
Phenanthrene Anthracene			30	NS NS	30		< 0.10		< 0.10				< 0.10		< 0.4	< 0.412	< 0.4
Fluoranthene		_	200	NS NS	200		< 0.10		< 0.10			+	< 0.10	-	< 0.4	< 0.412	< 0.4
Pyrene		_	200	NS NS	200		< 0.10		< 0.10			+	< 0.10	-	< 0.4	< 0.412	< 0.4
			20	NS NS	20	NT		NIT		NT	NT	NT		NT			
Microextractables by GC		ug/l			50000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dibromoethane			2	2	50000		117		N.			L				 '	
Polychlorinated Biphenyls (PCBs) by GC	608	ug/l		_	.	NT	NT	NT	NT	NT	NT	NT	NT	NT		 '	
Total PCBs		L	5	5	10				-		ļ			ļ			
Total Metals		ug/l			L			NT				NT			NT	NT	NT
Antimony, Total	6020A		8000	NS	8000	NT	NT		NT	NT	NT		NT	NT		 '	
Arsenic, Total	6020A	1	900	NS	900	< 0.01	NT		NT	< 0.01	< 0.01		NT	NT		<u> </u>	1
Barium, Total	6020A		50000	NS	50000	0.11	NT	\	NT	< 0.05	0.12		NT	NT		 '	
Cadmium, Total	6020A		4	NS	4	< 0.005	NT		NT	< 0.005	< 0.005		NT	NT		<u> </u>	
Chromium, Total	6020A		300	NS	300	< 0.03	NT		NT	< 0.03	< 0.03		NT	NT		<u> </u>	
Chromium, Hexavalent	6020A		300	NS	300	NT	NT		NT	NT	NT		NT	NT		<u> </u>	
Copper, Total	6020A		NS	NS	NS	NT	NT		NT	NT	NT		NT	NT		<u> </u>	
Iron, Total	200.7		NS	NS	NS	NT	NT		NT	NT	NT		NT	NT			
Lead, Total	6020A		10	NS	10	< 0.010	< 5.0		< 5.0	< 0.010	< 0.005		< 5.0	< 12			
Mercury, Total	245.1		20	NS	20	< 0.0002	NT		NT	< 0.0002	< 0.0002		NT	NT			
Nickel, Total	6020A		200	NS	200	NT	NT		NT	NT	NT		NT	NT			
Selenium, Total	6020A		100	NS	100	< 0.025	NT		NT	< 0.005	< 0.025		NT	NT			
Silver, Total	6020A		7	NS	7	< 0.007	NT		NT	< 0.007	< 0.007		NT	NT			
Zinc, Total	6020A		900	NS	900	NT	NT		NT	NT	NT		NT	NT			
General Chemistry		ug/l					NT		NT				NT	NT	NT	NT	NT
Solids, Total Suspended	2540D		NS	NS	NS	NT		NT		NT	NT	NT				,	
Cyanide, Total	4500CN-CE		30	NS	30	NT		NT		NT	NT	NT				'	
Chlorine, Total Residual	4500CL-D		NS	NS	NS	NT		NT		NT	NT	NT				1	
TPH	8100M or 1664A		NS	NS	NS	ND		ND		ND	ND	ND				1	
Phenolics, Total	420.1		NS	NS	NS	NT		NT		NT	NT	NT				1	
Andrew by the Observations by		/1													NT	NT	NT
Anions by ion Chromatography		ug/i									1						
Anions by Ion Chromatography Chloride	300.0	ug/l	NS	NS	NS	NT	NT	NT	NT	NT	NT	NT	NT	NT	IN I	<u> </u>	

- General Notes:

 1. Only analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.

 2. "<" = Analyte not detected at a concentration above the laboratory reporting limit.

 3. Method 1 standards are cited from the Massachusetts Contingency Plan 310 CMR 40.0000 (MCP), with revisions effective June 20, 2014.

 4. µg/L = micrograms per liter

 5. Values in bold exceed Method 1 standards.

 6. NS = No Method 1 standard established.

 7. µg/L = micrograms per liter

 8. ND = Analyte(s) not detected

 9. W&S results: VOCs by 8260, PAHs by 8100, TPH by 8100M; GEI results: VOCs by 8260C, PAHs by 8270-SIM, TPH by 1664A

 Qualifiers:

Qualifiers:

F- The result has a low bias due to matrix spike recovery below lower control limits.

Marbold Usah MCGP Method Usah MCGP Method On 1	V)307 B(MW)308 2017 3/3/2017 • 21 11 - 21	B(MW)307 B(MW)307 3/3/2017 11 - 21 GEI	B(MW)306 B(MW)306 3/5/2017 10 - 20 GEI	B(MW)305 B(MW)305 3/3/2017 11 - 21 GEI	B(MW)303 B(MW)303 3/3/2017 18 - 28 GEI	Well ID: Sample ID: Sample Date: ground surface) Sampled By:	nterval (ft. below	Screen			
MGP Velocities Compounds (VOCs) SSSOC up 50 50 50 50 50 50 50 5	EI GEI	GEI	GEI	GEI	GEI	Method 1					
Testificonference						GW-3	GW-2	RCGW-2			
Virgin Confession		NT				22222			ug/l	8260C	
Trichrosothere	1 <1										
Control Cont	36	—									
1.2 Delinterethere (htts)	6.2							0			
Ethi shile	6.2										
Vosatio Compounds (VOCa) by GCMS 6200C	2.4				< 2		NS				
Close/files	< 250		< 250			50000	6000	NS			1,4-Dioxane
P-brotropichaters	NT		NT	NT	NT				ug/l	8260C	
Test-decodefines											
Total Compounds (VOCs) by GCMS-SM EPI-Ch-1.1 Ug/l N 5 5 5000 NT NT NT NT											
Visite Depart Compounds (VCO) by GCMS-SIM SSIDC BY SIM Light L											
1.4 Discourse	NT NT	1.3	NT	NT	NT	3000	3	J	ua/I	8260C BY SIM	
Volume Performent Pythocarbons (PPH)		< 3		· · · · · ·	•••	50000	6000	NS	ug,.	32000 5 1 0	
CS-C2 (A) Armatics				1		1 22300		.,,	ug/l	VPH-04-1.1	
GS-C12 Alghartes, Adjusted Smortcolite Cyangle Compounds (BYOCs) by GCMS-SIM S100 or 8270D BY SIM Ug1 Accomplisher South State Stat											C9-C10 Aromatics
Seminositic Organic Compounds (SVOCa) by GCMS-SIM 6100 or 87700 BY SIM 6000 NS 10000 NT NT NT NT NT NT NT	50 < 50	< 50	< 50			50000					C5-C8 Aliphatics, Adjusted
Accomplythere		< 50				50000	5000	5000		0400 0070D DV:	
Fluorente 200	NT	- 13	NT	NT	NT	40000		2222	ug/l	8100 or 8270D BY SIM	
Anthreame											
Fluorene											
Prenambrene											
Pyrene											
Extractable Petroleum Hydrocarhons (EPH)	76	0.76					NS				
C9-C16 Alphates	4	0.4				NS	NS	NS			
C11-C23-Alphatics									ug/l	EPH-04-1.1	
C11-C22 Aromatics, Adjusted 5000 50000 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100											C9-C18 Aliphatics
Naphthalene											
2-Methylanephthalene 2000 2000 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4											
Acenaphthene											
Phenanthrene											
Anthracene											
Fluoranthene											
Pyene											
Microextractables by GC											
1,2-Distromoethane	42 V.4 NT	0.942				20	INS	20	ua/l		
Polychlorinated Biphenyis (PCBs) by GC		< 0.01	- N	ivi.	141	50000	2	2	ug/i		
Total PCBs		7							ug/l	608	
Antimony, Total 6020A 8000 NS 8000	D	ND				10	5	5	ŭ		
Arsenic, Total 6020A 900 NS 900 < 0.5	NT		NT	NT	NT				ug/l		
Barium, Total											
Cadmium, Total 6020A											
Chromium, Total 6020A 300 NS 300 10 149											
Chromium, Hexavalent 6020A 300 NS 300 < 10 Copper, Total 6020A NS NS NS NS 1.49 Iron, Total 200.7 NS NS NS NS < 50											
Copper, Total 6020A											
Iron, Total 200.7											
Mercury, Total 245.1 20 NS 20 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.											
Nickel, Total 6020A 200 NS 200 2.45											
Selenium, Total 6020A 100 NS 100 Silver, Total 6020A 7 NS 7 Silver, Total 6020A 900 NS 900 Silver, Total 6020A 900 NS 900 Silver, Total Silver, To											
Silver, Total 6020A 7 NS 7 < 0.4											
Zinc, Total 6020A 900 NS 900	14	< 0.4									
General Chemistry ug/l NT NT NT Solids, Total Suspended 2540D NS NS NS NS Solids, Total Suspended <500C											
Solids, Total Suspended 2540D NS NS NS NS < 5000 Cyanide, Total 4500CN-CE 30 NS 30 < 5 F-	NT	1.0	NT	NT	NT	555			ug/l	552571	
Cyanide, Total 4500CN-CE 30 NS 30 < 5 F- Chlorine, Total Residual 4500CL-D NS NS NS NS TPH 8100M or 1664A NS NS NS NS Phenolics, Total 420.1 NS NS NS < 30		< 5000				NS	NS	NS	,	2540D	
TPH 8100M or 1664A NS NS NS NS 4000 Phenolics, Total 420.1 NS NS NS NS <30	F-	< 5 F-				30	NS	30		4500CN-CE	Cyanide, Total
Phenolics, Total 420.1 NS NS NS < 30											
		< 30		1.7		NS	NS	NS		420.1	
Anions by Ion Chromatography ug/l NT NT NT Chloride 300.0 NS NS NS 1,200,000	NT	1,200,000	NT	NT*	NT	l No	NO	NO	ug/l	000.0	

- General Notes:

 1. Only analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.

 2. "<" = Analyte not detected at a concentration above the laboratory reporting limit.

 3. Method 1 standards are cited from the Massachusetts Contingency Plan 310 CMR 40.0000 (MCP), with revisions effective June 20, 2014.

 4. µg/L = micrograms per liter

 5. Values in bold exceed Method 1 standards.

 6. NS = No Method 1 standard established.

 7. µg/L = micrograms per liter

 8. ND = Analyte(s) not detected

 9. W&S results: VOCs by 8260, PAHs by 8100, TPH by 8100M; GEI results: VOCs by 8260C, PAHs by 8270-SIM, TPH by 1664A

 Qualifiers:

Qualifiers:

F- The result has a low bias due to matrix spike recovery below lower control limits.

					Sample ID: Sample Date: mple Depth (ft) Sampled By:	TP-101(0-3') 2/26/2017 0 - 3 GEI	TP-103(0-3') 2/26/2017 0 - 3 GEI	TP-104(0-3') 2/26/2017 0 - 3 GEI	TP-105(10') 2/26/2017 10 GEI	TP-105(0-10') 2/26/2017 0 - 10 GEI	TP-106(0-2') 2/26/2017 0 - 2 GEI	TP-107(0-3') 2/26/2017 0 - 3 GEI	TP-108(8') 2/26/2017 8 GEI	TP-108(0-8') 2/26/2017 0 - 8 GEI	B301-S7(10-15") 3/2/2017 12.75 GEI	B301-COMP (0-3') 3/2/2017 0 - 3 GEI	B302-S4 (0-8") 2/27/2017 6.0 GEI	B303-S9 (2/28/20 20 GEI
alyte	Method	Units	MCP RCS-1	Method 1 S-1/GW-2	Method 1 S-1/GW-3													
latile Organics Compounds (VOCs)	8260C	mg/kg	WOF ROS-I	3-1/044-2	3-1/644-5	NT	NT	NT		NT	NT	NT	NT	NT		NT		
Benzene			2	40	40				< 0.064						< 0.03 < 0.03		< 0.05	< 0.05
Trichloroethene atile Petroleum Hydrocarbons (VPH)	VPH-04-1.1	mg/kg	0.3	0.3	30	NT	NT	NT	< 0.064 NT	NT	NT	NT		NT	< 0.03	NT	< 0.05	< 0.05
C9-C10 Aromatics	***************************************	griig	100	100	100								< 2.69		< 2.28		< 2.62	< 2.7
C5-C8 Aliphatics, Adjusted			100	100	100								< 2.69		< 2.28		< 2.62	< 2.7
C9-C12 Aliphatics, Adjusted mivolatile Organic Compounds (SVOCs)	8270D	mg/kg	1000	1000	1000	NT	NT	NT	NT		NT	NT	< 2.69 NT	NT	< 2.28 NT	NT	< 2.62 NT	< 2.7 NT
Acenaphthene		- 0	4	1000	1000					1.1								
Acenaphthylene Anthracene			1 1000	600 1000	10 1000					< 0.31								
Benzo(a)anthracene			7	7	7					2.3 5.5								
Benzo(a)pyrene			2	2	2					5.1								
Benzo(b)fluoranthene Benzo(g,h,i)perylene			7 1000	1000	1000					6.3 2.5								
Benzo(k)fluoranthene			70	70	70					2.2								
Chrysene Dibenzo(a,h)anthracene			70 0.7	70 0.7	70 0.7					5 0.66								
Dibenzofuran			100	NS	NS					0.74								
Di-n-butylphthalate			50	NS	NS					< 0.38								
Fluoranthene Fluorene			1000 1000	1000 1000	1000 1000					11 0.98					+	+		1
Indeno(1,2,3-cd)pyrene			7	7	7					2.9								
2-Methylnaphthalene			0.7	80	300			-		< 0.46					_			
Naphthalene Phenanthrene			4 10	20 500	500 500					0.66 9.8					+			1
Pyrene			1000	1000	1000					9.6								
tractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	mg/kg	4000	4000	4000	NT	NT	NT	NT	NT	NT	NT	< 7.74	NT	< 7.38	NT	< 8.14 G	< 7.8
C9-C18 Aliphatics C11-C22 Aromatics, Adjusted			1000 1000	1000 1000	1000 1000								< 7.74 40.8		< 7.38 < 7.38		< 8.14 G < 8.14	< 7.8
C19-C36 Aliphatics			3000	3000	3000								20.2		< 7.38		< 8.14 G	< 7.8
Anthracene Benzo(a)anthracene			1000	1000	1000								0.465 1.37		< 0.369 < 0.369		< 0.407 < 0.407	< 0. < 0.
Benzo(a)pyrene			2	2	2								1.41		< 0.369		< 0.407	< 0.
Benzo(b)fluoranthene			7	7	7								1.11		< 0.369		< 0.407	< 0
Benzo(g,h,i)perylene Benzo(k)fluoranthene			1000 70	1000 70	1000 70								0.902 1.27		< 0.369 < 0.369		< 0.407 < 0.407	< 0
Chrysene			70	70	70								1.64		< 0.369		< 0.407	< 0
Fluoranthene			1000 7	1000	1000 7								3.33 1.04		< 0.369 < 0.369		< 0.407 < 0.407	< 0. < 0.
Indeno(1,2,3-cd)Pyrene Phenanthrene			10	500	500								2.01		< 0.369		< 0.407	< 0.
Pyrene			1000	1000	1000								2.79		< 0.369		< 0.407	< 0.3
nlorinated Herbicides ganochlorine Pesticides	8151A 8081B	mg/kg mg/kg	NS	NS	NS	NT	NT	NT	NT	ND	NT	NT	NT	NT	NT NT	NT NT	NT	NT
Endosulfan II	00012	mg/kg	0.5	300	1					0.0257 G						141		
tal Petroleum Hydrocarbons (TPH)		mg/kg	1000	1000		NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	N7
TPH lychlorinated Biphenyls (PCBs)	8082A	mg/kg	1000	1000	1000				NT	330			NT		NT		NT	N ⁻
Aroclor 1254	000271	griig	1	1	1	< 0.0374	< 0.0355	< 0.039		0.0759	< 0.038	< 0.0377		< 0.0383		< 0.038		
PCBs, Total			1	1	1	< 0.0374	< 0.0355	< 0.039		0.0759	< 0.038	< 0.0377		< 0.0383	NT	< 0.038	NT	NT
tal Metals Antimony, Total	6010C	mg/kg	20	20	20	< 2.3	NT	NT	NT	< 2.3	NT	< 2.2	NT	NT	NI	NT	NI	NI
Arsenic, Total	6010C		20	20	20	5.1	5.2	7.1		12	4.3	8.2		5				
Barium, Total Beryllium, Total	6010C 6010C		1000	1000	1000	54	34 NT	47 NT		79	24 NT	98		42 NT				
Cadmium, Total	6010C		90 70	90 70	90 70	0.36 < 0.46	< 0.43	< 0.47		0.33 < 0.45	< 0.45	0.36 < 0.45		< 0.46				
Chromium, Total	6010C		100	100	100	11	13	15		12	6.8	17		12				
Lead, Total	6010C 7471B		200 20	200 20	200 20	130 0.417	38 0.326	97 0.42		270 0.532	52 0.262	290 1.25		80 0.46				
	6010C		600	600	600	8.3	NT	NT		24	NT	111		NT				
Mercury, Total Nickel, Total	6010C		400	400	400	< 2.3	< 2.2	< 2.3		< 2.3	< 2.2	< 2.2		< 2.3				
			100	100	100	< 0.46 < 2.3	< 0.43 NT	< 0.47 NT		< 0.45 < 2.3	< 0.45 NT	< 0.45 < 2.2		< 0.46 NT				
Nickel, Total Selenium, Total Silver, Total	6010C		8	8	8		141	NT		23	NT	21		NT				
Nickel, Total Selenium, Total Silver, Total Thallium, Total Vanadium, Total	6010C 6010C 6010C		8 400	8 400	8 400	21	NT				NT	110		NT	NT	NT	NT	N
Nickel, Total Selenium, Total Silver, Total Thallium, Total Vanadium, Total Zinc, Total	6010C		8	8 400 1000		21 100	NT	NT	NT	190	NIT	I	NIT					IN
Nickel, Total Selenium, Total Silver, Total Thallium, Total Vanadium, Total Zinc, Total LP Metals by EPA 1311	6010C 6010C 6010C 6010C	mg/L	8 400	1000	400 1000	21 100			NT		NT	< 0.5	NT	NT			NI	
Nickel, Total Selenium, Total Silver, Total Thallium, Total Vanadium, Total Zinc, Total LP Metals by EPA 1311 Lead, Total neral Chemistry	6010C 6010C 6010C 6010C 6010C		8 400 1000	1000 NS	400 1000 NS	21 100 < 0.5	NT NT	NT NT		< 0.5		< 0.5						
Nickel, Total Selenium, Total Silver, Total Thallium, Total Vanadium, Total Zinc, Total LP Metals by EPA 1311 Lead, Total neral Chemistry Solids, Total	6010C 6010C 6010C 6010C 6010C 6010C	%	8 400 1000 5 NS	1000 NS NS	400 1000 NS NS	21 100 < 0.5 84.4	NT NT 91.7	NT NT	80	< 0.5 85.3	87.3	86.7	81.8	85.5	89.4	86.2	78.8	80 N
Nickel, Total Selenium, Total Silver, Total Thallium, Total Vanadium, Total Zinc, Total P Metals by EPA 1311 Lead, Total Teral Chemistry Solids, Total Specific Conductance (25° C)	6010C 6010C 6010C 6010C 6010C		8 400 1000	1000 NS	400 1000 NS	21 100 < 0.5	NT NT	NT NT		< 0.5								80 N
Nickel, Total Selenium, Total Silver, Total Thallium, Total Vanadium, Total Zinc, Total Zinc, Total P. Metals by EPA 1311 Lead, Total Lead, Total Specific Conductance (25° C) pH (H) Cyanide, Reactive	6010C 6010C 6010C 6010C 6010C 6010C 2540G 9050A 9045D 1,7.3	% umhos/cm SU mg/kg	8 400 1000 5 NS NS	NS NS NS NS NS NS NS	400 1000 NS NS NS NS NS	21 100 < 0.5 84.4 NT NT	91.7 NT NT NT NT	NT NT 84.7 NT NT	80 NT NT	< 0.5 85.3 110 8.1 < 10	87.3 NT NT NT	86.7 NT NT NT	81.8 NT NT NT	85.5 NT NT NT	89.4 NT NT NT	86.2 NT NT NT	78.8 NT NT NT	N N
Nickel, Total Selenium, Total Silver, Total Thallium, Total Vanadium, Total Zinc, Total Zinc, Total Zinc, Total Zinc, Total Lead, Total Le	6010C 6010C 6010C 6010C 6010C 6010C 2540G 9050A 9045D 1,7.3 1,7.3	% umhos/cm SU mg/kg mg/kg	8 400 1000 5 NS NS NS NS	NS NS NS NS NS NS NS NS NS	400 1000 NS NS NS NS NS NS	21 100 < 0.5 84.4 NT NT NT	91.7 NT NT NT NT NT	84.7 NT NT NT NT NT	80 NT NT NT	< 0.5 85.3 110 8.1 < 10 < 10	87.3 NT NT NT	86.7 NT NT NT NT	81.8 NT NT NT NT	85.5 NT NT NT	89.4 NT NT NT	86.2 NT NT NT NT	78.8 NT NT NT NT	N N N
Nickel, Total Selenium, Total Silver, Total Thallium, Total Vanadium, Total Zinc, Total Zinc, Total Zinc, Total P Metals by EPA 1311 Lead, Total eral Chemistry Solids, Total Specific Conductance (25° C) PH (H) Cyanide, Reactive	6010C 6010C 6010C 6010C 6010C 6010C 2540G 9050A 9045D 1,7.3	% umhos/cm SU mg/kg	8 400 1000 5 NS NS	NS NS NS NS NS NS NS	400 1000 NS NS NS NS NS	21 100 < 0.5 84.4 NT NT	91.7 NT NT NT NT	NT NT 84.7 NT NT	80 NT NT	< 0.5 85.3 110 8.1 < 10	87.3 NT NT NT	86.7 NT NT NT	81.8 NT NT NT	85.5 NT NT NT	89.4 NT NT NT	86.2 NT NT NT	78.8 NT NT NT	N N

Qualifiers:
G The result is estimated due to duplicate precision outside control limits.

				Sa	Sample ID: Sample Date: mple Depth (ft) Sampled By:	B305-S7(9-13") 3/2/2017 13 GEI	B306-S7(8-14") 3/3/2017 12-14 GEI	B307-S7 (6-18") 2/27/2017 12.5 GEI	B308-S2 (0-18") 3/1/2017 3 GEI	B308-S7 (0-10") 3/1/2017 12 GEI	B308-COMP (0-8") 3/1/2017 0 - 8 GEI	B308-COMP (8-22") 3/1/2017 8 - 22 GEI
Analyte Volatile Organics Compounds (VOCs)	Method 8260C	Units mg/kg	MCP RCS-1	Method 1 S-1/GW-2	Method 1 S-1/GW-3						NT	NT
Benzene	02000	mgrkg	2	40	40	< 0.037	<0.049	< 0.053	0.049	< 0.04		
Trichloroethene	V/DI I 04 4 4		0.3	0.3	30	< 0.037	0.063	< 0.053	< 0.048	0.25	NT	NIT
Volatile Petroleum Hydrocarbons (VPH) C9-C10 Aromatics	VPH-04-1.1	mg/kg	100	100	100	< 2.06	<2.40	< 2.82	NT	NT	NT	NT
C5-C8 Aliphatics, Adjusted			100	100	100	< 2.06	<2.40	< 2.82			4	
C9-C12 Aliphatics, Adjusted Semivolatile Organic Compounds (SVOCs)	00700		1000	1000	1000	< 2.06	<2.40	< 2.82	NT	NT		
Acenaphthene (SVOCS)	8270D	mg/kg	4	1000	1000	NT	NT	NT	NT	NT	3.9	< 0.15
Acenaphthylene			1	600	10						0.23	< 0.15
Anthracene			1000	1000	1000						11	< 0.11
Benzo(a)anthracene Benzo(a)pyrene			7 2	7 2	7 2						16 15	0.2 0.17
Benzo(b)fluoranthene			7	7	7						19	0.17
Benzo(g,h,i)perylene			1000	1000	1000						7.6	< 0.15
Benzo(k)fluoranthene		-	70 70	70 70	70 70						4.1 15	< 0.11 0.18
Chrysene Dibenzo(a,h)anthracene			0.7	0.7	0.7		 				2.0	< 0.11
Dibenzofuran			100	NS	NS						2.6	< 0.18
Di-n-butylphthalate			50	NS 4000	NS 1000						0.36	0.21
Fluoranthene Fluorene			1000 1000	1000 1000	1000 1000		1				40 5.6	0.41 < 0.18
Indeno(1,2,3-cd)pyrene			7	7	7						8.8	< 0.15
2-Methylnaphthalene			0.7	80	300						0.74	< 0.22
Naphthalene Phenanthrene			10	20 500	500 500						0.55 37	< 0.18 0.34
Pyrene			1000	1000	1000					_	32	0.36
Extractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	mg/kg							NT	NT	NT	NT
C9-C18 Aliphatics			1000	1000	1000	< 6.9 < 6.9	<7.28	< 8.21 G < 8.21				
C11-C22 Aromatics, Adjusted C19-C36 Aliphatics			1000 3000	1000 3000	1000 3000	< 6.9	<7.28 <7.28	< 8.21 G				
Anthracene			1000	1000	1000	< 0.345	< 0.364	< 0.41				
Benzo(a)anthracene			7	7	7	< 0.345	<0.364	< 0.41				
Benzo(a)pyrene Benzo(b)fluoranthene			7	7	7	< 0.345 < 0.345	<0.364 <0.364	< 0.41 < 0.41				
Benzo(g,h,i)perylene			1000	1000	1000	< 0.345	<0.364	< 0.41				
Benzo(k)fluoranthene			70	70	70	< 0.345	<0.364	< 0.41				
Chrysene Fluoranthene			70 1000	70 1000	70 1000	< 0.345 < 0.345	<0.364 <0.364	< 0.41 < 0.41				
Indeno(1,2,3-cd)Pyrene			7	7	7	< 0.345	<0.364	< 0.41				
Phenanthrene			10	500	500	< 0.345	<0.364	< 0.41				
Pyrene Chlorinated Herbicides	8151A	mg/kg	1000 NS	1000 NS	1000 NS	< 0.345 NT	<0.364 NT	< 0.41 NT	NT	NT	ND	ND
Organochlorine Pesticides	8081B	mg/kg	140	140	140	NT	NT	141	N.	14.1	145	145
Endosulfan II			0.5	300	1						< 0.00921	< 0.00854
Total Petroleum Hydrocarbons (TPH) TPH		mg/kg	1000	1000	1000	NT	NT	NT	NT	NT	313	< 36.6
Polychlorinated Biphenyls (PCBs)	8082A	mg/kg	1000	1000	1000	NT	NT	NT	NT	NT	313	× 30.0
Aroclor 1254		Ŭ	1	1	1						< 0.0384	< 0.0355
PCBs, Total Total Metals		mg/kg	1	1	1	NT	NT	NT	NT	NT	< 0.0384	< 0.0355
Antimony, Total	6010C	IIIg/kg	20	20	20	INI	INT	NI	INI	NI	< 2.3	< 2.2
Arsenic, Total	6010C		20	20	20						3.3	3
Barium, Total	6010C		1000	1000	1000						48	25
Beryllium, Total Cadmium, Total	6010C 6010C		90 70	90 70	90 70						< 0.23 < 0.45	< 0.22 < 0.44
Chromium, Total	6010C		100	100	100						9.1	16
Lead, Total	6010C		200	200	200						56	12
Mercury, Total Nickel, Total	7471B 6010C		20 600	20 600	20 600						0.207 6.3	< 0.072 10
Selenium, Total	6010C		400	400	400						< 2.3	< 2.2
Silver, Total	6010C		100	100	100						< 0.45	< 0.44
Thallium, Total Vanadium, Total	6010C 6010C		8 400	8 400	8 400						< 2.3 11	< 2.2 19
Zinc, Total	6010C		1000	1000	1000						50	38
TCLP Metals by EPA 1311		mg/L				NT	NT	NT	NT	NT	NT	NT
Lead, Total	6010C		5	NS	NS						<u> </u>	
General Chemistry Solids. Total	2540G	%	NS	NS	NS	92.3	87.2	80.7	91.7	93.3	85.9	89.7
Specific Conductance (25° C)	9050A	umhos/cm	NS	NS	NS	NT	NT	NT	NT	NT	300	91
pH (H)	9045D	SU	NS	NS	NS	NT	NT	NT	NT	NT	8.2	8.4
Cyanide, Reactive Sulfide, Reactive	1,7.3 1,7.3	mg/kg mg/kg	NS NS	NS NS	NS NS	NT NT	NT NT	NT NT	NT NT	NT NT	< 10 < 10	< 10 < 10
Oxidation/Reduction Potential	1498	mv	NS NS	NS	NS	NT	NT	NT	NT	NT	140	130
Paint Filter Liquid	9095B	NA	NS	NS	NS	NT	NT	NT	NT	NT	Negative	Negative
Ignitability	1030	NA	NS	NS	NS	NT	NT	NT	NT	NT	NI	NI

- General Notes:

 1. In general, only analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
 2. <= less than reported detection limits
 3. MCP = 310 CMR 40.0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.
 4. Method 1 Standards (e.g., S-1/GW-2) and UCLs, where identified, are cited from the MCP.
 5. ND = None detected above laboratory detection limit.
 6. mg/kg = milligrams per kilogram.
 7. Values in bold exceed Method 1 standards.
 8. NI = Not Ignitable.
 9. TCLP = Total Characteristic Leaching Procedure.

Qualifiers:
G The result is estimated due to duplicate precision outside control limits.

Table 7. Minimum and Maximum Concentrations - Soil
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

													Maximum Detect Location		Exposure Point Concentration (Upper Concentration Limit using 90% KM Chebychev) (mg/kg)			Lead Hot Spot Exposure Point Concentration (Average) (mg/kg)	
A		Method	Units	MCP RCS-1	Method 1 S-1/GW-2	Method 1 S-1/GW-3	Number of Detections	Number of Samples	Detection Frequency (%)	Minimum Detected Value (mg/kg)	Minimum Detect Location	Maximum Detected Value (mg/kg)		Contaminant of Concern?	0-3 feet	EPC footnote	0-15 feet	EPC footnote	Samples B202, B211 5-7 feet
Analyte Volatile Organics Compounds (VOCs)		8260C	mg/kg	 			 								0-01001	iootiiote	0-10 1001	iootiiote	0-7 1001
Benzene	71-43-2	02000	mg/kg	2	40	40	1	15	7%	0.049	B308-S2 (0-18")	0.049	B308-S2 (0-18")	Yes	0.05	1,2	0.05	2	NT
Trichloroethene	79-01-6			0.3	0.3	30	2	15	13%	0.063	B306-S7(8-14")	0.25	B308-S7 (0-10")	Yes	<0.048	1,2	0.25	2	NT
Xylenes, Total	1330-20-7			100	100	500	1	14	7%	0.032	WS-12	0.032	WS-12	Yes	<0.097	1,2	0.032	2	NT
n-Butylbenzene	104-51-8			#N/A	NS	NS	1	14	7%	0.47	WS-12	0.47	WS-12	No	-		-		
sec-Butylbenzene	135-98-8			#N/A	NS	NS	1	14	7%	0.27	WS-12	0.27	WS-12	No	-		-		
tert-Butylbenzene Isopropylbenzene	98-06-6 98-82-8			#N/A #N/A	NS NS	NS NS	1	14 14	7% 7%	0.036 0.33	WS-12 WS-12	0.036 0.33	WS-12 WS-12	No No	-			-	
Naphthalene	91-20-3			4	20	500	1	14	7%	0.16	WS-12	0.16	WS-12	Yes	<0.19	1,2	0.16	2	NT
n-Propylbenzene	103-65-1			#N/A	NS	NS	1	14	7%	0.76	WS-12	0.76	WS-12	No					
1,2,4-Trimethylbenzene	95-63-6			#N/A	NS	NS	1	14	7%	0.07	WS-12	0.07	WS-12	No	-			-	
Semivolatile Organic Compounds (SVOCs)	•	8270D	mg/kg																
Acenaphthene	83-32-9			4	1000	1000	47	52	90%	0.057	B108-S3	20	B112-S3	Yes	0.99	4	2.6	4	NT
Acenaphthylene	208-96-8			1 1	600	10	30	52	58%	0.04	B110-S1	0.96	B102-S2	Yes	0.21	4	0.27	4	NT
Anthracene	120-12-7			1000	1000	1000	49	52	94%	0.03	B103-S3	13	B114-S2	Yes	2.03	4	2.9	4	NT
Benzo(a)anthracene	56-55-3 50-32-8			7 2	7	7 2	50 50	52 52	96% 96%	0.064 0.046	B103-S3 B103-S3	39 35	B112-S3 B112-S3	Yes Yes	4.6	4	7.2	4	NT NT
Benzo(a)pyrene Benzo(b)fluoranthene	205-99-2		_	7	7	7	50	52	96%	0.046	B103-S3 B103-S3	29	B112-S3 B112-S3	Yes Yes	4.3 3.3	4	6.6 5.6	4	NT NT
Benzo(g,h,i)perylene	191-24-2			1000	1000	1000	46	52	88%	0.03	B108-S3	16	B114-S2	Yes	2.3	4	2.9	4	NT NT
Benzo(k)fluoranthene	207-08-9			70	70	70	49	52	94%	0.039	B103-S3	29	B112-S3	Yes	3.5	4	5.2	4	NT
Chrysene	218-01-9			70	70	70	50	52	96%	0.094	B103-S3	40	B112-S3	Yes	4.8	4	7.3	4	NT
Dibenzo(a,h)anthracene	53-70-3			0.7	0.7	0.7	43	52	83%	0.014	B105-S3	5.7	B114-S2	Yes	0.82	4	1.1	4	NT
Dibenzofuran	132-64-9			100	NS	NS	2	52	4%	0.74	TP-105(0-10')	2.6	B308-COMP (0-8")	No					
Di-n-butylphthalate	84-74-2			50	NS	NS	2	52	4%	0.21	B308-COMP (8-22")	0.36	B308-COMP (0-8")	No	-			-	-
Fluoranthene	206-44-0			1000	1000	1000	51	52	98%	0.042	B101-S3	96	B112-S3	Yes	10	4	17	4	NT
Fluorene	86-73-7			1000	1000	1000	46	52	88%	0.086	B111-S1	17	B112-S3	Yes	0.98	4	2.3	4	NT
Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene	193-39-5 91-57-6			0.7	80	300	46 34	52 52	88% 65%	0.12 0.032	B108-S3 B103-S3	15 23	B114-S2 WS-12	Yes Yes	2.1 0.34	4	2.8	4	NT NT
Naphthalene	91-20-3			4	20	500	43	52	83%	0.032	B103-S3	14	B112-S3	Yes	0.61	4	2.05 1.5	4	NT NT
Phenanthrene	85-01-8			10	500	500	51	52	98%	0.06	B101-S3	110	B112-S3	Yes	9.1	4	1.5	4	NT
Pyrene	129-00-0			1000	1000	1000	51	52	98%	0.038	B101-S3	80	B112-S3	Yes	9.2	4	14	4	NT
Extractable Petroleum Hydrocarbons (EPH)		EPH-04-1.1	mg/kg																
C11-C22 Aromatics, Adjusted	C11-C22			1000	1000	1000	11	22	50%	40.8	TP-108(8')	520	B202(S)	Yes	190	3	182	4	520
C19-C36 Aliphatics	C19-C36			3000	3000	3000	3	22	14%	20.2	TP-108(8')	65	SP-1	Yes	55	1,2	55	2	<53
Acenaphthylene	83-32-9 208-96-8			4	1000 600	1000	12	22	55% 27%	0.35	SS-4 B201(D)	6.3 1.3	B201(D) B202(S)	Yes Yes	1.6 0.67	3	1.7	4	5 1.3
Acenaphthylene Anthracene	120-12-7			1000	1000	1000	15	22	68%	0.46	B207(S)	1.3	B202(S)	Yes	3.7	3	0.60 3.7	4	1.5
Benzo(a)anthracene	56-55-3			7	7	7	16	22	73%	1	B204(S)	19	B202(S)	Yes	9.4	3	7.5	4	19
Benzo(a)pyrene	50-32-8			2	2	2	16	22	73%	0.9	B204(S)	15	B202(S)	Yes	8.7	3	6.5	4	15
Benzo(b)fluoranthene	205-99-2			7	7	7	16	22	73%	1.1	B204(S)	19	B201(D)	Yes	12	3	8.2	4	17
Benzo(g,h,i)perylene	191-24-2			1000	1000	1000	16	22	73%	0.55	B204(S)	8.4	B201(D)	Yes	6.1	3	4.1	4	8.4
Benzo(k)fluoranthene	207-08-9			70	70	70	15	22	68%	0.33	B207(S)	5.9	B202(S)	Yes	4.4	3	3.0	4	5.9
Chrysene	218-01-9			70	70	70	16	22	73%	0.99	B204(S)	18	B202(S)	Yes	9.1	3	7.1	4	18
Dibenzo(a,h)anthracene	53-70-3			0.7	0.7	0.7	12	22	55%	0.042	SS-4	2.6	B201(D)	Yes	1.6	3	1.2	4	2.6
Fluoranthene Fluorene	206-44-0 86-73-7			1000 1000	1000	1000 1000	16 12	22 22	73% 55%	0.96 0.32	B203(S) SP-1	41 5	B201(D) B202(S)	Yes Yes	20 1.4	3	16 1.7	4	41 5
Indeno(1,2,3-cd)Pyrene	193-39-5			7	7	7	16	22	73%	0.59	B204(S)	9.7	B202(S) B201(D)	Yes	7.0	3	4.7	4	9.2
2-Methylnaphthalene	91-57-6			0.7	80	300	5	22	23%	0.31	SP-3	2.6	B202(S)	Yes	0.31	1,2	2.6	2	2.6
Naphthalene	91-20-3			4	20	500	7	22	32%	0.29	SP-3	4	B202(S)	Yes	0.69	3	1.2	4	4
Phenanthrene	85-01-8			10	500	500	16	22	73%	1.6	B206(S)	48	B202(S)	Yes	18	3	16	4	48
Pyrene	129-00-0			1000	1000	1000	16	22	73%	2	B204(S)	40	B202(S)	Yes	16	3	14	4	40
Chlorinated Herbicides		8151A	mg/kg	NS	NS	NS	0	0	0%	NA	NA	NA	NA	No	-				
Organochlorine Pesticides	100045	8081B	mg/kg		NA	ļ					TD 40512		TD 405/2	ļ					
Endosulfan II	33213-65-9			NS	NS	NS	1	3	33%	0.026	TP-105(0-10')	0.026	TP-105(0-10')	No	-		-		
Total Petroleum Hydrocarbons (TPH) TPH	TPH		mg/kg	1000	1000	1000	49	57	86%	110	B108-S3	8400	WS-12	Von	377	4	1000	4	NT
Polychlorinated Biphenyls (PCBs)	IFN	8082A	mg/kg	1000 4	1000	1000	49	3/	00%	110	D 100-53	0400	VV 3-12	Yes	3//	4	1239	4	IN I
PCBs, Total	1336-36-3	0002A	ilig/kg	1	1	1	5	71	7%	0.03	B104-S1	0.0759	TP-105(0-10')	Yes	0.068	2	0.046	4	NT
Total Metals	1.000 00 0		mg/kg	 		<u> </u>	Ť	· · ·	. 70	5.00	2.0701	3.57 00			0.000		0.040	1	441
Arsenic, Total	7440-38-2	6010C	.53	20	20	20	18	81	22%	2.6	B105-S3	20	SP-2	Yes	14	4	10	4	NT
Barium, Total	7440-39-3	6010C		1000	1000	1000	15	81	19%	24	TP-106(0-2')	98	TP-107(0-3')	Yes	78	4	70	4	NT
Beryllium, Total	7440-41-7	6010C		90	90	90	3	81	4%	0.33	TP-105(0-10')	0.36	TP-101(0-3')	Yes	0.36	1,2	0.36	1,2	NT
Cadmium, Total	7440-43-9	6010C		70	70	70	1	81	1%	2.4	B105-S1	2.4	B105-S1	Yes	2.4	2	2.4	2	NT
Chromium, Total	7440-47-3	6010C		100	100	100	18	81	22%	6.8	TP-106(0-2')	54	WS-2	Yes	26	4	28	4	NT
Lead, Total	7439-92-1	6010C		200	200	200	81	81	100%	10	B205(S)	13000	B211	Yes	336	4	1163	4	10000
Mercury, Total	7439-97-6	7471B		20	20	20	15	81	19%	0.16	SP-3	1.25	TP-107(0-3')	Yes	0.808	4	0.58	4	NT
Nickel, Total Vanadium, Total	7440-02-0 7440-62-2	6010C 6010C		600 400	600 400	600 400	5	81 81	6% 6%	6.3 11	B308-COMP (0-8") B308-COMP (0-8")	24 23	TP-105(0-10') TP-105(0-10')	Yes Yes	11	1,2	24	1	NT NT
Zinc, Total	7440-62-2	6010C	_	1000	1000	1000	5	81	6%	38	B308-COMP (0-8")	190	TP-105(0-10')	Yes Yes	21 110	1,2 1,2	23 190	1	NT NT
	1 440 00-0	00100		1000	1000	1000			J /0		2000 COMI (U-ZZ)	100	11 100(0-10)	163	110	1,2	190	1 1	(N I

- General Notes:

 1. MCP = 310 CMR 40.0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.

 2. Method 1 Standards (e.g., S-1/GW-2) and UCLs, where identified, are cited from the MCP.

 3. ND = None detected above laboratory detection limit. NT = Not tested.

 4. #N/A = No standard has been promulgated for this analyte.

 5. mg/kg = milligrams per kilogram.

 6. Values in bold exceed Method 1 standards.

 7. Summary statistics include data from both Weston & Sampson and GEI (0 to 15 feet deep).

EPC Footnotes:

1 MDC used (small sample size, n < 6)
2 MDC used (too few detected values, n ≤ 3)
3 MDC used, MDC<UCL
4 UCL = 90% Chebychev from ProUCL

Table 8. Minimum and Maximum Concentrations - Groundwater Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

					Number of	Number of	Detection	Minimum Detected	Minimum Datast	Maximum Datastad	Maximum Datast	Contaminant of	Exposure Point
			Method 1	Method 1	Number of Detections	Number of Samples	Detection Frequency (%)	Value (ug/l)	Minimum Detect Location	Maximum Detected Value (ug/l)	Maximum Detect Location	Concern?	Concentration
Analyte	Method	Units	GW-2	GW-3									
MCP Volatile Organic Compounds (VOCs)	8260C	ug/l	50	00000	,		570/		D/A #IA/\0000	10	D/MM/\000		40
Tetrachloroethene			50	30000	4	7	57%	1	B(MW)308	19	B(MW)302	Yes	19
Vinyl chloride Trichloroethene			2 5	50000 5000	1	7	14% 57%	6	B(MW)306	6.3 93	B(MW)306	Yes Yes	6.3 93
			20	5000	4	7	43%	2	B(MW)305	64	B(MW)306		
cis-1,2-Dichloroethene 1,2-Dichloroethene (total)			20	50000	3	7	43%	6	B(MW)308 B(MW)308	64	B(MW)306 B(MW)306	Yes Yes	64 64
Ethyl ether			NS	NS	1	7	14%	2	B(MW)308	2.4	B(MW)308	Yes	2.4
1,4-Dioxane	+		6000	50000	0	7	0%	NA NA	NA	NA	NA	No	NA
Volatile Organic Compounds (VOCs) by GC/MS	8260C	ug/l	0000	30000	0	,	070	INA	INA	IVA	INA	INO	INA
Chloroform	52555	ug/i	50	20000	1	14	7%	9	WS-6	9.1	WS-6	Yes	9.1
p-Isopropyltoluene			NS	NS	3	14	21%	1	B(MW)307	2.8	WS-12	No	2.8
Tetrachloroethene			50	30000	1	14	7%	1	B(MW)307	0.92	B(MW)307	Yes	0.92
Trichloroethene			5	5000	2	14	14%	1	B(MW)307	2.2	WS-5	Yes	2.2
Volatile Organic Compounds (VOCs) by GC/MS-SIM	8260C BY SIM	ug/l							, ,				
1,4-Dioxane			6000	50000	0	1	0%	NA	NA	NA	NA	No	NA
Volatile Petroleum Hydrocarbons (VPH)	VPH-04-1.1	ug/l											
C9-C10 Aromatics			4000	50000	0	15	0%	NA	NA	NA	NA	No	NA
C5-C8 Aliphatics, Adjusted			3000	50000	0	15	0%	NA	NA	NA	NA	No	NA
C9-C12 Aliphatics, Adjusted			5000	50000	0	15	0%	NA	NA	NA	NA	No	NA
Semivolatile Organic Compounds (SVOCs) by GC/MS-SIM	8100 or 8270D BY SIM	ug/l				_							
Acenaphthene			NA	10000	1	7	14%	2	B(MW)307	1.6	B(MW)307	Yes	1.6
Fluoranthene			NA NA	200	1	7	14%	1	B(MW)307	1.2	B(MW)307	Yes	1.2
Anthracene Fluorene			NA NA	30 40	1	7	14% 14%	1 2	B(MW)307	0.89	B(MW)307	Yes	0.89
Phenanthrene			NA NA	10000	1	7	14%	4	B(MW)307 B(MW)307	1.5 4.3	B(MW)307 B(MW)307	Yes Yes	1.5 4.3
Pyrene	+		NA NA	20	1	7	14%	1	B(MW)307	0.76	B(MW)307	Yes	0.76
1-Methylnaphthalene	+		NA NA	NS	1	7	14%	0	B(MW)307	0.70	B(MW)307	No	0.4
Extractable Petroleum Hydrocarbons (EPH)	EPH-04-1.1	ug/l	10.	110	· ·	,	1470	Ů	B(WW)001	0.1	B(WW)001	140	0.4
C9-C18 Aliphatics		,	5000	50000	0	15	0%	NA	NA	NA	NA	No	NA
C19-C36 Aliphatics			NS	50000	1	15	7%	140	WS-2	140	WS-2	Yes	140
C11-C22 Aromatics, Adjusted			50000	5000	1	15	7%	160	WS-12	160	WS-12	Yes	160
Naphthalene			700	20000	3	15	20%	1	B(MW)308	1.45	B(MW)307	Yes	1.45
2-Methylnaphthalene			2000	20000	1	15	7%	1	B(MW)307	0.652	B(MW)307	Yes	0.652
Acenaphthene			NA	10000	1	15	7%	2	B(MW)307	2.25	B(MW)307	Yes	2.25
Fluorene			NA	40	1	15	7%	2	B(MW)307	2.1	B(MW)307	Yes	2.1
Phenanthrene			NA	10000	2	15	13%	1	B(MW)305	5.53	B(MW)307	Yes	5.53
Anthracene			NA NA	30	1	15	7%	1	B(MW)307	0.994	B(MW)307	Yes	0.994
Fluoranthene			NA NA	200 20	1	15 15	7% 7%	2	B(MW)307 B(MW)307	1.57 0.942	B(MW)307	Yes	1.57 0.942
Pyrene Microextractables by GC	+	ug/l	INA	20	<u> </u>	15	1 70	'	D(IVIVV)307	0.942	B(MW)307	Yes	0.942
1,2-Dibromoethane	+	ug/i	2	50000	0	1	0%	NA	NA	NA	NA	No	NA
Polychlorinated Biphenyls (PCBs) by GC	608	ug/l		30000	-	'	070	IVA	IWA	14/3	IVA	140	TWA
Total PCBs	1 000	ug/i	5	10	0	1	0%	NA	NA	NA	NA	No	NA
Total Metals	1	ug/l					0.0	101		101	101		
Antimony, Total	6020A	,	NA	8000	0	14	0%	NA	NA	NA	NA	No	NA
Arsenic, Total	6020A		NA	900	0	14	0%	NA	NA	NA	NA	No	NA
Barium, Total	6020A		NA	50000	4	14	29%	0	WS-5	0.15	WS-8	Yes	0.15
Cadmium, Total	6020A		NA	4	1	14	7%	0	B(MW)307	0.41	B(MW)307	Yes	0.41
Chromium, Total	6020A		NA	300	0	14	0%	NA	NA	NA	NA	No	NA
Chromium, Hexavalent	6020A		NA	300	0	14	0%	NA	NA Barrana	NA	NA D/ANA/2007	No	NA 1.40
Copper, Total	6020A		NS	NS	1	14	7%	1	B(MW)307	1.49	B(MW)307	No No	1.49
Iron, Total	200.7		NS	NS 10	0	14	0%	NA NA	NA NA	NA NA	NA NA	No No	NA NA
Lead, Total Mercury, Total	6020A 245.1		NA NA	10 20	0	14 14	0% 0%	NA NA	NA NA	NA NA	NA NA	No No	NA NA
Nickel, Total	6020A		NA NA	200	1	14	7%	2	B(MW)307	2.45	B(MW)307	Yes	2.45
Selenium, Total	6020A		NA NA	100	0	14	0%	NA	NA	NA	NA	No	NA
Silver, Total	6020A		NA	7	0	14	0%	NA NA	NA NA	NA NA	NA NA	No	NA NA
Zinc, Total	6020A		NA	900	0	14	0%	NA NA	NA NA	NA NA	NA NA	No	NA
General Chemistry		ug/l											
Solids, Total Suspended	2540D		NS	NS	0	14	0%	NA	NA	NA	NA	No	NA
Cyanide, Total	4500CN-CE		NS	30	0	14	0%	NA	NA	NA	NA	No	NA
Chlorine, Total Residual	4500CL-D		NS	NS	0	14	0%	NA	NA	NA	NA	No	NA
TPH	8100M or 1664A		NS	NS	0	14	0%	NA	NA	NA	NA	No	NA
Phenolics, Total	420.1		NS	NS	0	14	0%	NA	NA	NA	NA	No	NA
Anions by Ion Chromatography	200.0	ug/l	NO	NO		22	F0/	1200000	D/MM/007	1200000	D/MM//207	N-	N1A
Chloride	300.0		NS	NS	1	22	5%	1200000	B(MW)307	1200000	B(MW)307	No	NA

- General Notes:

 1. MCP = 310 CMR 40.0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.

 2. Method 1 Standards (e.g., S-1/GW-2) and UCLs, where identified, are cited from the MCP.

 3. ND = None detected above laboratory detection limit.

- 4. NS = No standard has been promulgated for this analyte.
- 5. NA = Not applicable.

- 6. mg/kg = milligrams per kilogram.
 7. Values in bold exceed Method 1 standards.
 8. Summary statistics include data from both Weston & Sampson and GEI (0 to 15 feet deep).

Table 9. In-Situ Remedial Technologies Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement Parcel P-3, Tremont and Whittier Streets Boston, Massachusetts

Technology	Description				
Cap/Engineered Barrier	A cap is constructed to limit exposure to the contaminated soil via direct contact, ingestion, and inhalation pathways. An engineered barrier is a cap that specifically addresses soil with contaminant concentrations greater than Upper Concentration Limits (UCLs).				
Chemical Oxidation	Chemical oxidation chemically converts potentially hazardous contaminants to non-hazardous or less toxic compounds that are more stable, less mobile, and/or inert. Oxidizing agents most commonly used are ozone, hydrogen peroxide, hypochlorites, chlorine, and chlorine dioxide.				
Enhanced Bioremediation	Activity of naturally occurring microbes is stimulated by circulating water-based solutions through contaminated soils to enhance biological degradation of organic contaminants. Nutrients, oxygen, or other amendments may be used to enhance degradation and contaminant desorption from subsurface materials.				
Institutional Controls	Restrictions imposed on access to the property or on uses of the property by legal means. Such restrictions may include, among others, fencing, guards, and deed restrictions that limit accessibility/exposure to the contaminants.				
Multi-Phase Extraction (MPE)	MPE is applied through extraction wells to create a pressure/concentration gradient that induces soil contamination to diffuse to gas and dissolved phases. The process includes a system for separating and treating liquids and off-gases.				
Natural Attenuation	Natural subsurface processes—such as dilution, volatilization, biodegradation, adsorption, and chemical reactions with subsurface materials—are monitored for the reduction of contaminant concentrations.				
Phytoremediation	Phytoremediation is a technique that uses plants for the remediation of contaminants in soil, sediment, and groundwater through degradation, stabilization or contaminant removal.				
Soil Vapor Extraction (SVE)	SVE includes applying a vapor flow through the soil to extract volatile contaminants in the gas phase where they can be treated through carbon adsorption or oxidation.				
Soil Washing	Water, or water containing an additive to enhance contaminant solubility, is applied to the soil or injected into the groundwater to raise the water table into the contaminated soil zone. Contaminants are leached into the groundwater, which is then extracted and treated.				
Stabilization/ Solidification	Contaminants are physically bound or enclosed within a stabilized mass (solidification), or chemical reactions are induced between the stabilizing agent and contaminants to reduce their mobility (stabilization).				
Thermally- Enhanced Soil Vapor Extraction	Steam/hot air injection or electric/radio frequency heating is used to increase the mobility of volatile organic compounds above the water table and facilitate extraction. The process includes a system for treating off-gases.				
Vapor Mitigation System	Indoor vapors arising from subsurface contamination are mitigated with engineering controls, such as sub-slab ventilation piping, vapor barriers, and in some cases appropriate waterproofing products.				
Vitrification	Contaminated soils and sludges are melted at high temperature to form a glass and crystalline structure with very low leaching characteristics.				

Table 10. Ex-Situ Remedial Technologies
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont and Whittier Streets
Boston, Massachusetts

Technology	Description
Asphalt Batching	Contaminated soils are screened or crushed to a uniform size then blended with chemically engineered asphalt emulsions in a pugmill. The resulting material is stockpiled, cured and then used in place of standard asphalt for a variety of applications.
Bioslurry Reactors	An aqueous slurry is created by combining soil or sludge with water and other additives. The slurry is mixed to keep solids suspended and microorganisms in contact with the soil contaminants. Upon completion of the process, the slurry is dewatered and the treated soil is recycled or disposed of.
Chemical Oxidation	Chemical oxidation chemically converts potentially hazardous contaminants to non-hazardous or less toxic compounds that are more stable, less mobile, and/or inert. Oxidizing agents most commonly used are ozone, hydrogen peroxide, hypochlorites, chlorine, and chlorine dioxide.
Disposal (Landfilling)	Contaminated material is transported off-site for disposal at a permitted facility. Depending on the degree of contamination relative to landfill acceptance criteria, remediation waste may be reused as daily cover material at a local municipal landfill, or may require direct disposal in a hazardous waste or similar landfill.
Excavation	Soils are excavated and stockpiled or loaded directly for transport to be managed by an ex-situ technology or disposed of directly.
Incineration	High temperatures, 870 to 1,200 C (1,600- 2,200 F), are used to volatilize and combust (in the presence of oxygen) organic constituents in hazardous wastes.
Soil Washing	Contaminants sorbed onto fine soil particles are separated from bulk soil in an aqueous-based system on the basis of particle size. The wash water may be augmented with a basic leaching agent, surfactant, pH adjustment, or chelating agent to help remove organic compounds and heavy metals.
Solid-Phase Biological Treatment	Excavated soils are mixed with soil amendments and placed in aboveground enclosures. Processes include prepared treatment beds, bio-treatment cells, soil piles, and composting. For composting, contaminated soil is mixed with bulking agents and organic amendments such as wood chips, animal and vegetative wastes, which are added to enhance the porosity and organic content of the mixture to be decomposed.
Solvent Extraction	Waste and solvent are mixed in an extractor and the organic contaminants migrate into the solvent. The solvent and waste are then placed in a separator, where the treated waste and solvent are separated.
Stabilization/ Solidification	Contaminants are physically bound or enclosed within a stabilized mass (solidification), or chemical reactions are induced between the stabilizing agent and contaminants to reduce their mobility (stabilization).
Thermal Desorption	Wastes are heated to 93-315 C (200-600 F) for low-temperature desorption or 315-538 C (600-1,000 F) for high-temperature desorption to volatilize water and organic contaminants. A carrier gas or vacuum system transports volatilized water and organic compounds to the gas treatment system.

Table 11. Initial Screening of Remedial Technologies Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

General Response Action	Remedial Technology Category	Remedial Technology	Initial Screen	ing Criteria	Initial Screening Outcome/ Comments
			Likelihood to Achieve Permanent or Temporary Solution	Expertise to Implement is Available	
Site Maintenance	Institutional controls	Activity and Use Limitation	Yes	Yes	Retained
Mitigation	Vapor mitigation system	Engineering control	Yes	Yes	Retained
Monitoring	Natural attenuation	Standard sampling and laboratory analysis	No	Yes	Not retained/contaminants will not attenuate
Containment	Capping	Engineered cap/barrier	Yes	Yes	Retained
		Soil cap	Yes	Yes	Retained
Treatment (In-Situ)	Biological treatments	Enhanced bioremediation	No	Yes	Not retained/not effective for metals
		Phytoremediation	No	Yes	Not retained/contamination extends beyond 2 feet below ground surface and limited growing season
	Chemical treatments	Chemical oxidation	No	Yes	Not retained/not effective for metals
	Physical treatments	Stabilization/solidification	No	Yes	Not retained/not consistent with potential future property redevelopment
		Soil washing	No	Yes	Not retained/heterogeneous fill material not suitable for this technology
		Multi-Phase Extraction	No	Yes	Not retained/not effective for metals
		Soil vapor extraction	No	Yes	Not retained/not effective for metals
	Thermal treatment	Thermally enhanced soil vapor extraction	No	Yes	Not retained/not effective for metals
		Vitrification	No	Yes	Not retained/utility lines on property
Treatment (Ex-Situ)	Biological treatment	Bioslurry reactors	No	Yes	Not retained/not effective for metals
		Solid-Phase biological treatment	No	Yes	Not retained/not effective for metals
	Chemical treatment	Chemical oxidation	No	Yes	Not retained/not effective for metals

Table 11. Initial Screening of Remedial Technologies
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont Street & Whittier Streets
Boston, Massachusetts

General Response Action	Remedial Technology Category	Remedial Technology	Initial Screen	ing Criteria	Initial Screening Outcome/ Comments
			Likelihood to Achieve Permanent or Temporary Solution	Expertise to Implement is Available	
Treatment (Ex-Situ)	Physical treatment	Soil washing	No		Not retained/heterogeneous fill material not suitable for this technology
		Stabilization/solidification	No	Yes	Not retained/not consistent with potential future property redevelopment
		Solvent extraction	No	Yes	Not retained/not effective for metals
		Asphalt-batching	No	No	Not retained/not effective for metals
	Thermal treatment	Incineration (off-site)	No	Yes	Not retained/not effective for metals
		Thermal desorption	No	Yes	Not retained/not effective for metals
Soil Removal	Excavation	Excavation	Yes	Yes	Retained
Disposal	Off-site disposal	Hazardous landfill	Yes	Yes	Retained
		Non-hazardous landfill	Yes	Yes	Retained
		Municipal Solid Waste (MSW) landfill	No		Not retained/not cost effective with other disposal options are feasible
	On-site disposal	Backfilling	Yes	Yes	Retained

General Notes:

^{1.} Remedial technologies are considered as components of Remedial Action Alternatives (RAAs) and not as individual entities when evaluated against initial screening criteria. The potential for a remedial technology to achieve a Permanent or Temporary Solution is considered for the remedial technology as a component of an RAA, and not on a standalone basis.

^{2.} Each remedial technology was evaluated using the initial screening criteria described above. If a technology could not satisfactorily meet both criteria, it was eliminated from further consideration.

Table 12. Summary of Remedial Action Alternatives
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont and Whittier Streets
Boston, Massachusetts

RAA Nun	nber/Remedial Action Alternative	Summary of RAA Components		
RAA 1	Site Maintenance	Semi-annual inspectionsAchieve Temporary Solution		
RAA 2	Hot Spot Excavation, Capping and Institutional Controls	 Remove surface debris Strip vegetation layer or on eastern portion of the Site remove pavement Excavate lead hot spot Dispose of in a landfill Grade site Place geotextile and marking layer, and 24 inches of gravel borrow Place 12 inches of topsoil, and seed Implement AUL Achieve Permanent Solution 		
RAA 3	Excavation, Disposal, and Vapor Mitigation System	 Excavate contaminated soil across Site, including lead hot spot Dispose of in a landfill Install vapor mitigation system as part of a future redevelopment (assumes passive system) Implement AUL Achieve Permanent Solution 		

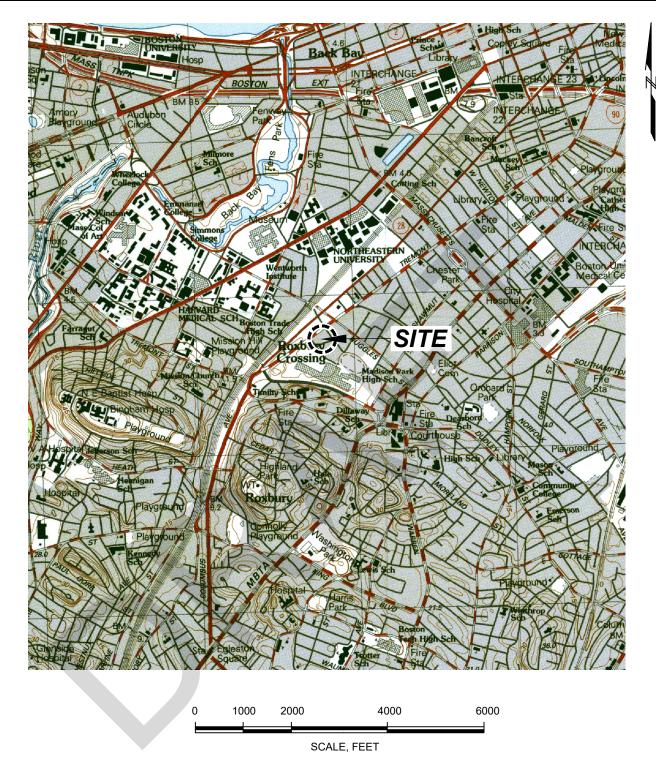
General Notes:

RAA: Remedial Action Alternative
 AUL: Activity and Use Limitation

	Detailed Evaluation Criteria	RAA1	RAA2	RAA3
		Site Maintenance	Hot Spot Excavation, Capping,	Excavation, Disposal,
			and Institutional Controls	and Vapor Mitigation System
	The comparative effectiveness of the alternatives in terms of:	Temporary Solution	Permanent Solution with Conditions	Permanent Solution with Conditions
	(a) Ashinda a Ramanada Tamanada Oshida wada 240 CMR 40 4000			
s,	(a) Achieving a Permanent or Temporary Solution under 310 CMR 40.1000. Ranking:	3	2	2
Jes	(b) Re-using, recycling, destroying, detoxifying, or treating oil or hazardous material (OHM) at the disposal site.	No No	Some OHM mass in soil would be reduced but not necessarily in	OHM mass in soil would be reduced but not necessarily in
<u> </u>	(b) Ne-using, recycling, destroying, detoxinying, or deating on or nazardous material (Orim) at the disposar site.	110	groundwater.	groundwater. Vapor mitigation would eliminate intrusion of OF
5			gramaman	in vapor into a building.
Effectiveness	Ranking:	3	3	2
	(c) Reducing levels of untreated OHM at the site to concentrations that achieve or approach background.	No	No	No
	Ranking:	2	2	1
	Total Ranking for Effectiveness:	3	2	2
_	The comparative short-term and long-term reliability of alternatives, including:	Very high degree of certainty for success.	High degree of certainty for success.	High degree of certainty for success although it may require
ם ם	The decree of a state that the attenuation will be accepted.			very large volume of soil removed off-site.
E E	(a) The degree of certainty that the alternative will be successful. Ranking:	1	2	2
- E-	(b) The effectiveness of any measures required to manage residues or remaining wastes or control emissions	Site inspections to monitor conditions site conditions are	Physical cap and institutional controls are effective at managing	Minimal remaining wastes after completion; however, vapor
5 6 5	or discharges to the environment.	unchanged.	remaining wastes.	mitigation system is required.
Ĕ,	Ranking:	1	2	2
	Total Ranking for Reliability:	1	2	2
	The comparative difficulty in implementing each alternative in terms of:	Very simple	Simple	More complex
	(a) Technical complexity of the alternative.			
	Ranking:	1	2	3
	(b) Where applicable, the integration of the alternative with existing facility operations and other current or	Compatible with existing operations and future plans.	Compatible with existing operations but less compatible with	Less compatible with existing operations but more compatible
	potential remedial actions.		future plans.	with future plans.
≟	Ranking: (c) Any necessary monitoring, operations, maintenance or site access requirements or limitations.	Site inspections	Site inspections and cap maintenance	Maintain vapor mitigation system
tability	(c) Any necessary monitoring, operations, maintenance or site access requirements or initiations. Ranking:	one inspections	3 Site inspections and cap maintenance	2
ji .	(d) The availability of necessary services, material, equipment, or specialists.	Services, material, and equipment are available.	Services, material, and equipment are available.	Services, material, and equipment are available.
Ĕ	Ranking:	1	1	1
호	(e) The availability, capacity, and location of necessary off-site treatment, storage and disposal facilities.	Not required	Generally available, although some degree of uncertainty	Generally available, although some degree of uncertainty
<u>=</u>			regarding landfill capacitary.	regarding landfill capacitary.
	Ranking:	1	2	2
	(f) Whether or not the alternative meets regulatory requirements for any likely approvals, permits or licenses	No approvals, permits, or licenses required.	No approvals, permits, or licenses required.	Some approvals required (e.g., U.S. EPA RGP, City of Boston
	required by the Massachusetts Department of Environmental Protection (MassDEP), or other state, federal or			building permit).
	local agencies.	1	<u> </u>	2
	Ranking: Total Ranking for Implementability:		2	2 2
	The comparative costs of the alternatives, including:	Low	Medium	High
	The comparative costs of the attenuation, including.	Low	Wedum	Tilgii
	(a) Costs of implementing the alternative, including without limitation: design, construction, equipment, site			
	preparation, labor, permits, disposal, operation, maintenance, and monitoring costs.			
	Ranking:	1	2	3
ţ	(b) Costs of environmental restoration, potential damages to natural resources, including consideration of	None	None	None
Sos	impacts to surface waters, wetlands, wildlife, fish, and shellfish habitat.			
J	Ranking:	1	1	1
	(c) The relative consumption of energy resources in the operation of the alternatives, and externalities	None	Moderate energy consumption for equipment on-site for	High energy consumption for equipment on-site for an
	associated with the use of those resources.	▼	intermediate period of construction and moderate amounts of trucking (on-site backfill).	intermediate period of construction and high amounts of trucking (off-site disposal and on-site backfill).
	Ranking:	1	rucking (on-site backini).	(on-site disposal and on-site backill).
	Total Ranking for Costs:	<u>.</u> 1	2	2
	The comparative risks of the alternatives including without limitation:	None. No remedial system installed.	Poses minimal risks to human health and ecological receptors	Poses greater potential risks to construction workers than RAA
		,	from construction operations. Poses limited potential risks to	due to expanded excavation activities. Minimal risks are pose
	(a) The short-term on-site and off-site risks posed during implementation of the alternative associated with any		construction workers than RAA1 due to limited excavation	by off-site transportation of contaminated soil. Risks can be
	excavation, transport, disposal, containment, construction, operation, or maintenance activities, or discharges		activities. Minimal risks are posed by off-site transportation of	effectively managed by standard construction practices,
	to the environment from remedial systems.		contaminated soil. Risks can be effectively managed by	including air monitoring.
	Ranking:	4	standard construction practices, including air monitoring.	2
Ø	(b) On-site and off-site risks posed over the period of time required for the alternative to attain applicable	None. No remedial system installed.	Poses minimal risks due to ongoing containment by the cap.	Poses minimal risks due to ongoing monitoring and
Risks	remedial standards, including risks associated with ongoing transport, disposal, containment, operation or	Hone. No remedial system installed.	1 3333 minima naka due to ongoing containinent by the cap.	maintenance of vapor mitigation system.
œ	maintenance activities, or discharges from remedial systems.			
	Ranking:	1	2	2
	(c) The potential risk of harm to health, safety, public welfare, or the environment posed to human or	No Substantial Hazard, but some degree of risk due to	No Significant Risk, but some additional precautions necessary	No Significant Risk, but some additional precautions necessa
	environmental receptors by any OHM remaining at the disposal site after the completion of the remedial action.	remaining OHM.	according to the institutional controls.	according to the institutional controls.
	Ranking: Total Ranking for Risks:	3	2	2
		2	2	2

Table 13. Detailed Evaluation of Remedial Action Alternatives
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont Street & Whittier Streets
Boston, Massachusetts

	Detailed Evaluation Criteria	RAA1	RAA2	RAA3
		Site Maintenance	Hot Spot Excavation, Capping,	Excavation, Disposal,
			and Institutional Controls	and Vapor Mitigation System
	The comparative benefits of the alternatives including without limitation:	Does not restore natural resources.	Does not restore natural resources.	Restores natural resources.
	(a) The benefit of restoring natural resources.			
	Ranking:	2	2	1
ıς	(b) Providing for the productive re-use of the site.	Does not provide for productive use of the site.	May provide for productive use of the site.	Provides for productive use of the site.
eţi	Ranking:	3	2	1
e	(c) The avoided costs of relocating people, businesses, or providing alternative water supplies.	Does not require relocation of people, businesses, or alternative	Does not require relocation of people, businesses, or alternative	Does not require relocation of people, businesses, or alternative
		water supplies.	water supplies.	water supplies.
	Ranking:	1	1	1
	(d) The avoided lost value of the site.	The property value could decrease because contamination is	The property value could decrease because contamination is left	The property value could increase because contamination is
		left in place.	in place.	removed.
	Ranking:	2	2	1
	Total Ranking for Benefits:	2	2	1
SS	The comparative timeliness of the alternatives in terms of eliminating any uncontrolled sources of OHM and	Would not achieve a condition of NSR.	Would achieve a condition of NSR in the intermediate-term.	Would achieve a condition of NSR in the long-term, after a
ü	achieving of a level of No Significant Risk (NSR) as described in 310 CMR 40.0900.			developer is designated and redevelopment plan is approved.
neli				
įĖ	Ranking:	3	2	3
>	The relative effect of the alternatives upon non-pecuniary interests, such as aesthetic values.	Alternative does not disrupt the community but potentially affects	Short-term impacts on aesthetic values from construction	Short-term impacts on aesthetic values from construction
i a		aesthetic values.	activities. Some disruption (noise, dust) to the neighborhood	activities. Some disruption (noise, dust) to the neighborhood
0 1 4			from trucking activities. However, the caps would provide a site	from trucking activities. However, the contamination would be
Z			improvement that would be permanent.	removed and the site improvement would be permanent.
	Ranking:	2	2	2
	Total Score:	14	15	16


Notes

- 1. The scoring system was based on assigning a relative ranking of 1.0 to 3.0 for each RAA for each subcriteria, with the lower score preferred. Some or all of the RAAs may be assigned the same rank. The ranks were then averaged to produce a criteria score, and the criteria scores were, in turn, summed to produce an overall score for each alternative.
- 2. AUL = Activity and Use Limitation.
- 3. EPA = Environmental Protection Agency.
- 4. NSR = No Significant Risk.
- 5. OHM = Oil and Hazardous Material.
- 6. RAA = Remedial Action Alternative.
- 7. RGP = Remediation General Permit.

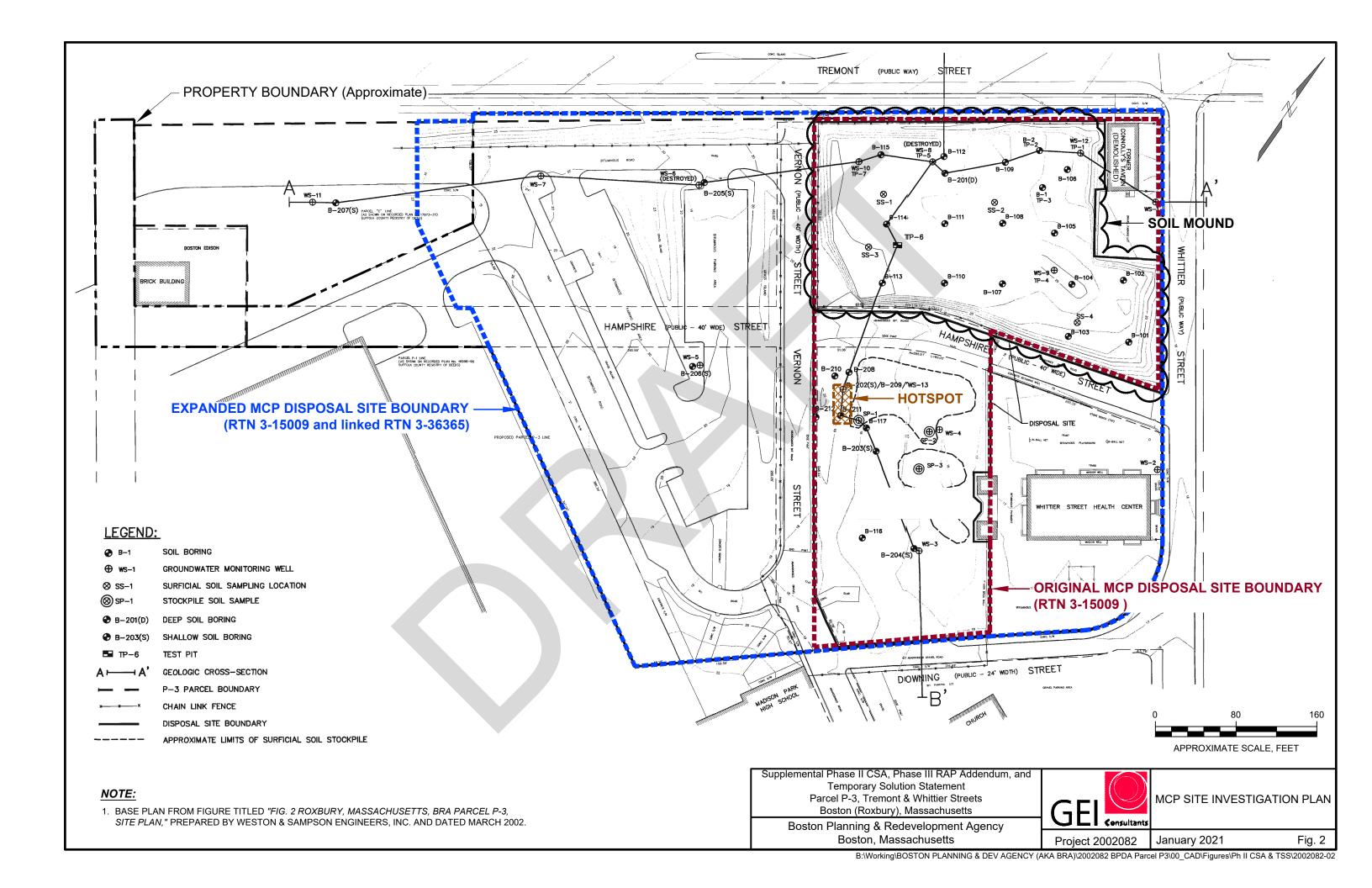
MassDEP RTN 3-15009 and RTN 3-36365 DRAFT Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Tremont and Whittier Streets, Boston (Roxbury), Massachusetts January 11, 2021

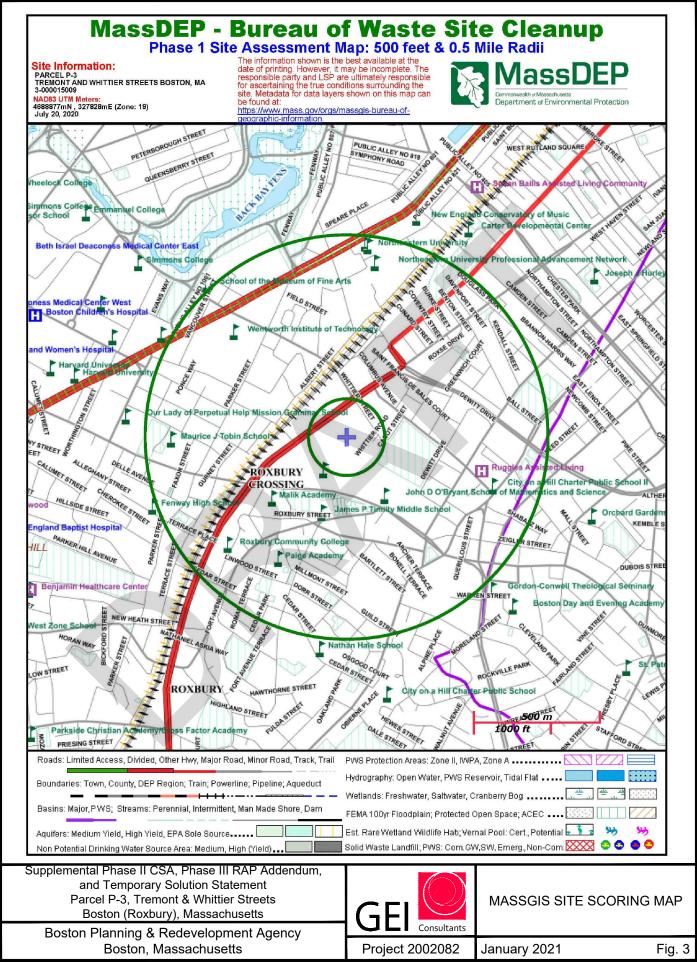
Figures

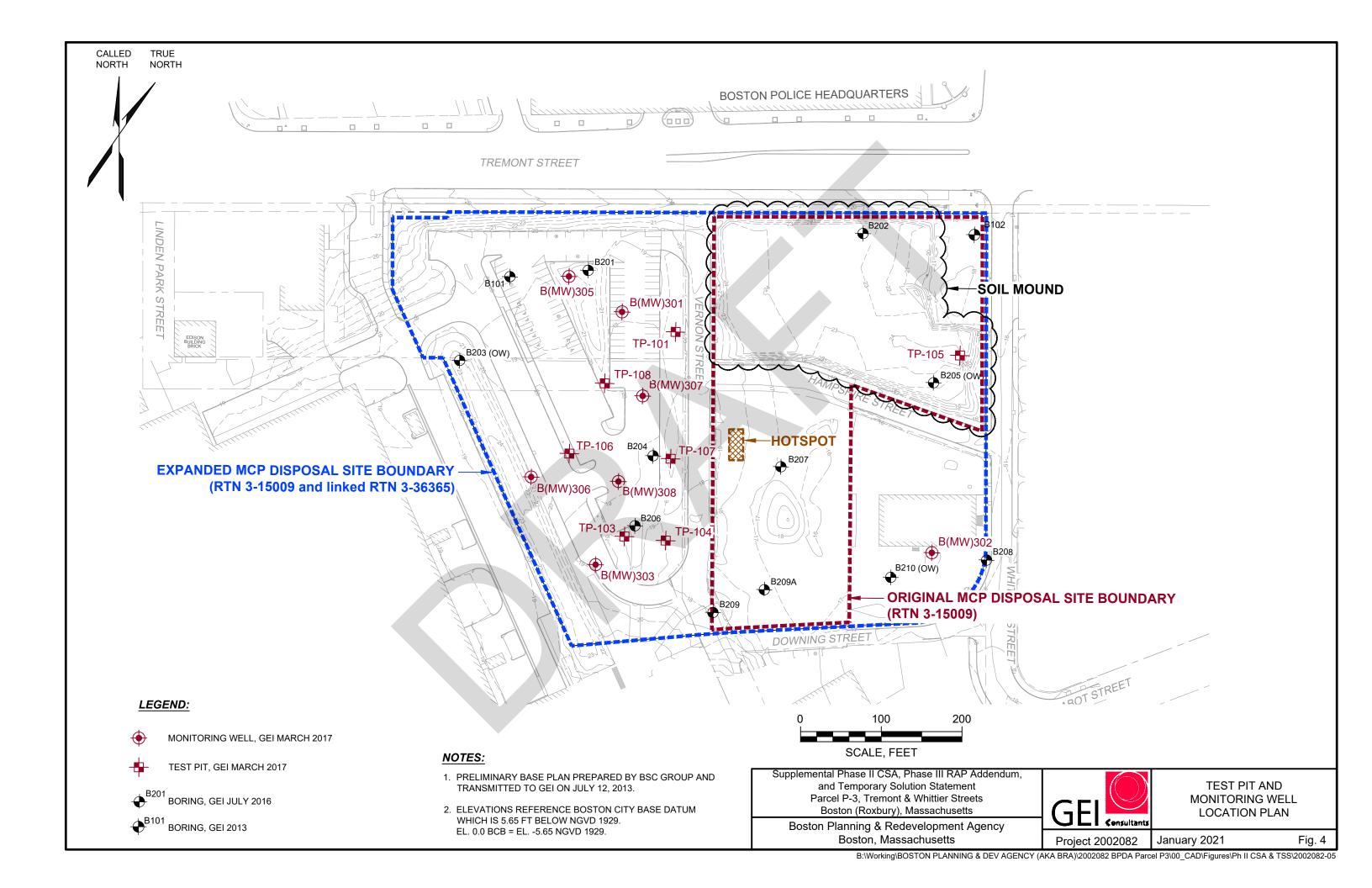
This Image provided by MassGIS is from U.S.G.S. Topographic 7.5 X 15 Minute Series Boston South, MA Quadrangle, 1987. Datum is National Geodetic Vertical Datum of 1929 (NGVD29).

Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement Parcel P-3, Tremont & Whittier Streets Boston (Roxbury), Massachusetts

Contour Interval is 3 Meters.


Boston Planning & Redevelopment Agency Boston, Massachusetts




SITE LOCATION MAP

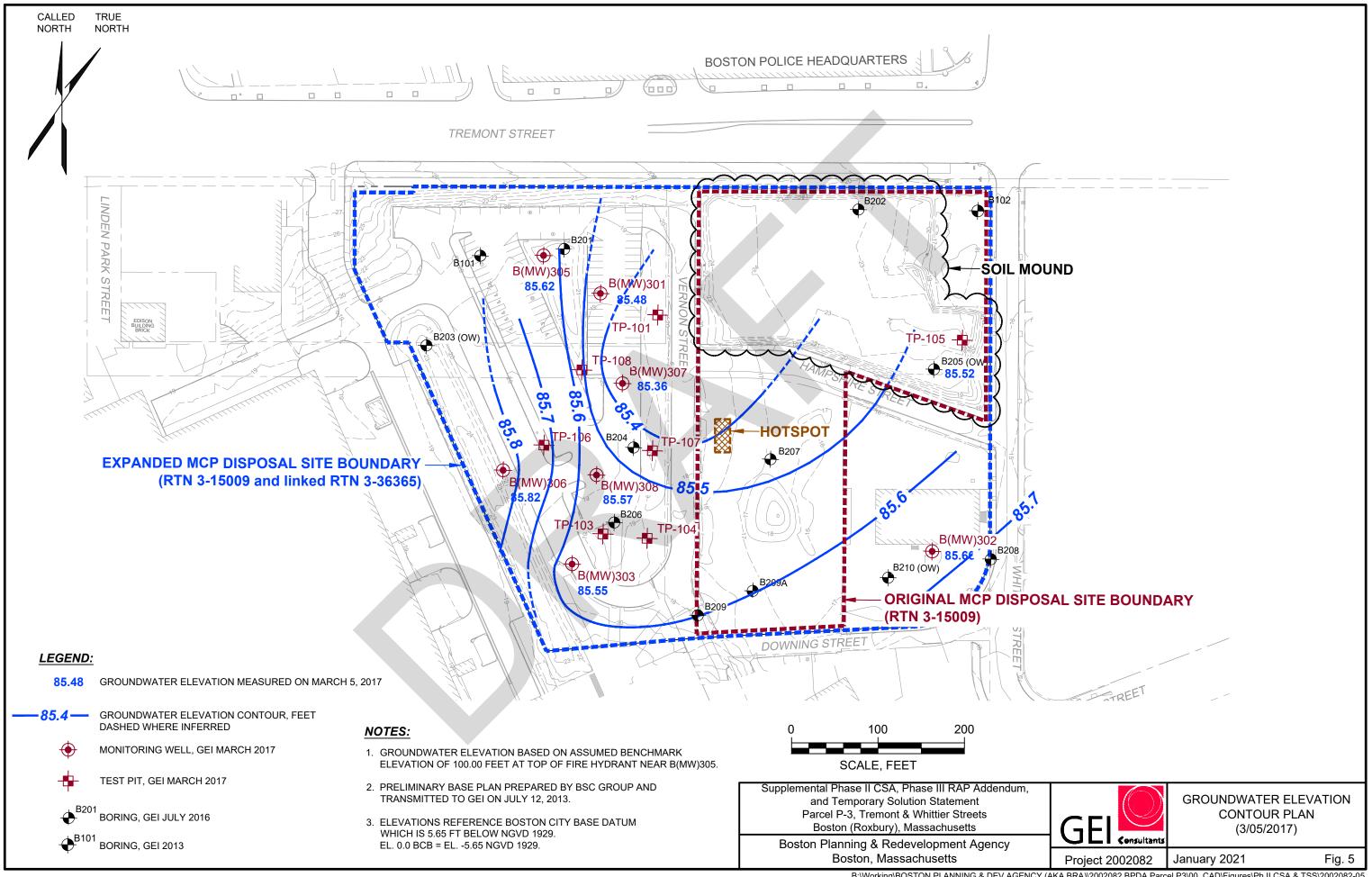

January 2021

Fig. 1

MassDEP RTN 3-15009 and RTN 3-36365 DRAFT Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Tremont and Whittier Streets, Boston (Roxbury), Massachusetts January 11, 2021

Appendix A

MassDEP Transmittal Forms

(Section F is optional)

(Sections E & F are not required)

Massachusetts Department of Environmental Protection

Bureau of Waste Site Cleanup

PERMANENT AND TEMPORARY SOLUTION STATEMENT

Pursuant to 310 CMR 40.1000 (Subpart J)

BWSC 104

12

Release Tracking Number

		_
3	-	15009

				For s	ites with multiple R'	TNs, enter the Primary RTN above.
A. S	SITE LOCATION	ON:				
1. S	ite Name/Location	Aid: UTMS 4	688700MN 32780	00 ME		
2. S	treet Address:	PARCEL P-3 T	REMONT & WHIT	TIER STS		
3. C	city/Town:	ROXBURY			4. ZIP Code:	021190000
5. C	Coordinates:	a. Latitude: N	42.33333	b. Longitude: W	71.08917	
V	6. Check here if th	e disposal site th	at is the source	of the release is Tier Cla	ssified. Check the cur	rrent Tier Classification Category:
	a. Tier I	□ b. T	ier ID	c. Tier II		
В. Т	THIS FORM IS	BEING USE	ED TO: (check	all that apply)		
1. L	ist Submittal Date of	of the Permanent	or Temporary S	Solution Statement,		
or R	RAO Statement (if p	reviously submi	tted):		mm/c	dd/yyyy
V	2. Submit a Perma	nent or Tempor	ary Solution Sta	ntement		•
				Solution Statement cover I to a Tier Classified Prin		
		additional Relea Femporary Solut	_	mber(s) covered by this	3 - 36365	-
Г	3. Submit a Revise	d Permanent or	Temporary Sol	ution Statement (or revi	sed RAO Statement)	
	not listed on th	e Permanent or	Γemporary Solu	ition Statement or previo	ously submitted Revis	Release Tracking Numbers (RTNs), sed Permanent or Temporary N do not need to be listed here.
		additional Relea Femporary Solut		mber(s) covered by this	-	-
Г	4. Submit a Perma	nent or Tempor	ary Solution Pa	rtial Statement		
	Primary RTN Permanent or submitted that	listed in the head remporary Solut references all Po	er section of thi ion-Partial State ermanent or Ter	s transmittal form. This l ment for that RTN. A fin	Permanent or Tempor al Permanent or Temp Statements and, if ap	iated with this disposal site having the rary Solution Statement will record only a porary Solution Statement will need to be plicable, covers any remaining conditions
				Cenant pursuant to M.G.I ortion(s) of the disposal		no further obligation to
	a. Eligi	ible Person		b. Eligible Tenant		
	5. Submit a Revise	d Permanent or	Temporary Sol	ution Partial Statement	(or revised RAO-Part	tial Statement)
	6. Submit an option	nal Phase I Com	pletion Stateme	ent supporting the Perma	nent or Temporary S	olution Statement
Г	7. Submit a Period	ic Review Opini	on evaluating th	e status of a Temporary	Solution, as specified	d in 310 CMR 40.1051

(All sections of this transmittal form must be filled out unless otherwise noted above)

8. Submit a **Retraction** of a previously submitted **Permanent or Temporary Solution Statement** (or RAO Statement)

Revised: 6/21/2016 Page 1 of 8

BWSC 104

12

PERMANENT AND TEMPORARY SOLUTION STATEMENT

3 - 15009

Release Tracking Number

Pursuant to 310 CMR 40.1000 (Subpart J)

For sites with multiple RTNs, enter the Primary RTN above.

C. DESCRIPTION OF RESPONSE	ACTIONS: (c	heck all that apply; for volumes, list cumulative amount	unts)		
■ 1. Assessment and/or Monitoring Only		☐ 2. Temporary Covers or Caps			
☐ 3. Deployment of Absorbent or Contains	ment Materials	4. Treatment of Water Supplies			
5. Structure Venting System/HVAC Mod	ification System	6. Engineered Barrier			
☐ 7. Product or NAPL Recovery		▼ 8. Fencing and Sign Posting			
☐ 9. Groundwater Treatment Systems		☐ 10. Soil Vapor Extraction			
11. Remedial Additives		☐ 12. Air Sparging			
☐ 13. Active Exposure Pathway Mitigation	System	☐ 14. Passive Exposure Pathway M	litigation System		
☐ 15. Monitored Natural Attenuation		☐ 16. In-Situ Chemical Oxidation			
☐ 17. Removal of Contaminated Soils					
a. Re-use, Recycling or Treatment	i. On Site	Estimated volume in cubic yards			
	☐ ii. Off Site	Estimated volume in cubic yards			
iia. Facility Name:		Town:	State:		
iib. Facility Name:		Town:	State:		
iii. Describe:					
b. Landfill					
i. Cover Estimated volume i	n cubic yards				
Facility Name:		Town:	State:		
☐ ii. Disposal Estimated volume i	n cubic yards				
Facility Name:		Town:	State:		
18. Removal of Drums, Tanks or Contained	ers:				
a. Describe Quantity and Amount:					
b. Facility Name:		Town:	State:		
c. Facility Name:		Town:	State:		
☐ 19. Removal of Other Contaminated Med	ia:				
a. Specify Type and Volume:					
b. Facility Name:		Town:	State:		
c. Facility Name:		Town:	State:		

Revised: 6/21/2016 Page 2 of 8

reau of waste Site Cleanup Re

PERMANENT AND TEMPORARY SOLUTION STATEMENT Pursuant to 310 CMR 40.1000 (Subpart J)

Release Tracking Number

3 - 15009

12

BWSC 104

For sites with multiple RTNs, enter the Primary RTN above.

20. Other Resp	oonse Actions:			
Describe:				
21. Use of Inn	ovative Technol	ogies:		
Describe:				
D. SITE USE:				
			ittal associated with the <i>red</i> are presence of oil and/or haz	evelopment, reuse or the major ardous materials?
a. Yes	☐ b. No	C. Don't know		
2. Is the property	a vacant or und	er-utilized commercial or	industrial property ("a brow	vnfield property")?
▼ a. Yes	☐ b. No	C. Don't know		
3. Will funds from	n a state or feder	ral brownfield incentive pro	ogram be used on one or mor	re of the property(ies) within the disposal site?
a. Yes	b. No	c. Don't know	If Yes, identify program(s):	
4. Has a Covenan	nt Not to Sue bee	en obtained or sought?		
□a. Yes	□ b. No	c. Don't know		
5. Check all appli	cable categories	that apply to the person m	aking this submittal:	a. Redevelopment Agency or Authority
□ b. Comm	unity Developme	ent Corporation	C. Economic Dev	relopment and Industrial Corporation
d. Private	Developer	e. Fiduciary	f. Secured Lender	g. Municipality
☐ h. Potenti	al Buyer (non-ov	wner)	describe:	
This data will b	ne used by Mass	DEP for information nurne	oses only and does not repre	esent or create any legal commitment, obligation or
This date will k	-		party or person providing th	
E. PERMANE	NT OR TEM	PORARY SOLUTION	N CATEGORY:	
Specify the category	ory of Solution t	hat applies to the Disposal	Site, or Site of the Threat of	f Release. Select either 1, 2, or 3.
☐ a. A t ☐ b. Al	threat of release l contamination	rith No Conditions (check of has been eliminated. has been reduced to Natura Significant Risk exists or h	al Background levels.	ctivity and Use Limitation or other limitations,

Revised: 6/21/2016 Page 3 of 8

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

PERMANENT AND TEMPORARY SOLUTION STATEMENT

Releas	se Trac	cking Number	
3	-	15009	

12

BWSC 104

For sites with multiple RTNs, enter the Primary RTN above.

E. PERMANENT OR TEMPORARY SOLUTION CATEGORY (cont.):

Pursuant to 310 CMR 40.1000 (Subpart J)

2. Permanent Solution with Conditions (check a and/or b):							
a. An AUL has been implemented pursuant to 310 CMR 1012(2) (check one)							
i. Required pursuant to 310 CMR 40.1012(2)							
Is the AUL required because the Permanent Solution relies on an Active Exposure Pathway Mitigation Measure pursuant to CMR 310 40.1025? ☐ 1. Yes ☐ 2. No							
ii. Optionally implemented pursuant to 310 CMR 40.1012(3)							
b. Limitations or conditions apply pursuant to 310 CMR 40.1013 (check all that apply):							
i. Gardening Best Management Practices (BMPs) for non-commercial gardening in a residential setting							
ii. Concentrations of Oil and Hazardous Material consistent with Anthropogenic Background							
iii. Residual contamination in a Public or Railroad Right-of-Way							
iv. Groundwater contamination would exceed GW-2 Standards except for the absence of an occupied building or structure							
▼ 3. Temporary Solution (check a or b /and c)							
a. Response actions to achieve a Permanent Solution are not currently feasible							
 b. Response actions to achieve a Permanent Solution are feasible and are being continued toward a Permanent Solution c. Does the Temporary Solution rely on an Active Exposure Pathway Mitigation Measure pursuant to 310 CMR 40.1026? i. Yes ii. No 							
F. PERMANENT AND TEMPORARY SOLUTION INFORMATION:							
1. Specify the Risk Characterization Method(s) used to achieve the Permanent or Temporary Solution, described above:							
☐ a. Method 1 ☐ b. Method 2 ☐ c. Method 3							
d. Method Not Applicable-Contamination reduced to or consistent with background, or Threat of Release abated							
2. Specify all Soil Category(ies) applicable. More than one Soil Category may apply at a Site. Be sure to check off all APPLICABLE							
categories: a. S-1/GW-1 d. S-2/GW-1 g. S-3/GW-1 j. Not Applicable							
▼ b. S-1/GW-2							
v c. S-1/GW-3							
3. Specify all Groundwater Category(ies) impacted. A site may impact more than one Groundwater Category. Be sure to check off all IMPACTED categories: □ a. GW-1 □ b. GW-2 □ c. GW-3 □ d. No Groundwater Impacted							

Revised: 6/21/2016 Page 4 of 8

PERMANENT AND TEMPORARY SOLUTION STATEMENT

BWSC 104

Release Tracking Number

3 - 15009

12

For sites with multiple RTNs, enter the Primary RTN above.

F. PERMANENT AND TEMPORARY SOLUTION INFORMATION (cont.):

Pursuant to 310 CMR 40.1000 (Subpart J)

4. Check here if the risk assessment includes any changes to the groundwater category pursuant to 310 CMR 40.0932(5)(a) through (e). Check all conditions that apply: a. An InterimWellhead Protection Area does not apply based on a hydrogeologic evaluation (310 CMR 40.0932(5)(a))						
b. Groundwater was determined not to be in a Potentially Productive Aquifer or is not feasible to be developed as a drinking water supply (310 CMR 40.0932(5)(b))						
☐ c. A Non-Potential DrinkingWater Source Area determination was made (310 CMR 40.0932(5)(c))						
d. Existing private wells were permanently closed (310 CMR 40.0932(5)(d))						
e. Groundwater is located within a Zone A, but is not hydrogeologically connected to a drinking water supply (310 CMR 40.0932(5)(e))						
☐ 5. Check here if the Permanent or Temporary Solution supports a finding of No Significant Risk for petroleum in a GW-1 area pursuant to 310 CMR 40.0924(2)(b)3.						
6. Specify whether remediation was conducted:						
a. Check here if soil remediation was conducted.						
b. Check here if groundwater remediation was conducted.						
c. Check here if other remediation was conducted. Specify:						
7. Specify whether the analytical data used to support the Permanent or Temporary Solution used the Compendium of Analytical Methods (CAM):						
a. CAM used to support all analytical data.						
c. CAM not used.						
₹ 8. Check here to indicate that the Permanent or Temporary Solution Statement includes a Data Usability Assessment and Data Representativeness Evaluation pursuant to 310 CMR 40.1056.						
Estimate the number of acres this Permanent or Temporary Solution Statement applies to: 7.7						

Revised: 6/21/2016 Page 5 of 8

Pursuant to 310 CMR 40.1000 (Subpart J)

PERMANENT AND TEMPORARY SOLUTION STATEMENT

BWSC 104

Release Trac			king Number
	3	-	15009

12

For sites with multiple RTNs, enter the Primary RTN above.

G. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

> if Section B indicates that either a Permanent or Temporary Solution Statement, Phase I Completion Statement and/or Periodic Review Opinion is being provided, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP#:	9719					
2. First Name:	ILEENS			3. I	Last Name: GI	LADSTONE
4. Telephone:	781721401	2	5. Ext.:		6. Email:	igladstone@geiconsultants.com
7. Signature:						
8. Date:				9. LSI	P Stamp:	
	mm/	/dd/yyyy				
H. PERSON	H. PERSON MAKING SUBMITTAL:					
1. Check all that	t apply:	a. change	in contact name		o. change of add	dress c. change in the person undertaking response actions
2. Name of Orga	2. Name of Organization: BOSTON PLANNING & DEVELOPMENT AGENCY BOSTON PLANNING & DEVELOPMENT AGENCY					
3. Contact First	Name:	WILLIAM			4. Last Name:	EPPERSON
5. Street:		22 DRYDOCK AVE	ENUE		6. Title:	DEPUTY DIR. CAPITAL CONSTRUCTION
7. City/Town:	BOSTON		8. State:	MA		9. ZIP Code: <u>022100000</u>
10. Telephone:	61791862	202	11. Ext.:		12. Email:	: william.j.epperson@boston.gov

Revised: 6/21/2016 Page 6 of 8

PERMANENT AND TEMPORARY SOLUTION STATEMENT Pursuant to 310 CMR 40.1000 (Subpart J)

Release Tracking Number

BWSC 104

3 - 15009

12

For sites with multiple RTNs, enter the Primary RTN above.

I. RELATIONSHIP TO RELEASE OR THREAT OF RELEASE OF PERSON MAKING SUBMITTAL:

			III TO RELEASE	OK TIMEAT O	RELEASE OF T	ERSON WARENO SUBWITTAL.
			nnge relationship	_	_	_
	☑ 1. 3	RP or PRP	a. Owner	☐ b. Operator	C. Generator	d. Transporter
			e. Other RP or PRP	Specify:		
	<u> </u>	. Fiduciary, S	Secured Lender or Munic	cipality with Exempt	Status (as defined by M	1.G.L. c. 21E, s. 2)
	 3	. Agency or F	Public Utility on a Right	of Way (as defined by	y M.G.L. c. 21E, s. 5(j)	
		. Any Other l	Person Making Submitta	al Specify	Relationship:	
J.	REÇ	UIRED A	TTACHMENT AN	D SUBMITTALS	S:	· ·
~	pern		pproval(s) issued by DI			I, if any, are (were) subject to any order(s), T attach a statement identifying the applicable
	2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of a Permanent or Temporary Solution Statement that relies on the public way/rail right-of-way exemption from the requirements of an AUL.					
~			certify that the Chief Munporary Solution Staten			Ith have been notified of the submittal of a ll copy of the report.
~	4. Check here to certify that documentation is attached specifying the location of the Site, or the location and boundaries of the Disposal Site subject to this Permanent or Temporary Solution Statement. If submitting a Permanent or Temporary Solution Statement for a PORTION of a Disposal Site, you must document the location and boundaries for both the portion subject to this submittal and, to the extent defined, the entire Disposal Site.					
~	site	boundaries, c		ed because the dispos		the owner(s) of each property within the disposal limited to property owned by the party
		a. Notice w	vas provided prior to, or	concurrent with the	submittal of a Phase II	Completion Statement to the Department.
				concurrent with the	submittal of this Perma	anent or Temporary Solution Statement to the
	V	Departmen c. Notice n	t. ot required.	d. Total number of p	property owners notifie	d, if applicable:
	impl	emented AUI	_	ent Solution or Temp	orary Solution Stateme	nsmittal Form (BWSC113) and a copy of each ent. Specify the type of AUL(s) below: (required inted)
		a. Notice o	f Activity and Use Limi	tation	b. Number of Notices	submitted:
		c. Grant of	Environmental Restricti	on	d. Number of Grants s	submitted:
			Solution Compliance Feor Son Compliance Feor was s			this transmittal form, check here to certify that a IA 02211.
		heck here if a wsc.edep@st	-	nation provided on the	his form is incorrect, e	.g. Site Address/Location Aid. Send corrections
V	9. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.					

Revised: 6/21/2016 Page 7 of 8

PERMANENT AND TEMPORARY SOLUTION STATEMENT Pursuant to 310 CMR 40.1000 (Subpart J)

BWSC 104

Release Tracking Number

3 - 15009

12

For sites with multiple RTNs, enter the Primary RTN above.

form, (ii) that, ba contained in this this attestation or am/is aware that	, attest under the paint familiar with the information contained in this submittal, including sed on my inquiry of those individuals immediately responsible for submittal is, to the best of my knowledge and belief, true, accurate a behalf of the entity legally responsible for this submittal. I/the pathere are significant penalties, including, but not limited to, possible complete information.	g any and all docu obtaining the info and complete, an erson or entity on	ormation, the material information d (iii) that I am fully authorized to make whose behalf this submittal is made
2. By:		3. Title:	DEPUTY DIR. CAPITAL CONSTRUCTION
	Signature		
4. For:	BOSTON PLANNING & DEVELOPMENT AGENCY	5. Date:	
	(Name of person or entity recorded in Section H)		mm/dd/yyyy
8. City/Town:	9. State:		IP Code:
11. Telephone:	12. Ext.: 13.	Email:	
BII Sl	YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE ASS LLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST I ECTIONS OF THIS FORM OR DEP MAY RETURN THE D IIT AN INCOMPLETE FORM, YOU MAY BE PENALIZEI	LEGIBLY COM OCUMENT AS	PLETE ALL RELEVANT INCOMPLETE. IF YOU
Date Stamp (D	EP USE ONLY:)		

Revised: 6/21/2016 Page 8 of 8

Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan, and Temporary Solution Statement Parcel P-3
Boston (Roxbury), Massachusetts
MassDEP RTNs 3-15009 and 3-36365

Attachment to Temporary Solution Statement Transmittal Form BWSC104

Section J, Question 1. Required Attachment and Submittals

The response actions described in this Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan, and Temporary Solution Statement are subject to the provisions of Notice of Non-Compliance (NON-NE-07-3A146) issued by MassDEP to the Boston Redevelopment Authority (now BPDA) on October 22, 2007.

A. DISPOSAL SITE LOCATION:

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

TIER CLASSIFICATION TRANSMITTAL FORM

Pursuant to 310 CMR 40.0500 (Subpart E)

BWSC 107

Release Tracking Number

3	-
---	---

15009

1. Disposal Site Name:	UTMS 4688	3700MN 327800 ME			
2. Street Address:	PARCEL P-3 TREM	MONT & WHITTIER S	STS		
3. City/Town:	ROXBURY			4. ZIP Code:	021190000
5. Coordinates:	Latitude: N	42.33333	Longitude: W	71.08917	
B. THIS FORM IS I	BEING USED	TO: (check all	that apply)		
1. Submit a new T Check the tier clas			ncluding a Tier Cla	assification Com	pliance History (BWSC107B).
a. Tier I	b. Tier	· II			
c. Check all T	Γier I criteria tha	t apply, pursuant	t to 310 CMR 40.0	520(2):	
Water Suptime of Tie Concentrate	ply Well, and the er Classification a tion set forth in 3	ere is evidence of at concentrations 310 CMR 40.036	f groundwater cont s equal to or exceed	amination by an Cling the applicable	or within 500 feet of a Private Oil or Hazardous Material at the RCGW-1 Reportable
	•				4 d 210 CM
40.0414(2)		actions are requir	red as part of an Im	imediate Response	e Action pursuant to 310 CMR
	_		red as part of an Im CMR 40.0414(3).	_	e Action to eliminate or mitigate a
d. Check here	if including an l	Eligible Person,	Eligible Tenant,	or Other Person	Certification (BWSC107D)
2. Submit a Phase	I Completion	Statement as po	er 310 CMR 40.04	80.	
If previously sub	mitted, provide	date	>		
		mn	n/dd/yyyy		
3. Submit a Phase	II Scope of Wo	ork as per 310 C	CMR 40.0834.		
If previously sub	mitted, provide o	date			
		mn	n/dd/yyyy		
4. Submit a Phase	II Conceptual	Scope of Work	supporting a Tie	r Classification S	Submittal.
5. Submit a Tier CClassification Co			-	Actions at a Tier C	Classified Site including the Tier
	uding the Tier C	Classification Co		• • •	g Response Actions at a Tier ad the Tier Classification
	ctive date of trar	*			
r			n/dd/yyyy		

TIER CLASSIFICATION TRANSMITTAL FORM

Pursuant to 310 CMR 40.0500 (Subpart E)

BWSC 107

Release Tracking Number			
	3	-	15009

B. THIS FORM IS BEING USED TO: (cont.)

	7. Submit a Revised Tier Classification Submittal. Check the revised Tier Classification Category. If the Tier Classification Category is not changing, indicate the current classification.
	a. Tier I b. Tier II
	c. Check all Tier I criteria that apply, pursuant to 310 CMR 40.0520(2):
	i. Groundwater is located within an Interim Wellhead Protection Area, Zone II, or within 500 feet of a Private Water Supply Well, and there is evidence of groundwater contamination by an Oil or Hazardous Material at the time of Tier Classification at concentrations equal to or exceeding the applicable RCGW-1 Reportable Concentration set forth in 310 CMR 40.0360.
	ii. An Imminent Hazard is present at the time of Tier Classification.
	iii. One or more remedial actions are required as part of an Immediate Response Action pursuant to 310 CMR 40.0414(2).
	iv. One or more response actions are required as part of an Immediate Response Action to eliminate or mitigate a Critical Exposure Pathway pursuant to 310 CMR 40.0414(3).
	d. Check here if including an Eligible Person, Eligible Tenant, or Other Person Certification (BWSC107D)
•	8. Provide a Notice that an additional Release Tracking Number(s) is (are) being linked to this Tier Classified Site (Primary RTN). Future response actions addressing the Release or Threat of Release notification condition associated with additional Release Tracking Numbers (RTNs) will be conducted as part of the Response Actions planned or ongoing at the Primary Site listed above. For a previously Tier Classified Primary Site, if there is a reasonable likelihood that the addition of the new secondary RTN(s) would change the classification of the site, a Revised Tier Classification Submittal must also be made.
	Provide Release Tracking Number(s): a. 3 - 36365 b
	All future Response Actions must occur according to the deadlines applicable to the Primary RTN. Use only the Primary RTN when making future submittals for this site unless specifically relating to response actions started before the linking occurred.

Revised: 01/14/2014 Page 2 of 5

TIER CLASSIFICATION TRANSMITTAL FORM

Pursuant to 310 CMR 40.0500 (Subpart E)

BWSC 107

Release Tra			acking Number
	3	-	15009

C. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

- > if Section B of this form indicates that a **Tier Classification Submittal** is being submitted, this Tier Classification Submittal has been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B of this form indicates that a **Phase I Completion Statement** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B of this form indicates that a **Phase II Scope of Work** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B of this form indicates that a **Tier Classification Extension Submittal** or a **Tier Classification Transfer Submittal** is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP#:	9719		
2. First Name:	ILEENS	3. Last Name:	GLADSTONE
4. Telephone:	781-721-4012 5. Ext.:	6. Email:	IGLADSTONE@GEICONSULTANTS.COM
7. Signature:			
8. Date:		9. LSP Stamp:	
	mm/dd/yyyy		
			1
			1

Revised: 01/14/2014 Page 3 of 5

TIER CLASSIFICATION TRANSMITTAL FORM

Pursuant to 310 CMR 40.0500 (Subpart E)

BWSC 107

Release Tracking Number

1000	- 15009
------	----------

D.	PERSON N	1AKINO	G SUBMITTA	AL:				
1. 0	Check all that	apply:	a. chang	ge in contact name		b. change of add	ress	c. change in the person undertaking response actions
2. N	Name of Orga	nization:	BOSTON	N PLANNING & DEVELOPME	NT AGE	ENCY		
3. 0	Contact First	Name:	WILLIAM			4. Last Name:	EPPERSON	
5. S	Street:		22 DRYDOCK AV	VENUE		6. Title:	DEPUTY DIR.	CAPITAL CONSTRUCTION
7. 0	City/Town:	BOSTON		8. State:	MA		9. ZIP (Code: 022100000
10.	Telephone:	617-918-6	5202	11. Ext.:		12. Email:	william.j.e	pperson@boston.gov
SIT	[E: ▼ 1. RP or P	RP ▽	a. Owner	☐ b. Operator	□ c.	Generator [d. Transpo	
ſ	3. Agenc	y or Publ	ic Utility on a !	Right of Way (as define	ed by N	M.G.L. c. 21E, s.	5(j))	
ſ	4. Any O	ther Perso	on Making Sub	mittal Specify Ro	elation	ship:		
F. 1	REQUIREI) ATTA	CHMENT A	ND SUBMITTALS:				
V		nd/or app	roval(s) issued	on(s) on which this opi by DEP or EPA. If the				bject to any order(s), a statement identifying the
~	2. Check he of any Phas		•	ef Municipal Officer ar	nd the	Local Board of H	ealth have b	peen notified of the submittal
	and a cover	letter and		notice is sent to the Ch				eation Submittal is attached, l Board of Health pursuant to
			ify that the ow	ner of a Public Water S	Supply	has been provid	ed written n	otice pursuant to 310 CMR
~		r Classifi		on Submittal, check her chieved at the Disposal		•	nent summa	rizing why a Permanent or
	proposed ch	nange in p	erson(s) under		ctions	is attached. All F	Response Ac	izing the reasons for the tions must be completed by posal Site.
Г		-	non-updatable bwsc.edep@st	_	n this	form is incorrect	, e.g., Relea	se Address/Location Aid.

Revised: 01/14/2014 Page 4 of 5

8. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.

TIER CLASSIFICATION TRANSMITTAL FORM

Pursuant to 310 CMR 40.0500 (Subpart E)

BWSC 107

Relea	se Tra	acking Number
3	-	15009

G. CERTIFICATION OF PERSON MAKING SUBMITTAL:

transmittal material in that I am f on whose and imprise If submitting person(s) or requirement employed person(s) or estimated to proceed requirement for this suit 40.0172 for	d and am familiar with the information contained in this subtact all form, (ii) that, based on my inquiry of those individuals information contained in this submittal is, to the best of my fully authorized to make this attestation on behalf of the ende behalf this submittal is made am/is aware that there are significant in a Tier II Classification, Extension or Transfer, I also at or entity(ies) on whose behalf this submittal is made has/ments of M.G.L. c. 21E and 310 CMR 40.0000; (ii) based under the disposal or entity(ies) on whose behalf this submittal is made, and display the costs of necessary response actions, that/those person(s) and with response actions for such site in accordance with ments; and (iii) that I am fully authorized to make this attest submittal. I/the person(s) or entity(ies) on whose behalf this	knowledge and belief, true, accurate and complete, and (iii) nitity legally responsible for this submittal. I/the person or entity gnificant penalties, including, but not limited to, possible fines implete information. Attest under the pains and penalties of perjury that (i) I/the have personally examined and am/is familiar with the pon my inquiry of the/those Licensed Site Professional(s) and site which is the subject of this Transmittal Form and of the I my/that person's(s') or entity's(ies') understanding as to the or entity(ies) has/have the technical, financial and legal ability M.G.L. c. 21E, 310 CMR 40.0000 and other applicable ation on behalf of the person(s) or entity(ies) legally responsible as submittal is made is aware of the requirements in 310 CMR (s) or entity(ies) on whose behalf this submittal is made learn(s)
•	Signature	
4. For:	BOSTON PLANNING & DEVELOPMENT AGENCY	5. Date:
	(Name of person or entity recorded in Secti	on D) mm/dd/yyyy
☐ 6. Che	neck here if the address of the person providing certification	on is different from address recorded in Section D.
7. Street:		
8. City/To	Fown: 9. State:	10. ZIP Code:
11. Teleph	phone: 12. Ext.:	13. Email:
YE FOR	YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE AT FOR THIS DISPOSAL SITE. YOU MUST LEGIBLE OF THE PROPERTY OF THE PRO	LY COMPLETE ALL RELEVANT SECTIONS OF THIS OMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM,

Revised: 01/14/2014 Page 5 of 5

BWSC 107B

THED OF A COLERCY THON COMPLIANCE THOTODY	Relea	ise Ti	racking Num	ıber
TIER CLASSIFICATION COMPLIANCE HISTORY	3	□ -	15009	

Pursuant to	310 CM	R 40.0540	(Subpart E)

A. DISPOSAL SITE COMPLIA	ANCE	HISTORY	SUMMARY:
--------------------------	------	---------	----------

submitted, and there has been no change in that person's compliance history, or the person in Section	
	Section D has no compliance
history. If this box is checked, this section does not have to be completed.	

2. List all permits or licenses that have been issued by the Department that are relevant to this Disposal Site:

Program	Permit Number	Permit Category	Facility ID
a. Air Quality			
b. Hazardous Waste (M.G.L. c. 21C)			
c. Solid Waste			
d. Industrial Wastewater Management			
e. Water Supply			
f. Water Pollution Control/Surface Water			
g. Water Pollution Control/Groundwater			
h. Water Pollution Control/Sewer Connection			
i. Wetland & Waterways			

3. List all other Federal, state or local permits, licenses, certifications, registrations, variances, or approvals that are relevant to this Disposal Site:

Issuing Authority or Program, or Documentation Type	Identification Number	Date Issued mm/dd/yyyy
MA EXECUTIVE OFFICE OF ENERGY & ENVIRONMENTAL AFFAIRS	MEPA CERTIFICATE EEA #14900	6/15/2012
MADEP WASTE SITE CLEANUP - NOTICE OF NON-COMPLIANCE	NON-NE-07-3A146	10/22/2007

4. Check here to certify that, if needed, a statement further describing the Compliance History of this Disposal Site is attached.

This statement must describe the compliance history of the person or entity named in BWSC107, Section D with the following: (1) DEP regulations; and (2) other laws for the protection of health, safety, public welfare and the environment administered or enforced by any other government agency. Such a statement should identify information such as: (1) actions relevant to the Disposal Site taken by the Department to enforce its requirements including, but not limited to, a Notice of Noncompliance (NON), Notice of Intent to Assess Civil Administrative Penalty (PAN), Notice of Intent to Take Response Action (NORA), and an administrative enforcement order; (2) administrative consent orders; (3) judicial consent judgements; (4) similar administrative actions taken by other Federal, state or local agencies; (5) civil or criminal actions relevant to the Disposal Site brought on behalf of the DEP or other Federal, state, or local agencies; and (6) any additional relevant information. For each action identified, provide the following information: (1) name of the issuing authority, type of action, identification number and date issued; (2) description of noncompliance cited; (3) current status of the matter; and (4) final disposition, if any.

Revised: 12/05/2013 Page 1 of 1 Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan, and Temporary Solution Statement Parcel P-3
Boston (Roxbury), Massachusetts
MassDEP RTNs 3-15009 and 3-36365

Attachment to Tier Classification Transmittal Form BWSC107

Section B, Question 5. Submit a Tier Classification Extension Submittal

The Tier Classification Extension Submittal has been submitted via eDEP as part of the Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan, and Temporary Solution Statement (eDEP Transmittal No. 1211729).

Section F, Question 1. Required Attachment and Submittals

The response actions described in this Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan, and Temporary Solution Statement are subject to the provisions of Notice of Non-Compliance (NON-NE-07-3A146) issued by MassDEP to the Boston Redevelopment Authority (now BPDA) on October 22, 2007.

A. SITE LOCATION:

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC 108

Release Tracking Number

3 -	15009
3 -	15009

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

1. Site Name:	UTMS 4688700MN 327800 M	=		
	0 11013 40007 0010110 327 000 101	_		
2. Street Address:	PARCEL P-3 TREMONT & WH	ITTIER STS		
3. City/Town:	ROXBURY		4. ZIP Code:	021190000
5. Check here if the	disposal site that is the so	urce of the release is Tier C	Classified. Check	the current Tier Classification Category:
a. Tier I	□ b. Tier ID	c. Tier II		
B. THIS FORM IS BE	CING USED TO: (check a	ll that apply)		
1. Submit a Phase	I Completion Statemen	t, pursuant to 310 CMR 40	0.0484.	
2. Submit a Revise	ed Phase I Completion S	statement, pursuant to 310	CMR 40.0484.	
3. Submit a Phase	II Scope of Work, pursu	ant to 310 CMR 40.0834.		
4. Submit an inter 310 CMR 40.0500	-	s report does not satisfy the	response action	deadline requirements in
5. Submit a final I	Phase II Report and Con	npletion Statement, pursu	ant to 310 CMR	40.0836.
6. Submit a Revis	ed Phase II Report and	Completion Statement, pu	ursuant to 310 Cl	MR 40.0836.
7. Submit a Phase	III Remedial Action Pla	nn and Completion Stater	ment, pursuant to	o 310 CMR 40.0862.
8. Submit a Revis e	ed Phase III Remedial A	ction Plan and Completion	on Statement, p	ursuant to 310 CMR 40.0862.
9. Submit a Phase	IV Remedy Implement	ation Plan, pursuant to 310	CMR 40.0874.	
☐ 10. Submit a Mod i	ified Phase IV Remedy I	mplementation Plan, purs	suant to 310 CM	R 40.0874.
☐ 11. Submit an As-l	Built Construction Repo	rt, pursuant to 310 CMR 4	0.0875.	
12. Submit a Phas	e IV Status Report, purs	uant to 310 CMR 40.0877.		
13. Submit a Phas	e IV Completion Statem	ent, pursuant to 310 CMR	40.0878 and 40.	0879.
Specify the outo	come of Phase IV activitie	s: (check one)		
<u> </u>	eration, Maintenance or M Femporary Solution.	onitoring of the Comprehen	nsive Remedial A	Action is necessary to achieve a
=	ments of a Permanent Solurill be submitted to DEP.	ntion have been met. A com	pleted Permanen	at Solution Statement and Report
	ments of a Temporary Solutil be submitted to DEP.	ation have been met. A com	npleted Temporai	ry Solution Statement and Report

Revised: 09/03/2013 Page 1 of 5

B. THIS FORM IS BEING USED TO (cont.): (check all that apply)

BWSC 108

Release Tracking Number

- 15009	
---------	--

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

Г	14. Submit a Revised Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879.
Г	15. Submit a Phase V Status Report, pursuant to 310 CMR 40.0892.
Г	16. Submit a Remedial Monitoring Report. (This report can only be submitted through eDEP.)
	a. Type of Report: (check one) 🔲 i. Initial Report 🖂 ii. Interim Report 🖂 iii. Final Report
	b. Frequency of Submittal: (check all that apply)
	i. A Remedial Monitoring Report(s) submitted monthly to address an Imminent Hazard.
	ii. A Remedial Monitoring Report(s) submitted monthly to address a Condition of Substantial Release Migration.
	iii. A Remedial Monitoring Report(s) submitted every six months, concurrent with a Status Report.
	iv. A Remedial Monitoring Report(s) submitted annually, concurrent with a Status Report.
	c. Status of Site: (check one) 🔲 i. Phase IV 🥅 ii. Phase V 🔲 iii. Remedy Operation Status 🦳 iv. Temporary Solution
	d. Number of Remedial Systems and/or Monitoring Programs:
	A separate BWSC108A, CRA Remedial Monitoring Report, must be filled out for each Remedial System and/or Monitoring Program addressed by this transmittal form. 17. Submit a Remedy Operation Status, pursuant to 310 CMR 40.0893.
Г	18. Submit a Status Report to maintain a Remedy Operation Status, pursuant to 310 CMR 40.0893(2).
	 19. Submit a Transfer and/or a Modification of Persons Maintaining a Remedy Operation Status (ROS), pursuant to 310 CMR 40.0893(5) (check one, or both, if applicable). a. Submit a Transfer of Persons Maintaining an ROS (the transferee should be the person listed in Section D, "Person Undertaking Response Actions"). b. Submit a Modification of Persons Maintaining an ROS (the primary representative should be the person listed in Section D, "Person Undertaking Response Actions"). c. Number of Persons Maintaining an ROS not including the primary representative:
Г	20. Submit a Termination of a Remedy Operation Status, pursuant to 310 CMR 40.0893(6).(check one)
	 a. Submit a notice indicating ROS performance standards have not been met. A plan and timetable pursuant to 310 CMR 40.0893(6)(b) for resuming the ROS are attached. b. Submit a notice of Termination of ROS.
Г	21. Submit a Phase V Completion Statement, pursuant to 310 CMR 40.0894.
	Specify the outcome of Phase V activities: (check one)
	 a. The requirements of a Permanent Solution have been met. A completed Permanent Solution Statement and Report (BWSC104) will be submitted to DEP. b. The requirements for a Temporary Solution have been met. A completed Temporary Solution Statement and Report
_	(BWSC104) will be submitted to DEP.
_	22. Submit a Revised Phase V Completion Statement, pursuant to 310 CMR 40.0894.
	23. Submit a Temporary Solution Status Report , pursuant to 310 CMR 40.0898.
	24. Submit a Plan for the Application of Remedial Additives near a sensitive receptor, pursuant to 310 CMR 40.0046(3).
	a. Status of Site: (check one)
	☐ i. Phase IV ☐ ii. Phase V ☐ iii. Remedy Operation Status ☐ iv. Temporary Solution

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

DI	X 7	C		1	08
\mathbf{D}	y v	2	v.	1	vo

Release Tracking Number		
3	-	15009

C. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

- > if Section B indicates that a **Phase II, Phase III, Phase IV or Phase V Completion Statement** and/or a **Termination of a Remedy Operation Status** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B indicates that a **Phase II Scope of Work** or a **Phase IV Remedy Implementation Plan** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B indicates that an As-Built Construction Report, a Remedy Operation Status, a Phase IV, Phase V or Temporary Solution Status Report, a Status Report to Maintain a Remedy Operation Status, a Transfer or Modification of Persons Maintaining a Remedy Operation Status and/or a Remedial Monitoring Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP#:	9719			
2. First Name:	ILEENS		3. Last Name:	GLADSTONE
4. Telephone:	7817214012	5. Ext.:	6. Email:	igladstone@geiconsultants.com
7. Signature:				
8. Date:	(mm/dd/yyyy)		9. LSP Stamp:	

Revised: 09/03/2013 Page 3 of 5

1. Check all that apply:

D. PERSON UNDERTAKING RESPONSE ACTIONS:

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

BWSC 108

Release	Trac	king	Num	ber
recrease	Trac.	KIIIS	Tium	

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

□ b. change of address

a. change in contact name c. change in the person undertaking response actions 2. Name of Organization: **BOSTON PLANNING & DEVELOPMENT AGENCY** 3. Contact First Name: 4. Last Name: EPPERSON WILLIAM 5. Street: 6. Title: 22 DRYDOCK AVENUE 7. City/Town: 8. State: 9. ZIP Code: **BOSTON** MA 022100000 12. Email: 10. Telephone: 11. Ext: 6179186202 william.j.epperson@boston.gov E. RELATIONSHIP TO SITE OF PERSON UNDERTAKING RESPONSE ACTIONS:

Check here to change relationship ✓ 1. RP or PRP ✓ a. Owner ☐ b. Operator C. Generator d. Transporter e. Other RP or PRP Specify: 2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2) 3. Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j)) 4. Any Other Person Undertaking Response Actions Specify Relationship: F. REQUIRED ATTACHMENT AND SUBMITTALS: **V** 1. Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof. 2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of $\overline{\mathbf{v}}$ any Phase Reports to DEP. 3. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase III Remedial Action Plan. \Box 4. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase IV Remedy Implementation Plan. 5. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of any field work involving the implementation of a Phase IV Remedial Action. Γ 6. If submitting a Transfer of a Remedy Operation Status (as per 310 CMR 40.0893(5)), check here to certify that a statement detailing the compliance history for the person making this submittal (transferee) is attached. 7. If submitting a Modification of a Remedy Operation Status (as per 310 CMR 40.0893(5)), check here to certify that a statement detailing the compliance history for each new person making this submittal is attached. 8. Check here if any non-updatable information provided on this form is incorrect, e.g. Release Address/Location Aid. Send corrections to: BWSC.eDEP@state.ma.us. **V** 9. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.

Revised: 09/03/2013 Page 4 of 5

n BWSC 108

COMPREHENSIVE	RESPONSE ACT	ION TRANSMITTAL

Release Tracking Number

3 - 15009

FORM & PHASE I COMPLETION STATEMENT
Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

G. CERTIF	ICATION OF PERSON UNDERTAKING RESPONSE ACTIONS:
transmittal t material inf that I am fu on whose be	, attest under the pains and penalties of perjury (i) that I have personally and am familiar with the information contained in this submittal, including any and all documents accompanying this form, (ii) that, based on my inquiry of those individuals immediately responsible for obtaining the information, the formation contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii) ally authorized to make this attestation on behalf of the entity legally responsible for this submittal. I/the person or entity ehalf this submittal is made am/is aware that there are significant penalties, including, but not limited to, possible fines onment, for willfully submitting false, inaccurate, or incomplete information.
of perjury the CMR 40.08	B indicates that this is a Modification of a Remedy Operation Status (ROS), I attest under the pains and penalties hat I am fully authorized to act on behalf of all persons performing response actions under the ROS as stated in 310 93(5)(d) to receive oral and written correspondence from MassDEP with respect to performance of response actions OS, and to receive a statement of fee amount as per 4.03(3).
performing	d that any material received by the Primary Representative from MassDEP shall be deemed received by all the persons response actions under the ROS, and I am aware that there are significant penalties, including, but not limited to, es and imprisonment, for willfully submitting false, inaccurate or incomplete information.
2. By:	3. Title:
	Signature
4. For:	BOSTON PLANNING & DEVELOPMENT AGENCY 5. Date:
	(Name of person or entity recorded in Section D) (mm/dd/yyyy)
6. Chec	k here if the address of the person providing certification is different from address recorded in Section D.
7. Street:	
8. City/Tow	9. State: 10. ZIP Code:
11. Telephor	ne: 12. Ext.: 13. Email:
BILI SECTION AN	U ARE SUBJECT TO AN ANNUAL COMPLIANCE ASSURANCE FEE OF UP TO \$10,000 PER LABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST LEGIBLY COMPLETE ALL RELEVANT NS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE. mp (DEP USE ONLY:)

Revised: 09/03/2013 Page 5 of 5

Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan, and Temporary Solution Statement Parcel P-3
Boston (Roxbury), Massachusetts
MassDEP RTNs 3-15009 and 3-36365

Attachment to Comprehensive Response Action Transmittal Form BWSC108

Section B, Question 6. Submit a Supplemental Phase II Comprehensive Site Assessment

The Supplemental Phase II CSA has been submitted via eDEP as part of the Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan, and Temporary Solution Statement (eDEP Transmittal No. 1211729).

Section B, Question 8. Submit a Phase III Remedial Action Plan Addendum

The Phase III RAP Addendum has been submitted via eDEP as part of the Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan, and Temporary Solution Statement (eDEP Transmittal No. 1211729).

Section F, Question 1. Required Attachment and Submittals

The response actions described in this Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan, and Temporary Solution Statement are subject to the provisions of Notice of Non-Compliance (NON-NE-07-3A146) issued by MassDEP to the Boston Redevelopment Authority (now BPDA) on October 22, 2007.

MassDEP RTN 3-15009 and RTN 3-36365 DRAFT Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Tremont and Whittier Streets, Boston (Roxbury), Massachusetts January 11, 2021

Appendix B

Public Notice Documents

DRAFT January xx, 2021 Project 2002082

Mr. Carl Spector Environment Department Director One City Hall Square, Room 805 Boston, MA 02201

Dear Mr. Spector:

Re: Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Whittier and Tremont Street Boston (Roxbury), Massachusetts

MassDEP RTNs 3-15009 and 3-36365

GEI Consultants, Inc. is hereby notifying your office that a Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement (the Report) is being submitted to the Massachusetts Department of Environmental Protection (MassDEP) for the above-referenced site.

In accordance with the MCP (310 CMR 40.1403(3)(e,f)), we have enclosed a copy of the findings and conclusions of the Report in the form of the Executive Summary. The Report is being submitted to the MassDEP Northeast Regional Office (NERO) in Wilmington, Massachusetts concurrently with this letter and is available for review online at https://eeaonline.eea.state.ma.us/portal#!/search/wastesite, searchable under RTNs 3-0015009 and 3-0036365.

This notification is made in fulfillment of the public notice requirements of the MCP (310 CMR 40.1403).

Please contact me at 781-721-4012 or <u>igladstone@geiconsultants.com</u> if you have any questions.

Sincerely,

GEI CONSULTANTS, INC.

Ileen S. Gladstone, P.E., LSP, LEED AP Senior Vice President Ryan S. Hoffman, P.G., LSP Senior Project Manager

RSH:jam Enclosure

c: Bureau of Waste Site Cleanup, MassDEP-NERO

B:\Working\BOSTON PLANNING & DEV AGENCY (AKA BRA)\2002082 BPDA Parcel P3\01_ADMIN\Phase II&III+TSS\App B - Public Notice\Ph1 ISI pub not ltrs.doc

DRAFT January xx, 2021 Project 2002082

Ms. Rita Nieves, RN, MPH, LICSW Interim Executive Director Boston Public Health Commission 1010 Massachusetts Avenue, 2nd Floor Boston, MA 02218

Dear Ms. Nieves:

Re: Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Whittier and Tremont Street Boston (Roxbury), Massachusetts
MassDEP RTNs 3-15009 and 3-36365

GEI Consultants, Inc. is hereby notifying your office that a Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement (the Report) is being submitted to the Massachusetts Department of Environmental Protection (MassDEP) for the above-referenced site.

In accordance with the MCP (310 CMR 40.1403(3)(e,f)), we have enclosed a copy of the findings and conclusions of the Report in the form of the Executive Summary. The Report is being submitted to the MassDEP Northeast Regional Office (NERO) in Wilmington, Massachusetts concurrently with this letter and is available for review online at https://eeaonline.eea.state.ma.us/portal#!/search/wastesite, searchable under RTNs 3-0015009 and 3-0036365.

This notification is made in fulfillment of the public notice requirements of the MCP (310 CMR 40.1403).

Please contact me at 781-721-4012 or igladstone@geiconsultants.com if you have any questions.

Sincerely,

GEI CONSULTANTS, INC.

Ileen S. Gladstone, P.E., LSP, LEED AP Senior Vice President Ryan S. Hoffman, P.G., LSP Senior Project Manager

RSH:jam Enclosure

c: Bureau of Waste Site Cleanup, MassDEP-NERO

MassDEP RTN 3-15009 and RTN 3-36365 DRAFT Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Tremont and Whittier Streets, Boston (Roxbury), Massachusetts January 11, 2021

Appendix C

Historical Records

Feldco Development

Tremont St./Whittier St. Boston, MA 02120

Inquiry Number: 4513182.5

January 14, 2016

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Thank you for your business.

Please contact EDR at 1-800-352-0050 with any questions or comments.

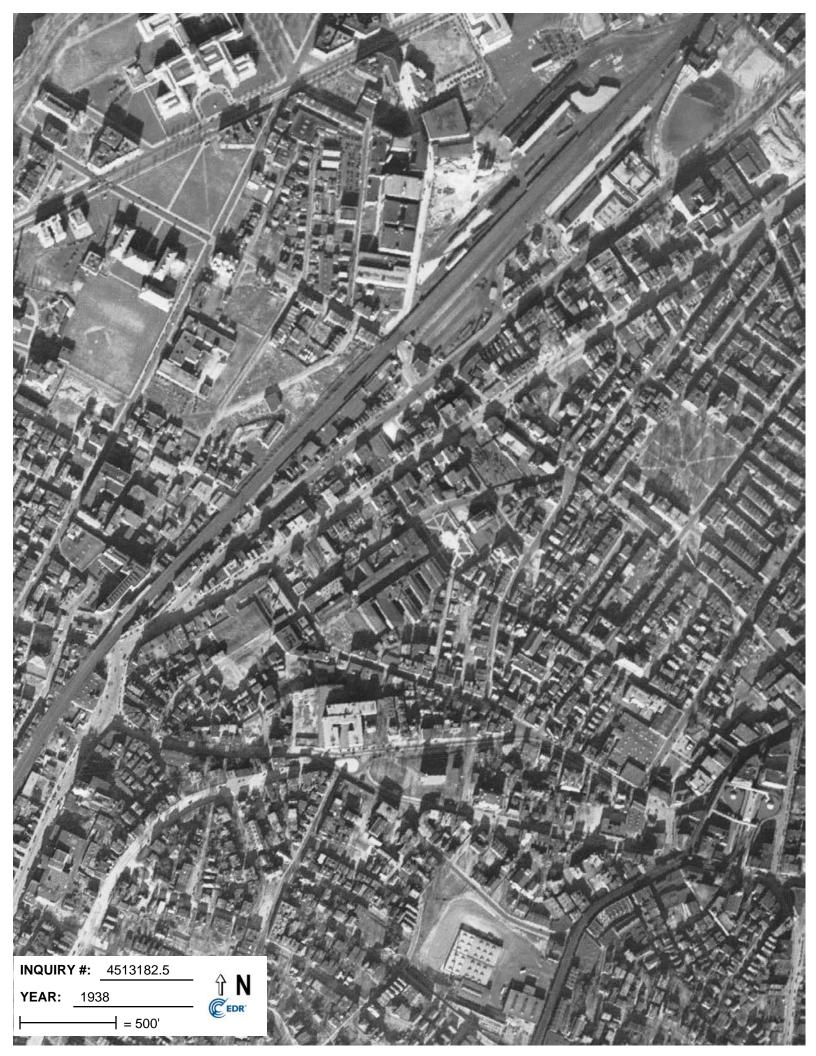
Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2016 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Date EDR Searched Historical Sources:


Aerial Photography January 14, 2016

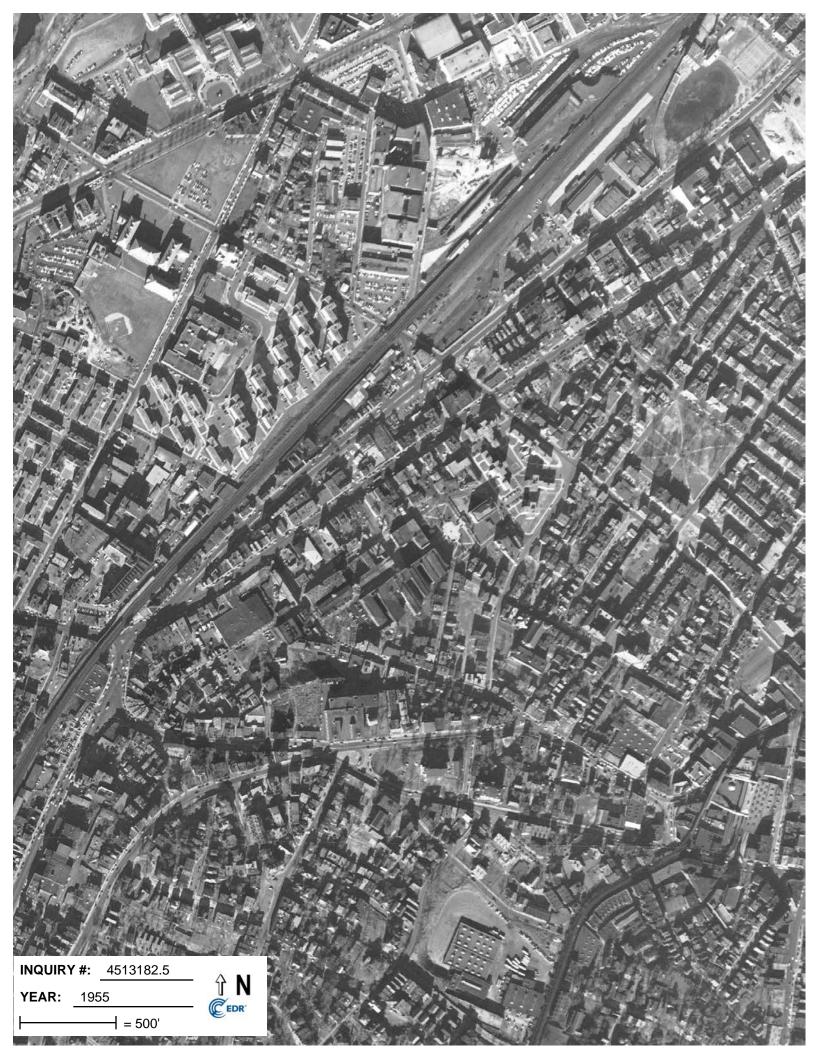
Target Property:

Tremont St./Whittier St.

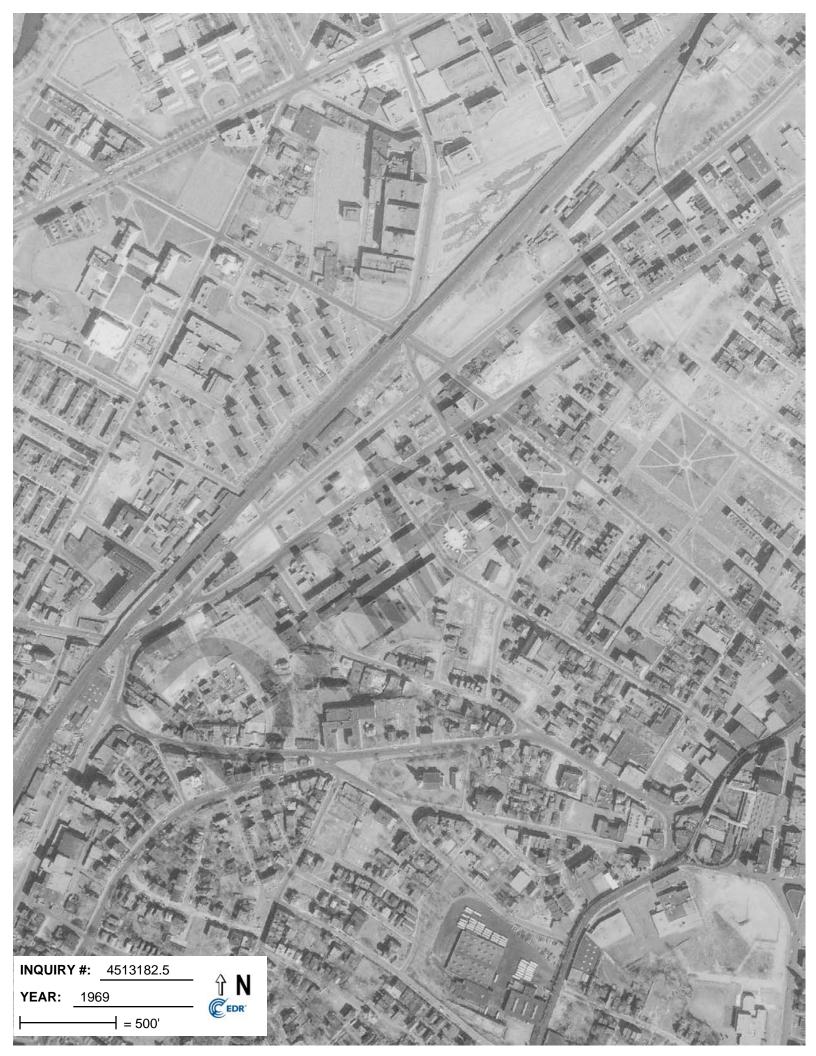
Boston, MA 02120

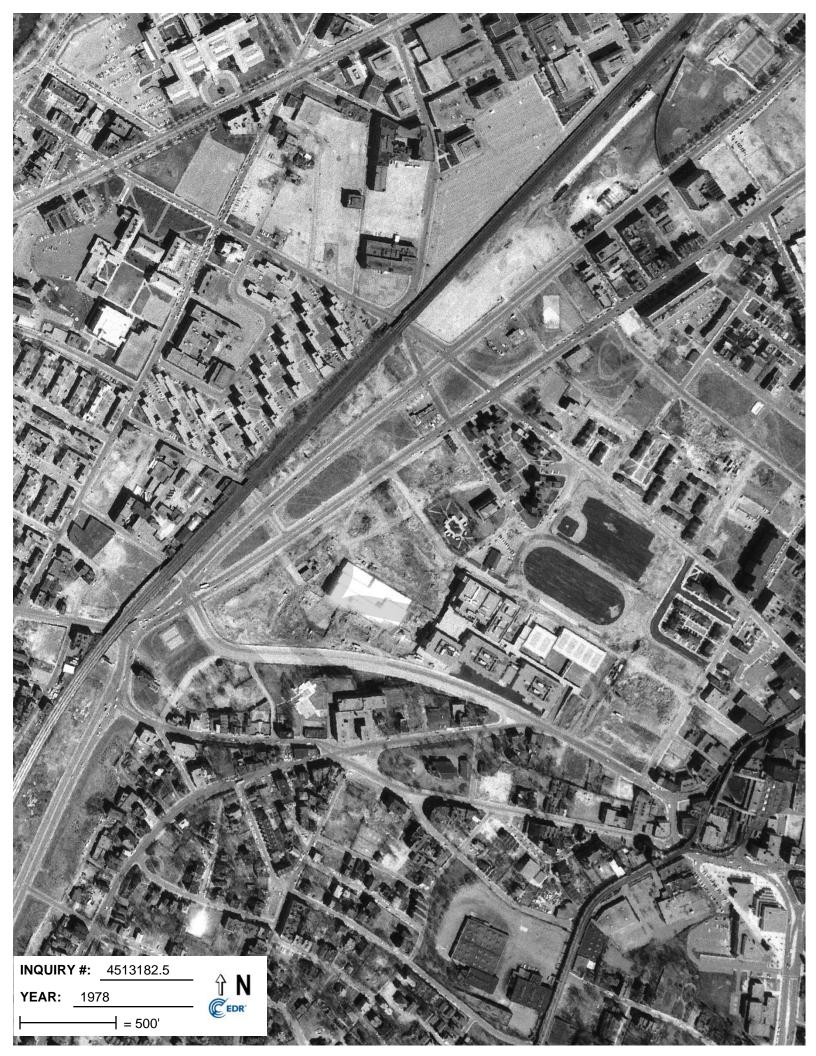
<u>Year</u>	<u>Scale</u>	<u>Details</u>	<u>Source</u>
1938	Aerial Photograph. Scale: 1"=500'	Flight Date: December 15, 1938	USGS
1946	Aerial Photograph. Scale: 1"=500'	Flight Date: June 15, 1946	EDR
1946	Aerial Photograph. Scale: 1"=500'	Flight Date: June 15, 1946	USGS
1952	Aerial Photograph. Scale: 1"=500'	Flight Date: August 24, 1952	EDR
1952	Aerial Photograph. Scale: 1"=500'	Flight Date: August 24, 1952	USGS
1955	Aerial Photograph. Scale: 1"=500'	Flight Date: December 01, 1955	USGS
1960	Aerial Photograph. Scale: 1"=500'	Flight Date: May 06, 1960	USDA
1969	Aerial Photograph. Scale: 1"=500'	Flight Date: April 13, 1969	USGS
1970	Aerial Photograph. Scale: 1"=500'	Flight Date: October 29, 1970	USGS
1978	Aerial Photograph. Scale: 1"=500'	Flight Date: April 23, 1978	USGS
1980	Aerial Photograph. Scale: 1"=500'	Flight Date: October 10, 1980	USGS
1985	Aerial Photograph. Scale: 1"=500'	Flight Date: April 17, 1985	USGS
1995	Aerial Photograph. Scale: 1"=500'	Flight Date: April 03, 1995	USGS
1996	Aerial Photograph. Scale: 1"=500'	DOQQ - acquisition dates: May 07, 1996	USGS/DOQQ
2008	Aerial Photograph. Scale: 1"=500'	Flight Year: 2008	USDA/NAIP
2010	Aerial Photograph. Scale: 1"=500'	Flight Year: 2010	USDA/NAIP
2012	Aerial Photograph. Scale: 1"=500'	Flight Year: 2012	USDA/NAIP

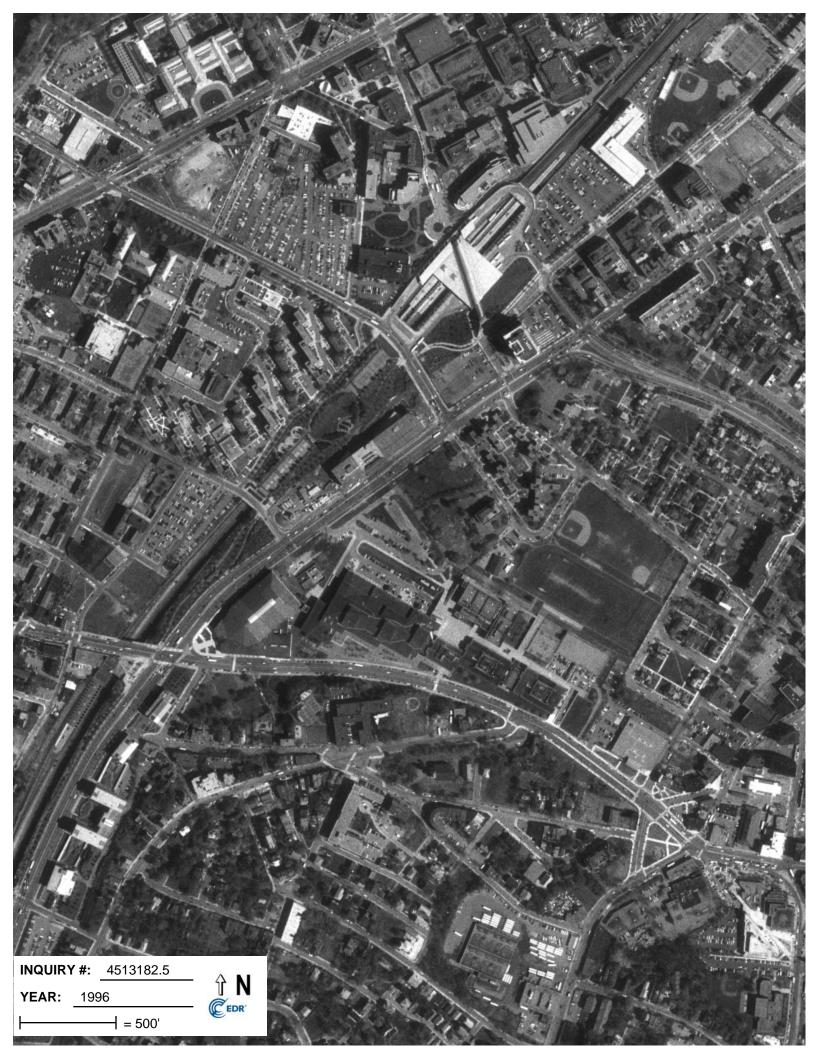
= 500'

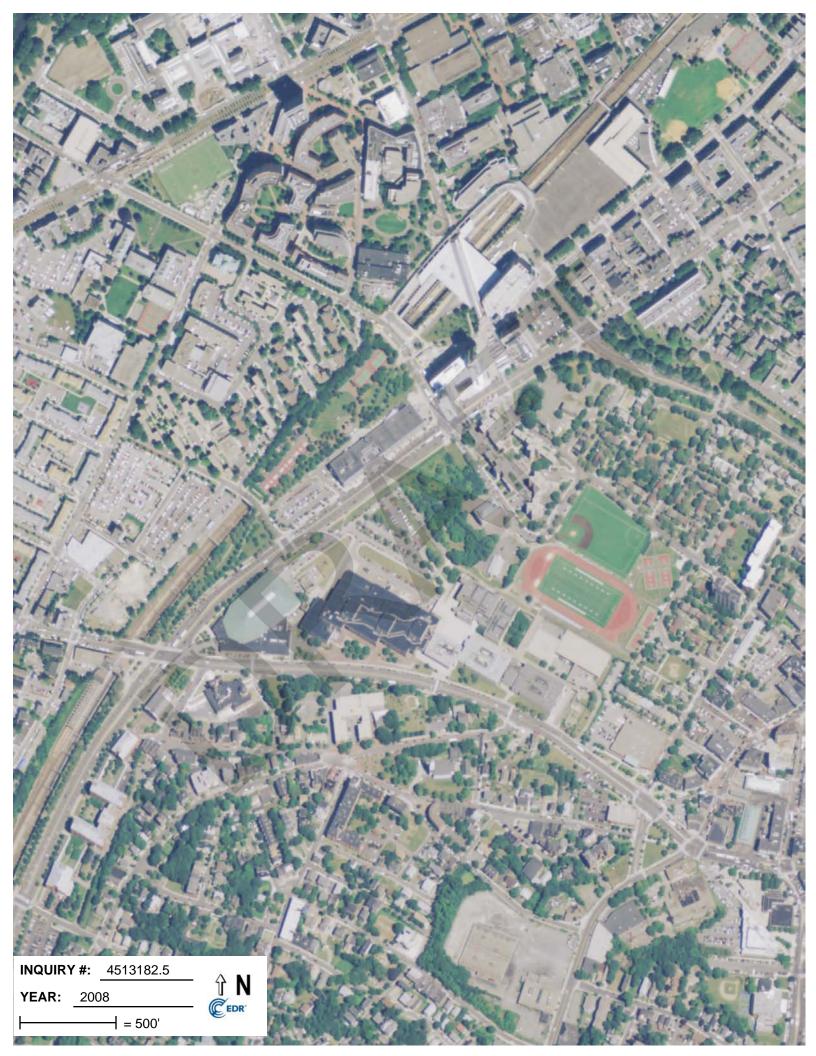


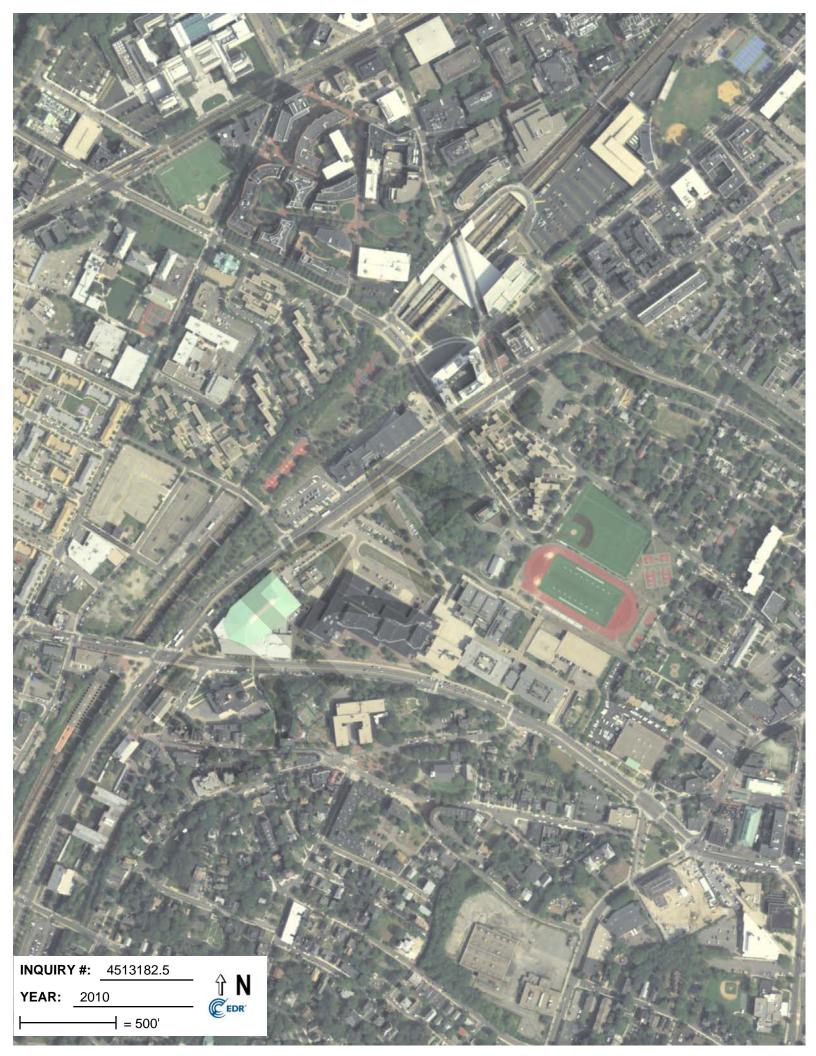
YEAR: 1946


= 500'











Feldco Development

Tremont St./Whittier St. Boston, MA 02120

Inquiry Number: 4513182.3

January 14, 2016

Certified Sanborn® Map Report

Certified Sanborn® Map Report

1/14/16

Site Name: Client Name:

Feldco Development GEI Consultants, Inc.
Tremont St./Whittier St. 400 Unicorn Park Drive
Boston, MA 02120 Woburn, MA 01801

EDR Inquiry # 4513182.3 Contact: Ross Mower

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by GEI Consultants, Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Site Name: Feldco Development
Address: Tremont St./Whittier St.
City, State, Zip: Boston, MA 02120

Cross Street:

Maps Provided:

P.O. # 132673-3

Project: Feldco Tremont Crossing ESA

Certification # E230-476D-BE46

1888

2002	1990
1998	1988
1995	1964
1994	1950
1993	1919
1992	1897

Sanborn® Library search results Certification # E230-476D-BE46

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

▼ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

GEI Consultants, Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2016 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Sanborn Sheet Thumbnails

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

2002 Source Sheets

Volume 3E, Sheet 2

Volume 3E, Sheet 3

Volume 3E, Sheet 4

1998 Source Sheets

Volume 3E, Sheet 2

Volume 3E, Sheet 3

Volume 3E, Sheet 4

1995 Source Sheets

Volume 3E, Sheet 2

Volume 3E, Sheet 3

Volume 3E, Sheet 4

Volume 3E, Sheet 2

Volume 3E, Sheet 3

Volume 3E, Sheet 4

1993 Source Sheets

Volume 3E, Sheet 2

Volume 3E, Sheet 3

Volume 3E, Sheet 4

1992 Source Sheets

Volume 3E, Sheet 2

Volume 3E, Sheet 3

Volume 3E, Sheet 4

1990 Source Sheets

Volume 3E, Sheet 2

Volume 3E, Sheet 3

Volume 3E, Sheet 4

Volume 3E, Sheet 4

Volume 3E, Sheet 2

Volume 3E, Sheet 3

1964 Source Sheets

Volume 3E, Sheet 3

Volume 3E, Sheet 4

1950 Source Sheets

Volume 3, Sheet 3

Volume 3, Sheet 4

1919 Source Sheets

Volume 3, Sheet 2

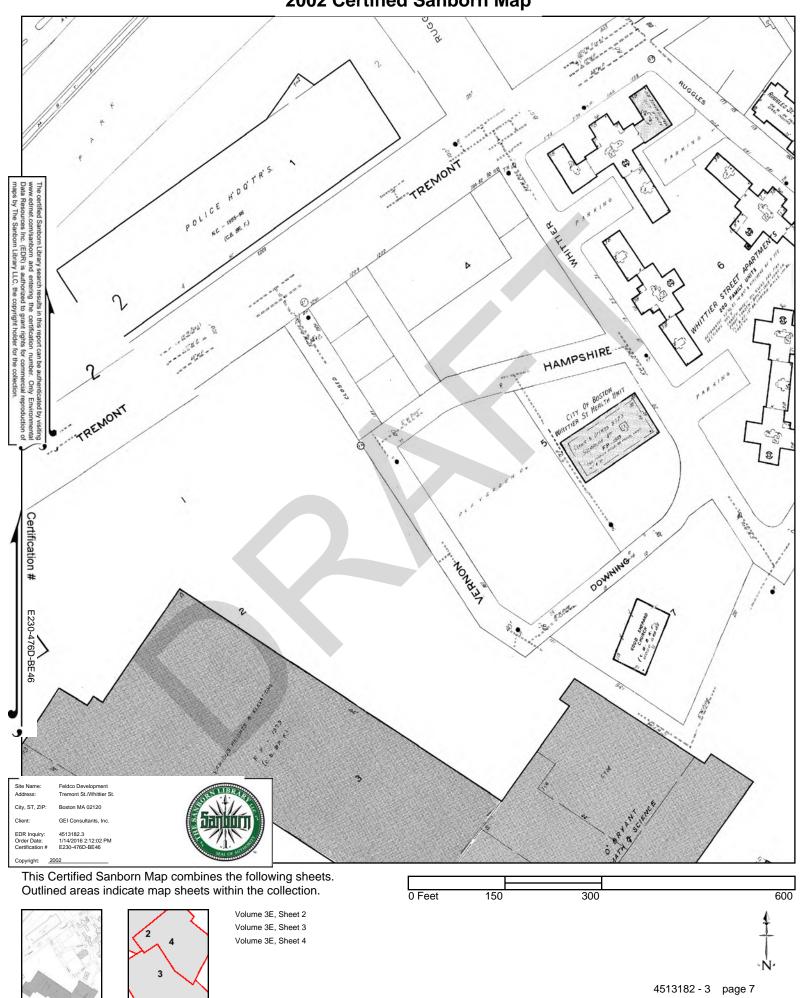
Volume 3, Sheet 3

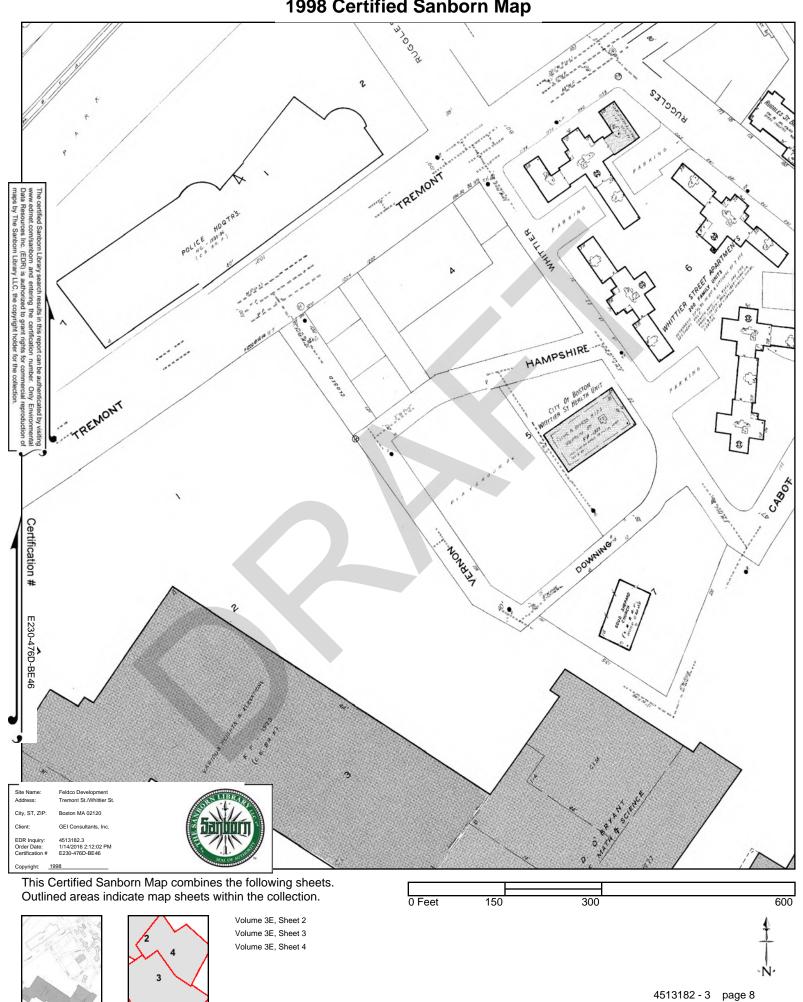
Volume 3, Sheet 4

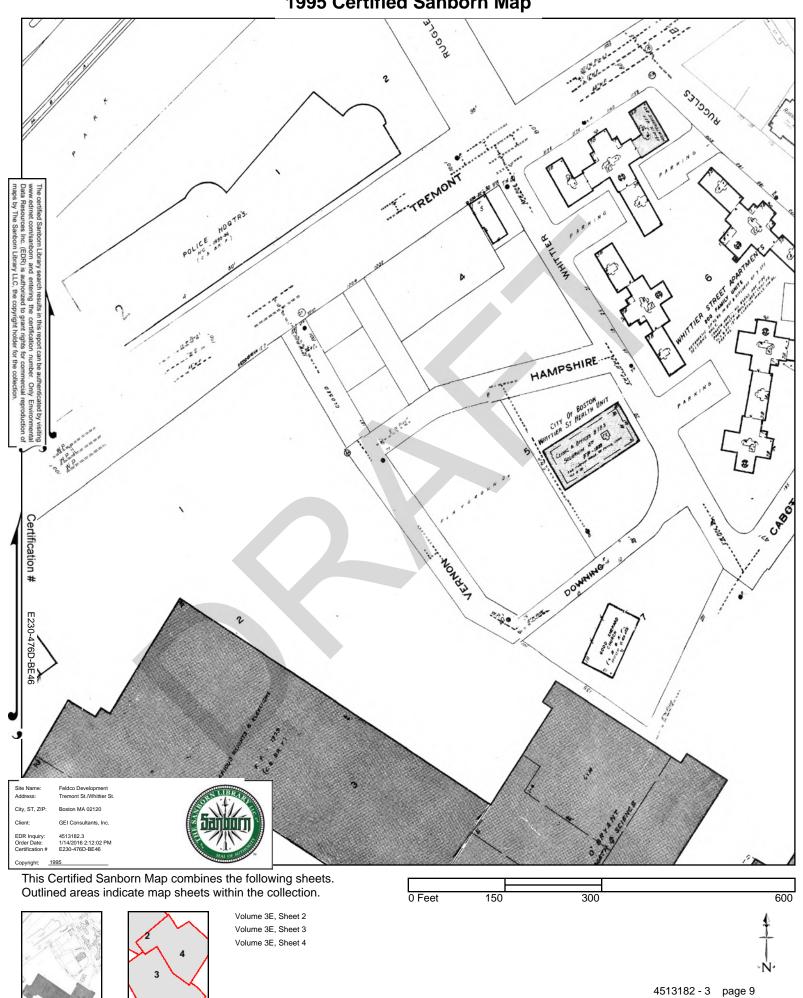
Volume 3, Sheet 2

Volume 3, Sheet 3

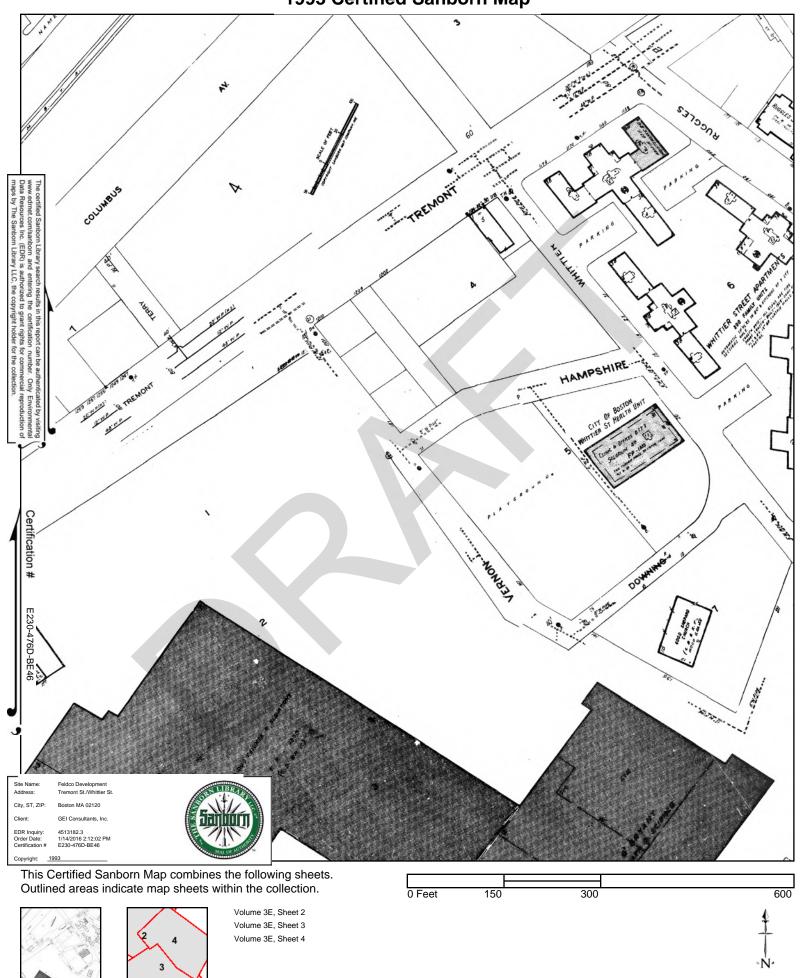
Volume 3, Sheet 4

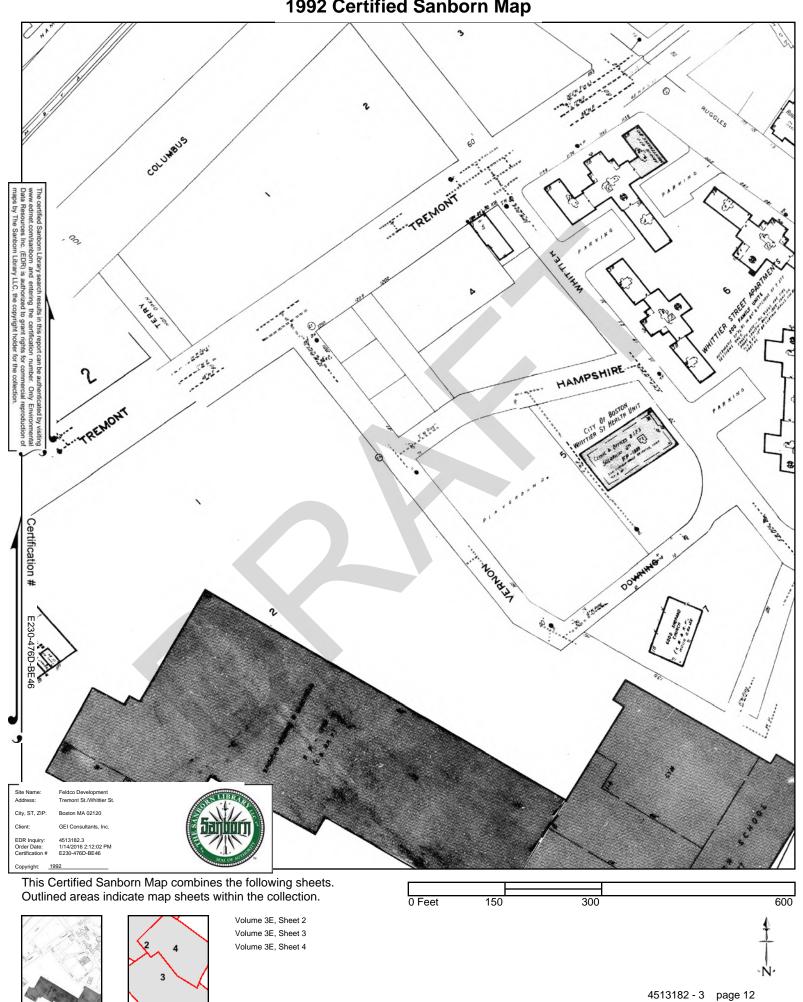


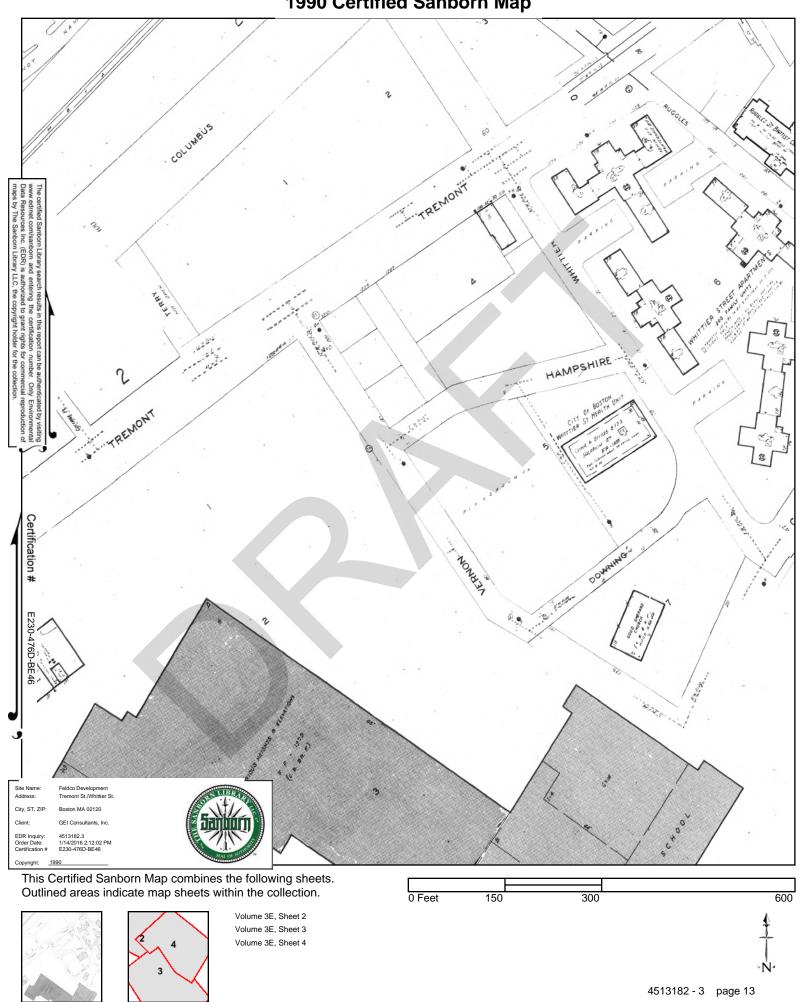


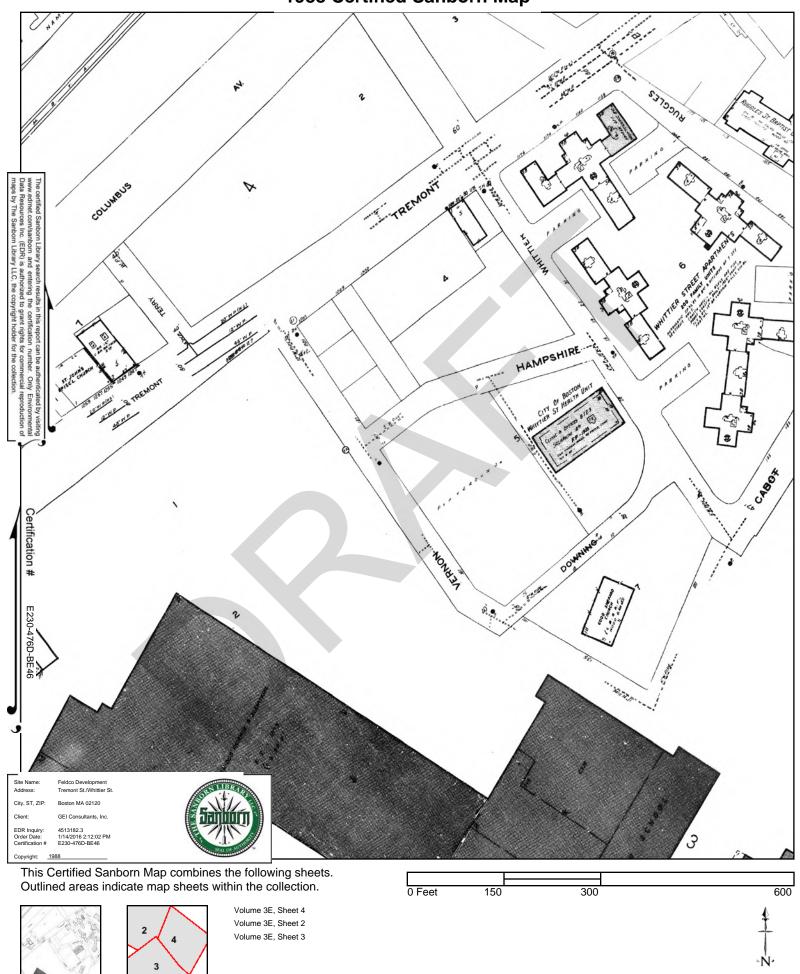

Volume 3, Sheet 65

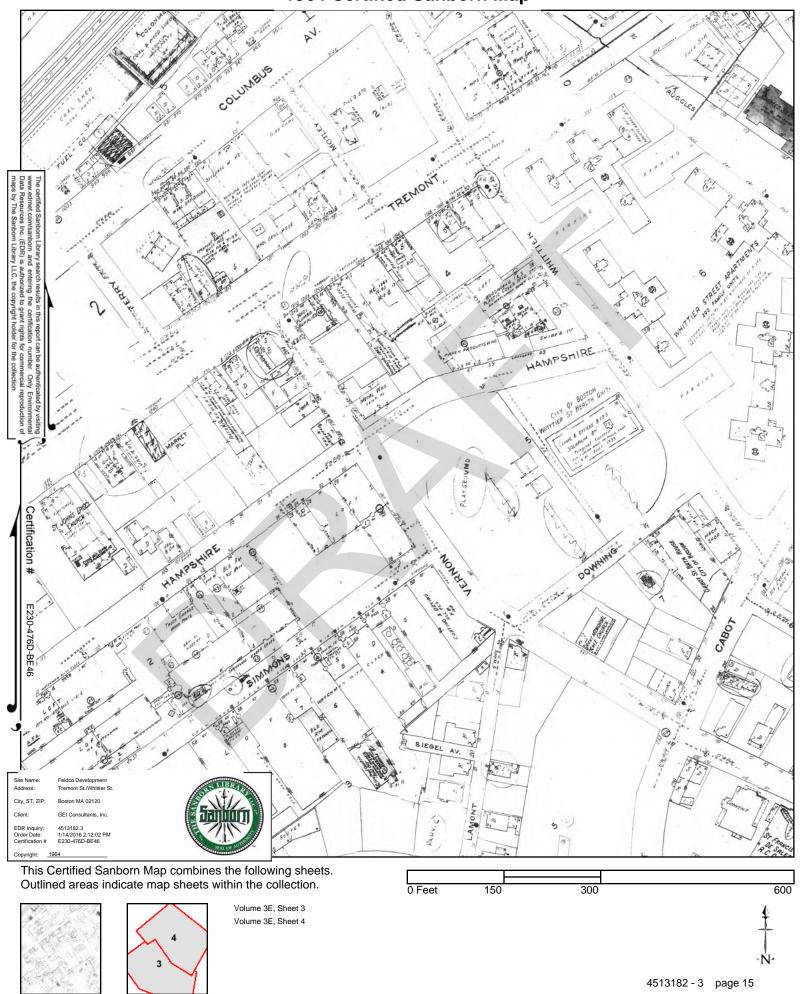

Volume 3, Sheet 66

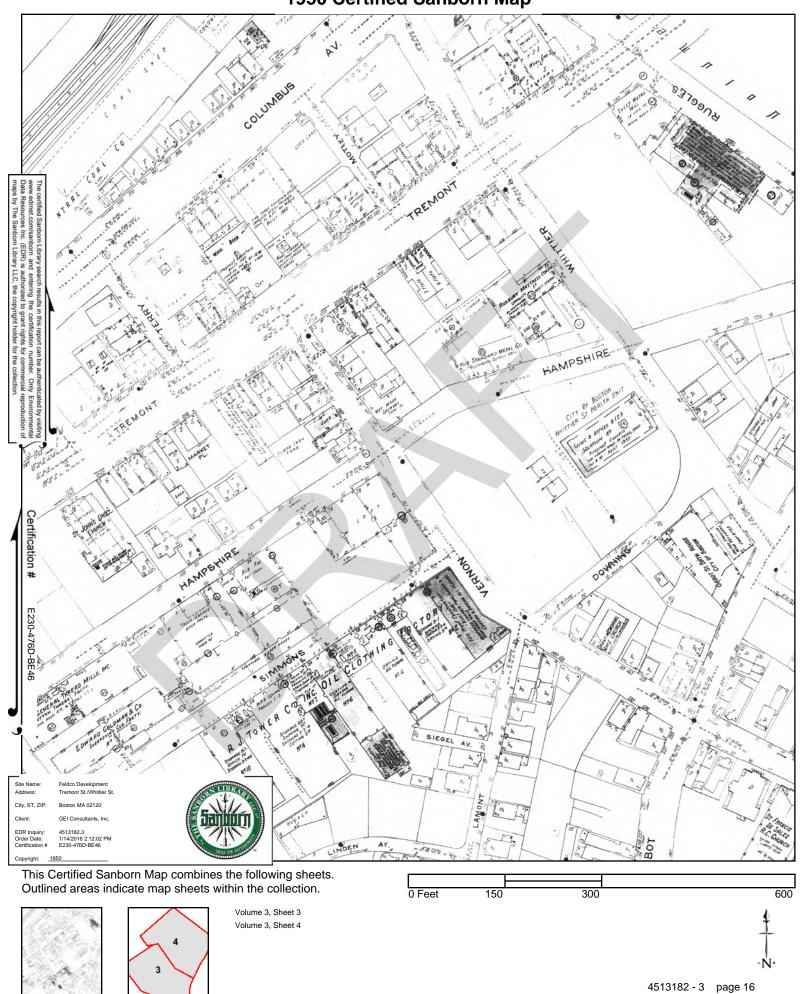

Volume 3, Sheet 66

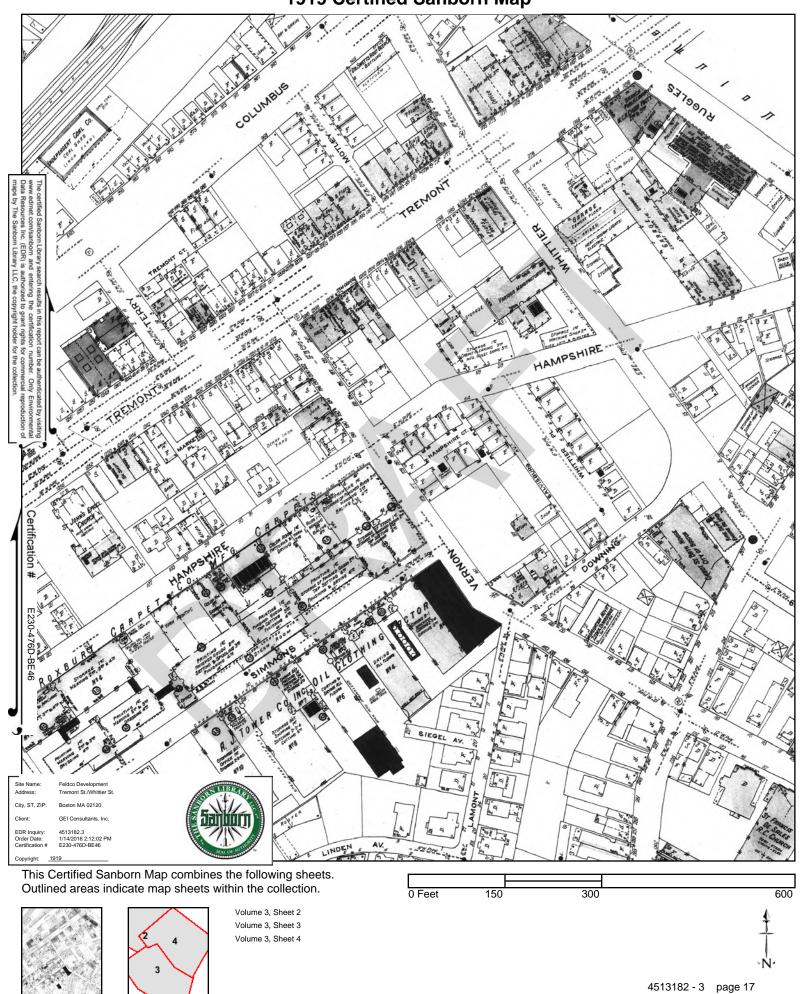


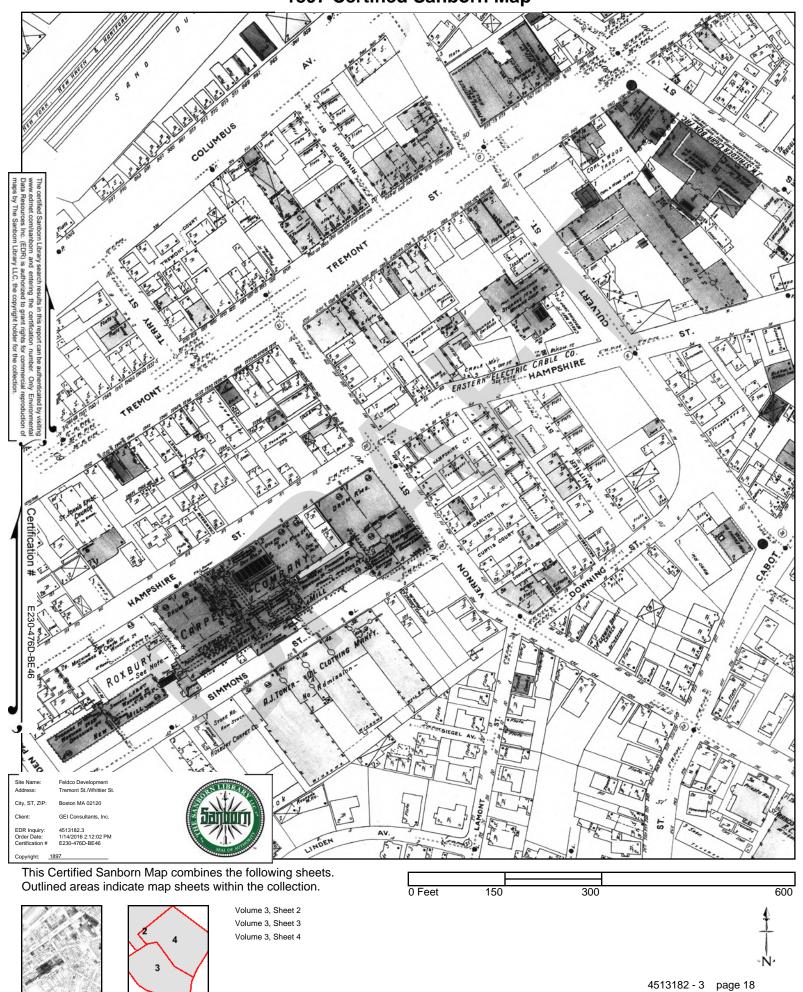





4513182 - 3 page 11








4513182 - 3 page 14

Assessing On-Line

« New search Map

Parcel ID: 0902980100
Address: TREMONT ST BOSTON MA 02119
Property Type: Exempt
Classification Code: 986 (Exempt Property Type / OTHER PUBLIC LAND)
Lot Size: 334,546 sq ft
Gross Area: 0 sq ft
Owner on Thursday, January 1, 2015: BOSTON REDEVELOPMENT AUTH
Owner's Mailing Address: TREMONT ST ROXBURY MA 02119
Residential Exemption: No
Personal Exemption:

Value/Tax

Assessment as of Thursday, January 1, 2015, statutory

FY2016 Building value:	\$0.00
FY2016 Land Value:	\$9,628,200.00
FY2016 Total Assessed Value:	\$9,628,200.00

FY2016 Tax Rates (per thousand):

- Residential:	\$11.00
- Commercial:	\$26.81
FY2016 Gross Tax:	\$0.00
- Residential Exemption:	\$0.00
- Personal Exemption:	\$0.00
FY2016 Net Tax:	\$0.00

Abatements/Exemptions

The deadline for filing an Abatement application for FY2016 was Monday, February 1, 2016. However, additional documentation for applications already on file is still being accepted.

This type of parcel is not eligible for a residential or personal exemption.

Current Owners

1 BOSTON REDEVELOPMENT AUTH

Owner information may not reflect any changes submitted to City of Boston Assessing after Dec 23, 2015.

Value History

Fiscal Year	Property Type	Assessed Value *
2016	Exempt	\$9,628,200.00
2015	Exempt	\$8,336,900.00
2014	Exempt	\$5,871,300.00
2013	Exempt	\$5,871,300.00
2012	Exempt	\$5,637,100.00
2011	Exempt	\$0.00

* Actual Billed Assessments

View Quarterly Tax Bill and Payment Information for this parcel for FY2015 and FY2016.

Visit My Neighborhood for information on city services related to this parcel.

Questions? For CURRENT fiscal year tax bill Questions, contact the Taxpayer Referral & Assistance Center. For PRIOR fiscal year tax payments, interest charges, fees, etc. contact the Collector's office at 617-635-4131.

From: <u>Lori Donovan</u>
To: <u>Mower, Ross</u>

Subject: Re: 21E Search Tremont St and Whittier St.

Date: Friday, January 22, 2016 8:37:17 AM

Hi Ross, I have completed your 21E Search, at this time there are No records on file for AST.UST at 20 Whittier St.

Thanks, Lori Donovan

Lori Donovan Senior Administrative Assistant- Fire Marshal Office Boston Fire Prevention Division 1010 Massachusetts Avenue, 4th Floor Boston, MA 02118

Direct Line: 617-343-3402 Email: lori.donovan@boston.gov

On Fri, Jan 22, 2016 at 8:14 AM, Lori Donovan < lori.donovan@boston.gov > wrote: Hi Ross, I will work on your request today and get back to you shortly with answers.

Thanks

Lori Donovan

Lori Donovan
Senior Administrative Assistant- Fire Marshal Office
Boston Fire Prevention Division
1010 Massachusetts Avenue, 4th Floor
Boston, MA 02118

Direct Line: <u>617-343-3402</u> Email: <u>lori.donovan@boston.gov</u>

On Wed, Jan 20, 2016 at 3:30 PM, Mower, Ross < rmower@geiconsultants.com > wrote:

Lori,

My apologies, the address to search within the parcel is 20 Whittier Street, Boston, MA. Do I need to re-mail the request or does this email suffice? I appreciate your help, thanks!

Ross

From: Lori Donovan [mailto:<u>lori.donovan@boston.gov</u>]

Sent: Wednesday, January 20, 2016 1:49 PM **To:** Mower, Ross < rmower@geiconsultants.com **Subject:** 21E Search Tremont St and Whittier St.

Hi, I have received your request please re-submit with actual addresses not Parcel ID numbers. we cant not perform a search without an actual address.

Thanks,

Lori Donovan

Senior Administrative Assistant- Fire Marshal Office

Boston Fire Prevention Division

1010 Massachusetts Avenue, 4th Floor

Boston, MA 02118

Direct Line: <u>617-343-3402</u>

Email: lori.donovan@boston.gov

************** ************ ***********

Plans Must Be Filed with This Application When Required. Location, Ownership and Detail Must Be Correct, Complete and Legible. Application Required for Each Elevator.

Application for Permit to Alter Elevator.

Location, 20 Whittier St. Ward 9
Name of owner is? Boston Housing Authority Address, 230 Congress St., Boston Boston, 19 71. The undersigned applies for a permit to alter an elevator in the following-described building:-What was the building last used for? Name of contractor is? Consolidated Elevator Co. BUILDING COMMISSIONER: Present

Descrip-

DETAIL OF PROPOSED WORK

				Capacity? Operating Device?	10 Kills	CONSOLIDATED ELEVATOR CO., INC.	49/MELCHER STREET		
new governor ropes on passenger erevers.				Sneed? Capacity?	Signature of owner or	authorized representative, CONSOLIDA		A KODS Address,	, Dedham, Mass.
Furnish & install n	***************************************	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	© "	Proposed power:		License No.	Signature W. M. J. Fuel W.	Address 122 Monroe St., 1

If the speed or capacity of an existing elevator is NOTE: Elevator and Escalator Regulations—Division A—Definition 34 (c-f). increased, the installation becomes a new installation.

Location 20 Whittier St REFERRED TO INSPECTOR. BOSTON, May 14 197/ To the Building Commissioner: Sir,-I have examined the premises and find same as herein described and as proposed in details. Existing shaftway? JES Condition? FAIR New shaftway? New Permit has been granted for new shaftway? NO Is this an alteration or repair? TEPAIR Inspector. Permit granted

PENAMINATIO	
The state of the s	
The state of the s	o and an early and a state of the same and place a reason to the same of the s
C)	hief, Elevator Division.

FINAL REPORT.

19.7,
Has the alteration been made in accordance with the
application and plans filed and approved?
Have the safety devices been tested in your presence
and found satisfactory? 25.5
Law been violated?
Doc. No
Violation removed?
terre.

Impactur.

CITY OF BOSTON AND COUNTY OF SUFFOLK

DEPARTMENTAL COMMUNICATION

			January 24,1955
	(NAME)	(RATING)	(DEPARTMENT-DIVISION)
То	Charles A. Callanan	<u>Commissioner</u>	Building.
FROM	Bornerd B. Whelen	Superintendent	BldgElec.Inspection.
		_	

SUBJECT: Electrical Installation of Day Care Agency for 40 Children.

FILE REF. No.

Ruggles St. Nursery, Marian Finn, 20 Whittier St., Roxbury. (Health Unit)

Dear Sir:

An inspection of the electrical installation at 20 Whittier St., Roxbury shows same to be satisfactory to this division.

Fourth floor and two rooms and lavatory third floor.

Yours truly,

Bernard B. Whelan, Superintendent.

imo.

CITY OF BOSTON — INSPECTIONAL SERVICES DEPARTMENT 1010 Massachusetts Avenue, Boston, MA 02118	070601
SPECIAL FORM APPLICATION No	Jun
DATE June 21. 2001	\$107
Street and No 20 Whittier Street Name of Owner . BRA	Hall Plaza Fire Limit
Size of building, feet front .64; feet rear64; feet deep	
Check all means of egress from this building:	
Main stairs Back stairs Fire escapes Con. balconie	es Any other
Is this work being done to remove Building Code Violations? Yes	-
Detail of proposed work — STATE EXACTLY WHAT IS TO HE DONES	DEBAIS DISPOSAL LAW
REMOVE BUILDING, WALL & SLAB ON GRADE WILL Yes	vork result in any debris?
Boll off Containers for Track	nated Cost, \$.10,000
The facts set forth in this application and in the accompanying plans (if ar under penalty of perjury. The applicant also attests that he has read the stat side and abides by its requirements.	ny) are true statements made
Address935. Eq.	st.First.Street.SB 68-4933
(Name	of Contractor)
Address 41 Lone Pike Patch Address .59 Long	water Drive
	chusetts 02061
My license expires4/28/03	-7200
- Wy Kan a Vac of	ted
2) 111111	

ommission

City of Boston The Environment Department.

Boston City Hall/Room 805 Boston, Massachusetts 02201 617/635-3850

John C. Bowman, III, Chair Susan D. Pranger, Vice-Chair John Amodeo David Berarducci Harron Ellenson Cyrus Field John Freeman Thomas Green Pamela Hawkes Thomas Herman Leon V. Jacklin William Marchione Theresa O'Neill Jeffry Pond Richard F. Schmidt Lisa Serafin Mark Verkennis Ellen J. Lipsey, Exec. Director 18 April 2001

Mr. Joseph T. Conran Senior Real Estate Specialist **Boston Redevelopment Authority** One City Hall Square Boston, MA 02201

NOTICE OF DETERMINATION

Application #01-1258D593 Demolition of two secondary buildings at the rear of 20 Whittier Street, Roxbury.

Dear Mr. Conran:

The Boston Landmarks Commission staff have determined that the two secondary buildings located at 20 Whittier Street are not significant buildings under the Criteria for determining significance in Section 85-5.3 (a-e) of the Demolition Delay Ordinance (Article 85, Chapter 665 of the Acts of 1956 as amended). No further review is required. If you have any questions regarding this decision, please contact me at 617-635-2514.

Please bring this determination with you to Inspectional Services Department when applying for a demolition permit. Thank you for your cooperation in this matter.

Sincerely,

Colleen M. Meagher Preservation Planner

Boston Landmarks Commission

Commissioner of Inspectional Services Boston Redevelopment Authority Boston Civic Design Commission

Men U. Musche

ROBERT E. YORK BUILDING COMMISSIONER

FRANK J. COUGHLIN

CITY OF BOSTON BUILDING DEPARTMENT

OFFICE OF THE BUILDING COMMISSIONER

W. Gildea

CITY HALL ANNEX, ROOM 901, BOSTON

NOTICE - VIOLATION OF LAW

City of Boston Health Department 745 Mass. Ave. Boston, Mass

DOCUMENT ROOM

Inspection of premises 20 Whittier St. Ward 9 indicates the following violation of Law: Character size and Law Character states G. L. Ch. 143: Sect. 15 to 52 incl., as amended and regulations made thereunder entitled Form B-7 Regulations: There are operable transoms on the third floor; they must be filled inor made inoperable. Wire glass required in all stair enclosured and smoke partitions. An automatic fire alarm system with manual stations, distinctly marked and with a heat detector device and an secondary source of power must be provided. All manual stations must be not less than 5' from the floor. Exit and directional signs, located as directed must be provided. Egress doors must be provided with approved hardware, must swing in the direction of exit travel. Egress from the third and fourth floors is not satisfactory in that it is through rooms and areas occupied for other purposes. The means of egregs are not adequately lighted and the emergency lighting is inadequate. Fire Taxonody this combilent Department approval is required for all drapes, fabrics and other materials. The gas range is not properly vented. Windows in the basement and first floor are barred. A fresh air duct is required for the heater room. TO REMEDY THIS CONDITION, apply forthwith to this department for permit to make repairs. alterations and changes or installations which will bring this day care agency into conformity with the Regulations. This case will be entered into Superior Court if the premises are not vacated or repairs made within 15 days of this notice.

This notice is an order to correct violation. Application for permit must be filed in the Building Department.

R. B. Fork. Building

Building Commissioner.

V 827

Authority for this notice is given under the provisions of Chapter 479, Acts of 1938 as amended, and Chapter 488, Acts of 1924, as amended.

Document room

SYNOPSIS.

* * * * * * * * * * * * * * * * * * *	Ward 4
Name of owner is? Latty of Baston & R. W. Katz Tune & Address, Catty thate	2 Brokens
Tame of contractor is? " Line of contractor is? " Line Of Line of Contractor is?"	in he to the iller
Structure to be used for?	Kara. J.K.
ا ا	Jeen? 3 4-0
Size of structure, No. of feet front?; No. of feet rear?	leep? 45
No. of stories, front?; rear?	
No. of feet in height from the mean grade to the highest part of the roof?	
Distance from lot lines, front?3.4_feet; right side?\\\\feet; left side?9.2feet; rear?lestfeet.	rear?(a.zfeet.
Distance from next buildings: Front?feet; side?feet; side?feet; rear?	ar? feet.
Will the structure be erected on solid or filled land?	
Will the foundation be laid on earth, rock, or piles?	0/
Structure, how framed?	
Material of foundation?	۵.
Underpinning, material of ?height of ?hickness of ?	
Material	Ş
Description:	
This is a warding pass? constructed in part on a	Same Ration
gornerly ware gor grow Tani (are 18 land	بيلر
the defect fully appear of the tent of the	7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 × × × × × × × × × × × × × × × × × × ×	L
and lest. Or	o in church
B 2_ 5 0 0 CITY OF BOST GEORGE BOST	WHITE FUND
Whe L	wendo
daress, hillars	PORDIARY
Signature 0, Xinger Das	
Idress, 2-2-Carry J. Car	
y license expires.	

-I have examined the premises and find steric as herein described, FINAL REPORT -3/ 1936 Has the work been completed in accordance with this application and plans filed and approved? Law Leen violated?.....Doe. No of 19 Violation tenused PERMIT GRANTED JUN 15 19**36** 183

THE PECTOMB MENONING

-] :		ENARKS	1	
i l	<i>3</i> 20.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***	e de militar de la companya de la co	
* :			ı		
4444		, 4, ,		A CONTRACTOR OF THE STATE OF TH	
*****		\$38####################################	and the	** ***********************************	
			. A		
			·	11 7 1 BAABAMANTAL (11 22)	
		-magazonti magdad gallun	#TPP18.0 . , "	**************************************	
	<u>.</u>	· · · · · · · · · · · · · · · · · · ·			

RESERVED FOR ZONING DIVISION

BOSTONIA COMPTAD.

OBTAINED BEFORE BEGINNING WORK.

BE

PERMIT MUST

Location, ownership and <u>detail</u> must be correct, complete and legible.

Separate application required for every Structure.

Duplicate Plans must be filed with this application.

Application for Permit to Build Structures

Other than 1st, 2d or 3d Class Buildings.

To the BUILDING COMMISSIONER:

The undersigned hereby applies for a permit to build, according to the following described specifications:

described specifications:		
Location 20 whittie 31 Ray	Ward 9	Plans
Name of owner is? City of Caston & R white Hunds		
Name of mechanic is?	" The remed it.	ısını T
Name of architect is? Queb Holt	" ldo loglotan St =	it b
Structure to be used for?	, me	3 SII
Size of lot, No. of feet front?; No. of feet rear?	No. of feet deep?3.A.o	submitted
Size of structure, No. of feet front?; No. of feet rear?	No. of feet deep? A5	itte
No. of stories, front?; rear?	SS10	d in
No. of feet in height from the mean grade of street to the highest part of the roo	f? have g	ı dıı
Distance from lot lines, front?feet; side?feet; side?feet;	9.2 feet; rear? La feet. 🔄	duplicate,
Distance from next buildings: Front	feet; rear? feet.	ate
Will the structure be erected on solid or filled land?		, опе
Will the foundation be laid on earth, rock, or piles?		e set
Structure, how framed?	9	et to
Material of foundation? thickness of? laid with ha		o be
Underpinning, material of?height of?		
Will the roof be flat, pitch, mansard, or hip?Material		filed with the
Description:	and	vith
This is a wading pool construe	1200	ťh
an a foundation formerly used to	a fountair \$	pai
Se plan submitted paries fro)	Department, and
It's depth below gade praviso fro	1-0-3-a	ent,
***************************************	demand	an
and is to be constructed walnu	an conquestion 5	d the
		e d
with a looker building on the	aure lat	duplicate
	of conc fort in	Cat
There are 12 shelters countingted	of cone port	e se
and wood soup abound the	god the	411
There are 12 shelters constructed and word roof around the	1spe	there
	<u> </u>	of (
	of	(bearing
	the	ring
Estimated Cost, \$	OSTON-GRORGE ROBERT WHITE	the approval of
Plans submitted? Signature of owner or author- ized representative,		ord
Deed submitted? Lib Folio Year 1936	M SECRETARY OS	val
Address,	Hall land	약
License No. 285 Class D. Class		the
Signature, W		
Address ~ ~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

No. A whi titler Street,

MXAMINATION OF FLANS.

STY ORANGE.

SNOTTIONS

EXAMINED JUN 15 19311.

Permit Granted.

Material of structure...

Pennit filled out be

A CONTROL OF THE SECONDARY
BALDANI DELIMENT

PROVED MAY 2 5 1936

PECTORY MAY 8 7 1936

Company of the second Total

JUN 15 1936

Parties and and an

Construction Town

	THE THE WENT THE THE
Boston.	
Sir,—I have examined the premises and find	
same as herein described.	
Inspector. FINAL REPORT J 28 33 193	After pore of examination we find the transmission are in accordance with the proved for plan.
Has the work been completed in accordance with this application and plans filed and approved?	first actions the first of the distribution of the conservation of the first action and the little and the litt
Law been violated?Doc. No	
Violation removed 19 N. A. Spiller. Inspector.	John examination of this building for a lathing permit, we find that a conforms with the approved with all the requirements.
PERMIT GRANTED	
193	Algorithm of Liments Andrews
Plan Plod with applicable	to the first of the second

Em 55-7-9-81-1,000. Location, ownership and detail must be correct, complete and legible.

Separate application required for every Building.

Plans must be filed with this application.

Application for Recenit to Build.

CERTIFI	ED STREE	T NO.
,	90	
//2	0-/	
6	63	2
7	= 5/2	•
Street N	umbering In	spector.

1932

To THE

BUILDING COMMISSIONER:

The undersigned hereby applies for a permit to build, according to the following

Location 20 Whittier Street Ward Address, Boston City Hell		specifications:	
Name of owner is?		a distribution of the state of	Ward
Name of contractor is? ** ** ** ** ** ** ** ** ** ** ** ** **	Lo	vestion	
Building to be occupied for	i i N	ame of owner is?	**************************************
Building to be occupied for		ame of contractor is?	" I Court St. Boston
Building to be occupied for	8 N	ame of architect is? college, thebey but to the	5100
Building to be occupied for		Sterial of building? Stick Big Stone, Concident	No of Stories 2 None
How near the line of the street? Will the building be erected on solid or filled land ?	3 O "	wilding to be occupied for? Health, unit	No. of Stores (
How near the line of the street? Will the building be erected on solid or filled land ?		low many families?	I do teet
Will the building be erected on sold or mice land is and is an incident land in an inc		fow near the line of the street? Width of street? Width of street?	, , , , , , , , , , , , , , , , , , ,
Size of building, No. of feet; right side? Sofeet; left side?		Will the building be erected on solid or filled land? [many (
Size of building, No. of feet; right side? Sofeet; left side?	ું દેવ	ize of lot. No. of feet front?; feet rear?;	i; teet deep r
The building of the material of cornice? Stairways enclosed in brick males? 15t. 20t. tor c	ize of building. No. of feet front?	No. of feet deep	
The building of the material of cornice? Stairways enclosed in brick males? 15t. 20t. 9 2 7	Notance from lot lines, front?feet; right side?feet; left sid	Z G S	
The building of the material of cornice? Stairways enclosed in brick males? 15t. 20t. nsi '	To of stories in height, above basement? No. of feet in height from side	walk to highest point of roof the	
area of square 17th. 19th. 19th. 20th. 21st. 22d. 23d. 24th. 28th. 29th. 30th. 31st. 32d. 37th. 18th. 19th. 20th. 28th. 29th. 30th. 31st. 32d. 37th. 28th. 29th. 30th. 31st. 32d. 37th. 28th. 29th. 29th. 30th. 31st. 32d. 38th. 30th. 31st. 32d. 38th. 29th. 30th. 30th. 31st. 32d. 38th. 30th. 30th. 31st. 32d. 38th. 30th. 30th. 30th. 31st. 32d. 38th. 30th. 30t	# 26 ± 1	/ 1st 7680 2d, 7680 3d, 7680 4th, 7680 5th,	6th,
Basquare 17th, 18th, 19th, 28th, 29th, 30th, 31st, 32d, 37th, 28th, 26th, 27th, 28th, 29th, 30th, 31st, 32d, 37th, 28th, 26th, 27th, 28th, 29th, 30th, 31st, 32d, 37th, 28th, 26th, 27th, 28th, 29th, 30th, 31st, 32d, 37th, 32th, 26th, 27th, 28th, 29th, 30th, 31st, 32d, 37th, 32th, 32	8 <u>E</u>	area of Cut. 10th	001 001
Will foundation be laid on earth, rock, or place Length of piles? Number of rows? Distance on centres? Diameter top? Capped with stone or concrete? Capped with stone or concrete? Sternal walls, thickness? {1st./2.2d,/2.3d,/2.4th./2.5th, 6th, 7th, 5th, 9th, 10th, 11th, 12th,	ate iid	17th, 18th, 19th, 20th, 29th	30th 31st 32d, 00
Will foundation be laid on earth, rock, or place Length of piles? Number of rows? Distance on centres? Diameter top? Capped with stone or concrete? Capped with stone or concrete? Sternal walls, thickness? {1st./2.2d,/2.3d,/2.4th./2.5th, 6th, 7th, 5th, 9th, 10th, 11th, 12th,	En Bru	Feet (25th, 26th, 27th, 27th, 20th, 20th, 27th, 20th,	desifications
Will foundation be laid on earth, rock, or place Length of piles? Number of rows? Distance on centres? Diameter top? Capped with stone or concrete? Capped with stone or concrete? Sternal walls, thickness? {1st./2.2d,/2.3d,/2.4th./2.5th, 6th, 7th, 5th, 9th, 10th, 11th, 12th,	g fe	Material of foundation?	Area of lot covered 9
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	е с	Will foundation be laid on earth, rock, or piles?	, W
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	辛克	Length of piles?	201 371 70
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	밀밀	Number of rows?	0
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	a iii	Distance on centres?	D
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	en en	Diameter top?	High Makes of the All Start
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	E 5	Capped with stone or concrete:	F 9,50
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	ह्य ज	Piles cut off at what grade?	th 9th 10th 11th 12th Z
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	Et Se	Untarnel Walls.)	to a sout that tout the
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	- E		
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	E E	Are the walls solid or vaulted?	
What will be the material of cornice? What will be means of access to roof? How protected? Thickness of shell of flue? Means of extinguishing fire? Means of extinguishing fire? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Thickness of shell of flue? What will be means of access to roof? Wh	# 1	What will be the materials of front?	of reafing Capper
How is building heated Means of extinguishing fire? Means of extinguishing fire? Stairways enclosed in brick walls? Terra Cotta Thickness of such walls Is there a sewer in the street opposite this location? If the building is to be occupied as a Tenement House, g ve the following partenders: Height of basement?	¥ X	Will the roof be flat, pitch, mansard or hip?	O TOSHING
How is building heated Means of extinguishing fire? Means of extinguishing fire? Stairways enclosed in brick walls? Terra Cotta Thickness of such walls Is there a sewer in the street opposite this location? If the building is to be occupied as a Tenement House, g ve the following partenders: Height of basement?	<u> </u>	What will be the material of cornice?	5
How is building heated Means of extinguishing fire? Means of extinguishing fire? Stairways enclosed in brick walls? Terra Cotta Thickness of such walls Is there a sewer in the street opposite this location? If the building is to be occupied as a Tenement House, g ve the following partenders: Height of basement?	0 0	What will be means of access to roof?	of enclosure
How is building heated Means of extinguishing fire? Means of extinguishing fire? Stairways enclosed in brick walls? Terra Cotta Thickness of such walls Is there a sewer in the street opposite this location? If the building is to be occupied as a Tenement House, g ve the following partenders: Height of basement?	£ 5	Are there any hoistways or elevators?	9009
Stairways enclosed in brick walls? Jerra Conta Thickness of such wans Is there a sewer in the street opposite this location? If the building is to be occupied as a Tenement House, g ve the following particulars: Height of basement?	5 E	How is building heated? Thickness of shen of	The second secon
Stairways enclosed in brick walls? Jerra Conta Thickness of such wans Is there a sewer in the street opposite this location? If the building is to be occupied as a Tenement House, g ve the following particulars: Height of basement?	8 td	Means of extinguishing fire?	4
Is there a sewer in the street opposite this location. If the building is to be occupied as a Tenement House, give the following particulars: Z	. 5 3 5	Stairways enclosed in brick walls? Jerra College Timekness of such wants	Z
Height of basement?	رو ت	the street onnosite this location.	· · · · · · · · · · · · · · · · · · ·
Height of basement?	ate ≅		ve the following particulars:
Height of first story, second, third, fourth, fourth, fifth, sixth, seventh, eighth, ninth, ninth, sixth, sixth, seventh, eighth, ninth, ninth, fifth, sixth sixth, seventh, eighth, ninth, ninth, fifth, sixth, sixth, seventh, eighth, ninth, ninth, sixth, sixth, sixth, seventh, eighth, ninth, ninth, sixth, sixt			nent?
Height of first story, fifth, sixth, seventh, eighth, ninth, fifth, sixth, sixth, seventh, eighth, ninth, fifth, sixth, sixth, sixth, seventh, eighth, ninth, fifth, sixth, sixth, sixth, seventh, eighth, ninth, fifth, sixth, sixth, sixth, sixth, sixth, seventh, eighth, ninth, fifth, sixth, sixth	g (2		5 fourth, 20 6
Is the cellar or the basement to be occupied for habitation? Is the cellar or the basement to be occupied for habitation?	n d	Height of first story	ninth, tenth,
Is the cellar or the basement to be considered as a signature of owner or authorized representative,	d ii	fitth, sixual to be accorded for habitation?	5 7 0 0
Distance from lot lines, from the front or rear of lot, give height? If there is a building already erected on the front or rear of lot, give height? State how many ways of egress are to be provided, Nature of egress? Will the building comply with the requirements of statutes? Estimated Cost, \$2,700,000 Signature of owner or CITY OF BOSTON-GEORGE ROBERT WHITE authorized representative,	rie nis	Is the cellar or the pasement to be observed right side? 20 : left side	le? 40 5 rear? = 80
State how many ways of egress are to be provided, Nature of egress? Will the building comply with the requirements of statutes? Estimated Cost, \$ 2,700,000 Signature of owner or CITY OF BOSTON-GEORGE ROBERT WHITE authorized representative,		Distance from lot lines, from the front or rear of lot, give height?.	T-No 3 3
State how many ways of egress are to the state of the sta	≘ S		
Nature of egress? Line of statutes? Yes Will the building comply with the requirements of statutes? Yes Estimated Cost, \$ 2,000 Signature of owner or CITY OF BOSTON-GEORGE ROBERT WHITE authorized representative,	S S		4830 876
Will the building comply with the requirements of statutes? Estimated Cost, \$2,000 Signature of owner or CITY OF BOSTON-GEORGE ROBERT WHITE I authorized representative.	r o	Nature of egress? You	
Estimated Cost, \$ 27 30 Signature of owner or CITY OF BOSTON-GEORGE ROBERT WHITE authorized representative.	ISI I	Will the building comply with the requirements of statutes?	
signature of owner or CITY OF BOSTON-GEORGE ROBERT WILLIAM	E a		STATEMAN CRADER PARTER WHITE
E - Suma A / Land	118	Signature of owner or CITY OF	ROSION-GEOUGE MODERT MULTIN
	73		wast has som

and same as herein described. Permit filled out by 。 1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年, To the Building Commissioner: Plan Filed with application White St Permit granted. 1932 Ward / Inspector: ...193..... Foxide interm. rib in long spans tote - water prooting below. Reter to toross. Hors returned from bruch EXAMINED JUNE - 1838 Note - Change in Conc. Mix MINED JUN 15 1932 1.72. 1.1

Name

TARRIED DE LEGICATION DE LEGICA DEL LEGICA DE LEGICA DEL LEGICA DEL LEGICA DE LEGICA D

章。 电数型中枢电影 有限的

RESERVED FOR ZONING DIVISION

number and Page number. All applications for new buildings and all applications increasing the area of buildings, must be accompanied by a survey of the lot Deeds, giving Deed number, Reference Book

Plot plan must show:--Area of lot in square feet.
Area of building in square feet. Percentage of area of lot covered.

The State trade of the Audio Control of the Audio C

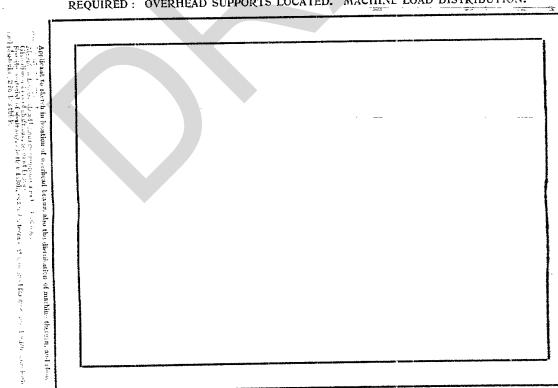
7 Cinn

Plan mumber

The second secon

File number...

Location, Ownership and Detail Must be Correct, Complete and Legible.


Application in Duplicate Required for Each Elevator. Plans Must be Filed With this Application When Required.

Application for Permit to Install Elevator. Sept. 22, 1932. 193

	Bostor	1, Sept. 22, 1932. 193.
	To the BUILDING COMMISSIONER: 20	Property (September 1997)
	The undersigned applies for a permit to install an elevate	Sin the true described to the
Descrip-	Togetion Health Unit #7. Whittier & H	algoshire Sts., Roxbury Ward 9.
•	Name of owner is? City of Boston	Address, City Hall
tion of	Name of contractor is? BECKWITH ELEVATOR CO.	113 Albany St., Boston
Present	Material of building is? Drick Style of roof	?
Bldg.	What was the building last used for?	
Diug.	Building occupied for Health Unit #7	No. of existing elevators, etc., in building.
	DETAIL OF P	ROPOSED WORK.
		alk elevator Estimated cost, \$ 500.
_	Machine overhead?	Machine in basement?
Compu-	Weight of car?	
tations.	Weight of machine counterweight <u>NONE</u> lbs.	Weight of car counterweight.
	Combined weight of cables	Weight of sheaves overhead.
	Size of overhead beams	Number of overhead beams?
	New or existing shaftway?	Material of shaftway?concrete
	Landing openings, No. of? two	How protected? Steel sidewalk cover
	Doors how locked? not locked	Does alayator como lament Grang TAS
Shaft-	Passageway under elevator? no	If so, how protected?
Sugit-	Overhead platform? IIO	
ways.	Counterweight in shaftway?	Counterweight, how protected?
	Skylight? Plain glass? Depth of pit? Supports Bumpers?	Screen over skylight?
	Bars at exterior of windows?	Projections? — How guarded? — U
		2 0 102 20019 12101100AC[11,11,117,117,111,111,111,111,111,111,1
	Area of platform? 12 sq. ft.	Sling, material of? none Size
	Passenger capacity?	Overtrayel? Speed royoway set to get the
Car.	Car enclosure? Done cut?	Ascent? Speed governor set to act at? O
	Operating device?anak hand@etering rope?	Lights? Signals?
	No. of openings in car?	Width? Emergency exit?
	wheever coaned hand hander	
	Machine, type of 102 Vy geared band brake Current, A. C. or D. C. Voltage?	Power used? hand Phase? Eight in machine room?
Machine.	Size of piston? Pressure?	Choker valves?
	Hoist cables, No. of? four	Hoist cables, size of 7/16 "Steel Steel Z
	Counterweight cables, No. of?	Counterweight cables, size of?
	Clearance between car and counterweight?	Counterweight stops?
	Guide rails, material of? steel angle	Counterweight stops? —— Gi Size of guide rails? 2 1/2" x 3 1/2" x 3/8"
	Counterweight guides, material of?	Counterweight guides, size of
	Car safety, type of?	7
	Counterweight safety, type of?	Speed governor device?
Safeties.	Limit switches?	Machine automatic terminal stops?
Saictics.	Emergency switches in car	Automatic car switches?
	Interlocking device?	Warning chains?
	Drive?Speed?	Hand rails? Emergency stops?
Ennala		Angle of inclination.
	Sides? How protected?	Links and chains?
	Note.—In cases of new shaftway in existing building a	
	Note.—Applicant to fill out sketch of shaftway on of	ther side of this application.
	Signature of own	
	authorized represen	itative, William (
	License No. 1 32 Class?	110 011
	Signature II II Collins	1/3 allany AD-Rost
	Address Master	Mar ess,

Per paid	Framit granted SLF 3 to 1932 Viola	Inspector	Is this a new, substitute or repair installation?and f	and the same of		Existing shaftway(Sir,—I have examined the premises and find same as berein described and as proposed in details.	BOSTON,	REFERRED TO INSPECTOR.		o Abrilie 17	-		
The second control of the second control of the second of	Violation removed?	Law been violated?	and found satisfactory?	Have the safety devices been tosted in year presence	application and plans filed and approved?	Has the elevator been installed in accordance with the	FINAL REPORT.					1	Supervisor of Oderstonedien, Recuter Destron.	

REQUIRED: OVERHEAD SUPPORTS LOCATED. MACHINE LOAD DISTRIBUTION.

GUIDE RAIL SUPPORTS COMPUTED FOR SHEAR OF RIVETS.

SHAFTWAY

Location, Ownership and Detail Must be Correct, Complete and Legible.

Application in Duplicate Required for Each Elevator.

Plans Must be Filed With this Application When Required.

Application for Permit to Install Elevator.

	Roston	a Sept	. 22, 1932. 193 .	
	To the	V 3	193 .	
	BUILDING COMMISSIONER: 20			
_	The undersigned applies for a permit to install an elevator	in the following-described b	ouilding: —	
Descrip-	Location Health Unit #7, Whittier & H	ampanire Sts., F	Coxbury Ward 9	
tion- of	Name of owner is? Gity of Boston	Address, City	He11	
Present	Name of contractor is? Beckwith Elevator Co. Material of building is? Drick Style of roof	9	3 Albany St. Boston	
	What was the building lest used for?	No. of at	ories?	P
Bidg.	Building occupied for Realth Unit #7	No. of existing elevators, etc.	in huilding	Ē
	'			2
		ROPOSED WORK	1	ERMIT
	Type of Elevator, Passenger, Freight, Dumb Waiter,	alk elevator E	Estimated cost. S. 500.	Ţ
	Machine overhead?	Machine in basement?	Tes	
Compu-	Weight of machine?lbs.	Diameter of sheaves over	1ead inches	\simeq
-	Weight of car?lbs.	Capacity of car. 1.000	lbs. including covers	Ţ
tations.	Weight of machine counterweight	Weight of car counterweig	ht lbs.	TSUM
	Combined weight of cables	Weight of sheaves overhea	id the libs.	•
	Size of overnead beams		· ·	ΒE
	New or existing shaftway?	Material of shaftway?.	novete	(II)
	Landing openings, No. of? two	How protected?stee	1 sidewalk cover	$\overline{}$
	Doors, how locked? not locked	Does elevator serve lowest	floor?	ОВ
Shaft-	Passageway under elevator? NO	If so, how protected?	100 to	$\ddot{\exists}$
ways.	Counterweight in shaftway?	Counterweight has protect	4.39	TAINE
nays.	Skylight? Plain glass?	Screen over skylight?	cted?	Z
er dayer	Depth of pit?	Projections?	How guarded?	ļ . J
	Bars at exterior of windows?	Power Doors Interlocked?		
	Area of platform? 12 sq. ft.	Sling meterial of? wong	Size	
	Passenger capacity? 11016	Overtravel?	DEZC	$_{ m H}$
_	Velocity per minute in feet? Slow	Ascent? Speed	governor set to act at?	ΕF
Car.	Car enclosure? Dome cut?	Car gate? Seat	t?==== Car cover? **=	9
	Operating device?handTotering rope?	Lights?	Signals?	ORE
	No. of openings in car?	Width	Emergency exit?	[4]
	Machine, type olacavy geared hand brake	Power used?hand	Phase?	Ħ
Machine.	Current, A. C. or D. C. Voltage?	Light in machine room?	46	Œ
macuine.	Size of piston? Pressure?	Choker valves?		BEGINNING
	Hoist cables, No. of?		steel steel	Z
	Counterweight cables, No. of?	Counterweight cables size	of? Material?	Z
	Clearance between counterweight and shaftway?	Clearance between car and	shaftway? 1 1/2"	Ξ
	Clearance between car and counterweight?	Counterweight stops?		ର
	Guide rails, material of? Steel angle	Size of guide rails? 2	/2" x 3 1/2" x 3/8"	-
	Counterweight guides, material of?	Counterweight guides, size	of	¥
	Car safety, type of?	Slack cables device?	****	Õ
	Counterweight safety, type of?	Speed governor device?	************************************	R
Safeties	Limit switches?	Machine automatic termina	stops?,	スー
	Emergency switches in car	Automatic car switches?	4 (1) (2) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	
	Interlocking device?	Warning chains?	Rope lock?	
	Drive?Speed?	Hand rails?	Emergency stops?	
Licanta	Safety devices?Electric brake?	Angle of inclination	Finetgency supprise	
tors.	Sides?How protected?	Links and chains?		
			The state of the s	

	Note.—In cases of new shaftway in existing building a	Iteration permit must be	granted	
	Note.—Applicant to fill out sketch of shaftway on of	her side of this applicat	ion.	
	Signature of own	er or R.	1. 57. BI	1
	authorized represen		sum levaler	, <u>ja</u>
1	License No. Class?	(, 01	and St. Bot	_
	HEBLAHONA	daress. 1/3 Web	any (M)-(Dont	3
	Address Mollaston	urcos, re	1	پرر

LOCATION

LOCATION

LOCATION

LOCATION

Ward

Location

Ward

Location

Ward

Location

To in Speciol

Location

Location

Ward

Location

Ward

Location

Ward

Location

For the Building Commission

Sir,—I have examined the premises and find same as herein described and as proposed in details.

Existing shaftway?

Condition?

Condition?

New shaftway?

Permit b: on greated for new shaftway?

Inspector.

Inspector.

Permit greated for new shaftway?

		5.	-	>=
	2	44	411	
	- 1	2	745	3 3
	1	3	100	
	·	2		- 2
		-	- 1	無る
	Sapartánor of Ca		-	me.
- 7	慈			
	9	4	-	== :
	4		- Thinne	200.00
	9	200	-	= :
		364.4		-
	9-1	-18-34	-	- ·
	i	77.		₹
	6 :	- THE	= .6	T-
		- / SEE	- A	-
	• :	7.77		Marie .
	Áλ			
20.75	- 24 · 3 \	100		=
		□ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1 □ ★ 1		4
	S		₽\	
	-	The second	(· · · ·	
		\ *	^ :	-
			X	= :
	526	434.4		
. 7				
		123.		-
- 3 *	- E- M	1		
19 A	# E		17.44	=
7	17 2 2		-1	<u> </u>
حميته ،	- E- 3-2	E AT	727	-
	2 3	* *******	- 3	- ·
	- 3			
	₹			
	200	W		In.
	-	च्या = चेका		bur-
	- E. L	\ \ E	7	<u> </u>
	-7.7	1	- 4	Ser.
+ 1	F (1	A 16 34 1	-10	₹=:
	1.5	V-05763	Toronto Paris	

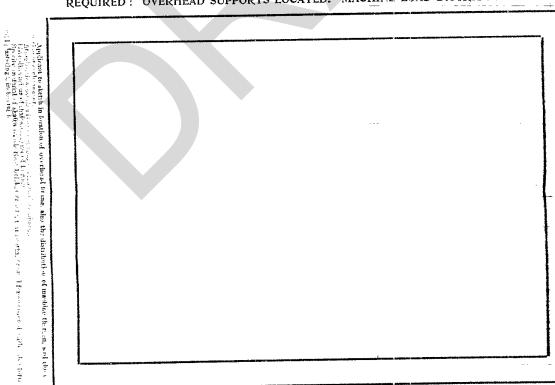
SKETCH OF SHAFTWAY

TOTAL

APPLICATION

FINAL REPORT.

tel 23


Has the elevator been installed in accordance with the application and plans filed and approved?

Have the safety devices been tested in your presence and found satisfactory?

Law been violated?

- Jashindar

REQUIRED: OVERHEAD SUPPORTS LOCATED. MACHINE LOAD DISTRIBUTION.

QUIDE RAIL SUPPORTS COMPUTED FOR SHEAR OF RIVETS.

BD 412

CITY OF BOSTON-BUILDING DEPARTMENT-ELECTRICAL INSPECTION

PERMIT TO PERFORM WORK OFFICE

BOSTON, MASS.

Mov. 10. 19.80

PERMISSION IS GRANTED TO:

Mr. Thomas J. Tuton 800 Washington Ave. Revere, Mass. 02151

E# 17834

TEL #322-2727

LIC. # A-8132

TO PERFORM WORK DESCRIBED BELOW:

20 Whittier Street, Roxbury,

WARD_9

Same (Commercial)

MAIN SWITCH OR CIRCUIT BREAKER (EXISTINGS) 400

VOLTS 208

NO, METER LOOPS___

ADDITIONAL WORK:

Install additional outlets and 200 Amp. Feeder.

2 Light Outlets

13 Plugs. 1 Fixt.

FEB 20 1981

\$50.00 FEE APPROVED BY

mg

EO F. MARTIN DEPT. BLDG. COMM. APPROVER NO. OF WETERS CHIEF OR SUPERVISOR

> FRANCIS W. GENS BLDG. COMM.

APPLICATION FOR PERMIT TO DO PLUMBING

BUILDING DEPARTMENT - 808 CITY HALL BOSTON, MASS. 02201

DATE Oc	T,	<u> </u>	1980
			•

WORK MUST BE PERFORMED IN COMPLIANCE WITH ALL PROVISIONS OF THE MASSACHUSETTS STATE PLUMBING CODE AND CHAPTER 142 OF THE GENERAL LAWS.

ALL APPLICATIONS	REQUIRED TO
BE SUBMITTED IN	TRIPLICATE

BE SUBMIT	TED I	N T	RIPI	ICA	TE	,					<u> </u>	7 I	X T	U	RI	ES	-	*								N	8	48	<u>}_</u>	·;
*		WATER CLOSETS :	KITCHEN SINKS	LAVATORIES	BATHTUBS	SHOWER STALLS	DISHWASHERS	DISPOSERS	LAUNDRY TRAYS	WASH. MACH. CONN.	HOT WATER TANKS	TANKLESS	SLOP SINKS	FLOOR DRAINS	GAS TRAPS	URINALS	DRINKING FOUNTAIN	AREA DRAIN	WATER PIPING	OTHER FIXTURES	Dewtal Chains									-
SUB-BASEM	ENT			_	-						<u> </u>					_	-		-					 	-	-		-	-	
BASEMENT									_		-		-			-		 							-	\vdash		-		\vdash
IST FLOOR	2	-	<u> </u>								┝	-		<u> </u>						-				-		-	_		-	_
2ND FLOO		•														-	_		Į.		-		-	, -	-	-			\vdash	\dashv
3RD FLOO			//	-	-							-		ı			4						_	-		H				\sqcup
4TH FLOOR			"	_																	4		-	 -	<u> </u>			\vdash		\dashv
			-												4					•					Ŀ	ļ			_	
STH FLOOR		_							-		-	ļ				Ų			4					_	_	 _				Ш
6TH FLOOI		_									ļ							М		<u> </u>								Ш	_	
7TH FLOOI	 i																									<u> </u>				
8TH FLOOI																														
9TH FLOO	R	_								_																	!			
10TH FLOOI		_						_				7																		,
11TH FLOOR	3	_						_	_						4															
12TH FLOOR	₹	_															,													
13TH FLOOR	₹					4							Δ	_1																
14TH FLOOR	<u> </u>																												丁	\neg
15TH FLOOR	٤								Δ					T	Ы													\exists	\neg	
16TH FLOOR	1																												\dashv	\neg
17TH FLOOR	2				\supset		eg																					寸	_	\exists
18TH FLOOR	2				\neg					\neg								_				1					\dashv	_	十	\dashv
19TH FLOOP							4								1	_					一	7							\dashv	\dashv
20TH FLOOR	1							7							7		\exists				7		1	ᅦ		\dashv		\dashv	\dashv	\dashv
HeALTA	UPA	NCY	x <u>(</u>	OF I	/ / / / / / / / / / / / / / / / / / /	40				· · -	CA.	' <i>S</i> SZ,	<u></u>	P	ART	NE	RSH	IIP_		<u>(<</u> t.	hei	Ti	' P	CE (¥)	ERT 4.	IEIC	ATI Za	E NO	99	_ }/-C _
NEW OR RE			ON		φ,	vo.	V A	I_{c}	מוס	<u>, </u>			_	FIRM OR COMPANY									_							
NAME OF O	_	_	<i>-</i>		M	<u>د</u> .	195		A.	6	VP	-			5#				À,		NC.				· · ·	V	R.	: -	-	_
ADDRESS O			_	_ک	A A	10	1	۲	A	bo	ve			A	DDF	RES!	s / i	?E	11	s wi	OR	Th	· <	T.	. 7	Bu	A.	N,	/A	cc
PLANS SUBA	AITT)	ED?		YE NO		/	,								ELE				Ξi									18		
ESTIMATED	COS	то	F J	OB.	đ	10,	ũ Q	6-	_																			09	,	
I hereby knowledge and visions of the M	шас а	LPIC	******	ng w	OIK 2	anu t	nstar	шо	ns pe	TION	mea -	unde	r Pa	mit	icente.	d far	in a this	bove appl	app licati	licat on w	ion a	ra tu					41	haa4 -		_
APPROVED												} <	7	>	٠.	1	9	/.	0		/	14	1	-//)					
Boston-Building Department Signature of										of	Lice	a nsed	Plu	mbe	alk r	1	9		-											
In James 7 Red													,	ĺ	1	,	/	~~				_								
Chief Plumbing Inspector												Decir	mati	017	1 V	Tion (6	100	96	o.f. r	lumb				-					
	Chief Plumbing Inspector													JE 312	inte	un a	red 1	Licen	se A	umi	ver e	oj P	umb	er						

PROGRESS INSPECTIONS

SKETCHES

FINAL INSPECTION

			0	7-720
FEE	NO. 2-41	APPLICATION FOR PERMIT TO DO PLUMBING	30 4 Mully 18	Hully (wally

And the second s	mentally	
LOCATION OF BUILDING	PLUMBER	

NAME & TYPE OF BUILDING

		İ	
	М		
I			
1			
			١
- 1			

PERMIT GRANTED

<i>f</i> P	UBLIC SAFETY INSI	PECTION REPORT	_
From Fire Location 20 Whitter (street and number)	Demontra aut	To Buildy	(Egress)
701 (1) 11 11 11 11 11 11 11 11 11 11 11 11 1	- C+ Q	10	Retten Bobb
Location (street and number)	Ward	Inspected by	Carrie & pp
Owner City of 130	57 m	Address	
Lessee Occupant Hen H	(111T)	Address	
Material of Building Brici	Style of Roof	Flat Nu	imber of Stories.
Dimensions of Building. 50χ	40 X60	_ Himseld	
1127		and the second s	and the same of th
Occupancy 762174	Civili	Numbe	er of families
Sidewalk, pavement, curbings: condition	n of		
Nature of complaint (or defect)	*1		
Room in 2	basement	L being	used 25
Playroom, and This room basement wi	a pappy	sitting	dred & Buil
This room	n 15 in	fan	Corners of
basement wi	the only	oneme	ans of Coress
Velger de Verlie Ta	vious record	onemerkonemen () Wales, E. S. S. Ser	108
	Plaint.		
P. Pepialle	m-	Signed.	ittun J. Bopp
Date 9/10/68		Signed	
' /	Inspector will not wr	ite below this line	11
Forwarded to.	Department	Date	Chellion Aftypole
Conditions corrected	Com	plaining Department n	otified in Some Lines.
Other report:			

CITY OF BOSTON — BUILDING DEPARTMENT

SPECIAL FORM APPLICATION No. 12353 for Permit for Demolition, Ordinary Repairs & Minor Alterations Not Involving Vital Struc-

This form NOT TO BE USED for ADDITIONS or CHANGE OF OCCUPANCY

The und	ITIONS .
perform the work described herein:	itions or CHANGE OF OCCUPANCY the Building Commissioner for a permit to
described herein:	de Building Commissioner for a
Street and No. C/ HATE	7//3/67 permit to
Name of o	Will and the second
Name of Owner	
	Ward 9
Type of Construction	The state of the s
Size of building, feet from 180	Zone Fire Limit et rear
How is building NOW	et rear / 30 Group Occupancy and Di
Chart is Occupied?	leef do Trasion
Main stairs of egress from this build	inc. of stories 3
Is this work !	The state of the s
WORK TO Deing done to remove Building	escapesCon, haloon:
FORTHWITH VIOLATION	ing: Te escapes Con. balconies Any other MUST BE COMPANY No. of stories S Any other
Detail of pro-	g Code violations? Yes. MUST BE COMMENCED AND COMPLETED
A STATE EVAC	AND COMPLETE
CHANNIA - CHANNES	TLY WHAT WORK IS -
18670 12 COUNTE 1	MUST BE COMMENCED AND COMPLETED
INISCHE TEMPEST	The se
ALIEN SERVICE CONTRACTOR OF THE	MILES DUD 12 X12
THE PARTY OF THE P	
OF COMPLAINT	REPLACE
The facts set forth	Estimated Cost, \$ and in the accompanying plans, if any, are true state-
nents, made under penalty of perjury.	Estimated Co.
Perjury.	in the accompanying plans is
(Signature of Owner or Authorized Agent)	any, are true state-
(Signature of T	(Address)
(Signature of Licensed Builder or Wrecker)	GURGE
No 2 100 Mary Mary	Restored (Name of Cont.
No. Class	(Name of Contractor) (Name of Contractor)
	Minn Stille ST
roved (date)	1207338211
EMM Phil	The state of the s
While	Permit granted
	By.

	INSPECT	YONS MADE
INSPECTOR'S FINAL REPOR	T =	
	Date	
1 Hompshire St		
,,,,,,		
Has the work enumerated in this as been completed and approved?	40	
Answer "yes" or "no	<u></u>	
Is egress satisfactory?	1º2	
Answer "yes" or "no"		
Building Inspector	ut Julia	
INSPECTORS' MEMOR	RANDA	
Remarks		***************************************
Kemano		
••••••••••• <u> </u>		

personal resource being better the personal better		

No.

LOCATION.

Rear 59 Hampshire Street

Ward 1

13 11 11

TRANSCRIPT OF APPLICATION FOR

Permit for Repairs, Alterations, etc.

CONDITIONS.

Dec. 6, 1917

F. Conroy

IN BOARD OF APPEAL.

MAR 25-1918 -

Permit Granted

Plan No.

On File

EXAMINATION OF PLANS.

Approved.

191 Copies of Plun Division.

3	<u></u>	SYNOPSIS
<i>ک</i>	<u>Tu</u>	, // Charles / Charles of
2	92	Location, 6/2 Hampfull District, Jox bury Ward 9
4		Name of owner is? After police to alty Caldress, 36 Destroy -1.
7	4	Name of architect or engineer is?
4		Material of building is? Stuccotwood Style of roof? Flat Construction of roof? Washing
) Description	Size of building, feet front? 4 foot; feet rear? 4 foot; feet deep? 30 foot; No. of stories?
	-	Size of L, feet long? ; feet wide? ; feet high? ; No. of stories? ; roof? ; roof?
10 m	of Present (No. of feet in height from sidewalk of highest point of roof?
Z	Building	Thickness of external walls? Party walls? Physical value of building? Party walls? Physical value of building? Physical value of building?
,	3	What was the building last used for Et Detage of turns trul of finishing from
`	Ž	Front stairs? Fire escape? Con. balconies? Any other?
	V · •	Type of construction? VI Group occupancy? F. Number of employees?
3	M	Building to be occupied for Furuiful Storage + fundling after alteration
$\vec{\zeta}$	<i>—</i>	Storage IF EXTENDED ON ANY SIDE.
13	A I	Size of extension, No. of feet long?; No. of feet wide?; No. of feet high above sidewalk?
i,	9	No. of stories high?; style of roof?; material of roofing?
3	Description '	Of what material will the extension be built?; Foundation?
_ `	f) of (If of brick, what will be the thickness of external walls?inches; and party wallsinches
ß	Extension	How will the extension be occupied? How connected with main building?
al.	DALGHSTON	Distance from lot lines:—Front?; right side?; left side?; rear?
ڒ	E. C.	Area of lot covered after extension% Type of Construction
\prec	Z	GENERAL DESCRIPTION OF THE PROPOSED WORK AND ITS LOCATION .
Ų	920	orlot 2 Partitions & toryin Totallyoung
+	3	a spray Boothabler Historica L
Š	0	To Vacalis Sortures Storner & Function
∂	b	
<u></u>	N S	
٦	<i>(1)</i>	Storing of wee wrafting by the Following
(ن	5	July Chap facts Estimated Cost, 4/00
ر د	3	- (11.911, Elm Sporeson frements
H		Date
1	Ž	of my knowledge and belief.
\ _		LE Com 10 El VEN Jelle 1 James (4)
		(Signature of Owner or Authorized Agent) (Address) (
ţ	v l	
0	ک _ی با	<i>#</i>
\$, 7 L	(Signature of Licensed Builder) (Name of Contractor)
	TY.	(Address)
_	7.0	Kilenof such scienta chainta
7	<i>\$</i>	that its execution will not am
Ĺ	7 <i>9</i> 2	Making expressafoty of the public
7	<i>,</i> B	ਹੈ? Of any person engapsਰ 2M-7-26. thereon

PERMIT GRANTED	ation removed	ork been completed in accordance volication and plans filed and approv	FIRAL REPORT	Sin,—I have examined the premises and find same as herein described.	Boston, $Z-Z$ 19.5. To the Building Commission	ZONING DISTRICT	No 11184 AUG 19195, LOCATION
----------------	---------------	--	--------------	--	--	-----------------	---------------------------------

DATES WHEN EXAMINED

100		9	တ	7	ලා රා	44	ယ	80	;	15115 ^{[2}
								2	OK.	BATE
							:	e de la companya de l		nour
				***************************************				The state of the s	IM. PROGRESS FOULD	REMARKS

EGRESS INSPECTOR'S REPORT

This building is provided with satisfactory satisfactory

DATE July 25 58

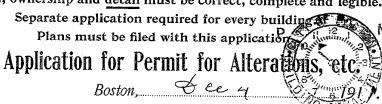
Upon examination of this building for a lathing permit, we find that it conforms with the approved plans and with all the requirements of the Building and Zoning Laws.

Signature of Licensed Builder.

CITY OF BOSTON BUILDING DEPT.

MXXXIII NEDT

Course Of M.	
Description of Present Building.	Location, lead 59 K Name of owner is? 26 k Name of mechanic is? Name of architect is? Material of building is? Size of building, feet front? Size of L, feet long? No. of feet in height from sidew Thickness of external walls?
- ·	What was the building last used for the building last used for the building last used for the building to be occupied for. DETAIL OF PROPOSED WORK.
If Extended On Any Side.	; No. of feet wide; style of roof? be built? s of external walls?
When Moved, Raised or Built Upon.	Distance from lot lines:— Front? Number of stories in height when moved, raised or built upon? Distances from lot lines when moved, front? Distances from lot lines when moved, front? Distance from next buildings when moved, front? How many feet will the external walk be increased in height? Licensed builder. No. 2.3% Address. 6.4% How walls? How many feet will the external walk be increased in height?


DATES WHEN EXAMINED

The second of the second of the second

			Q	ATES	WHEN	EXAMINED	
ling of	1.75	i di G	VISITA TAME	HOUR		REMARKS	
No LOGA	TION	<u>;</u>	1		***********		**** ********
Rear 59 H	ampshire Stre	et	2			464406466	
	Ward	:	3 4		ladika serrese	•••••••••••••••••••••••••••••••••••••••	A
REFERRED T	O INSPECTOR		5				
			6				Ĉ,
Boston,	ге. ь,	1917.	8				***********
To the Building Commis			9				
Sir,—I have exami	ned the premises a	nd find	10				. 444 d 16 A P 4 P 8 4 4 4 16 16 P P P
same as herein described		!	11				
<i>f</i> , 0	S crura Insp	ector.	12		-		
FINAL	REPORT		14			***************************************	
TH.	Tarch 26,		15 16			17 -	,
Has the work been cor	npleted in accordan	ace with	1744		- .,	######################################	
this application and	plans filed and ap	proved (18				***************
Law been violated ?	Doc. No	of 191	19		•		
Violation removed			20		· · · · · · · · · · · · · · · · · · ·	,	
Violation removed	Domes		21				***********
	. ماي د د د د د د د د اي د يا ي د يا د د د د	spector.	22			·《月中华年年》 - 開刊目刊第二卷開刊在戶班出版場的《日刊	
PERM	T GRANTED	_ _ : * _	23	and the second second		1. 化安全性 医抗菌 [1] 克里内 用甲基甲酚医吗啡二二二甲基甲醇二基	
MVB	25 1938	191 .	24				я фрия « — ФСИБИЯ РВИ.
	entre	(,	25		tanak a din		*******

CONDITA

Location, ownership and detail must be correct, complete and legible.

CERTIFIED STREET	
react 9 Hampshore	À
13 لسد	1
Charles Lysis	
aur	*********
Br V. 10	

\mathcal{B}	3		 Street Numbering
To the		DEF	
BUILDING COMM		DEC	
The undersigned	applies for a permit to alter the fo	llowing-described buildin	g:—
Location/feery 59	Hamikese G- Ha	a Koy	Ward/
Name of owner is?	Types Defgres	Address, 6	Webbu In
Name of mechanic is?	Topat Singles Singles	· · · · · · · · · · · · · · · · · · ·	Webber A-
TIMINE DI AFCOILECT IN	- //	a	
Material of building is?	Style of roof?	La Material	of roofing? Thate
Size of building, feet front?	45 ; feet rear? 45	; feet deep? 📈;	No. of stories?
Size of L, feet long?	; feet wide?; feet high?	; No. of stories?	; roof?
No. of feet in height from si	dewalk to highest point of roof?	Material	of foundation?
Thickness of external walls?	Party walls? Distan	ce from line of street?	Width of street?
What was the building last u	used for? J'aclass	How many families?	Number of stores?
Nature of egress, front stairs	3?Back stars?	Fire escape?	Con. balconies?
Size of lot front?	; rear?	deep)?
Building to be occupied for			after alteration
	DETAIL OF DROPO	CED WODE	
To the To	Street Street	CLD WORK.	
John John	Dura		***************************************
***************************************		***************************************	
14070 1237411331) 4034444-41344-4174311743117431			***************************************
, 2004. 0),/(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(***************************************

Tainenna ann airtean ann an t-ann ann an t-ann ann an t-ann an t-ann an t-ann an t-ann an t-ann an t-ann an t-a			
***************************************		***************************************	
		Estimated	
	IF EXTENDED ON	Estimated ANY SIDE.	cost, \$ Julia
Size of extension, No. of feet	IF EXTENDED ON long?; No. of feet wide?	Estimated ANY SIDE; No. of feet high	d cost, \$ \[\frac{1}{2} \ldots \]
Size of extension, No. of feet No. of stories high?	IF EXTENDED ON long?; No. of feet wide?; style of roof?	Estimated ANY SIDE. , No. of feet high	d cost, \$ \[\frac{1}{2} \] above sidewalk?
Size of extension, No. of feet No. of stories high? Of what material will the ext	IF EXTENDED ON long?; No. of feet wide?; style of roof?	Estimated ANY SIDE. ; No. of feet high ; material of Foundation?	a above sidewalk?
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ension be built? hickness of external walls?	Estimated ANY SIDE. ; No. of feet high ; material of the control	d cost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ	IF EXTENDED ON long?; No. of feet wide?; style of roof?; style of roof?	Estimated ANY SIDE. ; No. of feet high ; material o Foundation? inches; and party ow connected with main	d cost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ; style of roof? ; side? ; side? ; side? ; side?	Estimated ANY SIDE. ; No. of feet high ; material of the control	d cost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro	IF EXTENDED ON long?; No. of feet wide?; style of roof?; style of roof?; shickness of external walls?	Estimated ANY SIDE. ; No. of feet high ; material of feet high foundation? inches; and party ow connected with main ; side? OR BUILT UPON	d cost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro Will Number of stories in height w	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ension be built? hickness of external walls? expired? Hoot? ; side? Hoot? ; side? When moved, raised or built upon?	Estimated ANY SIDE. ; No. of feet high ; material of the control	a above sidewalk? f roofing walls inches. building? ; rear?
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro Will Number of stories in height w Height from level of ground t	IF EXTENDED ON long?; No. of feet wide?; style of roof?	Estimated ANY SIDE. ; No. of feet high ; material of foundation? inches; and party ow connected with main ; side? DR BUILT UPON Proposed for Distance back from	a dove sidewalk? f roofing walls inches. building? ; rear?
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro WI Number of stories in height w Height from level of ground t Distances from lot lines when	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ension be built? hickness of external walls? House of the moved, raised or built upon? o highest part of roof to be? moved, front? ; side?	Estimated ANY SIDE. ; No. of feet high ; material of the property of the prop	a above sidewalk? f roofing walls inches. building? ; rear? undations? a line of street?
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro Wil Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ; style of roof? ; side? ; side? ; side? ; side? ; side? ; side? ; then moved, raised or built upon? o highest part of roof to be? ; side when moved, front? ; side ; side when moved, front? ; side	Estimated ANY SIDE. ; No. of feet high ; material of the properties of the properti	d cost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro Wil Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ; style of roof? ; side? ; side? ; side? ; side? ; side? ; side? ; then moved, raised or built upon? o highest part of roof to be? ; side when moved, front? ; side ; side when moved, front? ; side	Estimated ANY SIDE. ; No. of feet high ; material of the properties of the properti	d cost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro WI Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings How many feet will the extension	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ension be built? hickness of external walls? House of external walls? House of external walls? House of external walls? House of external walls? House of external walls? House of external walls? House of external walls or built upon? o highest part of roof to be? when moved, front? ; side when moved, front? ; side when moved, front? ; side walls be increased in height?	Estimated ANY SIDE. ; No. of feet high ; material of foundation? inches; and party ow connected with main ; side? Proposed for foundation? inches; and party ow connected with main ; side? Proposed for foundation? ; side? Part	a dove sidewalk? f roofing walls inches. building? ; rear? undations? a line of street? ; rear? ; rear?
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro WI Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings How many feet will the extern	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ension be built? hickness of external walls? House of the moved, raised or built upon? o highest part of roof to be? moved, front? ; side when moved when	Estimated ANY SIDE. ; No. of feet high ; material of foundation? inches; and party ow connected with main ; side? Proposed for foundation for feet high Proposed for foundation? inches; and party ow connected with main ; side? Proposed for foundation for feet high part R PARTY WALLS	a above sidewalk? f roofing walls inches. building? ; rear? undations? a line of street? ; rear? y walls? ARE REMOVED
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro Wil Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings How many feet will the exter IF ANY PORTION Will an opening be made in the	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ; style of roof? ; side? ; side? ; side? ; side? ; side? ; side? ; then moved, raised or built upon? o highest part of roof to be? ; side when moved, front? ; side? ; side when moved, front? ; side? ; side when moved, front? ; side? ; s	Estimated ANY SIDE. ; No. of feet high ; material of the proposed for the	d cost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro WI Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings How many feet will the extern IF ANY PORTION Will an opening be made in th Size of the opening?	IF EXTENDED ON long?; No. of feet wide?; style of roof?	Estimated ANY SIDE. ; No. of feet high ; material of proposed for pro	d cost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro WI Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings How many feet will the extern IF ANY PORTION Will an opening be made in th Size of the opening?	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ; style of roof? ; side? ; side? ; side? ; side? ; side? ; side? ; then moved, raised or built upon? o highest part of roof to be? ; side when moved, front? ; side? ; side when moved, front? ; side? ; side when moved, front? ; side? ; s	Estimated ANY SIDE. ; No. of feet high ; material of proposed for pro	a loost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro WI Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings How many feet will the extern IF ANY PORTION Will an opening be made in th Size of the opening?	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ; style of roof? ; style of roof? ; shickness of external walls? ; side? ; side? ; side? ; side? ; side? ; ohighest part of roof to be? ; side when moved, front? ; side when moved in the increased in height? How on of the wall be supported?	Estimated ANY SIDE. ; No. of feet high ; material of proposed for pro	a loost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro WI Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings How many feet will the extern IF ANY PORTION Will an opening be made in th Size of the opening?	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ension be built? hickness of external walls? House of external walls? House of external walls? House on highest part of roof to be? is side when moved, front? ; side when moved, front? ; side when moved, front? ; side when moved, front? ; hal walls be increased in height? OF THE EXTERNAL OF the party or external walls? How on of the wall be supported?	Estimated ANY SIDE. ; No. of feet high ; material of proposed for pro	a loost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro WI Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings How many feet will the extern IF ANY PORTION Will an opening be made in th Size of the opening?	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ; style of roof? ; style of roof? ; shickness of external walls? ; side? ; side? ; side? ; side? ; side? ; ohighest part of roof to be? ; side when moved, front? ; side when moved in the increased in height? How on of the wall be supported?	Estimated ANY SIDE. ; No. of feet high ; material of proposed for pro	a loost, \$
Size of extension, No. of feet No. of stories high? Of what material will the ext If of brick, what will be the t How will the extension be occ Distance from lot lines:— Fro WI Number of stories in height w Height from level of ground t Distances from lot lines when Distance from next buildings How many feet will the extern IF ANY PORTION Will an opening be made in th Size of the opening?	IF EXTENDED ON long? ; No. of feet wide? ; style of roof? ; style of roof? ; style of roof? ; side? r built upon? ; o highest part of roof to be? ; side when moved, front? ; side when moved, front? ; side when moved, front? ; side when moved in height? ; side when moved in heigh	Estimated ANY SIDE. ; No. of feet high ; material of proposed for pro	a loost, \$

EXAMINATION OF PLANS.	Supervisor of Plans.	Transcommunity of the second s	 CONDITIONS,	THE PARTY OF THE P				一个时间,他们就是一个时间,他们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	thinning of the state of the st			 t byding	
MEMORANDA.	Americal and a distribution and a management of the control of the		потименто на применения потимента применения потимента п		(CHITATATATATATATATATATATATATATATATATATATA	-:				***************************************	-		
MEMORANDA.				***************************************							the second state of the second		

CITY OF BOSTON—BUILDING DEPARTMENT

The undersigned hereby applies to the Building Commissioner for a hary Repairs & Minor Alterations Not Involving Vital Structural Changes is form NOT TO BE USED for ADDITIONS or CHANGE OF OCCUPANCY PECIAL FORM APPLICATION NALS S. for Permit for permit to repair the following-described building 1,959 Street and No. of Lene

Address

Name of Owner

Type of Construction work of the Size of building, feet front stories feet rear feet deep of the Size of building NOW occupied? Does building have automatic sprinkler system?...... Detail of proposed work Paper 6, 7 8 ac

The facts set forth above in this application and accompanying plans are a true statement Signature of Owner or Authorized Agent) (Address) 7 2 Goe Land Estimated Cost, \$... indespenalty of perilly in a

icensed Builder or Wrecker) (Name of Confractor) (Address)..... (Address) 1657 Cilta

My license expires,

Permit granted

O | Many Shire I INSPECTORS' FINAL REPORT

Has the work enumerated in this applica-

tion been completed and approved?

Law been violated?.....Doc. No.....of 19.....

Violation removed......19

Building Inspector

Remarks

INSPECTORS' MEMORANDA

REMARKS Date

CITY OF BOSTON — BUILDING DEPARTMENT

SPECIAL FORM APPLICATION No. 12353 for Permit for Demolition, Ordinary Repairs & Minor Alterations Not Involving Vital Structural Changes

This form NOT TO BE USED for ADDITIONS or CHANGE OF OCCUPANCY

The undersigned hereby applies to the Building Commissioner for a permit to perform the work described herein:

	Street and	No Col 1	DATE.	0/67	Formit FO	
	Name of O		OMPS HI			
	A Part of the second	Mer / Mass Sa	105/2	\$7.2	ress Fire Lin	
	70		N. A. A.	Add		JWard
	Type of Con	struction			ress / S	Jack
	Size of buildi	no fort	100	Zon	Fire Ti-	······································
	How is build:	-s, reet front	feet roo		p Occupancy on 1	UIT
		· · · · · · · · · · · · · · · · · · ·		100		•
	Main an mea	ns of egress from	thing	MULLE	,; No	o. of stories 3
	Taur stairs"	Back stoir	tims building		ress Fire Lin p Occupancy and I deep , No n. balconies Yes No MMENCED ANI	
	TO THIS WORL		Fine	i america		
ŀ	WORK TO	REMOS-	ove Building Coo		Yes No. MMENCED ANI	Any of
	FORTHWITH	TEMOLE AIC	LATIONS	e violations?	Yes	Any other
	REPLACE	$^{\rm 2d}$ work — ${\rm STA}$	TE EXACTOR		ANI	COMPI TWEE
	G-HAM	CIAN	AACILY	WHAT WO	- מד זמ	TH THIE
	Reministra	1-1001111	2008	2 10/52	MMENCED ANI	ONE.
	REFINA	CATTON	1/52/	D Aris	RK IS TO BE I	8-1/2/1-
	10155111	· Valle	و المعالم المعالم الما	2011	12 >	13
	WORK BEING	DOME	A STATE OF THE STA		DND NO	
	CHOSE O	P. COMPLATER.	*************	v/ !		
	The facts sements, made under	ALL TANKS AND AND AND AND AND AND AND AND AND AND	***********	********	MED MED	*********
:	ments, made	forth in this			************************	
	ments, made under	penalty of period	oplication, and in	tho -	Estimated Cost	0 5
3	Signature of Ou	·····		tine accompan	Estimated Cost,	\$ 5,0000
	7 Masure of Ou	ner or Authoriza			any,	are true state.
	(Signature	La company of	a Agent)	(Address)	2	
(4	Address) Lice	nsed Builder or	War 7	Cul Co	***************************************	- · · · · · · · · · · · · · · · · · · ·
T s.	7 (3)	Grand Main	necker)		ISGUN &	
70.00	c. No	Jago of va	Sale Colonia (Address (1	Name of Contractor)	
	y license expires	2-17	SIZA	- (889 m	Markethe	< CF.
$A_{\mathbf{p}_{l}}$	proved (date)	19 6		***************************************	-0 -3 JA	***************************************
By.	(Second)	1/1/15/			12073JA	13
-			18 111	Parmit		********
			- Luj	रू रुक्तमार्ग (granted	
			1	Ву	727	Tu -
				_		¥
				6	The state of the s	

(9-6-'17-1,500. Form 57A.	
Description of Present Building.	Size of building is? Style of roof? Size of building, feet front? Size of L, feet long? ; feet wide? ; feet high? ; No. of stories? No. of feet in height from sidewalk of highest point of roof? Thickness of external walls? Party walls? Distance from line of street? Width of street? Nature of egress, front stairs? Back stairs? Back stairs? Fire escape? Con. balconies? Building to be occupied for. DETAIL OF PROPOSED WORK.
	Size of extension, No. of feet long? ; No. of feet wide? ; No. of feet high above sidewalk? No. of stories high? ; style of roof? ; material of roofing. If of brick, what will be the thickness of external walls? ; material of roofing? How will the extension be occupied? ; inches; and party walls ; inches. Distance from lot lines:— Front? ; side? ; side? ; rear? Height from level of ground to him.
OF	Height from level of ground to highest part of roof to be? Distances from lot lines when moved, front? Distance from next buildings when moved, front? How many feet will the external walls be increased in height? No. 2136 Proposed foundations? Proposed foundations? Side? Side? Fear? Party walls? Party walls? Address 6 Address 6

EXAMINATION OF PLANS.

LOCATION.

Approved

Hes of Plan Division.

Rear 59 Hampshire Street

Ward.

TRANSCRIPT OF APPLICATION FOR

Permit for Repairs, Alterations, etc.

CONDITIONS.

Dec. 6, 1917

F. Conroy

MAR 25-1918

Permit Granted

Plan No.

IN BOARD OF APPEAL.

On File

4 ξ <u>ψ</u>	SYNOPSIS
7	, // C/a P c/a a a
900	Location, 6/2 Hampour District, Jox bury Ward 9
12.p.	Name of owner is? Afampeline to aty Caddress, 36-80 bittog=1.
3,	Name of architect or engineer is?Lic. No
4	Material of building in? Style of toof? Flat Construction of roof? (2)
Description	Size of building, feet front? aff /0017; feet rear? aff Si; feet deep? 301. No. of stories?
, mi	Size of L, feet long?; feet wide?; feet high?; No. of stories?; roof?;
₹of Present (No. of feet in height from sidewalk of highest point of roof?
Building	Thickness of external walls? Party walls? Physical value of building?
13	What was the building last used 1978 & It Jage of furnituel & finishing & Sun
Ò	Front stairs? For Back stairs? 70 Fire escape? 70 Con. balconics? 20 Any other?
	Type of construction? VI Group occupancy? 7 Number of employees? S
20	Building to be occupied for Furniful Stolage + fundling after alteration
7 3	Storage IF EXTENDED ON ANY SIDE.
127	Size of extension, No. of feet long?; No. of feet wide?; No. of feet high above sidewalk?
w V	No. of stories high?; style of roof?; material of roofing?
3 Description	Of what material will the extension be built?; Foundation?;
of (If of brick, what will be the thickness of external walls?inches; and party wallsinches
Extension	How will the extension be occupied?How connected with main building?
	Distance from lot lines:—Front?; right side?; left side?; rear?
22	Area of lot covered after extension
12	GENERAL DESCRIPTION OF THE PROPOSED WORK AND ITS LOCATION
T 3	ore of 2 Partitions & tory The Balling
+3	Contail Booty as less plet est the Look I
'3 ² ~	The state of the s
2.8	- Joseph June State Comment of the C
07 8	
7 %	July of July 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5-3	CARRELATION -
z 2	Compared Cost
9 30	Date le f
, X	The facts set forth above in this application and accompanying plans are a true statement to the best of my knowledge and belief.
~	Teloni Ilel Ellalle 11 Samo Lipt
1	(Signature of Owner or Authorized Agent) (Address)
_ /	
34	
* b	(Signature of Licensed Builder) (Name of Contractor)
A Se	(Address)
ere)	ALICENOS SUCH SCHESSIS Character
3 7	That its execution will not am
~ ~ ~	Of of any person prosper
アの	రా of any person engápలో యా-1-56 thátann

Law been violated? Doc. No. of 19. Violation removed 19. William Control 19. Inspector. PERMIT GRANTED AMILIAM 19. 19.	FILL REPORT FILL REPORT Has the work been completed in accordance with thus application and plans filed and approved?	Boston, Z - 2 19.5.7 To the Building Commission Sir,—I have examine the premises and find same as herein described.	No 1084 AUG 19195; LOCATION C Standburger Ward 9 ZONING DISTRICT
--	--	--	--

DATES WHEN EXAMINED

,	[2	=	5	9	တ	7	6 5	4	င္မ	82		715175
i										2	W.	BATE
ĺ					`					54.0 Eqt		HOUR
						***************************************				ecrephis distribution destination destinations de la company de la compa	IN. PROGRESS TIME	REMARKS

EGRESS INSPECTOR'S REPORT

This building is provided with satisfactory (2006) III. I Have the satisfactory

DATE July 25 38

Upon examination of this building for a lathing permit, we find that it conforms with the approved plans and with all the requirements of the Building and Zoning Laws.

Signature of Licensed Builder.

CITY OF BOSTON BUILDING DEPT.

MXAMINED IN THE PART ENGR.

(9-G-'17-1,500.) Form 57A.	
CORM S/A.	INSPECTOR'S SYNOPSIS.
	Location Man 59 Campshire Ward 3
	Name of owner is ?
	Ivaine of mechanic is?
Description	IVELING Of Onohidaal 1 0
	Material of building is? Moral Style of roof? Del-
of Presen	Size of building, feet front? 4 [feet roar? 4] Material of roofing? North
Building.	Size of L. teet long?
241141118.	100. Of feet in height from sidewalls of his 1
	Thickness of external walls?
·	What was the building last used for 2 10 11 11 11 11 11 11 11 Street?
	Nature of egress, front stairs?
	Size of lot front? Con. balconies? ; rear? ; deep?; deep? ;
	DETAIL OF PROPOSED WORK.
-	
	TAKE DOWN
	The state of the s
	Size of extension, No. of feet long?
If Extended	No. of stories high?
On Any Side.	Of what material will the extension to the same material of roofing
	of orick, what will be the thickness of
	now will the extension be occupied?
	Distance from lot lines:— Front?
· have	Number of stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in height when moved in the stories in the stories in height when moved in the stories
When	Height from level of ground to highest part of roof to be? Distances from lot lines when moved, front? Distance back from line of street?
nioved, Raised	Distances from lot lines when moved a constraint of street?
0F	Distance from next buildings when rear ?
paur chan.	now many feet will the notion of the continue
	Licensed builder Shang Squee Address 6 Webber 1
	No. 2130 Address & Webby If

三年 1000 1000 1000 1000 1000 1000 1000 10	MAR 35 1938 191	Violation removed. Country fraspector.	Law been violated?Doc. Noof 191	Has be work been someled in accordance with this application and plans filed and approved?	March 26, 1918.	FINAL REPORT	same as never work to the section.	Sir,—I have examined the prentises and find	Boston, XLEC. by 191/. To the Building Commissioner:		REFERRED TO INSPECTOR	Rear 59 Hampshire Street Ward 13	LOCATION	No	
22	22 8	21 22	19 20	18	16	14	12	10	9 8	7	S C7	1 & 4	5 -	VISITS	ם
														ROUR	DATES
-														REMARKS	WHEN EXAMINED

tarda dalla deservata e de esta e

1830.

Location, ownership and detail must be correct, complete and legible. Separate application required for every building

Plans must be filed with this application

Application for Permit for Alterations

Boston,...

To the

BUILDING COMMISSIONE	R:
----------------------	----

	BUILDING COMMISSIONER:	dec	
	The undersigned applies for a permit to alter the f	following-described building:-	
	Location Cearf 59 Hamburge II - H	Ward Part Ward	1 / 3
	Name of owner is?	Address 6. Webbe	a li-
	Name of mechanic is? Thus Augus	" & Webla.	\mathcal{Q}_{\cdot}
	Name of architect is?	a .	H 1-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
\.nau!n	Name of architect is? Material of building is? Style of roof?	Material of roofing?	Pale
escrip-	Size of building, feet front? 45; feet rear? 45	feet deen?	2///
ion of	Size of L, feet long? ; feet wide? ; feet high	? • No of growing?	· · · · · · · · · · · · · · · · · · ·
	No. of feet in height from sidewalk to highest point of roof?	Material of Sand Jatin	OI {
resent	Thickness of external walls? Party walls? Dista	Proof from line of the 42	. ^
uilding.	What was the building last used for? Lachary	Town more familiary and a st	reet?
O * .	Nature of egress, front stairs? Back sters?	number of the control	of stores?
	Size of lot front?	Con. balcon	ies?
	Size of lot front? ; rear? ; rear?	; deep?	***************************************
	Building to be occupied for	aft	er alteration
	DETAIL OF PROPO	OSED WORK.	
	To he Jon Alous		
	To be Jon Down		***************************************
		9 pm	*******************
	"akunsa masimuransa anata mata mata minamanina mata mata mata mata mata mata mata ma		meens opt out an pp (bes an engand a
		***************************************	*********************
		-	
		Estimated cost, \$	10,00
	IF EXTENDED ON		
	Size of extension, No. of feet long?; No. of feet wide?	?; No. of feet high above sidews	ilk?
	No. of stories high?; style of roof?;	material of roofing	Person 01/01/1901/191/191/1900/
	Of what material will the extension be built?	Foundation?	+ 3 ***** 1949 **** *******************************
	If of brick, what will be the thickness of external walls?	inches; and party walls	inahaa
	How will the extension be occupied?	How connected with main building?	LIICHES.
	Distance from lot lines:— Front?; side?	: side?	transfermi) polycocatable process animage
			u incept à 21 mar (1960) des 1-927 (1960) d'angeque
	WHEN MOVED, RAISED		
	Number of stories in height when moved, raised or built upon	?Proposed foundations?	****************************
	Height from level of ground to highest part of roof to be?	Distance back from line of street;	?
-	Distances from lot lines when moved, front? ; sid	le?; side?:-rear? -	
	Distance from next buildings when moved, front?	; side? : rear	?
	How many feet will the external walls be increased in height?_	Party walls?	*************************
	IF ANY PORTION OF THE EXTERNAL O		
	Will an opening be made in the party or external walls?	in	
	Size of the opening? Ho	ow protected?	
	How will the remaining portion of the wall be supported?	A	***********************
		al 4	: Direct out o 2000 in a 2000 bit a 2000 package
	Signature of owner or	Chas Lyon	
	authorized representative	" (11 kg)	
	Address	, 6. Werper fe-	
	License No. 2/3. (Class	1 1 1 a	
	Signature, Chus: Myong	•••••	
	Address, Ca Marker Ja		
	·	- · · · ·	THE PROPERTY 21

OBTAINED

BEFORE

No.

APPLICATION FOR

Permit for Repairs, Alterations, etc.

Approved

No. 59 Manufor huse Meet Me

Ward 13

CONDITIONS,

Permit granted.

Permit filled out by Mater'al of building Plan number..... € building ...


EXAMINATION OF PLANS.

MEMORANDA.

Supervisor of Plans.

MEMORANDA.

B D 3—5M12-'58.			
CITY OF BOSTON—BUILDING DE	PARTMENT	7	/
SPECIAL FORM APPLICATION No. 1.1			!
Ordinary Repairs & Minor Alterations Not Involving Vi	tal Structural Changes		,
This form NOT TO BE USED for ADDITIONS or CHA	NGE OF OCCUPANCY		
The undersigned hereby applies to the Buildir	ng Commissioner for a	\$\$\$X\$\$222APR	٠ پ
permit to repair the following-described building:		8.60%	-
permit to repair the following-described building;	7, 1957	* *	
Street and No. 6/ Humpshire	Fire Zone	Ward 9	
Street and No. 6/ Nampshire Name of Owner Menu	Address (o / /	fampshire St	Rod
Training of Original Assessment of the Control of t	······································		·
Type of Construction Wood II	Group Occupancy	and Division I	:
Size of building, feet front; feet rear	30; feet deep. 5.	No. of stories	,
How is building NOW occupied?	tou of people	- products	
Does building have automatic sprinkler system?		<i></i>	
Main stairsBack stairsFire escapes.		Anv other	
Detail of proposed work		•	
	8 sill in	neen al	
livilding 6 %	+ 1 -1.	nem of and concret	<u>.</u>
I be to the desired on the second	again proteins	g Concrus	2
200-che o so regeloce 2000	a juiss		
		····································	
POCO	}		-
[] []			
	/		
		***************************************	,
	Estimat	ed Cost, \$ 900.	•
The facts set forth above in this application			
made under genalty of perjury.			
(Signature of Owner or Authorized Agent)	(Address) 9780	gewaler Orivi	
(A) (A) (A)	(Haaross)		
John of thema	/17	alefran	
(Signature of Licensed Builder or Wrecker)	(Name	of Contractor)	
(Address) Same	(Address)		
Lic. No. /652 Class C. Ltd.	(22war 000)	***************************************	
My license expires May 22 1956	************************	***************************************	
Approved (date)	Permit gran	MD = 0 INEA	
By Z JUST	Ву	- 1498	

B D 8—5M12-58.	* *
CITY OF BOSTON—BUILDING	· •
SPECIAL FORM APPLICATION 1.1.	
This form NOT TO BE USED for ADDITIONS or CI	HANGE OF OCCUPANCY
The undersigned hereby applies to the Buil	· -
permit to repair the following-described building	9, 1959
Street and No. Wiener	22 + 9
Name of Owner	Fire Zone # Ward Address 6 Hampshire Strong
Most WI	1
Type of Construction.	Group Occupancy and Division ; feet deep ; No. of stories ?
Size of building, feet front; feet rear	r; feet deep; No. of stories
Does building have automatic sprinkler system? Main stairsBack stairsFire escap	
Detail of many and months	
building fut in con blocke to replace be	8 sell in seen of concrete ick kiers
(180	
	7
The facts set forth above in this applicat	Estimated Cost, \$ 700-
made under penalty of periury	
(Signature of Owner or Authorized Agent)	(Address) 97 Edgewaler Brine
· John of Juna	Mattel and
(Signature of Licensed Builder or Wrecker)	(Name of Contractor)
(Address) 1652 Clto	(Address)
Lic. No. Class 22, 1758	(1100)
My license expires	
Approved (date)	Permit granted
By	Ву

6/ Hamf Shire It INSPECTORS' FINAL REPORT
INSPECTORS' FINAL REPORT
Notain
/ Grace
may 4 19.59
Has the work enumerated in this applica-
tion been completed and approved?
Les:
Law been violated?Doc. Noof 19
Violation removed19
Building Inspector Jahr W. Claran
Remarks

INSPECTORS' MEMORANDA

Date	REMARKS

		2.0				4	•	- 1.		40.00
				ii y				Tierre		
ر م		Tugʻilgi.			2 27% 7			E TATE	- Table 1	
					i de de de de de de de de de de de de de	40) 	
	, in the					a en e				1
		4-								
		.Y ₁ (****)	(11.00) (1.00)		120	71				-
	VI))flatic	and the	**************************************						01.0
			FA. (A.)							
	e de Galerie	ti.	77.	**************************************		1				
			April 19			100		ental Adamata		
			71.			100	· ***			ing seco
			**************************************	+	4	41 (5)				77 ±
	" . () . "			. (c) = 2 (c)				1 () () () () () () () () () (300
									er Time	
	rut ya	no.					**	1	ATTACK TOTAL	4 = X
					Turage 9.	120	140)		Te Te	4. 42
	Merk	e Carpo	***** *****		in in					
7	erio Hoole			1	104	. 1, 21		Test in	1 (1) 1 (1)	- e1
	um ei	-							建計	
	ů.	p b			Park And				1.00 m	
	i be	- 1010 - 15								
	Ψt.	2.76				1				1
3										-
	<u> Siğəti</u>	Pilon s e Ast ^o ni		nairean. Bear	1 2, 3	1			1 40 6	
	ik (2)	19.3954	() () ()	¥ '≥.	e 1 = 1	配复 分	ar vic			2
				115° 2	Atr	1.00 mg/ 1.00 mg/ 1.00 mg/	14-17	2 67 m A	ade and	
	A 200 - 3	int.	18 TO 18 TO 18		***				V	
									170	
			111							
										i vita

Application for Permit to Build,

(BRICK AND STONE.)

Boston,

INSPECTOR OF BUILDINGS. To the

he following specification:—	
undersigned hereby applies for a permit to build according to the following specif	
es for a permit to	
ned hereby appli	(Pratie.
The undersign	Later and the second second
	<u>ک</u> ے ! !

ri	1. State how many buildings to be erected. GMU
•	Material
i si	name?
4.	Architect's ''
າດ	"" "Builder's "
အ်	" " location? " " " " " Ward 19. 1180-82 Ward 19.
7.	Calvert Str.
တ်	", purpose of the building?
6	If a dwelling, for how many families?
10.	
 -	
12.	Size of lot, No. of feet front, MULL, ; No. of feet rear,
13.	Size of building, No. of feet front, 28, No. of feet rear, 28; No. of feet deep. 66.
	No. of Stories in height,
14.	No. of feet in height from level of sidewalk to highest part of wall,
ä	No. of feet in height from sidewa
16.	
17	
18.	
	", ", ", ", ", ", ", ", ", ", ", ", ", "

Application for Permit to Build.

BRICK, STONE, EXC.

LOCATION.

Tremont St.

Ward !


PERMIT GRANTED.

May 12 188 2

Referred to Assistant Inspector

Show approved plante, without described buildhard buildhard Street Street and I dependent May 12 162

FINAL REPORT.

City of Boston

Building Department

Office of the Building Commissioner

Ainth Floor, City Hall Annex Boston

Movamer 14, 1935.

To the FIRE COMMISSIONER,

Bristol Street, Boston, Mass.

DEAR SIR:

Premises:

116% Transmi St., Rosbury.

Our Inspector reports:

"Chimney has been extended to the collar; Smole pipe changed. Celling and floor protected."

Yours very truly,

Building Commissioner

EDWARD F. McLaughlin FIRE COMMISSIONER

CITY OF BOSTON

FIRE DEPARTMENT

BRISTOL STREET

RECEIVEI December 12, 1954 BUILDING DEPT DEC 13 1934 $\widetilde{CITY}\widetilde{OFBOST}$

To the Building Commissioner,

901 City Hall Annex, Boston.

Dear Sir: 1184 Tremont Street, Roxbury.

I forward herewith for your information the following report of an inspector of this Department concerning the above named premises:

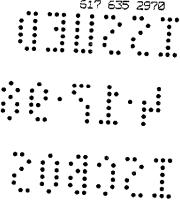
Four story, second class brick tenement house; 25x60x55'. Wood beams and floor boarding over hot air furnace not protected with metal lath and cement plaster. Smoke pipe of furnace. within eighteen inches of wooden beams and floor boarding without shield; and where smoke pipe passes through wooden flooring, pipe is within one inch of floor boarding and timbers. Above installed within past three months. Recommend that chimney be extended to cellar floor so that smoke pipe need not be carried through first floor, smoke pipe properly installed, and ceiling over furnace be properly protected.

Owner, Robert Anderson, 27 Warwick Street, Roxbury, Mass.

inspector_A

Referred to...

UCC 14 1934


Yours wery

5,000-8-'34,

The state of the s -1

10 April, 1998

Boston Landmarks Commission

City of Boston The Environment Department

Foston City Hall/Room 805 Foston, Massachusens 02201 c17/635-3850

Matthew J. Kiefer, Vice-Ghelr James Alexander John Amodeo Sally Bacr loan C. Bowman, III Ecward Dusek Harron Ellerson ionn Freeman Thomas Green Pamela Hawkes Thomas Herman Allan A. Hodges Leon V. Jacklin James Keefe William Marchione Kathleen McCabo Susan D. Pranger Douglas P. Reed Ellen J Lipsey, Exec. Director

Mr. William Evers Department of Neighborhood Development 26 Court Street Boston, MA 02201

NOTICE OF DETERMINATION

Application #98.1084D291 Demolition of a tavern-located at 1182-1184 Tremont Street, Roxbury.

Dear Mr. Evers:

The Boston Landmarks Commission staff have determined that the tavern located at 1182-1184 Tremont Street, Roxbury is not a significant building under the Criteria for Determining Significance in Section 85-5.3 (a-e) of the Demolition Delay Ordinance (Article 85, Chapter 665 of the Acts of 1956 as amended). No further review is required. If you have any questions regarding this decision, please contact either me at 635-3850.

Please bring this determination with you to Inspectional Services Department when applying for a demolition permit. Thank you for your cooperation in this matter.

Sincerely.

Michael A. Cannizzo

Staff Architect

Boston Landmarks Commission

John Eade, Commissioner of Inspectional Services Boston Redevelopment Authority Boston Civic Design Commission

My license expires 1/10 000

Phone

BD 2 Revised 12/89

Phone

		Permit granted
		[A*
Mechanical APPROVED as snown ou pra		CONDITIONS
H.V.A.C. Spinklets		Ward. 9
		S (SSIQ)
Egress APPROVED as shown on plans		Location 1182: 1184 Tremont ST
Electrical APPROVED as shown on plans	Arch./Struc./Safety APPROVED as shown on plans	APPLICATION FOR Permit for Alterations, Repairs or Change of Occupancy
Plumbing Sprinklers		
PERMIT NUMBERS Gas	EXAMINATION OF PLANS Approved 4/16/77 19	004063

HITELE SEATE AC ACIEVALENCE PERMIT NUMBERS ... Sprinklers..... Gas

ZONING DIVISION ARPROVED

ZONING

...Sprinklers..... ...Gas....

lechanical APPROVED as shown on plans

INSPECTOR'S REPORT

DATE.....

....19

This building is approved for satisfactory Egress.

Signature of Inspector.

=

All work hereafter performed must be tested before being used, and the Supervisor must be notified when all connections are in position **BD 13** APPLICATION FOR PERMIT TO DO GAS FITTING APPLICATION NO._ COMMISSIONER: INSPECTIONAL SERVICES DEPT. BOSTON, NATURE OF PROPOSED GAS FITTING IN DETAIL Auto. Storage Heaters Pipe Size Basement 1st しも 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th **MASS. DEBRIS DISPOSAL LAW** MGL c40, S54, C584, S9, all, S150A. Will work result in any debris? Yes___ Initials B.T.U. INPUT FOR HEATING. CORPORATION NAME _____ NAME AND ADDRESS OF BUILDING CON N CERTIFICATE NUMBER _____ Trement PARTNERSHIP LEGAL OCCUPANCY FIRM OR COMPANY ____ NEW OR RENOVATION _ NAME OF MASTER OR JOURNEYMAN GAS FITTER _____ NAME OF OWNER - FREA ADDRESS OF OWNER ADDRESS 2058 Dorchester TELEPHONE NUMBERS: BUSINESS Z PLANS SUBMITTED? YES _ NO _ * I hereby certify that all of the details and information I have submitted (or entered) in above application are true and accurate to the best of my knowledge and that all gas fitting work and installation performed under Permit issued for this application will be in compliance with all pertinent provisions of the Massachusetts Building Code and Chapter 142 of the General Laws. Please read statement on reverse side which is hereby incorporated as part of this certification and is a condition of the issuance of this permit. I have a current liability insurance policy to include completed operations coverage. [] I have informed the owner or the agent of the property that I do not have liability insurance including completed operations coverage Jany V. Wym

Signature of Licensed Gas Fitter APPROVED Inspectional Services/Building Division 20070

GAS FITTER MUST RECEIVE PERMIT BEFORE COMMENCING WORK

Designation and License Number of Gas Fitter

APPLICATION FOR

1182-1184 Neunt 18

Ward.

Gas Fitter 19

CHAPTER

FELLINIT GRANIED

inspector

pair perspit proved will the antique soding sharall free love by a little for the first agreement better the early of bound. Ordinances, the first agreement better or the appropriate and the Cramicosomor that to agreement better or the appropriate and the Cramicosomor that to so it these persons on persons ending a clearly gift, gestilist to the early and a soliding cash, our relative the efforciable of the efforciable of the efforciable of the efforciable of the end o

FINAL REPORT

Inspector

GAS FITTER MUST RECEIVE PERMIT BEFORE COMMENCING WORK

				ni 1	spĐ.	√o 190			י שעק י		Desi			_	, -				_ _	osoads	Gas In	Ç₽ļ€}			
					12111	תמא זו			ク <u>フ</u>		0			٠.	·	uois	IAIC	r Su	HOII	ng/	Saar	15/		>	
			١.				7	NH Y	(V)	•is <u> </u>	my	7		N		-	• • •			(QL/	500.	1140	2 le		oədsu <u>ı</u>
<u></u>	тэдог	d ə	ų; fo	เนอซ	BV/12	nuo i	lo auns	si8na	•	•	. 1		0	•			7		. ÷					UJ.	VOA99
· · · · · · · · · · · · · · · · · · ·	~, ·						2gbior	03 640	************	. =	i •														
							0002071	su(iteredo	hetelo	z comi	uipnləi	ance ir	ansni '	gilidail	рзус	топ ор	i tadi	obeuty	the pr	lo ins	gs ərli	uel ol	the ow	barrrolni əvan
-, -,	1 way 1.				.nit.										o criavn:	, suom	stadu i	າລາວທ່ານ	200 ann	TARK O	· C	J			ease read state have a current
po	חוופונו	žs	ນລັກ	ines	TOTAL	am ta	GHAIA		••		1 2	**				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	o bater	001031	i vdərə	ų si ų	oidw e	pis əs.	rever U tever	ment o	ease read state
s isdi	bns 3	gp:	IWOF	sh ye	n lo	pest	di oi s	ecurate	s bas : sertine	aura ea a lle di	ation a New York	əilqqa İsilqmö	avods o∘ni eo	ni (be) J∐iw⊤i	or enter lication	ntea (o da sii	mons :	enssi i	inrisq	ıəpun	bonno	n beri	oitallati renei	ani bas adi 30	I hereby certif s fitting work d Chapter 142
	84			(0)								bHO!		-		· (F - 99;	— q (aloq 1	ioitem.	ւզդու է	ms elís	19p ay	to li	that y	I hereby certif
	7	7	12	7			· .		15.9			Ond									10	I			
			_,	N			Ţrā,			•	·V	CCGM	a du								(EZ		LEDS	LLIM	aus snaj
		_		-VI			***		Ä	1		KE22	-i-	2190			,					2	MAL	70 TÓ	'DDKE22 (
	LEK	LLI	FF S	G∀.	N	Kivix	KNE	በ ሀር)) (OK	? <u>\</u> ortet	Dat	; E OF				:25)	12	Mt	17	P	721-	ER 1	INMC	NAME OF
								1101	-									esi	+ WI	100	رخ	N)]TA	ENO/	NEM OK K
											1	I OF	,					·	' —						EGAL OC
		_									i	LNEB				1			-		. H			427	
								_ `			1	TIFIC			5	5	।प	us,) อก	IFD	JE BU	o ss	DKE	Y O	VAME AVI
			900	••	:				'WE	√N N	OITA	POR	COK	_			-		, 						りんリノーマスト
B 3		slsi	iill.	•		o _i	V		səX	epris?	eny d	ni iluse	MOIK I	LIEA	.A021	s 'me '	65 'to	ኖኅ ' ቱ ሪ	re for	701	יייני	 TA 31	н ЯО	ਜ TU	**MASS. DEI
••	•			_ <u>5</u>		T -	Τ	Τ-		-		_	_		T		- -	30 VS	3 07	TOM	**M\	∀ΓΓ	SO4SI	BKI2 D	**WY22' DE
i Pieti	G .ON	1,		•••		+-	 	+		4-	+	+-	-	-	+-	┿	-	<u> </u>							1111
• •	€		••	•		 	+-		+-	+	- -	+	-	+ -	-		- ↓	-	-	┦_	\bot				1017
• •	•	•					+-	+			+	-			-	 		 	+-	╁-	<u> </u>	1_			416
•	_	•		. 5						+	-	<u> </u>	1-	/ -	1) C	 	 	┼-	-	<u> </u>	-	 		_	ris dis
e e	•	•		•								 	1-1	7 1	-	<i>*</i>	+-	+-	 	-	-	∔_	 	<u> </u>	417
			73										-	1 -	<u> </u>		+-	 	├	├-	-	_	 		419
				1								 	 	-	-	├-	-	-	<u> </u>	<u> </u>	 -		+-	╁—	Чts
			<u> </u>	_	:									1	_		 	 	 - -			-	+-	+-	414
	_		<u> </u>	1											<u> </u>		-			-	+-	 	 	ļ <u> </u>	2nd 5rd
	7	Į	<u> </u>	4		· 											_					 	1	2	181
		C	-(0.0	+	_					ļ													 	1	Basement
	1141107	7	Stoves		Incinerators	Bunsen	Hot Plates	Gas Engines	Unit Heaters	Gene	Dryers	Metting Pots	Plots	Furn	Heating Boilers	Aut	Ron	Aut Hea	Cor	Rat	R D	်	ହ	 	α
	12	۲		•	ator	S	u ,	ë) is	Generators	G	ng	ισ.	Furnaces	ers	o. Sta	Roof top Units	Auto. Room Heaters	Conversion Burner	Hotel Ranges	Domestic Ranges	Cookers	Grilles	əzis	Floor
	17			'	es 					G						Auto. Storage Heaters		om	Š		ត់			Pipe 9zi2	SAD
	2								יוד	ATBO	NE IN	ITTI	SAĐ	OSED	QOH-		HOIN	'N							
		,					::	ations:											N 30000	a he	OI 60	م سامان	ima		The under
U ,		ř		6ŀ		72.0	<u> </u>		N',	OTSO	. B	Ld30	SES!	NYR.	T SE	ANO	ECTI	dSNI	:⊢⊐:	NOK	ch sail	MUC V	, Aeteh	benpi	гэөрил өчТ
,	- .	,					1 6	•															A.	OSSI	
O'	F. 1	~		Ę	JN) <u> </u> 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1		-S	AD.	00	3 C)T .	LΙΝ	IH=	ld i	HO	A E	101	IA:	דור	ار آم	H		INOTE	B

All work hereafter performed must be tested before being used, and the Supervisor must be notified when all connections are in position and the final test is applied.

APPLICATION FOR

i pration Ward

WW 27 1004

Gas Fitter

APPRINED:

EOSTON,

ENVITORANTED.

This permit is insued by It the predict training that all the whole been paid in full permitted with drifts of the collection of the prediction of the collection of the colle

१९६५) च १-५४६) र १००५ विकास अस्ति । अस्ति । अस्ति । अस्ति इति

pound to so has or will take place as burse to the period heig

well if couldness and comment of a Whiteh

and evel us crimeral accompand to invaluated. The provided all the promise payment or cocharge to occume deduce a reache old कि तीर प्राप्ताति प्रभूषित असे व प्रतित अस्त त्यांति अस्ति के त्यांति त्यांति स्वास्ति हैं thing of value, including each, once and above the africal entrance. solicitation (finalist) profession exchange of an early postuing or agree an et between the apple not over the Commissioness that to 4 30/48). Further, this permit to be and with the under tooline and

THE PROPERTY OF A STATE OF A STAT

ABANDONED

inspector.

· 三、 "私,就要要是

THE CITY OF BOSTON - BUILDING DEPARTMENT INSPECTION CERTIFICATE

issued in accordance with the provisions of Chapter 143, General Laws

Ward

Occupancy Capacity Lessee or Maximum Licensee Owner,

National Street Modelle Concile 120 person Number THE STATE STATE TOTAL CARRO CARCALLA" THE. Location

Bsmt	1st Floor	2nd Floor	3rd Floor	4th Floor
5th Floor	6th Floor	7th Floor	8th Floor	9th Floor
10th Floor	11th Floor	12th Floor.	13th Floor	14th Floor
		111111111111111111111111111111111111111		***************************************

3 Certify that I have inspected the above premises, and that the requirements of Chapter 143 of the General Laws, for buildings of its class, are applicable thereto.

THE EGRESS AND MEANS OF ESCAPE FROM FIRE ARE SUFFICIENT FOR THE PERSONS.

A copy of this certificate must be posted in a conspicuous place in each story of the building.

Market IV, 1960 Issued.....

の名が、これを表する

Expires.....

Inspector NOTICE:— THIS CERTIFICATE SHALL BE VOID IF THE NUMBER OF OCCUPANTS IS INCREASED, OR MATERIAL CHANGES OR ALTERATIONS IN ARRANGEMENT ARE MADE, OR IF EGRESSES ARE OBSTRUCTED OR CHANGED.

THE CITY OF BOSTON — INSPECTIONAL SERVICES DEPARTMENT

まな、お

INSPECTION CERTIFICATE

NO. 1648

Issued in accordance with the provisions of Chapter 802 of the Acts of 1972 as amended

Location

Number

Capacity Maximum

Lessee or Licensee Owner,

I certify that these premises have been inspected and approved by the Inspectional Services Department and the requirements of Chapter 802 of MGL for buildings of its class are applicable thereto. Read the statement printed on the reverse side and abide by its requirements.

THE EGRESS AND MEANS OF ESCAPE FROM FIRE ARE SUFFICIENT FOR

A copy of this certificate must be posted in a conspicuous place in each story of the building

Issued

Expires 10/11/9

NOTICE — THIS CERTIFICATE SHALL BE VOID IF THE NUMBER OF OCCUPANTS IS INCREASED, OR MATERIAL CHANGES OR ALTERATIONAL IN ARRANGEMENT ADD MADE AND TO THE PROPERTY. IN ARRANGEMENT ARE MADE, OR IF EGRESSES ARE OBSTRUCTED OR CHANGED.

DOCUMENT ROOM COPY

(SEE OVER)

CITY OF BOSTON BUILDING DEPARTMENT

OFFICE OF THE BUILDING COMMISSIONER

..... CITY HALL ANNEX, ROOM 901, BOSTON

MAY 20 1958

FRANK J. COUGHLIN EXECUTIVE SECRETARY.

Jeses Comity 1162-1181: Tremont Street Auxbury: Massachusetts

The Building situated	1182 - 118h T	resont Str	ect			
	1			Waro	<u>, 9</u>	
l-Boston, of which you a			to endange	r life, is	therefore a	common

in said-Boston, of which you are the owner, being unsafe so as to endanger life, is therefore a common nuisance, and you are hereby notified forthwith to remove the cause of danger and abate the nuisance.

An application setting forth the manner and method of removing the cause of danger and abating the nuisance must be filed with this Department forthwith, and if in accordance with law, permit will be granted.

Chapter 179, Acts of 1931, as smended, to with Section 116 (d).

Bulge in root wall, pulling away. Fracture front wall, lintels cracked. Chimneys in need of repair, in danger of falling. Bricks on parapet wall loose and in danger of falling. Conditions are unsafe and dangerous.

TO RECIA THIS CONDITION:

A parmit wist be secured from the Building Department and conditions corrected or building wased.

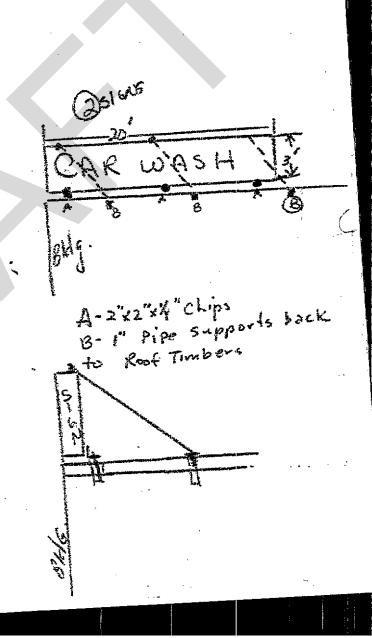
Thomas J Hughes!

Building Commissioner.

Doren reb

SECTION 116, PARAGRAPH (d), CHAPTER 479, ACTS OF 1938 AS AMENDED

Every building of which the exits are insufficient shall be provided with exits satisfactory to the commissioner; and every building which is dangerous or unsafe shall be made safe or removed; or every such building shall be vacated forthwith on order of the commissioner, with the approval of the mayor. Such order shall be in writing and shall be addressed and delivered, or mailed, postage prepaid, to the owner or tenant, if he is known or can be found, or otherwise by posting an attested copy of the order in a conspicuous place upon an external wall of the building, and shall state the conditions under which the building may again be used or occupied. An attested copy so posted shall not be defaced or removed without the approval of the commissioner. If in the opinion of the commissioner the public safety so requires the commissioner with the approval of the mayor, may at once enter the building or other structure which he finds unsafe or dangerous or land on which it stands, or the abutting land or buildings, with such assistance as he may require, and make safe or remove said unsafe or dangerous building or other structure and may protect the public by a proper fence or otherwise as may be necessary, and for this purpose may close a public or private way.


CITY OF BOSTON—BUILDING DEPARTMENT 901 CITY HALL ANNEX

BDs

DOC. NO. 02931

Ordinary Repairs and Minor Alterations Not Involving Vital Structural Changes This form NOT TO BE USED for ADDITIONS or CHANGE OF OCCUPANCY andersigned hereby applies to the Building Commissioner for a permit to owing described building: Type of Construction... Group Occupancy and Division Size of building, feet front..... ...; feet rear. 53 ; feet deep 200; No. of stories 1 How is building NOW occupied? CAR Main stairs.....Back stairs. Detail of proposed work.. The facts set forth above in this application and accompanying plans are a true statement made under penalty of perjury. (Signature of Owner or Authorized Agent) (Address).(Signature of Licensed Builder (Address) 255 Zou (Name of Contractor) Lic. No. 1207 Class (Address).... My license expires. Approved (date) Permit granted....

-GITY OF BOSTON-BUILDING DEPARTMENT 801 CITY HALL ANNEX

BD3

DOC. NO...0293 J. YEAR.....

SPECIAL FORM APPLICATION

FOR PERMIT FOR

Ordinary Repelirs and Minor Alterations Not Involving Vital Structural Changes This form NOT TO BE USED for ADDITIONS or CHANGE OF OCCUPANCY

Louisian	Building Commissioner for a permit to	DATE JACU F PEDAL	Name of Owner Jane Mand & Address Again	Type of Construction Bush	Size of building, feet front.	How is building NOW occupied? (1) 1.5 4	Main stairs Back stairs. Fire escapes Con. balconies	metel Bins			##
	the conowing described building:	Street and No. 1234 Theman	Name of Owner Janearla Rel	Type of Construction	Size of building, feet front.	How is building NOW occupied?	Math stairsBack stairsFire est	Comment of proposed work		The state of the s	

The facts set forth above in this application and accompanying plans are a true statement	(Address) (23 / / / / / / / / / /	10	Lordon (Wante of Contractor)	(600 100 1	Permit granted S 1959
The facts set forth above in this application made under penalty of perfury.	(Signature of Owner or Authorized Agent)	(Signature of Licensed Builder or Wreeker)	Lic. No 2207 Clase (34 Address)	My license expires 11/24.1.79	Approved (date) 1 8 5 By Andry 2

By Permit granted & 1050

A-2"x2"x4" Chips
B-1" Pipe Supports back
to Roof Timbers INSPECTORS' MEMORANDA REMARKS Date Len 3/19.17 Violation removed......19..... Law been violated?/....Doc. No.....of 19..... Has the work enumerated in this applica-USCHORS' FINAL REPORT tion been completed and approved? Building Inspector Remarks....

CITY OF EDSTORE

BARRON & FELDMAN
EFERRED TO:
COUNSELLORS AT LAW

8 BOSTON 9, MASS.

SAMUEL BARRON, JR.
MOSES D. FELDMAN
HARRY G. FELDMAN
PHYLLIS L. PERLMAN

1949 AU

August 30, 1949

TELEPHONE HUSBARD 2-4225

Mr. Frank Whitecross Planning Division Building Department City Hall Boston, Massachusetts

Dear Sir:

In re: PROPERTY AT 1226 TO 1236 TREMONT STREET, BOSTON

Please be advised that I represent the Home Owners Federal Savings & Loan Association, and that on August 19, 1949 Jack Grusby of Boston, owner of the above-addressed premises, mortgaged said premises to the Home Owners Federal Savings & Loan Association, and recorded with the mortgage is a "Plan of Land in Boston, Roxbury, Mass., July 26, 1949, Joseph Selwyn, Civil Engineer". This survey plan indicates that Mr. Grusby has a frontage on Tremont Street of 81.50 feet.

Also be advised that on August 19, 1949, on behalf of the said Jack Grusby, I filed a petition in the land Court, case No. 21970, to register his title to the said property. The petition for registration claims title in a parcel bounded: "NORTHWESTERLY by Tremont Street, as shown on said plan, eighty-one and 50/100 (81.50) feet; NORTHEASTERLY through the center of a nine-foot passageway, as shown on said plan, and by land of Marshall Club, Inc., fifty-five and 00/100 (55.00) feet; and SOUTHEASTERLY through the center of a tenfoot passageway, as shown on said plan, and by land of said Marshall Club, Inc., twenty-six and 50/100 (26.50) feet; etc."

The net effect of this petition for registration is that Mr. Grusby is claiming title in fee through half of the nine-foot passageway, as shown on said plan, and through half of the ten-foot passageway, as shown on said plan.

This information is being furnished you at the request of Mr. Grusby, and I trust this is what you are looking for.

Very truly yours.

HARRY.G. FEIDMAN

HGF:GL

· Marina y · <u>Same Aで</u> ・シスター Distriction

- 21 - 3

.-10-'46.)

APPLICANT MUST USE INK OR TYPEWRITER IN FILLING IN

Certified Street Numbers.

CITY OF BOSTON

25. 3		·			Serect 1 dimpering maper.
Application to the Building	G Commissioner fo	240 - F.H 5	PM 3:37		7/1/49
To erect, enlarge building of the Acts of 1939, with the A	or or structure and		•	Acts of 1938 as Ar	nended by Chapter 217
Certified street and number	1234 7	— Cuan un X	y Council Incorp	orated.	
Name of Owner Jack	Grush	Ŭ A.	ddaga /TZ6	nFire Zon	ne. Ward
Name of Architect or Engineer.	Wm. Gal	lvin	"	/ Yemon	7 07.
Classification of building or stru	cture - Pre-Code	Dog	Code X	m	
Dimensions of building or struct	ure — Front	Z Right sid	-Code	Type of Constructio	n
Height from sidewalk or mean g	rade to highest point	t of roof	/ 7 / !		;
Dimensions Lot — Front.	Right s	ide /50.94	T oft aid.	10 1	
Main stairs None Ba	ck stairs. None	Fire accorned	Work of	Re	ar. 5.6
Material of — Foundation	mcv. Flor	ors	Bo.	i. balconies Nou	Any other
Roof construction Concr. Alla	& Soil Var	d grave	Walls.,	C.C. StockThickr	iess of
			Party walls	Thickn	less of
Floors 7	1	2	3	4	Any Others
Occupancy	J Car Wash	of Suto. Sec	of Covers		* -
Number of persons accommodated					
	an Granvib	•••••••••••••••••••••••••••••••••••••••		,	***************************************
Segretarióe fosta	72			7	التي الفضيها إلى الهيد العاملة الأواد الدياري التاجاء. يقي والرابية ليرويها ويصف معامل الصحاح الاستان الماجاء
Number of employees in building	10		Dan	Light M	49. 4
Number of employees in building	1	3' ,	Proposed occupan	ney of A	uto Seat Covers
				maintaited G	OSt. J. Johnson
GENERAL	DESCRIPTION OF	THE PROPOS	SED WORK AN	ND ITS LOCATION	N
The Come	6. 1.		200 101		1100
The Convi	1 61160			ery	
12" Concre	te bloc	K bld	g. Foun	detim	
to Convist	g/ 12	" Concre	to wa	Ur. III	j-mas
Toof &	be cond	rete v	labs &	floor	
7 / 6-					
to be po		22.5-6.			1000
ate 7/5/45°	***************************************		•		*
, ,	hove in this applicat	·			
The facts set forth ab		ион апо аесотр:	anying plans are	a true statement r	nade under penalty
Signature of Owner or Autho	prod Agent	(477)			
//	2. 901007	(Aaaress)	1450 194	or Ave, C	abudge
(Signature of L	icensed Brilder)	******	D.C. /	oveys C	
Address / 9 30	ess Ave, Co	Aridge Ado	lress/ 4 > ^	(Name of Contrac	ctor) 1
Lic. NoClass		<u> </u>			. F

STATES AND SOUTH SUB-Application to the Building Commissioner for Permi Relit - 4-2626 THE PASS

To erect, enlarge building or structure

CERTIFIED STREET AND NUMBER

1234...Tremont-Street,

PERMIT GRANTED

Permit filled oft 1949

Plan number.. File number

"Plan filed with Application

Examination of Plans

Approved APPRIOVED SEP

Deputy Building Commissioner

EXAMINED AUG 31-19/9

Group occupancy and division..

Present principal occupancy.... Yacan

Examination of Plans

ZONING

of Deeds, giving Deed number, Reference Book number or a true survey in accordance with last filing at Registry by a survey of the lot signed by a qualified surveyor, increasing the area of buildings, must be accompanied All applications for new buildings and all applications

Plot plan must show:-Percentage of area of lot covered. Area of building in square feet. Area of lot in square feet.

Approved as in compliance with Acts of 1924, Chapter 488, as amended.

EXAMINED JUL 13 1949 7-20 PLANS & LICTAKEN BY OWNER Chief of Zoning Division

EUILDING DEPARTMENT CITY OF BOSTON ZONING DIVISION A P P T O V E D

JUL 27 1949 B 80

CITY OF BOSTON—BUILDING DEPARTMENT 901 CITY HALL ANNEX

DOC. NO. T. SPECIAL FORM APPLICATION

Ordinary Repairs and Minor Alterations Not Involving Vital Structural

Inis form NOT TO BE USED for ADDITIONS or CHANGE OF OCCUPANCY	the undersigned hereby applies to the Building Commissioner for a permit to after commissioner for a permit to	DATE OF 25 11 PORTE	Name of Owner Mile State March Address 14.34 Mard 9 Yepe of Construction	feet rear feet deep No. of stories	マング・大フング	letail of proposed work & and Sanda Sanda Any other	
Ans form NOT TO BE USED for A	ne undersigned hereby applies to the Bi wing-described building:	d No. 1 January SV.	Owner Mile Stake Mile Sonstruction	ize of building, feet front; feet rea	rsBack stairsFire escar	proposed work & agai	
	he folic	treet-a	Vame of Type of	ize of b low is I	Iain sta	etail o.	

(Address) 1725 Centre J 11, 13.04 The facts set forth above in this application and accompanying plans are a true statement (Signature of Owner or Authorized Agent)

		(Address)	b	•••••••
(Signature of Licensed Builder or Wrecker)	(Address) oil g. T. College Coff	s .	My license expires	Approved (date)
				3

(Name of Contractor) 4 1 1 1 11 11 STIES STATE

Permit granted

1234 TREMONT ST INSPECTORS' FINAL REPORT De and

INSPECTORS' MEMORANDA

REMARKS

Date

Has the work enumerated in this application

been completed and approved?

Law been violated?.....Doc. No.....of 19..... Violation removed......19 Building Inspector Ash. R. C. all Remarks CAR KASh IS NOW 5 1M B169

ALL WOOD COVERED WITH METAL

7

2 -5"48" wood Poles 6'In cemant

Sign bated to poles wit 1/2"

- 1200 A 601 th

CITY OF BOSTON—BUILDING DEPARTMENT OF HALL ANNEX

DOC. NO... TEAR FORM APPLICATION FOR PERMIT FOR

Ordinary Repairs and Minor Afterations Not Involving Vital Structural Changes

This form NOT TO BE USED for ADDITIONS or CHANGE OF OCCUPANCY

The undersigned hereby applies to the Building Commissioner for a permit to, alter the following-described building:

Street and No. 1234 Memory St.

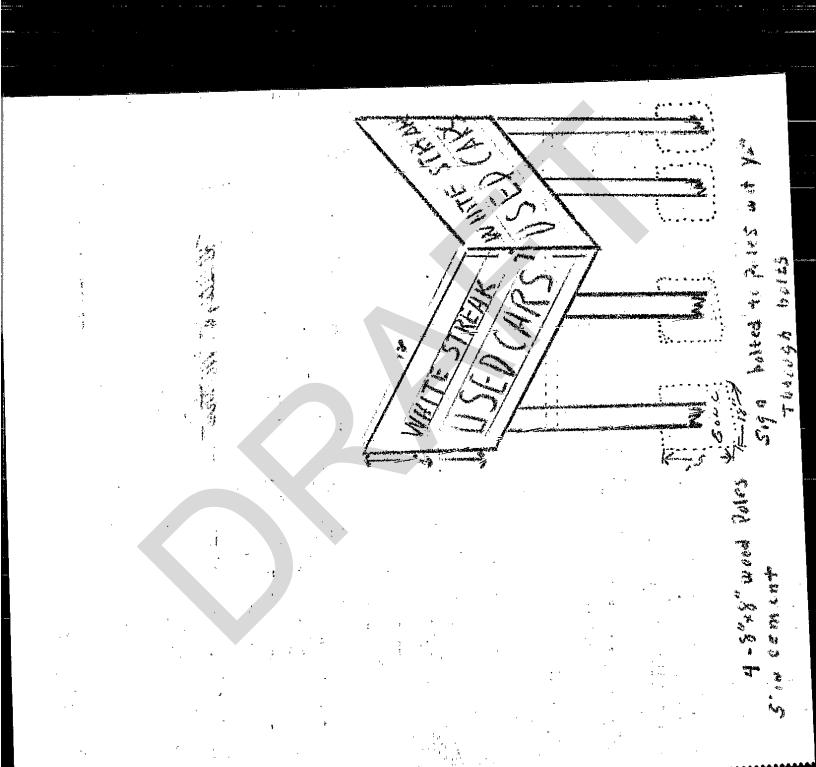
Name of Owner White Stuff Mitter Address 1234 Tement DATE

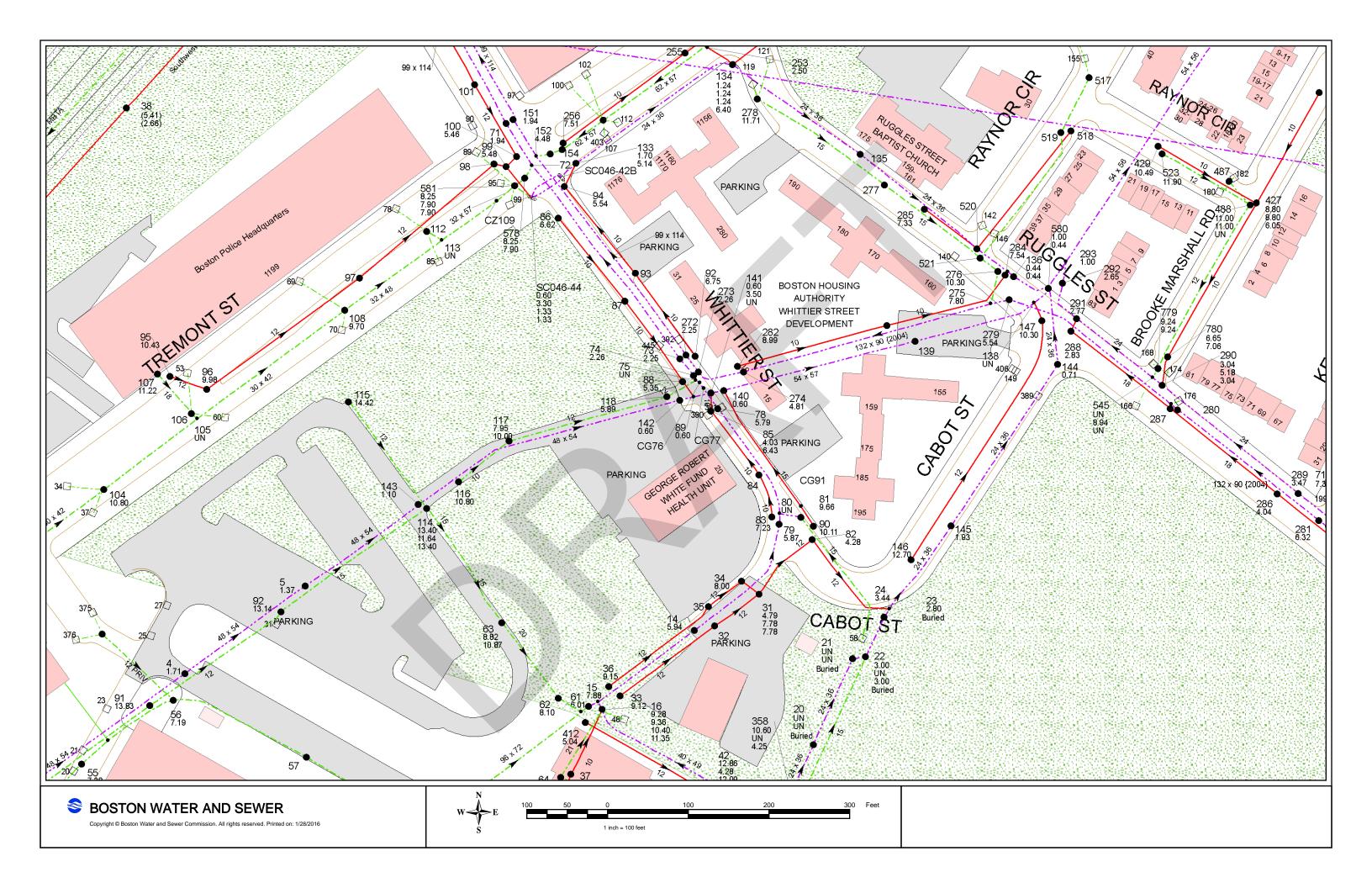
Size of building, feet front... if set rear... if set deep. The set CAR is Building NOW occupied? USED CAR (

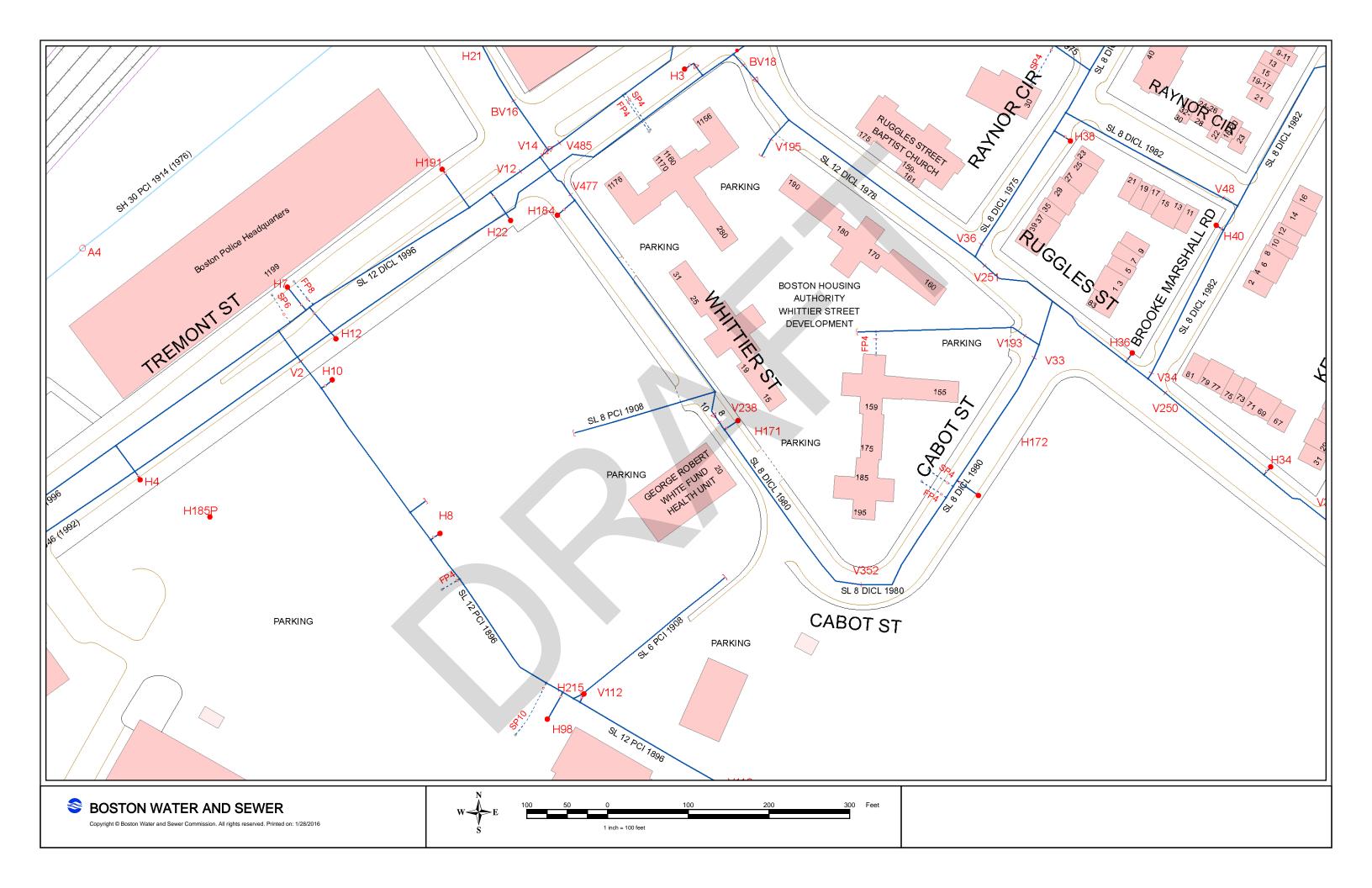
Main stairs. Back stairs. Fire escapes. Con. balconies. Any other.

Detail of proposed work. E. M. H. (8-40)

The facts set forth above in this application and accompanying plans are a true statement Estimated Cost &..., made under penaltyzof perjy

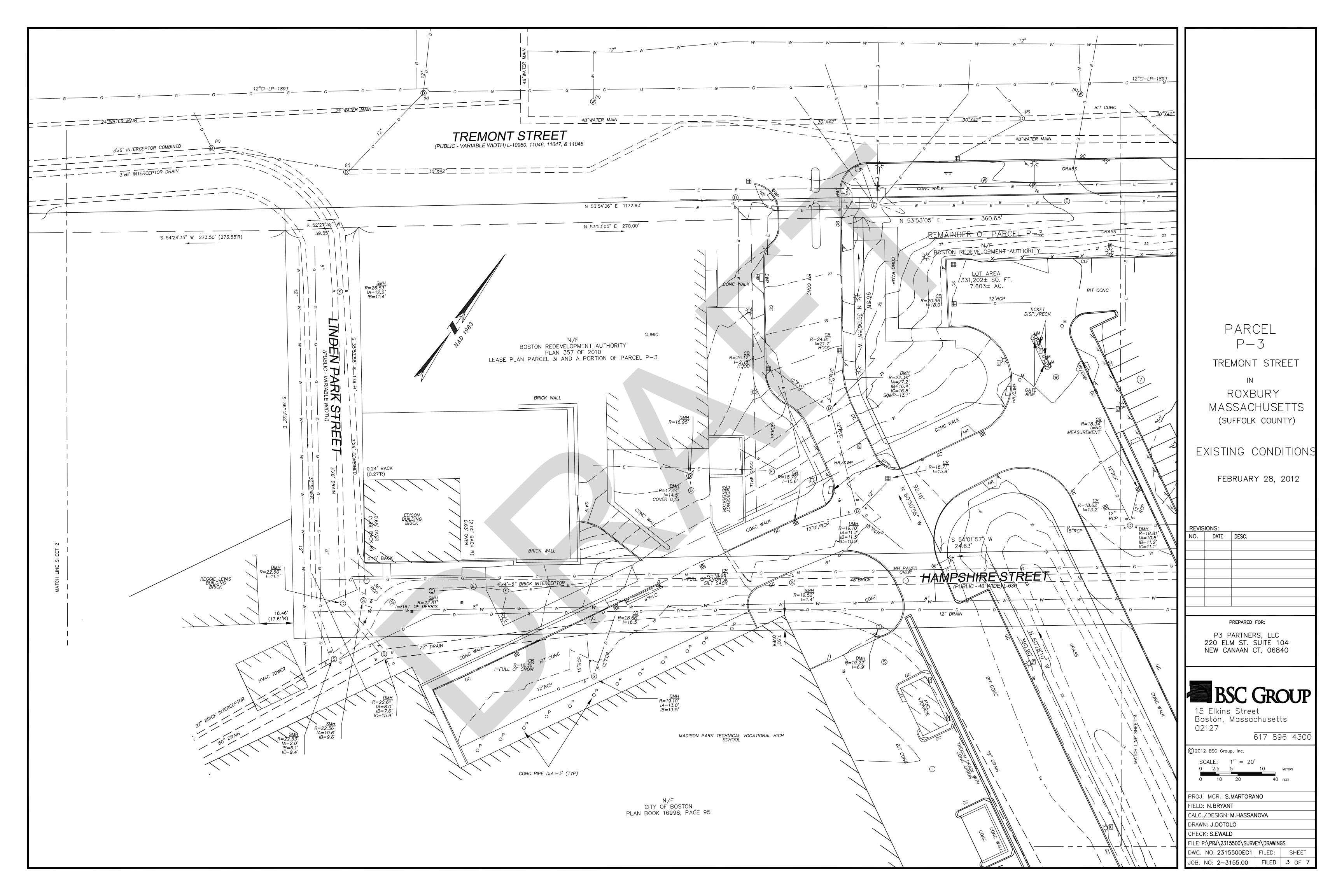

(Signature of Owner or Authorized Agent) (Address) 1825 Cell of Mill of

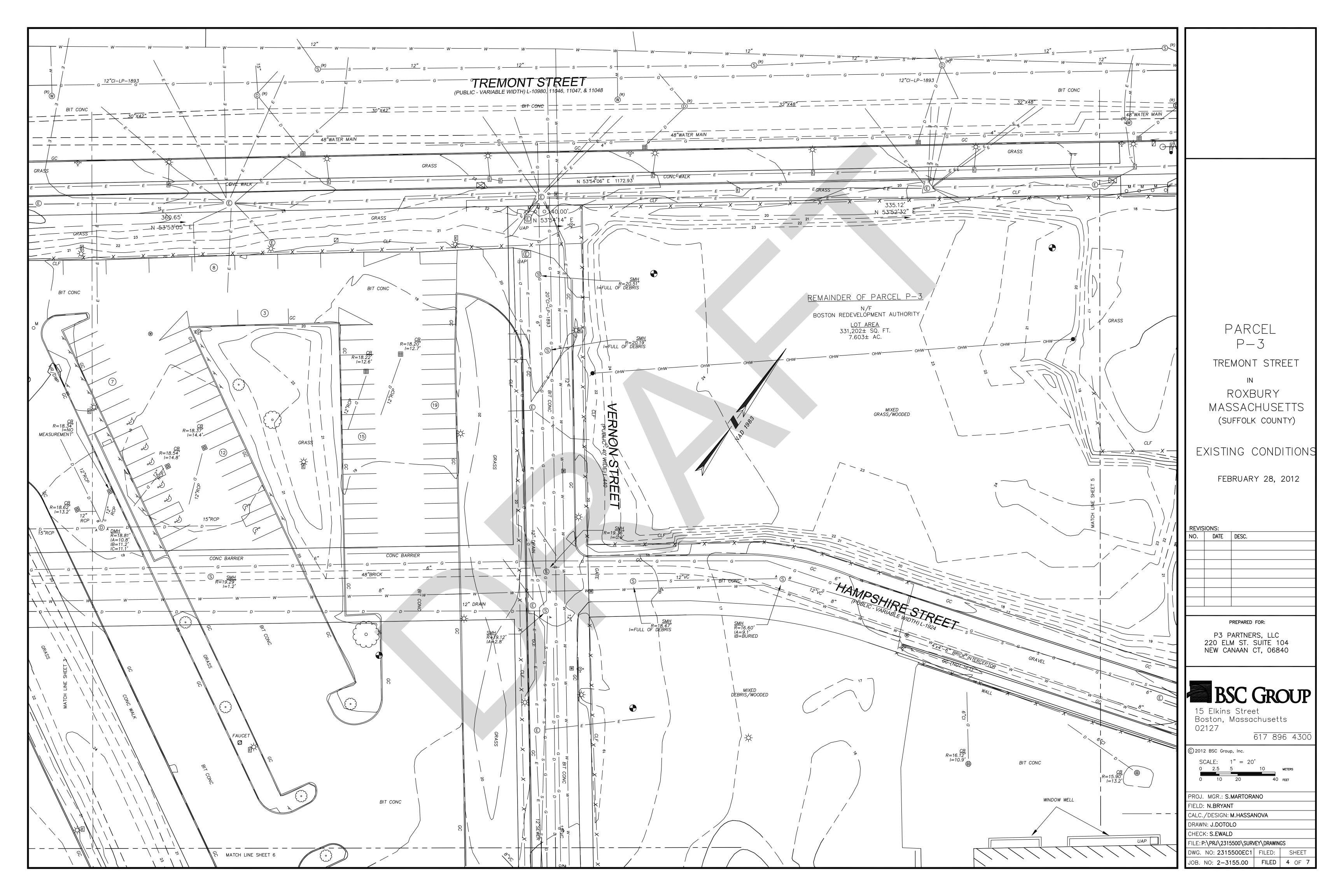

(Name of Contractor)

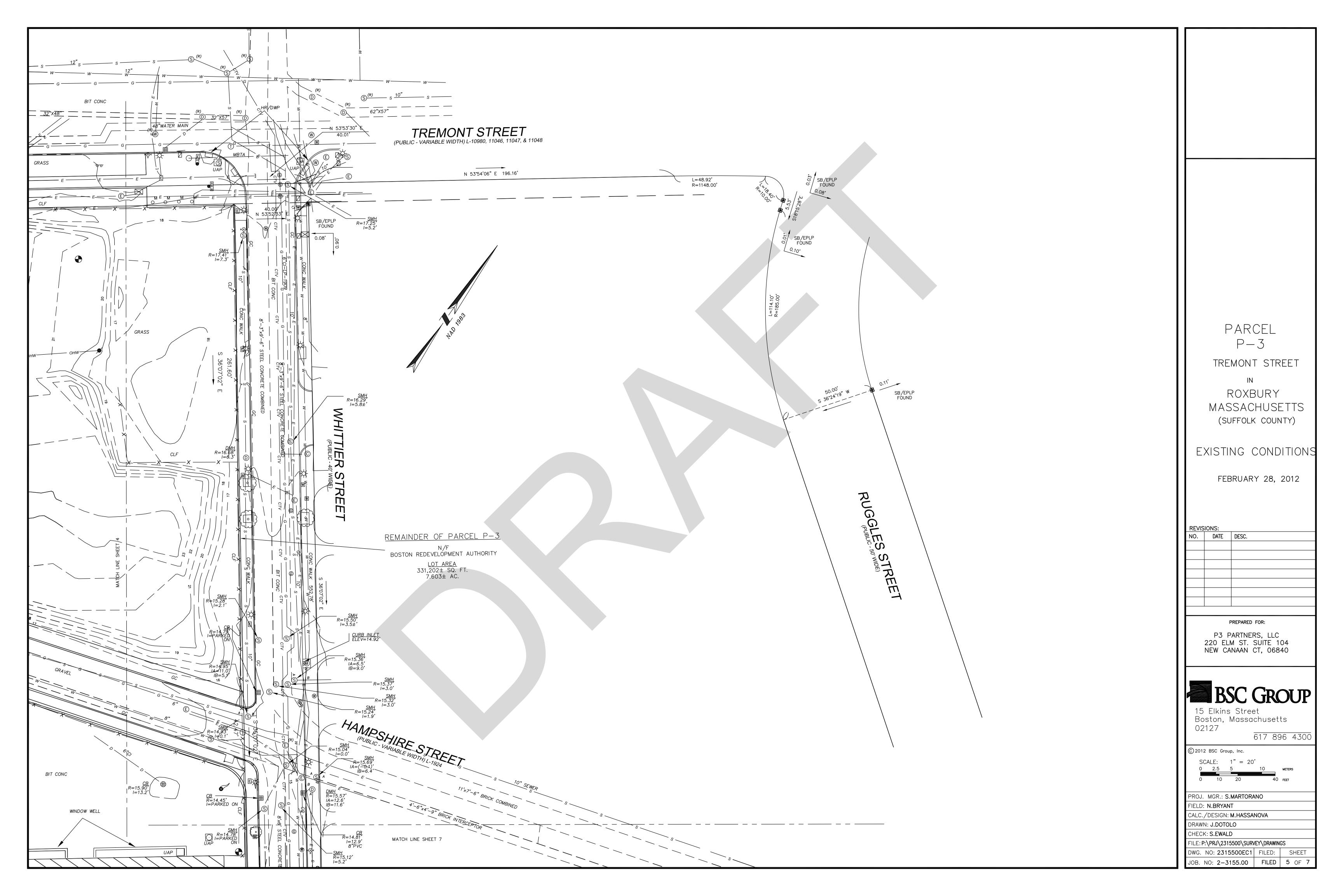

Sty Kage (Address) (Address) 21.9 F feetnet St Lie. No. 3.3.5 Class. 6.34 My license expires.

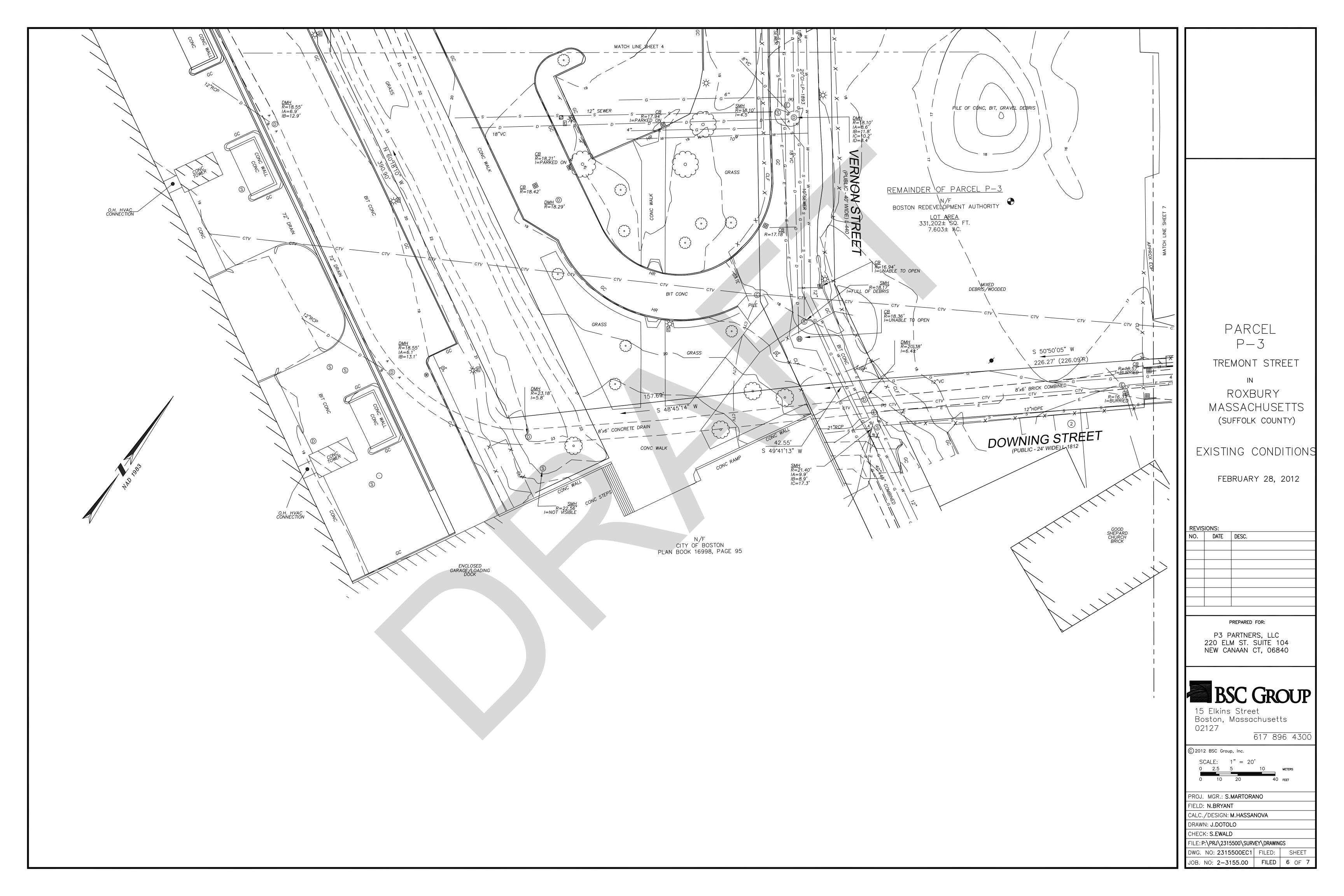
Approved (date).......

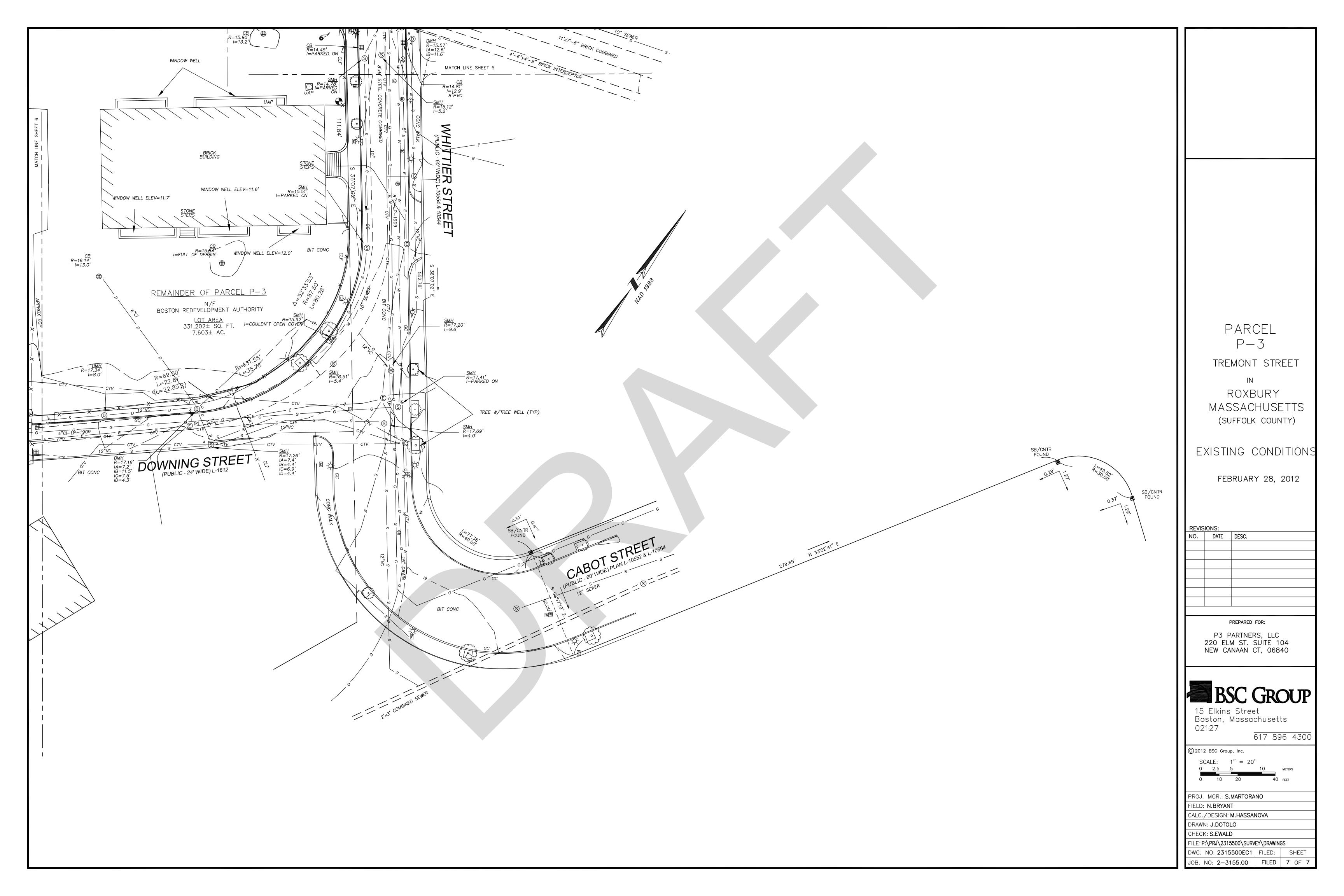
Permit granted 25 1948




MassDEP RTN 3-15009 and RTN 3-36365 DRAFT Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Tremont and Whittier Streets, Boston (Roxbury), Massachusetts January 11, 2021


Appendix D


Existing Site Drawings



MassDEP RTN 3-15009 and RTN 3-36365 DRAFT Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Tremont and Whittier Streets, Boston (Roxbury), Massachusetts January 11, 2021

Appendix E

GEI Boring and Well Installation Logs

BORING INFORMATION BORING LOCATION: See boring location plan GROUND SURFACE EL. (ft): 19.6 **DATE START/END:** 7/25/2013 - 7/26/2013 **B101** VERTICAL DATUM: Boston City Base DRILLING COMPANY: Northern Drill Service, Inc. TOTAL DEPTH (ft): 79.0 DRILLER NAME: Chip Tucker LOGGED BY: H. Shields RIG TYPE: Mobile B-59 Truck Rig PAGE 1 of 3 DRILLING INFORMATION HAMMER TYPE: Donut Hammer - rope and cathead CASING I.D./O.D.: 4 inch/ 4.5 inch CORE BARREL TYPE: NA CORE BARREL I.D./O.D. NA / NA AUGER I.D./O.D.: NA / NA **DRILL ROD O.D.:** 2.625 DRILLING METHOD: Rotary Wash WATER LEVEL DEPTHS (ft): <u>▼</u> 11.8 7/26/2013 7:18 am ABBREVIATIONS: Pen. = Penetration Length Qp = Pocket Penetrometer Strength S = Split Spoon Sample NA. NM = Not Applicable. Not Measured Rec. = Recovery Length C = Core Sample Sv = Pocket Torvane Shear Strength Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector split spoon sampler. WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Elev. Depth Pen./ **Blows** Soil and Rock Description Sample Depth (ft) Field Test Data (ft) Rec. per 6 in. No. (ft) (in) or RQD 0 - 4": Asphalt. PID = 0S1: WIDELY GRADED SAND WITH GRAVEL (SW); ~75% fine 0.5 to 2.5 S1 24/7 14-28to coarse sand, ~20% fine to coarse gravel, <5% nonplastic 글 33-27 fines. Light brown, top 2" are gray. PID = 0S2: WIDELY GRADED SAND WITH SILT (SW-SM); ~85% fine S2 24/8 11-14to coarse sand, 10% nonplastic fines ~5% coarse gravel (one to 6 5 15-13 piece of 1.25" gravel) . Brown. PID = 0S3: NARROWLY GRADED SAND WITH SILT (SP-SM); ~90% 24/10 12-13-S3 10 mostly fine to medium sand, ~10% nonplastic fines. Brown. to 11 20-24 10 SAND AND SILT S4: WIDELY GRADED SAND WITH GRAVEL (SW); ~75% fine PID = 014 **S**4 12-12-24/9 to coarse sand, ~20% mostly fine gravel, ~5% nonplastic fines. to 16 18-21 15 Brown. PID = 0S5: WIDELY GRADED SAND WITH GRAVEL (SW); ~75% fine 19 27-34-S5 24/13 0 to coarse sand, ~20% mostly fine gravel, ~5% nonplastic fines. to 21 40-31 20 Light brown. NOTES: **PROJECT NAME: Tremont Crossing**

CITY/STATE: Roxbury, Massachusetts

GEI PROJECT NUMBER: 132673-0

GEI DATA TEMPLATE 2011.GDT

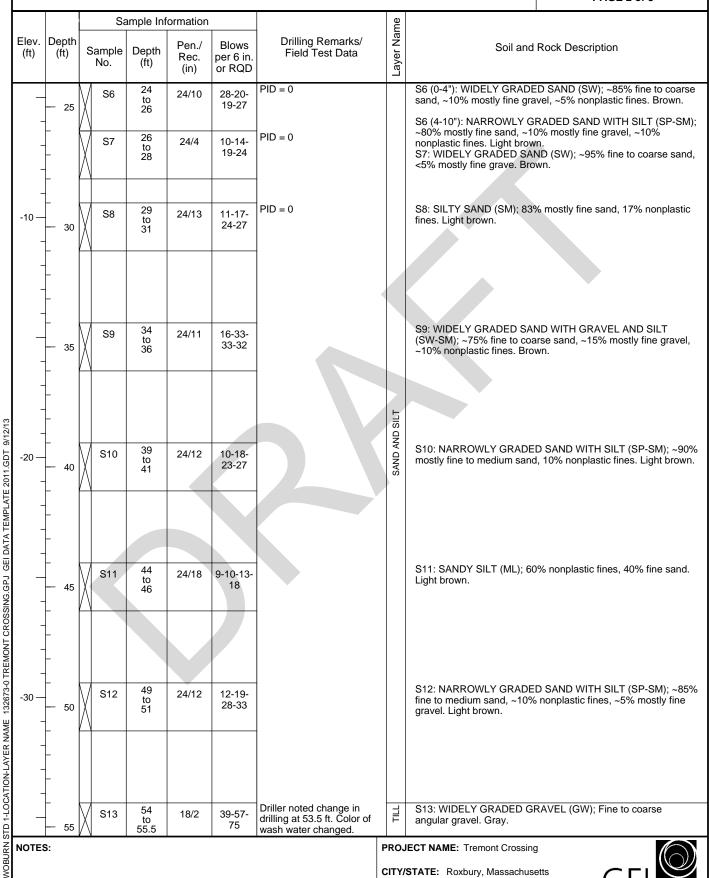
132673-0 TREMONT CROSSING.GPJ

STD 1-LOCATION-LAYER NAME

WOBURN

GEL

LOCATION: See boring location plan


GROUND SURFACE EL. (ft): 19.6 VERTICAL DATUM: Boston City Base

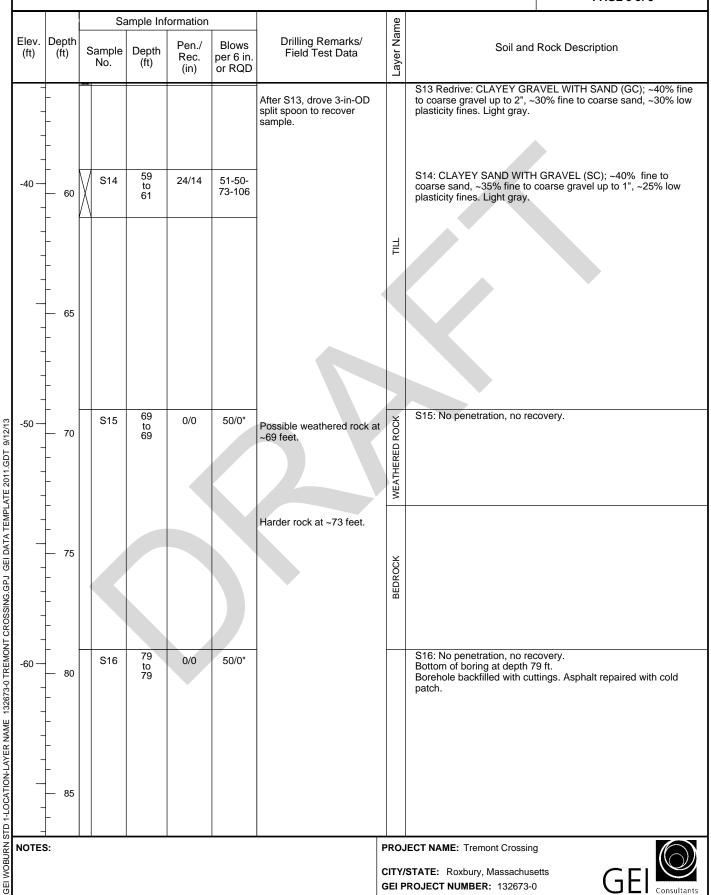
GEL

DATE START/END: 7/25/2013 - 7/26/2013 DRILLING COMPANY: Northern Drill Service, Inc.

BORING B101

PAGE 2 of 3

CITY/STATE: Roxbury, Massachusetts


GEI PROJECT NUMBER: 132673-0

LOCATION: See boring location plan

GROUND SURFACE EL. (ft): 19.6 VERTICAL DATUM: Boston City Base

DATE START/END: 7/25/2013 - 7/26/2013 DRILLING COMPANY: Northern Drill Service, Inc. **BORING B101**

PAGE 3 of 3

GEI PROJECT NUMBER: 132673-0

BORING INFORMATION BORING LOCATION: See boring location plan GROUND SURFACE EL. (ft): 17.5 **DATE START/END:** 7/26/2013 - 7/27/2013 **B102(OW)** VERTICAL DATUM: Boston City Base DRILLING COMPANY: Northern Drill Service, Inc. TOTAL DEPTH (ft): 94.0 DRILLER NAME: Chip Tucker/Chris DeVillers LOGGED BY: H. Shields RIG TYPE: Mobile B-59 Truck Rig PAGE 1 of 4 DRILLING INFORMATION HAMMER TYPE: Donut Hammer - rope and cathead CASING I.D./O.D.: 4 inch/ 4.5 inch CORE BARREL TYPE: NA CORE BARREL I.D./O.D. NA / NA AUGER I.D./O.D.: NA / NA **DRILL ROD O.D.:** 2.625 DRILLING METHOD: Rotary Wash WATER LEVEL DEPTHS (ft): Not measured ABBREVIATIONS: Pen. = Penetration Length Qp = Pocket Penetrometer Strength S = Split Spoon Sample NA. NM = Not Applicable. Not Measured Rec. = Recovery Length C = Core Sample Sv = Pocket Torvane Shear Strength Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector split spoon sampler. WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Elev. Depth Pen./ **Blows** Soil and Rock Description Sample Depth (ft) Field Test Data (ft) per 6 in. Rec. No. (ft) (in) or RQD PID = 0S1 (0-4"): SILTY SAND (SM); ~60% mostly fine sand, ~40% 5-9-14-S1 24/18 to 2 low plasticity fines. Brown, plant fibers, slight organic odor, a 27 few brick fragments. Topsoil. S1 (4-9"): Brick fragments. S1 (9-18"): SILTY GRAVEL WITH SAND (GM); ~50% fine to coarse gravel, ~30% fine to coarse sand, ~20% nonplastic fines. Gray and black, asphalt and concrete pieces. PID = 0S2: Brick fragments; ~90% fine to coarse brick fragments up to S2 24/11 15-13-1", ~10% fine to coarse sand. Red and gray. to 6 5 21-20 10 PID = 0S3: SANDY LEAN CLAY (CL); ~50% low plasticity fines, ~40% 24/6 5-4-4-4 S3 fine to coarse sand, ~10% fine gravel. Gray. to 11 10 PID = 0S4: ORGANIC SILT (OL); Low plasticity fines. Dark gray, a few 14 **S**4 3-3-2-3 24/2 to 16 plant fibers, slight organic odor. 15 S4 Redrive: Similar to S4. ORGANICS 0 PID = 0S5: ORGANIC SILT (OL); Similar to S4. Layer of peat at 12-16 19 S5 24/21 2-1-2-2 to 21 inches. 20 NOTES: **PROJECT NAME: Tremont Crossing** CITY/STATE: Roxbury, Massachusetts

GEI PROJECT NUMBER: 132673-0

132673-0 TREMONT CROSSING.GPJ GEI DATA TEMPLATE 2011.GDT

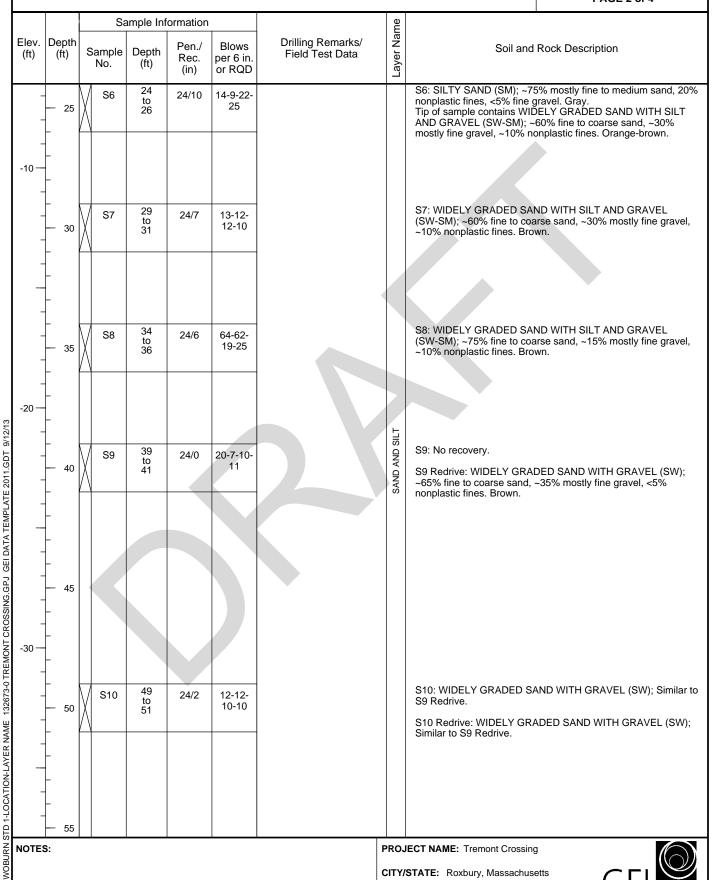
STD 1-LOCATION-LAYER NAME

WOBURN

GEL

LOCATION: See boring location plan

GROUND SURFACE EL. (ft): 17.5 VERTICAL DATUM: Boston City Base


GEL

DATE START/END: 7/26/2013 - 7/27/2013

DRILLING COMPANY: Northern Drill Service, Inc.

BORING B102(OW)

PAGE 2 of 4

CITY/STATE: Roxbury, Massachusetts

GEI PROJECT NUMBER: 132673-0

BORING LOCATION: See boring location plan **B102(OW)** GROUND SURFACE EL. (ft): 17.5 **DATE START/END:** 7/26/2013 - 7/27/2013 DRILLING COMPANY: Northern Drill Service, Inc. VERTICAL DATUM: Boston City Base PAGE 3 of 4 Sample Information Name Drilling Remarks/ Elev. Depth Pen./ Blows Soil and Rock Description Sample Depth Layer I Field Test Data (ft) (ft) Rec. per 6 in. No. (ft) or RQD (in) -40 S11: WIDELY GRADED SAND WITH GRAVEL (SW); Similar to S11 24/2 10-9-10to S9 Redrive. 28 60 61 S11 Redrive: WIDELY GRADED SAND WITH SILT (SW-SM); ~85% mostly medium to coarse sand, ~10% nonplastic fines, <5% mostly fine gravel. Brown. Two pieces of 2" gravel stuck in tip of sampler. S12: No recovery. 64 S12 24/0 10-6-10to 66 65 10 S12 Redrive: One piece of 2" gravel, gray. -50 S13: WIDLEY GRADED SAND WITH SILT AND GRAVEL S13 24/1 11-15-(SW-SM); ~50% fine to coarse sand, ~40% mostly fine gravel, to 71 SILT 16-22 70 ~10% nonplastic fines. Brown. AND S13 Redrive: NARROWLY GRADED SAND WITH SILT (SP-SM); ~90% fine to medium sand, ~10% nonplastic fines. SAND / Brown. S14: No recovery. S14 24/0 16-21to 76 22-21 75 -60 S15: NARROWLY GRADED SAND WITH SILT (SP-SM); 80% S15 24/7 18-26mostly fine to medium sand, 11% nonplastic fines, 9% mostly fine gravel. Brown, pieces of coarse gravel stuck in tip of 33-30 80 sampler. S16: NARROWLY GRADED GRAVEL WITH SAND (GP); ~80% mostly coarse gravel up to 1.25", ~15% fine to coarse sand, <5% low plasticity fines. Light brown and gray. S16 Redrive: NARROWLY GRADED GRAVEL WITH SAND (GP); ~60% mostly fine gravel (one piece of 2" gravel), ~35% fine to coarse sand, <5% nonplastic fines. Light brown. 84 S16 24/2 41-23-

NOTES:

85

to 86

27-45

GEI DATA TEMPLATE 2011.GDT

132673-0 TREMONT CROSSING.GPJ

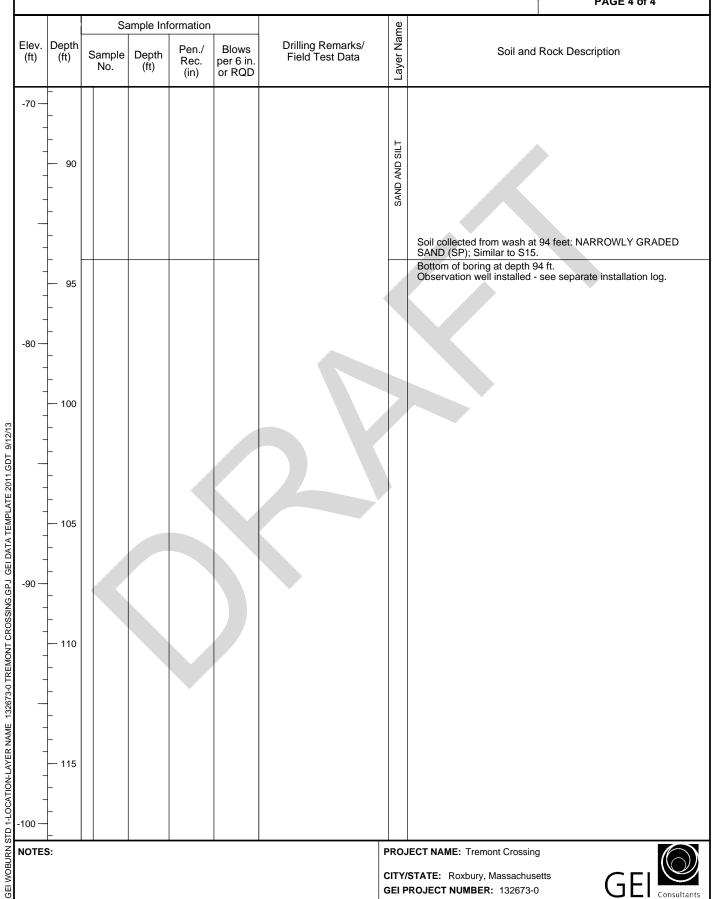
STD 1-LOCATION-LAYER NAME

WOBURN

GEL

PROJECT NAME: Tremont Crossing

CITY/STATE: Roxbury, Massachusetts **GEI PROJECT NUMBER:** 132673-0


 LOCATION: See boring location plan

 GROUND SURFACE EL. (ft): 17.5
 DATE START/END: 7/26/2013 - 7/27/2013

 VERTICAL DATUM: Boston City Base
 DRILLING COMPANY: Northern Drill Service, Inc.

BORING B102(OW)

PAGE 4 of 4

Groundwate	er Well Installation Log	B102 (OW)
City / Town Roxbury Client Feldco	c Crossing y, Massachusetts Development n Drill Service	GEI Proj. No. 132673-0 Location Fenced area near intersection of Tremont St. and Whittier St.
Driller Chris De		Install Date 7/27/2013
Survey Datum: Boston City Ba Ground Elevation: 17.5		ing above Ground 4.5 inches ng to Top of Riser Pipe 4.5 inches
	around Surface Casing ID of Surface Casing Type of Surface Casing Depth Bottom of Surface	3.75 inches Steel Roadbox
	ID and OD of Riser Pipe Type of Riser Pipe Type of Backfill around	Schedule 40 PVC
	Diameter of Borehole	Collapsed 4.5 inches
to Scale)	Depth Top of Seal Type of Seal Depth Bottom of Seal	21.3 feet Bentonite Chips 23.8 feet
onditions (Not to	Depth Top of Screened	d Section 25 feeet
Soil C	Type of Screen Description of Screen of ID and OD of Screened	
8/14/2013 12:10 PM 10.55 ft General S	Type of Filter Material	Size 2 Filter Sand
Date Time r pipe	Depth Bottom of Scree	ned Section 40 feet
Date Time below top of riser pipe	Depth Bottom of Silt Tr	·
top of	Depth Bottom of Filter	
	Depth Top of Seal Type of Seal Depth Bottom of Seal	NA NA NA
Distance	Type of Backfill below I Bottom of Borehole	Filter Material Borehole Collapsed 94 feet
Notes:		GEI

BORIN	G INFOR	RMATION							BORING
		See boring lo	•	n					BOINING
		FACE EL. (f	· —					016 - 7/5/2016	P204
		TUM: Bost		ise		DRILLING COMPANY:		/ England Boring	B201
		(ft):85.0 J. Scully/I				DRILLER NAME: _B. 0 RIG TYPE: Mobile B-5			
LOGGI	.וט טו.	J. Ocully/1	D. Mic veet	у		NOTTE. NOBILE D-0	JAIV		PAGE 1 of 3
DRILLI	NG INFO	RMATION						·	
HAMM	ER TYPE	: Safety	Hammer -	rope and	cathead	CASING I.D./O.D.: 4	inch / 4	4.5 inch CORE BAR	REL TYPE: NX
AUGEF	R I.D./O.I	D.: <u>NA/1</u>	NA			DRILL ROD O.D.: N	1	CORE BAR	REL I.D./O.D. NA / NA
		HOD: M							
WATER	R LEVEL	DEPTHS (1	ft): <u>¥</u> 1	4.1 7/5/20)16 8:00 am				
ABBRE	EVIATIO	Rec. RQD WOR	= Penetration = Recovery = Rock Quance = Length of R = Weight of R = Wei	Length ality Designat Sound Cores of Rods	tion s>4 in / Pen.,'	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit Pl = Plasticity Index PID = Photoionization Detector I.D./O.D. = Inside Diameter/Outside Di	NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler.
				ormation		•	Ф		
Flev	Depth	36	ATTIPIC IIII		D'	Drilling Remarks/	-lam		
(ft)	(ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Field Test Data	Layer Name	Soil and I	Rock Description
		S1	0 to	24/9	5-35-29-			S1: SILTY SAND (SM) ~75%	6 fine to coarse sand, ~15% rel up to 1/2 inch, brown. Brick
-	- 1		2		40			fragments. FILL.	or up to 1/2 mon, brown. Drick
20 —	- 2								
_	- 3								
-	- 4		4				∄	S2: SILTY SAND WITH GRA	AVEL (SM) ~55% fine to coarse
	— 5	S2	to	24/12	20-34- 29-20			sand, ~25% non-plastic fines	s, ~20% gravel up to 1/4 inch, gray.
	3		6		20 20			Brick fragments. FILL.	
-	- 6								
_	- 7								
	•								
_	- 8								
_	- 9		0					SS: WIDELY CDADED SAN	D WITH SILT AND GRAVEL
	10	S3	9 to	24/6	9-11-12- 17			(SW-SM): 77.5% fine to coa	rse sand, 15.4% fine gravel up to 1/4
	— 10 <u> </u>		11		"			inch, 7.1% non-plastic fines.	
-	- 11								
10 —	- 12								
10	'-								
-	- 13								
_	- 14						١.	04444000044134004050	SAND WITH OUT AND ODAYE
		S4	14 to	24/6	27-32-		GRAVEL		SAND WITH SILT AND GRAVEL se sand, 33.4% mostly fine gravel up
_	— 15 <u> </u>		16		14-13	Added drilling mud. Pressuremeter test.		to 3/4 inch, 7.8% non-plastic	
-	- 16					r ressuremeter test.	SAND AND		
_	- 17) Q		
	17						SA		
-	- 18			_					
_	- 19							0- 1445-11	D. W.T. I. O.I. T
		S5	19 to	24/10	24-21-				D WITH SILT AND GRAVEL lium to fine sand, 17.7% gravel up to
-	20		21		18-22	Pressuremeter test.		1/2 inch, 8.4% non-plastic fir	
_	- 21								
0 —	- 22								
-	- 23								
NOTES	:						PROJ	JECT NAME: Tremont Crossing	
								STATE: Boston, Massachusetts	GEI W
							GEI P	PROJECT NUMBER: 1609300	Consultants

LOCATION: See boring location plan GROUND SURFACE EL. (ft): 22 **DATE START/END:** 6/30/2016 - 7/5/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring **BORING B201**

							_		PAGE 2 of 3
		Sa	mple Inf	ormation			ame		
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and	Rock Description
_	— 25	S6	24 to 26	24/12	13-11- 14-15			S6: WIDELY GRADED SAN to coarse sand, ~15% fine g	D WITH GRAVEL (SW) ~85% fine ravel up to 1/4 inch, brown.
-	- 26								
_	- 27								
-	- 28								
-	- 29		29					S7: WIDELY GRADED SAN	D WITH GRAVEL (SW) ~75% fin
_	— 30	S7	to 31	24/7	24-23- 35-30	Pressuremeter test.		to coarse sand, ~20% grave fines, brown.	I up to 1/4 inch, ~5% non-plastic
_	- 31								
-10	- 32								
_	- 33								
_	- 34		0.4					CO. CH TV CAND (CM) 700	/ fine and 200/ non plantic fine
_	— 35	S8	34 to 36	24/12	15-12- 15-17			olive-brown. Pockets of low	% fine sand, ~30% non-plastic fine plasticity fines.
_	- 36								
_	- 37								
_	- 38								
_	- 39						GRAVEL		
_	— 40	S9	39 to 41	24/10	16-32- 35-27		ND G		D WITH GRAVEL (SW) ~80% find I up to 1/4 inch, ~5% non-plastic
_	- 41						SAND AND	illies, brown.	
-20	- 42						S		
_	- 43								
_	- 44								
_	— 45	S10	44 to 46	24/6	22-18- 18-19			mostly fine sand, 8.1% non-	O SAND WITH SILT (SP-SM) 91.5 plastic fines, 0.4% fine gravel up to
_	- 46		40					3/8", brown.	
_	- 47								
_	- 48								
_	- 49								
_	— 50	S11	49 to 51	24/10	20-19- 20-18			S11: Similar to S10.	
_	- 51		J1						
-30	- 52								
_	- 53								
	- 54								
_	— 55	S12	54 to 56	24/12	22-32- 31-26	Drooguror stor to -t		to coarse sand, ~15% grave	ND WITH GRAVEL (SW) ~80% fi I up to 1/4 inch, ~5% non-plastic
NOTES			90		-	Pressuremeter test.	PROJ	fines, brown. ECT NAME: Tremont Crossing	
								STATE: Boston, Massachusetts	GFI

BORING LOCATION: See boring location plan GROUND SURFACE EL. (ft): 22 **DATE START/END:** 6/30/2016 - 7/5/2016 **B201** DRILLING COMPANY: New England Boring VERTICAL DATUM: Boston City Base PAGE 3 of 3 Sample Information Name Elev. Depth Drilling Remarks/ Pen./ Blows Soil and Rock Description Sample Depth Layer (ft) (ft) Field Test Data per 6 in. Rec. or RQD (in) 56 57 SAND AND GRAVEL 58 59 S13: NARROWLY GRADED SAND WITH SILT (SP-SM) ~90% 59 S13 17-16-24/9 fine sand, ~10% non-plastic fines, gray. 60 18-17 61 61 -40 62 63 64 64 to S14: CLAYEY SAND WITH GRAVEL (SC) ~50% fine to coarse S14 24/7 24-26sand, ~30% low plasticity fines, ~20% gravel up to 1/2 inch, gray. 65 23-12 66 66 67 崖 68 69 S15: Similar to S14. TILL. 69 to 71 S12 24/2 28-27-70 30-37 71 -50 72 73 Casing at 73.5 feet. 74 74.5 C1: Pieces of gravel. Highly weathered rock. C1 60/12 75 Weathered bedrock. to 79.5 Coring Advancement 76 1609300 TREMONT CROSSING.GPJ (min./ft.): 3-5-4-5-4 77 Sand matrix appears to WEATHERED BEDROCK 78 have been washed away. 79

NOTES: PROJECT NAME: Tremont Crossing CITY/STATE: Boston, Massachusetts GEI PROJECT NUMBER: 1609300

Coring Advancement

(min./ft.): 8-5.5-4.5-4.5-5.5

Sand matrix appears to

have been washed away.

(0-3"): Fine sand

with cuttings.

(3-12"): Pieces of subrounded-subangular gravel 1/2-3/4 inch.

Bottom of boring at 85 ft. Borehole tremie grouted and topped

Possible clasts of Roxbury Conglomerate.

80

81

82

83

84 85

86

STD 1-LOCATION-LAYER NAME

GEI WOBURN

80

60/12

0

C2

		MATION							BORING
		See boring lo		n				BOINING	
		ACE EL. (f	-					016 - 7/15/2016	B202
		UM: Bost		se		DRILLING COMPANY:		v England Boring	D202
		(ft):109 K. Gleicha				DRILLER NAME: _B. 0 RIG TYPE: Mobile B-50			
LOGGI	.וט טו.	T. Oleich	aui				JAIV	_	PAGE 1 of 4
DRILLI	NG INFO	RMATION							
HAMM	ER TYPE	: Safety	Hammer -	rope and	cathead	CASING I.D./O.D.: _4 i	nch / 4	4.5 inch CORE BAR	REL TYPE: NX
AUGEF	R I.D./O.I	1\ AN _ :.C	NA			DRILL ROD O.D.: NM	1	CORE BAR	REL I.D./O.D. NA / NA
DRILLI	NG MET	HOD: Mu	ud Rotary \	Nash					
WATER	R LEVEL	DEPTHS (ft): Not	measured					
ABBRE	EVIATIO	Rec. RQD WOR	= Penetration = Recovery = Rock Quance = Length of the E = Weight	Length ality Designat Sound Cores of Rods	ion s>4 in / Pen.,	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector I.D/O.D. = Inside Diameter/Outside Di	NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler.
						FIOA = Hollow-otern Auger	T	I.D./O.D. – Inside Diameter/Oddade Dia	ameter
Elas:	Denth	58	ample inf	ormation		Drilling Domestes/	am		
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name		Rock Description
1	- 1	S1	0 to 1.8	21/14	8-25-34- 100/3"				AVEL (SM) ~55% fine to coarse s, ~15% fine gravel, gray. FILL.
-	- 2								
20 —	- 3								
_	- 4	S2	4	24/0	16-23-				AVEL (SM) ~40% fine to coarse
_	- 5	02	to 6	2 1/0	16-25			sand, ~30% non-plastic fines gray/brown. Brick Fragments	s, ~30% fine to coarse gravel,
								gray/brown. Briok i raginorità	
_	- 6								
_	- 7								
	- 8								
	- 0								
-	- 9		9	0.115	10.10		∄	S3: SILTY SAND WITH GRA	AVEL (SM) similar to S2. Low
_	— 10	S3	to 11	24/8	13-12- 11-6	Petroleum-like odor.		plasticity fines. FILL.	(- ,
			''						
-	- 11								
-	- 12								
10 —	- 13								
-	- 14		14			*		S4: SII TY SAND WITH GD	AVEL (SM) ~70% fine to coarse
	15	S4	to	24/3	7-13-8-6	Slight Petroleum-like odor.		sand, ~15% non-plastic fines	s, ~15% fine gravel, brown/gray.
	— 15 <u> </u>		16					Brick fragments. FILL.	
-	- 16								
_	- 17								
	''						-		
_	- 18								
-	- 19		40					OF DEAT (DT) Death have 1	arou fibroup organia ada
		S5	19 to	24/13	2-1/18"	WC = 210.7%	//	S5: PEAT (PT) Dark brown/g	gray, librous, organic odor.
_	— 20 <u> </u>		21				ORGANICS		
-	- 21						3GA		
_	- 22						6		
	22								
0 —	- 23								
NOTES	:						PROJ	JECT NAME: Tremont Crossing	
								STATE: Boston, Massachusetts PROJECT NUMBER: 1609300	
							J_1 F		Consultants

BORING LOCATION: See boring location plan **B202** GROUND SURFACE EL. (ft): 23 **DATE START/END:** 7/13/2016 - 7/15/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring PAGE 2 of 4

							10	PAGE 2 of 4	
Elev.	Depth	Sa	ample Inf	ormation		Drilling Remarks/	lame	Soil and Rock Description	
(ft)	(ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Field Test Data	Layer Name		
_	— 25	S6	24 to 26	24/24	WOR/6"- WOH/18"	WC = 171.4%	NICS	S6: PEAT (PT) Dark brown/gray, fibrous, organic odor.	
-	26						ORGANICS		
-	- 27								
-	- 28								
-	- 29	S7	29	24/7	42-24-			S7: WIDELY GRADED SAND WITH SILT (SW-SM) ~90% fine	
-	30		to 31		24-20			to coarse sand, ~10% non-plastic fines, gray.	
-	- 31								
-	- 32								
-10 —	- 33						┫		
-	- 34	S8	34	24/5	30-27-	•		S8: WIDELY GRADED SAND WITH GRAVEL (SW) ~70% fin	
_	35	30	to 36	24/3	22-21			to coarse sand, ~25% fine to coarse gravel up to 1", ~5% nonplastic fines, dark brown.	
_	- 36								
_	- 37								
_	- 38								
-	- 39	S9	39	24/5	14-29-			S9: NARROWLY GRADED SAND WITH GRAVEL (SW) ~609	
_	40	59	to 41	24/5	30-29		VEL	medium to coarse sand, ~30% fine to coarse gravel up to 1.5" ~5% non-plastic fines, brown.	
-	- 41			-4			GRA		
_	- 42						SAND AND GRAVEL		
-20 —	43						SAN		
-	44	242	44	0.1/5				S10: WIDELY GRADED GRAVEL WITH SAND (GW) ~80% fi	
_	- 45	S10	to 46	24/5	17-17- 12-10			to coarse gravel up to 1.25", ~15% fine to coarse sand, ~5% non-plastic fines, brown.	
_	46					•			
-	- 47								
_	- 48					Rig chatter.			
-	- 49		49					S11: NARROWLY GRADED SAND WITH GRAVEL (SP) ~50	
-	- 50	S11	to 51	24/0	19-19- 21-14	No recovery; redrive with 3		medium to coarse sand, ~45% fine gravel, ~5% nonplastic fine brown.	
-	- 51					in. SS.			
-	- 52								
-30	- 53								
-	- 54		54					S12: WIDELY GRADED SAND (SW) ~85% fine to coarse san	
_	— 55	S12	to 56	24/13	14-17- 15-15			~10% fine gravel up to 1/2", ~5% nonplastic fines, brown.	
NOTES	5:	,		•				JECT NAME: Tremont Crossing	
								VSTATE: Boston, Massachusetts PROJECT NUMBER: 1609300 GEI	

BORING LOCATION: See boring location plan GROUND SURFACE EL. (ft): 23 **B202 DATE START/END:** 7/13/2016 - 7/15/2016 DRILLING COMPANY: New England Boring VERTICAL DATUM: Boston City Base PAGE 3 of 4 Sample Information Name Elev. Depth Drilling Remarks/ Pen./ Blows Soil and Rock Description Sample Depth Layer I (ft) (ft) Field Test Data per 6 in. Rec. No. or RQD (in) 56 57 58 59 S13: NARROWLY GRADED SAND WITH SILT (SP-SM) ~90% 59 24/13 S13 9-16-15fine to medium sand, ~10% nonplastic fines, some slight black 60 15 mottling, brown. 61 61 62 -40 63 64 64 S14 (0-10): WIDELY GRADED SAND (SW) ~95% fine to coarse 13-16-S14 24/16 to sand, ~5% nonplastic fines, brown. 65 23-23 66 S14 (10-16): SILTY SAND (SM) ~65% mostly fine sand, ~35% nonplastic fines, brown. 66 67 68 69 S15: NARROWLY GRADED SAND (SP) ~95% fine to medium 69 to 71 S15 24/18 25-38-SAND AND GRAVEL sand, ~5% nonplastic fines, brown. 70 42-45 71 72 -50 73 74 S16: NARROWLY GRADED SAND (SP) ~95% fine to medium S16 24/16 16-25to 76 sand, ~5% nonplastic fines, brown. 33-38 75 76 77 78 79 S17: WIDELY GRADED SAND WITH GRAVEL (SW) ~55% 79 S17 24/14 22-30fine to coarse sand, ~35% fine to coarse gravel up to 1", ~10% to 31-30 80 nonplastic fines, brown. 81 82 -60 83 84 S18: NARROWLY GRADED SAND (SP) ~95% fine to medium 84 to S18 24/15 21-24sand, ~5% nonplastic fines, brown. Alternating fine sand and 27-25 85 86 medium sand strata. 86

NOTES:

1609300 TREMONT CROSSING.GPJ

STD 1-LOCATION-LAYER NAME

WOBURN

GEL

PROJECT NAME: Tremont Crossing

BORING LOCATION: See boring location plan GROUND SURFACE EL. (ft): 23 7/13/2016 - 7/15/2016 **B202** DATE START/END: VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring PAGE 4 of 4 Sample Information Name Elev. Depth Drilling Remarks/ Pen./ **Blows** Soil and Rock Description Depth Layer I (ft) (ft) Sample Field Test Data per 6 in. Rec. No. (ft) or RQD (in) 88 Silty chunks in wash. 89 S19 (0-12): WIDELY GRADED SAND WITH SILT (SW-SM) 89 S19 24/20 23-30to 91 ~80% fine to coarse sand, ~10% slightly-plastic fines, ~10% 22-35 90 coarse gravel up to 1", brown/red. TILL. 91 S19 (12-20): SILT WITH SAND (ML) ~80% nonplastic fines, ~20% fine sand, light gray, possible lean clay present. 92 93 Rig chatter, hard drilling at ≓ 92 ft. 94 S20: GRAVELLY LEAN CLAY WITH SAND (CL) \sim 50% low plasticity fines, \sim 30% fine to coarse gravel up to 1", \sim 20% fine to 94 S20 9/7 65to 94.8 100/3" 95 Light gray clay bits in wash. coarse sand, light gray. Gravel is weathered bedrock. 96 S20: Gravel appears similar to weathered bedrock. 97 98 Notable roller bit resistance WEATHERED BEDROCK 99 increase at 97.5 ft. S21: LEAN CLAY WITH SAND (CL) \sim 60% low plasticity fines, \sim 25% fine to coarse sand, \sim 15% fine to coarse gravel up to 1", 99 S21 16to 99.8 100/3" 100 light gray. Possible weathered bedrock. 101 102 Rig chatter at 101 ft. -80 103 Cored using slow rotation speed 104 104 C1: CONGLOMERATE, hard, moderately weathered, quartz 60/56 C1 to 109 sandstone matrix, rounded gravel clasts matrix has faint Coring Advancement 105 stratification, coarse clasts and fine siltstone intraclasts appear (min./ft.): 4.5-6-7-9-8.5 from 31-47, fractures every 4" to 6", light gray/purple throughout. BEDROCK 106 107 1609300 TREMONT CROSSING.GPJ 108 109 Bottom of boring at 109 ft. Borehole tremie grouted upon completion. 110 111 112 -90 113 1-LOCATION-LAYER NAME 114

PROJECT NAME: Tremont Crossing NOTES:

116 117

WOBURN

GEL

		RMATION							BORING	
		See boring lo				DATE START/END: 6				
		FUM: Bost	· —			DRILLING COMPANY:			B203 (OW)	
TOTAL	. DEPTH	(ft): 70.2	2			DRILLER NAME: P. I	aboss	ier	,	
LOGGI	ED BY:	K. Gleich	auf			RIG TYPE: Mobile B-5	3 Truc	<u>k</u>	PAGE 1 of 3	
DRILLI	NG INFO	ORMATION								
		E: Safety		rope and o	athead				RREL TYPE: NX	
	R I.D./O.I	D.: <u>NA / I</u> 'HOD: Mi		Mach		DRILL ROD O.D.: NN	1	CORE BAR	RREL I.D./O.D. NA / NA	
		DEPTHS (-		16 7:30 am					
ABBRI	EVIATIO	Rec. RQD WOR		Length ality Designat Sound Cores of Rods	ion s>4 in / Pen.,'	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample % SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector I.D/O.D. = Inside Diameter/Outside D	30 inches to drive a 2-inch-O.D. split spoon sampler.	
				ormation)e			
Elev.	Depth			Pen./	Blows	Drilling Remarks/	Nan	0 11 1	5 1 5	
(ft)	(ft)	Sample No.	Depth (ft)	Rec.	per 6 in.	Field Test Data	Layer Name	Soil and	Rock Description	
		140.	(11)	(in)	or RQD		Ē			
-	- 1	S1	0 to 2	24/16	1-7-12- 50				ID WITH SILT AND GRAVEL se sand, ~30% fine gravel, ~10% e of brick at 10". FILL.	
	- 2									
20 —	- 3									
-							١.			
_	- 4									
	- 5	-	5	0.4/4.0	40.05			S2 (0-6"): SILTY SAND WIT	"H GRAVEL (SM) ~60% fine to	
_	- 6	S2	to 7	24/16	13-35- 46-45				stic fines, ~15% fine gravel, gray.	
_	- 7		•					S2 (6-16"): WIDELY GRADI	ED SAND WITH SILT AND GRAVEL se sand, ~30% fine to coarse gravel	
	- 8							up to 1 inch, ~10% non-plas	tic fines, gray. Bricks. FILL.	
	9					Rig chatter at 8 feet.				
-	10					ring criation at a root.				
_	10	S3	10 to	24/8	8-9-8-8				AVEL WITH SILT AND SAND rse gravel, 34.3% fine to coarse	
_	- 11		12					sand, 7% non-plastic fines, I		
	- 12									
10 —	- 13					Die abattar at 40 fact				
-				Ì		Rig chatter at 12 feet.				
_	- 14						Ι.			
	- 15	64	15	04/0	0767		GRAVEL	S4: WIDELY GRADED SAN	ID WITH GRAVEL (SW) ~75% fine	
_	- 16	S4	to 17	24/3	8-7-6-7		GR,		e gravel up to 1.25 inch, ~5%	
-	47	Щ_					AND	Piece of coarse gravel stuck	in tip.	
	- 17						SAND,			
_	- 18			_			S			
_	19									
-	20									
-		S5	20 to	24/9	6-10-11-				ID WITH GRAVEL (SW) ~75% fine ravel up to 1/2 inch, ~5% non-plastic	
_	- 21		22		8			fines, brown.		
	- 22									
0 —	- 23									
-										
NOTES	S:						PROJ	IECT NAME: Tremont Crossing		
							CITY	STATE: Boston, Massachusetts		
							GEI P	PROJECT NUMBER: 1609300	Consultants	

LOCATION: See boring location plan GROUND SURFACE EL. (ft): 22.5 **DATE START/END:** 6/28/2016 - 6/29/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring

BORING B203 (OW)

PAGE 2 of 3

	Sample Information						1 8			
	epth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and Rock Description		
-	25		25					SC. MIDELY CDADED SAND (SM), 000/, mostly modium of	200	
+	26	S6	25 to 27	24/13	14-24- 32-29			S6: WIDELY GRADED SAND (SW) ~90% mostly medium s ~5% fine gravel up to 1/2 inch, ~5% non-plastic fines, brown/gray.	san	
1	27					•				
7	28									
1	29					Rig chatter at 28.5 feet.				
7	30	S7	30	24/11	15-23-			S7 (0-6"): NARROWLY GRADED SAND WITH SILT (SP-S)	3M)	
7	31	31	to 32	24/11	17-27			~90% mostly fine sand, ~10% non-plastic fines, gray/brown.		
-10	32						VEL	S7 (6-11"): NARROWLY GRADED SAND WITH SILT AND GRAVEL (SP-SM) ~70% fine to coarse sand, ~20% fine graup to 1/2 inch, ~10% non-plastic fines, brown.		
-10	33						SAND AND GRAVEL	up to 1/2 mon, ~10 // non-plastic miles, prown.		
	34						ND AN			
	35	S8	35	24/16	15-24-		SAN	S8: NARROWLY GRADED SAND (SP): ~90% fine to mediu	ium	
	36		to 37		29-37			sand, ~5% fine gravel up to 1/2 inch, ~5% non-plastic fines, brown.	,	
	37									
+	38									
+	39									
-	40	S9	40 to	24/17	26-26- 32-35			S9 (0-5"): SILTY SAND (SM) ~85% fine sand, ~15% non-platines, gray.	last	
-	41		42		32-33			S9 (5-15"): NARROWLY GRADED SAND WITH SILT (SP-1290% fine to medium sand, ~10% non-plastic fines, red to g	-SN	
-20	43							S9 (15-17"): WIDELY GRADED SAND ~75% fine to coarse	9	
+	44							sand, ~20% fine to coarse gravel up to 1 inch, ~5% non-plast fines, gray.	ıstic	
1	45		45					S10: SANDY LEAN CLAY (CL) ~60% low plasticity fines, ~3	309	
-	46	S10	to 46.3	16/9	10- 100/4"	Sv = 0.2 tsf		fine to coarse sand, ~10% fine to coarse gravel up to 1 inch gray. TILL.	۱, li	
7	47		f							
}	48					Rig chatter at 47.5 feet.				
}	49									
}	50	S11	50	24/12	15-22-		-	S11: CLAYEY GRAVEL WITH SAND (GC) ~40% fine grave	el u	
}	51		to 52		22-19			to 3/4 inch, ~30% fine to coarse sand, ~30% low plasticity fill light gray. TILL.	ırıe:	
-30	52									
+	53									
+	54									
NOTES:	55					1		ECT NAME: Tremont Crossing	_	

LOCATION: See boring location plan GROUND SURFACE EL. (ft): 22.5 **DATE START/END:** 6/28/2016 - 6/29/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring

BORING B203 (OW)

							_		PAGE 3 of 3
		Sa	ample Inf	Information					
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and	Rock Description
_	- 56 - 57	S12	55 to 57	24/13	29-43- 46-53			S12: CLAYEY GRAVEL WI' to 3/4 inch, ~30% fine to coalight gray. TILL.	TH SAND (GC) ~40% fine gravel up arse sand, ~30% low plasticity fines
_	- 58								
_	- 59 - 60								
-	- 61	S13_,	60 to 60.6		33- 100/1"		⊒	\$13: GRAVELLY LEAN CLA ~40% fine to coarse gravel to	AY (CL) ~60% low plasticity fines, up to 1", gray. TILL
-40 —	- 62 - 63								
-	- 64								
-	— 65 ¦ - 66	S14 C1	65 to 65.2 65.2	2/2 60/51	100/2" 0	65-65.8 ft: Weathered Bedrock		fine to coarse gravel, ~10% weathered soft bedrock.	RAVEL WITH CLAY (GW-GC): 90% low plasticity fines, gray. Highly
_	- 67 - 68		to 70.2				BEDROCK	gray. Fractures at 1" to 2".	ft, highly weathered, homogeneous TE, hard, moderately weathered, n
-	- 69						BED	visible stratification, rounded (0.5-2 inch diameter) in fine	d clasts of purple blue and gray
_	— 70 - 71							Bottom of boring at 70.2 ft. E upon completion, Installed w	Borehole backfilled with soil cutting vell upon location on 7/11/2016.
-50 —	- 72 - 73								
-	- 74								
-	— 75 - 76								
_	- 77								
-	- 78 - 79								
_	— 80 - 81								
-60 —	- 82								
_	- 83 - 84								
_	— 85 - 86								
NOTES): ::						PROJ	ECT NAME: Tremont Crossing	
								STATE: Boston, Massachusetts ROJECT NUMBER: 1609300	GEI Consultar

Gro	undwater Well Installation Log	B203 (OW)
Project	Tremont Crossing	GEI Proj. No. 1609300
City / Town	Boston, MA	Location B203
Client	FELDCO	
Contractor	New England Boring	
Driller	P. Labossier GEI Rep. K.Gleichauf	Install Date 7/11/2016
Survey Datum:	Boston City Length of Surface Casing a	above Ground 0
Ground	Dist. Top of Surf. Casing to	o Top of Riser Pipe 0.25'
Elevation:	23' Type and Thickness of Sea around Surface Casing	al Grout, 0.5'
	ID of Surface Casing Type of Surface Casing	0.5'
	Depth Bottom of Surface C	Casing 0.8'
	ID and OD of Riser Pipe Type of Riser Pipe	2", 2.5"
	Type of Backfill around Ris	ser Pipe Cuttings
	Diameter of Borehole	4"
	Depth Top of Seal	24'
	Type of Seal Depth Bottom of Seal	Bentonite Chips 26'
	of peptil portolli or seal	
	Type of Seal Depth Bottom of Seal Depth Top of Screened Se Type of Screen Description of Screen Ope ID and OD of Screened Se	ection 27.9'
	Type of Screen	Slotted Pipe
	Description of Screen Ope ID and OD of Screened Se	
	Type of Filter Material	Silica Sand
	Depth Bottom of Screened	
Date Time r pipe		38'
Date Time riser pipe	Depth Bottom of Silt Trap	
0	Depth Bottom of Filter Mate	terial 39'
below top	Depth Top of Seal	
l pe	Type of Seal Depth Bottom of Seal	
Distance to	Type of Backfill below Filte	er Material Cuttings
Distar	Bottom of Borehole	
Notes: Install	ed on B203 location that was previously drilled and backfilled with cut	GEI Consultants

BORING INFORMATION **BORING** LOCATION: See boring location plan GROUND SURFACE EL. (ft): 19.5 **DATE START/END:** 6/29/2016 - 6/29/2016 **B204** VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring TOTAL DEPTH (ft): 69.0 DRILLER NAME: P. Labossier LOGGED BY: K. Gleichauf RIG TYPE: Mobile B-53 Truck PAGE 1 of 3 DRILLING INFORMATION HAMMER TYPE: Safety Hammer - rope and cathead CASING I.D./O.D.: 4 inch / 4.5 inch CORE BARREL TYPE: NX AUGER I.D./O.D.: NA / NA DRILL ROD O.D.: NM CORE BARREL I.D./O.D. NA / NA DRILLING METHOD: Mud Rotary Wash WATER LEVEL DEPTHS (ft): Not measured ABBREVIATIONS: Pen. = Penetration Length S = Split Spoon Sample Qp = Pocket Penetrometer Strength NA, NM = Not Applicable, Not Measured Sv = Pocket Torvane Shear Strength Rec. = Recovery Length C = Core Sample Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index split spoon sampler. WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Depth Elev. Pen./ Blows Soil and Rock Description Depth Sample Field Test Data (ft) (ft) Rec. per 6 in. No. (ft) or RQD (in) 6" ASPHALT. S1 (0-3"): WIDELY GRADED SAND WITH SILT AND GRAVEL 0.5 S1 24/12 3-3-11to 2.5 (SW-SM) ~60% fine sand, ~35% fine to coarse gravel, ~5% 17 Driller mixed mud. non-plastic fines, brown. FILL. 2 S1 (3-12"): CLAYEY SAND WITH GRAVEL (SC) ~55% fine to 3 coarse sand, ~25% fine to coarse gravel up to 1", ~20% nonplastic fines, dark brown/black. Piece of coal from 10-12", traces of brick. FILL. 4 5 S2 (0-8"): WIDELY GRADED GRAVEL WITH SILT AND SAND S2 24/10 4-8-13to 7 (GW-GM) ~50% fine to coarse gravel, ~40% fine to coarse sand, 22 6 ~10% nonplastic fines, dark brown, brick fragments throughout. S2 (8-10"): NARROWLY GRADED SAND WITH CLAY (SP-SC) 8 ~80% fine to medium sand, ~20% low plasticity fines, brown. FILL. 9 10 10 S3 (0-5"): SILT (ML) ~85% non-plastic fines, ~15% fine sand, 10 S3 24/14 13-17to 12 brown. 16-23 11 S3 (5-14"): NARROWLY GRADED SAND WITH SILT AND GRAVEL (SP-SM) 73.9% fine to medium sand, 19.1% coarse gravel up to 1 inch, 7% non-plastic fines, brown. Gravel in seams 12 Pressuremeter test 11.5-14 13 from 5-6" and 12-13". feet. 14 15 S4: WIDELY GRADED SAND WITH GRAVEL (SW) ~60% fine **S4** 24/11 14-13to coarse sand, ~35% fine to coarse gravel up to 1", ~5% 15-14 16 Pressuremeter test 15-17.5 non-plastic fines, gray. AND feet. 17 SAND, 18 19 20 S5: WIDELY GRADED GRAVEL WITH SILT AND SAND 20 S5 24/12 21-18to 22 (GW-GM) ~50% fine to coarse gravel up to 1 inch, ~40% fine to 21-16 21 coarse sand, ~10% non-plastic fines. 22 23 NOTES: PROJECT NAME: Tremont Crossing CITY/STATE: Boston, Massachusetts

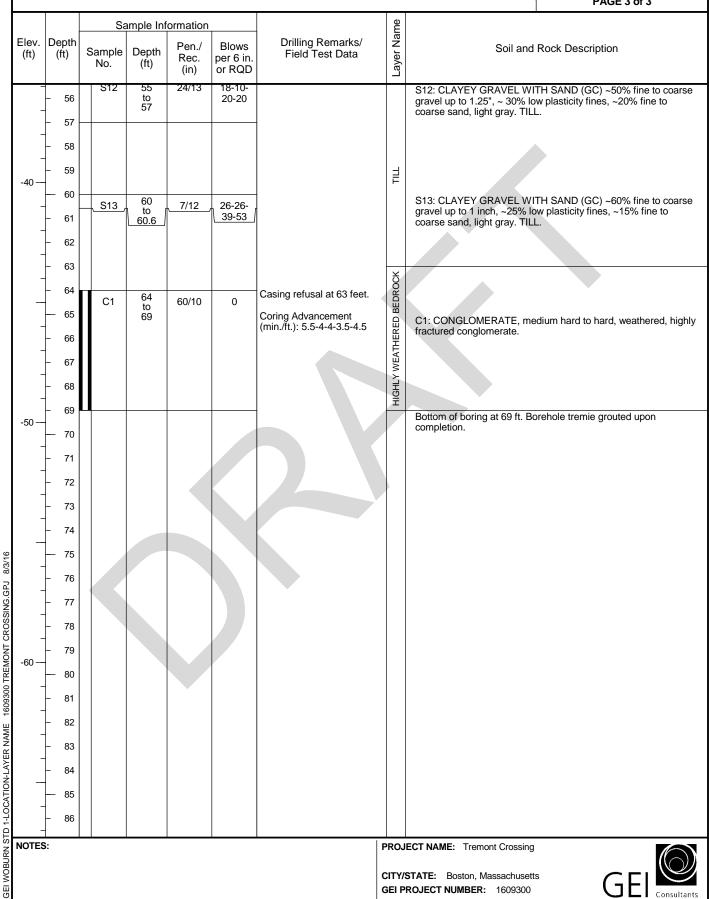
GEI PROJECT NUMBER: 1609300

1609300 TREMONT CROSSING.GPJ

1-LOCATION-LAYER NAME

WOBU

GEI


LOCATION: See boring location plan GROUND SURFACE EL. (ft): 19.5 **DATE START/END:** 6/29/2016 - 6/29/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring **BORING B204**

PAGE 2 of 3

								PAGE 2 of 3	3
		Sa	mple Inf	ormation	1		me		
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and Rock Description	
-	— 25 - 26	S6	25 to 27	24/10	18-14- 18-19	Pressuremeter test 25-27.5 feet.		S6 (0-5"): NARROWLY GRADED SAND WITH GRA\ ~80% fine to medium sand, ~15% fine to coarse grave non-plastic fines, brown. Gravel pieces on top.	el, ~5% [°]
-	- 27 - 28 - 29							S6 (5-10"): WIDELY GRADED SAND WITH GRAVEL ~55% fine to coarse sand, ~40% fine to coarse gravel inch, ~5% non-plastic fines, brown.	(SW) up to 1
-10 	— 30 – 31	\$7	30 to 32	24/12	12-14- 23-46			S7: SILTY GRAVEL WITH SAND (GM) ~55% fine to o gravel up to 1 inch, ~30% fine to coarse sand, ~15% r fines, brown.	coarse nonplasti
-	- 32 - 33 - 34								
-	- 35 - 36 - 37	S8	35 to 37	24/15	33-42- 32-41		RAVEL	S8: Similar to S7.	
- -20 —	- 38 - 39 - 40		40				SAND AND GRAVEL	S9: WIDELY GRADED GRAVEL WITH SAND (GW)	70% fin
-	- 41 - 42 - 42	S9	to 42	24/9	25-28- 26-12	Pressuremeter test 40-42.5 feet.		to coarse gravel up to 1 inch, ~25% fine to coarse san non-plastic fines, brown.	d, ~5%
- - - -	- 44 - 45 - 46 - 47 - 48	S10	45 to 46.3	16/3	24-18- 14-21			S10: WIDELY GRADED SAND WITH SILT AND GRA (SW-SM) ~60% fine to coarse sand, ~30% fine to coar ~10% non-plastic fines, brown.	
-30 —	- 49 - 50 - 51	S11	50 to 52	24/13	12-13- 25-25			S11 (0-9"): WIDELY GRADED SAND (SW) ~90% fine medium sand ~5% fine gravel, ~5% non-plastic fines,	
-	- 52 - - 53 - 54		- 52 				TILL	S11 (9-13"): CLAYEY SAND WITH GRAVEL (SC) ~5 coarse sand, ~35% low plasticity fines, ~15% fine to c gravel up to 1 inch, brown. TILL.	
NOTES	- 55 3:]	PROJ	ECT NAME: Tremont Crossing	
							CITY/	STATE: Boston, Massachusetts PROJECT NUMBER: 1609300	Consulta

LOCATION: See boring location plan GROUND SURFACE EL. (ft): 19.5 **DATE START/END:** 6/29/2016 - 6/29/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring **BORING B204**

PAGE 3 of 3

GEI PROJECT NUMBER: 1609300

STD 1-LOCATION-LAYER NAME

	G INFO			action pla	_					BORING	
				cation plants: 22.5			DATE START/END: 7	/8/201	6 - 7/12/2016		
VERTI	CAL DA	TUN	l: Bost	on City Ba	se		DRILLING COMPANY:	=======================================			
		٠,	:104				DRILLER NAME: _B. C				
LOGGI	ED BY:		. IVICVEE	ty/K. Gleic	naur		RIG TYPE: Mobile B-53	BAIV	_	PAGE 1 of 4	
DRILLI	NG INF	OR1	MATION								
					rope and	cathead	CASING I.D./O.D.: _4 i				
			NA / 1 D· Mi	NA ud Rotary V			DRILL ROD O.D.: NM		CORE BAR	REL I.D./O.D. NA / NA	
						016 7:35 ar	m				
4 D D D I	-\//ATIO	NO:	D	D t t .	I		0 0014 00 000 00001		On Desired Description of the orall	NA NIM NIM AND CONTRACTOR	
ADDKI	EVIATIO	NO.	Rec. RQD WOR		Length Ility Designat Sound Cores f Rods	ion s>4 in / Pen.,'	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector I.D./O.D. = Inside Diameter/Outside Dia	NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler.	
			Sa	ample Inf	ormation			ne			
Elev.	Depth				Pen./	Blows	Drilling Remarks/	Nan	Soil and I	Rock Description	
(ft)	(ft)	S	ample No.	Depth (ft)	Rec. (in)	per 6 in. or RQD	Field Test Data	Layer Name			
-	- 1	M	S1	0 to 2	24/13	7-10-17- 16			coarse sand, ~35% mostly fir	I GRAVEL (SM) ~45% fine to ne gravel, ~15% nonplastic fines, sible pulverized red brick fragments.	
20 —	- 2 - 3	/ \							S1 (4-9): ASPHALT S1 (9-13): Similar to S1 (0-4)	. FILL.	
-	3										
-	- 4 - 5	M	S2	4 to 6	24/6	15-9-7- 10					
_	- 6									·	
_	- 7 - 8						Very high driving resistance when advancing casing from 4 to 9 feet.	H.			
-	- 9 - 10	M	S3	9 to 11	24/12	12-19- 23-40	At ~8.5 feet, wash becomes significantly darker.		(SW-SM) ~70% fine to coars nonplastic fines. Alternating I	D WITH SILT AND GRAVEL se sand, ~20% fine gravel, ~10% cands of light brown, dark brown e. Possible ash. Material in spoon	
10 —	- 11 - 12								had foul odor. FILL.		
_	- 13										
-	- 14 - 15 - 16	M	S4	14 to 16	24/6	10-9-8- 12			fine to coarse sand, ~10% lo brown. Possible FILL. S4 (2-6): WIDELY GRADED	SAND WITH CLAY (SW-SC) ~90% w plasticity fines, gray and light SAND (SW) ~95% fine to coarse	
_	- 17						Little resistance to rollerbit starting at 15 feet.		sand, <5% nonplastic fines, l	olauk. Pussible Fill.	
_	- 18				-			(0			
	- 19	\forall	0.5	19	0.4/00	14011/401		NCS	S5: PEAT (PT) dark brown/g	ray, fibrous, organic odor.	
_	20	X	S5	to 21	24/22	WOH/19"- 2	Sv: 0.2, 0.3, 0.2, 0.2 TSF	ORGANICS		,	
-	- 21 - 22	Y \					Qp: 0, 0, 0, 0 TSF				
0 —	- 23						Based on rollerbit resistance, bottom of				
NOTES	i <u> </u>						organics is at ~22.9 feet.	PRO.	 IECT NAME: Tremont Crossing		
								CITY/	STATE: Boston, Massachusetts	GEI Consultants	

LOCATION: See boring location plan GROUND SURFACE EL. (ft): 22.5 **DATE START/END:** 7/8/2016 - 7/12/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring

BORING B205 (OW)

PAGE 2 of 4

										PAGE 2 of 4		
		Sample Information						me	all all all all all all all all all all			
Elev. (ft)	Depth (ft)	S	ample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and I	Rock Description		
-	— 25		S6	24 to 26	24/5	19-18- 15-17			S6: WIDELY GRADED SAN to coarse sand, ~20% fine gr	D WITH GRAVEL (SW) ~75% fine ravel, <5% fines, dark gray.		
-	- 26 - 27 - 28											
- - -	- 29 - 30	\bigvee	S7	29 to 31	24/5	25-22- 13-14			similar to S6.	SAND WITH GRAVEL (SW) DED SAND (SP) ~95% fine to		
-	- 31 - 32								medium sand, <5% nonplast brown.	ic fines, light brown and orangeish		
-10 —	- 33 - 34			34	04/4	40.44	S8: Poor recovery likely due		S8: NARROWLY GRADED	SAND WITH GRAVEL (SP) ~70%		
-	— 35 – 36		S8	to 36	24/1	10-11- 10-13	to damaged SS catcher; replaced prior to S9.		coarse sand, ~30% fine grav	rel up to 1/8". Possible wash.		
-	- 37 - 38							ÆL				
-	- 39 40	\mathbb{N}	S9	39 to 41	24/20	6-5-5-9		SAND AND GRAVEL	S9: NARROWLY GRADED 10% nonplastic fines, light bi	SAND (SP) ~90% mostly fine sandown.		
-20	- 41 - 42							SAN				
_	- 43 - 44 - 45	\bigvee	S10	44 to 46	24/8	7-6-5-8			S10: WIDELY GRADED SAI 5% nonplastic fines, light bro	ND (SW) ~95% fine to coarse san		
-	- 46 - 47	A		40								
	- 48 - 49			49					\$11 (0-2): NARROWI V CP	ADED SAND (SP) ~95% fine sand		
-	— 50 – 51	X	S11	to 51	24/6	10-16- 15-10			5% nonplastic fines, light bro S11 (2-6): WIDELY GRADE			
-30 —	- 52 - 53											
-	- 54 55	V	S12	54 to 56	24/10	7-10-9-8			S12: NARROWLY GRADED sand, 5.8% nonplastic fines,	SAND (SP) 94.2% mostly fine light brown.		


 LOCATION:
 See boring location plan

 GROUND SURFACE EL. (ft):
 22.5
 DATE START/END:
 7/8/2016 - 7/12/2016

 VERTICAL DATUM:
 Boston City Base
 DRILLING COMPANY:
 New England Boring

BORING B205 (OW)

PAGE 3 of 4

CITY/STATE: Boston, Massachusetts

GEI PROJECT NUMBER: 1609300

WOBU

GEI

 LOCATION:
 See boring location plan

 GROUND SURFACE
 EL. (ft):
 22.5
 DATE START/END:
 7/8/2016 - 7/12/2016

 VERTICAL DATUM:
 Boston City Base
 DRILLING COMPANY:
 New England Boring

BORING B205 (OW)

PAGE 4 of 4

						T	_		PAGE 4 of 4
			ample Inf	ormation			ame.		
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and	Rock Description
-70 — -	- 87 - 88 - 89 - 90 - 91 - 92 - 93 - 94 - 95 - 96 - 97	\$19 \$20	89 to 90.6	19/9	19-16- 15- 100/1" 31-35- 39-45	Open hole sample.	TIT	plasticity fines, ~35% fine to 3/4", gray. TILL. \$20: GRAVELLY SILT WITI	VITH GRAVEL (CL) ~45% low coarse sand, ~20% fine gravel up H SAND (ML) ~40% nonplastic fine ~25% fine to coarse sand, light graul.
-80	- 98 - 99 - 100 - 101 - 102 - 103 - 104 - 105 - 106	S21 C1	99 to 99.1	60/54	20	Bit stopped advancing at 97.5 feet without down pressure. Added down pressure to advance to 99 feet. Angular bedrock fragments in wash. Increased drilling resistance with depth. Coring Advancement (min./ft.): 6.5-8.5-9.0-7.5-12.5	BEDROCK WEATHERED BEDROCK	gravel, ~20% nonplastic fine gray. Weathered bedrock. C1: CONGLOMERATE hard larger clasts are rounded an alternating coarse and fine se	SAND (GM) ~60% fine to coarse sa, ~20% fine to coarse sand, light s, ~20% fine to coarse sand, light d, medium grained sand matrix, d up to 2", highly weathered, strata. Fractures every 0.5" to 4", strata along larger clasts matrix is urple, dark blue.
-90 — 	- 107 - 108 - 109 - 110 - 111 - 112 - 113 - 114 - 115 - 116 - 117					Cored with slow barrel speed.) He had a second a s	Bottom of boring at 109 ft. Ir	estalled well upon completion.
NOTES	<u> 118 </u> i:	<u> </u>			l		CITY/	ECT NAME: Tremont Crossing STATE: Boston, Massachusetts ROJECT NUMBER: 1609300	GFI ©

Gro	undwater Well	Installation Log	B20	05 (OW)
Project	Tremont Crossing		GEI Proj. No.	1609300
City / Town	Boston, MA			B205
Client	FELDCO		-	-
Contractor	New England Boring	9	-	
Driller	B. Cross	GEI Rep. K.Gleichauf	Install Date	7/13/2016
Survey Datum:	Boston City	Length of Surface Casing a	above Ground	3'
Ground Elevation:	21.5	Dist. Top of Surf. Casing to	Top of Riser Pipe	4"
Lievation.	<u> </u>	Type and Thickness of Sea around Surface Casing	al <u>-</u>	soil
		ID of Surface Casing		4"
		Type of Surface Casing		Steel Casing
		Depth Bottom of Surface C	asing	2'
		ID and OD of Riser Pipe		2", 2.5"
	i i	Type of Riser Pipe		PVC
		Type of Backfill around Ris	er Pipe	Cuttings
		Diameter of Borehole	-	4"
		Depth Top of Seal	<u> </u>	24.5'
	Scal	Type of Seal Depth Bottom of Seal	-	Bentonite Chips 26.5'
		Deptil Bottom of Seal	-	20.3
	Conditions (Not to Scale)	Depth Top of Screened Se	ction _	38.9'
	dition	Type of Screen	<u>-</u>	Slotted Pipe
	Con	Description of Screen Ope	-	Slots 2", 2.5"
	General Soil	I b and ob or objectical de	_	2,2.3
	Ö	Type of Filter Material	-	Silica Sand
Date Fime pipe		Depth Bottom of Screened	Section _	38.9'
Date Time riser pipe		Depth Bottom of Silt Trap	-	39'
		Depth Bottom of Filter Mate	erial <u>-</u>	40'
below top		Depth Top of Seal	<u>-</u>	
		Type of Seal Depth Bottom of Seal	-	
ا ۵		Type of Backfill below Filte	r Material	Native Sand
Distance	<u> </u>	Bottom of Borehole		104'
Notes: Install	ed in B205 borehole			GEI

		RMATION							BORING
		See boring lo		n		DATE START/END: 6	/30/20	016 - 7/5/2016	
		TUM: Bost	-	se		DRILLING COMPANY:		·	B206
		(ft): 64.0				DRILLER NAME: P. L			5200
LOGGE	ED BY:	K. Gleicha	auf			RIG TYPE: Mobile B-53	Trucl	k	PAGE 1 of 3
		DRMATION				0400000000000		45: 1 00DE DAD	DEL TYPE NIV
		E: Safety D.: NA / I		rope and o	catnead	CASING I.D./O.D.: 4 iii DRILL ROD O.D.: NM			REL TYPE: NX REL I.D./O.D. NA / NA
		Ή ΟD : Μι		 Vash		DRILL ROD O.DNIV		OOKE BAK	NEE I.DJO.D. NA/ NA
		DEPTHS (1			16				
ABBRE	EVIATIO		PenetrationRecovery			S = Split Spoon Sample C = Core Sample		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength	NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling
		RQD	= Rock Qua	ality Designat	ion s>4 in / Pen.,	U = Undisturbed Sample		LL = Liquid Limit PI = Plasticity Index	30 inches to drive a 2-inch-O.D.
		WOR	t = Weight o	f Rods	324 1117 1 611.,	DP = Direct Push Sample		PID = Photoionization Detector	split spoon sampler.
			I = Weight o			HSA = Hollow-Stem Auger	т —	I.D./O.D. = Inside Diameter/Outside Dia	ameter
		Sa	ample Inf	ormation			Layer Name		
Elev. (ft)	Depth (ft)	Sample	Depth	Pen./	Blows	Drilling Remarks/ Field Test Data	Ž	Soil and I	Rock Description
(11)	(11)	No.	(ft)	Rec. (in)	per 6 in. or RQD	Ticia Test Data	aye		
				()	0		-	C!! CONODETE sidewalls	
		C4	0.5	24/0	10.1.0			6" CONCRETE sidewalk. S1: WIDELY GRADED SAN	D WITH GRAVEL (SW) ~70% fine
	- 1	S1	to 2.5	24/9	19-1-9- 19			to coarse sand, ~20% fine gi	ravel up to 1/2 inch, ~10%
_	- 2		2.0					non-plastic fines, grass. TOF	OUIL.
	- 3								
	_ S								
_	- 4								
_	— 5								
	3	S2	5 to	24/16	19-7-6-6	Casing refusal at 4 feet. Offset hole onto sidewalk to			TH GRAVEL (SM) ~75% fine to titic fines, ~1% fine gravel up to 1/2",
-	- 6		7			avoid obstruction.		mottled black, gray. FILL.	alle filles, ~1 /8 fille graver up to 1/2 ,
_	- 7						닅	S2 (11-16"): SANDSTONE,	soft friable red FILL
	•						-	OZ (TI-10). OANDOTONE,	Sort, mable, red. 1 ILL.
-	- 8								
10 —	- 9					Mixed bentonite mud			
						wiixed bentonite mad			
	- 10	S3	10	24/8	8-7-7-5	Drove 3" SS from 10-12.5			VEL WITH SILT AND SAND
-	- 11		to 12			feet for PMT test.			se gravel up to 1 inch, ~40% fine to titic fines, brown. Possible FILL.
	- 12							, , , , , , , , , , , , , , , , , , , ,	,
	12	S3A_	12 to	6/3		Pressuremeter test 10-12.5			CL) ~60% low plasticity fines, ~30% ne to coarse gravel up to 1/2 inch.
-	- 13		12.5			feet.		Possible FILL.	le to coarse graver up to 1/2 inch.
_	- 14								
									l
-	 15	S4	15	24/19	2-2-2-3		SS		00% low plasticity organic fines,
_	- 16	34	to 17	24/19	2-2-2-3	WC = 85.6%	N N	black, trace veg.	
							ORGANICS		
	- 17								
-	- 18								
0	- 19								
0	19								l
-	- 20	05	20	04/0	47.40		GRAVEL	S5: WIDELY GRADED SAN	D WITH SILT AND GRAVEL
_	- 21	S5	to 22	24/8	17-12- 19-18			(SW-SM) ~60% fine to coars	se sand, ~25% fine to coarse gravel
			22				AND	up to 3/4 inch, ~15% non-pla	isuc imes, dark gray.
-	- 22						SAND /		l
_	- 23						SA		
NOTES	:						PROJ	IECT NAME: Tremont Crossing	
								STATE: Boston, Massachusetts PROJECT NUMBER: 1609300	GEI Consultants

 LOCATION:
 See boring location plan

 GROUND SURFACE EL. (ft):
 19
 DATE START/END:
 6/30/2016 - 7/5/2016

 VERTICAL DATUM:
 Boston City Base
 DRILLING COMPANY:
 New England Boring

BORING B206

PAGE 2 of 3

								<u> </u>	PAGE 2 of 3
		Sa	ample Inf	ormation	ı		me		
∃lev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and	Rock Description
-	— 25 ·	S6	25 to	24/12	11-10-	Hard drilling.			ID WITH GRAVEL ~80% fine to
-	- 26 - 27		27		12-12			Gravel amount increases wi	vel, gray/brown. Red layer 7-8". th depth.
-	- 28								
10 —	- 29								
-	- 30 - 31	S7	30 to 32	24/10	10-12-9- 15			S7: WIDELY GRADED SAN medium to coarse sand, ~25 non-plastic fines, brown/gra	ID WITH GRAVEL (SW) ~70% 5% fine gravel up to 1/2 inch, ~5% y, streak of red 5-6".
_	- 32					-			
-	- 33					•	Æ		
_	- 34 35		0.5				ID GRAVEL	CO. WIDELY ODADED CAA	ID (OM) 050/ fire to come and
_	- 36	S8	35 to 37	24/12	8-8-11- 12		SAND AND	~5% non-plastic fines, gray/	ID (SW) ~95% fine to coarse sand, brown.
-	- 37						0,		
20 —	- 38 - 39								
-	- 40	S9	40 to	24/15	9-11-15-			S9: NARROWLY GRADED sand, ~5% non-plastic fines	SAND (SP) ~95% fine to medium
_	- 41 - 42		42		16			saliu, ~3% non-piasuc ilies	, gray/brown.
_	- 43					Pressuremeter test 41-43.5 feet.			
	- 44								
_	— 45 - 46	S10	45 to 46.2	14/11	38-39- 100/2"			S10 (0-5"): WIDELY GRADI ~5% non-plastic fines, brow	ED SAND ~95% fine to coarse sand n.
_	- 47		40.2					S10 (5-11"): CLAYEY SAND plasticity fines, ~35% fine to 1/2", light gray. TILL.	WITH GRAVEL (SC) ~40% low coarse sand, ~25% fine gravel up
-	- 48							, <u>3 - 3 - 9 </u>	
30 	- 49 50						J-IL		
-	- 51	S11	50 to 52	24/9	14-14- 11-17	100% water loss while drilling for pressuremeter		S11: CLAYEY SAND WITH sand, ~25% low plasticity fir gray. TILL.	GRAVEL (SC) ~55% fine to coarse les, ~20% fine gravel up to 1", light
-	- 52					test.			
_	- 53 - 54								
	- 55								

CITY/STATE: Boston, Massachusetts **GEI PROJECT NUMBER:** 1609300

BORING LOCATION: See boring location plan GROUND SURFACE EL. (ft): 19 **B206 DATE START/END:** 6/30/2016 - 7/5/2016 VERTICAL DATUM: Boston City Base **DRILLING COMPANY:** New England Boring PAGE 3 of 3 Sample Information Layer Name Elev. Drilling Remarks/ Depth Pen./ Blows Soil and Rock Description Depth Sample (ft) (ft) Field Test Data per 6 in. Rec. (ft) or RQD (in) S12: WEATHERED BEDROCK. BEDROCK 56 to 55.1 57 WEATH. I 58 59 59 to 64 C1: CONGLOMERATE, hard, coarse grained, light gray matrix C1 60/60 13 Coring Advancement with 1-2" clasts of rounded blue, green, and purple stones, no laminations, moderately weathered, highly fractured. 60 (min./ft.): 3.5-4.5-4.5-6 BEDROCK 61 62 63 64 Bottom of boring at 64 ft. Borehole tremie grouted upon completion. 65 66 67 68 -50 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 NOTES:

1609300 TREMONT CROSSING.GPJ

GEI WOBURN STD 1-LOCATION-LAYER NAME

CITY/STATE: Boston, Massachusetts GEI PROJECT NUMBER: 1609300

PROJECT NAME: Tremont Crossing

		RMATION							BORING
		See boring lo		n		DATE START/END: 7	/5/201	6 - 7/6/2016	Bortino
		FACE EL. (I FUM: Bost	-	Se.		DRILLING COMPANY:			B207
		(ft): 85.1		30		DRILLER NAME: B. C		Lingiand Boning	BZOI
		D. McVee				RIG TYPE: Mobile B-53		k	PAGE 1 of 3
DRILLI	NG INFO	ORMATION							
		E: Safety	Hammer -	rope and	athead	CASING I.D./O.D.: 4 i	nch / 4	4.5 inch CORE BAR	REL TYPE: NX
		D.: NA/1				DRILL ROD O.D.: NM			REL I.D./O.D. NA / NA
DRILLI	NG MET	HOD: Mu	ud Rotary V	Vash					
WATE	R LEVEL	DEPTHS (1	ft): <u>Not</u>	measured					
ABBRI	EVIATIO	Rec. RQD WOR	= Length of t = Weight o	Length ality Designat Sound Cores f Rods	ion s>4 in / Pen.,%	DP = Direct Push Sample		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector	30 inches to drive a 2-inch-O.D. split spoon sampler.
			I = Weight o			HSA = Hollow-Stem Auger	_	I.D./O.D. = Inside Diameter/Outside Di	iameter
П	Den't	Sa	ample Inf	ormation		Deilling Dags - 1 - /	ame		
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and	Rock Description
_	- 1	S1	0 to 2	24/9	2-5-14- 15			(SW-SM) ~75% fine to coars	ID WITH SILT AND GRAVEL se sand, ~15% mostly fine to lastic fines, light brown. FILL
-	- 2 - 3								
_	- 4 - 5	S2	4 to 6	24/2	16-16- 11-10			coarse sand, ~30% fine grav	SAND WITH GRAVEL (SP) ~70% vel, brown. 1/2 inch fragment of
10 —	- 6						필	possible concrete in spoon t	p. rice.
_	- 7 - 8								
-	- 9 - 10	S3	9 to 9.2	2/2	100/2"			S3: WIDELY GRADED SAN ~20% fine gravel, ~5% non-	ID (SW) -75% fine to coarse sand, plastic fines, brown. FILL.
_	- 11								
-	- 12 - 13								
-	- 14 - 15	S4	14 to 16	24/7	2-5-9-18	¥			AVEL (ML) ~40% nonplastic fines, 30% fine to coarse gravel, gray.
0 —	- 16						4VEL		
_	- 17 - 18						AND GRAVEL		
-	- 19 - 20	S5	19 to 21	24/1	16-24- 28-31		SAND		SAND WITH GRAVEL (SP) ~50% 0% fine gravel, light brown. Spoon ticity fines
_	- 21							ap contained ~50 /6 low plas	uony III los.
-	- 22 - 23								
NOTES	:-						PPO	IFCT NAME: Trament Crassing	
HOIES	•						rku	JECT NAME: Tremont Crossing	
								STATE: Boston, Massachusetts PROJECT NUMBER: 1609300	

BORING LOCATION: See boring location plan

		FACE EL. (f TUM: Bost	· —	ıse		DATE START/END: _ DRILLING COMPANY:		6 - 7/6/2016 England Boring	B207	
	-, DAI		on ony Da				1400		PAGE 2 of 3	
Elev. (ft)	Depth (ft)	Sample No.	•	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and Ro	ock Description	
-10 	- 25 - 26 - 27	S6	24 to 26	24/23	2-7-11-			fines, ~20% fine sand, light broad	SC) ~70% fine to medium sand,	
-	- 28 - 29 - 30 - 31	S7	29 to 31	24/12	15-25- 21-10	S7(9-12"): Qp = 0.75 tsf.		plasticity fines, ~30% fine to or brown/gray.	Y WITH GRAVEL (SC) ~50% low parse sand, ~20% fine gravel, ~90% low plasticity fines, ~10%	
- - -	- 32 - 33 - 34	\$8	34 to	24/6	12-22- 24-15			fine sand, light brown. S8: WIDELY GRADED SAND to coarse sand, ~25% fine to coarse	WITH GRAVEL (SW) ~70% fine coarse gravel up to 3/4 inch, <5%	
-20 — - -	- 36 - 37 - 38 - 39 -	\$9	36 39 to	24/7	10-8-10-12	Mud added to wash when washing down to 39 feet.	SAND AND GRAVEL	to coarse sand, ~30% fine to o	WITH GRAVEL (SW) ~65% fine coarse rounded gravel, <5% fine	
- - -	- 40 - 41 - 42 - 43 - 44	S10	44 to	24/3	8-11-8-8			reddish brown and brown. S10: WIDELY GRADED GRA to coarse gravel up to 1 inch,	VEL WITH SAND (GW) ~65% fi	
-30 - -	- 45 - 46 - 47 - 48 - 49	C11	46	24/4	17.12	*		<5% fines, reddish brown. S11: Similar to S10.		
- - -	50 51 52 53 54 54 54	S11	to 51	24/4	17-13- 20-14					
NOTES	 55	S12	54 to 56	24/11	17-19- 23-21			S12: SANDY LEAN CLAY WI plasticity fines, ~20% fine grav coarse sand, gray. TILL. ECT NAME: Tremont Crossing	rel up to 1/2 inch, ~20% fine to	
								STATE: Boston, Massachusetts ROJECT NUMBER: 1609300	GFI	

LOCATION: See boring location plan GROUND SURFACE EL. (ft): 16 **DATE START/END:** 7/5/2016 - 7/6/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring **BORING B207**

PAGE 3 of 3

		Sa	mple Inf	ormation			ле			
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and	Rock Description	
-40 —	- 56									
_	- 57									
_	- 58									
_	- 59									
	— 60	S13	59 to	24/3	10-17- 11-6			sand, ~30% fine gravel, ~20	GRAVEL (SC) ~50% fine to coarse % non-plastic to low plasticity fines	
			61		110			gray. TILL.		
	- 61									
_	- 62						╡			
_	- 63						-			
-	- 64	S14	64 to	18/4	67-79-	Driller indicates increase in drilling resistance 63 feet			ND WITH SILT AND GRAVEL se sand, ~40% fine to coarse grave	
-	— 65		65.5		102	drining rodiotarios so rosa.		~10% non-plastic fines, redo		
-50 —	- 66							TILL.	ed rock (with staining throughout).	
_	- 67									
_	- 68									
_	- 69	0	69 [1	N 400/4"			S15: No recovery.		
_	— 70	S15	to 69.1	1/0	100/1"	SS was bouncing during		C1: WIDELY GRADED GRA	AVEL weathered hedrock	
	- 71	C1	70 to	60/10	0	S15; Advanced casing to 70 ft prior to C1.		Subrounded gravel 1/4-1.25 clasts of Roxbury conglome	inch with little staining. Possible	
_	72		75			Coring Advancement		oladio of Noxbary congiome	rate, purple and gray.	
_	- 73					(min./ft.): 3.5-4.5-6-5.5-7				
_	- 74									
						Casing driven to refusal at 73 ft. prior to C2				
_	— 75 —	C2	75 to	60/13	0	Coring Advancement	X	C2: WIDELY GRADED GRASUB Subangular gravel 1/4-1.5. F		
-60	- 76 -		80			(min./ft.): 4.5-8.5-7.5-7.5-11.5	DROCK	conglomerate, purple and gi	ay.	
_	- 77					End 7/6/2016; Start 7/7/2016	ED BE			
-	– 78 –						WEATHERED BED			
-	- 79					Driller slowed coring rotation speed for C2 and	WEAT			
_	— 80 ·	S16	80 [1/1	100/1"	C3			O GRAVEL WITH SAND (GP)	
	- 81	C3	to 80.1 80.1	60/15	0	Performed with 3 inch SS		gray.	to 1/4", 30% coarse sand; purple a	
-	82		to 85.1			and 300 lb safety hammer.		C3: WIDELY GRADED GRASubrounded-to-angular grav	rel with little staining, <1/4" to 1";	
-	- 83					After C2, ream out hole to 80 ft		purple and gray. Highly fract	urea Robury Congiornerate.	
_	- 84					Coring Advancement				
_	— 85					(min./ft.): 10-10.5-7.5-5.5-6.5		Dattara at 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2	Daniela taran'	
-70 —	- 86							Bottom of boring at 85.1 ft. E completion.	Borehole tremie grouted upon	
NOTES): :				l		PROJ	ECT NAME: Tremont Crossing		
								STATE: Boston, Massachusetts ROJECT NUMBER: 1609300	· GFI	

		RMATION							BORING	
	_	See boring lo	-	ın		DATE START/END: 7	/7/2∩1	6 - 7/8/2016	2011110	
		FACE EL. (1 FUM: Bost	· —	ise		DRILLING COMPANY:		B208		
		(ft): 84.0		.		DRILLER NAME: S. C				
		K. Gleicha				RIG TYPE: Mobile B-53				
ייים	NC INT	DMATIO:								
		DRMATION E: Safety	Hammer -	rone and	cathead	CASING I.D./O.D.: 4 ii	nch / /	1.5 inch CORE BAR	RREL TYPE: NX	
		D.: NA/1		- Tope and C	zatrieau	DRILL ROD O.D.: NM			RREL I.D./O.D. NA / NA	
		HOD: M		Wash						
WATE	R LEVEL	DEPTHS (ft): <u>▼</u> 9	.5 7/8/2016	5					
ABBRI	EVIATIO	Rec. RQD WOR	= Penetration = Recovery = Rock Quain = Length of Recovery = Weight of Recovery	Length ality Designat Sound Cores of Rods	ion s>4 in / Pen.,	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit Pl = Plasticity Index PID = Photoionization Detector I.D./O.D. = Inside Diameter/Outside D	30 inches to drive a 2-inch-O.D. split spoon sampler.	
		Sa	ample Inf	ormation			ne			
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and	Rock Description	
		S1	0	24/9	7-4-3-2			ASPHALT.		
-	- 1 - 2	31	to 2	24/9	7-4-3-2			fine to coarse sand, ~20% fi	SAND WITH SILT (SP-SM) ~70% ne to coarse gravel up to 1 inch, wn/black. Asphalt fragments. FILL.	
	- 3					_				
-	4						∃			
_	- 5						-	CO. CIL TV CAMP WITH CO.	AVEL (CM) FOO(fine to	
		S2	5 to	24/6	9-5-3-4			sand. ~35% non-plastic fine	AVEL (SM) ~50% fine to coarse s, ~15% fine gravel up to 3/4",	
	- 6		7				1	brown. Black asphalt fragme	ents, piece of ceramic was at top.	
10 —	7									
-	- 8							S3 (REDDIVE): ODGANIC	SOIL (OL) ~80% low plasticity	
_	- 9							organic fines, ~20% fine to o	coarse sand, visible plant matter,	
		S3	9 to	24/1	4-2-3-3	WC = 59.2%		alternating black organic and coarse gravel at top.	d dark gray silty layers, seam of	
-	10		11			Redrive S3 (9-11') with 3" SS for 12" recovery.				
-	- 11					oo ioi iz recovery.				
	- 12						CS			
							ORGANICS			
_	- 13						OR.			
-	14	0.	14	0.4/2	0011	•		S4: ORGANIC SOIL (OL) ~	100% low plasticity organic fines,	
_	— 15	S4	to 16	24/0	3-2-4-4	Wash return changed color to dark gray.		visible plant matter, dark gra		
	- 16					WC = 80.4% Redrive S4 (14-16') with 3"				
0 —	17					SS for 19" recovery.				
_	18									
	- 19									
	19	S5	19 to	24/10	11-14-	Hard driving casing at 18 feet.	SAND AND GRAVEL		ID WITH SILT AND GRAVEL ~55% ne gravel, ~10% non-plastic fines,	
-	20		21		19-37		O GF	brown.	g. 2. 0., 10 /0 // Pidono iii 100,	
-	- 21						AN C			
_	- 22						SANE			
							"			
_	- 23									
NOTES	 6:					<u> </u>	PRO.I	 ECT NAME: Tremont Crossing		
								roman orossing		
								STATE: Boston, Massachusetts ROJECT NUMBER: 1609300	GEI Consultants	

LOCATION: See boring location plan GROUND SURFACE EL. (ft): __17 **DATE START/END:** 7/7/2016 - 7/8/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring

BORING B208

PAGE 2 of 3

								PAGE 2 of 3
		Sa	ample Inf	ormation			me	
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and Rock Description
_	25	S6	24 to 26	24/8	15-11- 23-26			S6: WIDELY GRADED SAND WITH GRAVEL (SW) ~80% fit to coarse sand, ~15% coarse gravel up to 1.25 inch, ~5% lov plasticity fines, dark brown. Small amount of light brown clay tip.
-10 —	- 26 - 27							
-	- 28							
-	- 29	S7	29 to	24/5	15-11-8-	Rig chatter at 28.5 feet.		S7: WIDELY GRADED GRAVEL WITH SAND (GW) ~55% f to coarse gravel up to 1.25 inch, ~40% fine to coarse sand, ~
_	— 30 – 31		31		9			non-plastic fines, brown.
_	- 32							
-	- 33					D: 1 // 100 5 / 1		
-	- 34	S8	34 to	24/11	17-7-7-	Rig chatter at 32.5 feet.		S8: WIDELY GRADED SAND (SW) ~95% fine to coarse sar ~5% non-plastic fines, brown/red. Coarser sand layer 0-2".
_	- 35 - 36		36		10			
-20 —	- 37							
-	- 38						VEL	
-	- 39 - 40	S9	39 to	24/13	22-11- 13-18		SAND AND GRAVEL	S9: NARROWLY GRADED SAND (SP) ~95% fine to mediur sand, ~5% non-plastic fines, brown, some black layers.
_	41		41				SAND A	
	42							
-	43							
_	- 44 - 45	S10	44 to 46	24/12	5-5-9-13			S10: NARROWLY GRADED SAND WITH SILT (SP-SM) ~90 mostly fine sand, ~10% non-plastic fines, brown, some red vo
-	- 46							
-30 —	47							
_	- 48 - 49							
-	50	S11	49 to 51	24/6	7-7-8-7			S11: WIDELY GRADED GRAVEL WITH SAND (GW) ~60% to coarse gravel up to 1.25 inch, ~35% fine to coarse sand, ~ non-plastic fines, brown.
-	- 51							
_	- 52 - 53							
_	- 53 - 54	6	54					S12: WIDELY GRADED SAND (SW) ~95% fine to coarse sa
_	 55	S12	to 56	24/11	17-8-9- 12			~5% non-plastic fines, red/brown and coarser bottom half, gr and finer in upper half.
NOTES	S:						CITY	JECT NAME: Tremont Crossing JUSTATE: Boston, Massachusetts PROJECT NUMBER: 1609300 GEI Consul

LOCATION: See boring location plan GROUND SURFACE EL. (ft): __17 **DATE START/END:** 7/7/2016 - 7/8/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring **BORING B208**

							[]		PAGE 3 of 3
	Depth			ormation Pen./	Blows	Drilling Remarks/	Layer Name	Soil and	Rock Description
(ft)	(ft)	Sample No.	Depth (ft)	Rec. (in)	per 6 in. or RQD	Field Test Data	Layer	Con and	Noon Boomphon
_	- 56								
-40 —	- 57								
_	- 58 50								
_	- 59 - 60	S13	59 to 61	24/6	14-17- 17-16			(SE-SM) ~55% fine to coars	ND WITH SILT AND GRAVEL se sand, ~35% fine to coarse gravel
-	- 61		01					5"-6".	etic fines; brown with a black layer
_	- 62								
-	- 63						AVEL		
-	- 64	S14	64 to	24/12	4-5-10-		SAND AND GRAVEL	S14: NARROWLY GRADEI	D SAND (SP) 96.3% fine to medium s, 1.7% fine gravel, brown/grey.
-	65		66		10		AND AI	Saria, 2.0% non plastic fines	s, 1.770 line graver, browningrey.
-50 —	- 66 - 67						S		
-	- 68								
_	69	045	69	04/40	0.047			S15: NARROWLY GRADE	D SAND WITH SILT (SP-SM) ~90%
-	- 70	S15	to 71	24/18	8-9-17- 17	Change in wash return: light gray clay observed		fine sand, ~10% nonplastic	fines, brown.
-	- 71								
	- 72 - 70								
_	- 73 - 74								
_	— 75	S16	74 to 76	24/16	42-48- 69-72	Casing refusal at 73.5 feet.		plasticity fines, ~20% fine to	ND AND GRAVEL (CL) ~65% low coarse sand, ~15% fine to coarse -light brown. Weathered rock in tip.
-	- 76						늴	TILL.	
-60 —	- 77								
-	- 78								
_	- 79 - 80	C1	79 to	60/28	15	Coring Advancement		matrix, purple, green, dark b	rd, highly weathered, light gray sand olue rounded clasts 1/4" to 2", some
_	- 81		84			(min./ft.): 4.5-5-4-4.5-4.5 Cored using slow barrel speed.	ž	coarse to fine alternating str Joints are along coarse laye matrix was washed out.	rata, fractures every 0.25" to 2". ers, gravel returned where weathere
_	82						BEDROCK	many nao naoneo eun	
_	83								
-	84							Bottom of boring at 84 ft. Bo	prehole tremie grouted upon
-	- 85							completion.	
	- 86								
NOTES	S :					1	PROJ	ECT NAME: Tremont Crossing	
								STATE: Boston, Massachusetts ROJECT NUMBER: 1609300	° GFI

		RMATION							BORING		
		See boring lo		n		DATE START/END: 7	//11/20	016 7/11/2016	Bortinto		
		FICE EL. (I		ıse		DRILLING COMPANY:			B209		
		(ft): 8.0				DRILLER NAME: P. I					
LOGG	ED BY:	K. Gleicha	auf			RIG TYPE: Mobile B-5	3 Truc	k	PAGE 1 of 1		
DBILL	INC INE	DMATION									
		DRMATION E: Safety		rone and o	athead	CASING I.D./O.D.: 4	nch / 4	4.5 inch CORE BAI	RREL TYPE: NA		
		D.: NA / 1		. opo a.ia c		DRILL ROD O.D.: NN			RREL I.D./O.D. NA / NA		
DRILL	ING MET	HOD: M	ud Rotary \	Wash							
WATE	R LEVEL	DEPTHS (ft): <u>Not</u>	measured							
ABBR	EVIATIO	Rec. RQD WOR	= Penetration = Recovery = Rock Quain = Length of Recovery = Weight of Recovery	Length ality Designat Sound Cores of Rods	ion s>4 in / Pen.,	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit Pl = Plasticity Index PlD = Photoionization Detector I.D./O.D. = Inside Diameter/Outside D	30 inches to drive a 2-inch-O.D. split spoon sampler.		
		Sa	ample Inf	ormation			Layer Name				
Elev. (ft)	Depth (ft)	Sample No.		Pen./ Rec. (in)	Blows per 6 in. or RQD	Soil and	Rock Description				
-	- 1 - 2					Hole was hand cleared to 5					
-	+ 3 - 4						FILL				
-	- 5 - 6	S1	5 to 7	24/9	8-7-5-8				AVEL (SM) ~ 50% fine to coarse 5% nonplastic fines, dark brown.		
10 —	- 7 - 8 - 9					Casing hit refusal at 8', possible utility.		Bottom of boring at 8 ft. Hol cuttings due to obstruction.	e abandoned and backfilled with		
-	10										
01/6/0	- 12 - 13										
	- 14 - 15										
	16										
0 —	18										
- ∟	19										
AAM -	20										
Ä											
- اخ	- 21										
-	- 22										
- Ę	23										
NOTES] S:						PRO	JECT NAME: Tremont Crossing			
GEI WOBURN SI D 1-LOCATION-LAYER NAME 1609300 I REMONI CROSSING;GPJ								STATE: Boston, Massachusett PROJECT NUMBER: 1609300	S GEI Consultants		

		RMATION See boring to	ocation pla	n					BORING
	_	FACE EL. (f		11		DATE START/END: 7/	/18/20	16 - 7/19/2016	
VERTI	CAL DAT	ΓUM: Bost	on City Ba	ise		DRILLING COMPANY:	New	England Boring	B209A
TOTAL	. DEPTH	(ft):68.5	5			DRILLER NAME: _B. C	. Cross		
LOGGI	ED BY:	K. Gleicha	auf/D. McV	/eety		RIG TYPE: Mobile B-53	3-53 ATV PAGE 1 of 3		
DRILLI	NG INFO	ORMATION							
		: Safety	Hammer -	rope and	cathead	CASING I.D./O.D.: 4 in	nch / 4	I.5 inch CORE BARI	REL TYPE: NX
		D.: NA / 1				DRILL ROD O.D.: NM			REL I.D./O.D. NA / NA
DRILLI	NG MET	HOD: M	ud Rotary \	Wash					
WATE	R LEVEL	DEPTHS (ft): <u>¥</u> 8	.3 7/19/20	16 7:30 am				
ABBRI	EVIATIO	Rec. RQD WOR		Length ality Designat Sound Cores of Rods	tion s>4 in / Pen.,	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector I.D./O.D. = Inside Diameter/Outside Dia	NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler. meter
		Sa	ample Inf	ormation			Je L		
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and F	Rock Description
-	- 1	S1	0 to 2	24/16	6-9-12- 11				VEL (SM); ~70% fine to coarse 15% fine to coarse gravel up to 1
-	- 2 - 3								
- - 	- 4 - 5	S2	4 to 6	24/10	4-9-13- 12			(SW-SM); ~70% fine to coars non-plastic fines; black/browr Charcoal, brick, and glass fra	n. igments. FILL.
10 —	- 6 - 7						FIL	S2(4-10): WIDELY GRADED to coarse gravel up to 1 1/4 ir brown. FILL.	GRAVEL WITH SAND; ~80% fine
- -	- 8 - 9	00	9	0.4/0	0.404	Rig chatter 7-9 ft.		S3 (0-4): CLAYEY SAND WI	TH GRAVEL (SC); ~45% fine to
-	— 10 – 11	\$3	to 11	24/8	6-4-3-4	S3 (4-8"): WC = 12.2%		low-plasticity fines; brown. FII S3 (4-8): SANDY LEAN CLA	arse gravel up to 1 1/4 in., ~25% LL. Y (CL); ~55% low-plasticity fines, 0% fine gravel, blue/gray. FILL.
	- 12 - 13								
-	- 14	S4	14 to	24/0	4-4-5-5	WC = 68.4%	NICS	S4: ORGANIC SOIL (OL) ~90 to coarse sand, black/gray, vi	0% low plasticity fines, ~10% fine sible plant matter.
-	— 15 – 16		16			No recovery; redriven with 3 in. SS for recovery	ORGANICS		
0 —	- 17 - 18								
-	- 19 - 20	S5	19 to	24/7	23-18- 11-11		AVEL		D WITH SILT AND GRAVEL e sand, ~ 30% fine gravel, ~10%
_	— 20 – 21		21			Rig chatter	SAND AND GRAV	nonplastic fines, brown.	
 -	- 22 - 23					Trug Griattel	SANI		
NOTES	 S:						PROJ	ECT NAME: Tremont Crossing	
								STATE: Boston, Massachusetts ROJECT NUMBER: 1609300	GEI Consultants

BORING LOCATION: See boring location plan **B209A** GROUND SURFACE EL. (ft): __17 **DATE START/END:** 7/18/2016 - 7/19/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring PAGE 2 of 3

		Sa	ample Inf	ormation				
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and Rock Description
_	25	S6	24 to 26	24/8	7-9-8-9			S6 (0-4): WIDELY GRADED SAND WITH GRAVEL (SW) ~70% fine to coarse sand, ~25% fine gravel, ~5% nonplastic fines, brown.
-	26							S6 (4-8): SILTY SAND WITH GRAVEL (SM) ~65% fine to coarse sand, ~20% fine gravel, ~15% nonplastic fines, brown.
-10 —	27					Rig chatter		,,,,,,
-	28							
-	29	S7	29 to	24/8	27-22-			S7: WIDELY GRADED SAND WITH SILT AND GRAVEL (SW-SM) ~60% fine to coarse sand, ~30% fine gravel, ~10%
-	30		31		11-7			nonplastic fines, brown.
-	 31						يرا	
_	32						SRAVE	
	+ 33						SAND AND GRAVEL	
_	34	S8	34 to	24/10	17-20- 17-18		SAND	S8: WIDELY GRADED SAND WITH GRAVEL (SW) ~70% fine to coarse sand, ~25% fine to coarse gravel up to 1", ~ 5%
_	35		36					nonplastic fines, dark brown.
-20 —	37							
_	38							
_	39		39					S9: WIDELY GRADED SAND WITH SILT AND GRAVEL
_	40	S9	to 41	24/10	18-16- 19-20			(SW-SM) ~60% fine to coarse sand, ~30% fine to coarse grave up to 1", ~10% non-plastic fines, red/brown.
-	41							
_	42					End 7/18/2016; Start		
-	43					7/19/2016		
-	44	S10	44	24/10	15-18-			S10: SANDY LEAN CLAY WITH GRAVEL (CL) ~50% low
-	45		to 46		20-13			plasticity fines, ~25% fine to coarse sand, ~25% fine to coarse gravel, gray. TILL.
-	46							
-30 —	47							
-	48							
-	+ 49	S11	49 to	24/10	10-31- 25-21		1	S11: SANDY LEAN CLAY WITH GRAVEL (CL) ~50% low plasticity fines, ~25% fine to coarse sand, ~25% fine to coarse
_	50 51		51		20-21			gravel, gray. TILL.
_	52							
_	53							
-	54		E4					S12: SILTY GRAVEL WITH SAND (GM) ~ 50% fine to coarse
_	- 55	S12	54 to 56	24/13	27-22- 31-22			gravel, ~35% fine to coarse sand, ~15% nonplastic fines, brow
NOTES	S:						CITY/	STATE: Boston, Massachusetts PROJECT NUMBER: 1609300 GEI

epth (ft)		ample Inf			DRILLING COMPANY:	New	England Boring	
(ft) 56 -	Sample		ormation				England Bonnig	PAGE 3 of 3
		Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and	Rock Description
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83	S13	(ft) 59 to 59 63.5 to 68.5		100/0.5"	Prior to S13, wash then drive casing to 59 ft. to refusal at 57.2 ft. Post S13, rollerbit to 63.5 ft.	BEDROCK WEATHERED BEDROCK TILL Laye	blue clasts. Fine grain mati fractures spaced <1/4" to 5	
85 86						PROJ	ECT NAME: Tremont Crossing	is GEI Consultant
8	31 32 33 34	332 333 34 35	332 333 34 35	31 32 33 34 35	31 32 33 34 35	31 32 33 34 35 36	31 32 33 34 35 36 PROJ	31 32 33 34 35 36 37 38 39 39 39 39 39 39 39

BORING INFORMATION LOCATION: See boring location plan BORING											
GROUND SURFACE EL. (ft): 17 DATE START/END:								6 - 7/5/2016	Do 40 40140		
								': New England Boring B210 (OW)			
TOTAL DEPTH (ft): 79.0 DRILLER NAME:											
LOGGED BY: K. Gleichauf RIG TYPE: Mobile								<u> </u>	PAGE 1 of 3		
DRILLI	NG INFO	RMATION									
HAMMER TYPE: Safety Hammer - rope and cathead CASING I.D./O.D.								1.5 inch CORE BARI	REL TYPE: NX		
		D.: <u>NA/I</u>				DRILL ROD O.D.: NN		CORE BARI	REL I.D./O.D. NA / NA		
		HOD: Mu DEPTHS (
			11). <u>1101</u>	measurea.							
ABBRE	EVIATIO		= Penetration			S = Split Spoon Sample C = Core Sample		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength	NA, NM = Not Applicable, Not Measured		
		RQD	= Rock Qua	ality Designat	ion s>4 in / Pen.,º	U = Undisturbed Sample	U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O D				
		WOR	R = Weight o	f Rods	5>4 III / FeII.,	DP = Direct Push Sample	n Sample PID = Photoionization Detector split spoon sampler.				
			I = Weight o			HSA = Hollow-Stem Auger	1	I.D./O.D. = Inside Diameter/Outside Dia	meter		
		Sa	ample Inf	<u>ormation</u>		5	Layer Name				
Elev. (ft)	Depth (ft)	Sample	Depth	Pen./	Blows	Drilling Remarks/ Field Test Data	Z	Soil and F	Rock Description		
()	()	No.	(ft)	Rec. (in)	per 6 in. or RQD		-aye				
		1	0				+-	ASPHALT			
_	_ 1	S1	to 2	24/9	6-6-9-8			S1: WIDELY GRADED SANI			
								(SW-SM) ~70% fine to coarse sand, ~20% fine gravel up to 1/2 inch, ~10% non-plastic fines, brown/black. Contains brick			
_	- 2							fragments. FILL.			
_	- 3										
	- 4										
	- 4						닖				
-	- 5		5	24/10	0622			S2: SILTY SAND WITH GRA	VEL (SM) ~50% fine to coarse		
_	- 6	S2	to 7	24/10	8-6-3-3			sand, ~35% fine gravel, ~15% Contains brick fragments. FIL	6 non-plastic fines, black/gray.		
	_							Contains blick fragments. I it	·L.		
10 —	7										
-	- 8										
_	- 9										
	4.0										
_	10	S3	10	24/24	WOH/12"-	00.0- 0.05 0.04-6.04			ck/gray, contains fragments of		
-	- 11		to 12		1-2	S3: Qp = 0.25, 0.2 tsf; Sv = 1.0 tsf. WC = 81.3%		wood, organics.			
	- 12										
							က္လ				
_	- 13						ANIC				
-	- 14					▼ 	ORGANICS				
_	— 15										
		S4	15 to	24/20	WOH/12"-	S4: Qp = 0.3, 0.35 tsf; Sv =		S4: ORGANIC SOIL (OL) Da	rk gray. No visible organic matter.		
-	- 16		17		3-2	1.4, 1.5 tsf. WC = 63.2%					
0 —	- 17	-		7							
_	– 18										
_	- 19										
_	_ 20		20				VEL	S5: WIDELY GRADED SANI	J WITH SILT AND GDAVEL		
		S5	to	24/4	7-9-10- 36		GRAVEL	(SW-SM) 51.4% fine to coars	se sand, 38.1% fine gravel up to 1/2		
_	- 21		22				N N	inch, 10.5% non-plastic fines	dark gray/blue.		
_	- 22						SAND AND				
_	- 23						SA				
NOTES):						PROJ	ECT NAME: Tremont Crossing			
							CITY/STATE: Poston Managachingetta				
							GEI PROJECT NUMBER: 1609300 GEI PROJECT NUMBER: 1609300				

BORING LOCATION: See boring location plan GROUND SURFACE EL. (ft): __17 **B210 (OW) DATE START/END:** 7/5/2016 - 7/5/2016 DRILLING COMPANY: New England Boring VERTICAL DATUM: Boston City Base PAGE 2 of 3 Sample Information Name Elev. Depth Drilling Remarks/ Pen./ **Blows** Soil and Rock Description Depth (ft) (ft) Sample Field Test Data Layer per 6 in. Rec. or RQD (in) 25 S6: CLAYEY SAND (SC) ~60% fine to coarse sand, ~40% low 25 S6 24/1 10-10to 27 plasticity fines, light grey. Low recovery. 12-13 26 -10 27 28 29 30 S7 (0-4"): NARROWLY GRADED SAND (SP) ~95% mostly fine 30 S7 24/17 7-10-11 to 32 sand, ~5% non-plastic fines, dark gray/blue. GRAVEL 16 31 S7 (4-17"): WIDELY GRADED SAND (SW) ~85% fine to coarse 32 sand, ~10% fine gravel, ~5% non-plastic fines. Pockets of sandy SAND AND lean clay (CL), ~60% low plasticity fines. ~40% fine sand. 33 34 35 S8: WIDELY GRADED SAND WITH GRAVEL (SW) ~55% fine 35 S8 24/8 8-7-7-7 to 37 to coarse sand, ~40% fine to coarse gravel up to 1", <5% 36 nonplastic fines, brown. -20 37 38 39 40 S9 (0-4"): WIDELY GRADED SAND (SW) ~85% fine to coarse 40 24/8 8-6-8-8 sand, ~10% fine gravel, ~5% non-plastic fines, brown/gray. 41 S9 (4-8"): SANDY LEAN CLAY (CL) ~65% low plasticity fines, ~35% fine to medium sand, brown. 42 43 SANDY CLAY/CLAYEY SAND 44 1609300 TREMONT CROSSING.GPJ 45 S10 (0-3"): WIDELY GRADED SAND WITH SILT AND GRAVEL 45 S10 24/12 33-14-(SW-SM) ~50% fine to coarse sand, ~40% fine to coarse gravel 14-14 46 up to 3/4 inch, ~10% nonplastic fines, brown. -30 47 S10 (3-12"): CLAYEY SAND (SC): ~50% fine to coarse sand, ~40% low plasticity fines, ~10% fine gravel up to 1/2 inch, light brown. 48 Driller notes change in wash

S11 (0-4"): Similar to S10 (3-12").

S11 (4-10"): WIDELY GRADED SAND WITH GRAVEL (SW), ~60% fine to coarse sand, ~35% fine to coarse gravel up to 1", ~5% non-plastic fines, brown.

NOTES: PROJECT NAME: Tremont Crossing

14/10

13-13-14-17

from gravel to clay.

49 50

51

52

53 54 55

WOBU

GEL

CITY/STATE: Boston, Massachusetts GEI PROJECT NUMBER: 1609300

SAND AND GRAVEL

LOCATION: See boring location plan GROUND SURFACE EL. (ft): __17 **DATE START/END:** 7/5/2016 - 7/5/2016 VERTICAL DATUM: Boston City Base DRILLING COMPANY: New England Boring

BORING B210 (OW)

PAGE 3 of 3

								PAGE 3 of 3	
	Sample Information		ame						
Elev. (ft)	(ft)	Sample No.	(ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and Rock Description	
+	- 56	S12	55 to 57	24/17	8-23-28- 27			S12: NARROWLY GRADED SAND WITH GRAVEL (SP) ~{ fine to medium sand, ~15% fine gravel, ~5% non-plastic fine	
-40	- 57		37					brown.	
1	- 58						긥		
1	- 59						BRAV		
	- 60						SAND AND GRAVEL		
	- 61	S13	60 to	24/18	10-12- 24-43		AND	S13: WIDELY GRADED SAND (SW), ~95% fine to coarse s ~5% non-plastic fines, brown.	sar
Ī			62		24 40		00		
	- 62								
Ť	- 63					Hard driving casing			
†	- 64		04.5			~62.5-63 feet.		C44 (0 FIV NADDOWLY CDADED CDAVEL WITH CLAV A	۸ ۸ ۱۲
	- 65 - 66	S14	64.5 to 66.5	24/15	52-55- 89-61	Rollerbit to 64.5, possible till or weathered bedrock.		S14 (0-5"): NARROWLY GRADED GRAVEL WITH CLAY A SAND (GP-GC) ~70% fine gravel up to 3/4 inch, ~20% fine coarse sand, ~10% low plasticity fines, brown.	to
-50 —	- 67					or weathered bedrock.		S14 (5-15"): CLAYEY GRAVEL WITH SAND (GC) ~60% fin coarse gravel up to 1 inch, ~20% fine to coarse sand, ~20%	ne t
+	- 68							plasticity fines, light gray. TILL.	
1	- 69						긭		
1	— 70								
	- 71	S15	70 to 71.3	15/4	26-34- 100/3"			S15: CLAYEY GRAVEL WITH SAND (GC) ~70% fine to coarge sand, ~15% low plasticity fines,	ars
	- 72		71.5					gray. TILL.	
	- 73								
Ī	- 74	C1	74 to	60/60	18	Coring Advancement		C1: CONGLOMERATE, hard, moderately to highly weathere light gray matrix, rounded clasts of varying size, purple, blue	ed,
Ī	— 75		79			(min./ft): 3-4.5-4-5.5-5	ļ	pink, joints along interface of larger clasts, fractures every 1. 1".	/4"
†	- 76			l `			ROCK		
-60	- 77						BEC		
+	- 78								
+	- 79							Bottom of boring at 79 ft. Installed well upon completion.	_
+	- 80								
+	- 81								
+	- 82								
+	- 83								
+	- 84								
1	- 85								
1	- 86								
IOT=5									_
NOTES:	:						CITY/	JECT NAME: Tremont Crossing /STATE: Boston, Massachusetts PROJECT NUMBER: 1609300	

Gro	undwater Well Installation Log	B210 (OW)			
Project	Tremont Crossing	GEI Proj. No. 1609300			
City / Town	Boston, MA	Location B210			
Client	FELDCO				
Contractor	New England Boring				
Driller	S. Cooley GEI Rep. K.Gleichauf	Install Date 7/6/2016			
Survey Datum:	Boston City Length of Surface Casing	above Ground 0			
Ground	Dist. Top of Surf. Casing to	o Top of Riser Pipe0.25'			
Elevation:	17' Type and Thickness of Se around Surface Casing	al Grout, 0.5'			
	ID of Surface Casing Type of Surface Casing	0.5'			
	Depth Bottom of Surface 0	Casing 0.8'			
	ID and OD of Riser Pipe	2", 2.5"			
	Type of Riser Pipe	PVC			
	Type of Backfill around Ris				
	Diameter of Borehole	4"			
	Depth Top of Seal	19'			
	Type of Seal Depth Bottom of Seal	Bentonite Chips 21'			
	Type of Seal Depth Bottom of Seal Depth Top of Screened Seal Type of Screen Description of Screen Ope	ection 22.9'			
	Type of Screen	Slotted Pipe			
	Description of Screen Ope ID and OD of Screened Se				
	Type of Filter Material	Silica Sand			
	Depth Bottom of Screened				
Date Time r pipe					
Date Time	Depth Bottom of Silt Trap	33'			
top ol	Depth Bottom of Filter Mat	erial 34'			
wole	Depth Top of Seal Type of Seal				
	Depth Bottom of Seal				
ance to	Type of Backfill below Filte	er Material Cuttings			
Distance	Bottom of Borehole	79'			
Notes: Instal	ed in B210 borehole	GEI			

BORING INFORMATION BORING LOCATION: See Plan GROUND SURFACE EL. (ft): 100.93 DATE START/END: 3/1/2017 - 3/2/2017 **B301** VERTICAL DATUM: on-site benchmark DRILLING COMPANY: Northern Drill Service, Inc. TOTAL DEPTH (ft): 22.0 DRILLER NAME: C. Beirholm LOGGED BY: J. Neff RIG TYPE: Mobile B-57 PAGE 1 of 2 DRILLING INFORMATION HAMMER TYPE: Automatic CASING I.D./O.D.: NA / NA CORE BARREL TYPE: NA AUGER I.D./O.D.: 4.25 inch / 7.625 inch DRILL ROD O.D.: NM CORE BARREL I.D./O.D. NA / NA DRILLING METHOD: Hollow Stem Auger WATER LEVEL DEPTHS (ft): Not measured ABBREVIATIONS: Pen. = Penetration Length S = Split Spoon Sample Qp = Pocket Penetrometer Strength NA. NM = Not Applicable. Not Measured C = Core Sample Sv = Pocket Torvane Shear Strength Rec. = Recovery Length Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector split spoon sampler. WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Depth Elev. Pen./ **Blows** Soil and Rock Description Sample Depth Field Test Data (ft) (ft) Rec. per 6 in. (ft) No. or RQD (in) S1: WIDELY GRADED SAND WITH SILT (SW-SM) ~90% fine S1 = 0.3 ppm24/6 S1 3-3-2-3 to 2 to coarse sand, ~10% nonplastic fines, dark brown, dry. Contains leaves. TOP SOIL. 100 S2(0-4") = 1.6 ppmS2(0-4"): SILTY SAND (SM) ~80% fine to coarse sand, ~15% S2 24/8 3-2-3-3 to 4 nonplastic fines, ~5% subangular gravel up to 1/4", dark grey, S2(4-8") = 1.4 ppmdry. FILL. S2(4-8"): WIDELY GRADED SAND (SW) ~100% fine to coarse sand, brown, moist. FILL. S3(0-15"): WIDELY GRADED SAND WITH SILT (SW-SM) S3(0-15") = 5.6 ppm5-7-5-6 S3 24/20 ~85% fine to coarse sand, ~10% nonplastic fines, ~5% subangular gravel up to 1/4", dark brown, dry. Contains coal to 6 S3(15-20") = 4.2 ppmclinkers, glass fragments, wood fragments. FILL. S3(15-20"): WIDELY GRADED SAND WITH GRAVEL (SW) ~75% fine to coarse sand, ~20% subangular gravel up to 1/2", ~5% nonplastic fines, brown, dry. FILL. 95 S4: SILTY SAND (SM) ~80% fine to coarse sand, ~20% S4 = 5.0 ppm5-4-2-4 S4 24/7 nonplastic fines, brown to dark brown, moist. FILL. S5 = 5.3 ppmS5: WIDELY GRADED SAND (SW) ~90% fine to coarse sand, 3-4-3-4 24/10 ~10% subrounded gravel up to 1", brown, dry. FILL.

NOTES: Bottom of boring at 22.0'. Installed monitoring well. Screened 11.0 - 21.0' below ground surface. Environmental samples collected: B301-S7(10-15") for VPH/EPH/VOCs, B301-COMP(0-3') for PCBs.

BORING LOGS.GPJ

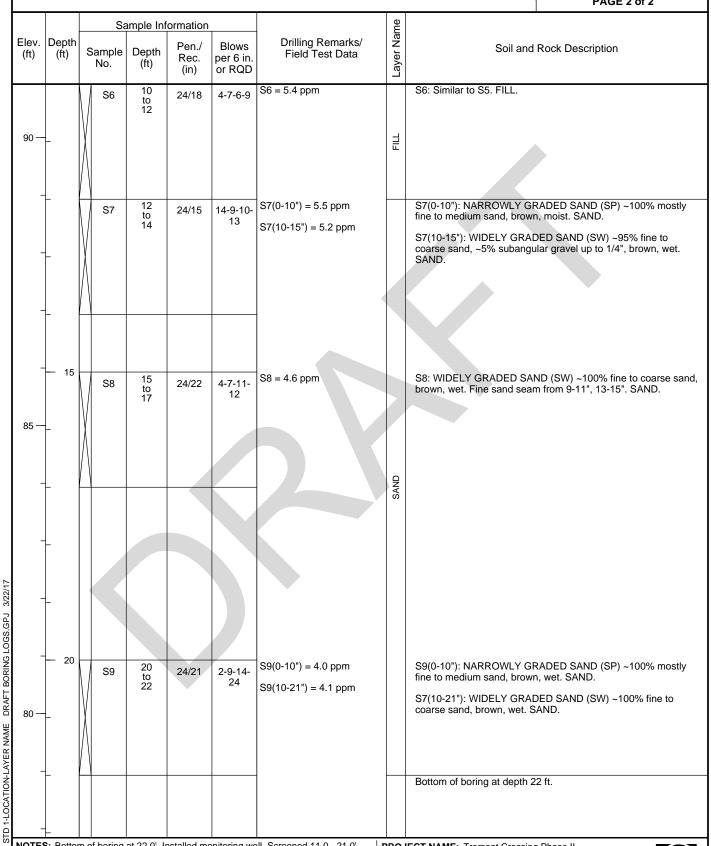
DRAFT

1-LOCATION-LAYER NAME

GE

PROJECT NAME: Tremont Crossing Phase II

GROUND SURFACE EL. (ft): 100.93


VERTICAL DATUM: on-site benchmark

DATE START/END: 3/1/2017 - 3/2/2017

DRILLING COMPANY: Northern Drill Service, Inc.

BORING B301

PAGE 2 of 2

NOTES: Bottom of boring at 22.0'. Installed monitoring well. Screened 11.0 - 21.0' below ground surface. Environmental samples collected: B301-S7(10-15") for VPH/EPH/VOCs, B301-COMP(0-3') for PCBs.

GEL

PROJECT NAME: Tremont Crossing Phase II

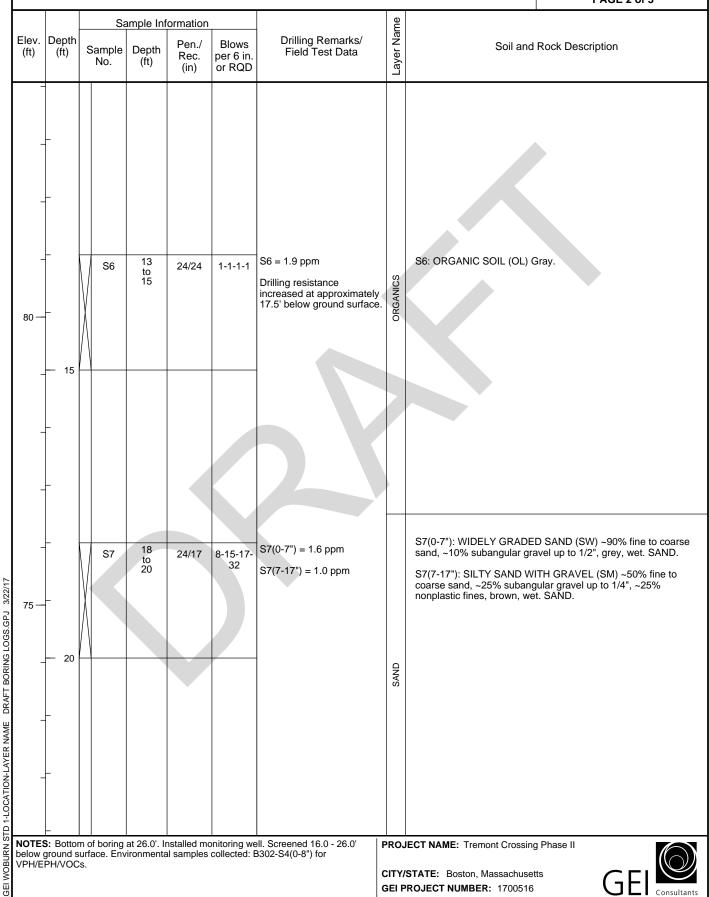
BORING INFORMATION BORING LOCATION: See Plan GROUND SURFACE EL. (ft): 94.08 **DATE START/END:** 2/27/2017 - 2/28/2017 **B302** VERTICAL DATUM: on-site benchmark DRILLING COMPANY: Northern Drill Service, Inc. TOTAL DEPTH (ft): 26.0 DRILLER NAME: C. Beirholm LOGGED BY: J. Neff RIG TYPE: Mobile B-57 PAGE 1 of 3 DRILLING INFORMATION HAMMER TYPE: Automatic CASING I.D./O.D.: NA / NA CORE BARREL TYPE: NA AUGER I.D./O.D.: 4.25 inch / 7.625 inch DRILL ROD O.D.: NM CORE BARREL I.D./O.D. NA / NA DRILLING METHOD: Hollow Stem Auger WATER LEVEL DEPTHS (ft): Not measured ABBREVIATIONS: Pen. = Penetration Length S = Split Spoon Sample Qp = Pocket Penetrometer Strength NA. NM = Not Applicable. Not Measured C = Core Sample Sv = Pocket Torvane Shear Strength Rec. = Recovery Length Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector split spoon sampler. WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Depth Elev. Pen./ **Blows** Soil and Rock Description Sample Depth (ft) (ft) Field Test Data Rec. per 6 in. No. (ft) or RQD (in) 6 " ASPHALT. S1: SILTY SAND WITH GRAVEL (SM) ~60% fine to coarse S1 = 1.3 ppm0.5 sand, ~20% subangular gravel up to 1/2", ~20% nonplastic S1 18/12 2-1-2 to 2 fines, brown, dry. FILL. S2(0-8") = 1.6 ppmS2(0-8"): Similar to S1. Contains coal clinkers. FILL. S2 24/15 2-2-2-2 to 4 S2(8-15"): SILTY SAND (SM) ~80% fine to coarse sand, ~20% S2(8-15") = 1.7 ppmnonplastic fines, light brown, dry. FILL. 90 S3(0-4") = 1.3 pppmS3(0-4"): Similar to S2(8-15"). FILL. S3 24/10 1-3-2-3 to 6 S3(4-10"): SILTY SAND (SM) ~65% fine to coarse sand, ~30% S3(4-10") = 1.8 ppmnonplastic fines, ~5% subrounded gravel up to 1/4", brown, moist. FILL. S4(0-8") = 1.6 ppmS4(0-8"): Similar to S3(4-10"). FILL. 4-2-2-1 S4 24/16 S4(8-16"): CLAYEY SAND (SC) ~50% fine to coarse sand, S4(8-16") = 1.6 ppm~40% nonplastic fines, ~10% subangular gravel up to 1/4", grey, moist. Dense. FILL. S5(0-10") = 1.6 ppmS5(0-10"): Similar to S4(8-16"). FILL. 1-1-1-1 24/24 to 10 S5(10-16") = 1.6 ppmS5(16-24") = 2.0 ppmS5(10-16"): ORGANIC SOIL (OL) Dark brown. Contains silt 85 ORGANICS lenses S5(16-24"): ORGANIC SOIL (OL) Brown. Contains roots. NOTES: Bottom of boring at 26.0'. Installed monitoring well. Screened 16.0 - 26.0' PROJECT NAME: Tremont Crossing Phase II below ground surface. Environmental samples collected: B302-S4(0-8") for VPH/EPH/VOCs. CITY/STATE: Boston, Massachusetts

GEI PROJECT NUMBER: 1700516

BORING LOGS.GPJ

DRAFT

1-LOCATION-LAYER NAME


GEI

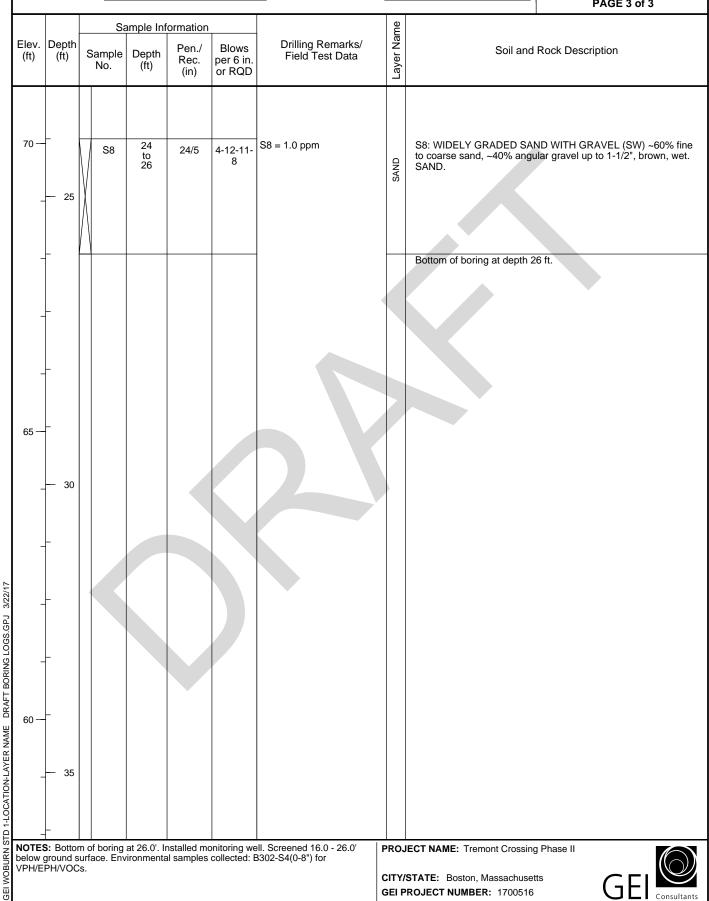
LOCATION: See Plan GROUND SURFACE EL. (ft): 94.08

VERTICAL DATUM: on-site benchmark

DATE START/END: 2/27/2017 - 2/28/2017 DRILLING COMPANY: Northern Drill Service, Inc. **BORING B302**

PAGE 2 of 3

below ground surface. Environmental samples collected: B302-S4(0-8") for VPH/EPH/VOCs.



LOCATION: See Plan GROUND SURFACE EL. (ft): 94.08

VERTICAL DATUM: on-site benchmark

DATE START/END: 2/27/2017 - 2/28/2017 DRILLING COMPANY: Northern Drill Service, Inc. **BORING B302**

PAGE 3 of 3

NOTES: Bottom of boring at 26.0'. Installed monitoring well. Screened 16.0 - 26.0' below ground surface. Environmental samples collected: B302-S4(0-8") for VPH/EPH/VOCs.

BORING INFORMATION BORING LOCATION: See Plan GROUND SURFACE EL. (ft): 97.53 DATE START/END: 2/28/2017 - 3/1/2017 **B303** VERTICAL DATUM: on-site benchmark DRILLING COMPANY: Northern Drill Service, Inc. TOTAL DEPTH (ft): 28.0 DRILLER NAME: C. Beirholm LOGGED BY: J. Neff RIG TYPE: Mobile B-57 PAGE 1 of 3 DRILLING INFORMATION HAMMER TYPE: Automatic CASING I.D./O.D.: NA / NA CORE BARREL TYPE: NA AUGER I.D./O.D.: 4.25 inch / 7.625 inch DRILL ROD O.D.: NM CORE BARREL I.D./O.D. NA / NA DRILLING METHOD: Hollow Stem Auger WATER LEVEL DEPTHS (ft): Not measured ABBREVIATIONS: Pen. = Penetration Length S = Split Spoon Sample Qp = Pocket Penetrometer Strength NA. NM = Not Applicable. Not Measured C = Core Sample Sv = Pocket Torvane Shear Strength Rec. = Recovery Length Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector split spoon sampler. WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Depth Elev. Pen./ **Blows** Soil and Rock Description Sample Depth (ft) (ft) Field Test Data Rec. per 6 in. (ft) No. or RQD (in) S1(0-8") = 0.1 ppmS1(0-8"): SILTY SAND (SM) ~85% fine to medium sand, ~15% 24/18 S1 4-3-5-5 to 2 nonplastic fines, dark brown, dry. Contains roots. TOP SOIL. S1(8-18") = 0.1 ppmS1(8-18"): WIDELY GRADED SAND WITH SILT (SW-SM) ~80% fine to coarse sand, ~10% subangular gravel up to 3/4", ~10% nonplastic fines, dry. Contains coal clinkers, brick fragments. FILL. S2(0-6") = 0.1 ppmS2(0-6"): Similar to S1(8-18"). Subangular gravel up to 1/2". 24/18 3-5-7-7 to 4 FILL S2(6-18") = 0.0 ppm95 S2(6-18"): CLAYEY SAND (SC) ~60% fine to coarse sand, ~40% nonplastic fines, grey, dry. Dense. FILL. S3 = 0.0 ppmS3: Similar to S2(6-18"). FILL. S3 12/12 2-4to 5 Refusal Refusal at 5.0' below ground surface. Moved drill rig approximately 3.0 feet 5 east. Augered to 5.0' bgs S4(0-13"): Similar to S2(6-18"). FILL. S4 24/20 2-5-17and drove spoon from 5.0 to 18 7.0 feet bgs. S4(13-20"): WIDELY GRADED SAND WITH SILT AND GRAVEL (SW-SM) ~60% fine to coarse sand, ~30% S4(0-13") = 0.1 ppmsubangular gravel up to 1/2", ~10% nonplastic fines, dark brown, dry. Contains brick fragments, coal clinkers. FILL. S4(13-20") = 0.1 ppmS5 = 0.2 ppmS5: Similar to S4(13-20"). Crushed gravel from 0-7". FILL. S₅ 24/12 37-14to 9 14-16 90 S6 = 0.2 ppmS6: SILTY SAND WITH GRAVEL (SM) ~60% fine to coarse 24/10 S₆ 11-16sand, ~25% nonplastic fines, ~15% subangular gravel up to to 11 13-16 1/2", brown, dry. FILL.

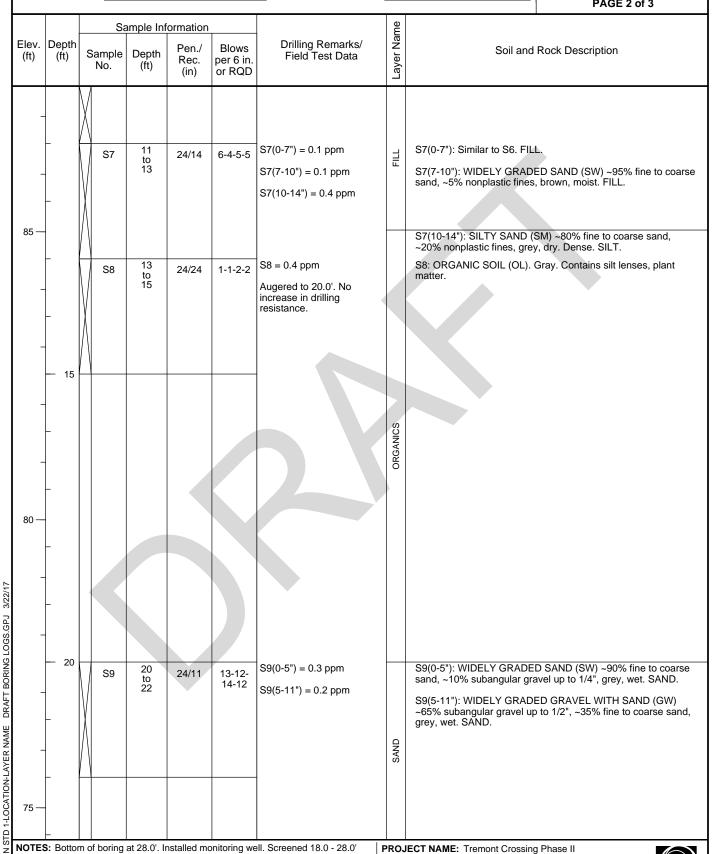
NOTES: Bottom of boring at 28.0'. Installed monitoring well. Screened 18.0 - 28.0' below ground surface. Environmental samples collected: B303-S9(0-5") for VPH/EPH/VOCs.

BORING LOGS.GPJ

DRAFT

GEI

PROJECT NAME: Tremont Crossing Phase II


GROUND SURFACE EL. (ft): 97.53 VERTICAL DATUM: on-site benchmark

DATE START/END: 2/28/2017 - 3/1/2017

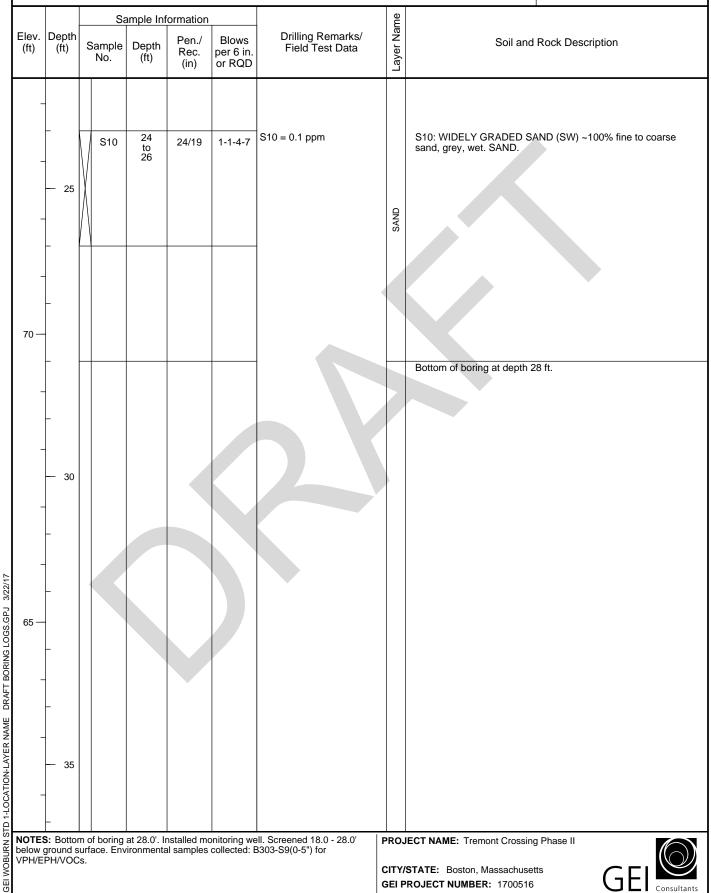
DRILLING COMPANY: Northern Drill Service, Inc.

BORING B303

PAGE 2 of 3

below ground surface. Environmental samples collected: B303-S9(0-5") for VPH/EPH/VOCs.

GEL


LOCATION: See Plan GROUND SURFACE EL. (ft): 97.53 DATE START/END: 2/28/2017 - 3/1/2017

VERTICAL DATUM: on-site benchmark

DRILLING COMPANY: Northern Drill Service, Inc.

BORING B303

PAGE 3 of 3

NOTES: Bottom of boring at 28.0'. Installed monitoring well. Screened 18.0 - 28.0' below ground surface. Environmental samples collected: B303-S9(0-5") for VPH/EPH/VOCs.

PROJECT NAME: Tremont Crossing Phase II

BORING INFORMATION BORING LOCATION: See Plan GROUND SURFACE EL. (ft): 97.61 DATE START/END: 3/2/2017 - 3/2/2017 **B305** VERTICAL DATUM: on-site benchmark DRILLING COMPANY: Northern Drill Service, Inc. TOTAL DEPTH (ft): 22.0 DRILLER NAME: C. Beirholm LOGGED BY: J. Neff RIG TYPE: Mobile B-57 PAGE 1 of 2 DRILLING INFORMATION HAMMER TYPE: Automatic CASING I.D./O.D.: NA / NA CORE BARREL TYPE: NA AUGER I.D./O.D.: 4.25 inch / 7.625 inch DRILL ROD O.D.: NM CORE BARREL I.D./O.D. NA / NA DRILLING METHOD: Hollow Stem Auger WATER LEVEL DEPTHS (ft): Not measured ABBREVIATIONS: Pen. = Penetration Length S = Split Spoon Sample Qp = Pocket Penetrometer Strength NA. NM = Not Applicable. Not Measured C = Core Sample Sv = Pocket Torvane Shear Strength Rec. = Recovery Length Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector split spoon sampler. WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Depth Elev. Pen./ **Blows** Soil and Rock Description Sample Depth (ft) (ft) Field Test Data Rec. per 6 in. No. (ft) or RQD (in) 6" ASPHALT. S1(0-6"): WIDELY GRADED SAND (SW) ~80% fine to coarse sand, ~15% subangular gravel up to 1/2", ~5% nonplastic fines, S1(0-6") = 4.4 ppm0.5 S1 18/14 8-8-5 to 2 brown, dry. Contains brick fragments. FILL. S1(6-14") = 5.2 ppmS1(6-14"): SILTY SAND WITH GRAVEL (SM) ~60% fine to coarse sand, ~20% subangular gravel up to 3/4", ~20% nonplastic fines, brown, dry. FILL. S2(0-4"): WIDELY GRADED SAND WITH SILT(SW-SM) ~80% S2(0-4") = 5.6 ppm24/15 7-16-25 to 4 fine to coarse sand, ~10% subangular gravel up to 1/4", ~10% 23 nonplastic fines, brown, dry. Contains brick fragments. FILL. S2(4-15") = 5.1 ppm95 S2(4-15"): NARROWLY GRADED SAND WITH SILT (SP-SM) ~90% fine to medium sand, ~10% nonplastic fines, brown, dry. Cobble from 9-15". FILL. S3(0-9"): WIDELY GRADED SAND (SW) ~100% fine to coarse S3(0-9") = 5.7 ppmS3 24/16 5-6-8-13 to 6 sand, brown, dry. FILL. S3(9-12") = 5.6 ppmS3(9-12"): NARROWLY GRADED SAND WITH SILT (SP-SM) S3(12-16") = 5.8 ppm~90% fine to medium sand, ~10% nonplastic fines, brown, dry. Η 5 FILL. S3(12-16"): Similar to S3(0-9"). FILL. S4: WIDELY GRADED SAND WITH GRAVEL (SW) ~70% fine S4 = 4.8 ppm17-18-S4 24/19 to coarse sand, ~25% subangular gravel up to 1/2", ~5% 20-23 nonplastic fines, brown, dry. FILL. 90 S5 = 5.1 ppmS5: WIDELY GRADED SAND WITH GRAVEL (SW) ~60% fine 27-20to 10 to coarse sand, ~40% subangular gravel up to 1", brown, dry. 26-22 No recovery. Drove 3" spoon. Recovered 12".

NOTES: Bottom of boring at 22.0'. Installed monitoring well. Screened 11.0 - 21.0' below ground surface. Environmental samples collected: B305-S7(9-13") for VPH/EPH/VOCs.

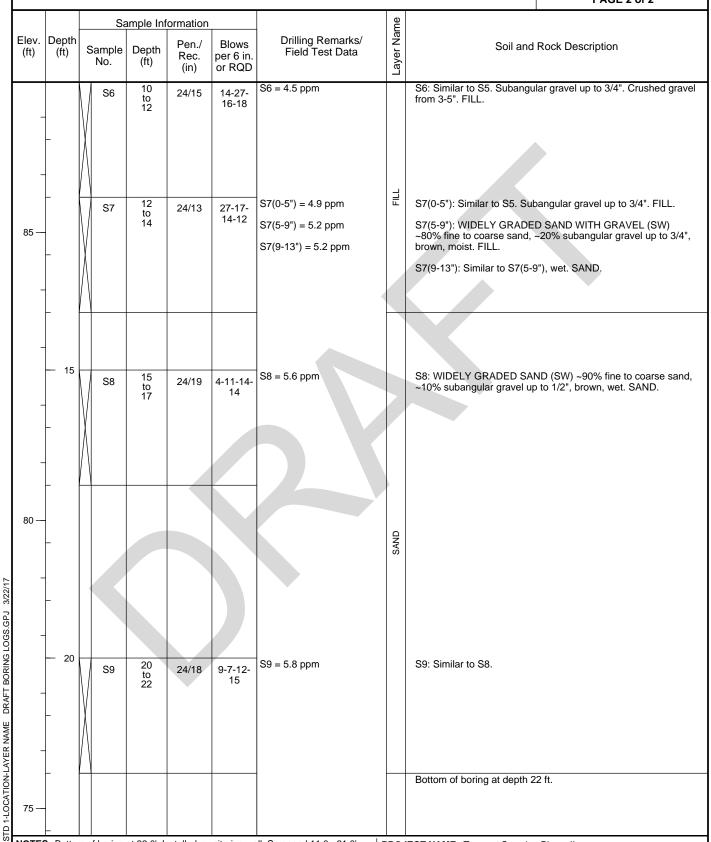
BORING LOGS.GPJ

DRAFT

1-LOCATION-LAYER NAME

GE

PROJECT NAME: Tremont Crossing Phase II


GROUND SURFACE EL. (ft): 97.61
VERTICAL DATUM: on-site benchmark

DATE START/END: 3/2/2017 - 3/2/2017

DRILLING COMPANY: Northern Drill Service, Inc.

BORING B305

PAGE 2 of 2

NOTES: Bottom of boring at 22.0'. Installed monitoring well. Screened 11.0 - 21.0' below ground surface. Environmental samples collected: B305-S7(9-13") for VPH/EPH/VOCs.

GEL

PROJECT NAME: Tremont Crossing Phase II

BORING INFORMATION BORING LOCATION: See Plan GROUND SURFACE EL. (ft): 98.65 DATE START/END: 3/3/2017 - 3/3/2017 **B306** VERTICAL DATUM: on-site benchmark DRILLING COMPANY: Northern Drill Service, Inc. TOTAL DEPTH (ft): 22.0 DRILLER NAME: C. Beirholm LOGGED BY: J. Neff RIG TYPE: Mobile B-57 PAGE 1 of 2 DRILLING INFORMATION HAMMER TYPE: Automatic CASING I.D./O.D.: NA / NA CORE BARREL TYPE: NA AUGER I.D./O.D.: 4.25 inch / 7.625 inch DRILL ROD O.D.: NM CORE BARREL I.D./O.D. NA / NA DRILLING METHOD: Hollow Stem Auger WATER LEVEL DEPTHS (ft): Not measured ABBREVIATIONS: Pen. = Penetration Length S = Split Spoon Sample Qp = Pocket Penetrometer Strength NA. NM = Not Applicable. Not Measured Rec. = Recovery Length C = Core Sample Sv = Pocket Torvane Shear Strength Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector split spoon sampler. WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Depth Elev. Pen./ **Blows** Soil and Rock Description Sample Depth Field Test Data (ft) (ft) Rec. per 6 in. No. (ft) or RQD (in) S1 = 4.2 ppmS1: WIDELY GRADED SAND WITH SILT (SW-SM) ~90% fine 24/5 S1 1-4-6-7 to 2 to coarse sand, ~10% nonplastic fines, dark brown, dry. Contains brick fragments. TOP SOIL. S2: SAND WITH GRAVEL ~60% fine to coarse sand, ~20% S2 = 5.3 ppm24/7 7-13-11to 4 low plasticity fines, ~20% subangular gravel up to 3/4", brown 11 to grey, dry. Contains brick fragments, brick layer from 5-7". 95 S3: SANDY CLAY (SM) ~70% low plasticity fines, ~20% fine to S3 = 5.4 ppmS3 24/13 2-3-3-6 coarse sand, ~10% subangular gravel up to 1/2", grey, dry. to 6 Dense. Contains brick fragments. FILL. Η S4(0-5") = 5.3 ppmS4(0-5"): Similar to S3. S4 24/10 9-4-6-2 S4(5-10"): WIDELY GRADED SAND WITH SILT AND GRAVEL S4(5-10") = 6.1 ppm(SW-SM) -70% fine to coarse sand, ~15% subangular gravel up to 1/2", ~15% nonplastic fines, brown, dry. Contains brick fragments. FILL. S5 = 6.5 ppmS5: Similar to S4(5-10"), moist. Contains brick fragments. FILL. 3-3-4-4 90

NOTES: Bottom of boring at 22.0'. Installed monitoring well. Screened 10.0 - 20.0' below ground surface. Environmental samples collected: B306-S7(8-14") for VPH/EPH/VOCs.

BORING LOGS.GPJ

DRAFT

1-LOCATION-LAYER NAME

GE

PROJECT NAME: Tremont Crossing Phase II

GROUND SURFACE EL. (ft): 98.65 VERTICAL DATUM: on-site benchmark **DATE START/END:** 3/3/2017 - 3/3/2017

DRILLING COMPANY: Northern Drill Service, Inc.

BORING B306

PAGE 2 of 2

Elev. Depth (ft) S	Sample No. (f	Pen./Rec. (in) Pen./Rec. 2 24/6 24/0 4 24/0	Blows per 6 in. or RQD 2-4-2-2	Drilling Remarks/ Field Test Data S6 = 5.3 ppm S7(0-8") = 5.0 ppm	Layer Name	S6: WIDELY GRADED SAN	Rock Description D WITH SILT AND GRAVEL se sand, ~20% nonplastic fines, to 1/4", brown, moist. FILL.
- (ft) S	No. (1	Pith Rec. (in) 0 24/6 2 24/0	per 6 in. or RQD 2-4-2-2	Field Test Data S6 = 5.3 ppm	Layer Na	S6: WIDELY GRADED SAN (SW-SM) ~70% fine to coars	D WITH SILT AND GRAVEL sand, ~20% nonplastic fines,
85 —	S7 1 t	2 24/0		."		(SW-SM) ~70% fine to coars	se sand, ~20% nonplastic fines,
85 —	31 t	0 24/0	5-8-9-5	S7(0-8") = 5.0 ppm			
				S7(8-14") = 6.3 ppm No recovery. Drove 3" spoon. Recovered 14".	FILL	S7(0-8"): WIDELY GRADED (GW) ~60% subangular grav coarse sand, ~15% nonplast S7(8-14"): Similar to S7(0-8"	tic fines, brown, moist. FILL.
- - 15 - -	S8 1 t t 1	5 0 7	10-18- 23-19	S8(0-8") = 5.5 ppm S8(8-20") = 6.4 ppm		sand, ~10% subrounded gra S8(8-20"): WIDELY GRADE	SAND (SW) ~90% fine to coarse vel up to 1/4", brown, wet. SAND. D GRAVEL WITH SAND (GW) to 3/4", ~35% fine to coarse sand.
80 —					SAND & GRAVEL		
_ 20	S9 2 t 2	20 24/24	10-9-9-	S9(0-5") = 4.6 ppm S9(5-10") = 4.0 ppm S9(10-24") = 4.3 ppm	SILT	sand, brown, wet. SAND. S9(5-10"): NARROWLY GRA ~70% fine to coarse sand, ~3	ADED SAND WITH SILT (SP-SM) 30% nonplastic fines, brown, mois M) ~60% nonplastic fines, ~40%

BORING INFORMATION BORING LOCATION: See Plan GROUND SURFACE EL. (ft): 97.50 **DATE START/END:** 2/27/2017 - 2/27/2017 **B307** VERTICAL DATUM: on-site benchmark DRILLING COMPANY: Northern Drill Service, Inc. TOTAL DEPTH (ft): 22.0 DRILLER NAME: C. Beirholm LOGGED BY: J. Neff RIG TYPE: Mobile B-57 PAGE 1 of 2 DRILLING INFORMATION HAMMER TYPE: Automatic CASING I.D./O.D.: NA / NA CORE BARREL TYPE: NA AUGER I.D./O.D.: 4.25 inch / 7.625 inch DRILL ROD O.D.: NM CORE BARREL I.D./O.D. NA / NA DRILLING METHOD: Hollow Stem Auger WATER LEVEL DEPTHS (ft): Not measured ABBREVIATIONS: Pen. = Penetration Length S = Split Spoon Sample Qp = Pocket Penetrometer Strength NA. NM = Not Applicable. Not Measured Rec. = Recovery Length C = Core Sample Sv = Pocket Torvane Shear Strength Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector split spoon sampler. WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Depth Elev. Pen./ **Blows** Soil and Rock Description Sample Depth (ft) (ft) Field Test Data Rec. per 6 in. No. (ft) or RQD (in) 6" ASPHALT. S1: WIDELY GRADED SAND WITH GRAVEL (SW) ~70% fine S1 = 5.5 ppm0.5 to coarse sand, ~25% subangular gravel up to 1/2", ~5% S1 18/11 12-8-6 to 2 nonplastic fines, brown, dry. FILL. S2(0-4"): Similar to S1. S2(0-4") = 6.3 ppm24/13 11-15-9to 4 8 S2(4-13") = 8.4 ppmS2(4-13"): WIDELY GRADED GRAVEL WITH SAND (GW) 95 ~75% subangular gravel up to 1-1/2", ~20% fine to coarse sand, ~5% nonplastic fines, red to black, dry. Contains coal ash, brick fragments. Brick from 4-7", 9-11", Wood fragments from 11-13". FILL. S3: SILTY SAND WITH GRAVEL (SM) ~50% fine to coarse S3 = 5.5 ppmS3 24/14 4-7-9-8 sand, ~35% subangular gravel up to 3/4", ~15% nonplastic fines, brown, moist. Brick from 0-4", brick fragments to 6 throughout. FILL. Η 5 S4 = 5.6 ppmS4(0-5"): Similar to S3. 44-55-S4 24/19 33-24 S4(5-19"): Weathered concrete. FILL. 90 S5 = 5.9 ppmS5: WIDELY GRADED SAND WITH GRAVEL (SW) ~65% fine 24/15 17-25to coarse sand, ~30% subangular gravel up to 3/4", ~5% 14-17 nonplastic fines, brown, dry. Weathered gravel from 6-11".

NOTES: Bottom of boring at 22.0'. Installed monitoring well. Screened 11.0 - 21.0' below ground surface. Environmental samples collected: B307-S7(6-18") for VPH/EPH/VOCs.

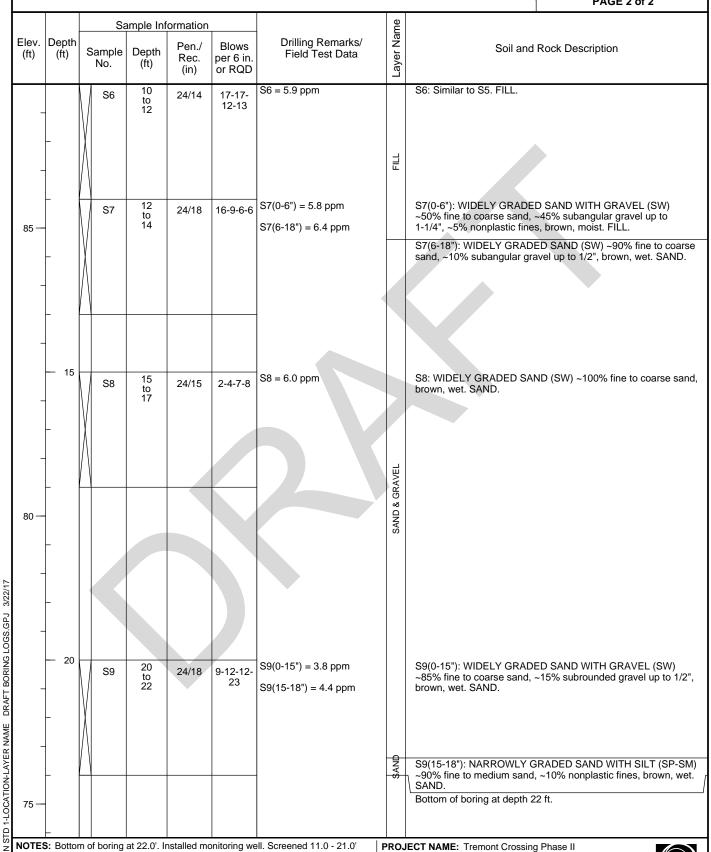
BORING LOGS.GPJ

DRAFT

GE

PROJECT NAME: Tremont Crossing Phase II

GROUND SURFACE EL. (ft): 97.50


VERTICAL DATUM: on-site benchmark

DATE START/END: 2/27/2017 - 2/27/2017

DRILLING COMPANY: Northern Drill Service, Inc.

BORING B307

PAGE 2 of 2

NOTES: Bottom of boring at 22.0'. Installed monitoring well. Screened 11.0 - 21.0 below ground surface. Environmental samples collected: B307-S7(6-18") for VPH/EPH/VOCs.

GEL

PROJECT NAME: Tremont Crossing Phase II

BORING INFORMATION BORING LOCATION: See Plan GROUND SURFACE EL. (ft): 97.73 **DATE START/END:** 3/1/2017 - 3/1/2017 **B308** VERTICAL DATUM: on-site benchmark DRILLING COMPANY: Northern Drill Service, Inc. TOTAL DEPTH (ft): 22.0 DRILLER NAME: C. Beirholm LOGGED BY: J. Neff RIG TYPE: Mobile B-57 PAGE 1 of 2 DRILLING INFORMATION HAMMER TYPE: Automatic CASING I.D./O.D.: NA / NA CORE BARREL TYPE: NA AUGER I.D./O.D.: 4.25 inch / 7.625 inch DRILL ROD O.D.: NM CORE BARREL I.D./O.D. NA / NA DRILLING METHOD: Hollow Stem Auger WATER LEVEL DEPTHS (ft): Not measured ABBREVIATIONS: Pen. = Penetration Length S = Split Spoon Sample Qp = Pocket Penetrometer Strength NA. NM = Not Applicable. Not Measured C = Core Sample Sv = Pocket Torvane Shear Strength Rec. = Recovery Length Blows per 6 in.: 140-lb hammer falling RQD = Rock Quality Designation = Length of Sound Cores>4 in / Pen.,% U = Undisturbed Sample LL = Liquid Limit 30 inches to drive a 2-inch-O.D. SC = Sonic Core PI = Plasticity Index WOR = Weight of Rods DP = Direct Push Sample PID = Photoionization Detector split spoon sampler. WOH = Weight of Hammer HSA = Hollow-Stem Auger I.D./O.D. = Inside Diameter/Outside Diameter Sample Information Layer Name Drilling Remarks/ Depth Elev. Pen / **Blows** Soil and Rock Description Sample Depth (ft) (ft) Field Test Data Rec. per 6 in. No. (ft) or RQD (in) S1(0-6") = 0.0 ppmS1(0-6"): WIDELY GRADED SAND WITH SILT (SW-SM) ~90% 24/19 S1 3-11-5-8 to 2 fine to coarse sand, ~10% nonplastic fines, dark brown, dry. S1(6-15") = 4.9 ppmContains roots, leaves. TOP SOIL. S1(15-19") = 6.3 ppmS1(6-15"): WIDELY GRADED SAND (SW) ~90% fine to coarse sand, ~5% subangular gravel up to 1/2", ~5% nonplastic fines, cark brown to black. Contains coal clinkers. S1(15-19"): WIDELY GRADED SAND WITH SILT AND GRAVEL (SP-SM) \sim 60% fine to coarse sand, \sim 30% subangular gravel up to 3/4", \sim 10% nonplastic fines, brown, dry. Dense. S2(0-12") = 2.0 ppm24/18 12-19-Contains brick fragments, coal clinkers. to 4 S2(0-12"): SILTY SAND WITH GRAVEL (SM) ~60% fine to 32-29 S2(12-18") = 55.0 ppmcoarse sand, ~25% nonplastic fines, ~15% subangular gravel up to 1/2", olive, dry. Contains brick fragments, coal ash. Brick layer from 7-12". FILL. 95 S2(12-18"): WIDELY GRADED SAND WITH GRAVEL (SW) ~75% fine to coarse sand, ~20% subangular gravel up to 3/4", ~5% nonplastic fines, dark brown to black, dry. Contains brick fragments, coal ash, FILL. 긆 S3: Similar to S2(6-18"). Brick layer from 7-10", wood S3 = 6.9 ppmS3 24/13 9-7-5-4 to 6 fragments from 11-13". FILL. 5 S4: WIDELY GRADED SAND WITH GRAVEL (SW) ~60% fine S4 = 12.7 ppmS4 24/13 8-8-8-3 to coarse sand, ~35% subangular gravel up to 1-1/2", ~5% nonplastic fines, dark brown to brown, dry. Contains wood chips from 3-7", weathered concrete and brick from 7-12", brick layer from 12-13". FILL. 90 -S5(0-7") = 6.9 ppmS5(0-7"): SILTY SAND (SM) ~70% fine to coarse sand, ~30% 9-12-17-24/18 to 10 nonplastic fines, olive, dry. SAND. 16 S5(7-18") = 5.7 ppmSAND & GRAVEL S5(7-18"): WIDELY GRADED SAND WITH GRAVEL (SW) ~65% fine to coarse sand, ~30% subangular gravel up to 1-1/4", ~5% nonplastic fines, brown, dry. SAND.

NOTES: Bottom of boring at 22.0'. Installed monitoring well. Screened 11.0 - 21.0' below ground surface. Environmental samples collected: B308-S2(0-18") for VOCs, B308-S7(0-10") for VOCs, B-308-COMP(0-8') and B308-COMP(8-22') for full disposal suite.

BORING LOGS.GPJ

DRAFT

1-LOCATION-LAYER NAME

GEI

PROJECT NAME: Tremont Crossing Phase II

GROUND SURFACE EL. (ft): 97.73 VERTICAL DATUM: on-site benchmark DATE START/END: 3/1/2017 - 3/1/2017

DRILLING COMPANY: Northern Drill Service, Inc.

BORING B308

PAGE 2 of 2

	S	ample Inf	formation			me		
Elev. Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and	Rock Description
-	S6	10 to 12	24/17	10-12- 17-16	S6 = 5.5 ppm		~75% fine to coarse sand, ~	ID WITH SILT AND GRAVEL (SW -15% subangular gravel up to 1", vn, dry. Silt seam from 3-6". SAND
- - 85 —	\$7	12 to 14	24/15	35-8-17- 12	S7(0-10") = 3.9 ppm S7(10-15") = 2.1 ppm		~80% fine to coarse sand, ~ ~5% nonplastic fines, brown	ED SAND WITH GRAVEL (SW) -15% subangular gravel up to 3/4", n, dry. SAND. DED GRAVEL WITH SAND (GW)
_	S8	14	24/15	17-14-	S8(0-4") = 2.1 ppm		~60% angular gravel up to brown, wet. GRAVEL.	I-1/4", ~40% fine to coarse sand, D SAND WITH SILT (SW-SM) ~85
_ — 15	58	16	24/15	16-11	S8(4-15") = 1.6 ppm	VEL	fine to coarse sand, ~10% r gravel up to 1/4", brown, we S8(4-15"): WIDELY GRADE	nonplastic fines, ~5% subangular et. SAND. ED SAND WITH SILT AND GRAVE se sand, ~30% subangular gravel
- - -	S9	16 to 18	24/19	23-21- 21-18	S9(0-7") = 2.8 ppm S9(7-19") = 1.6 ppm	SAND & GRAVEL	~10% subangular gravel up S9(7-19"): WIDELY GRADE	D SAND (SW) ~90% fine to coarse to 1/2", brown, wet. SAND. ED SAND WITH GRAVEL (SW) 40% subangular gravel up to 1",
80 —	S10	18 to 20	24/19	14-17- 14-12	S10 = 2.7 ppm			ND WITH SILT AND GRAVEL se sand, ~40% subangular gravel nes, brown, wet. SAND.
	S11	20 to 22	24/19	28-23- 24-16	S11(0-5") = 2.0 ppm S11(5-19") = 1.1 ppm		coarse sand, brown, wet. S. S11(5-19"): WIDELY GRAD	DED SAND WITH GRAVEL (SW) -35% subangular gravel up to
75—							Bottom of boring at depth 2:	2 ft.

		TEST P	IT LOG	T101
Project City/Town Client Contractor Equipmen Operator Weather	Bos Feld Nor t/Reach Joh D. E	mont Crossing ton, MA dco thern Drill Serv n Deere 310S. Eldiberti s F, Sunny and	PG. 1 OF 1 Location See Plan Ground El.	
Depth	Sample No. and Type	PID Jar Headspace (ppm)	Soil Des	scription
		0.0 ppm	(0 -10"): WIDELY GRADED SAND WITH sand, ~10% nonplastic fines, ~10% subar Contains roots. TOP SOIL.	
2.0		0.0 ppm	(10-32"): WIDELY GRADED SAND WITH sand, ~35% subangular gravel up to 6", ~ bricks, brick fragments, concrete fragmen	5% nonplastic fines, brown, dry. Contains
		0.0 ppm	(32-42"): SILTY SAND WITH GRAVEL (S	
4.0		0.1 ppm	fragments. FILL. (42-90"): WIDELY GRADED SAND WITH sand, ~30% subangular gravel up to 6", ~	
<u> </u>			Contains bricks, brick fragments, concrete	
6.0				_
		0.0 ppm	(90-96"): WIDELY GRADED SAND (SW) moist. FILL.	~100% fine to coarse sand, brown,
			Bottom of test pit at 8.0'.	
<u>Notes</u> :	Test pit backf	illed with excava	ated soil upon completion.	Pit Dimensions (ft)
				length
				depth 8.0

		TEST P	IT LOG	TP103
Project City/Town Client Contractor Equipmen Operator Weather	Bos Feld Nor t/Reach Joh D. E	mont Crossing ston, MA dco thern Drill Serv n Deere 310S. Eldiberti s F, Sunny and	PG. 1 OF 1 Location See Plan Ground El. Datum GEI Proj. No. 1700516 Date 2/26/2017	
Depth	Sample No. and Type	PID Jar Headspace (ppm)	Soil Des	scription
 1.0		0.1 ppm	(0 -12"): WIDELY GRADED SAND WITH sand, ~10% nonplastic fines, ~10% subar FILL.	
2.0		0. 0 ppm	(12-24"): WIDELY GRADED SAND (SW) subrounded gravel up to 1/2", ~5% nonpla fragments. FILL.	
3.0		0.1 ppm	(24-36"): SILTY SAND (SM) ~80% fine to brown, dry. Contains brick fragments, con	
		0. 0 ppm	(36-42"): SILTY SAND (SM) ~60% fine to grey, moist. Dense. FILL.	coarse sand, ~40% nonplastic fines,
6.0		0. 0 ppm	(42-85"): WIDELY GRADED SAND WITH sand, ~40% subangular gravel and cobble brick fragments, concrete. FILL.	
7.0 — — 8.0			Encountered 15- 18" concrete pipe approximation provided to southwest. Bottom of test pit at 7.25'.	ximately 7.25 feet below ground surface,
Notes:	Test pit backf	illed with excava	ated soil upon completion.	Pit Dimensions (ft)
				width 4.0 depth 7.25

		TEST P	IT LOG	TP104
Project City/Town Client Contracto Equipmen Operator Weather	Bos Feld r Nor nt/Reach Joh D. E	mont Crossing ston, MA dco thern Drill Serv n Deere 310S. Eldiberti s F, Sunny and	vices, Inc. J GEI Rep J. Neff	PG. 1 OF1 Location See Plan Ground El.
Depth	Sample No. and Type	PID Jar Headspace (ppm)	Soil De	scription
1.0		0.0 ppm		SILT (SW-SM) ~80% fine to coarse sand,
2.0		0.0 ppm	(8-14"): SILTY SAND (SM) ~80% fine to subangular gravel up to 1/4", brown, dry.	coarse sand, ~15% nonplastic fines, ~5% Contains brick fragments. FILL.
3.0		0.0 ppm	(14-90"): WIDELY GRADED SAND WITH fine to coarse sand, ~35% subangular gr nonplastic fines. Contains bricks, brick fra	avel and cobbles up to 12", ~10%
4.0			Observed a competent brick layer in norting ground surface.	_
7.0		0.0 ppm	(90-96"): SILTY SAND (SM) ~65% fine to ~10% subrounded gravel up to 1/2", brov	
			Bottom of test pit at 8.0'.	
<u>Notes</u> :	Observed a c	concrete foundat	ated soil upon completion. ion approximately 5.0' northeast of low ground surface.	Pit Dimensions (ft) length 9.0 width 3.0 depth 8.0

		TEST P	IT LOG	TP105
Project City/Town Client Contractor Equipmen Operator Weather	Bos Feld r Nori t/Reach John D. E	mont Crossing ton, MA dco thern Drill Serv n Deere 310S. Eldiberti s F, Sunny and	vices, Inc. JGEI RepJ. Neff	PG. 1 OF 1 Location See Plan Ground El.
Depth	Sample No. and Type	PID Jar Headspace (ppm)	Soil Des	scription
 1.0		1.0 ppm	(0 -18"): SILTY SAND WITH GRAVEL (S subangular gravel up to 6", ~20% nonplas bricks, brick fragments. FILL.	
2.0		0.2 ppm	(18-60"): WIDELY GRADED SAND WITH sand, ~45% subangular gravel and cobbl dry. Contains bricks, brick fragments, con	es up to 24", ~5% nonplastic fines, brown,
3.0				
				_
5.0				_
- 6.0 - 7.0		0.0 ppm	(60-96"): WIDELY GRADED GRAVEL W up to 42", fine to coarse sand, ~30% suba fines, brown, dry. Contains bricks, brick fr	
			Encountered concrete blocks throughout,	maximum approximately 3.5' x 3.0' x 1.0'.
Notes:	Tost nit backf	illed with execus	ated soil upon completion.	
110163.	rest bit nacki	med with exceve	жей зон ирон сотпрешон.	Pit Dimensions (ft) length 12.0 width 3.5
				depth 10.0

		TEST P	IT LOG	TP105
Project City/Town Client Contracto Equipmen Operator Weather	Bos Feld Nor t/Reach Joh D. E	mont Crossing ton, MA dco thern Drill Serv n Deere 310S. Eldiberti s F, Sunny and	vices, Inc. JGEI Rep J. Neff	PG. 2 OF 2 Location See Plan Ground El. Datum GEI Proj. No. 1700516 Date 2/26/2017
Depth	Sample No. and Type	PID Jar Headspace (ppm)	Soil Des	scription
9.0 10.0 11.0		0.0 ppm	(96 -120"): WIDELY GRADED SAND WIT fine to coarse sand, ~20% subangular gradry. Contains weathered concrete, concrete Bottom of test pit at 10.0'.	avel, ~ 10% nonplastic fines, dark brown,
	Test pit backf	illed with excava	ated soil upon completion.	
				Pit Dimensions (ft) length 12.0 width 3.5 depth 10.0

		TEST P	IT LOG	TP106		
Project City/Town Client Contracto Equipmen Operator Weather	Bos Feld Nor t/Reach Joh D. E	mont Crossing ston, MA dco thern Drill Sen n Deere 310S. Eldiberti s F, Sunny and	Location Wices, Inc. Ground El. Datum GEI Rep J. Neff GEI Proj. No.			
Depth	Sample No. and Type	PID Jar Headspace (ppm)	Soil Description			
		0.0 ppm	(0 -4"): WIDELY GRADED SAND WITH ~10% nonplastic fines, ~10% subangular Contains roots, leaves. TOP SOIL.	SILT (SW-SM) ~85% fine to coarse sand, r gravel up to 1/4", dark brown, dry		
 1.0		0.0 ppm	(4-12"): WIDELY GRADED SAND WITH sand, ~30% subangular gravel up to 1", ~			
		0.0 ppm	(12-24"): WIDELY GRADED SAND (SW) subrounded gravel up to 1/2", ~5% nonpl			
_ 2.0				_		
- - -			Bottom of test pit at 2.0'. Encountered 2" running north to south.	steel pipe at 2.0' below ground surface, ———————————————————————————————————		
Notes:	Test pit backf	illed with excava	ated soil upon completion.	Pit Dimensions (ft) length 7.0 width 3.0 depth 2.0		

		TEST P	IT LOG	TP107
Project City/Town Client Contractor Equipment Operator Weather	Bos Feld r Nori t/Reach John D. E	mont Crossing ton, MA dco thern Drill Serv n Deere 310S. Eldiberti s F, Sunny and	vices, Inc. J GEI Rep J. Neff	PG. 1 OF 2 Location See Plan Ground El. Datum GEI Proj. No. 1700516 Date 2/26/2017
Depth	Sample No. and Type	PID Jar Headspace (ppm)	Soil Des	scription
1.0		0.1 ppm	(0 -12"): WIDELY GRADED SAND WITH to coarse sand, ~15% nonplastic fines, ~'dry. FILL.	SILT AND GRAVEL (SW-SM) ~70% fine 5% subangular gravel up to 1", brown,
		0.2 ppm	(12-18"): WIDELY GRADED GRAVEL W gravel up to 2", ~45% fine to coarse sand	
		0.5 ppm	(18-60"): WIDELY GRADED SAND WITH fine to coarse sand, ~40% subangular grafragments, bricks, concrete. FILL.	
			Encountered a 2" steel pipe approximatel northeast to southwest. Encountered a 1" ground surface parallel to steel pipe.	y 4.0 feet below ground surface, running copper pipe approximately 5.0 feet below
6.0			Encountered a competent brick layer app in eastern sidewall. Competent brick to m	
7.0		0.0 ppm	(60-66"): WIDELY GRADED SAND (SW) FILL.	~100% fine to coarse sand, brown, dry. — —
Notes:	Test pit backf	illed with excava	ated soil upon completion.	Pit Dimensions (ft)
				length 4.0 width 4.0 depth 10.0

		TEST P	IT LOG	TP107
Project City/Town Client Contracto Equipmen Operator Weather	Bos Feld Nor t/Reach Joh D. E	thern Drill Sen n Deere 310S. Idiberti F, Sunny and	vices, Inc. J GEI Rep J. Neff	PG. 2 OF 2 Location See Plan Ground El. Datum GEI Proj. No. 1700516 Date 2/26/2017
Depth	Sample No. and Type	PID Jar Headspace (ppm)	Soil Des	scription
9.0 — — —		0.2 ppm	(66 -120"): WIDELY GRADED SAND WIT sand, ~40% subangular gravel up to 1", I	
			Bottom of test pit at 10.0'.	
				_ _ _
-				
	Test nit hackf	illed with excave	ated soil upon completion.	
<u>113103</u> .	. est pit backi	med with excave	жа зап арап озтрівшот.	Pit Dimensions (ft) length 14.0 width 4.0 depth 10.0

		TEST P	IT LOG	TF	P108
Project City/Town Client Contractor Equipmen Operator Weather	Bos Feld Nor t/Reach Joh D. E	mont Crossing ston, MA dco thern Drill Serv in Deere 310S. Eldiberti s F, Sunny and	vices, Inc. J GEI Rep J. Neff	PG. Location Ground El. Datum GEI Proj. No. Date	1 OF 1 See Plan 1700516 2/26/2017
Depth	Sample No. and Type	PID Jar Headspace (ppm)	Soil De	scription	
 1.0		1.2 ppm	(0 -12"): WIDELY GRADED SAND WITH sand, ~10% nonplastic fines, ~10% suba Contains roots. TOP SOIL.		
2.0				,	_
		0.0 ppm	(12-90"): WIDELY GRADED SAND WITH coarse sand, ~35% subangular gravel up moist. Contains bricks, brick fragments, o	to 36", ~10% nonpla	astic fines, brown,
<u> </u>			2.0 feet below ground surface. FILL. Encounterd a 4.0' x 3.0' x 1.0' block of co		
<u> </u>					_
6.0					_
		0.0 ppm	(90-96"): SILTY SAND (SM) ~60% fine to ~10% subangular gravel up to 2", olive, r		nonplastic fines,
			Bottom of test pit at 8.0'.		
Notes:	Test pit backf	I filled with excava	ated soil upon completion.	width	GEI Consultants

Gro	oundwater W	ell Installation Log	B(M	1W)301
Project	Tremont Crossing P	hase II ESA	GEI Proj. No.	1700516
-	Boston		_	See Plan
Client	Feldco		_	_
Contractor	Northern Drill Service	e, Inc.		
Driller	C. Beirholm	GEI Rep. J. Neff	Install Date	3/1/2017
Survey Datum:	NA /	Length of Surface Casing	above Ground	NA
Ground Elevation:	100.93'	Dist. Top of Surf. Casing to	Top of Riser Pipe	NM
Elevation:	100.93	Type and Thickness of Searound Surface Casing	al _	6" Concrete
		ID of Surface Casing		4.0"
		Type of Surface Casing		Flush Mount Road Box
	[Depth Bottom of Surface C	casing _	9.0"
		ID and OD of Riser Pipe		2.0/2.25"
		Type of Riser Pipe		Sch. 40 PVC
		Type of Backfill around Ris	ser Pipe _	Cuttings
		Diameter of Borehole	_	4.25"
		Depth Top of Seal	_	8.0'
	Scale)	Type of Seal Depth Bottom of Seal	_	Med. Bentonite Chips
	t c c c c c c c c c	Depth Bottom of Seal	_	10.0'
	Conditions (Not to	Depth Top of Screened Se	ection _	11.0'
	ditio	Type of Screen	<u>-</u>	Sch. 40 PVC
	Con	Description of Screen Ope ID and OD of Screened Se	_	0.010 Slotted 2.0/2.25"
	General Soil	Type of Filter Material	_	No. 1 Sand
0 0		Depth Bottom of Screened	Section _	21.0'
Date Time riser pipe		Depth Bottom of Silt Trap	_	21.25'
of		Depth Bottom of Filter Mat	erial _	NA
below top		Depth Top of Seal	_	NA
		Type of Seal	_	NA NA
o to ▼		Depth Bottom of Seal	_	NA NA
Distance to		Type of Backfill below Filte	r Material	Blowback
Dist	<u> </u>	Bottom of Borehole	<u>-</u>	22.0'
<u>Notes:</u>				GEI

Gro	oundwater Well Insta	llation Log	B(l	MW)302
Project	Tremont Crossing Phase II ESA		GEI Proj. No	. 1700516
City / Town	Boston	Location	See Plan	
Client	Feldco			
Contractor	Northern Drill Service, Inc.			
Driller	C. Beirholm GEI R	ep. J. Neff	Install Date	2/27/2017
Survey				
Datum:	NA	Length of Surface Casing a	bove Ground	NA
Ground	04.00	Dist. Top of Surf. Casing to	Top of Riser Pipe	e NM
Elevation:	94.08'	Type and Thickness of Sea around Surface Casing	d	6" Concrete
		ID of Surface Casing		4.0"
		Type of Surface Casing		Flush Mount Road Box
		Depth Bottom of Surface C	asing	9.0"
		ID and OD of Riser Pipe		2.0/2.25"
		Type of Riser Pipe		Sch. 40 PVC
		Type of Backfill around Rise	er Pipe	Cuttings
		Diameter of Borehole		4.25"
	°	Depth Top of Seal		13.0'
	Scale)	Type of Seal Depth Bottom of Seal		Med. Bentonite Chips 15.0'
		Deput Bottom of Sear		13.0
	Conditions (Not to	Depth Top of Screened Sec	ction	16.0'
	diffigure 1	Type of Screen		Sch. 40 PVC
	ou o	Description of Screen Oper ID and OD of Screened Sec	-	0.010 Slotted 2.0/2.25"
	General Soil (I ib and Ob or screened sec	Cuon	2.0/2.25
		Type of Filter Material		No. 1 Sand
Date Time r pipe		Depth Bottom of Screened	Section	26.0'
Date Time of riser pipe		Depth Bottom of Silt Trap		26.25'
op of ri		Depth Bottom of Filter Mate	erial	NA NA
below top		Depth Top of Seal		NA
		Type of Seal Depth Bottom of Seal		NA NA
ot e				
Distance to		Type of Backfill below Filter	r Material	Blowback
Dis		Bottom of Borehole		26.25'
Notes:				GEL

Gro	oundwater Well Insta	Ilation Log	B(I	MW)303
Project	Tremont Crossing Phase II ESA		GEI Proj. No	. 1700516
City / Town	Boston	Location	See Plan	
Client	Feldco	_		
Contractor	Northern Drill Service, Inc.	-		
Driller		l ep. J. Neff	Install Date	2/28/2017
Survey				
Datum: _	NA /	Length of Surface Casing a	bove Ground	NA
Ground Elevation:	97.53'	Dist. Top of Surf. Casing to	Top of Riser Pipe	e NM
		Type and Thickness of Sea around Surface Casing	ı	6" Concrete
		ID of Surface Casing		4.0"
		Type of Surface Casing		Flush Mount Road Box
	$ \ \ \ \ \ \ \ \ \ \$	Depth Bottom of Surface Ca	asing	9.0"
		ID and OD of Riser Pipe		2.0/2.25"
		Type of Riser Pipe		Sch. 40 PVC
		Type of Backfill around Rise	er Pipe	Cuttings
		Diameter of Borehole		4.25"
		Depth Top of Seal		15.0'
	Scale)	Type of Seal		Med. Bentonite Chips
		Depth Bottom of Seal		17.0'
	Conditions (Not to	Depth Top of Screened Sec	ction	18.0'
		Type of Screen		Sch. 40 PVC
	S	Description of Screen Open ID and OD of Screened Sec	_	0.010 Slotted 2.0/2.25"
	General Soil		Silon	2.0/2.23
	l ^o l	Type of Filter Material		No. 1 Sand
Date Time r pipe		Depth Bottom of Screened	Section	28.0'
Date Time of riser pipe		Depth Bottom of Silt Trap		28.25'
op of r		Depth Bottom of Filter Mate	erial	NA
below top		Depth Top of Seal		NA
		Type of Seal Depth Bottom of Seal		NA NA
ot 6				
Distance to		Type of Backfill below Filter	· Material	Blowback
Dis		Bottom of Borehole		28.25'
Notes:				GEL

Gro	undwater W	ell Installation Log	B(MW)305
Project	Tremont Crossing P	hase II ESA	GEI Proj. No. 1700516
-	Boston	11000 11 20/1	Location See Plan
Client	Feldco		<u> </u>
Contractor	Northern Drill Service	ee, Inc.	
Driller	C. Beirholm	GEI Rep. J. Neff	Install Date 3/2/2017
Survey Datum:	NA /	Length of Surface Casing	above Ground NA
Ground Elevation:	97.61'	Dist. Top of Surf. Casing to	Top of Riser Pipe NM
Elevation.	97.01	Type and Thickness of Sea around Surface Casing	al 6" Concrete
		ID of Surface Casing	4.0"
		Type of Surface Casing	Flush Mount Road Box
	[Depth Bottom of Surface C	Casing 9.0"
		ID and OD of Riser Pipe	2.0/2.25"
		Type of Riser Pipe	Sch. 40 PVC
	;	Type of Backfill around Ris	ser Pipe Cuttings
		Diameter of Borehole	4.25"
		Depth Top of Seal	8.0'
	Scale)	Type of Seal Depth Bottom of Seal	Med. Bentonite Chips 10.0'
	ot b		
	Conditions (Not to	Depth Top of Screened Se	ection 11.0'
	ditio	Type of Screen	Sch. 40 PVC
	Con	Description of Screen Ope ID and OD of Screened Se	
	General Soil	Type of Filter Material	No. 1 Sand
		Depth Bottom of Screened	Section 21.0'
Date Time riser pipe		Depth Bottom of Silt Trap	21.25'
b		Depth Bottom of Filter Mat	erial NA
below top		Depth Top of Seal	NA
		Type of Seal	NA NA
to		Depth Bottom of Seal	NA
Distance to		Type of Backfill below Filte	r Material Blowback
Dist	<u> </u>	Bottom of Borehole	22.0'
Notes:			GEI

Gro	oundwater Well Insta	llation Log	B(I	MW)306
Project	Tremont Crossing Phase II ESA		GEI Proj. No	. 1700516
City / Town	Boston	Location	See Plan	
Client	Feldco			
Contractor	Northern Drill Service, Inc.		-	
Driller		ep. J. Neff	Install Date	3/3/2017
Survey				
Datum: _	NA /	Length of Surface Casing a	bove Ground	NA
Ground Elevation:	98.65'	Dist. Top of Surf. Casing to	Top of Riser Pipe	e NM
		Type and Thickness of Sea around Surface Casing	ı	6" Concrete
		ID of Surface Casing		4.0"
		Type of Surface Casing		Flush Mount Road Box
		Depth Bottom of Surface Ca	asing	9.0"
		ID and OD of Riser Pipe		2.0/2.25"
		Type of Riser Pipe		Sch. 40 PVC
		Type of Backfill around Rise	er Pipe	Cuttings
		Diameter of Borehole		4.25"
		Depth Top of Seal		7.0'
	Scale)	Type of Seal		Med. Bentonite Chips
		Depth Bottom of Seal		9.0'
	Conditions (Not to	Depth Top of Screened Sec	ction	10.0'
	i i i	Type of Screen		Sch. 40 PVC
		Description of Screen Open	_	0.010 Slotted
	ioo	ID and OD of Screened Sec	ction	2.0/2.25"
	General	Type of Filter Material		No. 1 Sand
p e te		Depth Bottom of Screened	Section	20.0'
Date Time of riser pipe		Depth Bottom of Silt Trap		20.25'
ob of r		Depth Bottom of Filter Mate	erial	NA
below top		Depth Top of Seal		NA
		Type of Seal		NA NA
요		Depth Bottom of Seal		NA
Distance to		Type of Backfill below Filter	· Material	Blowback
Dist		Bottom of Borehole		22.0'
Notes:				GEL

Gro	oundwater Well Insta	allation Log	B(I	MW)307
Project	Tremont Crossing Phase II ESA		GEI Proj. No	. 1700516
City / Town	Boston	Location	See Plan	
Client	Feldco			
Contractor	Northern Drill Service, Inc.			_
Driller	C. Beirholm GEI F	Rep. J. Neff	Install Date	2/27/2017
Survey	1			
Datum:	NA	Length of Surface Casing a	bove Ground	NA
Ground	07.50	Dist. Top of Surf. Casing to	Top of Riser Pipe	e NM
Elevation:	97.50'	Type and Thickness of Sea around Surface Casing	ı	6" Concrete
		ID of Surface Casing		4.0"
		Type of Surface Casing		Flush Mount Road Box
		Depth Bottom of Surface Ca	asing	9.0"
		ID and OD of Riser Pipe		2.0/2.25"
		Type of Riser Pipe		Sch. 40 PVC
		Type of Backfill around Rise	er Pipe	Cuttings
		Diameter of Borehole		4.25"
		Depth Top of Seal		8.0'
	Scale)	Type of Seal Depth Bottom of Seal		Med. Bentonite Chips 10.0'
	Conditions (Not to	Depth Top of Screened Sec	ction	11.0'
	difficient of the second of th	Type of Screen		Sch. 40 PVC
		Description of Screen Oper ID and OD of Screened Sec	_	0.010 Slotted 2.0/2.25"
	General Soil	· ·	Silon	
	o i i i i	Type of Filter Material		No. 1 Sand
Date Time r pipe		Depth Bottom of Screened	Section	21.0'
Date Time of riser pipe		Depth Bottom of Silt Trap		21.25'
op of ri	K-	Depth Bottom of Filter Mate	erial	NA
below top		Depth Top of Seal		NA
		Type of Seal Depth Bottom of Seal		NA NA
o to	;;			
Distance to		Type of Backfill below Filter	· Material	Blowback
Dis		Bottom of Borehole		22.0'
<u>Notes:</u>				GEL

Groundwater Well Installation Log			B(MW)308	
Project	Tremont Crossing	Phase II ESA	GEI Proj. No. 1700516	
-	Boston		Location See Plan	
Client	Feldco			
Contractor	Northern Drill Serv	ice, Inc.		
Driller	C. Beirholm	GEI Rep. J. Neff	Install Date 3/1/2017	
Survey Datum:	NA	Length of Surface Casing	above Ground NA	
Ground Elevation:	97.73'	Dist. Top of Surf. Casing to	Top of Riser Pipe NM	
Elevation.	91.13	Type and Thickness of Sea around Surface Casing	al 6" Concrete	
		ID of Surface Casing	4.0"	
		Type of Surface Casing	Flush Mount Road Box	
		Depth Bottom of Surface C	Casing 9.0"	
		ID and OD of Riser Pipe	2.0/2.25"	
		Type of Riser Pipe	Sch. 40 PVC	
		Type of Backfill around Ris	ser Pipe Cuttings	
		Diameter of Borehole	4.25"	
		Depth Top of Seal	8.0'	
	Scale)	Type of Seal Depth Bottom of Seal	Med. Bentonite Chips 10.0'	
	to	Deptil Bottom of Sear		
	Conditions (Not to	Depth Top of Screened Se	ection 11.0'	
	ditio	Type of Screen	Sch. 40 PVC	
	Con	Description of Screen Ope ID and OD of Screened Se		
	General Soil	Type of Filter Material	No. 1 Sand	
		Depth Bottom of Screened		
Date Time riser pipe				
T		Depth Bottom of Silt Trap	21.25'	
top of		Depth Bottom of Filter Mat	erial NA NA	
below top		Depth Top of Seal	NA NA	
o pe		Type of Seal Depth Bottom of Seal	NA NA	
Distance to		Type of Backfill below Filte		
Dista		Bottom of Borehole	22.0'	
Notes:			GEI	

MassDEP RTN 3-15009 and RTN 3-36365 DRAFT Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Tremont and Whittier Streets, Boston (Roxbury), Massachusetts January 11, 2021

Appendix F

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L1706654

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/10/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING

Project Number: 1700516 Lab Number: L1706654

Report Date: 03/10/17

Collection Date/Time Alpha Sample ID Sample Location **Receive Date Client ID** Matrix 1700516-B205 (OW) WATER BOSTON, MA 03/02/17 10:15 03/03/17 L1706654-01

Project Name: TREMONT CROSSING Lab Number: L1706654

Project Number: 1700516 Report Date: 03/10/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status				
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES			
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO			
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES			

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: TREMONT CROSSING Lab Number: L1706654

Project Number: 1700516 Report Date: 03/10/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: TREMONT CROSSING Lab Number: L1706654

Project Number: 1700516 Report Date: 03/10/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1706654-01, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0015), as well as the average response factor for 1,4-dioxane

The continuing calibration standard, associated with L1706654-01, is outside the acceptance criteria for n-Butylbenzene; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/10/17

WHO COMPS Melissa Cripps

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706654

Report Date: 03/10/17

Lab ID: L1706654-01

Client ID: 1700516-B205 (OW)

Sample Location: BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 03/06/17 14:24

Analyst: MM Date Collected: 03/02/17 10:15

Date Received: 03/03/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

L1706654

Project Name: Lab Number: TREMONT CROSSING

Project Number: Report Date: 1700516 03/10/17

SAMPLE RESULTS

Lab ID: L1706654-01 Date Collected: 03/02/17 10:15

1700516-B205 (OW) Client ID: Date Received: 03/03/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Campio Locationi Door ort, mrt			1 1014 1 10	۲.	rior opcomed	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab)					
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1

Project Name: TREMONT CROSSING Lab Number: L1706654

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706654-01 Date Collected: 03/02/17 10:15

Client ID: 1700516-B205 (OW) Date Received: 03/03/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough Lab							
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	85		70-130	
Dibromofluoromethane	94		70-130	

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/06/17 06:37

Analyst: MM

Parameter	Result	Qualifier Units	RL	MDL	
MCP Volatile Organics -	Westborough Lab for	r sample(s): 01	Batch: WG983	125-5	
Methylene chloride	ND	ug/l	2.0		
1,1-Dichloroethane	ND	ug/l	1.0		
Chloroform	ND /	ug/l	1.0		
Carbon tetrachloride	ND	ug/l	1.0		
1,2-Dichloropropane	ND	ug/l	1.0		
Dibromochloromethane	ND	ug/I	1.0		
1,1,2-Trichloroethane	ND	ug/I	1.0		
Tetrachloroethene	ND	ug/l	1.0		
Chlorobenzene	ND	ug/I	1.0		
Trichlorofluoromethane	ND	ug/I	2.0		
1,2-Dichloroethane	ND	ug/l	1.0		
1,1,1-Trichloroethane	ND	ug/l	1.0		
Bromodichloromethane	ND	ug/l	1.0		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,3-Dichloropropene, Total	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.0		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	1.0		
Ethylbenzene	ND	ug/l	1.0		
Chloromethane	ND	ug/l	2.0		
Bromomethane	ND	ug/l	2.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	2.0		
1,1-Dichloroethene	ND	ug/l	1.0		
trans-1,2-Dichloroethene	ND	ug/l	1.0		
Trichloroethene	ND	ug/l	1.0		

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/06/17 06:37

Analyst: MM

arameter	Result	Qualifier Units	RL	MDL
CP Volatile Organics -	Westborough Lab for	sample(s): 01	Batch: WG983	125-5
1,2-Dichlorobenzene	ND	ug/l	1.0	
1,3-Dichlorobenzene	ND	ug/l	1.0	
1,4-Dichlorobenzene	ND	ug/l	1.0	
Methyl tert butyl ether	ND	ug/l	2.0	
p/m-Xylene	ND	ug/l	2.0	
o-Xylene	ND	ug/l	1.0	
Xylene (Total)	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
1,2-Dichloroethene (total)	ND	ug/l	1.0	
Dibromomethane	ND	ug/l	2.0	
1,2,3-Trichloropropane	ND	ug/l	2.0	
Styrene	ND	ug/l	1.0	
Dichlorodifluoromethane	ND	ug/l	2.0	
Acetone	ND	ug/l	5.0	
Carbon disulfide	ND	ug/l	2.0	
2-Butanone	ND	ug/l	5.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	
2-Hexanone	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.0	
Tetrahydrofuran	ND	ug/l	2.0	
2,2-Dichloropropane	ND	ug/l	2.0	
1,2-Dibromoethane	ND	ug/l	2.0	
1,3-Dichloropropane	ND	ug/l	2.0	
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0	
Bromobenzene	ND	ug/l	2.0	
n-Butylbenzene	ND	ug/l	2.0	
sec-Butylbenzene	ND	ug/l	2.0	
tert-Butylbenzene	ND	ug/l	2.0	
o-Chlorotoluene	ND	ug/l	2.0	

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/06/17 06:37

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westbo	rough Lab for	sample(s):	01 E	Batch: WG98312	25-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

	Acceptance						
Surrogate	%Recovery	%Recovery Qualifier Criteria					
1,2-Dichloroethane-d4	96		70-130				
Toluene-d8	100		70-130				
4-Bromofluorobenzene	94		70-130				
Dibromofluoromethane	94		70-130				

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706654

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated sample	e(s): 01 Ba	atch: WG983125	-3 WG9831	25-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	100		110		70-130	10	20	
Chloroform	99		96		70-130	3	20	
Carbon tetrachloride	90		90		70-130	0	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	100		96		70-130	4	20	
1,1,2-Trichloroethane	110		100		70-130	10	20	
Tetrachloroethene	110		100		70-130	10	20	
Chlorobenzene	110		100		70-130	10	20	
Trichlorofluoromethane	97		94		70-130	3	20	
1,2-Dichloroethane	100		100		70-130	0	20	
1,1,1-Trichloroethane	95		95		70-130	0	20	
Bromodichloromethane	99		98		70-130	1	20	
trans-1,3-Dichloropropene	110		100		70-130	10	20	
cis-1,3-Dichloropropene	99		99		70-130	0	20	
1,1-Dichloropropene	97		99		70-130	2	20	
Bromoform	98		100		70-130	2	20	
1,1,2,2-Tetrachloroethane	110		110		70-130	0	20	
Benzene	100		100		70-130	0	20	
Toluene	110		100		70-130	10	20	
Ethylbenzene	99		94		70-130	5	20	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706654

Parameter	LCS %Recovery	Qual	LCSD %Recovery 0	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab A	Associated samp	le(s): 01	Batch: WG983125-3	WG983125-4		
Chloromethane	100		100	70-130	0	20
Bromomethane	110		110	70-130	0	20
Vinyl chloride	100		100	70-130	0	20
Chloroethane	110		120	70-130	9	20
1,1-Dichloroethene	100		100	70-130	0	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	98		94	70-130	4	20
1,2-Dichlorobenzene	100		98	70-130	2	20
1,3-Dichlorobenzene	98		99	70-130	1	20
1,4-Dichlorobenzene	99		99	70-130	0	20
Methyl tert butyl ether	98		98	70-130	0	20
p/m-Xylene	105		100	70-130	5	20
o-Xylene	95		95	70-130	0	20
cis-1,2-Dichloroethene	99		97	70-130	2	20
Dibromomethane	98		99	70-130	1	20
1,2,3-Trichloropropane	110		100	70-130	10	20
Styrene	90		80	70-130	12	20
Dichlorodifluoromethane	88		88	70-130	0	20
Acetone	94		100	70-130	6	20
Carbon disulfide	100		100	70-130	0	20
2-Butanone	100		100	70-130	0	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706654

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD		RPD imits
MCP Volatile Organics - Westborough Lab	Associated sample	e(s): 01	Batch: WG983125	5-3 WG983125-4			
4-Methyl-2-pentanone	96		94	70-130	2		20
2-Hexanone	91		82	70-130	10		20
Bromochloromethane	100		100	70-130	0		20
Tetrahydrofuran	97		100	70-130	3		20
2,2-Dichloropropane	100		99	70-130	1		20
1,2-Dibromoethane	110		100	70-130	10		20
1,3-Dichloropropane	110		100	70-130	10		20
1,1,1,2-Tetrachloroethane	100		97	70-130	3		20
Bromobenzene	100		98	70-130	2		20
n-Butylbenzene	120		96	70-130	22	Q	20
sec-Butylbenzene	110		110	70-130	0		20
tert-Butylbenzene	110		100	70-130	10		20
o-Chlorotoluene	96		95	70-130	1		20
p-Chlorotoluene	95		97	70-130	2		20
1,2-Dibromo-3-chloropropane	98		98	70-130	0		20
Hexachlorobutadiene	110		99	70-130	11		20
Isopropylbenzene	100		100	70-130	0		20
p-Isopropyltoluene	110		100	70-130	10		20
Naphthalene	110		110	70-130	0		20
n-Propylbenzene	100		100	70-130	0		20
1,2,3-Trichlorobenzene	110		110	70-130	0		20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706654

Report Date:

03/10/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab A	Associated samp	le(s): 01	Batch: WG983125	i-3 WG98	3125-4			
1,2,4-Trichlorobenzene	100		100		70-130	0		20
1,3,5-Trimethylbenzene	98		91		70-130	7		20
1,2,4-Trimethylbenzene	100		99		70-130	1		20
Ethyl ether	100		100		70-130	0		20
Isopropyl Ether	100		100		70-130	0		20
Ethyl-Tert-Butyl-Ether	98		99		70-130	1		20
Tertiary-Amyl Methyl Ether	99		96		70-130	3		20
1,4-Dioxane	96		94		70-130	2		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
100:11		00	70.400
1,2-Dichloroethane-d4	96	98	70-130
Toluene-d8	103	101	70-130
4-Bromofluorobenzene	101	103	70-130
Dibromofluoromethane	99	100	70-130

PETROLEUM HYDROCARBONS

Project Name: Lab Number: TREMONT CROSSING

Project Number: 1700516

L1706654

Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706654-01

Client ID: 1700516-B205 (OW)

Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 100, VPH-04-1.1 Analytical Date: 03/07/17 23:35

Analyst: KD Date Collected: Date Received: 03/02/17 10:15

03/03/17

Field Prep: Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Qualifier **Parameter** Result Units RLMDL **Dilution Factor** Volatile Petroleum Hydrocarbons - Westborough Lab C5-C8 Aliphatics ND ug/l 50.0 --1 ND 1 C9-C12 Aliphatics ug/l 50.0 ND C9-C10 Aromatics ug/l 50.0 1 C5-C8 Aliphatics, Adjusted ND ug/l 50.0 1 --C9-C12 Aliphatics, Adjusted ND 50.0 1 ug/l --ND Benzene ug/l 1 2.00 Toluene ND ug/l 2.00 1 ND 1 Ethylbenzene ug/l 2.00 __ p/m-Xylene ND ug/l 2.00 --1 o-Xylene ND 2.00 1 ug/l Methyl tert butyl ether ND 3.00 1 ug/l Naphthalene ND 4.00 1 ug/l --

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	84		70-130	
2,5-Dibromotoluene-FID	94		70-130	

Project Name: TREMONT CROSSING Lab Number: L1706654

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706654-01 Date Collected: 03/02/17 10:15

Client ID: 1700516-B205 (OW) Date Received: 03/03/17

Sample Location: BOSTON, MA Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/06/17 19:02

Analytical Date: 03/08/17 19:39 M.S. Analytical Date: 03/08/17 17:47 Cleanup Method1: EPH-04-1
Analyst: EK M.S. Analyst: DV Cleanup Date1: 03/08/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lab						
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	0.400		1
2-Methylnaphthalene	ND		ug/l	0.400		1
Acenaphthylene	ND		ug/l	0.400		1
Acenaphthene	ND		ug/l	0.400		1
Fluorene	ND		ug/l	0.400		1
Phenanthrene	ND		ug/l	0.400		1
Anthracene	ND		ug/l	0.400		1
Fluoranthene	ND		ug/l	0.400		1
Pyrene	ND		ug/l	0.400		1
Benzo(a)anthracene	ND		ug/l	0.400		1
Chrysene	ND		ug/l	0.400		1
Benzo(b)fluoranthene	ND		ug/l	0.400		1
Benzo(k)fluoranthene	ND		ug/l	0.400		1
Benzo(a)pyrene	ND		ug/l	0.200		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		1
Dibenzo(a,h)anthracene	ND		ug/l	0.400		1
Benzo(ghi)perylene	ND		ug/l	0.400		1

Project Name: TREMONT CROSSING Lab Number: L1706654

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706654-01 Date Collected: 03/02/17 10:15

Client ID: 1700516-B205 (OW) Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	79		40-140	
o-Terphenyl	76		40-140	
2-Fluorobiphenyl	79		40-140	
2-Bromonaphthalene	81		40-140	
O-Terphenyl-MS	84		40-140	

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/10/17

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 98,EPH-04-1.1

Extraction Method: EPA 3510C Analytical Date: 03/08/17 17:46 M.S. Analytical Date: 03/08/17 16:33 03/06/17 19:02 Extraction Date:

Analyst: M.S. Analyst: DV SR EPH-04-1 Cleanup Method: Cleanup Date: 03/08/17

Parameter	Result	Qualif	ier	Units	RL	MDL
EPH w/MS Targets - Westborough	Lab for sam	ple(s):	01	Batch:	WG983278-1	
C9-C18 Aliphatics	ND			ug/l	100	
C19-C36 Aliphatics	ND			ug/l	100	
C11-C22 Aromatics	ND			ug/l	100	
C11-C22 Aromatics, Adjusted	ND			ug/l	100	
Naphthalene	ND			ug/l	0.400	
2-Methylnaphthalene	ND			ug/l	0.400	
Acenaphthylene	ND			ug/l	0.400	
Acenaphthene	ND			ug/l	0.400	
Fluorene	ND			ug/l	0.400	
Phenanthrene	ND			ug/l	0.400	
Anthracene	ND			ug/l	0.400	
Fluoranthene	ND			ug/l	0.400	
Pyrene	ND			ug/l	0.400	
Benzo(a)anthracene	ND			ug/l	0.400	
Chrysene	ND			ug/l	0.400	
Benzo(b)fluoranthene	ND			ug/l	0.400	
Benzo(k)fluoranthene	ND			ug/l	0.400	
Benzo(a)pyrene	ND			ug/l	0.200	
Indeno(1,2,3-cd)Pyrene	ND			ug/l	0.400	
Dibenzo(a,h)anthracene	ND			ug/l	0.400	
Benzo(ghi)perylene	ND			ug/l	0.400	

Project Name: Lab Number: TREMONT CROSSING

Project Number: 1700516 **Report Date:** 03/10/17

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 98,EPH-04-1.1

Extraction Method: EPA 3510C Analytical Date: 03/08/17 17:46 03/08/17 16:33 Extraction Date: 03/06/17 19:02

Analyst: DV SR EPH-04-1 Cleanup Method: Cleanup Date: 03/08/17

Result Qualifier Units RL MDL **Parameter**

EPH w/MS Targets - Westborough Lab for sample(s): 01 Batch: WG983278-1

	<i>F</i>	Acceptance	
%Recovery	Qualifier	Criteria	
68		40-140	
77		40-140	
82		40-140	
84		40-140	
77		40-140	
	68 77 82 84	%Recovery Qualifier 68 77 82 84	68 40-140 77 40-140 82 40-140 84 40-140

Project Name: TREMONT CROSSING Lab Number: L1706654

Project Number: 1700516 Report Date: 03/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/07/17 13:37

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Petroleum Hydrocarbons - \	Vestborough	n Lab for s	ample(s):	01 Batch:	WG983981-4
C5-C8 Aliphatics	ND		ug/l	50.0	
C9-C12 Aliphatics	ND		ug/l	50.0	
C9-C10 Aromatics	ND		ug/l	50.0	
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0	
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0	
Benzene	ND		ug/l	2.00	
Toluene	ND		ug/l	2.00	
Ethylbenzene	ND		ug/l	2.00	
p/m-Xylene	ND		ug/l	2.00	
o-Xylene	ND		ug/l	2.00	
Methyl tert butyl ether	ND		ug/l	3.00	
Naphthalene	ND		ug/l	4.00	

			Acceptance			
Surrogate	%Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	96		70-130			
2,5-Dibromotoluene-FID	100		70-130			

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706654

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
EPH w/MS Targets - Westborough Lab A	ssociated sample(s):	01 Bato	h: WG983278-2	WG983278-	3		
C9-C18 Aliphatics	62		60		40-140	3	25
C19-C36 Aliphatics	96		98		40-140	2	25
C11-C22 Aromatics	71		79		40-140	11	25
Naphthalene	79		78		40-140	1	25
2-Methylnaphthalene	89		90		40-140	1	25
Acenaphthylene	102		105		40-140	3	25
Acenaphthene	100		103		40-140	3	25
Fluorene	106		112		40-140	6	25
Phenanthrene	99		107		40-140	8	25
Anthracene	109		118		40-140	8	25
Fluoranthene	111		121		40-140	9	25
Pyrene	109		119		40-140	9	25
Benzo(a)anthracene	110		118		40-140	7	25
Chrysene	104		110		40-140	6	25
Benzo(b)fluoranthene	112		125		40-140	11	25
Benzo(k)fluoranthene	108		111		40-140	3	25
Benzo(a)pyrene	112		120		40-140	7	25
Indeno(1,2,3-cd)Pyrene	115	7	124		40-140	8	25
Dibenzo(a,h)anthracene	117		126		40-140	7	25
Benzo(ghi)perylene	110		120		40-140	9	25
Nonane (C9)	33		29	Q	30-140	13	25

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706654

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
PH w/MS Targets - Westborough Lab Asso	ociated sample(s):	01 Batch:	WG983278-2	WG983278-	3		
Decane (C10)	46		42		40-140	9	25
Dodecane (C12)	72		69		40-140	4	25
Tetradecane (C14)	88		86		40-140	2	25
Hexadecane (C16)	94		94		40-140	0	25
Octadecane (C18)	96		97		40-140	1	25
Nonadecane (C19)	96		97		40-140	1	25
Eicosane (C20)	96		97		40-140	1	25
Docosane (C22)	96		98		40-140	2	25
Tetracosane (C24)	94		95		40-140	1	25
Hexacosane (C26)	95		96		40-140	1	25
Octacosane (C28)	95		96		40-140	1	25
Triacontane (C30)	94		94		40-140	0	25
Hexatriacontane (C36)	90		89		40-140	1	25

Project Name: TREMONT CROSSING

Lab Number:

L1706654

Project Number: 1700516

Report Date:

03/10/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

EPH w/MS Targets - Westborough Lab Associated sample(s): 01 Batch: WG983278-2 WG983278-3

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Chloro-Octadecane	77		73		40-140	
o-Terphenyl	71		78		40-140	
2-Fluorobiphenyl	73		77		40-140	
2-Bromonaphthalene	74		81		40-140	
O-Terphenyl-MS	113		123		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706654

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RF Qual Lim	
Volatile Petroleum Hydrocarbons - Westbor	ough Lab Associ	ated sample(s)	: 01 Batch:	WG983981-2	WG983981-3			
C5-C8 Aliphatics	98		97		70-130	2	2	5
C9-C12 Aliphatics	105		103		70-130	2	2	5
C9-C10 Aromatics	99		96		70-130	3	2	5
Benzene	93		91		70-130	2	2	5
Toluene	94		93		70-130	1	2	5
Ethylbenzene	95		94		70-130	1	2	5
p/m-Xylene	97		95		70-130	2	2	5
o-Xylene	94		92		70-130	2	2	5
Methyl tert butyl ether	93		92		70-130	1	2	5
Naphthalene	98		95		70-130	3	2	5
1,2,4-Trimethylbenzene	99		96		70-130	3	2	5
Pentane	98		96		70-130	2	2	5
2-Methylpentane	99		97		70-130	3	2	5
2,2,4-Trimethylpentane	99		98		70-130	2	2	5
n-Nonane	104		101		30-130	3	2	5
n-Decane	107		104		70-130	3	2	5
n-Butylcyclohexane	105		102		70-130	3	2	5

TREMONT CROSSING

Lab Number:

L1706654

Project Number: 1700516

Project Name:

Report Date:

03/10/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG983981-2 WG983981-3

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
2,5-Dibromotoluene-PID	101		97		70-130
2,5-Dibromotoluene-FID	103		102		70-130

Project Name: TREMONT CROSSING Lab Number: L1706654

Project Number: 1700516 Report Date: 03/10/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706654-01A	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1706654-01B	Vial HCI preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1706654-01C	Vial HCI preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1706654-01D	Vial HCI preserved	Α	N/A	5.1	Υ	Absent	VPH-DELUX-10(14)
L1706654-01E	Vial HCI preserved	Α	N/A	5.1	Υ	Absent	VPH-DELUX-10(14)
L1706654-01F	Vial HCI preserved	Α	N/A	5.1	Υ	Absent	VPH-DELUX-10(14)
L1706654-01G	Amber 1000ml HCl preserved	Α	<2	5.1	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706654-01H	Amber 1000ml HCl preserved	A	<2	5.1	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)

Project Name:TREMONT CROSSINGLab Number:L1706654Project Number:1700516Report Date:03/10/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSINGLab Number:L1706654Project Number:1700516Report Date:03/10/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:TREMONT CROSSINGLab Number:L1706654Project Number:1700516Report Date:03/10/17

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Chain-of-Custody Record				Labor	Laboratory: ALPHA				Laboratory Job # (Lab use only)			06654			
(-	iFI O	Project N	ame: Tve	mont o	Project Information Project Location:				Page of						
Wo PH	Inicorn Park Drive burn, MA 01801 I: 781.721.4000 I: 781.721.4073	Send Rep	ort to:		Englehart	com		bhq	Mcg	44	Preser	vative	usoh		Sample Handling Samples Field
If Yes, Are MC Are Drinking V	MPTIVE CERTAINTY REC CP Analytical Methods Req Vater Samples Submitted? Orinking Water Sampling R	uired?		12 P	YES YES	NO NO	NA NA								Filtered YES NO NA Sampled Shipped With Ice
Lab Sample Number	GEI Sample ID			ection Time	YES Matrix	No. of Bottles	Sampler(s) Initials	x Vocs	O UPER	EPH					YES NO Sample Specific Remarks
			77.1				5/4								
MCP Level Ne standard be me Relinquished by samp	eded: GEI requires that, we take the second of the second	r possible.				gent Meth	od 1 MCP				nd Tim				nitting rush samples, you must
1. Relinquished by/(sign	ature) Office Friday ature)	3/2/17 Date: 3/3/17. Date:		Received by: (3. Received by: (3. Received by: ((signature)	Fred AM	4 //!35 3/17	10-	rmal _ -Day _ Day _	×	Othe 7-Day 3-Day	r /	notify that	y the lal the TAT	boratory to confirm can be achieved.
4.	(1) n1	3/3/17		Received by: (ller	\wedge								

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1706654 **Project Number Project Name** : TREMONT CROSSING : 1700516 Lab Sample ID Instrument ID : WG983125-5 Lab File ID : VJ170306A08

: JACK

Analysis Date Matrix : WATER : 03/06/17 06:37

Client Sample No.	Lab Sample ID	Analysis Date
WG983125-3LCS	WG983125-3	03/06/17 04:57
WG983125-4LCSD	WG983125-4	03/06/17 05:30
1700516-B205 (OW)	L1706654-01	03/06/17 14:24

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706654

Project Name : TREMONT CROSSING Project Number : 1700516

Instrument ID : JACK Calibration Date : 03/06/17 04:57

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(m
Fluorobenzene	1	1	-	0	20	86	0
Dichlorodifluoromethane	0.467	0.411	-	12	20	75	0
Chloromethane	0.428	0.429	-	-0.2	20	88	.02
Vinyl chloride	0.444	0.464	-	-4.5	20	85	0
Bromomethane	0.229	0.258	-	-12.7	20	106	0
Chloroethane	10	11.378	-	-13.8	20	87	0
Trichlorofluoromethane	0.703	0.684	-	2.7	20	80	02
Ethyl ether	0.18	0.181	-	-0.6	20	88	02
1,1-Dichloroethene	0.4	0.398	-	0.5	20	85	02
Carbon disulfide	1.142	1.149	-	-0.6	20	87	02
Methylene chloride	10	10.595	-	-6	20	90	02
Acetone	10	9.427	-	5.7	20	89	02
trans-1,2-Dichloroethene	0.424	0.44	-	-3.8	20	92	02
Methyl tert-butyl ether	0.91	0.894	-	1.8	20	91	0
Diisopropyl ether	1.34	1.39	-	-3.7	20	88	0
1,1-Dichloroethane	0.843	0.854	-	-1.3	20	88	02
Ethyl tert-butyl ether	1.072	1.056		1.5	20	85	0
cis-1,2-Dichloroethene	0.491	0.485		1.2	20	88	02
2,2-Dichloropropane	0.717	0.714	1	0.4	20	82	0
Bromochloromethane	0.221	0.227	-	-2.7	20	91	0
Chloroform	0.808	0.803	-	0.6	20	87	0
Carbon tetrachloride	0.658	0.594	-	9.7	20	81	0
Tetrahydrofuran	0.109	0.106	-	2.8	20	92	0
Dibromofluoromethane	0.304	0.3		1.3	20	86	0
1,1,1-Trichloroethane	0.735	0.699		4.9	20	81	02
2-Butanone	0.117	0.118	-	-0.9	20	95	0
1,1-Dichloropropene	0.568	0.553	<u> </u>	2.6	20	82	0
Benzene	1.575	1.587		-0.8	20	86	0
tert-Amyl methyl ether	0.833	0.827	<u> </u>	0.7	20	85	0
1,2-Dichloroethane-d4	0.326	0.314		3.7	20	87	02
· ·		0.532	-		20		
1,2-Dichloroethane	0.535		•	0.6		88	0
Trichloroethene	0.436	0.428	-	1.8	20	85	0
Dibromomethane	0.212	0.208	-	1.9	20	86	02
1,2-Dichloropropane	0.395	0.413	-	-4.6	20	88	0
Bromodichloromethane	0.522	0.518	-	0.8	20	86	0
1,4-Dioxane	0.00145	0.0014*	-	3.4	20	91	0
cis-1,3-Dichloropropene	0.603	0.6	-	0.5	20	85	0
Chlorobenzene-d5	1	1	•	0	20	89	0
Toluene-d8	1.338	1.377	•	-2.9	20	87	0
Toluene	1.245	1.348	-	-8.3	20	88	0
4-Methyl-2-pentanone	0.134	0.129	-	3.7	20	82	0
Tetrachloroethene	0.646	0.69	-	-6.8	20	85	0
trans-1,3-Dichloropropene	0.807	0.857	-	-6.2	20	85	0
1,1,2-Trichloroethane	0.372	0.4	-	-7.5	20	87	0
Chlorodibromomethane	0.573	0.573	-	0	20	83	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706654 **Project Name** : TREMONT CROSSING **Project Number** : 1700516 Calibration Date : 03/06/17 04:57

Instrument ID : JACK

: VJ170306A02 Init. Calib. Date(s) : 02/28/17 Lab File ID 02/28/17 Sample No : WG983125-2 Init. Calib. Times : 07:34 11:28

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min
1,3-Dichloropropane	0.781	0.831	-	-6.4	20	88	0
1,2-Dibromoethane	0.421	0.454	-	-7.8	20	87	0
2-Hexanone	0.245	0.223	-	9	20	82	0
Chlorobenzene	1.301	1.385	-	-6.5	20	89	0
Ethylbenzene	2.08	2.056	-	1.2	20	87	0
1,1,1,2-Tetrachloroethane	0.614	0.613	-	0.2	20	86	0
p/m Xylene	0.623	0.655	- ~	-5.1	20	99	0
o Xylene	0.655	0.629	-	4	20	100	0
Styrene	1.295	1.147	-	11.4	20	88	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	92	0
Bromoform	0.624	0.613	-	1.8	20	82	0
Isopropylbenzene	5.499	5.74	-	-4.4	20	88	0
4-Bromofluorobenzene	1.073	1.08	-	-0.7	20	92	0
Bromobenzene	1.377	1.452	-	-5.4	20	94	0
n-Propylbenzene	5.077	5.28	-	-4	20	88	0
1,1,2,2-Tetrachloroethane	0.991	1.092	-	-10.2	20	98	0
2-Chlorotoluene	3.328	3.21	•	3.5	20	85	0
1,3,5-Trimethylbenzene	2.276	2.24	-	1.6	20	88	0
1,2,3-Trichloropropane	0.753	0.839	7 -	-11.4	20	98	0
4-Chlorotoluene	2.894	2.752	-	4.9	20	87	0
tert-Butylbenzene	3.398	3.699	-	-8.9	20	89	0
1,2,4-Trimethylbenzene	2.467	2.485	-	-0.7	20	90	0
sec-Butylbenzene	4.84	5.373	-	-11	20	87	0
p-Isopropyltoluene	3.433	3.732	-	-8.7	20	86	0
1,3-Dichlorobenzene	2.1	2.068	-	1.5	20	84	0
1,4-Dichlorobenzene	1.989	1.968	-	1.1	20	87	0
n-Butylbenzene	2.872	3.493	-	-21.6*	20	83	0
1,2-Dichlorobenzene	1.96	2.008	-	-2.4	20	86	0
1,2-Dibromo-3-chloropropan	10	9.77	-	2.3	20	94	01
Hexachlorobutadiene	10	10.608	-	-6.1	20	84	0
1,2,4-Trichlorobenzene	0.686	0.719	-	-4.8	20	82	0
Naphthalene	1.075	1.153	-	-7.3	20	89	0
1,2,3-Trichlorobenzene	0.557	0.6	-	-7.7	20	82	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1706716

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706716 **Report Date:** 03/12/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1706716-01	1700516-B(MW)302	WATER	BOSTON, MA	03/03/17 13:25	03/03/17
L1706716-02	1700516-B(MW)303	WATER	BOSTON, MA	03/03/17 09:20	03/03/17
L1706716-03	1700516-B(MW)305	WATER	BOSTON, MA	03/03/17 12:55	03/03/17
L1706716-04	1700516-B(MW)308	WATER	BOSTON, MA	03/03/17 11:30	03/03/17
L1706716-05	TRIP BLANK	WATER	BOSTON, MA	03/03/17 00:00	03/03/17

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES						
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO						
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES						

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

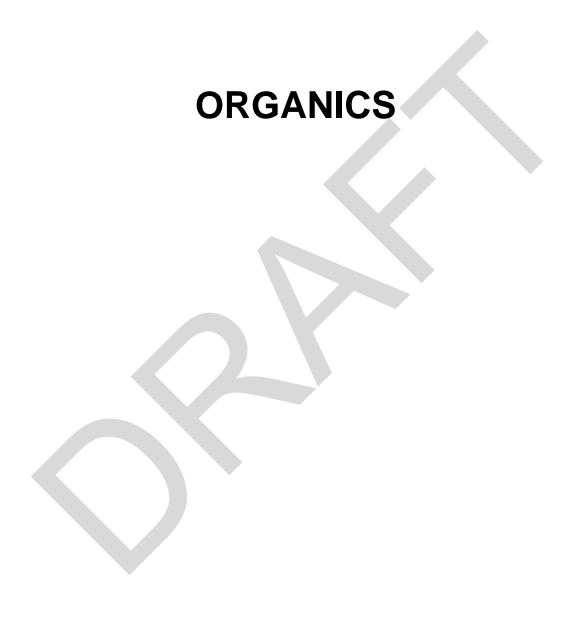
In reference to question H:

The initial calibration, associated with L1706716-01 and -03, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0015), as well as the average response factor for 1,4-dioxane.

The initial calibration, associated with L1706716-02 and -04, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0020), as well as the average response factor for 2-butanone and 1,4-dioxane.

The continuing calibration standards, associated with L1706716-01 through -04, are outside the acceptance criteria for several compounds; however, they are within overall method allowances. Copies of the continuing calibration standards are included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.


Kwil. Wisterlind

Authorized Signature:

Title: Technical Director/Representative

Date: 03/12/17

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706716

Report Date: 03/12/17

SAIWIFLE RESUL

Lab ID: Date Collected: 03/03/17 13:25

Client ID: 1700516-B(MW)302 Date Received: 03/03/17

Sample Location: BOSTON, MA Field Prep: Not Specified Matrix: Water

Analytical Method: 97,8260C

Analytical Date: 03/06/17 13:17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	19		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	5.0		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
						700

L1706716

Project Name: TREMONT CROSSING

L1706716-01

BOSTON, MA

1700516-B(MW)302

Project Number: 1700516

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Report Date: 03/12/17

Lab Number:

Date Collected: 03/03/17 13:25
Date Received: 03/03/17

Field Prep: Not Specified

•					•	•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough L	₋ab						
1,3-Dichlorobenzene	ND		ug/l	1.0		1	
1,4-Dichlorobenzene	ND		ug/l	1.0		1	
Methyl tert butyl ether	ND		ug/l	2.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylene (Total)	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	7.2		ug/l	1.0		1	
1,2-Dichloroethene (total)	7.2		ug/l	1.0		1	
Dibromomethane	ND		ug/l	2.0		1	
1,2,3-Trichloropropane	ND		ug/l	2.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	2.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	2.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.0		1	
Tetrahydrofuran	ND		ug/l	2.0		1	
2,2-Dichloropropane	ND		ug/l	2.0		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1	
Bromobenzene	ND		ug/l	2.0		1	
n-Butylbenzene	ND		ug/l	2.0		1	
sec-Butylbenzene	ND		ug/l	2.0		1	
tert-Butylbenzene	ND		ug/l	2.0		1	
o-Chlorotoluene	ND		ug/l	2.0		1	
p-Chlorotoluene	ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1	
Hexachlorobutadiene	ND		ug/l	0.60		1	
Isopropylbenzene	ND		ug/l	2.0		1	
p-Isopropyltoluene	ND		ug/l	2.0		1	
Naphthalene	ND		ug/l	2.0		1	
n-Propylbenzene	ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/03/17 13:25

Client ID: 1700516-B(MW)302 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Ethyl ether	ND		ug/l	2.0		1
Isopropyl Ether	ND		ug/l	2.0		1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	86		70-130	
Dibromofluoromethane	98		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706716

Report Date: 03/12/17

Lab ID: L1706716-02

1700516-B(MW)303 Client ID:

Sample Location: BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 03/06/17 13:33

Analyst: MM Date Collected: 03/03/17 09:20

Date Received: 03/03/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,2-DICNIOROBENZENE	ND		ug/l	1.0		1

L1706716

03/03/17 09:20

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Report Date: 03/12/17

Lab Number:

Lab ID: L1706716-02 Date Collected:

1700516-B(MW)303 Client ID: Date Received: 03/03/17 Sample Location:

BOSTON, MA Field Prep: Not Specified

Campio Locationi Door ort, mrt				1 1014 1 10	۲.	rtot opcomoa
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab)					
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: L1706716-02 Date Collected: 03/03/17 09:20

Client ID: 1700516-B(MW)303 Date Received: 03/03/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ugh Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	107	70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706716

Report Date: 03/12/17

Lab ID: L1706716-03

1700516-B(MW)305 Client ID:

Sample Location: BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 03/06/17 13:50

Analyst: MM Date Collected: 03/03/17 12:55

Date Received: 03/03/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	ı Lab						
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	1.5		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	1.8		ug/l	1.0		1	
1,2-Dichlorobenzene	ND		ug/l	1.0		1	

03/03/17 12:55

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706716

Report Date: 03/12/17

SAMPLE RESULT

Lab ID: L1706716-03 Client ID: 1700516-B(MW)305

Sample Location: BOSTON, MA

Date Received: 03/03/17
Field Prep: Not Specified

Date Collected:

Campio Locationi Boot ort, in t				1 1014 1 10	٠.	rior opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough Lab							
1,3-Dichlorobenzene	ND		ug/l	1.0		1	
1,4-Dichlorobenzene	ND		ug/l	1.0		1	
Methyl tert butyl ether	ND		ug/l	2.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylene (Total)	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane	ND		ug/l	2.0		1	
1,2,3-Trichloropropane	ND		ug/l	2.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	2.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	2.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.0		1	
Tetrahydrofuran	ND		ug/l	2.0		1	
2,2-Dichloropropane	ND		ug/l	2.0		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1	
Bromobenzene	ND		ug/l	2.0		1	
n-Butylbenzene	ND		ug/l	2.0		1	
sec-Butylbenzene	ND		ug/l	2.0		1	
tert-Butylbenzene	ND		ug/l	2.0		1	
o-Chlorotoluene	ND		ug/l	2.0		1	
p-Chlorotoluene	ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1	
Hexachlorobutadiene	ND		ug/l	0.60		1	
Isopropylbenzene	ND		ug/l	2.0		1	
p-Isopropyltoluene	ND		ug/l	2.0		1	
Naphthalene	ND		ug/l	2.0		1	
n-Propylbenzene	ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: L1706716-03 Date Collected: 03/03/17 12:55

Client ID: 1700516-B(MW)305 Date Received: 03/03/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough Lab							
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	86		70-130	
Dibromofluoromethane	98		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706716

Report Date: 03/12/17

Lab ID: L1706716-04

1700516-B(MW)308 Client ID:

Sample Location: BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 03/06/17 14:07

Analyst: MM Date Collected: 03/03/17 11:30 Date Received: 03/03/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	ıgh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	1.0		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	36		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

L1706716

03/03/17 11:30

Project Name: TREMONT CROSSING

Project Number: 1700516

Sample Location:

SAMPLE RESULTS

1 00/12/11

Report Date: 03/12/17

Lab Number:

Date Collected:

Lab ID: L1706716-04

BOSTON, MA

Client ID: 1700516-B(MW)308

Date Received: 03/03/17
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics - Westborough Lab ND 1.0 1,3-Dichlorobenzene ug/l 1 1,4-Dichlorobenzene ND ug/l 1.0 Methyl tert butyl ether ND ug/l 2.0 1 p/m-Xylene ND 2.0 1 ug/l o-Xylene ND 1.0 1 ug/l ND Xylene (Total) 1.0 1 ug/l -cis-1,2-Dichloroethene 6.2 1 1.0 ug/l --1,2-Dichloroethene (total) 6.2 ug/l 1.0 1 Dibromomethane ND 2.0 1 ug/l 1,2,3-Trichloropropane ND 2.0 1 ug/l Styrene ND 1.0 1 ug/l Dichlorodifluoromethane ND 2.0 1 ug/l --ND 5.0 1 Acetone ug/l ND Carbon disulfide 2.0 1 ug/l 2-Butanone ND 5.0 1 ug/l 4-Methyl-2-pentanone ND 5.0 1 ug/l ND 2-Hexanone ug/l 5.0 1 Bromochloromethane ND 2.0 1 ug/l --Tetrahydrofuran ND 2.0 1 ug/l ND 2,2-Dichloropropane 2.0 1 ug/l --ND 2.0 1 1,2-Dibromoethane ug/l 1,3-Dichloropropane ND 2.0 1 ug/l 1,1,1,2-Tetrachloroethane ND ug/l 1.0 --1 Bromobenzene ND 2.0 1 ug/l -n-Butylbenzene ND 2.0 1 ug/l sec-Butylbenzene ND 2.0 1 ug/l tert-Butylbenzene ND 2.0 1 ug/l o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND 2.0 1 ug/l --1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 ND 1 Isopropylbenzene ug/l 2.0 p-Isopropyltoluene ND ug/l 2.0 1 ND Naphthalene ug/l 2.0 --1 n-Propylbenzene ND 2.0 1 ug/l --1,2,3-Trichlorobenzene ND 2.0 1 ug/l 1,2,4-Trichlorobenzene ND 1 ug/l 2.0 ND 1,3,5-Trimethylbenzene 2.0 1 ug/l 1,2,4-Trimethylbenzene ND ug/l 2.0 1

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/03/17 11:30

Client ID: 1700516-B(MW)308 Date Received: 03/03/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ough Lab						
Ethyl ether	2.4		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ua/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	102		70-130	

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/06/17 06:20

Parameter	Result Qualific	er Units	RL	MDL	
MCP Volatile Organics - V	Vestborough Lab for sample(s): 02,04	Batch: WG98	33120-5	
Methylene chloride	ND	ug/l	2.0		
1,1-Dichloroethane	ND	ug/l	1.0		
Chloroform	ND	ug/l	1.0		
Carbon tetrachloride	ND	ug/l	1.0		
1,2-Dichloropropane	ND	ug/l	1.0		
Dibromochloromethane	ND	ug/l	1.0		
1,1,2-Trichloroethane	ND	ug/l	1.0		
Tetrachloroethene	ND	ug/l	1.0		
Chlorobenzene	ND	ug/l	1.0		
Trichlorofluoromethane	ND	ug/l	2.0		
1,2-Dichloroethane	ND	ug/l	1.0		
1,1,1-Trichloroethane	ND	ug/l	1.0		
Bromodichloromethane	ND	ug/l	1.0		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,3-Dichloropropene, Total	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.0		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	1.0		
Ethylbenzene	ND	ug/l	1.0		
Chloromethane	ND	ug/l	2.0		
Bromomethane	ND	ug/l	2.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	2.0		
1,1-Dichloroethene	ND	ug/l	1.0		
trans-1,2-Dichloroethene	ND	ug/l	1.0		
Trichloroethene	ND	ug/l	1.0		

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/06/17 06:20

MCP Volatile Organics - Westborough Lab for sample(s): 02,04 Batch: WG983120-5	Parameter	Result	Qualifier Units	RI	L MDL	
1,3-Dichlorobenzene ND ug/l 1.0 1,4-Dichlorobenzene ND ug/l 1.0 Methyl tert butyl ether ND ug/l 2.0 p/m-Xylene ND ug/l 2.0 o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 1,2-Dichloroethene ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 2.0 1,2-Dichloroethene (total) ND ug/l 2.0 1,2-Pichloropropane ND ug/l 2.0 1,2-S-Trichloropropane ND ug/l 2.0 Styrene ND ug/l 2.0 Acetone ND ug/l 2.0 Carbon disulfide ND ug/l 5.0 </td <td>MCP Volatile Organics -</td> <td>- Westborough Lab for</td> <td>sample(s): 02,0</td> <td>4 Batch:</td> <td>WG983120-5</td> <td></td>	MCP Volatile Organics -	- Westborough Lab for	sample(s): 02,0	4 Batch:	WG983120-5	
1,3-Dichlorobenzene ND ug/l 1.0 1,4-Dichlorobenzene ND ug/l 1.0 Methyl tert butyl ether ND ug/l 2.0 p/m-Xylene ND ug/l 2.0 o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 1,2-Dichloroethene ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 2.0 1,2-Dichloroethene (total) ND ug/l 2.0 1,2-Pichloropropane ND ug/l 2.0 1,2-S-Trichloropropane ND ug/l 2.0 Styrene ND ug/l 2.0 Acetone ND ug/l 2.0 Carbon disulfide ND ug/l 5.0 </td <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>ug/</td> <td>1.0</td> <td>0</td> <td></td>	1,2-Dichlorobenzene	ND	ug/	1.0	0	
1,4-Dichlorobenzene ND	1,3-Dichlorobenzene	ND			0	
Methyl tert butyl ether ND ug/l 2.0 p/m-Xylene ND ug/l 2.0 o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 xylene (Total) ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 2.0 Dibromomethane ND ug/l 2.0 1,2,3-Trichloropropane ND ug/l 2.0 1,2,3-Trichloropropane ND ug/l 2.0 Styrene ND ug/l 2.0 Dichloropitane ND ug/l 2.0 Acetone ND ug/l 2.0 Carbon disulfide ND ug/l 2.0 2-Butanone ND ug/l 5.0		ND			0	
p/m-Xylene ND ug/l 2.0 o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 2.0 1,2-3-Trichloropropane ND ug/l 2.0 1,2,3-Trichloropropane ND ug/l 2.0 Styrene ND ug/l 2.0 Styrene ND ug/l 2.0 Acetone ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 2.0 <td< td=""><td>Methyl tert butyl ether</td><td>ND</td><td></td><td></td><td>0</td><td></td></td<>	Methyl tert butyl ether	ND			0	
o-Xylene ND ug/l 1.0 Xylene (Total) ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 2.0 1,2-Dichloroethene (total) ND ug/l 2.0 1,2-Dichloroethene (total) ND ug/l 2.0 1,2-3-Trichloropropane ND ug/l 2.0 Styrene ND ug/l 2.0 Styrene ND ug/l 2.0 Acetone ND ug/l 2.0 Acetone ND ug/l 2.0 2-Butanole ND ug/l 2.0 4-Methyl-2-pentanone ND ug/l 2.0		ND			0	
Xylene (Total) ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 1.0 Dibromomethane ND ug/l 2.0 1,2,3-Trichloropropane ND ug/l 2.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 2.0 2-Butanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0		ND			0	
cis-1,2-Dichloroethene ND ug/l 1.0 1,2-Dichloroethene (total) ND ug/l 1.0 Dibromomethane ND ug/l 2.0 1,2,3-Trichloropropane ND ug/l 2.0 Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0	Xylene (Total)	ND			0	
1,2-Dichloroethene (total) ND ug/l 1.0		ND			0	
1,2,3-Trichloropropane		ND			0	
Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 2.0 2-Butanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 1,2-Dichloropropane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 2.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0	Dibromomethane	ND	ug/	2.0	0	
Dichlorodifluoromethane ND ug/l 2.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 2.0 2-Butanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 1,2-Dichloropropane ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 2.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0	1,2,3-Trichloropropane	ND	ug/	2.0	0	
Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 2.0 2-Butanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 2,2-Dichloropropane ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 2.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0	Styrene	ND	ug/	1.0	0	
Carbon disulfide ND ug/l 2.0 2-Butanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 2,2-Dichloropropane ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 2.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	Dichlorodifluoromethane	ND	ug/	2.0	0	
2-Butanone ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 2,2-Dichloropropane ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 2.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	Acetone	ND	ug/	5.0	0	
4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 2,2-Dichloropropane ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 2.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	Carbon disulfide	ND	ug/	2.0	0	
2-Hexanone ND ug/l 5.0 Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 2,2-Dichloropropane ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	2-Butanone	ND	ug/	5.0	0	
Bromochloromethane ND ug/l 2.0 Tetrahydrofuran ND ug/l 2.0 2,2-Dichloropropane ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	4-Methyl-2-pentanone	ND	ug/	5.0	0	
Tetrahydrofuran ND ug/l 2.0 2,2-Dichloropropane ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	2-Hexanone	ND	ug/	5.0	0	
2,2-Dichloropropane ND ug/l 2.0 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	Bromochloromethane	ND	ug/	2.0	0	
1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	Tetrahydrofuran	ND	ug/	2.0	0	
1,3-Dichloropropane ND ug/l 2.0 1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	2,2-Dichloropropane	ND	ug/	2.0	0	
1,1,1,2-Tetrachloroethane ND ug/l 1.0 Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	1,2-Dibromoethane	ND	ug/	2.0	0	
Bromobenzene ND ug/l 2.0 n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	1,3-Dichloropropane	ND	ug/	2.0	0	
n-Butylbenzene ND ug/l 2.0 sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	1,1,1,2-Tetrachloroethane	ND	ug/	1.0	0	
sec-Butylbenzene ND ug/l 2.0 tert-Butylbenzene ND ug/l 2.0	Bromobenzene	ND	ug/	2.0	0	
tert-Butylbenzene ND ug/l 2.0	n-Butylbenzene	ND	ug/	2.0	0	
•	sec-Butylbenzene	ND	ug/	2.0	0	
o-Chlorotoluene ND ug/l 2.0	tert-Butylbenzene	ND	ug/	2.0	0	
	o-Chlorotoluene	ND	ug/	2.0	0	

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/06/17 06:20

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westborou	gh Lab for	sample(s):	02,04	Batch: WG9	83120-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	2.0		
tert-Butyl Alcohol	ND		ug/l	10		
2-Chloroethylvinyl ether	ND		ug/l	10		

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	99		70-130				
Toluene-d8	104		70-130				
4-Bromofluorobenzene	102		70-130				
Dibromofluoromethane	102		70-130				

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/06/17 06:37

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - We	stborough Lab for s	sample(s):	01,03	Batch: WG98	3125-5	
Methylene chloride	ND		ug/l	2.0		
1,1-Dichloroethane	ND		ug/l	1.0		
Chloroform	ND		ug/l	1.0		
Carbon tetrachloride	ND		ug/l	1.0		
1,2-Dichloropropane	ND		ug/l	1.0		
Dibromochloromethane	ND		ug/l	1.0		
1,1,2-Trichloroethane	ND		ug/l	1.0		
Tetrachloroethene	ND		ug/l	1.0		
Chlorobenzene	ND		ug/l	1.0		
Trichlorofluoromethane	ND		ug/l	2.0		
1,2-Dichloroethane	ND		ug/l	1.0		
1,1,1-Trichloroethane	ND		ug/l	1.0		
Bromodichloromethane	ND		ug/l	1.0		
trans-1,3-Dichloropropene	ND		ug/l	0.50		
cis-1,3-Dichloropropene	ND		ug/l	0.50		
1,3-Dichloropropene, Total	ND		ug/l	0.50		
1,1-Dichloropropene	ND		ug/l	2.0		
Bromoform	ND		ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		
Benzene	ND		ug/l	0.50		
Toluene	ND		ug/l	1.0		
Ethylbenzene	ND		ug/l	1.0		
Chloromethane	ND		ug/l	2.0		
Bromomethane	ND		ug/l	2.0		
Vinyl chloride	ND		ug/l	1.0		
Chloroethane	ND		ug/l	2.0		
1,1-Dichloroethene	ND		ug/l	1.0		
trans-1,2-Dichloroethene	ND		ug/l	1.0		
Trichloroethene	ND		ug/l	1.0		

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/06/17 06:37

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Wes	tborough Lab for	sample(s):	01,03	Batch: WG98	33125-5	
1,2-Dichlorobenzene	ND		ug/l	1.0		
1,3-Dichlorobenzene	ND		ug/l	1.0		
1,4-Dichlorobenzene	ND		ug/l	1.0		
Methyl tert butyl ether	ND		ug/l	2.0		
p/m-Xylene	ND		ug/l	2.0		
o-Xylene	ND		ug/l	1.0		
Xylene (Total)	ND		ug/l	1.0		
cis-1,2-Dichloroethene	ND		ug/l	1.0		
1,2-Dichloroethene (total)	ND		ug/l	1.0		
Dibromomethane	ND		ug/l	2.0		
1,2,3-Trichloropropane	ND		ug/l	2.0		
Styrene	ND		ug/l	1.0		
Dichlorodifluoromethane	ND		ug/l	2.0		
Acetone	ND		ug/l	5.0		
Carbon disulfide	ND		ug/l	2.0		
2-Butanone	ND		ug/l	5.0		
4-Methyl-2-pentanone	ND		ug/l	5.0		
2-Hexanone	ND		ug/l	5.0		
Bromochloromethane	ND		ug/l	2.0		
Tetrahydrofuran	ND		ug/l	2.0		
2,2-Dichloropropane	ND		ug/l	2.0		
1,2-Dibromoethane	ND		ug/l	2.0		
1,3-Dichloropropane	ND		ug/l	2.0		
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		
Bromobenzene	ND		ug/l	2.0		
n-Butylbenzene	ND		ug/l	2.0		
sec-Butylbenzene	ND		ug/l	2.0		
tert-Butylbenzene	ND		ug/l	2.0		
o-Chlorotoluene	ND		ug/l	2.0		

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/06/17 06:37

83125-5

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	94		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706716

Report Date: 03/12/17

ırameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
CP Volatile Organics - Westborough Lab	Associated sample(s):	02,04 Batch: WG98312	0-3 WG983120-4		
Methylene chloride	100	99	70-130	1	20
1,1-Dichloroethane	110	110	70-130	0	20
Chloroform	110	100	70-130	10	20
Carbon tetrachloride	98	96	70-130	2	20
1,2-Dichloropropane	100	100	70-130	0	20
Dibromochloromethane	96	94	70-130	2	20
1,1,2-Trichloroethane	100	100	70-130	0	20
Tetrachloroethene	100	98	70-130	2	20
Chlorobenzene	100	96	70-130	4	20
Trichlorofluoromethane	100	100	70-130	0	20
1,2-Dichloroethane	100	100	70-130	0	20
1,1,1-Trichloroethane	100	100	70-130	0	20
Bromodichloromethane	96	96	70-130	0	20
trans-1,3-Dichloropropene	100	95	70-130	5	20
cis-1,3-Dichloropropene	100	95	70-130	5	20
1,1-Dichloropropene	100	98	70-130	2	20
Bromoform	88	86	70-130	2	20
1,1,2,2-Tetrachloroethane	97	93	70-130	4	20
Benzene	100	98	70-130	2	20
Toluene	100	100	70-130	0	20
Ethylbenzene	100	96	70-130	4	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1

L1706716

Report Date:

03/12/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s): 02,04	Batch: WG983	120-3 WG9	983120-4		
Chloromethane	110		100		70-130	10	20
Bromomethane	130		120		70-130	8	20
Vinyl chloride	110		100		70-130	10	20
Chloroethane	120		120		70-130	0	20
1,1-Dichloroethene	100		98		70-130	2	20
trans-1,2-Dichloroethene	110		100		70-130	10	20
Trichloroethene	100		99		70-130	1	20
1,2-Dichlorobenzene	100		100		70-130	0	20
1,3-Dichlorobenzene	99		96		70-130	3	20
1,4-Dichlorobenzene	100		99		70-130	1	20
Methyl tert butyl ether	100		96		70-130	4	20
p/m-Xylene	100		95		70-130	5	20
o-Xylene	100		95		70-130	5	20
cis-1,2-Dichloroethene	110		110		70-130	0	20
Dibromomethane	100		96		70-130	4	20
1,2,3-Trichloropropane	96		98		70-130	2	20
Styrene	100		95		70-130	5	20
Dichlorodifluoromethane	95		94		70-130	1	20
Acetone	99		100		70-130	1	20
Carbon disulfide	100		100		70-130	0	20
2-Butanone	100		95		70-130	5	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706716

Report Date: 03/12/17

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough	Lab Associated sample(s): 02,0	4 Batch: WG983	120-3 WG983120-4		
4-Methyl-2-pentanone	97	87	70-130	11	20
2-Hexanone	91	85	70-130	7	20
Bromochloromethane	100	100	70-130	0	20
Tetrahydrofuran	120	94	70-130	24	Q 20
2,2-Dichloropropane	100	100	70-130	0	20
1,2-Dibromoethane	100	97	70-130	3	20
1,3-Dichloropropane	100	97	70-130	3	20
1,1,1,2-Tetrachloroethane	98	93	70-130	5	20
Bromobenzene	98	93	70-130	5	20
n-Butylbenzene	88	85	70-130	3	20
sec-Butylbenzene	98	93	70-130	5	20
tert-Butylbenzene	99	95	70-130	4	20
o-Chlorotoluene	98	93	70-130	5	20
p-Chlorotoluene	98	95	70-130	3	20
1,2-Dibromo-3-chloropropane	88	91	70-130	3	20
Hexachlorobutadiene	100	100	70-130	0	20
Isopropylbenzene	96	92	70-130	4	20
p-Isopropyltoluene	99	97	70-130	2	20
Naphthalene	90	90	70-130	0	20
n-Propylbenzene	99	95	70-130	4	20
1,2,3-Trichlorobenzene	99	100	70-130	1	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706716

Report Date:

03/12/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RF Qual Lin	PD nits
CP Volatile Organics - Westborough Lab	Associated sample	le(s): 02,04	Batch: WG983	3120-3 W	G983120-4			
1,2,4-Trichlorobenzene	99		100		70-130	1	2	0
1,3,5-Trimethylbenzene	98		97		70-130	1	2	0
1,2,4-Trimethylbenzene	100		94		70-130	6	2	0
Ethyl ether	110		100		70-130	10	2	0
Isopropyl Ether	110		100		70-130	10	2	0
Ethyl-Tert-Butyl-Ether	100		98		70-130	2	2	0
Tertiary-Amyl Methyl Ether	100		98		70-130	2	2	0
1,4-Dioxane	98		94		70-130	4	2	0
1,1,2-Trichloro-1,2,2-Trifluoroethane	100		96		70-130	4	2	0
tert-Butyl Alcohol	104		94		70-130	10	2	0
2-Chloroethylvinyl ether	73		81		70-130	10	2	0

	LCS	LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	97	97		70-130	
Toluene-d8	103	102		70-130	
4-Bromofluorobenzene	93	98		70-130	
Dibromofluoromethane	102	104		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L17

L1706716

Report Date:

03/12/17

arameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s):	01,03 Batch: WG983	125-3 WG983125-4		
Methylene chloride	100	100	70-130	0	20
1,1-Dichloroethane	100	110	70-130	10	20
Chloroform	99	96	70-130	3	20
Carbon tetrachloride	90	90	70-130	0	20
1,2-Dichloropropane	100	100	70-130	0	20
Dibromochloromethane	100	96	70-130	4	20
1,1,2-Trichloroethane	110	100	70-130	10	20
Tetrachloroethene	110	100	70-130	10	20
Chlorobenzene	110	100	70-130	10	20
Trichlorofluoromethane	97	94	70-130	3	20
1,2-Dichloroethane	100	100	70-130	0	20
1,1,1-Trichloroethane	95	95	70-130	0	20
Bromodichloromethane	99	98	70-130	1	20
trans-1,3-Dichloropropene	110	100	70-130	10	20
cis-1,3-Dichloropropene	99	99	70-130	0	20
1,1-Dichloropropene	97	99	70-130	2	20
Bromoform	98	100	70-130	2	20
1,1,2,2-Tetrachloroethane	110	110	70-130	0	20
Benzene	100	100	70-130	0	20
Toluene	110	100	70-130	10	20
Ethylbenzene	99	94	70-130	5	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706716

Report Date: 03/12/17

rameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
CP Volatile Organics - Westborough Lab	Associated sample(s):	01,03 Batch: WG983	125-3 WG983125-4		
Chloromethane	100	100	70-130	0	20
Bromomethane	110	110	70-130	0	20
Vinyl chloride	100	100	70-130	0	20
Chloroethane	110	120	70-130	9	20
1,1-Dichloroethene	100	100	70-130	0	20
trans-1,2-Dichloroethene	100	100	70-130	0	20
Trichloroethene	98	94	70-130	4	20
1,2-Dichlorobenzene	100	98	70-130	2	20
1,3-Dichlorobenzene	98	99	70-130	1	20
1,4-Dichlorobenzene	99	99	70-130	0	20
Methyl tert butyl ether	98	98	70-130	0	20
p/m-Xylene	105	100	70-130	5	20
o-Xylene	95	95	70-130	0	20
cis-1,2-Dichloroethene	99	97	70-130	2	20
Dibromomethane	98	99	70-130	1	20
1,2,3-Trichloropropane	110	100	70-130	10	20
Styrene	90	80	70-130	12	20
Dichlorodifluoromethane	88	88	70-130	0	20
Acetone	94	100	70-130	6	20
Carbon disulfide	100	100	70-130	0	20
2-Butanone	100	100	70-130	0	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706716

Report Date: 03/12/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated sample	e(s): 01,03	Batch: WG983	3125-3 WG98	33125-4			
4-Methyl-2-pentanone	96		94		70-130	2		20
2-Hexanone	91		82		70-130	10		20
Bromochloromethane	100		100		70-130	0		20
Tetrahydrofuran	97		100		70-130	3		20
2,2-Dichloropropane	100		99		70-130	1		20
1,2-Dibromoethane	110		100		70-130	10		20
1,3-Dichloropropane	110		100		70-130	10		20
1,1,1,2-Tetrachloroethane	100		97		70-130	3		20
Bromobenzene	100		98		70-130	2		20
n-Butylbenzene	120		96		70-130	22	Q	20
sec-Butylbenzene	110		110		70-130	0		20
tert-Butylbenzene	110		100		70-130	10		20
o-Chlorotoluene	96		95		70-130	1		20
p-Chlorotoluene	95		97		70-130	2		20
1,2-Dibromo-3-chloropropane	98		98		70-130	0		20
Hexachlorobutadiene	110		99		70-130	11		20
Isopropylbenzene	100		100		70-130	0		20
p-Isopropyltoluene	110		100		70-130	10		20
Naphthalene	110		110		70-130	0		20
n-Propylbenzene	100		100		70-130	0		20
1,2,3-Trichlorobenzene	110		110		70-130	0		20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706716

Report Date:

03/12/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated sample	(s): 01,03	Batch: WG983	125-3 WG	983125-4			
1,2,4-Trichlorobenzene	100		100		70-130	0	20	
1,3,5-Trimethylbenzene	98		91		70-130	7	20	
1,2,4-Trimethylbenzene	100		99		70-130	1	20	
Ethyl ether	100		100		70-130	0	20	
Isopropyl Ether	100		100		70-130	0	20	
Ethyl-Tert-Butyl-Ether	98		99		70-130	1	20	
Tertiary-Amyl Methyl Ether	99		96		70-130	3	20	
1,4-Dioxane	96		94		70-130	2	20	

	LCS	LCSD	Acceptar	Acceptance	
Surrogate	%Recovery	Qual %Recove	ry Qual Criteria	1	
1,2-Dichloroethane-d4	96	98	70-130		
Toluene-d8	103	101	70-130		
4-Bromofluorobenzene	101	103	70-130		
Dibromofluoromethane	99	100	70-130		

PETROLEUM HYDROCARBONS

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706716

Report Date:

03/12/17

SAMPLE RESULTS

Lab ID: L1706716-01

Client ID: 1700516-B(MW)302

Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/09/17 03:02

Analyst: JM

Date Collected:
Date Received:

Field Prep:

03/03/17 13:25

03/03/17 Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor			
Volatile Petroleum Hydrocarbons - Westborough Lab								
C5-C8 Aliphatics	ND	ug/l	50.0		1			
C9-C12 Aliphatics	ND	ug/l	50.0		1			
C9-C10 Aromatics	ND	ug/l	50.0		1			
C5-C8 Aliphatics, Adjusted	ND	ug/l	50.0		1			
C9-C12 Aliphatics, Adjusted	ND	ug/l	50.0		1			
Benzene	ND	ug/l	2.00		1			
Toluene	ND	ug/l	2.00		1			
Ethylbenzene	ND	ug/l	2.00		1			
p/m-Xylene	ND	ug/l	2.00		1			
o-Xylene	ND	ug/l	2.00		1			
Methyl tert butyl ether	ND	ug/l	3.00		1			
Naphthalene	ND	ug/l	4.00		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	81		70-130	
2,5-Dibromotoluene-FID	92		70-130	

Project Name: Lab Number: TREMONT CROSSING L1706716

Project Number: 1700516 **Report Date:** 03/12/17

SAMPLE RESULTS

Date Collected: Lab ID: L1706716-01 03/03/17 13:25

Client ID: Date Received: 03/03/17 1700516-B(MW)302

Field Prep: Not Specified Sample Location: BOSTON, MA Matrix: **Extraction Method: EPA 3510C** Water

98,EPH-04-1.1 **Extraction Date:**

Analytical Method: 03/06/17 19:03 Analytical Date: M.S. Analytical Date: 03/09/17 12:27 03/09/17 16:17 Cleanup Method1: EPH-04-1

Analyst: SR M.S. Analyst: DV Cleanup Date1: 03/08/17

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative: Container

Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lal	0				
C9-C18 Aliphatics	ND	ug/l	100		1
C19-C36 Aliphatics	ND	ug/l	100		1
C11-C22 Aromatics	ND	ug/l	100		1
C11-C22 Aromatics, Adjusted	ND	ug/l	100		1
Naphthalene	ND	ug/l	0.400		1
2-Methylnaphthalene	ND	ug/l	0.400		1
Acenaphthylene	ND	ug/l	0.400		1
Acenaphthene	ND	ug/l	0.400		1
Fluorene	ND	ug/l	0.400		1
Phenanthrene	ND	ug/l	0.400		1
Anthracene	ND	ug/l	0.400		1
Fluoranthene	ND	ug/l	0.400		1
Pyrene	ND	ug/l	0.400		1
Benzo(a)anthracene	ND	ug/l	0.400		1
Chrysene	ND	ug/l	0.400		1
Benzo(b)fluoranthene	ND	ug/l	0.400		1
Benzo(k)fluoranthene	ND	ug/l	0.400		1
Benzo(a)pyrene	ND	ug/l	0.200		1
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.400		1
Dibenzo(a,h)anthracene	ND	ug/l	0.400		1
Benzo(ghi)perylene	ND	ug/l	0.400		1

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: L1706716-01 Date Collected: 03/03/17 13:25

Client ID: 1700516-B(MW)302 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	83		40-140	
o-Terphenyl	85		40-140	
2-Fluorobiphenyl	88		40-140	
2-Bromonaphthalene	90		40-140	
O-Terphenyl-MS	79		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706716

Report Date:

03/12/17

SAMPLE RESULTS

Lab ID: L1706716-02

Client ID: 1700516-B(MW)303

Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/09/17 03:41

Analyst: JM

Date Collected:

03/03/17 09:20

Date Received: Field Prep:

03/03/17

Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab				
C5-C8 Aliphatics	ND	ug/l	50.0		1
C9-C12 Aliphatics	ND	ug/l	50.0		1
C9-C10 Aromatics	ND	ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND	ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND	ug/l	50.0		1
Benzene	ND	ug/l	2.00		1
Toluene	ND	ug/l	2.00		1
Ethylbenzene	ND	ug/l	2.00		1
p/m-Xylene	ND	ug/l	2.00		1
o-Xylene	ND	ug/l	2.00		1
Methyl tert butyl ether	ND	ug/l	3.00		1
Naphthalene	ND	ug/l	4.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	79		70-130	
2,5-Dibromotoluene-FID	90		70-130	

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: L1706716-02 Date Collected: 03/03/17 09:20

Client ID: 1700516-B(MW)303 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specific

Sample Location: BOSTON, MA Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/06/17 19:03

Analytical Date: 03/09/17 16:56 M.S. Analytical Date: 03/09/17 12:52 Cleanup Method1: EPH-04-1

Analyst: SR M.S. Analyst: DV Cleanup Date1: 03/08/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative:

Laboratory Provided Preserved
Container

Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lab						
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	0.400		1
2-Methylnaphthalene	ND		ug/l	0.400		1
Acenaphthylene	ND		ug/l	0.400		1
Acenaphthene	ND		ug/l	0.400		1
Fluorene	ND		ug/l	0.400		1
Phenanthrene	ND		ug/l	0.400		1
Anthracene	ND		ug/l	0.400		1
Fluoranthene	ND		ug/l	0.400		1
Pyrene	ND		ug/l	0.400		1
Benzo(a)anthracene	ND		ug/l	0.400		1
Chrysene	ND		ug/l	0.400		1
Benzo(b)fluoranthene	ND		ug/l	0.400		1
Benzo(k)fluoranthene	ND		ug/l	0.400		1
Benzo(a)pyrene	ND		ug/l	0.200		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		1
Dibenzo(a,h)anthracene	ND		ug/l	0.400		1
Benzo(ghi)perylene	ND		ug/l	0.400		1

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: L1706716-02 Date Collected: 03/03/17 09:20

Client ID: 1700516-B(MW)303 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	91		40-140	
o-Terphenyl	92		40-140	
2-Fluorobiphenyl	93		40-140	
2-Bromonaphthalene	95		40-140	
O-Terphenyl-MS	81		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706716

Report Date:

03/12/17

SAMPLE RESULTS

Lab ID: L1706716-03

Client ID: 1700516-B(MW)305

Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/09/17 04:20

Analyst: JM

Date Collected:
Date Received:

Field Prep:

03/03/17 12:55

03/03/17 Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Qualifier **Parameter** Result Units RLMDL **Dilution Factor** Volatile Petroleum Hydrocarbons - Westborough Lab C5-C8 Aliphatics ND ug/l 50.0 1 1 ND C9-C12 Aliphatics ug/l 50.0 ND C9-C10 Aromatics ug/l 50.0 1 C5-C8 Aliphatics, Adjusted ND ug/l 50.0 1 --C9-C12 Aliphatics, Adjusted ND 50.0 1 ug/l --ND Benzene ug/l 1 2.00 Toluene ND ug/l 2.00 1 ND 1 Ethylbenzene ug/l 2.00 __ p/m-Xylene ND ug/l 2.00 --1 o-Xylene ND 2.00 1 ug/l Methyl tert butyl ether ND 3.00 1 ug/l Naphthalene ND 4.00 1 ug/l --

	a. 	0 110	Acceptance Criteria	
Surrogate	% Recovery	Qualifier	Cilicila	
2,5-Dibromotoluene-PID	84		70-130	
2,5-Dibromotoluene-FID	94		70-130	

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: L1706716-03 Date Collected: 03/03/17 12:55

Client ID: 1700516-B(MW)305 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/06/17 19:09

Analytical Date: 03/08/17 17:33 M.S. Analytical Date: 03/08/17 09:28 Cleanup Method1: EPH-04-1
Analyst: DV Cleanup Date1: 03/08/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lab						
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	0.708		ug/l	0.400		1
2-Methylnaphthalene	ND		ug/l	0.400		1
Acenaphthylene	ND		ug/l	0.400		1
Acenaphthene	ND		ug/l	0.400		1
Fluorene	ND		ug/l	0.400		1
Phenanthrene	0.840		ug/l	0.400		1
Anthracene	ND		ug/l	0.400		1
Fluoranthene	ND		ug/l	0.400		1
Pyrene	ND		ug/l	0.400		1
Benzo(a)anthracene	ND		ug/l	0.400		1
Chrysene	ND		ug/l	0.400		1
Benzo(b)fluoranthene	ND		ug/l	0.400		1
Benzo(k)fluoranthene	ND		ug/l	0.400		1
Benzo(a)pyrene	ND		ug/l	0.200		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		1
Dibenzo(a,h)anthracene	ND		ug/l	0.400		1
Benzo(ghi)perylene	ND		ug/l	0.400		1

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: L1706716-03 Date Collected: 03/03/17 12:55

Client ID: 1700516-B(MW)305 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	77		40-140	
o-Terphenyl	90		40-140	
2-Fluorobiphenyl	82		40-140	
2-Bromonaphthalene	84		40-140	
O-Terphenyl-MS	93		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706716

Report Date:

03/12/17

SAMPLE RESULTS

Lab ID: L1706716-04

Client ID: 1700516-B(MW)308

Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/09/17 04:59

Analyst: JM

Date Collected:

03/03/17 11:30

Date Received: Field Prep:

03/03/17

Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons -	Westborough Lab				
C5-C8 Aliphatics	ND	ug/l	50.0		1
C9-C12 Aliphatics	ND	ug/l	50.0		1
C9-C10 Aromatics	ND	ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND	ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND	ug/l	50.0		1
Benzene	ND	ug/l	2.00		1
Toluene	ND	ug/l	2.00		1
Ethylbenzene	ND	ug/l	2.00		1
p/m-Xylene	ND	ug/l	2.00		1
o-Xylene	ND	ug/l	2.00		1
Methyl tert butyl ether	ND	ug/l	3.00		1
Naphthalene	ND	ug/l	4.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	83		70-130	
2,5-Dibromotoluene-FID	94		70-130	

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: L1706716-04 Date Collected: 03/03/17 11:30

Client ID: 1700516-B(MW)308 Date Received: 03/03/17

Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/06/17 19:09

Analytical Date: 03/08/17 18:05 M.S. Analytical Date: 03/08/17 09:53 Cleanup Method1: EPH-04-1

Analyst: NS M.S. Analyst: DV Cleanup Date1: 03/08/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lab						
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	0.502		ug/l	0.400		1
2-Methylnaphthalene	ND		ug/l	0.400		1
Acenaphthylene	ND		ug/l	0.400		1
Acenaphthene	ND		ug/l	0.400		1
Fluorene	ND		ug/l	0.400		1
Phenanthrene	ND		ug/l	0.400		1
Anthracene	ND		ug/l	0.400		1
Fluoranthene	ND		ug/l	0.400		1
Pyrene	ND		ug/l	0.400		1
Benzo(a)anthracene	ND		ug/l	0.400		1
Chrysene	ND		ug/l	0.400		1
Benzo(b)fluoranthene	ND		ug/l	0.400		1
Benzo(k)fluoranthene	ND		ug/l	0.400		1
Benzo(a)pyrene	ND		ug/l	0.200		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		1
Dibenzo(a,h)anthracene	ND		ug/l	0.400		1
Benzo(ghi)perylene	ND		ug/l	0.400		1

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

SAMPLE RESULTS

Lab ID: L1706716-04 Date Collected: 03/03/17 11:30

Client ID: 1700516-B(MW)308 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	64		40-140	
o-Terphenyl	79		40-140	
2-Fluorobiphenyl	82		40-140	
2-Bromonaphthalene	83		40-140	
O-Terphenyl-MS	86		40-140	

03/06/17 19:02

Lab Number:

Project Name: TREMONT CROSSING

Report Date:

Project Number: 1700516 03/12/17

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 98,EPH-04-1.1

Extraction Method: EPA 3510C Analytical Date: 03/08/17 17:46 M.S. Analytical Date: 03/08/17 16:33 Extraction Date:

Analyst: M.S. Analyst: DV SR Cleanup Method: EPH-04-1

Cleanup Date: 03/08/17

arameter	Result	Qualifier	Units	RL	MDL	
PH w/MS Targets - Westborou	igh Lab for samp	le(s): 01	-02 Bat	ch: WG98327	78-1	
C9-C18 Aliphatics	ND		ug/l	100		
C19-C36 Aliphatics	ND		ug/l	100		
C11-C22 Aromatics	ND		ug/l	100		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		
Naphthalene	ND		ug/l	0.400		
2-Methylnaphthalene	ND		ug/l	0.400		
Acenaphthylene	ND		ug/l	0.400		
Acenaphthene	ND		ug/l	0.400		
Fluorene	ND		ug/l	0.400		
Phenanthrene	ND		ug/l	0.400		
Anthracene	ND		ug/l	0.400		
Fluoranthene	ND		ug/l	0.400		
Pyrene	ND		ug/l	0.400		
Benzo(a)anthracene	ND		ug/l	0.400		
Chrysene	ND		ug/l	0.400		
Benzo(b)fluoranthene	ND		ug/l	0.400		
Benzo(k)fluoranthene	ND		ug/l	0.400		
Benzo(a)pyrene	ND		ug/l	0.200		
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		
Dibenzo(a,h)anthracene	ND		ug/l	0.400		
Benzo(ghi)perylene	ND		ug/l	0.400		

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method:

98,EPH-04-1.1

Analytical Date: 03/08/17 17:46

Analyst: SR 03/08/17 16:33

DV

Extraction Method: EPA 3510C

Extraction Date: 03/06/17 19:02

EPH-04-1 Cleanup Method: Cleanup Date: 03/08/17

Result Qualifier Units RL MDL **Parameter**

EPH w/MS Targets - Westborough Lab for sample(s): 01-02 Batch: WG983278-1

		Acceptance								
Surrogate	%Recovery	Qualifier Criteria								
Chloro-Octadecane	68	40-140								
o-Terphenyl	77	40-140								
2-Fluorobiphenyl	82	40-140								
2-Bromonaphthalene	84	40-140								
O-Terphenyl-MS	77	40-140								

Lab Number:

Project Name: TREMONT CROSSING

Project Number: Report Date: 03/12/17 1700516

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 98,EPH-04-1.1

Extraction Method: EPA 3510C Analytical Date: 03/08/17 20:12 M.S. Analytical Date: 03/08/17 08:14 03/06/17 13:34 **Extraction Date:**

 DV Analyst: NS M.S. Analyst: Cleanup Method: EPH-04-1 03/08/17 Cleanup Date:

Qualifier Units MDL Result RL**Parameter** EPH w/MS Targets - Westborough Lab for sample(s): 03-04 Batch: WG983280-1 C9-C18 Aliphatics ND ug/l 100 ND C19-C36 Aliphatics ug/l 100 --C11-C22 Aromatics ND ug/l 100 --ND C11-C22 Aromatics, Adjusted 100 ug/l --ND 0.400 Naphthalene ug/l 2-Methylnaphthalene ND 0.400 ug/l --Acenaphthylene ND ug/l 0.400 --Acenaphthene ND 0.400 ug/l ND Fluorene 0.400 ug/l --Phenanthrene ND ug/l 0.400 Anthracene ND 0.400 ug/l --Fluoranthene ND ug/l 0.400 --Pyrene ND 0.400 ug/l --Benzo(a)anthracene ND 0.400 ug/l Chrysene ND ug/l 0.400 Benzo(b)fluoranthene ND ug/l 0.400 --Benzo(k)fluoranthene ND ug/l 0.400 Benzo(a)pyrene ND ug/l 0.200 ND Indeno(1,2,3-cd)Pyrene ug/l 0.400 Dibenzo(a,h)anthracene ND ug/l 0.400 ND 0.400 Benzo(ghi)perylene ug/l

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

Method Blank Analysis Batch Quality Control

Analytical Method:

98,EPH-04-1.1

Analytical Date: 03/08/17 20:12

Analyst: NS

03/08/17 08:14

DV

Extraction Method: EPA 3510C

03/06/17 13:34

L1706716

Extraction Date:

Lab Number:

EPH-04-1

Cleanup Method: Cleanup Date: 03/08/17

Result Qualifier Units RL MDL **Parameter**

EPH w/MS Targets - Westborough Lab for sample(s): 03-04 Batch: WG983280-1

		Acceptance	
%Recovery	Qualifier	Criteria	
71		40-140	
67		40-140	
74		40-140	
74		40-140	
71		40-140	
	71 67 74 74	%Recovery Qualifier 71 67 74 74	71 40-140 67 40-140 74 40-140 74 40-140

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/12/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/08/17 12:35

Analyst: JM

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Petroleum Hydrocarbons - V	Vestboroug	h Lab for s	ample(s):	01-04	Batch: WG984223-3
C5-C8 Aliphatics	ND		ug/l	50.0	
C9-C12 Aliphatics	ND		ug/l	50.0	
C9-C10 Aromatics	ND		ug/l	50.0	
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0	
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0	
Benzene	ND		ug/l	2.00	
Toluene	ND		ug/l	2.00	
Ethylbenzene	ND		ug/l	2.00	
p/m-Xylene	ND		ug/l	2.00	
o-Xylene	ND		ug/l	2.00	
Methyl tert butyl ether	ND		ug/l	3.00	
Naphthalene	ND		ug/l	4.00	

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
2,5-Dibromotoluene-PID	91		70-130					
2,5-Dibromotoluene-FID	99		70-130					

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706716

Report Date: 03/12/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
EPH w/MS Targets - Westborough Lab Assoc	ciated sample(s):	01-02 B	atch: WG983278	-2 WG983	3278-3		
C9-C18 Aliphatics	62		60		40-140	3	25
C19-C36 Aliphatics	96		98		40-140	2	25
C11-C22 Aromatics	71		79		40-140	11	25
Naphthalene	79		78		40-140	1	25
2-Methylnaphthalene	89		90		40-140	1	25
Acenaphthylene	102		105		40-140	3	25
Acenaphthene	100		103		40-140	3	25
Fluorene	106		112		40-140	6	25
Phenanthrene	99		107		40-140	8	25
Anthracene	109		118		40-140	8	25
Fluoranthene	111		121		40-140	9	25
Pyrene	109		119		40-140	9	25
Benzo(a)anthracene	110		118		40-140	7	25
Chrysene	104		110		40-140	6	25
Benzo(b)fluoranthene	112		125		40-140	11	25
Benzo(k)fluoranthene	108		111		40-140	3	25
Benzo(a)pyrene	112		120		40-140	7	25
Indeno(1,2,3-cd)Pyrene	115		124		40-140	8	25
Dibenzo(a,h)anthracene	117		126		40-140	7	25
Benzo(ghi)perylene	110		120		40-140	9	25
Nonane (C9)	33		29	Q	30-140	13	25

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706716

Report Date:

03/12/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
PH w/MS Targets - Westborough Lab A	ssociated sample(s):	01-02	Batch: WG983278	3-2 WG9	83278-3			
Decane (C10)	46		42		40-140	9	25	
Dodecane (C12)	72		69		40-140	4	25	
Tetradecane (C14)	88		86		40-140	2	25	
Hexadecane (C16)	94		94		40-140	0	25	
Octadecane (C18)	96		97		40-140	1	25	
Nonadecane (C19)	96		97		40-140	1	25	
Eicosane (C20)	96		97		40-140	1	25	
Docosane (C22)	96		98		40-140	2	25	
Tetracosane (C24)	94		95		40-140	1	25	
Hexacosane (C26)	95		96		40-140	1	25	
Octacosane (C28)	95		96		40-140	1	25	
Triacontane (C30)	94		94		40-140	0	25	
Hexatriacontane (C36)	90		89		40-140	1	25	

Project Name: TREMONT CROSSING

Lab Number:

L1706716

Project Number: 1700516

MONT CROSSING

Report Date:

03/12/17

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

EPH w/MS Targets - Westborough Lab Associated sample(s): 01-02 Batch: WG983278-2 WG983278-3

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Chloro-Octadecane	77		73		40-140	
o-Terphenyl	71		78		40-140	
2-Fluorobiphenyl	73		77		40-140	
2-Bromonaphthalene	74		81		40-140	
O-Terphenyl-MS	113		123		40-140	
% Naphthalene Breakthrough	0	'	0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706716

Report Date: 03/12/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
EPH w/MS Targets - Westborough Lab	Associated sample(s):	03-04	Batch: WG983280	-2 WG983280-3			
C9-C18 Aliphatics	75		76	40-140	1	25	
C19-C36 Aliphatics	94		87	40-140	8	25	
C11-C22 Aromatics	80		90	40-140	12	25	
Naphthalene	75		77	40-140	3	25	
2-Methylnaphthalene	82		84	40-140	2	25	
Acenaphthylene	93		95	40-140	2	25	
Acenaphthene	89		91	40-140	2	25	
Fluorene	94		97	40-140	3	25	
Phenanthrene	88		94	40-140	7	25	
Anthracene	98		106	40-140	8	25	
Fluoranthene	97		107	40-140	10	25	
Pyrene	96		105	40-140	9	25	
Benzo(a)anthracene	98		108	40-140	10	25	
Chrysene	88		97	40-140	10	25	
Benzo(b)fluoranthene	103		114	40-140	10	25	
Benzo(k)fluoranthene	90		99	40-140	10	25	
Benzo(a)pyrene	97		107	40-140	10	25	
Indeno(1,2,3-cd)Pyrene	96		110	40-140	14	25	
Dibenzo(a,h)anthracene	94		128	40-140	31	Q 25	
Benzo(ghi)perylene	92		101	40-140	9	25	
Nonane (C9)	51		52	30-140	2	25	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L17

L1706716 03/12/17

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
EPH w/MS Targets - Westborough Lab	Associated sample(s):	03-04	Batch: WG983280)-2 WG98	3280-3			
Decane (C10)	62		62		40-140	0		25
Dodecane (C12)	70		69		40-140	1		25
Tetradecane (C14)	77		74		40-140	4		25
Hexadecane (C16)	81		81		40-140	0		25
Octadecane (C18)	85		87		40-140	2		25
Nonadecane (C19)	85		87		40-140	2		25
Eicosane (C20)	85		89		40-140	5		25
Docosane (C22)	86		90		40-140	5		25
Tetracosane (C24)	86		89		40-140	3		25
Hexacosane (C26)	85		89		40-140	5		25
Octacosane (C28)	85		89		40-140	5		25
Triacontane (C30)	84		88		40-140	5		25
Hexatriacontane (C36)	83		86		40-140	4		25

Project Name: TREMONT CROSSING Lab Number:

L1706716

Project Number: 1700516

Report Date:

03/12/17

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual

EPH w/MS Targets - Westborough Lab Associated sample(s): 03-04 Batch: WG983280-2 WG983280-3

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Chloro-Octadecane	85		85		40-140	
o-Terphenyl	80		92		40-140	
2-Fluorobiphenyl	75		85		40-140	
2-Bromonaphthalene	76		87		40-140	
O-Terphenyl-MS	103		111		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L

L1706716

Report Date:

03/12/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Petroleum Hydrocarbons - Westborou	ıgh Lab Associa	ated sample(s)	: 01-04 Bato	h: WG984	223-1 WG984223	-2		
C5-C8 Aliphatics	97		98		70-130	1	25	
C9-C12 Aliphatics	108		108		70-130	0	25	
C9-C10 Aromatics	97		97		70-130	1	25	
Benzene	90		88		70-130	1	25	
Toluene	92		92		70-130	0	25	
Ethylbenzene	93		93		70-130	0	25	
p/m-Xylene	95		95		70-130	0	25	
o-Xylene	92		92		70-130	0	25	
Methyl tert butyl ether	87		90		70-130	4	25	
Naphthalene	89		95		70-130	7	25	
1,2,4-Trimethylbenzene	97		97		70-130	0	25	
Pentane	94		94		70-130	0	25	
2-Methylpentane	97		97		70-130	1	25	
2,2,4-Trimethylpentane	100		100		70-130	0	25	
n-Nonane	106		106		30-130	0	25	
n-Decane	111		110		70-130	1	25	
n-Butylcyclohexane	108		107		70-130	1	25	

Project Name: TREMONT CROSSING

Lab Number:

L1706716

Project Number: 1700516

Report Date:

03/12/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01-04 Batch: WG984223-1 WG984223-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	95		96		70-130	
2,5-Dibromotoluene-FID	102		105		70-130	

Project Name: TREMONT CROSSING

Lab Number: L1706716 **Report Date:** 03/12/17 Project Number: 1700516

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	rmation			Temp			·
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706716-01A	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-01B	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-01C	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-01D	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-01E	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-01F	Vial HCI preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-01G	Amber 1000ml HCl preserved	Α	<2	5.3	Y	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706716-01H	Amber 1000ml HCl preserved	Α	<2	5.3	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706716-02A	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-02B	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-02C	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-02D	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-02E	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-02F	Vial HCl preserved	A	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-02G	Amber 1000ml HCl preserved	A	<2	5.3	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706716-02H	Amber 1000ml HCl preserved	Α	<2	5.3	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706716-03A	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-03B	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-03C	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-03D	Vial HCI preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-03E	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-03F	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-03G	Amber 1000ml HCl preserved	Α	<2	5.3	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706716-03H	Amber 1000ml HCl preserved	Α	<2	5.3	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706716-04A	Vial HCI preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-04B	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)
L1706716-04C	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	MCP-8260-10(14)

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706716 **Report Date:** 03/12/17

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706716-04D	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-04E	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-04F	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	VPH-DELUX-10(14)
L1706716-04G	Amber 1000ml HCl preserved	Α	<2	5.3	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706716-04H	Amber 1000ml HCl preserved	Α	<2	5.3	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706716-05A	Vial HCI preserved	Α	N/A	5.3	Υ	Absent	HOLD-VPH(14)
L1706716-05B	Vial HCl preserved	Α	N/A	5.3	Υ	Absent	HOLD-VPH(14)
L1706716-05C	Vial HCl preserved	NA	NA		Y	Absent	-

Project Name:TREMONT CROSSINGLab Number:L1706716Project Number:1700516Report Date:03/12/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSINGLab Number:L1706716Project Number:1700516Report Date:03/12/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: TREMONT CROSSING Lab Number: L1706716

Project Number: 1700516 Report Date: 03/12/17

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:03121719:54

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

	OLIA	IN 6= -				euiteu 3/	7/1/-										00110	to	00121710	.0 .
A PHA	CHA	IN OF C	•		PAGE	OF	D	ate Re	c'd in L	ab:	03	los	117		ALF	PHA .	Job #	!: _{\ \} -	1067	16
8 Walkup Dri Westboro, M		Pro	ect Inform	ation			G	Report	Inforn	natio	n - Dat	a Del	iverab	les	Bill	ing Ir	nform	ation	roer	
Tel: 508-898	8-9220 Tel: 508-822-9300	Proje	ect Name: Tr	ement	Coossin	{	[□ ADE>	(V	EMAIL				A CONTRACTOR OF THE PARTY OF TH		Client		PO #:	
Client Informat		- Proje	ect Location:	Boston	MA)	R	egula	tory R	equir	ement	s &	Pro	ect In				iremer		· Park
Client: GEL Co	minitants, Inc.	. , . , . ,	106	51/2			<u>₩</u>	Yes 🗆	No MA	MCP	Analytic	cal Me	thode			V	211			lethods
Address: 400 U	vicery Park Dr	Proje	ct Manager:	Cathy	John	164	1 4	ies u	NO GN	1 Sta	naaras	uired (Info F	on this Required	SDG? d for Me					nics)	
Wohn	M, MA	ALP	HA Quote #:		00.0	7-1		Yes 🗆 Other S	NO INF	DE2 I	KGP							argers)		
Phone: 791-72	1-4000		n-Around T	ime ·						-	ogram_	7	1 1	7	7	_ Crite	eria			
Email: jendeha	-tageicusultants.	iom Vs	andard	□ RUSH (o	nly confirmed if pre	-approved!)		8		/ Car	DPP13	les Only	No only	Wie.	18			//		
Additional	Project Information	n: Dat		5 day			ANA	12/2/ 17/5/1	AH AN	MCP 14	Cocas Cocas	P. P. D.	6	gerprint	118.4	//			SAMPLE IN	T 0 T
							*	SVOC: 0 48.	METALS: DINGO 13 PAH	RCR45	VPH. DR. Talgets C. DP13	es & Targets	TOMY DE	Est of West Control	Marci	19	Mehal	//	Filtration Field Lab to do	, Ĉ. #
ALPHA Lab ID	1						/2	0 0	10	is	F. 18		Separate /	5 6	2 3	REF	/ /		Preservation	
(Lab Use Only)	Sample	e ID	Coll	lection Time	Sample Matrix	- anipioi		600	ETAL	H. H	# H	18 / S		in R	F	्राह्म	ZIZ ZIZ	1	☐ Lab to do	Ť
03716-01	1700516-B(MW)30	2	3/3/17			Initials	X	0)	2 2	1		4/4	· / F		1		7 12	San	nple Commer	nts s
N. D. W. St. British and Co. St. Co. St. Co. St. Co. St. Co.	1700514-B(MU)3	n2	11.		6-W	SMT				X	X	-	-	_	_					8
02	12054- g(MW)3	· ·	3/3/17	6920	6W	SMI	X		_	X	X									8
	1		3/3/11		EW	RAM	X			X	X									8
	1700516-Bliw)		3/3/17		tw	RAM	X			X	\times	(×	X	XX	X	X	X			- 0
04	1700516-B(hv)3	08	3/3/17	1130	6W	SMT	X			X	X					1.				0
													11		+					8
												+		+	+					
											_	+	+	+	-					
								\top		-	-	+-	++		-					4
				7			+	-	-	-	-	+-	++	-			-			\perp
Container Type	Preservative				Conto	iner Type		-		+		+								
A= Amber glass /= Vial S= Glass	A= None B= HCI C= HNO ₃			-	100	servative	-	-	+-	_		-						Ti .		
3= Bacteria cup C= Cube	D= H₂SÕ₄ E= NaOH F= MeOH	Reling	uished By:			/Time														
D= Other = Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	for flore			3/3/17		12	F	Receive	d By:	۸ ۵1			te/Time		Alls	ample	s suhmit	ted are subje	ect fo
	I= Ascorbic Acid J = NH₄CI K= Zn Acetate O= Other	/			11.4.1	1010	1				AAL		3/3/1	1 1	610	Alph See	ia's Tei revers	ms and e side.	Conditions.	GC 10
Page 66 of 73	₹															. 2730		- 1 (164 12	-IvidI-2U (Z)	ALC: NO

A PHA	CHAIN C	F CUSTODY	PAGEOF	Date Rec'd in Lab: 03 03 17 ALPHA Job #: 17 77 1	
8 Walkup Dri		Project Information		Report Information - Data Deliverables Billing Information	0
Westboro, M. Tel: 508-898	A 01581 Mansfield, MA 02048 3-9220 Tel: 508-822-9300	Project Name: Trement	Coossing	DADE.	
Client Informat		- Project Location: Boston	MA	Regulatory Requirements & Project Information Requirements	1000
Client: GEL Co	usultants, Inc.	Project #: 70651/6	,	Yes U No MA MCP Analytical Methods	ode.
Address: 400 0	vicery Park Dr	Project Manager: Cathy	14	☐ Yes ☐ No Matrix Spike Required on this SDG? (Required for MCP Inorganics) ☐ Yes ☐ No GW1 Standards (Info Required for Metals & EPH with Targets)	ous
Wohn	M, MA	ALPHA Quote #:	donnion	a res a no nedes RGP	
Phone: 791-72	1-4000	Turn-Around Time		Other State /Fed Program Criteria	
Email: jendehar	Hage consultants.com	Date Due: 5 day	only confirmed if pre-approved!)	SAMPLE INFO SOC: Base Same Same Same Same Same Same Same Sam	T O T A L
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection	Sample Sampler	Deservation Compared Compare	BOTTL
03716-01	17005110-B(MW)302	Date Time	·	Sample Comments	E S
		3/3/17 1325		XXX	8
02	1700514-B(MU)303	3/3/17 6920	GW SMT	\times \times \times \times	8
05	1205he- g(hu)305	3/3/11 1255	GW RAM	× × × ×	
	1700516-BLAW) 307	3/3/17 0950	tw RAM		8
04	1700516-B(hv)308	3/3/17 1130			_
		7,11	OW MI	X X X	8
			\		
					\dashv
Container Type P= Plastic A= Amber glass /= Vial	Preservative A= None B= HCI C= HNO₃		Container Type		
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH	Relinquished By:	Preservative		\neg
D= Other = Encore D= BOD Bottle	F= MeOH G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	non quality	Date/Time 3/3/17 (6(0)	Received By: Date/Time All samples submitted are subject to Alpha's Terms and Conditions. See reverse side. FORM NO. 01-01 (rev. 12-Mar-2012)	0

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1706716
Project Name : TREMONT CROSSING Project Number : 1700516
Lab Sample ID : WG983120-5 Lab File ID : VJ170306A07

Lab Sample ID : WG983 Instrument ID : JACK

Matrix : WATER Analysis Date : 03/06/17 06:20

Client Sample No.	Lab Sample ID	Analysis Date
WG983120-3LCS	WG983120-3	03/06/17 04:40
WG983120-4LCSD	WG983120-4	03/06/17 05:13
1700516-B(MW)303	L1706716-02	03/06/17 13:33
1700516-B(MW)308	L1706716-04	03/06/17 14:07

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1706716
Project Name : TREMONT CROSSING Project Number : 1700516
Lab Sample ID : WG983125-5 Lab File ID : VJ170306A08

Lab Sample ID : WG983 Instrument ID : JACK

Matrix : WATER Analysis Date : 03/06/17 06:37

Client Sample No.	Lab Sample ID	Analysis Date
WG983125-3LCS	WG983125-3	03/06/17 04:57
WG983125-4LCSD	WG983125-4	03/06/17 05:30
1700516-B(MW)302	L1706716-01	03/06/17 13:17
1700516-B(MW)305	L1706716-03	03/06/17 13:50

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706716
Project Name : TREMONT CROSSING Project Number : 1700516
Instrument ID : JACK Calibration Date : 03/06/17 04:40

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(r
Fluorobenzene	10	10	-	0	20	96	0
Dichlorodifluoromethane	0.343	0.326	-	5	20	86	0
Chloromethane	0.387	0.419	-	-8.3	20	101	0
Vinyl chloride	0.354	0.383	-	-8.2	20	102	0
Bromomethane	10	12.669	-	-26.7*	20	130	0
Chloroethane	10	11.941	•	-19.4	20	102	0
Trichlorofluoromethane	0.431	0.434	•	-0.7	20	92	0
Ethyl ether	0.11	0.117	-	-6.4	20	97	0
1,1-Dichloroethene	0.258	0.266	-	-3.1	20	98	0
Carbon disulfide	0.716	0.746		-4.2	20	96	0
Freon-113	0.245	0.247	-	-0.8	20	89	0
Methylene chloride	0.272	0.276	•	-1.5	20	93	0
Acetone	10	9.91	-	0.9	20	98	0
trans-1,2-Dichloroethene	0.274	0.302	-	-10.2	20	103	0
Methyl tert-butyl ether	0.592	0.611	-	-3.2	20	99	0
tert-Butyl alcohol	50	52.092	-	-4.2	20	98	0
Diisopropyl ether	1.053	1.139	-	-8.2	20	105	0
1,1-Dichloroethane	0.52	0.581	-	-11.7	20	103	0
Ethyl tert-butyl ether	0.803	0.836	7 -	-4.1	20	101	0
cis-1,2-Dichloroethene	0.315	0.335	-	-6.3	20	102	0
2,2-Dichloropropane	0.504	0.524	-	-4	20	97	0
Bromochloromethane	0.139	0.145	-	-4.3	20	100	0
Chloroform	0.522	0.563	-	-7.9	20	101	0
Carbon tetrachloride	0.451	0.44	-	2.4	20	93	0
Tetrahydrofuran	0.069	0.079	-	-14.5	20	115	0
Dibromofluoromethane	0.23	0.234	-	-1.7	20	95	0
1,1,1-Trichloroethane	0.52	0.521	-	-0.2	20	94	0
2-Butanone	0.086	0.086*	-	0	20	94	0
1,1-Dichloropropene	0.432	0.444	-	-2.8	20	98	0
Benzene	1.271	1.311	-	-3.1	20	99	0
tert-Amyl methyl ether	0.658	0.674	-	-2.4	20	102	0
1,2-Dichloroethane-d4	0.252	0.244	-	3.2	20	86	0
1,2-Dichloroethane	0.361	0.378	-	-4.7	20	99	0
Trichloroethene	0.348	0.351		-0.9	20	99	0
Dibromomethane	0.153	0.153		0.5	20	96	0
1,2-Dichloropropane	0.318	0.333		-4.7	20	102	0
2-Chloroethyl vinyl ether	0.128	0.094	<u> </u>	26.6*	20	73	0
Bromodichloromethane	0.423	0.408		3.5	20	96	0
1,4-Dioxane	0.423	0.408	<u> </u>	1.5	20	103	0
cis-1,3-Dichloropropene	0.533	0.533	<u>-</u>	0	20	98	0
Chlorobenzene-d5			-		20	96	
	1 100	1 167	-	0			0
Toluene-d8	1.129	1.167	-	-3.4	20	97	0
Toluene	0.968	1.013	-	-4.6	20	99	0
4-Methyl-2-pentanone	10	9.693	-	3.1	20	92	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706716

Project Name : TREMONT CROSSING Project Number : 1700516

Instrument ID : 1807

 Instrument ID
 : JACK
 Calibration Date
 : 03/06/17 04:40

 Lab File ID
 : VJ170306A01
 Init. Calib. Date(s)
 : 02/28/17

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
trans-1,3-Dichloropropene	0.442	0.444	-	-0.5	20	96	0
1,1,2-Trichloroethane	0.199	0.208	-	-4.5	20	97	0
Chlorodibromomethane	0.342	0.33	-	3.5	20	94	0
1,3-Dichloropropane	0.424	0.422	-	0.5	20	96	0
1,2-Dibromoethane	0.254	0.253	-	0.4	20	96	01
2-Hexanone	0.158	0.144	-	8.9	20	96	0
Chlorobenzene	1.194	1.217	-	-1.9	20	99	0
Ethylbenzene	2.148	2.17	-	-1	20	97	0
1,1,1,2-Tetrachloroethane	0.431	0.422	-	2.1	20	99	0
p/m Xylene	0.885	0.902	-	-1.9	20	97	0
o Xylene	0.863	0.858	-	0.6	20	96	0
Styrene	1.466	1.479	-	-0.9	20	99	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	97	0
Bromoform	0.35	0.307	-	12.3	20	89	0
Isopropylbenzene	4.14	3.988	-	3.7	20	95	0
4-Bromofluorobenzene	0.831	0.776	-	6.6	20	95	0
Bromobenzene	0.894	0.876		2	20	97	0
n-Propylbenzene	4.705	4.653	-	1.1	20	97	01
1,1,2,2-Tetrachloroethane	0.502	0.487	-	3	20	97	0
2-Chlorotoluene	3.056	2.997	-	1.9	20	98	0
1,3,5-Trimethylbenzene	3.429	3.379	-	1.5	20	98	0
1,2,3-Trichloropropane	0.405	0.391	-	3.5	20	99	0
4-Chlorotoluene	2.773	2.711	-	2.2	20	98	0
tert-Butylbenzene	3.024	2.987	-	1.2	20	97	0
1,2,4-Trimethylbenzene	3.345	3.34	-	0.1	20	98	0
sec-Butylbenzene	4.403	4.33	-	1.7	20	97	0
p-Isopropyltoluene	3.735	3.691	-	1.2	20	94	0
1,3-Dichlorobenzene	1.869	1.852	-	0.9	20	99	0
1,4-Dichlorobenzene	1.754	1.772	-	-1	20	99	0
n-Butylbenzene	10	8.844	-	11.6	20	79	0
1,2-Dichlorobenzene	1.587	1.596	-	-0.6	20	93	0
1,2-Dibromo-3-chloropropan	10	8.839	-	11.6	20	88	01
Hexachlorobutadiene	0.418	0.426	-	-1.9	20	92	0
1,2,4-Trichlorobenzene	0.785	0.779	-	8.0	20	94	0
Naphthalene	10	9.02	-	9.8	20	92	0
1,2,3-Trichlorobenzene	10	9.906	-	0.9	20	96	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706716 **Project Name** : TREMONT CROSSING Project Number : 1700516 Calibration Date : 03/06/17 04:57

Instrument ID : JACK

Lab File ID : VJ170306A02 Init. Calib. Date(s) : 02/28/17 02/28/17 Sample No : WG983125-2 Init. Calib. Times : 07:34 11:28

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Fluorobenzene	1	1	-	0	20	86	0
Dichlorodifluoromethane	0.467	0.411	-	12	20	75	0
Chloromethane	0.428	0.429	-	-0.2	20	88	.02
Vinyl chloride	0.444	0.464	-	-4.5	20	85	0
Bromomethane	0.229	0.258	-	-12.7	20	106	0
Chloroethane	10	11.378	-	-13.8	20	87	0
Trichlorofluoromethane	0.703	0.684	-	2.7	20	80	02
Ethyl ether	0.18	0.181	-	-0.6	20	88	02
1,1-Dichloroethene	0.4	0.398	-	0.5	20	85	02
Carbon disulfide	1.142	1.149	7	-0.6	20	87	02
Methylene chloride	10	10.595	-	-6	20	90	02
Acetone	10	9.427	-	5.7	20	89	02
trans-1,2-Dichloroethene	0.424	0.44	-	-3.8	20	92	02
Methyl tert-butyl ether	0.91	0.894	-	1.8	20	91	0
Diisopropyl ether	1.34	1.39	-	-3.7	20	88	0
1,1-Dichloroethane	0.843	0.854	-	-1.3	20	88	02
Ethyl tert-butyl ether	1.072	1.056		1.5	20	85	0
cis-1,2-Dichloroethene	0.491	0.485		1.2	20	88	02
2,2-Dichloropropane	0.717	0.714	-	0.4	20	82	0
Bromochloromethane	0.221	0.227	-	-2.7	20	91	0
Chloroform	0.808	0.803	-	0.6	20	87	0
Carbon tetrachloride	0.658	0.594	-	9.7	20	81	0
Tetrahydrofuran	0.109	0.106		2.8	20	92	0
Dibromofluoromethane	0.304	0.3	-	1.3	20	86	0
1,1,1-Trichloroethane	0.735	0.699	-	4.9	20	81	02
2-Butanone	0.117	0.118		-0.9	20	95	0
1,1-Dichloropropene	0.568	0.553		2.6	20	82	0
Benzene	1.575	1.587		-0.8	20	86	0
tert-Amyl methyl ether	0.833	0.827		0.7	20	85	0
1,2-Dichloroethane-d4	0.326	0.314		3.7	20	87	02
1,2-Dichloroethane	0.535	0.532		0.6	20	88	0
Trichloroethene	0.436	0.428		1.8	20	85	0
Dibromomethane	0.212	0.208		1.9	20	86	02
1,2-Dichloropropane	0.395	0.413	<u> </u>	-4.6	20	88	0
Bromodichloromethane	0.522	0.413	-	0.8	20	86	0
1,4-Dioxane	0.00145	0.0014*	<u> </u>	3.4	20	91	0
cis-1,3-Dichloropropene	0.603	0.6	<u>-</u>	0.5	20	85	0
Chlorobenzene-d5	1	1	-	0.5	20	89	0
		-	-				
Toluene-d8	1.338	1.377	-	-2.9	20	87	0
Toluene	1.245	1.348	•	-8.3	20	88	
4-Methyl-2-pentanone	0.134	0.129	-	3.7	20	82	0
Tetrachloroethene	0.646	0.69	-	-6.8	20	85	0
trans-1,3-Dichloropropene	0.807	0.857	-	-6.2	20	85	0
1,1,2-Trichloroethane	0.372 0.573	0.4	-	-7.5	20	87 83	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706716
Project Name : TREMONT CROSSING Project Number : 1700516

Instrument ID : JACK Calibration Date : 03/06/17 04:57

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,3-Dichloropropane	0.781	0.831	-	-6.4	20	88	0
1,2-Dibromoethane	0.421	0.454	-	-7.8	20	87	0
2-Hexanone	0.245	0.223	-	9	20	82	0
Chlorobenzene	1.301	1.385	-	-6.5	20	89	0
Ethylbenzene	2.08	2.056	-	1.2	20	87	0
1,1,1,2-Tetrachloroethane	0.614	0.613	-	0.2	20	86	0
p/m Xylene	0.623	0.655	-	-5.1	20	99	0
o Xylene	0.655	0.629	-	4	20	100	0
Styrene	1.295	1.147	-	11.4	20	88	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	92	0
Bromoform	0.624	0.613	-	1.8	20	82	0
Isopropylbenzene	5.499	5.74	-	-4.4	20	88	0
4-Bromofluorobenzene	1.073	1.08	-	-0.7	20	92	0
Bromobenzene	1.377	1.452	-	-5.4	20	94	0
n-Propylbenzene	5.077	5.28	-	-4	20	88	0
1,1,2,2-Tetrachloroethane	0.991	1.092	-	-10.2	20	98	0
2-Chlorotoluene	3.328	3.21	•	3.5	20	85	0
1,3,5-Trimethylbenzene	2.276	2.24	-	1.6	20	88	0
1,2,3-Trichloropropane	0.753	0.839	-	-11.4	20	98	0
4-Chlorotoluene	2.894	2.752	-	4.9	20	87	0
tert-Butylbenzene	3.398	3.699	-	-8.9	20	89	0
1,2,4-Trimethylbenzene	2.467	2.485	-	-0.7	20	90	0
sec-Butylbenzene	4.84	5.373	-	-11	20	87	0
p-Isopropyltoluene	3.433	3.732	-	-8.7	20	86	0
1,3-Dichlorobenzene	2.1	2.068	-	1.5	20	84	0
1,4-Dichlorobenzene	1.989	1.968	-	1.1	20	87	0
n-Butylbenzene	2.872	3.493	-	-21.6*	20	83	0
1,2-Dichlorobenzene	1.96	2.008	-	-2.4	20	86	0
1,2-Dibromo-3-chloropropan	10	9.77	-	2.3	20	94	01
Hexachlorobutadiene	10	10.608	-	-6.1	20	84	0
1,2,4-Trichlorobenzene	0.686	0.719	-	-4.8	20	82	0
Naphthalene	1.075	1.153	-	-7.3	20	89	0
1,2,3-Trichlorobenzene	0.557	0.6	-	-7.7	20	82	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1706724

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING

Project Number: 1700516

Report Date: 03/13/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724 **Report Date:** 03/13/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1706724-01	1700516-B(MW)307	WATER	BOSTON, MA	03/03/17 09:50	03/03/17
L1706724-02	TRIP BLANK	WATER	BOSTON, MA	03/03/17 00:00	03/03/17

L1706724

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/13/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

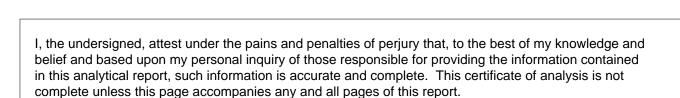
Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:TREMONT CROSSINGLab Number:L1706724Project Number:1700516Report Date:03/13/17

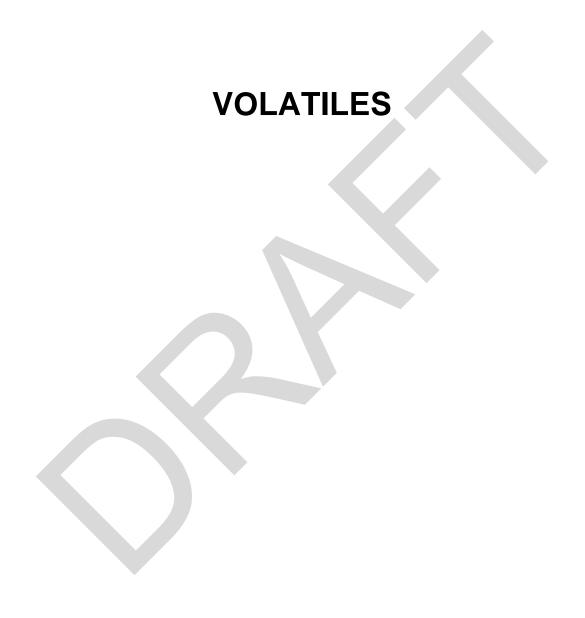

Case Narrative (continued)

Sample Receipt

A Trip Blank was received in the laboratory, but not listed on the Chain of Custody, and was not analyzed.

Semivolatile Organics

The WG983147-3 LCSD recovery, associated with L1706724-01, is below the acceptance criteria for benzidine (7%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.



Authorized Signature:

Title: Technical Director/Representative Date: 03/13/17

WWW CMPPS Melissa Cripps

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706724

Report Date: 03/13/17

Date Collected: Lab ID: L1706724-01

1700516-B(MW)307 Sample Location: BOSTON, MA

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/07/17 10:47

Analyst: MM

Client ID:

Date Collected:	03/03/17 09:50
Date Received:	03/03/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	0.92		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	1.3		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1

L1706724

03/13/17

Project Name: TREMONT CROSSING

1700516-B(MW)307

L1706724-01

BOSTON, MA

Project Number: 1700516

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 03/03/17 09:50

Date Received: 03/03/17 Field Prep: Not Specified

Collatine Organics by GC/MS - Westborough Lab	bample Location. DOSTON, IVIA				i leiu i lep	•	Not Specified
A-Dichlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
A-Dichlorobenzene ND Ug/l 2.5 - 1 1 1 1 1 1 1 1 1	Volatile Organics by GC/MS - Westborou	gh Lab					
A-Dichlorobenzene ND Ug/l 2.5 - 1 1 1 1 1 1 1 1 1	1.3-Dichlorobenzene	ND		ug/l	2.5		1
Interly terb buyl ether ND							
Marth Mart	Methyl tert butyl ether	ND					1
ND	p/m-Xylene						
Venes, Total ND	p-Xylene	ND			1.0		1
Set 2-Dichloroethene ND Ug/l 0.50 - 1 1 1 1 1 1 1 1	Kylenes, Total	ND			1.0		1
ND	cis-1,2-Dichloroethene	ND			0.50		1
A-Dichlorobutane ND Ug/l 5.0 - 1	Dibromomethane	ND			5.0		1
ND	,4-Dichlorobutane	ND			5.0		1
ND	,2,3-Trichloropropane	ND			5.0		1
ND	Styrene	ND			1.0		1
cetone ND ug/l 5.0 1 arbon disulfide ND ug/l 5.0 1 Butanone ND ug/l 5.0 1 Implicatede ND ug/l 5.0 1 Methyl-2-pentanone ND ug/l 5.0 1 Herbanone ND ug/l 5.0 1 Herbanone ND ug/l 5.0 1 Herbanone ND ug/l 5.0 1 Ithyl methacrylate ND ug/l 5.0 1 crylonitrile ND ug/l 5.0 1 romochloromethane ND ug/l 5.0 1 vellotromethane ND ug/l 2.5 1 vellotropropane ND ug/l 2.5 1 vellotropropane ND u	Dichlorodifluoromethane	ND			5.0		1
Butanone ND	Acetone	ND			5.0		1
ND	Carbon disulfide	ND			5.0		1
Inyl acetate ND ug/l 5.0 1	2-Butanone	ND			5.0		1
Amethyl-2-pentanone ND ug/l 5.0 1 Hexanone ND ug/l 5.0 1 thyl methacrylate ND ug/l 5.0 1 crylonitrile ND ug/l 5.0 1 crylonitrile ND ug/l 5.0 1 romochloromethane ND ug/l 2.5 1 etathydrofuran ND ug/l 5.0 1 teathydrofuran ND ug/l 2.5 1 teathydrofuran ND ug/l 2.5 1 publiformorethane ND ug/l 2.5 1 publiforpropane ND ug/l 2.5 1 romochanzene ND ug/l 0.50 1 ese-Butylbenzene ND ug/l 0.50 1 esc-Butylbenzene	/inyl acetate	ND			5.0		1
ND	-Methyl-2-pentanone	ND			5.0		1
thyl methacrylate ND ug/l 5.0 1 crylonitrile ND ug/l 5.0 1 crylonitrile ND ug/l 5.0 1 crylonitrile ND ug/l 5.0 1 cromochloromethane ND ug/l 2.5 1 cetrahydrofuran ND ug/l 5.0 1 cetrahydrofuran ND ug/l 5.0 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 0.50 1 cetrahydrofuran ND ug/l 0.50 1 cetrahydrofuran ND ug/l 0.50 1 cetrahydrofuran ND ug/l 0.50 1 cetrahydrofuran ND ug/l 0.50 1 cetrahydrofuran ND ug/l 0.50 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 2.5 1 cetrahydrofuran ND ug/l 0.50 -	2-Hexanone	ND			5.0		1
crylonitrile ND ug/l 5.0 1 romochloromethane ND ug/l 2.5 1 etrahydrofuran ND ug/l 5.0 1 g-Dichloropropane ND ug/l 2.5 1 g-Dibromoethane ND ug/l 2.5 1 g-Dibromoethane ND ug/l 2.5 1 g-Dibromoethane ND ug/l 0.50 1 g-Butylbenzene ND ug/l 0.50 1 g-Butylbenzene ND ug/l 2.5 1 g-Chlorotoluene ND ug/l 2.5 1 g-Chlorotoluene <td>Ethyl methacrylate</td> <td>ND</td> <td></td> <td></td> <td>5.0</td> <td></td> <td>1</td>	Ethyl methacrylate	ND			5.0		1
romochloromethane ND ug/l 2.5 1 etrahydrofuran ND ug/l 5.0 1 petrahydrofuran ND ug/l 2.5 1 petrahydrofuran	Acrylonitrile	ND			5.0		1
Serial Description	Bromochloromethane	ND			2.5		1
2-Dichloropropane ND ug/l 2.5 1 2-Dibromoethane ND ug/l 2.0 1 3-Dichloropropane ND ug/l 2.5 1 3-Dichloropropane ND ug/l 0.50 1 1,1,2-Tetrachloroethane ND ug/l 0.50 1 2-Butylbenzene ND ug/l 0.50 1 8-Butylbenzene ND ug/l 0.50 1 8-Butylbenzene ND ug/l 2.5 1 8-Chlorotoluene ND ug/l 2.5 1 9-Chlorotoluene ND ug/l 2.5 1 9-Chlorotoluene ND ug/l 2.5 1 9-Chlorotoluene ND ug/l 0.50 1 1-Chlorotoluene ND ug/l 0.50 1 1-Ch	etrahydrofuran	ND			5.0		1
ND	2,2-Dichloropropane	ND			2.5		1
ND	,2-Dibromoethane	ND		ug/l	2.0		1
1,1,2-Tetrachloroethane	,3-Dichloropropane	ND			2.5		1
ND	,1,1,2-Tetrachloroethane	ND			0.50		1
ND	Bromobenzene	ND		ug/l	2.5		1
ND	n-Butylbenzene	ND		ug/l	0.50		1
err-Butylbenzene ND ug/l 2.5 1 -Chlorotoluene ND ug/l 2.5 1 Lexachloropropane ND ug/l 0.50 1 Lexachlorobutadiene ND ug/l 0.50 1 -Isopropylbenzene ND ug/l 0.50 1 -Isopropylbenzene ND ug/l 2.5 1 -Propylbenzene ND ug/l 0.50 1	sec-Butylbenzene	ND			0.50		1
ND ug/l 2.5 1	ert-Butylbenzene	ND			2.5		1
ND	o-Chlorotoluene	ND		ug/l	2.5		1
ND	-Chlorotoluene	ND			2.5		1
ND	,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1
sopropylbenzene ND ug/l 0.50 1 -Isopropyltoluene 0.55 ug/l 0.50 1 Iaphthalene ND ug/l 2.5 1 -Propylbenzene ND ug/l 0.50 1	Hexachlorobutadiene	ND			0.50		1
-Isopropyltoluene 0.55 ug/l 0.50 1 Iaphthalene ND ug/l 2.5 1 -Propylbenzene ND ug/l 0.50 1	sopropylbenzene	ND			0.50		1
Iaphthalene ND ug/l 2.5 1 -Propylbenzene ND ug/l 0.50 1	o-Isopropyltoluene	0.55					1
-Propylbenzene ND ug/l 0.50 1	Naphthalene	ND			2.5		1
•	ı-Propylbenzene	ND		-			1
,=,000.000	,2,3-Trichlorobenzene	ND		ug/l	2.5		1

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706724-01 Date Collected: 03/03/17 09:50

Client ID: 1700516-B(MW)307 Date Received: 03/03/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	
Tert-Butyl Alcohol	ND		ug/l	10		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	104	70-130	

03/03/17

Not Specified

1

Date Received:

Field Prep:

3.0

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/03/17 09:50

Client ID: 1700516-B(MW)307 Sample Location: BOSTON, MA

Volatile Organics by GC/MS-SIM - Westborough Lab

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 03/07/17 10:47

Analyst: MM

1,4-Dioxane

Parameter Result Qualifier Units RL MDL Dilution Factor

ug/l

ND

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706724-01 Date Collected: 03/03/17 09:50

Client ID: 1700516-B(MW)307 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 504.1

Analytical Method: 14,504.1 Extraction Date: 03/07/17 13:40

Analytical Date: 03/08/17 11:33
Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	В

L1706724

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 03/07/17 16:23 Extraction Date: 03/07/17 13:40

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab fo	or sample(s)	: 01	Batch: WG9835	549-1	
1,2-Dibromoethane	ND		ug/l	0.010		В

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 03/07/17 08:00

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG983718-5	
1,4-Dioxane	ND		ug/l		3.0		

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 **Report Date:** 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/07/17 08:00

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS	- Westborough La	o for sample(s):	01 Batch:	WG983724-5
Methylene chloride	ND	ug/l	3.0	<u></u>
1,1-Dichloroethane	ND	ug/l		
Chloroform	ND	ug/l		
Carbon tetrachloride	ND	ug/l		
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	2.5	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
1,2-Dichloroethene, Total	ND	ug/l	0.50	
Trichloroethene	ND	ug/l	0.50	

L1706724

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/07/17 08:00

1,2-Dichlorobenzene ND ug/l 2.5 1,3-Dichlorobenzene ND ug/l 2.5 1,4-Dichlorobenzene ND ug/l 2.5 1,4-Dichlorobenzene ND ug/l 2.5 1,4-Dichlorobenzene ND ug/l 1.0 Methyl tert butyl ether ND ug/l 1.0 p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 5.0 o-Xylene	Parameter	Result	Qualifier Units	RL	MDL	
1,3-Dichlorobenzene ND ug/l 2.5 1,4-Dichlorobenzene ND ug/l 2.5 Methyl tert butyl ether ND ug/l 1.0 p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Xylenes, Total ND ug/l 5.0 Dibromomethane ND ug/l 5.0 1,4-Dichlorotethene ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2-3-Trichloropropane ND ug/l 5.0 1,2-3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0	olatile Organics by GC/MS -	Westborough La	b for sample(s):	01 Batch:	WG983724-5	
1,4-Dichlorobenzene ND	1,2-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether ND ug/l 1.0	1,3-Dichlorobenzene	ND	ug/l	2.5		
p/m-Xylene ND ug/l 1.0 o-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Styrene ND ug/l 5.0 Acetone ND ug/l 5.0 Acetone ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate <	1,4-Dichlorobenzene	ND	ug/l	2.5		
o-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Styrene ND ug/l 5.0 Actone ND ug/l 5.0 Actone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone	Methyl tert butyl ether	ND	ug/l	1.0		
Xylenes, Total ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0	p/m-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene ND ug/l 0.50 Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0	o-Xylene	ND	ug/l	1.0		
Dibromomethane ND ug/l 5.0 1,4-Dichlorobutane ND ug/l 5.0 1,2,3-Trichloropropane ND ug/l 5.0 Styrene ND ug/l 5.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0	Xylenes, Total	ND	ug/l	1.0		
1,4-Dichlorobutane ND ug/l 5.0	cis-1,2-Dichloroethene	ND	ug/l	0.50		
1,2,3-Trichloropropane ND	Dibromomethane	ND	ug/l	5.0		
Styrene ND ug/l 1.0 Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50	1,4-Dichlorobutane	ND	ug/l	5.0		
Dichlorodifluoromethane ND ug/l 5.0 Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 2.5 Bromobenzene ND ug/l 2.5	1,2,3-Trichloropropane	ND	ug/l	5.0		
Acetone ND ug/l 5.0 Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 2.5 1,2-Dibloropropane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	Styrene	ND	ug/l	1.0		
Carbon disulfide ND ug/l 5.0 2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 2.5 1,2-Dichloropropane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 2.5 Bromobenzene ND ug/l 2.5	Dichlorodifluoromethane	ND	ug/l	5.0		
2-Butanone ND ug/l 5.0 Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	Acetone	ND	ug/l	5.0		
Vinyl acetate ND ug/l 5.0 4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	Carbon disulfide	ND	ug/l	5.0		
4-Methyl-2-pentanone ND ug/l 5.0 2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	2-Butanone	ND	ug/l	5.0		
2-Hexanone ND ug/l 5.0 Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	Vinyl acetate	ND	ug/l	5.0		
Ethyl methacrylate ND ug/l 5.0 Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	4-Methyl-2-pentanone	ND	ug/l	5.0		
Acrylonitrile ND ug/l 5.0 Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	2-Hexanone	ND	ug/l	5.0		
Bromochloromethane ND ug/l 2.5 Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	Ethyl methacrylate	ND	ug/l	5.0		
Tetrahydrofuran ND ug/l 5.0 2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	Acrylonitrile	ND	ug/l	5.0		
2,2-Dichloropropane ND ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	Bromochloromethane	ND	ug/l	2.5		
1,2-Dibromoethane ND ug/l 2.0 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	Tetrahydrofuran	ND	ug/l	5.0		
1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5	2,2-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-TetrachloroethaneNDug/l0.50BromobenzeneNDug/l2.5	1,2-Dibromoethane	ND	ug/l	2.0		
Bromobenzene ND ug/l 2.5	1,3-Dichloropropane	ND	ug/l	2.5		
	1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
n-Butylbenzene ND ug/l 0.50	Bromobenzene	ND	ug/l	2.5		
	n-Butylbenzene	ND	ug/l	0.50		

L1706724

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/07/17 08:00

Parameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS - W	estborough La	b for sample(s):	01 Batch:	WG983724-5	
sec-Butylbenzene	ND	ug/	0.50)	
tert-Butylbenzene	ND	ug/			
o-Chlorotoluene	ND	ug/	1 2.5		
p-Chlorotoluene	ND	ug/	1 2.5		
1,2-Dibromo-3-chloropropane	ND	ug/	1 2.5		
Hexachlorobutadiene	ND	ug/	0.50		
Isopropylbenzene	ND	ug/	0.50		
p-Isopropyltoluene	ND	ug/	0.50		
Naphthalene	ND	ug/	1 2.5		
n-Propylbenzene	ND	ug/	0.50		
1,2,3-Trichlorobenzene	ND	ug/	1 2.5		
1,2,4-Trichlorobenzene	ND	ug/	1 2.5		
1,3,5-Trimethylbenzene	ND	ug/	1 2.5		
1,2,4-Trimethylbenzene	ND	ug/	1 2.5		
trans-1,4-Dichloro-2-butene	ND	ug/	1 2.5		
Ethyl ether	ND	ug/	1 2.5		
Tert-Butyl Alcohol	ND	ug/	l 10		
Tertiary-Amyl Methyl Ether	ND	ug/	1 2.0		

*		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	99		70-130				
Toluene-d8	101		70-130				
4-Bromofluorobenzene	105		70-130				
Dibromofluoromethane	106		70-130				

Project Name: TREMONT CROSSING

Lab Number:

L1706724

Project Number: 1700516

Report Date:

03/13/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough	h Lab Associated san	nple(s): 01	Batch: WG983	549-2					
1,2-Dibromoethane	101		-		70-130	-			В

Project Name: TREMONT CROSSING

Lab Number:

L1706724 03/13/17

Project Number: 1700516

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - West	borough Lab Associa	ited sample(s)	: 01 Batch:	WG983718-3	WG983718-4			
1,4-Dioxane	90		97		70-130	7		25

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	h Lab Associated	sample(s): 0	1 Batch: WG9	83724-3 W	G983724-4		
Methylene chloride	100		98		70-130	2	20
1,1-Dichloroethane	99		110		70-130	11	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	93		94		63-132	1	20
1,2-Dichloropropane	100		99		70-130	1	20
Dibromochloromethane	88		90		63-130	2	20
1,1,2-Trichloroethane	100		100		70-130	0	20
Tetrachloroethene	97		97		70-130	0	20
Chlorobenzene	97		97		75-130	0	25
Trichlorofluoromethane	100		100		62-150	0	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	98		97		67-130	1	20
Bromodichloromethane	93		93		67-130	0	20
trans-1,3-Dichloropropene	88		87		70-130	1	20
cis-1,3-Dichloropropene	95		93		70-130	2	20
1,1-Dichloropropene	100		99		70-130	1	20
Bromoform	83		83		54-136	0	20
1,1,2,2-Tetrachloroethane	99		94		67-130	5	20
Benzene	100		99		70-130	1	25
Toluene	98		98		70-130	0	25
Ethylbenzene	96		94		70-130	2	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG9	83724-3 V	VG983724-4		
Chloromethane	100		100		64-130	0	20
Bromomethane	130		130		39-139	0	20
Vinyl chloride	100		110		55-140	10	20
Chloroethane	120		120		55-138	0	20
1,1-Dichloroethene	100		100		61-145	0	25
Trichloroethene	98		97		70-130	1	25
1,2-Dichlorobenzene	100		97		70-130	3	20
1,3-Dichlorobenzene	97		93		70-130	4	20
1,4-Dichlorobenzene	98		95		70-130	3	20
Methyl tert butyl ether	93		100		63-130	7	20
p/m-Xylene	95		95		70-130	0	20
o-Xylene	95		90		70-130	5	20
cis-1,2-Dichloroethene	100		100		70-130	0	20
Dibromomethane	95		98		70-130	3	20
1,4-Dichlorobutane	94		92		70-130	2	20
1,2,3-Trichloropropane	99		98		64-130	1	20
Styrene	95		95		70-130	0	20
Dichlorodifluoromethane	98		98		36-147	0	20
Acetone	93		88		58-148	6	20
Carbon disulfide	110		110		51-130	0	20
2-Butanone	95		91		63-138	4	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery		CSD ecovery Qua	%Recovery al Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated s	ample(s): 01 Ba	tch: WG983724	-3 WG983724-4		
Vinyl acetate	98		100	70-130	2	20
4-Methyl-2-pentanone	84		80	59-130	5	20
2-Hexanone	92		90	57-130	2	20
Ethyl methacrylate	94		94	70-130	0	20
Acrylonitrile	100		100	70-130	0	20
Bromochloromethane	100		100	70-130	0	20
Tetrahydrofuran	97		100	58-130	3	20
2,2-Dichloropropane	96		95	63-133	1	20
1,2-Dibromoethane	96		94	70-130	2	20
1,3-Dichloropropane	98		95	70-130	3	20
1,1,1,2-Tetrachloroethane	90		89	64-130	1	20
Bromobenzene	94		92	70-130	2	20
n-Butylbenzene	86		84	53-136	2	20
sec-Butylbenzene	98		93	70-130	5	20
tert-Butylbenzene	96		93	70-130	3	20
o-Chlorotoluene	97		93	70-130	4	20
p-Chlorotoluene	95		92	70-130	3	20
1,2-Dibromo-3-chloropropane	92		95	41-144	3	20
Hexachlorobutadiene	100		100	63-130	0	20
Isopropylbenzene	96		93	70-130	3	20
p-Isopropyltoluene	98		96	70-130	2	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

03/13/17

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01 Batch:	WG983724-3	WG983724-4			
Naphthalene	93		92		70-130	1	20	
n-Propylbenzene	97		93		69-130	4	20	
1,2,3-Trichlorobenzene	94		94		70-130	0	20	
1,2,4-Trichlorobenzene	100		100		70-130	0	20	
1,3,5-Trimethylbenzene	96		93		64-130	3	20	
1,2,4-Trimethylbenzene	98		93		70-130	5	20	
trans-1,4-Dichloro-2-butene	97		93		70-130	4	20	
Ethyl ether	100		100		59-134	0	20	
Tert-Butyl Alcohol	94		98		70-130	4	20	
Tertiary-Amyl Methyl Ether	95		98		66-130	3	20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	106	107	70-130
Toluene-d8	100	98	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	99	102	70-130

03/03/17 09:50

03/03/17

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706724

Date Collected:

Date Received:

Report Date: 03/13/17

Lab ID: L1706724-01

Client ID: 1700516-B(MW)307

Sample Location: BOSTON, MA

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 03/07/17 21:45

Analyst: SZ

Field Prep: Not Specified Extraction Method: EPA 3510C

03/06/17 10:56 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1

Benzidine	ND	ug/l 20	 1
1,2,4-Trichlorobenzene	ND	ug/l 5.0	 1
Bis(2-chloroethyl)ether	ND	ug/l 2.0	 1
1,2-Dichlorobenzene	ND	ug/l 2.0	 1
1,3-Dichlorobenzene	ND	ug/l 2.0	 1
1,4-Dichlorobenzene	ND	ug/l 2.0	 1
3,3'-Dichlorobenzidine	ND	ug/l 5.0	 1
2,4-Dinitrotoluene	ND	ug/l 5.0	 1
2,6-Dinitrotoluene	ND	ug/l 5.0	 1
Azobenzene	ND	ug/l 2.0	 1
4-Chlorophenyl phenyl ether	ND	ug/l 2.0	 1
4-Bromophenyl phenyl ether	ND	ug/l 2.0	 1
Bis(2-chloroisopropyl)ether	ND	ug/l 2.0	 1
Bis(2-chloroethoxy)methane	ND	ug/l 5.0	 1
Hexachlorocyclopentadiene	ND	ug/l 20	 1
Isophorone	ND	ug/l 5.0	 1
Nitrobenzene	ND	ug/l 2.0	 1
NDPA/DPA	ND	ug/l 2.0	 1
n-Nitrosodi-n-propylamine	ND	ug/l 5.0	 1
Bis(2-ethylhexyl)phthalate	ND	ug/l 3.0	 1
Butyl benzyl phthalate	ND	ug/l 5.0	 1
Di-n-butylphthalate	ND	ug/l 5.0	 1
Di-n-octylphthalate	ND	ug/l 5.0	 1
Diethyl phthalate	ND	ug/l 5.0	 1
Dimethyl phthalate	ND	ug/l 5.0	 1
Biphenyl	ND	ug/l 2.0	 1
Aniline	ND	ug/l 2.0	 1
4-Chloroaniline	ND	ug/l 5.0	 1
2-Nitroaniline	ND	ug/l 5.0	 1

L1706724

Project Name: TREMONT CROSSING

L1706724-01

BOSTON, MA

1700516-B(MW)307

Project Number: 1700516

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Report Date: 03/13/17

Lab Number:

Date Collected: 03/03/17 09:50 Date Received: 03/03/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	tborough Lab						
4-Nitroaniline	ND		ug/l	5.0		1	
Dibenzofuran	ND		ug/l	2.0		1	
n-Nitrosodimethylamine	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		1	
p-Chloro-m-cresol	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	5.0		1	
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	10		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
4,6-Dinitro-o-cresol	ND		ug/l	10		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	28	21-120
Phenol-d6	20	10-120
Nitrobenzene-d5	57	23-120
2-Fluorobiphenyl	52	15-120
2,4,6-Tribromophenol	51	10-120
4-Terphenyl-d14	60	41-149

L1706724

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number:

Report Date: 03/13/17

Lab ID: L1706724-01

Client ID: 1700516-B(MW)307

Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 03/10/17 14:49

Analyst: DV Date Collected: 03/03/17 09:50 Date Received: 03/03/17 Field Prep: Not Specified Extraction Method: EPA 3510C 03/06/17 10:57 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	b					
	4.0			A 0.40			
Acenaphthene	1.6		ug/l	0.10		1	
2-Chloronaphthalene	ND		ug/l	0.20		1	
Fluoranthene	1.2		ug/l	0.20		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	0.20		1	
Benzo(a)anthracene	ND		ug/l	0.20		1	
Benzo(a)pyrene	ND		ug/l	0.20		1	
Benzo(b)fluoranthene	ND		ug/l	0.20		1	
Benzo(k)fluoranthene	ND		ug/l	0.20		1	
Chrysene	ND		ug/l	0.20		1	
Acenaphthylene	ND		ug/l	0.20		1	
Anthracene	0.89		ug/l	0.20		1	
Benzo(ghi)perylene	ND		ug/l	0.20		1	
Fluorene	1.5		ug/l	0.20		1	
Phenanthrene	4.3		ug/l	0.20		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.20		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20		1	
Pyrene	0.76		ug/l	0.20		1	
1-Methylnaphthalene	0.40		ug/l	0.20		1	
2-Methylnaphthalene	ND		ug/l	0.20		1	
Pentachlorophenol	ND		ug/l	0.80		1	
Hexachlorobenzene	ND		ug/l	0.80		1	
Hexachloroethane	ND		ug/l	0.80		1	

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/03/17 09:50

Client ID: 1700516-B(MW)307 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	30		21-120	
Phenol-d6	22		10-120	
Nitrobenzene-d5	53		23-120	
2-Fluorobiphenyl	47		15-120	
2,4,6-Tribromophenol	65		10-120	
4-Terphenyl-d14	74		41-149	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 03/07/17 13:15

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 03/06/17 10:56

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG983 Acenaphthene ND ug/l 2.0 Benzidine ND ug/l 20 1,2,4-Trichlorobenzene ND ug/l 5.0 Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l <t< th=""><th></th></t<>	
Benzidine ND ug/l 20 1,2,4-Trichlorobenzene ND ug/l 5.0 Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 5.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0<	147-1
Benzidine ND ug/l 20 1,2,4-Trichlorobenzene ND ug/l 5.0 Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
1,2,4-Trichlorobenzene ND ug/l 5.0 Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0	
4-Chlorophenyl phenyl etherNDug/l2.04-Bromophenyl phenyl etherNDug/l2.0	
4-Bromophenyl phenyl ether ND ug/l 2.0	
Bis(2-chloroisopropyl)ether ND ug/l 2.0	
Bis(2-chloroethoxy)methane ND ug/l 5.0	
Hexachlorobutadiene ND ug/l 2.0	
Hexachlorocyclopentadiene ND ug/l 20	
Hexachloroethane ND ug/l 2.0	
Isophorone ND ug/l 5.0	
Naphthalene ND ug/l 2.0	
Nitrobenzene ND ug/l 2.0	
NDPA/DPA ND ug/l 2.0	
n-Nitrosodi-n-propylamine ND ug/l 5.0	
Bis(2-ethylhexyl)phthalate ND ug/l 3.0	
Butyl benzyl phthalate ND ug/l 5.0	
Di-n-butylphthalate ND ug/l 5.0	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

Report Date:

03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 03/07/17 13:15

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 03/06/17 10:56

arameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M	S - Westborough	Lab for sa	ample(s):	01 Batch:	WG983147-1	
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		
Benzo(a)anthracene	ND		ug/l	2.0		
Benzo(a)pyrene	ND		ug/l	2.0		
Benzo(b)fluoranthene	ND		ug/l	2.0		
Benzo(k)fluoranthene	ND		ug/l	2.0		
Chrysene	ND		ug/l	2.0		
Acenaphthylene	ND		ug/l	2.0		
Anthracene	ND		ug/l	2.0		
Benzo(ghi)perylene	ND		ug/l	2.0		
Fluorene	ND		ug/l	2.0		
Phenanthrene	ND		ug/l	2.0		
Dibenzo(a,h)anthracene	ND		ug/l	2.0		
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		
Pyrene	ND		ug/l	2.0		
Biphenyl	ND		ug/l	2.0		
Aniline	ND		ug/l	2.0		
4-Chloroaniline	ND		ug/l	5.0		
1-Methylnaphthalene	ND		ug/l	2.0		
2-Nitroaniline	ND		ug/l	5.0		
3-Nitroaniline	ND		ug/l	5.0		
4-Nitroaniline	ND		ug/l	5.0		
Dibenzofuran	ND		ug/l	2.0		
2-Methylnaphthalene	ND		ug/l	2.0		
n-Nitrosodimethylamine	ND		ug/l	2.0		
2,4,6-Trichlorophenol	ND		ug/l	5.0		
p-Chloro-m-cresol	ND		ug/l	2.0		
2-Chlorophenol	ND		ug/l	2.0		

Project Name: TREMONT CROSSING

Project Number: 1700516 Lab Number:

Report Date:

L1706724

03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D

Analyst:

03/07/17 13:15

SZ

Extraction Method: EPA 3510C 03/06/17 10:56 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	ample(s):	01 Batch:	WG983147-1	
2,4-Dichlorophenol	ND		ug/l	5.0		
2,4-Dimethylphenol	ND		ug/l	5.0		
2-Nitrophenol	ND		ug/l	10		
4-Nitrophenol	ND		ug/l	10		
2,4-Dinitrophenol	ND		ug/l	20		
4,6-Dinitro-o-cresol	ND		ug/l	10		
Pentachlorophenol	ND		ug/l	10		
Phenol	ND		ug/l	5.0		
2-Methylphenol	ND		ug/l	5.0		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		
2,4,5-Trichlorophenol	ND		ug/l	5.0		
Benzoic Acid	ND		ug/l	50		
Benzyl Alcohol	ND		ug/l	2.0		
Carbazole	ND		ug/l	2.0		
Pyridine	ND		ug/l	3.5		

		A	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2-Fluorophenol	50		21-120	
Phenol-d6	34		10-120	
Nitrobenzene-d5	93		23-120	
2-Fluorobiphenyl	72		15-120	
2,4,6-Tribromophenol	65		10-120	
4-Terphenyl-d14	72		41-149	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

Report Date:

03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 03/07/17 12:29

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 03/06/17 10:57

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M	IS-SIM - Westbo	orough Lab	for sampl	e(s): 01	Batch: WG98314	l9-1
Acenaphthene	ND		ug/l	0.10		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.20		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.20		
Benzo(a)anthracene	ND		ug/l	0.20		
Benzo(a)pyrene	ND		ug/l	0.20		
Benzo(b)fluoranthene	ND		ug/l	0.20		
Benzo(k)fluoranthene	ND		ug/l	0.20		
Chrysene	ND		ug/l	0.20		
Acenaphthylene	ND		ug/l	0.20		
Anthracene	ND		ug/l	0.20		
Benzo(ghi)perylene	ND		ug/l	0.20		
Fluorene	ND		ug/l	0.20		
Phenanthrene	ND		ug/l	0.20		
Dibenzo(a,h)anthracene	ND		ug/l	0.20		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20		
Pyrene	ND		ug/l	0.20		
1-Methylnaphthalene	ND		ug/l	0.20		
2-Methylnaphthalene	ND		ug/l	0.20		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

L1706724

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 03/07/17 12:29

Analyst: KL Extraction Method: EPA 3510C 03/06/17 10:57 **Extraction Date:**

Units MDL Result Qualifier RL**Parameter** Batch: WG983149-1 Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	42	21-120
Phenol-d6	29	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	75	41-149

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westb	orough Lab Associa	ated sample(s):	01 Batch:	WG983147-2	WG983147-3			
Acenaphthene	79		76		37-111	4		30
Benzidine	17		7	Q	10-75	88	Q	30
1,2,4-Trichlorobenzene	72		69		39-98	4		30
Hexachlorobenzene	66		64		40-140	3		30
Bis(2-chloroethyl)ether	84		80		40-140	5		30
2-Chloronaphthalene	77		74		40-140	4		30
1,2-Dichlorobenzene	76		70		40-140	8		30
1,3-Dichlorobenzene	73		69		40-140	6		30
1,4-Dichlorobenzene	74		70		36-97	6		30
3,3'-Dichlorobenzidine	46		49		40-140	6		30
2,4-Dinitrotoluene	85		83		48-143	2		30
2,6-Dinitrotoluene	92		90		40-140	2		30
Azobenzene	97		94		40-140	3		30
Fluoranthene	78		77		40-140	1		30
4-Chlorophenyl phenyl ether	71		70		40-140	1		30
4-Bromophenyl phenyl ether	68		67		40-140	1		30
Bis(2-chloroisopropyl)ether	96		91		40-140	5		30
Bis(2-chloroethoxy)methane	86		83		40-140	4		30
Hexachlorobutadiene	70		65		40-140	7		30
Hexachlorocyclopentadiene	70		67		40-140	4		30
Hexachloroethane	82		76		40-140	8		30

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westl	borough Lab Associa	ated sample(s):	01 Batch:	WG983147-2	WG983147-3		
Isophorone	88		85		40-140	3	30
Naphthalene	77		71		40-140	8	30
Nitrobenzene	98		93		40-140	5	30
NDPA/DPA	77		75		40-140	3	30
n-Nitrosodi-n-propylamine	90		87		29-132	3	30
Bis(2-ethylhexyl)phthalate	91		89		40-140	2	30
Butyl benzyl phthalate	87		83		40-140	5	30
Di-n-butylphthalate	87		84		40-140	4	30
Di-n-octylphthalate	92		89		40-140	3	30
Diethyl phthalate	79		79		40-140	0	30
Dimethyl phthalate	79		76		40-140	4	30
Benzo(a)anthracene	78		75		40-140	4	30
Benzo(a)pyrene	74		70		40-140	6	30
Benzo(b)fluoranthene	74		71		40-140	4	30
Benzo(k)fluoranthene	73		70		40-140	4	30
Chrysene	76		73		40-140	4	30
Acenaphthylene	79		76		45-123	4	30
Anthracene	81		79		40-140	3	30
Benzo(ghi)perylene	73		69		40-140	6	30
Fluorene	78		75		40-140	4	30
Phenanthrene	80		78		40-140	3	30

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Associ	ated sample(s):	: 01 Batch:	WG983147-2	WG983147-3				
Dibenzo(a,h)anthracene	72		68		40-140	6		30	
Indeno(1,2,3-cd)pyrene	73		69		40-140	6		30	
Pyrene	78		76		26-127	3		30	
Biphenyl	80		76		40-140	5		30	
Aniline	26	Q	17	Q	40-140	42	Q	30	
4-Chloroaniline	70		57		40-140	20		30	
1-Methylnaphthalene	88		83		41-103	6		30	
2-Nitroaniline	95		91		52-143	4		30	
3-Nitroaniline	65		63		25-145	3		30	
4-Nitroaniline	80		80		51-143	0		30	
Dibenzofuran	76		74		40-140	3		30	
2-Methylnaphthalene	78		74		40-140	5		30	
n-Nitrosodimethylamine	56		51		22-74	9		30	
2,4,6-Trichlorophenol	80		77		30-130	4		30	
p-Chloro-m-cresol	86		82		23-97	5		30	
2-Chlorophenol	79		74		27-123	7		30	
2,4-Dichlorophenol	83		82		30-130	1		30	
2,4-Dimethylphenol	92		86		30-130	7		30	
2-Nitrophenol	93		89		30-130	4		30	
4-Nitrophenol	78		72		10-80	8		30	
2,4-Dinitrophenol	85		84		20-130	1		30	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS -	Westborough Lab Associa	ted sample(s):	01 Batch:	WG983147-2	WG983147-3			
4,6-Dinitro-o-cresol	90		89		20-164	1		30
Pentachlorophenol	64		62		9-103	3		30
Phenol	43		37		12-110	15		30
2-Methylphenol	81		74		30-130	9		30
3-Methylphenol/4-Methylphenol	81		74		30-130	9		30
2,4,5-Trichlorophenol	78		76		30-130	3		30
Benzoic Acid	18		24		10-164	29		30
Benzyl Alcohol	78		73		26-116	7		30
Carbazole	82		80		55-144	2		30
Pyridine	30		12		10-66	86	Q	30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	56	49	21-120
Phenol-d6	41	36	10-120
Nitrobenzene-d5	90	86	23-120
2-Fluorobiphenyl	70	67	15-120
2,4,6-Tribromophenol	62	62	10-120
4-Terphenyl-d14	63	61	41-149

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	LCSD Qual %Recovery Qu	%Recovery al Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - We	estborough Lab Assoc	ciated sample(s): 01 Batch: V	VG983149-2 WG983149	-3	
Acenaphthene	59	64	37-111	8	40
2-Chloronaphthalene	66	71	40-140	7	40
Fluoranthene	66	73	40-140	10	40
Hexachlorobutadiene	62	63	40-140	2	40
Naphthalene	62	64	40-140	3	40
Benzo(a)anthracene	61	67	40-140	9	40
Benzo(a)pyrene	69	78	40-140	12	40
Benzo(b)fluoranthene	64	72	40-140	12	40
Benzo(k)fluoranthene	68	76	40-140	11	40
Chrysene	62	68	40-140	9	40
Acenaphthylene	72	777	40-140	7	40
Anthracene	66	72	40-140	9	40
Benzo(ghi)perylene	70	80	40-140	13	40
Fluorene	64	70	40-140	9	40
Phenanthrene	58	63	40-140	8	40
Dibenzo(a,h)anthracene	69	79	40-140	14	40
Indeno(1,2,3-cd)pyrene	70	80	40-140	13	40
Pyrene	65	72	26-127	10	40
1-Methylnaphthalene	66	70	40-140	6	40
2-Methylnaphthalene	64	68	40-140	6	40
Pentachlorophenol	62	66	9-103	6	40

Project Name: TREMONT CROSSING

Project Number:

1700516

Lab Number:

L1706724

Report Date:	03/13/17
report Date.	00/10/17

Paramet	er	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
Semivola	tile Organics by GC/MS-SIM - Westk	oorough Lab As	ssociated samp	le(s): 01 Batch	n: WG98314	19-2 WG983149	-3	
Hexac	nlorobenzene	64		70		40-140	9	40
Hexac	nloroethane	61		59		40-140	3	40

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
2-Fluorophenol	40	40	21-120	
Phenol-d6	28	28	10-120	
	71	72		
Nitrobenzene-d5			23-120	
2-Fluorobiphenyl	65	69	15-120	
2,4,6-Tribromophenol	76	82	10-120	
4-Terphenyl-d14	63	72	41-149	

PETROLEUM HYDROCARBONS

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706724-01

Client ID: 1700516-B(MW)307

Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/09/17 05:38

Analyst: JM

Date Collected:

03/03/17 09:50

Date Received: Field Prep:

03/03/17

Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab				
C5-C8 Aliphatics	ND	ug/l	50.0		1
C9-C12 Aliphatics	ND	ug/l	50.0		1
C9-C10 Aromatics	ND	ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND	ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND	ug/l	50.0		1
Benzene	ND	ug/l	2.00		1
Toluene	ND	ug/l	2.00		1
Ethylbenzene	ND	ug/l	2.00		1
p/m-Xylene	ND	ug/l	2.00		1
o-Xylene	ND	ug/l	2.00		1
Methyl tert butyl ether	ND	ug/l	3.00		1
Naphthalene	ND	ug/l	4.00		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	79		70-130	
2,5-Dibromotoluene-FID	89		70-130	

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706724-01 Date Collected: 03/03/17 09:50

Client ID: 1700516-B(MW)307 Date Received: 03/03/17

Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water Fyraction Method: FPA 3510C

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/06/17 19:09

Analytical Date: 03/08/17 18:37 M.S. Analytical Date: 03/08/17 10:18 Cleanup Method1: EPH-04-1

Analyst: NS M.S. Analyst: DV Cleanup Date1: 03/08/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier Un	its RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lab					
C9-C18 Aliphatics	ND	ug	y/l 100		1
C19-C36 Aliphatics	ND	ug	1/1 100		1
C11-C22 Aromatics	ND	ug	ı/l 100		1
C11-C22 Aromatics, Adjusted	ND	ug	y/l 100		1
Naphthalene	1.45	ug	y/I 0.400		1
2-Methylnaphthalene	0.652	ug	y/I 0.400		1
Acenaphthylene	ND	ug	y/I 0.400		1
Acenaphthene	2.25	ug	y/I 0.400		1
Fluorene	2.10	ug	y/I 0.400		1
Phenanthrene	5.53	ug	y/I 0.400		1
Anthracene	0.994	ug	y/I 0.400		1
Fluoranthene	1.57	ug	y/I 0.400		1
Pyrene	0.942	ug	y/I 0.400		1
Benzo(a)anthracene	ND	ug	y/I 0.400		1
Chrysene	ND	ug	y/I 0.400		1
Benzo(b)fluoranthene	ND	ug	y/I 0.400		1
Benzo(k)fluoranthene	ND	ug	y/I 0.400		1
Benzo(a)pyrene	ND	ug	y/I 0.200		1
Indeno(1,2,3-cd)Pyrene	ND	ug	y/I 0.400		1
Dibenzo(a,h)anthracene	ND	ug	y/I 0.400		1
Benzo(ghi)perylene	ND	ug	y/I 0.400		1

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706724-01 Date Collected: 03/03/17 09:50

Client ID: 1700516-B(MW)307 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	70		40-140	
o-Terphenyl	88		40-140	
2-Fluorobiphenyl	87		40-140	
2-Bromonaphthalene	90		40-140	
O-Terphenyl-MS	85		40-140	

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis
Batch Quality Control

DV

Analytical Method: 98,EPH-04-1.1

Analytical Date: 03/08/17 20:12 M.S. Analytical Date: 03/08/17 08:14

Analyst: NS M.S. Analyst:

Extraction Method: EPA 3510C

Extraction Date: 03/06/17 13:34

Cleanup Method: EPH-04-1 Cleanup Date: 03/08/17

Parameter	Result	Qualif	ier	Units	RL	MDL
EPH w/MS Targets - Westborough	Lab for sam	ple(s):	01	Batch:	WG983280-1	
C9-C18 Aliphatics	ND		$ egin{array}{c} $	ug/l	100	
C19-C36 Aliphatics	ND			ug/l	100	
C11-C22 Aromatics	ND			ug/l	100	
C11-C22 Aromatics, Adjusted	ND			ug/l	100	
Naphthalene	ND			ug/l	0.400	
2-Methylnaphthalene	ND			ug/l	0.400	
Acenaphthylene	ND			ug/l	0.400	
Acenaphthene	ND			ug/l	0.400	
Fluorene	ND			ug/l	0.400	
Phenanthrene	ND			ug/l	0.400	
Anthracene	ND			ug/l	0.400	
Fluoranthene	ND			ug/l	0.400	
Pyrene	ND			ug/l	0.400	
Benzo(a)anthracene	ND			ug/l	0.400	
Chrysene	ND			ug/l	0.400	
Benzo(b)fluoranthene	ND			ug/l	0.400	
Benzo(k)fluoranthene	ND			ug/l	0.400	
Benzo(a)pyrene	ND			ug/l	0.200	
Indeno(1,2,3-cd)Pyrene	ND			ug/l	0.400	
Dibenzo(a,h)anthracene	ND			ug/l	0.400	
Benzo(ghi)perylene	ND			ug/l	0.400	

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 98,EPH-04-1.1

Analytical Date: 03/08/17 20:12

Analyst: NS

03/08/17 08:14

DV

Extraction Method: EPA 3510C

Extraction Date: 03/06/17 13:34

Cleanup Method: EPH-04-1 Cleanup Date: 03/08/17

Parameter	Result	Qualifier	Units	RL	MDL
-----------	--------	-----------	-------	----	-----

EPH w/MS Targets - Westborough Lab for sample(s): 01 Batch: WG983280-1

	Acceptance						
Surrogate	%Recovery	Qualifier Criteria					
Chloro-Octadecane	71	40-140					
o-Terphenyl	67	40-140					
2-Fluorobiphenyl	74	40-140					
2-Bromonaphthalene	74	40-140					
O-Terphenyl-MS	71	40-140					

Lab Number:

Project Name: TREMONT CROSSING

Project Number: Report Date: 1700516 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/08/17 12:35

Analyst: JM

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Petroleum Hydrocarbons - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG984223-3
07 00 AU 1 U			,		
C5-C8 Aliphatics	ND		ug/l	50.0	
C9-C12 Aliphatics	ND		ug/l	50.0	
C9-C10 Aromatics	ND		ug/l	50.0	
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0	
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0	
Benzene	ND		ug/l	2.00	
Toluene	ND		ug/l	2.00	
Ethylbenzene	ND		ug/l	2.00	
p/m-Xylene	ND		ug/l	2.00	
o-Xylene	ND		ug/l	2.00	
Methyl tert butyl ether	ND		ug/l	3.00	
Naphthalene	ND		ug/l	4.00	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	91		70-130	
2,5-Dibromotoluene-FID	99		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
EPH w/MS Targets - Westborough Lab Ass	sociated sample(s):	01 Batch:	WG983280-2	WG983280-3				
C9-C18 Aliphatics	75		76		40-140	1		25
C19-C36 Aliphatics	94		87		40-140	8		25
C11-C22 Aromatics	80		90		40-140	12		25
Naphthalene	75		77		40-140	3		25
2-Methylnaphthalene	82		84		40-140	2		25
Acenaphthylene	93		95		40-140	2		25
Acenaphthene	89		91		40-140	2		25
Fluorene	94		97		40-140	3		25
Phenanthrene	88		94		40-140	7		25
Anthracene	98		106		40-140	8		25
Fluoranthene	97		107		40-140	10		25
Pyrene	96		105		40-140	9		25
Benzo(a)anthracene	98		108		40-140	10		25
Chrysene	88		97		40-140	10		25
Benzo(b)fluoranthene	103		114		40-140	10		25
Benzo(k)fluoranthene	90		99		40-140	10		25
Benzo(a)pyrene	97		107		40-140	10		25
Indeno(1,2,3-cd)Pyrene	96		110		40-140	14		25
Dibenzo(a,h)anthracene	94		128		40-140	31	Q	25
Benzo(ghi)perylene	92		101		40-140	9		25
Nonane (C9)	51		52		30-140	2		25

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
EPH w/MS Targets - Westborough Lab	Associated sample(s):	01	Batch: WG	983280-2	WG983280-	3			
Decane (C10)	62			62		40-140	0		25
Dodecane (C12)	70			69		40-140	1		25
Tetradecane (C14)	77			74		40-140	4		25
Hexadecane (C16)	81			81		40-140	0		25
Octadecane (C18)	85			87		40-140	2		25
Nonadecane (C19)	85			87		40-140	2		25
Eicosane (C20)	85			89		40-140	5		25
Docosane (C22)	86			90		40-140	5		25
Tetracosane (C24)	86	47		89		40-140	3		25
Hexacosane (C26)	85			89		40-140	5		25
Octacosane (C28)	85			89		40-140	5		25
Triacontane (C30)	84			88		40-140	5		25
Hexatriacontane (C36)	83			86		40-140	4		25

Project Name: TREMONT CROSSING Lab Number:

L1706724

Project Number: 1700516

Report Date:

03/13/17

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual

EPH w/MS Targets - Westborough Lab Associated sample(s): 01 Batch: WG983280-2 WG983280-3

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Chloro-Octadecane	85		85		40-140	
o-Terphenyl	80		92		40-140	
2-Fluorobiphenyl	75		85		40-140	
2-Bromonaphthalene	76		87		40-140	
O-Terphenyl-MS	103		111		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Petroleum Hydrocarbons - Westboro	ough Lab Associa	ated sample(s)	: 01 Batch:	WG984223-1	WG984223-2		
C5-C8 Aliphatics	97		98		70-130	1	25
C9-C12 Aliphatics	108		108		70-130	0	25
C9-C10 Aromatics	97		97		70-130	1	25
Benzene	90		88		70-130	1	25
Toluene	92		92		70-130	0	25
Ethylbenzene	93		93		70-130	0	25
p/m-Xylene	95		95		70-130	0	25
o-Xylene	92		92		70-130	0	25
Methyl tert butyl ether	87		90		70-130	4	25
Naphthalene	89		95		70-130	7	25
1,2,4-Trimethylbenzene	97		97		70-130	0	25
Pentane	94		94		70-130	0	25
2-Methylpentane	97		97		70-130	1	25
2,2,4-Trimethylpentane	100		100		70-130	0	25
n-Nonane	106		106		30-130	0	25
n-Decane	111		110		70-130	1	25
n-Butylcyclohexane	108		107		70-130	1	25

TREMONT CROSSING

Lab Number:

L1706724

Project Number: 1700516

Project Name:

Report Date:

03/13/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG984223-1 WG984223-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	95		96		70-130	
2,5-Dibromotoluene-FID	102		105		70-130	

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/03/17 09:50

Client ID: 1700516-B(MW)307 Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 608
Analytical Method: 5,608 Extraction Date: 03/06/17 01:42
Analytical Date: 03/07/17 10:54 Cleanup Method: EPA 3665A

Analyst: JW Cleanup Date: 03/06/17
Cleanup Method: EPA 3660B
Cleanup Date: 03/06/17

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab					
Aroclor 1016	ND	ug/l	0.250		1	А
Aroclor 1221	ND	ug/l	0.250		1	Α
Aroclor 1232	ND	ug/l	0.250		1	Α
Aroclor 1242	ND	ug/l	0.250		1	Α
Aroclor 1248	ND	ug/l	0.250		1	Α
Aroclor 1254	ND	ug/l	0.250		1	Α
Aroclor 1260	ND	ug/l	0.200		1	Α

Surrogate	% Recovery	Accepta Qualifier Criter	
2,4,5,6-Tetrachloro-m-xylene	81	30-2	150 A
Decachlorobiphenyl	63	30-1	150 A

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,608

Analytical Date: 03/07/17 11:07

Analyst: JW

Extraction Method: EPA 608

Extraction Date: 03/06/17 01:42
Cleanup Method: EPA 3665A

Cleanup Date: 03/06/17 Cleanup Method: EPA 3660B Cleanup Date: 03/06/17

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Westboroug	h Lab for s	ample(s):	01 Batch:	WG983054-1	
Aroclor 1016	ND		ug/l	0.250		А
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		А
Aroclor 1248	ND		ug/l	0.250		А
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

			Acceptance)
Surrogate	%Recovery	Qualifier	Criteria	Column
				_
2,4,5,6-Tetrachloro-m-xylene	85		30-150	Α
Decachlorobiphenyl	64		30-150	Α

Project Name: TREMONT CROSSING

Lab Number:

L1706724

Project Number: 1700516

.

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - West	borough Lab Associa	ated sample(s)	: 01 Batch:	WG983054-2					
Aroclor 1016	83		-		40-140	<u>-</u>		50	Α
Aroclor 1260	73		-		40-140	-		50	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	92		30-150 A
Decachlorobiphenyl	70		30-150 A

Matrix Spike Analysis Batch Quality Control

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

	Native	MS	MS	MS		MSD	MSD		Recovery		RF	_	
Parameter	Sample	Added	Found	%Recovery	/ Qual	Found	%Recovery	Qual	Limits	RPD	Qual Lin	nits	<u>Column</u>
Polychlorinated Biphenyls b	y GC - Westbor	ough Lab	Associated sar	mple(s): 01 (QC Batch II	D: WG9830	054-3 QC Sa	ample:	L1706499-01	Clien	t ID: MS Sa	mple	
Aroclor 1016	ND	1	0.861	86		-	-		40-140	-	5	60	Α
Aroclor 1260	0.203	1	0.603	40		7			40-140	-	5	0	Α

	MS	6	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	83				30-150	А
Decachlorobiphenyl	48				30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: TREMONT CROSSING

Project Number: 1700516

uality Control Lab Number:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
olychlorinated Biphenyls by GC - Westborough Lab	Associated sample(s): 0	1 QC Batch ID: WG9	983054-4	QC Sample: L	1706499-02	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		50	Α
Aroclor 1221	ND	ND	ug/l	NC		50	Α
Aroclor 1232	ND	ND	ug/l	NC		50	Α
Aroclor 1242	ND	ND	ug/l	NC		50	Α
Aroclor 1248	ND	ND	ug/l	NC		50	Α
Aroclor 1254	ND	ND	ug/l	NC		50	Α
Aroclor 1260	ND	ND	ug/l	NC		50	Α

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	53		52		30-150	Α
Decachlorobiphenyl	42		56		30-150	Α

Project Name: TREMONT CROSSING

Project Number: 1700516 Lab Number: **Report Date:**

L1706724

03/13/17

SAMPLE RESULTS

Date Collected:

03/03/17 09:50

Client ID:

L1706724-01

1700516-B(MW)307

Sample Location:

BOSTON, MA

Date Received:

03/07/17 11:38 03/08/17 10:44 EPA 3005A

03/03/17

0.01000

mg/l

Field Prep:

Not Specified

Matrix:

Zinc, Total

Lab ID:

Water

ND

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	03/07/17 11:38	03/08/17 10:44	EPA 3005A	1,6020A	AM
Arsenic, Total	ND		mg/l	0.00050		1	03/07/17 11:38	03/08/17 10:44	EPA 3005A	1,6020A	AM
Cadmium, Total	0.00041		mg/l	0.00020		1	03/07/17 11:38	03/08/17 10:44	EPA 3005A	1,6020A	AM
Chromium, Total	ND		mg/l	0.00100		1	03/07/17 11:38	03/08/17 10:44	EPA 3005A	1,6020A	AM
Copper, Total	0.00149		mg/l	0.00100		1	03/07/17 11:38	03/08/17 10:44	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	03/07/17 11:38	03/08/17 15:42	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00050		1	03/07/17 11:38	03/08/17 10:44	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020		1	03/06/17 11:14	03/06/17 19:59	EPA 245.1	3,245.1	EA
Nickel, Total	0.00245		mg/l	0.00200		1	03/07/17 11:38	03/08/17 10:44	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500		1	03/07/17 11:38	03/08/17 10:44	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.00040	-	1	03/07/17 11:38	03/08/17 10:44	EPA 3005A	1,6020A	АМ

1,6020A

ΑM

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

Report Date:

03/13/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Mansfield	d Lab for sample(s):	01 Batch	n: WG98	33130-1					
Mercury, Total	ND	mg/l	0.0002		1	03/06/17 11:14	03/06/17 19:50	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	sfield Lab for sample(s):	01 Batch	n: WG98	83485-1			<u> </u>		
Iron, Total	ND	mg/l	0.050		1	03/07/17 11:38	03/08/17 15:16	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batc	h: WG98	3488-1					
Antimony, Total	ND	mg/l	0.00400		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM
Arsenic, Total	ND	mg/l	0.00050		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM
Cadmium, Total	ND	mg/l	0.00020		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM
Chromium, Total	ND	mg/l	0.00100		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM
Copper, Total	ND	mg/l	0.00100		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM
Lead, Total	ND	mg/l	0.00050		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM
Nickel, Total	ND	mg/l	0.00200		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM
Selenium, Total	ND	mg/l	0.00500		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM
Silver, Total	ND	mg/l	0.00040		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM
Zinc, Total	ND	mg/l	0.01000		1	03/07/17 11:38	03/08/17 10:22	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

Report Date:

03/13/17

arameter	LCS %Recovery Q	LCSD ual %Recovery C	%Recovery Limits	RPD	Qual RPD Limits
otal Metals - Mansfield Lab Associated sam	ple(s): 01 Batch: WG	983130-2			
Mercury, Total	104	-	85-115	-	
otal Metals - Mansfield Lab Associated sam	ole(s): 01 Batch: WG	983485-2			
Iron, Total	102		85-115	-	
otal Metals - Mansfield Lab Associated samp	ole(s): 01 Batch: WG	983488-2	80-120	_	
Arsenic, Total	108		80-120		
Cadmium, Total	109	-	80-120	-	
Chromium, Total	99		80-120	-	
Copper, Total	102		80-120	-	
Lead, Total	110	-	80-120	-	
Nickel, Total	104	-	80-120	-	
Selenium, Total	106	-	80-120	-	
Silver, Total	108	-	80-120	-	
Zinc, Total	107	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706724

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qı	RPD _{ual} Limits
otal Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG983130-	3 Q	C Sample: I	_1706719-01	Client ID: MS Sa	ımple	
Mercury, Total	0.00026	0.005	0.0054	102		•	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG983130-	5 Q	C Sample: I	_1706724-01	Client ID: 17005	16-B(MW)3	07
Mercury, Total	ND	0.005	0.0048	97		-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG983485-	3 Q	C Sample: I	_1706436-01	Client ID: MS Sa	ımple	
Iron, Total	0.239	1	1.27	103		-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG983485-	7 Q	C Sample: I	1706724-01	Client ID: 17005	16-B(MW)3	07
Iron, Total	ND	1	1.04	104		-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG983488-	3 Q	C Sample: I	_1706724-01	Client ID: 17005	16-B(MW)3	07
Antimony, Total	ND	0.5	0.5640	113		-	-	75-125	-	20
Arsenic, Total	ND	0.12	0.1279	106		-	-	75-125	-	20
Cadmium, Total	0.00041	0.051	0.05311	103		-	-	75-125	-	20
Chromium, Total	ND	0.2	0.1990	100		-	-	75-125	-	20
Copper, Total	0.00149	0.25	0.2578	102		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5571	109		-	-	75-125	-	20
Nickel, Total	0.00245	0.5	0.5075	101		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.124	103		-	-	75-125	-	20
Silver, Total	ND	0.05	0.04998	100		-	-	75-125	-	20
Zinc, Total	ND	0.5	0.5144	103		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

Report Date:

03/13/17

Parameter	Native Sample Du	plicate Sample Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG983130-4	QC Sample: L1706719-0	1 Client ID: D	OUP Sample
Mercury, Total	0.00026	0.0003 mg/l	2	20
Fotal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG983130-6	QC Sample: L1706724-0	1 Client ID: 1	700516-B(MW)307
Mercury, Total	ND	ND mg/l	NC	20
Fotal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG983485-8	QC Sample: L1706724-0	1 Client ID: 1	700516-B(MW)307
Iron, Total	ND	ND mg/l	NC	20
Fotal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG983488-4	QC Sample: L1706724-0	1 Client ID: 1	700516-B(MW)307
Antimony, Total	ND	ND mg/l	NC	20
Arsenic, Total	ND	ND mg/l	NC	20
Cadmium, Total	0.00041	0.00037 mg/l	8	20
Chromium, Total	ND	ND mg/l	NC	20
Copper, Total	0.00149	0.00145 mg/l	3	20
Lead, Total	ND	ND mg/l	NC	20
Nickel, Total	0.00245	0.00245 mg/l	0	20
Selenium, Total	ND	ND mg/l	NC	20
Silver, Total	ND	ND mg/l	NC	20
Zinc, Total	ND	ND mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

Report Date:

03/13/17

SAMPLE RESULTS

Lab ID: L1706724-01 Client ID: 1700516-B(MW)307

Sample Location:

1700516-B(MW)307 BOSTON, MA

Matrix:

Water

Date Collected:

03/03/17 09:50

Date Received:

0/00/17 00.0

ale Received.

03/03/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/06/17 15:05	121,2540D	SG
Cyanide, Total	ND		mg/l	0.005		1	03/06/17 09:50	03/06/17 21:58	121,4500CN-CE	AT
Chlorine, Total Residual	ND		mg/l	0.02		1	-	03/03/17 22:56	121,4500CL-D	AS
TPH, SGT-HEM	ND		mg/l	4.00		1	03/06/17 16:00	03/06/17 21:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	03/08/17 11:22	03/08/17 14:36	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010		1	03/03/17 22:40	03/03/17 23:15	121,3500CR-B	JC
Anions by Ion Chromato	graphy - Wes	stborough	Lab							
Chloride	1200		mg/l	50.0		100	-	03/06/17 21:43	44,300.0	AU

L1706724

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG98	2838-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	03/03/17 22:56	121,4500CL-D	AS
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG98	2846-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	03/03/17 22:40	03/03/17 23:14	121,3500CR-B	JC
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG98	3088-1				
Cyanide, Total	ND		mg/l	0.005		1	03/06/17 09:50	03/06/17 22:04	121,4500CN-CE	AT
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG98	3091-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/06/17 15:05	121,2540D	SG
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG98	3241-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	03/06/17 16:00	03/06/17 21:30	74,1664A	ML
Anions by Ion Chromatogra	phy - Westl	oorough	Lab for sar	mple(s):	01 Ba	atch: WG9	83326-1			
Chloride	ND		mg/l	0.500		1	-	03/06/17 19:07	44,300.0	AU
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG98	3858-1				
Phenolics, Total	ND		mg/l	0.030	-	1	03/08/17 11:22	03/08/17 14:33	4,420.1	AW

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

Report Date:

03/13/17

Parameter	LCS %Recovery Qu	LCSD ıal %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG982838-2					
Chlorine, Total Residual	105	-		90-110	_		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG982846-2					
Chromium, Hexavalent	102			85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG983088-2					
Cyanide, Total	100	· V		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG983241-2					
TPH	90			64-132	-		34
Anions by Ion Chromatography - Westb	orough Lab Associated s	ample(s): 01 Batch: W	/G983326-2				
Chloride	100			90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG983858-2					
Phenolics, Total	94	-		70-130	-		

Matrix Spike Analysis Batch Quality Control

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	=	MSD ound	MSD %Recovery		Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westbore	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG982846	6-3 QC	Sample: L170	06724-0	1 Client ID:	1700516-B	(MW)307
Chromium, Hexavalent	ND	0.1	0.107	107		-	-		85-115	-	20
General Chemistry - Westbore	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG983088	3-4 QC	Sample: L170	06418-0	1 Client ID:	MS Sample)
Cyanide, Total	0.010	0.2	0.180	85	Q	-	-		90-110	-	30
General Chemistry - Westbore	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG983241	-4 QC	Sample: L170	06789-0	3 Client ID:	MS Sample)
ТРН	ND	25	24.4	98		-			64-132	-	34
Anions by Ion Chromatograph	ny - Westboroug	h Lab Asso	ociated san	nple(s): 01 Q0	C Batch ID	: WG983	3326-3 QC S	Sample:	L1706828-02	Client ID:	MS Sample
Chloride	ND	4	3.87	97		-	-		40-151	-	18
General Chemistry - Westbore	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	NG983858	3-4 QC	Sample: L170	06807-0	2 Client ID:	MS Sample)
Phenolics, Total	ND	0.4	0.38	95		-	-		70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706724

Report Date:

03/13/17

Parameter	Native	Sample	Duplicate Sar	mple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG982838-3	QC Sample: L17	06776-01 Client	ID: DUP Sample
Chlorine, Total Residual	1	.0	1.0	mg/l	0	20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG982846-4	QC Sample: L17	06724-01 Client	ID: 1700516-B(MW)307
Chromium, Hexavalent	N	ID	ND	mg/l	NC	20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG983088-3	QC Sample: L17	06415-01 Client	ID: DUP Sample
Cyanide, Total	N	ID	ND	mg/l	NC	30
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG983091-2	QC Sample: L17	06581-01 Client	ID: DUP Sample
Solids, Total Suspended	4	00	420	mg/l	5	29
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG983241-3	QC Sample: L17	06789-02 Client	ID: DUP Sample
TPH	N	ID	ND	mg/l	NC	34
Anions by Ion Chromatography - Westb Sample	orough Lab Associated sa	ample(s): 01 C	C Batch ID: Wo	G983326-4 QC S	Sample: L17068	28-02 Client ID: DUP
Chloride	A	ID	ND	mg/l	NC	18
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG983858-3	QC Sample: L17	06807-02 Client	ID: DUP Sample
Phenolics, Total	1	ID	ND	mg/l	NC	20

Project Name: TREMONT CROSSING

Lab Number: L1706724 **Report Date:** 03/13/17 Project Number: 1700516

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

В Absent

Container Information				Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706724-01A	Vial HCl preserved	В	N/A	5.9	Υ	Absent	8260-SIM(14),8260(14)
L1706724-01B	Vial HCI preserved	В	N/A	5.9	Υ	Absent	8260-SIM(14),8260(14)
L1706724-01C	Vial HCI preserved	В	N/A	5.9	Υ	Absent	8260-SIM(14),8260(14)
L1706724-01D	Vial Na2S2O3 preserved	В	N/A	5.9	Υ	Absent	504(14)
L1706724-01E	Vial Na2S2O3 preserved	В	N/A	5.9	Υ	Absent	504(14)
L1706724-01F	Plastic 950ml unpreserved	В	7	5.9	Υ	Absent	CL-300(28),HEXCR- 3500(1),TRC-4500(1)
L1706724-01G	Plastic 250ml NaOH preserved	В	>12	5.9	Υ	Absent	TCN-4500(14)
L1706724-01H	Plastic 250ml HNO3 preserved	В	<2	5.9	Y	Absent	SE-6020T(180), CR- 6020T(180), NI-6020T(180), CU- 6020T(180), ZN-6020T(180), FE- UI(180), PB-6020T(180), HG- U(28), AS-6020T(180), SB- 6020T(180), AG-6020T(180), CD- 6020T(180)
L1706724-01I	Amber 1000ml Na2S2O3	В	7	5.9	Υ	Absent	PCB-608(7)
L1706724-01J	Amber 1000ml Na2S2O3	В	7	5.9	Υ	Absent	PCB-608(7)
L1706724-01K	Amber 1000ml unpreserved	В	7	5.9	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1706724-01L	Amber 1000ml unpreserved	В	7	5.9	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1706724-01M	Amber 1000ml HCl preserved	В	N/A	5.9	Υ	Absent	TPH-1664(28)
L1706724-01N	Amber 1000ml HCl preserved	В	N/A	5.9	Υ	Absent	TPH-1664(28)
L1706724-01O	Amber 950ml H2SO4 preserved	В	<2	5.9	Υ	Absent	TPHENOL-420(28)
L1706724-01P	Plastic 950ml unpreserved	В	7	5.9	Υ	Absent	TSS-2540(7)
L1706724-01Q	Vial HCl preserved	В	N/A	5.9	Υ	Absent	VPH-DELUX-10(14)
L1706724-01R	Vial HCl preserved	В	N/A	5.9	Υ	Absent	VPH-DELUX-10(14)
L1706724-01S	Vial HCl preserved	В	N/A	5.9	Υ	Absent	VPH-DELUX-10(14)
L1706724-01T	Amber 1000ml HCl preserved	В	<2	5.9	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706724-01U	Amber 1000ml HCl preserved	В	<2	5.9	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706724-02A	Vial Na2S2O3 preserved	В	N/A	5.9	Υ	Absent	HOLD-504/8011(14)
L1706724-02B	Vial Na2S2O3 preserved	В	N/A	5.9	Υ	Absent	HOLD-504/8011(14)

Project Name: TREMONT CROSSING Lab Number: L1706724

Project Number: 1700516 Report Date: 03/13/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSINGLab Number:L1706724Project Number:1700516Report Date:03/13/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:TREMONT CROSSINGLab Number:L1706724Project Number:1700516Report Date:03/13/17

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility **SM 2540D: TSS**

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Δ PHA	CHA	IN OF C	JSTO	DY	PAGE_	_OF	Dat	te Rec'o	d in Lal	o: <i>(</i>	2	03	1,-	1	AL	.PHA	Job	#: \	1706	724
8 Walkup Drive	e 320 Forbes Blvd	Proje	ct Informa	tion			Re	port li	nforma			-				STATE OF TAXABLE PARTY.	-	nation		
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02	048 Projec	t Name: Tra	ement C	rossing			ADEx			MAIL				1		as Clier		PO #:	
Client Information		Projec	Location:	Boston	MA		Re	gulato	ry Re	quire	nents	&	Pro	ject I	The same of			uirem	ents	
Client: GEL Com	ishlants, Inc	., 1.10,00	" 17060	-11-				es 🗆 N	lo MA I	MCP A	nalytic	al Met	hods	SDO	. (D-	☐ Yes	□ No	CT R	CP Analytical N	Methods
Address: 400 U	icen Park Dr	Project	Manager: (Cathy	John	64	M Y	es 🗆 N	lo GW1	Stand	dards (Info R	equire	d for i	/ (Re Metals	quired s & EP	H with	Targets	janics) s)	
Wohn	when Park Dr	ALPH	A Quote #:					es 🗆 Nother Sta	ate /Fed	Proc	ıram					С	riteria			
Phone: 791-721	1-4000		-Around Ti	me				1	5				///	7		7	/ /	7	7 /	
Email: jendehar	tagei unsultants	iom Van	ndard [7 DUOU			1	0.524.287	3	/RCp	Lado	s Only	Only	1	3 2	5/ /	/ /		/ /	
	252	_		RUSH (onl)	-	approved!)	ANALVE	24.27.		74 [80/0	ange ang	8	rint	137			//		
Additional F	Project Information	on:	Due:	5 day	141		A	0.5	₹ /	MCP	2 / 2	\ \Q_2 \	0	Inger,	18	3	137	\ /	SAMPLE	INFO
							₹	D 624	13 0	7 0	arget	arget	3	5/	7 3	1/	Metak		Filtration	, C
								00 D	MCP	A C. C. C. C. C. C. C. C. C. C. C. C. C.	68 & 1	PEO & 1	10 July	1:	To The	1	2	//	/ ☐ Field ☐ Lab to o	
					1			D ABN	10	50 6	P / 2	0	Quan	22	20	30	7	/ /	Preservati □ Lab to c	
ALPHA Lab ID (Lab Use Only)	Samp	ole ID	Coll	ection Time	Sample Matrix	Sampler	نې	SVOC	METALS: OMCP 13 PAH	EPH. INS. DRORAS DROS 14 DROP 15	MPH: N	DPCB CPES & Targets C. Ranges Only	24 H	3/2	True 25,207C; 4,16:400	Total O.		<u>z</u> /		
	1720516-B(MW)3	02	3/3/17	1325	6-W	SMT	X			X	×							1 3	Sample Comm	
	1700516-B(MV)		3/3/17	6920	GW	SMT	×				X						+	-		8
	120516-8(MW)		3/3/11		EW	RAM				X			+			-		+-		8
00-7040	1700516-BLAW		3/2/17				~			- 1	X .	, ,					1 1	_		8
08/27-9			1		tw	RAM	X					< >	X	X	X	Χ)	XX	-		
	12005 (6-B(hu)	70%	3/3/27	1130	6W	SMT	X			X	X				_					8
· · · · · · · · · · · · · · · · · · ·																				
Container Type P= Plastic A= Amber glass	Preservative		•		Conta	iner Type														
V= Vial G= Glass B= Bacteria cup	B= HCI C= HNO ₃ D= H ₂ SO ₄				Pre	servative														
C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	01/11	uished By:			e/Time			Receive	ed By:				Date/	Time		All con	mlac	L (H 2	1.1
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI	for from			3/3/17	1610	1	a	1	l_	AA		3/3	117	161	10	Alpha's	Terms	bmitted are su and Condition	ibject to
Page 74 of 75	K= Zn Acetate O= Other																	/erse sid 0: 01-01 (r	de, rev. 12-Mar-2012)	

ALPHA	CHAIN	OF CUSTODY	PAGEOF	Date Re	ec'd in Lab:	02	103	1-	1	ALP	IA Jo	ob #: \	-170672	14
8 Walkup Drive	e 320 Forbes Blvd	Project Information		Repor	t Informat						STATE OF TAXABLE PARTY.	ormation		
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project Name: Trement Project Location: Boston	Crossing	□ ADE	x	EMAI	L			Noor State		lient info	PO #:	
Client Information	on	Project Location: Boston	MA		atory Req						1000	THE RESERVE OF THE PARTY OF THE	ents	
Client: GEI Com	ishlants, Inc.	10001111 106516		Yes D	No MA M	CP Analy	tical Me	thods	enca	U Y	es 🗆 l	No CTRO	CP Analytical Metho	ds
Address: 400 Du	ween Park Dr	Project Manager: Cathy	Johnson	Yes C	No GW1	Standards	s (Info F	Require	d for Me	(Requiretals & I	ea for EPH w	ith Targets	anics)	
Wokur	1, MA	ALPHA Quote #:			No NPDE State /Fed						Criter	ia		
Phone: 791-72	1-4000	Turn-Around Time				7 7		1.1	1	JJ	1		7 /	
Email: jendehar	tageiconsultants.com	Standard □ RUSH 6		ANALYSIS	3	DRCRA8 DPP12	so _{mly}	Only	6.	727		///	/ /	
-			nly confirmed if pre-approved!)	ANALYSIS	4.2%	8 8	gange /	anges	rint	33/ 1	/ /	//		τ
Additional F	Project Information:	Date Due: 5 day	141	A A	AH AH	RCR4	0	/20/	lagery	* F	/-	× /	SAMPLE INFO	O T A
				₹ %	10 0	arges	arger /	3	4/3		Mori		Filtration	L
					MCP	CCRA 1	88 8	10 mg	1.7	7	0	' / /	☐ Field☐ Lab to do	#
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A G G	ang /	Rang	Oulan	300	3	REP		Preservation	0
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Time	Sample Sampler Matrix Initials	Woc.	METALS: DINCP 13	EPH: EFRANGES & TARCRAS DRCP 15	Drech Company & Targets Cony	H. H.	837 STU HEX (To World	THEM	10.0		☐ Lab to do	BOTTLE
	17005112-B(MW)302	3/3/17 1325		X		XX							Sample Comments	
	1700516-B(MU)303	3/3/17 0920				1		1			+			8
	1205he-8(hu)305	21.4		X		XX				-		-		8
0070160	1700516-BLM)307			× -		XX				+			-	8
06/27-9		3/3/17 8950	tw RAM	X		XX	X >	XX	X>	< X	X	X		
	1700516-B(hv)308	3/3/17 1130	6W SMT	X	,	XX							*	8
*													1	
Container Type P= Plastic	Preservative A= None		Container Type											\vdash
A= Amber glass V= Vial G= Glass	B= HCI C= HNO₃ D= H₂SO₄		Preservative											\Box
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relinquished By:	Date/Time		Received	Ву:			Date/Tir	ne				
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl	proce	3/3/17 1610	JC	1	e A	AL	3/3	117	1610	Alph	a's Terms	bmitted are subject and Conditions.	to
2age 75 of 75	K= Zn Acetate O= Other							-				reverse sid 1 NO: 01-01 (r	de. ev. 12-Mar-2012)	

ANALYTICAL REPORT

Lab Number: L1706853

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706853 **Report Date:** 03/13/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1706853-01	1700516-B(MW)301	WATER	BOSTON, MA	03/05/17 15:22	03/06/17
I 1706853-02	1700516-B(MW)306	WATER	BOSTON, MA	03/05/17 13:38	03/06/17

Project Name: TREMONT CROSSING Lab Number: L1706853

Project Number: 1700516 Report Date: 03/13/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 **Report Date:** 03/13/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

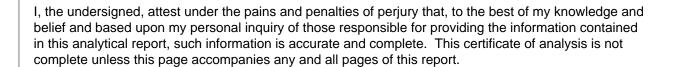
HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:TREMONT CROSSINGLab Number:L1706853Project Number:1700516Report Date:03/13/17

Case Narrative (continued)


MCP Related Narratives

Volatile Organics

A copy of the continuing calibration standard is included as an addendum to this report.

In reference to question H:

The initial calibration, associated with L1706853-01 and -02, did not meet the method required minimum response factor on the lowest calibration standard for 4-methyl-2-pentanone (0.0761) and 1,4-dioxane (0.0017), as well as the average response factor for 4-methyl-2-pentanone and 1,4-dioxane.

Authorized Signature:

Title: Technical Director/Representative Date: 03/13/17

Melissa Cripps Melissa Cripps

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706853

Report Date: 03/13/17

Lab ID: L1706853-01

1700516-B(MW)301 Client ID:

Sample Location: BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 03/09/17 08:21

Analyst: MM Date Collected: 03/05/17 15:22

Date Received: 03/06/17 Field Prep: Not Specified

MCP Volatile Organics - Westborough Lab Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	2.0 1.0 1.0	 1 1
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND ND ND ND ND ND ND	ug/l ug/l ug/l	1.0 1.0	
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND ND ND ND ND	ug/l ug/l	1.0	1
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND ND ND	ug/l		
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND ND ND		1.0	1
Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND ND	ug/l		 1
1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND	ug/i	1.0	 1
Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene		ug/l	1.0	 1
Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND	ug/l	1.0	 1
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND	ug/l	1.0	 1
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND	ug/l	1.0	 1
1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND	ug/l	2.0	 1
Bromodichloromethane trans-1,3-Dichloropropene	ND	ug/l	1.0	 1
trans-1,3-Dichloropropene	ND	ug/l	1.0	 1
	ND	ug/l	1.0	 1
ois 1.2 Dishlerenrenens	ND	ug/l	0.50	 1
cis-1,3-Dichloropropene	ND	ug/l	0.50	 1
1,3-Dichloropropene, Total	ND	ug/l	0.50	 1
1,1-Dichloropropene	ND	ug/l	2.0	 1
Bromoform	ND	ug/l	2.0	 1
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	 1
Benzene	ND	ug/l	0.50	 1
Toluene	ND	ug/l	1.0	 1
Ethylbenzene	ND	ug/l	1.0	 1
Chloromethane	ND	ug/l	2.0	 1
Bromomethane	ND	ug/l	2.0	 1
Vinyl chloride	ND	ug/l	1.0	 1
Chloroethane	ND	ug/l	2.0	 1
1,1-Dichloroethene	ND	ug/l	1.0	 1
trans-1,2-Dichloroethene	ND	ug/l	1.0	 1
Trichloroethene	ND	ug/l	1.0	 1
1,2-Dichlorobenzene	ND			

L1706853

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Report Date: 03/13/17

Lab Number:

Lab ID: L1706853-01 1700516-B(MW)301 Client ID:

Sample Location: BOSTON, MA Date Collected: 03/05/17 15:22 Date Received: 03/06/17

Field Prep: Not Specified

Campio Locationi Boot ort, in t				1 1014 1 10	٠.	rior opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough Lab							
1,3-Dichlorobenzene	ND		ug/l	1.0		1	
1,4-Dichlorobenzene	ND		ug/l	1.0		1	
Methyl tert butyl ether	ND		ug/l	2.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylene (Total)	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane	ND		ug/l	2.0		1	
1,2,3-Trichloropropane	ND		ug/l	2.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	2.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	2.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.0		1	
Tetrahydrofuran	ND		ug/l	2.0		1	
2,2-Dichloropropane	ND		ug/l	2.0		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1	
Bromobenzene	ND		ug/l	2.0		1	
n-Butylbenzene	ND		ug/l	2.0		1	
sec-Butylbenzene	ND		ug/l	2.0		1	
tert-Butylbenzene	ND		ug/l	2.0		1	
o-Chlorotoluene	ND		ug/l	2.0		1	
p-Chlorotoluene	ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1	
Hexachlorobutadiene	ND		ug/l	0.60		1	
Isopropylbenzene	ND		ug/l	2.0		1	
p-Isopropyltoluene	ND		ug/l	2.0		1	
Naphthalene	ND		ug/l	2.0		1	
n-Propylbenzene	ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	

Project Name: TREMONT CROSSING Lab Number: L1706853

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706853-01 Date Collected: 03/05/17 15:22

Client ID: 1700516-B(MW)301 Date Received: 03/06/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	99	70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706853

Report Date: 03/13/17

 Lab ID:
 L1706853-02
 Date Collected:
 03/05/17 13:38

 Client ID:
 1700516-B(MW)306
 Date Received:
 03/06/17

Client ID: 1700516-B(MW)306 Date Received: 03/06/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 03/09/17 08:52

Analyst: MM

1,1-Dichloroethane ND ug/l 1,0 1 Chloroform ND ug/l 1,0 1 Carbon tetrachloride ND ug/l 1,0 1 L,2-Dichloropropane ND ug/l 1,0 1 Dibromochloromethane ND ug/l 1,0 1 Tetrachloroethane ND ug/l 1,0 1 Tetrachloroethane 3,2 ug/l 1,0 1 Chlorobarzene ND ug/l 1,0 1 Chlorobarzene ND ug/l 1,0 1 Tetrachloroethane ND ug/l 1,0 1 1,2-Dichloroethane ND ug/l 1,0 1 Bromodichloromethane ND ug/l 1,0 1 Bromodichloropropene ND ug/l 0,50 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	MCP Volatile Organics - Westborough	Lab					
1,1-Dichloroethane ND ug/l 1,0 1 Chloroform ND ug/l 1,0 1 Carbon tetrachloride ND ug/l 1,0 1 1,2-Dichloropropane ND ug/l 1,0 1 Dibromochloromethane ND ug/l 1,0 1 Tetrachloroethane ND ug/l 1,0 1 Tetrachloroethane ND ug/l 1,0 1 Chloroberzene ND ug/l 1,0 1 Tochloropropene ND ug/l 1,0 1 1,2-Dichloropropene ND ug/l 1,0 1 1,1-1-Trichlorofuchane ND ug/l 1,0 1 Bromodichloropropene ND ug/l 1,0 1 1,1-1-Trichloropropene ND ug/l 0,50 1	Methylene chloride	ND		ug/l	2.0		1
Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,12-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 1.0 1 1,2-Dichloromethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloropropene ND ug/l 0.50 1	1,1-Dichloroethane	ND			1.0		1
Carbon tetrachloride ND ug/l 1.0 1 1,2-Dickloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,12-Trichloroethane ND ug/l 1.0 1 1,12-Trichloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 1.0 1 1,2-Dickloropthane ND ug/l 1.0 1 1,2-Dickloropthane ND ug/l 1.0 1 1,1-1-Trickloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.50 1 strash-1,3-Dickloropropene ND ug/l 0.50 1 1,1-Dickloropropene, Total ND ug/l 2.0 <	Chloroform	ND		-	1.0		1
1,2-Dichloropropane ND ug/l 1,0 1 Dibromochloromethane ND ug/l 1,0 1 1,1,2-Trichloroethane ND ug/l 1,0 1 Tetrachloroethane 3,2 ug/l 1,0 1 Chlorobenzene ND ug/l 1,0 1 Trichlorofluoromethane ND ug/l 1,0 1 1,1,1-Trichloroethane ND ug/l 1,0 1 Bromodichloromethane ND ug/l 1,0 1 Bromodichloromethane ND ug/l 0,50 1 Bromodichloropropene ND ug/l 0,50 1 1,3-Dichloropropene ND ug/l 0,50 1 1,3-Dichloropropene, Total ND ug/l 0,50 1 Bromoform ND ug/l 0,0 1<	Carbon tetrachloride	ND			1.0		1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND			1.0		1
Tetrachloroethene 3.2 ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 1 trans-1,3-Dichloropropene ND ug/l 1.0 1 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 1 trans-1,2-Dichloropropene ND ug/l 1.0 1	Dibromochloromethane	ND		ug/l	1.0		1
ND	1,1,2-Trichloroethane	ND		ug/l	1.0		1
Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Eromodichloromethane ND ug/l 1.0 1 Eromodichloromethane ND ug/l 1.0 1 Eromodichloromethane ND ug/l 0.50 1 Eromodichloropropene ND ug/l 0.50 1 Litans-1,3-Dichloropropene ND ug/l 0.50 1 Eromoform ND ug/l 2.0 1 Eromoform ND ug/l 0.50 1 Eromoform ND ug/l 1.0 1 Eromoform ND ug/l 1.0 1 Eromoform ND ug/l 1.0 1 Eromoform ND ug/l 1.0 1 Eromoform ND ug/l 1.0 1 Eromoform ND ug/l 2.0 1 Eromoformethane ND ug/l 2.0 1 Eromoformethane ND ug/l 2.0 1 Eromoformethane ND ug/l 2.0 1 Eromoformethane ND ug/l 2.0 1 Eromoformethane ND ug/l 1.0 1	Tetrachloroethene	3.2		ug/l	1.0		1
1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene, Total ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 Bromoform ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 <	Chlorobenzene	ND		ug/l	1.0		1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.0		1
ND	1,2-Dichloroethane	ND		ug/l	1.0		1
ND	1,1,1-Trichloroethane	ND		ug/l	1.0		1
ND	Bromodichloromethane	ND		ug/l	1.0		1
1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Spromomethane ND ug/l 1.0 1 Vinyl chloride 6.3 ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 1,1-Dichloroethene <td>trans-1,3-Dichloropropene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td>1</td>	trans-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride 6.3 ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	cis-1,3-Dichloropropene	ND		ug/l	0.50		1
ND	1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride 6.3 ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	1,1-Dichloropropene	ND		ug/l	2.0		1
ND	Bromoform	ND		ug/l	2.0		1
Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride 6.3 ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride 6.3 ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	Benzene	ND		ug/l	0.50		1
Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride 6.3 ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	Toluene	ND		ug/l	1.0		1
Bromomethane ND ug/l 2.0 1 Vinyl chloride 6.3 ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride 6.3 ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	Chloromethane	ND		ug/l	2.0		1
Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	Bromomethane	ND		ug/l	2.0		1
1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	Vinyl chloride	6.3		ug/l	1.0		1
trans-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene 93 ug/l 1.0 1	Chloroethane	ND		ug/l	2.0		1
Trichloroethene 93 ug/l 1.0 1	1,1-Dichloroethene	ND		ug/l	1.0		1
-9	trans-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene ND ug/l 1.0 1	Trichloroethene	93		ug/l	1.0		1
	1,2-Dichlorobenzene	ND		ug/l	1.0		1

L1706853

03/05/17 13:38

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Report Date: 03/13/17

Lab Number:

Date Collected:

Lab ID: L1706853-02

1700516-B(MW)306 Client ID: Sample Location: BOSTON, MA

Date Received: 03/06/17 Field Prep: Not Specified

Campio Locationi Door ort, mrt				1 1014 1 10	۲.	riot opcomod
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab)					
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	64		ug/l	1.0		1
1,2-Dichloroethene (total)	64		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1

Project Name: TREMONT CROSSING Lab Number: L1706853

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706853-02 Date Collected: 03/05/17 13:38

Client ID: 1700516-B(MW)306 Date Received: 03/06/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ugh Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	90	70-130
Dibromofluoromethane	98	70-130

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 **Report Date:** 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/09/17 07:18

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL
MCP Volatile Organics - Westboro	ugh Lab for	sample(s):	01-02	Batch:	WG984166-5
Methylene chloride	ND		ug/l	2.0)
1,1-Dichloroethane	ND		ug/l	1.0)
Chloroform	ND		ug/l	1.0)
Carbon tetrachloride	ND		ug/l	1.0)
1,2-Dichloropropane	ND		ug/l	1.0)
Dibromochloromethane	ND		ug/l	1.0)
1,1,2-Trichloroethane	ND		ug/l	1.0)
Tetrachloroethene	ND		ug/l	1.0)
Chlorobenzene	ND		ug/l	1.0)
Trichlorofluoromethane	ND		ug/l	2.0)
1,2-Dichloroethane	ND		ug/l	1.0)
1,1,1-Trichloroethane	ND		ug/l	1.0)
Bromodichloromethane	ND		ug/l	1.0)
trans-1,3-Dichloropropene	ND		ug/l	0.5	0
cis-1,3-Dichloropropene	ND		ug/l	0.5	0
1,3-Dichloropropene, Total	ND		ug/l	0.5	0
1,1-Dichloropropene	ND		ug/l	2.0)
Bromoform	ND		ug/l	2.0)
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0)
Benzene	ND		ug/l	0.5	0
Toluene	ND		ug/l	1.0)
Ethylbenzene	ND		ug/l	1.0)
Chloromethane	ND		ug/l	2.0)
Bromomethane	ND		ug/l	2.0)
Vinyl chloride	ND		ug/l	1.0)
Chloroethane	ND		ug/l	2.0)
1,1-Dichloroethene	ND		ug/l	1.0)
trans-1,2-Dichloroethene	ND		ug/l	1.0)
Trichloroethene	ND		ug/l	1.0)

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/09/17 07:18

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Wes	tborough Lab for	sample(s):	01-02	Batch: WG98	34166-5	
1,2-Dichlorobenzene	ND		ug/l	1.0		
1,3-Dichlorobenzene	ND		ug/l	1.0		
1,4-Dichlorobenzene	ND		ug/l	1.0		
Methyl tert butyl ether	ND		ug/l	2.0		
p/m-Xylene	ND		ug/l	2.0		
o-Xylene	ND		ug/l	1.0		
Xylene (Total)	ND		ug/l	1.0		
cis-1,2-Dichloroethene	ND		ug/l	1.0		
1,2-Dichloroethene (total)	ND		ug/l	1.0		
Dibromomethane	ND		ug/l	2.0		
1,2,3-Trichloropropane	ND		ug/l	2.0		
Styrene	ND		ug/l	1.0		
Dichlorodifluoromethane	ND		ug/l	2.0		
Acetone	ND		ug/l	5.0		
Carbon disulfide	ND		ug/l	2.0		
2-Butanone	ND		ug/l	5.0		
4-Methyl-2-pentanone	ND		ug/l	5.0		
2-Hexanone	ND		ug/l	5.0		
Bromochloromethane	ND		ug/l	2.0		
Tetrahydrofuran	ND		ug/l	2.0		
2,2-Dichloropropane	ND		ug/l	2.0		
1,2-Dibromoethane	ND		ug/l	2.0		
1,3-Dichloropropane	ND		ug/l	2.0		
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		
Bromobenzene	ND		ug/l	2.0		
n-Butylbenzene	ND		ug/l	2.0		
sec-Butylbenzene	ND		ug/l	2.0		
tert-Butylbenzene	ND		ug/l	2.0		
o-Chlorotoluene	ND		ug/l	2.0		

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

oject Number. 1700010

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 97,8260C 03/09/17 07:18

Analyst:

MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westb	orough Lab for	sample(s):	01-02	Batch: WG9	84166-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	90		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	97		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706853

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample	e(s): 01-02	Batch: WG98416	66-3 WG984166-4		
Methylene chloride	100		100	70-130	0	20
1,1-Dichloroethane	100		98	70-130	2	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	98		95	70-130	3	20
1,2-Dichloropropane	100		100	70-130	0	20
Dibromochloromethane	98		100	70-130	2	20
1,1,2-Trichloroethane	99		99	70-130	0	20
Tetrachloroethene	110		100	70-130	10	20
Chlorobenzene	100		99	70-130	1	20
Trichlorofluoromethane	110		100	70-130	10	20
1,2-Dichloroethane	96		95	70-130	1	20
1,1,1-Trichloroethane	100		100	70-130	0	20
Bromodichloromethane	100		100	70-130	0	20
trans-1,3-Dichloropropene	87		88	70-130	1	20
cis-1,3-Dichloropropene	91		90	70-130	1	20
1,1-Dichloropropene	100		100	70-130	0	20
Bromoform	86		90	70-130	5	20
1,1,2,2-Tetrachloroethane	96		100	70-130	4	20
Benzene	100		100	70-130	0	20
Toluene	100		99	70-130	1	20
Ethylbenzene	98		96	70-130	2	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706853

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01-02	Batch: WG984	166-3 WG984166-4		
Chloromethane	89		86	70-130	3	20
Bromomethane	92		87	70-130	6	20
Vinyl chloride	100		100	70-130	0	20
Chloroethane	100		110	70-130	10	20
1,1-Dichloroethene	110		100	70-130	10	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	100		100	70-130	0	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	99		99	70-130	0	20
1,4-Dichlorobenzene	98		100	70-130	2	20
Methyl tert butyl ether	94		96	70-130	2	20
p/m-Xylene	95		95	70-130	0	20
o-Xylene	95		95	70-130	0	20
cis-1,2-Dichloroethene	110		100	70-130	10	20
Dibromomethane	100		100	70-130	0	20
1,2,3-Trichloropropane	91		98	70-130	7	20
Styrene	100		95	70-130	5	20
Dichlorodifluoromethane	95		90	70-130	5	20
Acetone	90		97	70-130	7	20
Carbon disulfide	100		97	70-130	3	20
2-Butanone	90		93	70-130	3	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706853

rameter	LCS %Recovery Qual	LCSD %Recovery Q	%Recovery ual Limits	RPD	RPD Qual Limits
CP Volatile Organics - Westborough Lab	Associated sample(s): 0	01-02 Batch: WG984166-	3 WG984166-4		
4-Methyl-2-pentanone	86	89	70-130	3	20
2-Hexanone	87	91	70-130	4	20
Bromochloromethane	100	100	70-130	0	20
Tetrahydrofuran	88	91	70-130	3	20
2,2-Dichloropropane	94	93	70-130	1	20
1,2-Dibromoethane	96	98	70-130	2	20
1,3-Dichloropropane	93	96	70-130	3	20
1,1,1,2-Tetrachloroethane	100	100	70-130	0	20
Bromobenzene	98	99	70-130	1	20
n-Butylbenzene	97	99	70-130	2	20
sec-Butylbenzene	96	98	70-130	2	20
tert-Butylbenzene	96	96	70-130	0	20
o-Chlorotoluene	93	94	70-130	1	20
p-Chlorotoluene	91	92	70-130	1	20
1,2-Dibromo-3-chloropropane	100	100	70-130	0	20
Hexachlorobutadiene	100	110	70-130	10	20
Isopropylbenzene	96	96	70-130	0	20
p-Isopropyltoluene	96	99	70-130	3	20
Naphthalene	98	100	70-130	2	20
n-Propylbenzene	94	94	70-130	0	20
1,2,3-Trichlorobenzene	100	110	70-130	10	20

Project Name: TREMONT CROSSING

Project Number:

1700516

Lab Number:

L1706853

Report Date:

03/13/17

Parameter	LCS %Recovery G		.CSD ecovery	Qual	%Recovery Limits	RPD	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s)	: 01-02 Batc	h: WG98416	66-3 WG98	34166-4		
1,2,4-Trichlorobenzene	100		110		70-130	10	20
1,3,5-Trimethylbenzene	93		94		70-130	1	20
1,2,4-Trimethylbenzene	94		97		70-130	3	20
Ethyl ether	100		100		70-130	0	20
Isopropyl Ether	94		94		70-130	0	20
Ethyl-Tert-Butyl-Ether	96		97		70-130	1	20
Tertiary-Amyl Methyl Ether	96		99		70-130	3	20
1,4-Dioxane	102		116		70-130	13	20

	LCS	LCSD	Acceptano	e
Surrogate	%Recovery	/ Qual %Recover	y Qual Criteria	
1,2-Dichloroethane-d4	88	89	70-130	
Toluene-d8	96	95	70-130	
4-Bromofluorobenzene	94	95	70-130	
Dibromofluoromethane	99	98	70-130	

PETROLEUM HYDROCARBONS

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706853

Report Date:

03/13/17

SAMPLE RESULTS

Lab ID: L1706853-01

Client ID: 1700516-B(MW)301

Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/09/17 22:02

Analyst: JM

Date Collected:

03/05/17 15:22

Date Received: Field Prep:

03/06/17 Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons -	Westborough Lab				
C5-C8 Aliphatics	ND	ug/l	50.0		1
C9-C12 Aliphatics	ND	ug/l	50.0		1
C9-C10 Aromatics	ND	ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND	ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND	ug/l	50.0		1
Benzene	ND	ug/l	2.00		1
Toluene	ND	ug/l	2.00		1
Ethylbenzene	ND	ug/l	2.00		1
p/m-Xylene	ND	ug/l	2.00		1
o-Xylene	ND	ug/l	2.00		1
Methyl tert butyl ether	ND	ug/l	3.00		1
Naphthalene	ND	ug/l	4.00		1

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
2,5-Dibromotoluene-PID	95		70-130				
2,5-Dibromotoluene-FID	98		70-130				

Project Name: TREMONT CROSSING Lab Number: L1706853

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706853-01 Date Collected: 03/05/17 15:22

Client ID: 1700516-B(MW)301 Date Received: 03/06/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/08/17 12:49

Analytical Date: 03/09/17 21:56 M.S. Analytical Date: 03/09/17 16:05 Cleanup Method1: EPH-04-1 Analyst: DV Cleanup Date1: 03/09/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lab						
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	0.412		1
2-Methylnaphthalene	ND		ug/l	0.412		1
Acenaphthylene	ND		ug/l	0.412		1
Acenaphthene	ND		ug/l	0.412		1
Fluorene	ND		ug/l	0.412		1
Phenanthrene	ND		ug/l	0.412		1
Anthracene	ND		ug/l	0.412		1
Fluoranthene	ND		ug/l	0.412		1
Pyrene	ND		ug/l	0.412		1
Benzo(a)anthracene	ND		ug/l	0.412		1
Chrysene	ND		ug/l	0.412		1
Benzo(b)fluoranthene	ND		ug/l	0.412		1
Benzo(k)fluoranthene	ND		ug/l	0.412		1
Benzo(a)pyrene	ND		ug/l	0.206		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.412		1
Dibenzo(a,h)anthracene	ND		ug/l	0.412		1
Benzo(ghi)perylene	ND		ug/l	0.412		1

Project Name: TREMONT CROSSING Lab Number: L1706853

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706853-01 Date Collected: 03/05/17 15:22

Client ID: 1700516-B(MW)301 Date Received: 03/06/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	68		40-140	
o-Terphenyl	109		40-140	
2-Fluorobiphenyl	111		40-140	
2-Bromonaphthalene	114		40-140	
O-Terphenyl-MS	108		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706853

Report Date:

03/13/17

SAMPLE RESULTS

Lab ID: L1706853-02

Client ID: 1700516-B(MW)306

Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/09/17 22:41

Analyst: JM

Date Collected:

03/05/17 13:38

Date Received: Field Prep:

03/06/17

Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Qualifier **Parameter** Result Units RLMDL **Dilution Factor** Volatile Petroleum Hydrocarbons - Westborough Lab C5-C8 Aliphatics ND ug/l 50.0 1 ND 1 C9-C12 Aliphatics ug/l 50.0 ND C9-C10 Aromatics ug/l 50.0 1 C5-C8 Aliphatics, Adjusted ND ug/l 50.0 1 --C9-C12 Aliphatics, Adjusted ND 50.0 1 ug/l --ND Benzene ug/l 1 2.00 Toluene ND ug/l 2.00 1 ND 1 Ethylbenzene ug/l 2.00 __ p/m-Xylene ND ug/l 2.00 --1 o-Xylene ND 2.00 1 ug/l Methyl tert butyl ether ND 3.00 1 ug/l Naphthalene ND 4.00 1 ug/l --

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	99		70-130	
2,5-Dibromotoluene-FID	102		70-130	

Project Name: TREMONT CROSSING Lab Number: L1706853

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706853-02 Date Collected: 03/05/17 13:38

Client ID: 1700516-B(MW)306 Date Received: 03/06/17

Sample Location: BOSTON, MA Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/08/17 12:49

Analytical Date: 03/09/17 22:38 M.S. Analytical Date: 03/09/17 16:34 Cleanup Method1: EPH-04-1

Analyst: EK M.S. Analyst: DV Cleanup Date1: 03/09/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lab						
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	0.417		1
2-Methylnaphthalene	ND		ug/l	0.417		1
Acenaphthylene	ND		ug/l	0.417		1
Acenaphthene	ND		ug/l	0.417		1
Fluorene	ND		ug/l	0.417		1
Phenanthrene	ND		ug/l	0.417		1
Anthracene	ND		ug/l	0.417		1
Fluoranthene	ND		ug/l	0.417		1
Pyrene	ND		ug/l	0.417		1
Benzo(a)anthracene	ND		ug/l	0.417		1
Chrysene	ND		ug/l	0.417		1
Benzo(b)fluoranthene	ND		ug/l	0.417		1
Benzo(k)fluoranthene	ND		ug/l	0.417		1
Benzo(a)pyrene	ND		ug/l	0.208		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.417		1
Dibenzo(a,h)anthracene	ND		ug/l	0.417		1
Benzo(ghi)perylene	ND		ug/l	0.417		1

Project Name: TREMONT CROSSING Lab Number: L1706853

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706853-02 Date Collected: 03/05/17 13:38

Client ID: 1700516-B(MW)306 Date Received: 03/06/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	69		40-140	
o-Terphenyl	97		40-140	
2-Fluorobiphenyl	103		40-140	
2-Bromonaphthalene	105		40-140	
O-Terphenyl-MS	111		40-140	

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 98,EPH-04-1.1

Extraction Method: EPA 3510C Analytical Date: 03/09/17 19:50 M.S. Analytical Date: 03/09/17 13:44 Extraction Date:

03/08/17 12:49 Analyst: M.S. Analyst: DV ΕK Cleanup Method: EPH-04-1

Cleanup Date: 03/09/17

arameter	Result Q	ualifier Unit	ts RL	MDL	
PH w/MS Targets - Westborou	igh Lab for sample	(s): 01-02	Batch: WG98	3885-1	
C9-C18 Aliphatics	ND	ug	/l 100		
C19-C36 Aliphatics	ND	ug	/I 100		
C11-C22 Aromatics	ND	ug	/I 100		
C11-C22 Aromatics, Adjusted	ND	ug	/l 100		
Naphthalene	ND	ug	/I 0.400		
2-Methylnaphthalene	ND	ug	/1 0.400		
Acenaphthylene	ND	ug	/I 0.400		
Acenaphthene	ND	ug	/I 0.400		
Fluorene	ND	ug	/I 0.400		
Phenanthrene	ND	ug	/I 0.400		
Anthracene	ND	ug	/I 0.400		
Fluoranthene	ND	ug	/I 0.400		
Pyrene	ND	ug	/I 0.400		
Benzo(a)anthracene	ND	ug	/I 0.400		
Chrysene	ND	ug	/I 0.400		
Benzo(b)fluoranthene	ND	ug	/I 0.400		
Benzo(k)fluoranthene	ND	ug	/I 0.400		
Benzo(a)pyrene	ND	ug	/I 0.200		
Indeno(1,2,3-cd)Pyrene	ND	ug	/I 0.400		
Dibenzo(a,h)anthracene	ND	ug	/I 0.400		
Benzo(ghi)perylene	ND	ug	/I 0.400		

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 98,EPH-04-1.1

Analytical Date: 03/09/17 19:50

Analyst: EK

03/09/17 13:44

DV

Extraction Method: EPA 3510C

Extraction Date: 03/08/17 12:49
Cleanup Method: EPH-04-1

Cleanup Method: EPH-04-1 Cleanup Date: 03/09/17

Parameter	Result	Qualifier	Units	RL	MDL	
EDH W/MC Torgeto	Mostharaugh Lab for ac	mplo(a), 01	02 Dot	ab. AMC00200)E 1	

EPH w/MS Targets - Westborough Lab for sample(s): 01-02 Batch: WG983885-1

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Chloro-Octadecane	71		40-140	
o-Terphenyl	102		40-140	
2-Fluorobiphenyl	110		40-140	
2-Bromonaphthalene	112		40-140	
O-Terphenyl-MS	111		40-140	

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

100,VPH-04-1.1 03/09/17 09:34

Analyst:

JM

arameter	Result	Qualifier	Units	RL	MDL
olatile Petroleum Hydrocarbons	- Westboroug	h Lab for s	sample(s):	01-02	Batch: WG984456-3
C5-C8 Aliphatics	ND		ug/l	50.0	
C9-C12 Aliphatics	ND		ug/l	50.0	
C9-C10 Aromatics	ND		ug/l	50.0	
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0	
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0	
Benzene	ND		ug/l	2.00	
Toluene	ND		ug/l	2.00	
Ethylbenzene	ND		ug/l	2.00	
p/m-Xylene	ND		ug/l	2.00	
o-Xylene	ND		ug/l	2.00	
Methyl tert butyl ether	ND		ug/l	3.00	
Naphthalene	ND		ug/l	4.00	

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	103		70-130			
2,5-Dibromotoluene-FID	102		70-130			

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706853

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
EPH w/MS Targets - Westborough Lab Ass	ociated sample(s):	01-02 Ba	atch: WG983885	i-2 WG983885-3		
C9-C18 Aliphatics	78		79	40-140	1	25
C19-C36 Aliphatics	88		87	40-140	1	25
C11-C22 Aromatics	99		95	40-140	4	25
Naphthalene	95		100	40-140	5	25
2-Methylnaphthalene	94		98	40-140	4	25
Acenaphthylene	107		108	40-140	1	25
Acenaphthene	118		115	40-140	3	25
Fluorene	117		114	40-140	3	25
Phenanthrene	109		107	40-140	2	25
Anthracene	119		111	40-140	7	25
Fluoranthene	117		110	40-140	6	25
Pyrene	115		108	40-140	6	25
Benzo(a)anthracene	114		112	40-140	2	25
Chrysene	126		122	40-140	3	25
Benzo(b)fluoranthene	114		115	40-140	1	25
Benzo(k)fluoranthene	113		113	40-140	0	25
Benzo(a)pyrene	114		114	40-140	0	25
Indeno(1,2,3-cd)Pyrene	119		118	40-140	1	25
Dibenzo(a,h)anthracene	123		125	40-140	2	25
Benzo(ghi)perylene	110		109	40-140	1	25
Nonane (C9)	59		61	30-140	3	25

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706853

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
EPH w/MS Targets - Westborough Lab Asso	ociated sample(s):	01-02	Batch: WG983885	-2 WG98	3885-3			
Decane (C10)	67		69		40-140	3	25	
Dodecane (C12)	74		75		40-140	1	25	
Tetradecane (C14)	80		80		40-140	0	25	
Hexadecane (C16)	86		84		40-140	2	25	
Octadecane (C18)	87		85		40-140	2	25	
Nonadecane (C19)	88		86		40-140	2	25	
Eicosane (C20)	86		85		40-140	1	25	
Docosane (C22)	86		85		40-140	1	25	
Tetracosane (C24)	86		84		40-140	2	25	
Hexacosane (C26)	85		83		40-140	2	25	
Octacosane (C28)	83		81		40-140	2	25	
Triacontane (C30)	83		82		40-140	1	25	
Hexatriacontane (C36)	83		80		40-140	4	25	

Qual

Project Name: TREMONT CROSSING Lab Number:

L1706853

Project Number: 1700516 Report Date:

03/13/17

LCS %Recovery Parameter

LCSD %Recovery %Recovery Limits

RPD

RPD Qual

Limits

EPH w/MS Targets - Westborough Lab Associated sample(s): 01-02 Batch: WG983885-2 WG983885-3

Qual

	LCS		LCSD	Acceptance
Surrogate	%Recovery	Qual	%Recovery Qual	Criteria
Chloro-Octadecane	77		77	40-140
o-Terphenyl	100		94	40-140
2-Fluorobiphenyl	100		97	40-140
2-Bromonaphthalene	104		99	40-140
O-Terphenyl-MS	144	Q	125	40-140
% Naphthalene Breakthrough	0		0	
% 2-Methylnaphthalene Breakthrough	0		0	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706853

Report Date: 03/13/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Petroleum Hydrocarbons - Westborou	ugh Lab Assoc	iated sample(s):	01-02 Batch:	WG98445	56-1 WG984456-	-2		
C5-C8 Aliphatics	93		99		70-130	6		25
C9-C12 Aliphatics	100		105		70-130	5		25
C9-C10 Aromatics	98		105		70-130	7		25
Benzene	92		97		70-130	6		25
Toluene	93		100		70-130	7		25
Ethylbenzene	95		102		70-130	7		25
p/m-Xylene	97		103		70-130	6		25
o-Xylene	94		101		70-130	7		25
Methyl tert butyl ether	92		101		70-130	9		25
Naphthalene	95		104		70-130	9		25
1,2,4-Trimethylbenzene	98		105		70-130	7		25
Pentane	92		98		70-130	6		25
2-Methylpentane	94		99		70-130	6		25
2,2,4-Trimethylpentane	95		101		70-130	6		25
n-Nonane	99		104		30-130	5		25
n-Decane	102		107		70-130	5		25
n-Butylcyclohexane	100		106		70-130	6		25

Project Name: TREMONT CROSSING

Lab Number:

L1706853

Project Number: 1700516

Papart Data

Report Date: 03/13/17

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01-02 Batch: WG984456-1 WG984456-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2,5-Dibromotoluene-PID	96		105		70-130	
2,5-Dibromotoluene-FID	98		105		70-130	

Serial_No:03131713:34

Lab Number: L1706853

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706853-01A	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	MCP-8260-10(14)
L1706853-01B	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	MCP-8260-10(14)
L1706853-01C	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	MCP-8260-10(14)
L1706853-01D	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	VPH-DELUX-10(14)
L1706853-01E	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	VPH-DELUX-10(14)
L1706853-01F	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	VPH-DELUX-10(14)
L1706853-01G	Amber 1000ml HCl preserved	Α	<2	2.9	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706853-01H	Amber 1000ml HCl preserved	A	<2	2.9	Y	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706853-02A	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	MCP-8260-10(14)
L1706853-02B	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	MCP-8260-10(14)
L1706853-02C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	MCP-8260-10(14)
L1706853-02D	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	VPH-DELUX-10(14)
L1706853-02E	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	VPH-DELUX-10(14)
L1706853-02F	Vial HCI preserved	A	N/A	2.9	Υ	Absent	VPH-DELUX-10(14)
L1706853-02G	Amber 1000ml HCl preserved	Α	<2	2.9	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)
L1706853-02H	Amber 1000ml HCl preserved	Α	<2	2.9	Υ	Absent	EPH-MS-10(14),EPHD-GC- 10(14)

Project Name:TREMONT CROSSINGLab Number:L1706853Project Number:1700516Report Date:03/13/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSINGLab Number:L1706853Project Number:1700516Report Date:03/13/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: TREMONT CROSSING Lab Number: L1706853

Project Number: 1700516 Report Date: 03/13/17

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:03131713:34

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Chain-of-Custody Reco	rd	Laboratory:	Laboratory Job #	Mai_140.00101710.04
		Project Inform	(Lab use only)	1706853
GEI Consultants	Project Name: Tremont (Project Number:		Project Location: Boston, MA Project Manager: C. Johnson	Page of
400 Unicorn Park Drive Woburn, MA 01801 PH: 781.721.4000	Send Report to: Jessica	Englehart	Preservative	Sample Handling
FX: 781.721.4073	Send EDD to: labdata@geico	ensultants.com	고 모 모 Analysis	Samples Field
MCP PRESUMPTIVE CERTAINTY REQU		Wheel Hall Lines		Filtered
If Yes, Are MCP Analytical Methods Requ	vired?	(YES) NO NA		YES NO NA
Are Drinking Water Samples Submitted? If Yes, Have Drinking Water Sampling Re	Ouirements Roon Moto	YES NO NA		Sampled Shipped With Ice
Lab Sample GEI Sample ID Number	Collection	YES NO NA Matrix No. of Sampler(st)	Worth EDH	YES NO
	Date Time	Bottles Initials		Sample Specific Remarks
06853-01 1300516. BIMW)301 -02 1700516. BIMW)306	35.17 1577	GW 8 JTN	XXX	
-02 1700516- BLMW) 306	3.5.17 1338	GW 8 JTN	×××	
ACP Level Needed: GEI requires that				
tandard be met for all analytes whenever pelinguished by sampler: (signature)	nin the specified method, the nossible. Time: Received by:		(Business days): turnar	submitting rush ound samples, you must
elinquished by: (signature)	rine. Received by: (Samle Fridge	Normal Other notify that th	the laboratory to confirm e TAT can be achieved.
SE Sample Fridgy 3 paintuished by: (signature)	1.6.17 2.46 2. //). te: Time: Received by (2 VVV	5-Day 3-Day Additional Requirements/Comr	ments/Remarks:
Juste VIII 3	6.17 124(2 3. De	Mul AAC		
Inquisited by: (signature) Dat AR (3:	e: Received by: (s	signature)		

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1706853
Project Name : TREMONT CROSSING Project Number : 1700516
Lab Sample ID : WG984166-5 Lab File ID : VQ170309A06

Lab Sample ID : WG98410 Instrument ID : QUIMBY

Matrix : WATER Analysis Date : 03/09/17 07:18

Client Sample No.	Lab Sample ID	Analysis Date
WG984166-3LCS	WG984166-3	03/09/17 05:13
WG984166-4LCSD	WG984166-4	03/09/17 05:44
1700516-B(MW)301	L1706853-01	03/09/17 08:21
1700516-B(MW)306	L1706853-02	03/09/17 08:52

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706853

Project Name : TREMONT CROSSING Project Number : 1700516

Instrument ID : QUIMBY Calibration Date : 03/09/17 05:13

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Fluorobenzene	1	1	-	0	20	87	0
Dichlorodifluoromethane	0.503	0.478	-	5	20	75	0
Chloromethane	0.631	0.561	-	11.1	20	76	0
Vinyl chloride	0.559	0.589	-	-5.4	20	83	0
Bromomethane	10	9.171	-	8.3	20	92	0
Chloroethane	0.348	0.352	-	-1.1	20	83	0
Trichlorofluoromethane	0.574	0.62	-	-8	20	89	0
Ethyl ether	0.155	0.162	-	-4.5	20	86	0
1,1-Dichloroethene	0.338	0.372	-	-10.1	20	91	0
Carbon disulfide	1.059	1.064	-	-0.5	20	87	0
Methylene chloride	0.411	0.421	-	-2.4	20	86	0
Acetone	10	9.047	-	9.5	20	76	0
trans-1,2-Dichloroethene	0.389	0.407	-	-4.6	20	89	0
Methyl tert-butyl ether	0.749	0.706	-	5.7	20	81	0
Diisopropyl ether	1.331	1.255	-	5.7	20	79	0
1,1-Dichloroethane	0.778	0.778	-	0	20	84	0
Ethyl tert-butyl ether	1.054	1.008		4.4	20	82	0
cis-1,2-Dichloroethene	0.412	0.439	-	-6.6	20	89	0
2,2-Dichloropropane	10	9.397	-	6	20	92	0
Bromochloromethane	0.151	0.159	-	-5.3	20	89	0
Chloroform	0.689	0.701	-	-1.7	20	86	0
Carbon tetrachloride	10	9.802	-	2	20	94	0
Tetrahydrofuran	0.059	0.052	•	11.9	20	75	0
Dibromofluoromethane	0.21	0.208	-	1	20	86	0
1,1,1-Trichloroethane	0.632	0.66	-	-4.4	20	89	0
2-Butanone	10	9.002	-	10	20	78	0
1,1-Dichloropropene	0.606	0.633	-	-4.5	20	88	0
Benzene	1.714	1.772		-3.4	20	87	0
tert-Amyl methyl ether	0.802	0.77	-	4	20	83	0
1,2-Dichloroethane-d4	0.238	0.21	-	11.8	20	75	0
1,2-Dichloroethane	0.495	0.476		3.8	20	80	0
Trichloroethene	0.447	0.457		-2.2	20	88	0
Dibromomethane	0.175	0.177		-1.1	20	84	0
1,2-Dichloropropane	0.427	0.429	<u> </u>	-0.5	20	85	0
Bromodichloromethane	0.495	0.495	<u> </u>	0.5	20	86	0
1,4-Dioxane	0.00158	0.00163*	<u> </u>	-3.2	20	88	0
cis-1,3-Dichloropropene	10	9.14	<u> </u>	8.6	20	87	0
<u> </u>			-				
Chlorobenzene-d5	1 204	1 220	•	0	20	95	0
Toluene-d8	1.284	1.238	-	3.6	20	89	0
Toluene	1.445	1.451	-	-0.4	20	89	0
4-Methyl-2-pentanone	0.093	0.08*	-	14	20	82	0
Tetrachloroethene	0.548	0.585	-	-6.8	20	98	0
trans-1,3-Dichloropropene	10	8.7	-	13	20	90	0
1,1,2-Trichloroethane	0.253	0.25	-	1.2	20	90	0
Chlorodibromomethane	0.338	0.331	-	2.1	20	93	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706853

Project Name : TREMONT CROSSING Project Number : 1700516

 Instrument ID
 : QUIMBY
 Calibration Date
 : 03/09/17 05:13

 Lab File ID
 : VQ170309A02
 Init. Calib. Date(s)
 : 01/30/17

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,3-Dichloropropane	0.569	0.531	-	6.7	20	85	0
1,2-Dibromoethane	0.287	0.275	-	4.2	20	88	0
2-Hexanone	0.154	0.134	-	13	20	82	0
Chlorobenzene	1.54	1.543	-	-0.2	20	91	0
Ethylbenzene	2.868	2.799	-	2.4	20	90	0
1,1,1,2-Tetrachloroethane	0.436	0.451	-	-3.4	20	98	0
p/m Xylene	0.941	0.905	-	3.8	20	92	0
o Xylene	0.866	0.839	-	3.1	20	91	0
Styrene	1.41	1.388	-	1.6	20	91	.01
1,4-Dichlorobenzene-d4	1	1	-	0	20	102	.01
Bromoform	10	8.637	-	13.6	20	98	0
Isopropylbenzene	6.841	6.604	-	3.5	20	92	0
4-Bromofluorobenzene	1.26	1.186	-	5.9	20	94	0
Bromobenzene	1.437	1.408	-	2	20	94	0
n-Propylbenzene	7.306	6.86	-	6.1	20	90	.01
1,1,2,2-Tetrachloroethane	0.921	0.885	-	3.9	20	90	0
2-Chlorotoluene	4.784	4.444		7.1	20	90	0
1,3,5-Trimethylbenzene	3.558	3.321	-	6.7	20	93	0
1,2,3-Trichloropropane	0.74	0.674	-	8.9	20	86	0
4-Chlorotoluene	4.168	3.807	-	8.7	20	90	0
tert-Butylbenzene	4.306	4.133	-	4	20	92	0
1,2,4-Trimethylbenzene	3.397	3.208	-	5.6	20	92	0
sec-Butylbenzene	6.45	6.229	-	3.4	20	91	.01
p-Isopropyltoluene	4.434	4.278	-	3.5	20	91	0
1,3-Dichlorobenzene	2.477	2.443	-	1.4	20	96	.01
1,4-Dichlorobenzene	2.309	2.272	-	1.6	20	95	.01
n-Butylbenzene	4.424	4.292	-	3	20	87	.01
1,2-Dichlorobenzene	2.116	2.108	-	0.4	20	96	0
1,2-Dibromo-3-chloropropan	10	10.318	-	-3.2	20	101	0
Hexachlorobutadiene	0.697	0.723	-	-3.7	20	98	0
1,2,4-Trichlorobenzene	0.844	0.87	-	-3.1	20	95	0
Naphthalene	1.311	1.279	-	2.4	20	89	.01
1,2,3-Trichlorobenzene	0.713	0.744	-	-4.3	20	94	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1705986

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/06/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

 Lab Number:
 L1705986

 Report Date:
 03/06/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1705986-01	1700516-TP-101(0-3')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 12:55	02/27/17
L1705986-02	1700516-TP-103(0-3')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 09:00	02/27/17
L1705986-03	1700516-TP-104(0-3')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 09:30	02/27/17
L1705986-04	1700516-TP-105(10')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 13:25	02/27/17
L1705986-05	1700516-TP-105(0-10')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 13:30	02/27/17
L1705986-06	1700516-TP-106(0-2')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 07:40	02/27/17
L1705986-07	1700516-TP-107(0-3')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 10:55	02/27/17
L1705986-08	1700516-TP-108(8')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 11:50	02/27/17
L1705986-09	1700516-TP-108(0-8')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 12:05	02/27/17

Project Number: 1700516 Report Date: 03/06/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO						
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO						
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO						

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986
Project Number: 1700516 Report Date: 03/06/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986
Project Number: 1700516 Report Date: 03/06/17

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

In reference to question H:

A Matrix Spike was not submitted for the analysis of Metals.

Volatile Organics

In reference to question G:

L1705986-04: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The initial calibration, associated with L1705986-04, did not meet the method required minimum response factor on the lowest calibration standard for acetone (0.0788), 2-butanone (0.0798), 4-methyl-2-pentanone (0.0579) and 1,4-dioxane (0.0021), as well as the average response factor for acetone, 2-butanone, 4-methyl-2-pentanone and 1,4-dioxane.

The continuing calibration standard, associated with L1705986-04, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

Pesticides

A copy of the Degradation Standards for 4,4'-DDT and Endrin breakdown products is included as an addendum.

In reference to question G:

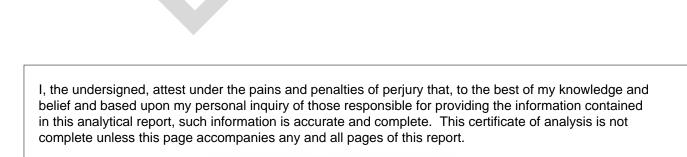
L1705986-05: One or more of the target analytes did not achieve the requested CAM reporting limits.

Herbicides

In reference to question H:

The WG981666-2/-3 LCS/LCSD recoveries, associated with L1705986-05, are below the acceptance criteria for dinoseb (5%/3%); however, the recoveries are due to a noted method interference caused by the hydrolysis step of the extraction procedure. The results of the associated sample are reported; however, all results are

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986
Project Number: 1700516 Report Date: 03/06/17

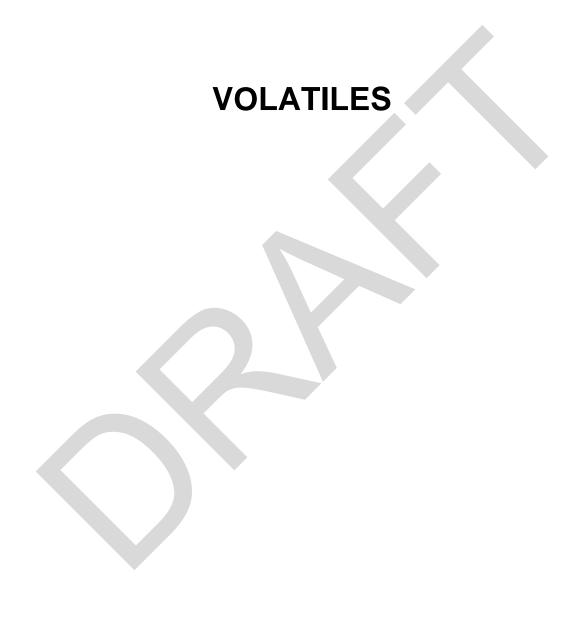

Case Narrative (continued)

considered to have a potentially low bias for this compound.

Metals

In reference to question I:

L1705986-02, -03, -06 and -09 were analyzed for a subset of MCP analytes per the Chain of Custody.


Authorized Signature:

Title: Technical Director/Representative Date: 03/06/17

Wichelle M. Morris

L1705986

03/06/17

02/27/17

Not Specified

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1705986-04 Date Collected: 02/26/17 13:25

1700516-TP-105(10') Client ID:

Sample Location: **BOSTON, MASSACHUSETTS**

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 03/02/17 09:56

Analyst: MV 80% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 Hig	h - Westborough Lal	0				
Methylene chloride	ND		ug/kg	640		1
1,1-Dichloroethane	ND		ug/kg	97		1
Chloroform	ND		ug/kg	97		1
Carbon tetrachloride	ND		ug/kg	64		1
1,2-Dichloropropane	ND		ug/kg	230		1
Dibromochloromethane	ND		ug/kg	64		1
1,1,2-Trichloroethane	ND		ug/kg	97		1
Tetrachloroethene	ND		ug/kg	64		1
Chlorobenzene	ND		ug/kg	64		1
Trichlorofluoromethane	ND		ug/kg	260		1
1,2-Dichloroethane	ND		ug/kg	64		1
1,1,1-Trichloroethane	ND		ug/kg	64		1
Bromodichloromethane	ND		ug/kg	64		1
trans-1,3-Dichloropropene	ND		ug/kg	64		1
cis-1,3-Dichloropropene	ND		ug/kg	64		1
1,3-Dichloropropene, Total	ND		ug/kg	64		1
1,1-Dichloropropene	ND		ug/kg	260		1
Bromoform	ND		ug/kg	260		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	64		1
Benzene	ND		ug/kg	64		1
Toluene	ND		ug/kg	97		1
Ethylbenzene	ND		ug/kg	64		1
Chloromethane	ND		ug/kg	260		1
Bromomethane	ND		ug/kg	130		1
Vinyl chloride	ND		ug/kg	130		1
Chloroethane	ND		ug/kg	130		1
1,1-Dichloroethene	ND		ug/kg	64		1
trans-1,2-Dichloroethene	ND		ug/kg	97		1
Trichloroethene	ND		ug/kg	64		1
1,2-Dichlorobenzene	ND		ug/kg	260		1

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: Date Collected: 02/26/17 13:25

Client ID: 1700516-TP-105(10') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics by 5035 High - Westborough Lab ND 260 1,3-Dichlorobenzene ug/kg 1 1,4-Dichlorobenzene ND ug/kg 260 Methyl tert butyl ether ND ug/kg 130 1 p/m-Xylene ND 130 1 ug/kg o-Xylene ND 130 1 ug/kg Xylenes, Total ND 130 1 ug/kg -cis-1,2-Dichloroethene ND 64 1 ug/kg --1,2-Dichloroethene, Total ND ug/kg 64 1 Dibromomethane ND 260 1 ug/kg 1,2,3-Trichloropropane ND 260 1 ug/kg Styrene ND 130 1 ug/kg Dichlorodifluoromethane ND 640 1 ug/kg --ND 2300 1 Acetone ug/kg ND Carbon disulfide 260 1 ug/kg Methyl ethyl ketone ND 640 1 ug/kg Methyl isobutyl ketone ND 640 1 ug/kg ND 640 2-Hexanone ug/kg 1 Bromochloromethane ND 260 1 ug/kg --Tetrahydrofuran ND 260 1 ug/kg ND 2,2-Dichloropropane 320 1 ug/kg --ND 260 1 1,2-Dibromoethane ug/kg 1,3-Dichloropropane ND 260 1 ug/kg 1,1,1,2-Tetrachloroethane ND ug/kg 64 --1 Bromobenzene ND 320 1 ug/kg -n-Butylbenzene ND 64 1 ug/kg sec-Butylbenzene ND 64 1 ug/kg tert-Butylbenzene ND 260 1 ug/kg o-Chlorotoluene ND 260 1 ug/kg ND p-Chlorotoluene 260 1 ug/kg --1,2-Dibromo-3-chloropropane ND ug/kg 260 1 Hexachlorobutadiene ND ug/kg 260 1 ND Isopropylbenzene ug/kg 64 1 p-Isopropyltoluene ND ug/kg 64 1 ND Naphthalene ug/kg 260 --1 n-Propylbenzene ND 64 1 ug/kg --1,2,3-Trichlorobenzene ND 260 1 ug/kg 1,2,4-Trichlorobenzene ND 260 1 ug/kg --ND 1,3,5-Trimethylbenzene 260 1 ug/kg 1,2,4-Trimethylbenzene ND 260 1 ug/kg

Project Name: Lab Number: TREMONT CROSSING PHASE II L1705986

Project Number: Report Date: 1700516 03/06/17

SAMPLE RESULTS

L1705986-04 Lab ID: Date Collected: 02/26/17 13:25

1700516-TP-105(10') Client ID: Date Received: 02/27/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier U	Jnits	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 Hig	gh - Westborough Lab					
Diethyl ether	ND	u	g/kg	320		1
Diisopropyl Ether	ND	u	g/kg	260		1
Ethyl-Tert-Butyl-Ether	ND	u	g/kg	260		1
Tertiary-Amyl Methyl Ether	ND	u	g/kg	260		1
1,4-Dioxane	ND	u	g/kg	2600		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	89	70-130	

Project Number: 1700516 Report Date: 03/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/02/17 08:38

Analyst: MV

CP Volatile Organics by 8260/5035 - Westborough Lab for sample(s): 04 Batch: WG982317-5 Methylene chloride ND ug/kg 500 1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 1,1-2-Trichloroethane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 1,1-1-Trichloroethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 sis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene N	arameter	Result	Qualifier	Units	RL	MDL	
1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 sis-1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg	ICP Volatile Organics by 8260/5	035 - Westbo	rough Lab	for sample	(s): 04 Ba	tch: WG982317-	-5
Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 1,1,2-Trichloropropane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Chlorofluoromethane ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg	Methylene chloride	ND		ug/kg	500		
Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 Itans-1,3-Dichloropropene ND ug/kg 50 itans-1,3-Dichloropropene ND ug/kg 50 i,3-Dichloropropene ND ug/kg 50 i,1,1-Dichloropropene ND ug/kg 50 Bromoform ND ug/kg	1,1-Dichloroethane	ND		ug/kg	75		
1,2-Dichloropropane ND ug/kg 180 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 Bromodichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg	Chloroform	ND		ug/kg	75		
Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg <td< td=""><td>Carbon tetrachloride</td><td>ND</td><td></td><td>ug/kg</td><td>50</td><td></td><td></td></td<>	Carbon tetrachloride	ND		ug/kg	50		
1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg <	1,2-Dichloropropane	ND		ug/kg	180		
Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50	Dibromochloromethane	ND		ug/kg	50		
Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td></td><td>ug/kg</td><td>75</td><td></td><td></td></t<>	1,1,2-Trichloroethane	ND		ug/kg	75		
Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Ethylbenzene ND ug/kg 200 Bromomethane ND ug/kg 100 <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	Tetrachloroethene	ND		ug/kg	50		
1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 100	Chlorobenzene	ND		ug/kg	50		
1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50	Trichlorofluoromethane	ND		ug/kg	200		
Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 1,1,2,2-Tetrachloroethane ND ug/kg 50 Toluene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50	1,2-Dichloroethane	ND		ug/kg	50		
trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1,1-Trichloroethane	ND		ug/kg	50		
cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Vinyl chloride ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromodichloromethane	ND		ug/kg	50		
1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	trans-1,3-Dichloropropene	ND		ug/kg	50		
1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	cis-1,3-Dichloropropene	ND		ug/kg	50		
Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,3-Dichloropropene, Total	ND		ug/kg	50		
1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1-Dichloropropene	ND		ug/kg	200		
Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromoform	ND		ug/kg	200		
Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1,2,2-Tetrachloroethane	ND		ug/kg	50		
Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Benzene	ND		ug/kg	50		
Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Toluene	ND		ug/kg	75		
Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Ethylbenzene	ND		ug/kg	50		
Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Chloromethane	ND		ug/kg	200		
Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromomethane	ND		ug/kg	100		
1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Vinyl chloride	ND		ug/kg	100		
trans-1,2-Dichloroethene ND ug/kg 75	Chloroethane	ND		ug/kg	100		
	1,1-Dichloroethene	ND		ug/kg	50		
Trichloroethene ND ug/kg 50	trans-1,2-Dichloroethene	ND		ug/kg	75		
	Trichloroethene	ND		ug/kg	50		

Project Number: 1700516 Report Date: 03/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/02/17 08:38

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics by 8260/5	035 - Westbo	rough Lab	for sample(s): 04 Ba	atch: WG982317-5	5
1,2-Dichlorobenzene	ND		ug/kg	200		
1,3-Dichlorobenzene	ND		ug/kg	200		
1,4-Dichlorobenzene	ND		ug/kg	200		
Methyl tert butyl ether	ND		ug/kg	100		
p/m-Xylene	ND		ug/kg	100		
o-Xylene	ND		ug/kg	100		
Xylenes, Total	ND		ug/kg	100		
cis-1,2-Dichloroethene	ND		ug/kg	50		
1,2-Dichloroethene, Total	ND		ug/kg	50		
Dibromomethane	ND		ug/kg	200		
1,2,3-Trichloropropane	ND		ug/kg	200		
Styrene	ND		ug/kg	100		
Dichlorodifluoromethane	ND		ug/kg	500		
Acetone	ND		ug/kg	1800		
Carbon disulfide	ND		ug/kg	200		
Methyl ethyl ketone	ND		ug/kg	500		
Methyl isobutyl ketone	ND		ug/kg	500		
2-Hexanone	ND		ug/kg	500		
Bromochloromethane	ND		ug/kg	200		
Tetrahydrofuran	ND		ug/kg	200		
2,2-Dichloropropane	ND		ug/kg	250		
1,2-Dibromoethane	ND		ug/kg	200		
1,3-Dichloropropane	ND		ug/kg	200		
1,1,1,2-Tetrachloroethane	ND		ug/kg	50		
Bromobenzene	ND		ug/kg	250		
n-Butylbenzene	ND		ug/kg	50		
sec-Butylbenzene	ND		ug/kg	50		
tert-Butylbenzene	ND		ug/kg	200		
o-Chlorotoluene	ND		ug/kg	200		

Project Number: 1700516 Report Date: 03/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/02/17 08:38

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics by 8260/	5035 - Westbo	rough Lab t	for sample	e(s): 04 Bat	ch: WG982317	7-5
p-Chlorotoluene	ND		ug/kg	200		
1,2-Dibromo-3-chloropropane	ND		ug/kg	200		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	200		
1,2,4-Trichlorobenzene	ND		ug/kg	200		
1,3,5-Trimethylbenzene	ND		ug/kg	200		
1,2,4-Trimethylbenzene	ND		ug/kg	200		
Diethyl ether	ND		ug/kg	250		
Diisopropyl Ether	ND		ug/kg	200		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200		
Tertiary-Amyl Methyl Ether	ND		ug/kg	200		
1,4-Dioxane	ND		ug/kg	2000		
2-Chloroethylvinyl ether	ND		ug/kg	1000		
Halothane	ND		ug/kg	2000		
Ethyl Acetate	ND		ug/kg	1000		
Freon-113	ND		ug/kg	1000		
Vinyl acetate	ND		ug/kg	500		

0/ 🗖			
%Recovery	Qualifier	Criteria	
96		70-130	
102		70-130	
106		70-130	
91		70-130	
	102 106	%Recovery Qualifier 96 102 106	96 70-130 102 70-130 106 70-130

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - Westl	oorough Lab Ass	ociated sample(s): 04 Batch:	WG982317-3 WG982317-4	
Methylene chloride	95	98	70-130 3	20
1,1-Dichloroethane	108	106	70-130 2	20
Chloroform	100	101	70-130 1	20
Carbon tetrachloride	106	105	70-130 1	20
1,2-Dichloropropane	99	103	70-130 4	20
Dibromochloromethane	88	89	70-130 1	20
1,1,2-Trichloroethane	96	98	70-130 2	20
Tetrachloroethene	102	102	70-130 0	20
Chlorobenzene	96	96	70-130 0	20
Trichlorofluoromethane	105	103	70-130 2	20
1,2-Dichloroethane	94	95	70-130 1	20
1,1,1-Trichloroethane	108	107	70-130 1	20
Bromodichloromethane	90	92	70-130 2	20
trans-1,3-Dichloropropene	101	102	70-130 1	20
cis-1,3-Dichloropropene	92	95	70-130 3	20
1,1-Dichloropropene	112	112	70-130 0	20
Bromoform	82	86	70-130 5	20
1,1,2,2-Tetrachloroethane	92	95	70-130 3	20
Benzene	104	104	70-130 0	20
Toluene	102	101	70-130 1	20
Ethylbenzene	104	104	70-130 0	20

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Parameter	LCS %Recovery Qua	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - We	estborough Lab Associated	d sample(s): 04 Batch:	WG982317-3 WG982317-4		
Chloromethane	114	106	70-130	7	20
Bromomethane	97	93	70-130	4	20
Vinyl chloride	110	104	70-130	6	20
Chloroethane	92	91	70-130	1	20
1,1-Dichloroethene	113	109	70-130	4	20
trans-1,2-Dichloroethene	109	106	70-130	3	20
Trichloroethene	101	102	70-130	1	20
1,2-Dichlorobenzene	92	93	70-130	1	20
1,3-Dichlorobenzene	96	96	70-130	0	20
1,4-Dichlorobenzene	93	94	70-130	1	20
Methyl tert butyl ether	109	109	70-130	0	20
p/m-Xylene	105	106	70-130	1	20
o-Xylene	104	105	70-130	1	20
cis-1,2-Dichloroethene	105	104	70-130	1	20
Dibromomethane	92	94	70-130	2	20
1,2,3-Trichloropropane	94	96	70-130	2	20
Styrene	98	100	70-130	2	20
Dichlorodifluoromethane	115	106	70-130	8	20
Acetone	116	112	70-130	4	20
Carbon disulfide	86	82	70-130	5	20
Methyl ethyl ketone	82	86	70-130	5	20

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Parameter	LCS %Recovery Qua	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 -	Westborough Lab Associated	d sample(s): 04 Batch:	WG982317-3 WG982317-4		
Methyl isobutyl ketone	91	92	70-130	1	20
2-Hexanone	76	80	70-130	5	20
Bromochloromethane	99	100	70-130	1	20
Tetrahydrofuran	122	123	70-130	1	20
2,2-Dichloropropane	121	118	70-130	3	20
1,2-Dibromoethane	95	98	70-130	3	20
1,3-Dichloropropane	97	98	70-130	1	20
1,1,1,2-Tetrachloroethane	93	94	70-130	1	20
Bromobenzene	95	95	70-130	0	20
n-Butylbenzene	108	106	70-130	2	20
sec-Butylbenzene	108	107	70-130	1	20
tert-Butylbenzene	107	107	70-130	0	20
o-Chlorotoluene	103	102	70-130	1	20
p-Chlorotoluene	103	102	70-130	1	20
1,2-Dibromo-3-chloropropane	82	86	70-130	5	20
Hexachlorobutadiene	96	98	70-130	2	20
Isopropylbenzene	110	109	70-130	1	20
p-Isopropyltoluene	106	106	70-130	0	20
Naphthalene	85	87	70-130	2	20
n-Propylbenzene	107	106	70-130	1	20
1,2,3-Trichlorobenzene	93	94	70-130	1	20

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - V	Vestborough Lab Associat	ed sample(s): 04 Batch:	WG982317-3 WG982317	-4	
1,2,4-Trichlorobenzene	96	96	70-130	0	20
1,3,5-Trimethylbenzene	106	105	70-130	1	20
1,2,4-Trimethylbenzene	106	105	70-130	1	20
Diethyl ether	92	94	70-130	2	20
Diisopropyl Ether	111	111	70-130	0	20
Ethyl-Tert-Butyl-Ether	113	112	70-130	1	20
Tertiary-Amyl Methyl Ether	112	114	70-130	2	20
1,4-Dioxane	94	106	70-130	12	20
2-Chloroethylvinyl ether	83	81	70-130	2	20
Halothane	106	105	70-130	1	20
Ethyl Acetate	102	106	70-130	4	20
Freon-113	115	110	70-130	4	20
Vinyl acetate	95	97	70-130	2	20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	94		96		70-130	
Toluene-d8	102		102		70-130	
4-Bromofluorobenzene	106		105		70-130	
Dibromofluoromethane	98		98		70-130	

L1705986

03/06/17

Project Name: Lab Number: TREMONT CROSSING PHASE II

Project Number: 1700516

SAMPLE RESULTS

Date Collected: 02/26/17 13:30

Report Date:

Lab ID: L1705986-05 D 1700516-TP-105(0-10') Client ID: Date Received: 02/27/17

BOSTON, MASSACHUSETTS Sample Location: Field Prep: Not Specified

Extraction Method: EPA 3546 Matrix: Soil Analytical Method: 97,8270D Extraction Date: 02/28/17 09:22 Analytical Date: 03/01/17 15:09

Analyst: RC 85% Percent Solids:

1,2,4-Trichlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2,4-Trichlorobenzene ND ug/kg 230 2	MCP Semivolatile Organics - Westborou	ugh Lab					
Hexachlorobenzene ND Ug/kg 230 2	Acenaphthene	1100		ug/kg	310		2
Hexachiorobenzene ND Ug/kg 350 2 2 2 2 2 2 2 2	1,2,4-Trichlorobenzene	ND		ug/kg	380		2
2-Chloronaphthalene ND	Hexachlorobenzene	ND		ug/kg	230		2
1,2-Dichlorobenzene ND Ug/kg 380 2 1,3-Dichlorobenzene ND Ug/kg 380 2 2 1,3-Dichlorobenzene ND Ug/kg 380 2 2 3,3-Dichlorobenzene ND Ug/kg 380 2 2 3,3-Dichlorobenzidine ND Ug/kg 380 2 2 2 2,4-Dinitrotoluene ND Ug/kg 380 2 2 2 2,4-Dinitrotoluene ND Ug/kg 380 2 2 2 2 2 2 2 2	Bis(2-chloroethyl)ether	ND		ug/kg	350		2
1,3-Dichlorobenzene ND ug/kg 380 2 2 3,3-Dichlorobenzene ND ug/kg 380 2 2 3,3-Dichlorobenzene ND ug/kg 380 2 2 2 2,4-Dinitrotoluene ND ug/kg 380 2 2 2 2,5-Dinitrotoluene ND ug/kg 380 2 2 2 2 2,5-Dinitrotoluene ND ug/kg 380 2 2 2 2 2 2 2 2	2-Chloronaphthalene	ND		ug/kg	380		2
1,4-Dichlorobenzene	1,2-Dichlorobenzene	ND		ug/kg	380		2
3,3*Dichlorobenzidine ND ug/kg 380 2 2,4*Dinitrotoluene ND ug/kg 380 2 2,6*Dinitrotoluene ND ug/kg 380 2 Azobenzene ND ug/kg 380 2 Fluoranthene 11000 ug/kg 230 2 4-Bromophenyl phenyl ether ND ug/kg 380 2 Bis(2-chlorostopopyl)ghter ND ug/kg 460 2 Bis(2-chlorostopopyl)ghter ND ug/kg 420 2 Hexachlorobutadiene ND ug/kg 380 2 Hexachlorothutadiene ND ug/kg 380 2 Hexachlorothutadiene ND ug/kg 350 2 Hexachlorothutadiene ND ug/kg 350 2 ND ug/kg 350 2	1,3-Dichlorobenzene	ND		ug/kg	380		2
2.4-Dinitrotoluene ND ug/kg 380 2 2.6-Dinitrotoluene ND ug/kg 380 2 Azobenzene ND ug/kg 380 2 Fluoranthene 11000 ug/kg 230 2 4-Bromophenyl phenyl ether ND ug/kg 380 2 Bis(2-chlorostopropyl)ether ND ug/kg 460 2 Bis(2-chlorosthoxy)methane ND ug/kg 420 2 Bis(2-chlorosthoxy)methane ND ug/kg 380 2 Hexachlorobutadiene ND ug/kg 380 2 Hexachlorobutadiene ND ug/kg 380 2 Hexachlorobutadiene ND ug/kg 380 2 Ibsophorone ND ug/kg 350 2 Naphthalene 660 ug/kg 380	1,4-Dichlorobenzene	ND		ug/kg	380		2
ND	3,3'-Dichlorobenzidine	ND		ug/kg	380		2
Azobenzene ND ug/kg 380 2 Fluoranthene 11000 ug/kg 230 2 4-Bromophenyl phenyl ether ND ug/kg 380 2 Bis(2-chloroisopropyl)ether ND ug/kg 460 2 Bis(2-chloroethoxy)methane ND ug/kg 420 2 Bis(2-chloroethoxy)methane ND ug/kg 380 2 Hexachlorobtadiene ND ug/kg 380 2 Hexachloroethane ND ug/kg 380 2 Isophorone ND ug/kg 350 2 Isophorone ND ug/kg 350 2 Isophorone ND ug/kg 350 2 Isophorone ND ug/kg 380 2 Isophorone ND ug/kg	2,4-Dinitrotoluene	ND		ug/kg	380		2
Fluoranthene 11000 ug/kg 230 2 4-Bromophenyl phenyl ether ND ug/kg 380 2 Bis(2-chloroisopropyl)ether ND ug/kg 460 2 Bis(2-chloroethoxy)methane ND ug/kg 420 2 Bis(2-chloroethoxy)methane ND ug/kg 380 2 Hexachlorobtadiene ND ug/kg 380 2 Hexachloroethane ND ug/kg 310 2 Isophorone ND ug/kg 350 2 Naphthalene 660 ug/kg 380 2 Naphthalene ND ug/kg 350 2 Bis(2-ethylhexyl)phthalate ND ug/kg 380 2 Bis(2-ethylhexyl)phthalate ND ug/kg 380 2 Di-n-butylphthalate ND ug/kg 380 2 Di-n-butylphthalate ND ug/kg 380 2 Di-n-octylphthalate ND ug/kg 380 2 Di-n-octylphthalate ND ug/kg 380 2 Di-n-octylphthalate ND ug/kg 380 2 Diethyl phthalate ND ug/kg 380 2 Diethyl phthalate ND ug/kg 380 2 Bis(2-ethylhexyl)phthalate ND ug/kg 380 2 Diethyl phthalate ND ug/kg 380 2 Benzo(a)anthracene 5500 ug/kg 330 2 Benzo(a)pyrene 5100 ug/kg 310 2	2,6-Dinitrotoluene	ND		ug/kg	380		2
A-Bromophenyl ether ND ug/kg 380 2 Bis(2-chloroisopropyl)ether ND ug/kg 460 2 Bis(2-chloroethoxy)methane ND ug/kg 420 2 Hexachlorobutadiene ND ug/kg 380 2 Hexachlorobutadiene ND ug/kg 310 2 Isophorone ND ug/kg 350 2 Isophorone ND ug/kg 350 2 Naphthalene 660 ug/kg 380 2 Nitrobenzene ND ug/kg 350 2 Bis(2-ethylhexyl)phthalate ND ug/kg 380 2 Bis(2-ethylhexyl)phthalate ND ug/kg 380 2 Di-n-butylphthalate ND ug/kg 380 2	Azobenzene	ND		ug/kg	380		2
ND	Fluoranthene	11000		ug/kg	230		2
Bis(2-chloroethoxy)methane	4-Bromophenyl phenyl ether	ND		ug/kg	380		2
Hexachlorobutadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/kg	460		2
Hexachloroethane	Bis(2-chloroethoxy)methane	ND		ug/kg	420		2
ND	Hexachlorobutadiene	ND		ug/kg	380		2
Naphthalene 660 ug/kg 380 2 Nitrobenzene ND ug/kg 350 2 Bis(2-ethylhexyl)phthalate ND ug/kg 380 2 Butyl benzyl phthalate ND ug/kg 380 2 Di-n-butylphthalate ND ug/kg 380 2 Di-n-octylphthalate ND ug/kg 380 2 Diethyl phthalate ND ug/kg 380 2 Dimethyl phthalate ND ug/kg 380 2 Benzo(a)anthracene 5500 ug/kg 230 2 Benzo(a)pyrene 5100 ug/kg 310 2	Hexachloroethane	ND		ug/kg	310		2
Nitrobenzene ND ug/kg 350 2 Bis(2-ethylhexyl)phthalate ND ug/kg 380 2 Butyl benzyl phthalate ND ug/kg 380 2 Di-n-butylphthalate ND ug/kg 380 2 Di-n-octylphthalate ND ug/kg 380 2 Diethyl phthalate ND ug/kg 380 2 Dimethyl phthalate ND ug/kg 380 2 Dimethyl phthalate ND ug/kg 380 2 Benzo(a)anthracene 5500 ug/kg 230 2 Benzo(a)pyrene 5100 ug/kg 310 2	Isophorone	ND		ug/kg	350		2
Bis(2-ethylhexyl)phthalate	Naphthalene	660		ug/kg	380		2
Butyl benzyl phthalate	Nitrobenzene	ND		ug/kg	350		2
Di-n-butylphthalate ND ug/kg 380 2 Di-n-octylphthalate ND ug/kg 380 2 Diethyl phthalate ND ug/kg 380 2 Dimethyl phthalate ND ug/kg 380 2 Benzo(a)anthracene 5500 ug/kg 230 2 Benzo(a)pyrene 5100 ug/kg 310 2	Bis(2-ethylhexyl)phthalate	ND		ug/kg	380		2
Di-n-octylphthalate ND ug/kg 380 2 Diethyl phthalate ND ug/kg 380 2 Dimethyl phthalate ND ug/kg 380 2 Benzo(a)anthracene 5500 ug/kg 230 2 Benzo(a)pyrene 5100 ug/kg 310 2	Butyl benzyl phthalate	ND		ug/kg	380		2
Diethyl phthalate ND ug/kg 380 2 Dimethyl phthalate ND ug/kg 380 2 Benzo(a)anthracene 5500 ug/kg 230 2 Benzo(a)pyrene 5100 ug/kg 310 2	Di-n-butylphthalate	ND		ug/kg	380		2
Dimethyl phthalate ND ug/kg 380 2 Benzo(a)anthracene 5500 ug/kg 230 2 Benzo(a)pyrene 5100 ug/kg 310 2	Di-n-octylphthalate	ND		ug/kg	380		2
Benzo(a)anthracene 5500 ug/kg 230 2 Benzo(a)pyrene 5100 ug/kg 310 2	Diethyl phthalate	ND		ug/kg	380		2
Benzo(a)pyrene 5100 ug/kg 310 2	Dimethyl phthalate	ND		ug/kg	380		2
* *	Benzo(a)anthracene	5500		ug/kg	230		2
Benzo(b)fluoranthene 6300 ug/kg 230 2	Benzo(a)pyrene	5100		ug/kg	310		2
	Benzo(b)fluoranthene	6300		ug/kg	230		2

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-05 D Date Collected: 02/26/17 13:30

Client ID: 1700516-TP-105(0-10') Date Received: 02/27/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics	- Westborough Lab					
Benzo(k)fluoranthene	2200		ug/kg	230		2
Chrysene	5000		ug/kg	230		2
Acenaphthylene	ND		ug/kg	310		2
Anthracene	2300		ug/kg	230		2
Benzo(ghi)perylene	2500		ug/kg	310		2
Fluorene	980		ug/kg	380		2
Phenanthrene	9800		ug/kg	230		2
Dibenzo(a,h)anthracene	660		ug/kg	230		2
Indeno(1,2,3-cd)pyrene	2900		ug/kg	310		2
Pyrene	9600		ug/kg	230		2
Aniline	ND		ug/kg	460		2
4-Chloroaniline	ND		ug/kg	380		2
Dibenzofuran	740		ug/kg	380		2
2-Methylnaphthalene	ND		ug/kg	460		2
Acetophenone	ND		ug/kg	380		2
2,4,6-Trichlorophenol	ND		ug/kg	230		2
2-Chlorophenol	ND		ug/kg	380		2
2,4-Dichlorophenol	ND		ug/kg	350		2
2,4-Dimethylphenol	ND		ug/kg	380		2
2-Nitrophenol	ND		ug/kg	830		2
4-Nitrophenol	ND		ug/kg	540		2
2,4-Dinitrophenol	ND		ug/kg	1800		2
Pentachlorophenol	ND		ug/kg	770		2
Phenol	ND		ug/kg	380		2
2-Methylphenol	ND		ug/kg	380		2
3-Methylphenol/4-Methylphenol	ND		ug/kg	550		2
2,4,5-Trichlorophenol	ND		ug/kg	380		2

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	55	30-130
Phenol-d6	61	30-130
Nitrobenzene-d5	50	30-130
2-Fluorobiphenyl	64	30-130
2,4,6-Tribromophenol	64	30-130
4-Terphenyl-d14	49	30-130

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date:

Lab Number:

L1705986 03/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 03/01/17 00:53

Extraction Date:

Extraction Method: EPA 3546 02/28/17 09:22

Analyst: ALS

Parameter	Result	Qualifier Units	RL	MDL
MCP Semivolatile Organics -	- Westborough Lab	for sample(s): 05	Batch:	WG981537-1
Acenaphthene	ND	ug/kg	130	
1,2,4-Trichlorobenzene	ND	ug/kg	160	
Hexachlorobenzene	ND	ug/kg	99	
Bis(2-chloroethyl)ether	ND	ug/kg	150	
2-Chloronaphthalene	ND	ug/kg	160	
1,2-Dichlorobenzene	ND	ug/kg	160	
1,3-Dichlorobenzene	ND	ug/kg	160	
1,4-Dichlorobenzene	ND	ug/kg	160	
3,3'-Dichlorobenzidine	ND	ug/kg	160	
2,4-Dinitrotoluene	ND	ug/kg	160	
2,6-Dinitrotoluene	ND	ug/kg	160	
Azobenzene	ND	ug/kg	160	
Fluoranthene	ND	ug/kg	99	
4-Bromophenyl phenyl ether	ND	ug/kg	160	
Bis(2-chloroisopropyl)ether	ND	ug/kg	200	
Bis(2-chloroethoxy)methane	ND	ug/kg	180	
Hexachlorobutadiene	ND	ug/kg	160	
Hexachloroethane	ND	ug/kg	130	
Isophorone	ND	ug/kg	150	
Naphthalene	ND	ug/kg	160	
Nitrobenzene	ND	ug/kg	150	
Bis(2-ethylhexyl)phthalate	ND	ug/kg	160	
Butyl benzyl phthalate	ND	ug/kg	160	
Di-n-butylphthalate	ND	ug/kg	160	
Di-n-octylphthalate	ND	ug/kg	160	
Diethyl phthalate	ND	ug/kg	160	
Dimethyl phthalate	ND	ug/kg	160	
Benzo(a)anthracene	ND	ug/kg	99	
Benzo(a)pyrene	ND	ug/kg	130	

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1705986

Report Date: 03/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 03/01/17 00:53

Analyst: ALS

Extraction Method: EPA 3546 Extraction Date: 02/28/17 09:22

arameter	Result	Qualifier L	Jnits	RL	MDL
MCP Semivolatile Organics - W	estborough Lal	o for sample(s	s): 05	Batch:	WG981537-1
Benzo(b)fluoranthene	ND		ug/kg	99	
Benzo(k)fluoranthene	ND		ug/kg	99	
Chrysene	ND		ug/kg	99	
Acenaphthylene	ND		ug/kg	130	
Anthracene	ND		ug/kg	99	
Benzo(ghi)perylene	ND		ug/kg	130	
Fluorene	ND		ug/kg	160	
Phenanthrene	ND		ug/kg	99	
Dibenzo(a,h)anthracene	ND		ug/kg	99	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	
Pyrene	ND		ug/kg	99	
Aniline	ND		ug/kg	200	
4-Chloroaniline	ND	ı	ug/kg	160	
Dibenzofuran	ND	ı	ug/kg	160	
2-Methylnaphthalene	ND	ı	ug/kg	200	
Acetophenone	ND	ı	ug/kg	160	
2,4,6-Trichlorophenol	ND	ı	ug/kg	99	
2-Chlorophenol	ND	ı	ug/kg	160	
2,4-Dichlorophenol	ND	ı	ug/kg	150	
2,4-Dimethylphenol	ND	ı	ug/kg	160	
2-Nitrophenol	ND	ı	ug/kg	360	
4-Nitrophenol	ND	ı	ug/kg	230	
2,4-Dinitrophenol	ND	ı	ug/kg	790	
Pentachlorophenol	ND	ı	ug/kg	330	
Phenol	ND	ı	ug/kg	160	
2-Methylphenol	ND	ı	ug/kg	160	
3-Methylphenol/4-Methylphenol	ND	ı	ug/kg	240	
2,4,5-Trichlorophenol	ND	ı	ug/kg	160	

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Lab Number:

L1705986

Report Date:

03/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

97,8270D 03/01/17 00:53

Analyst: ALS Extraction Method: EPA 3546

Extraction Date:

02/28/17 09:22

MDL Result Qualifier Units RL **Parameter**

MCP Semivolatile Organics - Westborough Lab for sample(s): 05 Batch: WG981537-1

	Acceptance						
Surrogate	%Recovery	Qualifier Criteria					
2-Fluorophenol	65	30-130					
Phenol-d6	73	30-130					
Nitrobenzene-d5	75	30-130					
2-Fluorobiphenyl	77	30-130					
2,4,6-Tribromophenol	71	30-130					
4-Terphenyl-d14	81	30-130					

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
MCP Semivolatile Organics - Westborough	Lab Associated s	ample(s): 05	Batch: WG9	81537-2 W	G981537-3		
Acenaphthene	76		72		40-140	5	30
1,2,4-Trichlorobenzene	79		68		40-140	15	30
Hexachlorobenzene	77		72		40-140	7	30
Bis(2-chloroethyl)ether	75		63		40-140	17	30
2-Chloronaphthalene	85		80		40-140	6	30
1,2-Dichlorobenzene	75		60		40-140	22	30
1,3-Dichlorobenzene	72		58		40-140	22	30
1,4-Dichlorobenzene	74		60		40-140	21	30
3,3'-Dichlorobenzidine	64		61		40-140	5	30
2,4-Dinitrotoluene	82		80		40-140	2	30
2,6-Dinitrotoluene	91		89		40-140	2	30
Azobenzene	85		81		40-140	5	30
Fluoranthene	84		78		40-140	7	30
4-Bromophenyl phenyl ether	85		81		40-140	5	30
Bis(2-chloroisopropyl)ether	118		98		40-140	19	30
Bis(2-chloroethoxy)methane	82		75		40-140	9	30
Hexachlorobutadiene	84		70		40-140	18	30
Hexachloroethane	74		61		40-140	19	30
Isophorone	93		85		40-140	9	30
Naphthalene	79		68		40-140	15	30
Nitrobenzene	86		77		40-140	11	30

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Report Date: 03/06/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
MCP Semivolatile Organics - Westborough	Lab Associated	sample(s): 05	Batch: WG9	81537-2 W	/G981537-3		
Bis(2-ethylhexyl)phthalate	76		71		40-140	7	30
Butyl benzyl phthalate	86		78		40-140	10	30
Di-n-butylphthalate	81		76		40-140	6	30
Di-n-octylphthalate	79		72		40-140	9	30
Diethyl phthalate	79		75		40-140	5	30
Dimethyl phthalate	90		88		40-140	2	30
Benzo(a)anthracene	74		70		40-140	6	30
Benzo(a)pyrene	81		74		40-140	9	30
Benzo(b)fluoranthene	77		72		40-140	7	30
Benzo(k)fluoranthene	74		70		40-140	6	30
Chrysene	77		72		40-140	7	30
Acenaphthylene	84		80		40-140	5	30
Anthracene	82		78		40-140	5	30
Benzo(ghi)perylene	77		73		40-140	5	30
Fluorene	80		76		40-140	5	30
Phenanthrene	79		75		40-140	5	30
Dibenzo(a,h)anthracene	77		73		40-140	5	30
Indeno(1,2,3-cd)pyrene	77		74		40-140	4	30
Pyrene	86		80		40-140	7	30
Aniline	58		51		40-140	13	30
4-Chloroaniline	84		82		40-140	2	30

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Report Date: 03/06/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Semivolatile Organics - Westborouç	•		•					
Dibenzofuran	78		74		40-140	5	30	
2-Methylnaphthalene	78		72		40-140	8	30	
Acetophenone	87		76		40-140	13	30	
2,4,6-Trichlorophenol	90		87		30-130	3	30	
2-Chlorophenol	79		70		30-130	12	30	
2,4-Dichlorophenol	88		84		30-130	5	30	
2,4-Dimethylphenol	94		90		30-130	4	30	
2-Nitrophenol	79		72		30-130	9	30	
4-Nitrophenol	93		93		30-130	0	30	
2,4-Dinitrophenol	41		36		30-130	13	30	
Pentachlorophenol	64		61		30-130	5	30	
Phenol	77		70		30-130	10	30	
2-Methylphenol	86		80		30-130	7	30	
3-Methylphenol/4-Methylphenol	92		87		30-130	6	30	
2,4,5-Trichlorophenol	95		96		30-130	1	30	

L1705986

Lab Control Sample Analysis Batch Quality Control

Project Name: TREMONT CROSSING PHASE II

Lab Number:

Project Number: 1700516 Report Date: 03/06/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

MCP Semivolatile Organics - Westborough Lab Associated sample(s): 05 Batch: WG981537-2 WG981537-3

LCS	LC	SD	Acceptance	
%Recovery	Qual %Reco	very Qual	Criteria	
80	67		30-130	
88	80		30-130	
91	81		30-130	
89	83		30-130	
78	75		30-130	
83	77		30-130	
	%Recovery 80 88 91 89 78	%Recovery Qual %Recovery 80 67 88 80 91 81 89 83 78 75	%Recovery Qual %Recovery Qual 80 67 88 80 91 81 89 83 78 75 75	%Recovery Qual %Recovery Qual Criteria 80 67 30-130 88 80 30-130 91 81 30-130 89 83 30-130 78 75 30-130

PETROLEUM HYDROCARBONS

Project Name: Lab Number: TREMONT CROSSING PHASE II L1705986

Project Number: Report Date: 1700516 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-05 Date Collected: 02/26/17 13:30

1700516-TP-105(0-10') Client ID: Date Received: 02/27/17

BOSTON, MASSACHUSETTS Sample Location: Field Prep: Not Specified

Matrix: Extraction Method: EPA 3546 Soil 03/01/17 07:27

Analytical Method: 1,8015C(M) Extraction Date: Analytical Date: 03/01/17 21:48

Analyst: DG 85% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation - Wes	tborough Lab					
ТРН	330000		ug/kg	37000		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	82		40-140	

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Lab Number: **Report Date:**

L1705986

Method Blank Analysis

03/06/17

Batch Quality Control

Analytical Method: Analytical Date:

1,8015C(M) 03/01/17 22:54

Analyst: DG Extraction Method: EPA 3546 **Extraction Date:** 03/01/17 07:27

MDL Result Qualifier Units RL **Parameter** WG981837-1 Petroleum Hydrocarbon Quantitation - Westborough Lab for sample(s): 05 Batch: TPH ND ug/kg 31900

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
o-Terphenyl	79	40-140

Project Name: TREMONT CROSSING PHASE II

Lab Number:

L1705986

Project Number: 1700516

1700540

Report Date:

03/06/17

Parameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD G	RPD Qual Limits	
Petroleum Hydrocarbon Quantitation -	Westborough Lab Associate	d sample(s): 05 Batch	: WG981837-2			
TPH	89	-	40-140	-	40	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
o-Terphenyl	78		40-140

L1705986

Lab Number:

Lab Duplicate Analysis
Batch Quality Control

Project Name: TREMONT CROSSING PHASE II Batch Quali

Project Number: 1700516 Report Date: 03/06/17

RPD

ParameterNative SampleDuplicate SampleUnitsRPDQualLimitsPetroleum Hydrocarbon Quantitation - Westborough LabAssociated sample(s): 05QC Batch ID: WG981837-3QC Sample: L1705986-05Client ID: L1700516-TP-105(0-10')TPH330000327000ug/kg140

Surrogate %Recovery Qualifier %Recovery Qualifier Criteria

o-Terphenyl 82 64 40-140

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Lab Number:

L1705986

Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-08

Client ID: 1700516-TP-108(8')

BOSTON, MASSACHUSETTS Sample Location:

Matrix:

Analytical Method: 100, VPH-04-1.1 Analytical Date: 03/04/17 10:24

Analyst: JM Percent Solids: 82% Date Collected:

02/26/17 11:50

Date Received: Field Prep:

02/27/17

Not Specified

Quality Control Information

Condition of sample received: Sample Temperature upon receipt: Were samples received in methanol? Methanol ratio:

Satisfactory Received on Ice Covering the Soil

1:1.5

Parameter	Result	Qualifier Uni	ts RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - W	estborough Lab				
C5-C8 Aliphatics	ND	mg/ł	kg 2.69		1
C9-C12 Aliphatics	ND	mg/l	kg 2.69		1
C9-C10 Aromatics	ND	mg/l	kg 2.69		1
C5-C8 Aliphatics, Adjusted	ND	mg/l	kg 2.69		1
C9-C12 Aliphatics, Adjusted	ND	mg/l	kg 2.69		1
Benzene	ND	mg/l	kg 0.108		1
Toluene	ND	mg/l	kg 0.108		1
Ethylbenzene	ND	mg/l	kg 0.108		1
p/m-Xylene	ND	mg/l	kg 0.108		1
o-Xylene	ND	mg/l	kg 0.108		1
Methyl tert butyl ether	ND	mg/l	kg 0.054		1
Naphthalene	ND	mg/l	kg 0.215		1

		Acceptance					
Surrogate	% Recovery	Qualifier	Criteria				
2,5-Dibromotoluene-PID	89		70-130				
2,5-Dibromotoluene-FID	92		70-130				

02/26/17 11:50

Not Specified

02/27/17

EPA 3546

03/01/17

Date Collected:

Date Received:

Cleanup Date1:

Extraction Method:

Field Prep:

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-08

Client ID: 1700516-TP-108(8')

Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/01/17 12:30
Analytical Date: 03/03/17 01:05 Cleanup Method1: EPH-04-1

Analyst: NS Percent Solids: 82%

Quality Control Information

Condition of sample received: Sample Temperature upon receipt: Sample Extraction method: Satisfactory Received on Ice

Extracted Per the Method

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbons	s - Westborough L	ab			
C9-C18 Aliphatics	ND	mg/kg	7.74		1
C19-C36 Aliphatics	20.2	mg/kg	7.74		1
C11-C22 Aromatics	58.1	mg/kg	7.74		1
C11-C22 Aromatics, Adjusted	40.8	mg/kg	7.74		1
Naphthalene	ND	mg/kg	0.387		1
2-Methylnaphthalene	ND	mg/kg	0.387		1
Acenaphthylene	ND	mg/kg	0.387		1
Acenaphthene	ND	mg/kg	0.387		1
Fluorene	ND	mg/kg	0.387		1
Phenanthrene	2.01	mg/kg	0.387		1
Anthracene	0.465	mg/kg	0.387		1
Fluoranthene	3.33	mg/kg	0.387		1
Pyrene	2.79	mg/kg	0.387		1
Benzo(a)anthracene	1.37	mg/kg	0.387		1
Chrysene	1.64	mg/kg	0.387		1
Benzo(b)fluoranthene	1.11	mg/kg	0.387		1
Benzo(k)fluoranthene	1.27	mg/kg	0.387		1
Benzo(a)pyrene	1.41	mg/kg	0.387		1
Indeno(1,2,3-cd)Pyrene	1.04	mg/kg	0.387		1
Dibenzo(a,h)anthracene	ND	mg/kg	0.387		1
Benzo(ghi)perylene	0.902	mg/kg	0.387		1

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-08 Date Collected: 02/26/17 11:50

Client ID: 1700516-TP-108(8') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specific

Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	78		40-140	
o-Terphenyl	86		40-140	
2-Fluorobiphenyl	77		40-140	
2-Bromonaphthalene	77		40-140	

L1705986

03/06/17

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date:

Method Blank Analysis
Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 03/01/17 23:25

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 03/01/17 00:39
Cleanup Method: EPH-04-1

Cleanup Method: EPH-04-1 Cleanup Date: 03/01/17

Parameter	Result	Qualifier	Units	RL	MDL	
Extractable Petroleum Hydrocarbon	s - Westbo	orough Lab	for sample	e(s): 08	Batch: WG9817	'81-1
C9-C18 Aliphatics	ND		mg/kg	6.58		
C19-C36 Aliphatics	ND		mg/kg	6.58		
C11-C22 Aromatics	ND		mg/kg	6.58		
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.58		
Naphthalene	ND		mg/kg	0.329		
2-Methylnaphthalene	ND		mg/kg	0.329		
Acenaphthylene	ND		mg/kg	0.329		
Acenaphthene	ND		mg/kg	0.329		
Fluorene	ND		mg/kg	0.329		
Phenanthrene	ND		mg/kg	0.329		
Anthracene	ND		mg/kg	0.329		
Fluoranthene	ND		mg/kg	0.329		
Pyrene	ND		mg/kg	0.329		
Benzo(a)anthracene	ND		mg/kg	0.329		
Chrysene	ND		mg/kg	0.329		
Benzo(b)fluoranthene	ND		mg/kg	0.329		
Benzo(k)fluoranthene	ND		mg/kg	0.329		
Benzo(a)pyrene	ND		mg/kg	0.329		
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.329		
Dibenzo(a,h)anthracene	ND		mg/kg	0.329		
Benzo(ghi)perylene	ND		mg/kg	0.329		

		Acceptance
%Recovery	Qualifier	Criteria
82		40-140
86		40-140
92		40-140
92		40-140
	82 86 92	%Recovery Qualifier 82 86 92

L1705986

Project Name: TREMONT CROSSING PHASE II Lab Number:

Project Number: 1700516 Report Date: 03/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/04/17 09:33

Analyst: JM

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Petroleum Hydrocarbons - V	Vestborougl	h Lab for s	ample(s):	08 Batch:	WG982951-3
C5-C8 Aliphatics	ND		mg/kg	2.67	
C9-C12 Aliphatics	ND		mg/kg	2.67	
C9-C10 Aromatics	ND		mg/kg	2.67	
C5-C8 Aliphatics, Adjusted	ND		mg/kg	2.67	
C9-C12 Aliphatics, Adjusted	ND		mg/kg	2.67	
Benzene	ND		mg/kg	0.107	
Toluene	ND		mg/kg	0.107	
Ethylbenzene	ND		mg/kg	0.107	
p/m-Xylene	ND		mg/kg	0.107	
o-Xylene	ND		mg/kg	0.107	
Methyl tert butyl ether	ND		mg/kg	0.053	
Naphthalene	ND		mg/kg	0.213	

		-	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	99		70-130	
2,5-Dibromotoluene-FID	102		70-130	

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Report Date: 03/06/17

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - West	borough Lab Ass	ociated sample(s): 08 Batch	n: WG981781-2 WG981781	-3	
C9-C18 Aliphatics	80	83	40-140	4	25
C19-C36 Aliphatics	113	117	40-140	3	25
C11-C22 Aromatics	118	105	40-140	12	25
Naphthalene	91	80	40-140	13	25
2-Methylnaphthalene	97	85	40-140	13	25
Acenaphthylene	103	92	40-140	11	25
Acenaphthene	107	96	40-140	11	25
Fluorene	114	102	40-140	11	25
Phenanthrene	118	105	40-140	12	25
Anthracene	118	105	40-140	12	25
Fluoranthene	124	109	40-140	13	25
Pyrene	122	107	40-140	13	25
Benzo(a)anthracene	118	104	40-140	13	25
Chrysene	125	110	40-140	13	25
Benzo(b)fluoranthene	119	103	40-140	14	25
Benzo(k)fluoranthene	121	108	40-140	11	25
Benzo(a)pyrene	114	101	40-140	12	25
Indeno(1,2,3-cd)Pyrene	112	101	40-140	10	25
Dibenzo(a,h)anthracene	118	109	40-140	8	25
Benzo(ghi)perylene	112	101	40-140	10	25
Nonane (C9)	70	72	30-140	3	25

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1705986

Report Date:

03/06/17

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
xtractable Petroleum Hydrocarbons - W	estborough Lab Assoc	ciated sample(s): 08 Batc	h: WG981781-2 WG98178	1-3	
Decane (C10)	83	86	40-140	4	25
Dodecane (C12)	91	95	40-140	4	25
Tetradecane (C14)	99	104	40-140	5	25
Hexadecane (C16)	106	110	40-140	4	25
Octadecane (C18)	111	114	40-140	3	25
Nonadecane (C19)	111	115	40-140	4	25
Eicosane (C20)	112	115	40-140	3	25
Docosane (C22)	112	116	40-140	4	25
Tetracosane (C24)	110	113	40-140	3	25
Hexacosane (C26)	112	115	40-140	3	25
Octacosane (C28)	111	115	40-140	4	25
Triacontane (C30)	110	114	40-140	4	25
Hexatriacontane (C36)	106	112	40-140	6	25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Chloro-Octadecane	86		83		40-140	
o-Terphenyl	102		87		40-140	
2-Fluorobiphenyl	107		89		40-140	
2-Bromonaphthalene	108		90		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Report Date: 03/06/17

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Petroleum Hydrocarbons - Westborou	ugh Lab Associ	ated sample(s): 08	Batch:	WG982951-1	WG982951-2			
C5-C8 Aliphatics	99		105		70-130	6	25	
C9-C12 Aliphatics	100		106		70-130	6	25	
C9-C10 Aromatics	93		99		70-130	7	25	
Benzene	92		98		70-130	6	25	
Toluene	92		98		70-130	6	25	
Ethylbenzene	92		98		70-130	7	25	
p/m-Xylene	93		99		70-130	6	25	
o-Xylene	92		98		70-130	6	25	
Methyl tert butyl ether	94		98		70-130	5	25	
Naphthalene	92		96		70-130	5	25	
1,2,4-Trimethylbenzene	93		99		70-130	7	25	
Pentane	96		101		70-130	5	25	
2-Methylpentane	97		103		70-130	6	25	
2,2,4-Trimethylpentane	100		106		70-130	6	25	
n-Nonane	100		106		30-130	6	25	
n-Decane	99		106		70-130	7	25	
n-Butylcyclohexane	100		107		70-130	7	25	

Project Name: TREMONT CROSSING PHASE II

Lab Number:

L1705986

Project Number: 1700516

NOSSING FILASE II

Report Date:

03/06/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 08 Batch: WG982951-1 WG982951-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID 2,5-Dibromotoluene-FID	91 92		96 98		70-130 70-130	

Project Name: Lab Number: TREMONT CROSSING PHASE II L1705986

Project Number: Report Date: 1700516 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-01 Date Collected: 02/26/17 12:55

Client ID: 1700516-TP-101(0-3') Date Received: 02/27/17

Sample Location: **BOSTON, MASSACHUSETTS** Field Prep: Not Specified

Extraction Method: EPA 3546 Matrix: Soil Analytical Method: 97,8082A Extraction Date: 03/01/17 00:05 Analytical Date: 03/02/17 04:14 Cleanup Method: EPA 3665A

Analyst: JA Cleanup Date: 03/01/17 84% Percent Solids: Cleanup Method: EPA 3660B Cleanup Date: 03/01/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Bipheny	ls - Westborough Lab						
						·	
Aroclor 1016	ND		ug/kg	37.4		1	Α
Aroclor 1221	ND		ug/kg	37.4		1	Α
Aroclor 1232	ND		ug/kg	37.4		1	Α
Aroclor 1242	ND		ug/kg	37.4		1	Α
Aroclor 1248	ND		ug/kg	37.4		1	Α
Aroclor 1254	ND		ug/kg	37.4		1	Α
Aroclor 1260	ND		ug/kg	37.4		1	Α
Aroclor 1262	ND		ug/kg	37.4		1	Α
Aroclor 1268	ND		ug/kg	37.4		1	Α
PCBs, Total	ND		ug/kg	37.4		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88		30-150	Α
Decachlorobiphenyl	81		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В
Decachlorobiphenyl	56		30-150	В

Project Name: Lab Number: TREMONT CROSSING PHASE II L1705986

Project Number: 1700516 **Report Date:** 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-02 Date Collected: 02/26/17 09:00

Client ID: 1700516-TP-103(0-3') Date Received: 02/27/17

Sample Location: **BOSTON, MASSACHUSETTS** Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 03/01/17 00:05 Analytical Date: 03/02/17 04:27 Cleanup Method: EPA 3665A

Analyst: JA Cleanup Date: 03/01/17 92% Percent Solids: Cleanup Method: EPA 3660B Cleanup Date: 03/01/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - Wes	tborough Lab						
						,	
Aroclor 1016	ND		ug/kg	35.5		1	Α
Aroclor 1221	ND		ug/kg	35.5		1	Α
Aroclor 1232	ND		ug/kg	35.5		1	Α
Aroclor 1242	ND		ug/kg	35.5		1	Α
Aroclor 1248	ND		ug/kg	35.5		1	Α
Aroclor 1254	ND		ug/kg	35.5		1	Α
Aroclor 1260	ND		ug/kg	35.5		1	Α
Aroclor 1262	ND		ug/kg	35.5		1	Α
Aroclor 1268	ND		ug/kg	35.5		1	Α
PCBs, Total	ND		ug/kg	35.5		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	Α
Decachlorobiphenyl	75		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	51		30-150	В

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-03 Date Collected: 02/26/17 09:30

Client ID: 1700516-TP-104(0-3') Date Received: 02/27/17

Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Method: EPA 3646

Analytical Date: 03/02/17 04:41 Cleanup Method: EPA 3665A

Analytical Date: 03/02/17 04:41 Cleanup Date: 03/02/17

Analyst: JA Cleanup Date: 03/01/17
Percent Solids: 85% Cleanup Method: EPA 3660B
Cleanup Date: 03/01/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - Wes	tborough Lab						
						·	
Aroclor 1016	ND		ug/kg	39.0		1	Α
Aroclor 1221	ND		ug/kg	39.0		1	Α
Aroclor 1232	ND		ug/kg	39.0		1	Α
Aroclor 1242	ND		ug/kg	39.0		1	Α
Aroclor 1248	ND		ug/kg	39.0		1	Α
Aroclor 1254	ND		ug/kg	39.0		1	В
Aroclor 1260	ND		ug/kg	39.0		1	Α
Aroclor 1262	ND		ug/kg	39.0		1	Α
Aroclor 1268	ND		ug/kg	39.0		1	Α
PCBs, Total	ND		ug/kg	39.0		1	В

Surrogate	% Recovery Q	Acceptance ualifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	90	30-150	Α
Decachlorobiphenyl	77	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	74	30-150	В
Decachlorobiphenyl	53	30-150	В

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: Date Collected: 02/26/17 13:30

Client ID: 1700516-TP-105(0-10') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specifie

Sample Location:BOSTON, MASSACHUSETTSField Prep:Not SpecifiedMatrix:SoilExtraction Method: EPA 3546Analytical Method:97,8082AExtraction Date:03/01/17 00:05

Analytical Date: 03/02/17 04:54 Cleanup Method: EPA 3665A Analyst: JA Cleanup Date: 03/01/17 Percent Solids: 85% Cleanup Method: EPA 3660B

Cleanup Date: 03/01/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - W	Vestborough Lab						
			77				
Aroclor 1016	ND		ug/kg	37.4		1	Α
Aroclor 1221	ND		ug/kg	37.4		1	Α
Aroclor 1232	ND		ug/kg	37.4		1	Α
Aroclor 1242	ND		ug/kg	37.4		1	Α
Aroclor 1248	ND		ug/kg	37.4		1	Α
Aroclor 1254	75.9		ug/kg	37.4		1	В
Aroclor 1260	ND		ug/kg	37.4		1	Α
Aroclor 1262	ND		ug/kg	37.4		1	Α
Aroclor 1268	ND		ug/kg	37.4		1	Α
PCBs, Total	75.9		ug/kg	37.4		1	В

Surrogate	% Recovery Qua	Acceptance alifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76	30-150	Α
Decachlorobiphenyl	73	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	62	30-150	В
Decachlorobiphenyl	57	30-150	В

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: Date Collected: 02/26/17 07:40

Client ID: 1700516-TP-106(0-2') Date Received: 02/27/17

Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 97,8082A Extraction Date: 03/01/17 00:05
Analytical Date: 03/02/17 05:08 Cleanup Method: EPA 3665A
Analyst: 14 Cleanup Date: 03/01/17

Analyst: JA Cleanup Date: 03/01/17
Percent Solids: 87% Cleanup Method: EPA 3660B
Cleanup Date: 03/01/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - Wes	stborough Lab						
			77			>	
Aroclor 1016	ND		ug/kg	38.0		1	Α
Aroclor 1221	ND		ug/kg	38.0		1	Α
Aroclor 1232	ND		ug/kg	38.0		1	Α
Aroclor 1242	ND		ug/kg	38.0		1	Α
Aroclor 1248	ND		ug/kg	38.0		1	Α
Aroclor 1254	ND		ug/kg	38.0		1	Α
Aroclor 1260	ND		ug/kg	38.0		1	Α
Aroclor 1262	ND		ug/kg	38.0		1	Α
Aroclor 1268	ND		ug/kg	38.0		1	Α
PCBs, Total	ND		ug/kg	38.0		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86		30-150	Α
Decachlorobiphenyl	82		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В
Decachlorobiphenyl	56		30-150	В

Project Name: Lab Number: TREMONT CROSSING PHASE II L1705986

Project Number: 1700516 **Report Date:** 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-07 Date Collected: 02/26/17 10:55

Client ID: 1700516-TP-107(0-3') Date Received: 02/27/17

Sample Location: **BOSTON, MASSACHUSETTS** Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546 Analytical Method: 97,8082A Extraction Date: 03/01/17 00:05 Analytical Date: 03/02/17 05:21 Cleanup Method: EPA 3665A

Analyst: JA Cleanup Date: 03/01/17 87% Percent Solids: Cleanup Method: EPA 3660B

Cleanup Date: 03/01/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - Wes	stborough Lab						
Aroclor 1016	ND		ug/kg	37.7		1	Α
Aroclor 1221	ND		ug/kg	37.7		1	Α
Aroclor 1232	ND		ug/kg	37.7		1	Α
Aroclor 1242	ND		ug/kg	37.7		1	Α
Aroclor 1248	ND		ug/kg	37.7		1	Α
Aroclor 1254	ND		ug/kg	37.7		1	Α
Aroclor 1260	ND		ug/kg	37.7		1	Α
Aroclor 1262	ND		ug/kg	37.7		1	Α
Aroclor 1268	ND		ug/kg	37.7		1	Α
PCBs, Total	ND		ug/kg	37.7		1	Α

Surrogate	% Recovery Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	83	30-150	Α
Decachlorobiphenyl	76	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	63	30-150	В
Decachlorobiphenyl	53	30-150	В

Project Name: Lab Number: TREMONT CROSSING PHASE II L1705986

Project Number: Report Date: 1700516 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-09 Date Collected: 02/26/17 12:05

Client ID: 1700516-TP-108(0-8') Date Received: 02/27/17 Sample Location: **BOSTON, MASSACHUSETTS** Field Prep: Not Specified

Extraction Method: EPA 3546 Matrix: Soil Analytical Method: 97,8082A Extraction Date: 03/01/17 00:05 Analytical Date: 03/02/17 05:34 Cleanup Method: EPA 3665A

Analyst: JA Cleanup Date: 03/01/17 86% Percent Solids: Cleanup Method: EPA 3660B Cleanup Date: 03/01/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyl	s - Westborough Lab						
						·	
Aroclor 1016	ND		ug/kg	38.3		1	Α
Aroclor 1221	ND		ug/kg	38.3		1	Α
Aroclor 1232	ND		ug/kg	38.3		1	Α
Aroclor 1242	ND		ug/kg	38.3		1	Α
Aroclor 1248	ND		ug/kg	38.3		1	Α
Aroclor 1254	ND		ug/kg	38.3		1	Α
Aroclor 1260	ND		ug/kg	38.3		1	Α
Aroclor 1262	ND		ug/kg	38.3		1	Α
Aroclor 1268	ND		ug/kg	38.3		1	А
PCBs, Total	ND		ug/kg	38.3		1	Α

Our was water	0/ -	Overlitten	Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		30-150	Α
Decachlorobiphenyl	74		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	56		30-150	В
Decachlorobiphenyl	51		30-150	В

L1705986

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/06/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8082A Analytical Date: 03/02/17 03:34

Analyst: JA

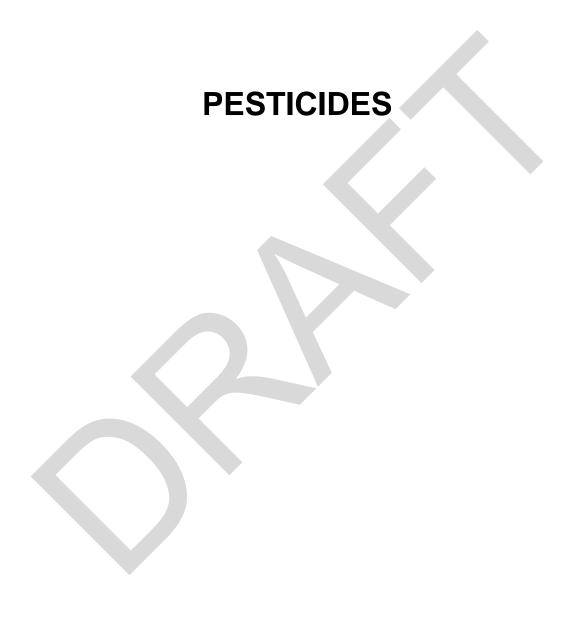
Extraction Method: EPA 3546
Extraction Date: 03/01/17 00:05
Cleanup Method: EPA 3665A
Cleanup Date: 03/01/17
Cleanup Method: EPA 3660B
Cleanup Date: 03/01/17

Parameter	Result	Qualifier	Units	RL	MDL	Column
MCP Polychlorinated Biphenyls - WG981776-1	Westborough	Lab for sa	mple(s):	01-03,05-07,09	Batch:	
Aroclor 1016	ND		ug/kg	32.0		Α
Aroclor 1221	ND		ug/kg	32.0		А
Aroclor 1232	ND		ug/kg	32.0		А
Aroclor 1242	ND		ug/kg	32.0		Α
Aroclor 1248	ND		ug/kg	32.0		А
Aroclor 1254	ND		ug/kg	32.0		Α
Aroclor 1260	ND		ug/kg	32.0		Α
Aroclor 1262	ND		ug/kg	32.0		А
Aroclor 1268	ND		ug/kg	32.0		А
PCBs, Total	ND		ug/kg	32.0		Α

		Acceptance	•
%Recovery	Qualifier	Criteria	Column
80		30-150	Α
72		30-150	Α
78		30-150	В
54		30-150	В
	80 72 78	%Recovery Qualifier 80 72 78	80 30-150 72 30-150 78 30-150

Project Name: TREMONT CROSSING PHASE II

Lab Number: L1705986


Project Number: 1700516 Report Date:

03/06/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
MCP Polychlorinated Biphenyls - West	borough Lab Associate	ed sample(s):	01-03,05-07,09	Batch:	WG981776-2	WG981776-3			
Aroclor 1016	90		86		40-140	5		30	А
Aroclor 1260	89		82		40-140	8		30	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Colum
2,4,5,6-Tetrachloro-m-xylene	89	82	30-150 A
Decachlorobiphenyl	80	73	30-150 A
2,4,5,6-Tetrachloro-m-xylene	84	77	30-150 B
Decachlorobiphenyl	58	52	30-150 B

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-05 Date Collected: 02/26/17 13:30

Client ID: 1700516-TP-105(0-10') Date Received: 02/27/17

Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8081B Extraction Date: 03/01/17 10:30
Analytical Date: 03/05/17 21:08 Cleanup Method: EPA 3620B

Analyst: KEG Cleanup Date: 03/02/17
Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Organochlorine Pesticides - We	stborough Lab						
Delta-BHC	ND		ug/kg	9.26		1	Α
Lindane	ND		ug/kg	3.09		1	Α
Alpha-BHC	ND		ug/kg	3.86		1	Α
Beta-BHC	ND		ug/kg	9.26		1	Α
Heptachlor	ND		ug/kg	4.63		1	Α
Aldrin	ND		ug/kg	9.26		1	Α
Heptachlor epoxide	ND		ug/kg	17.4		1	Α
Endrin	ND		ug/kg	3.86		1	Α
Endrin ketone	ND		ug/kg	9.26		1	Α
Dieldrin	ND		ug/kg	5.79		1	Α
4,4'-DDE	ND		ug/kg	9.26		1	Α
4,4'-DDD	ND		ug/kg	9.26		1	Α
4,4'-DDT	ND		ug/kg	17.4		1	Α
Endosulfan I	ND		ug/kg	9.26		1	Α
Endosulfan II	25.7	Р	ug/kg	9.26		1	В
Endosulfan sulfate	ND		ug/kg	3.86		1	Α
Methoxychlor	ND		ug/kg	17.4		1	Α
Chlordane	ND		ug/kg	75.2		1	Α
Hexachlorobenzene	ND		ug/kg	9.26		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	76		30-150	В
2,4,5,6-Tetrachloro-m-xylene	93		30-150	Α
Decachlorobiphenyl	113		30-150	Α

03/06/17

Report Date:

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516

SAMPLE RESULTS

Lab ID: Date Collected: 02/26/17 13:30

Client ID: 1700516-TP-105(0-10') Date Received: 02/27/17

Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil Extraction Method: FPA 8151A

Matrix: Soil Extraction Method: EPA 8151A

Analytical Method: 97,8151A Extraction Date: 02/28/17 15:00

Analytical Date: 03/02/17 21:40

Analyst: KEG
Percent Solids: 85%

Methylation Date: 03/01/17 21:13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Chlorinated Herbicides - W	estborough Lab						
						·	
MCPP	ND		ug/kg	3800		1	Α
MCPA	ND		ug/kg	3800		1	Α
Dalapon	ND		ug/kg	38		1	Α
Dicamba	ND		ug/kg	38		1	Α
Dichloroprop	ND		ug/kg	38		1	Α
2,4-D	ND		ug/kg	38		1	Α
2,4-DB	ND		ug/kg	38		1	Α
2,4,5-T	ND		ug/kg	38		1	Α
2,4,5-TP (Silvex)	ND		ug/kg	38		1	Α
Dinoseb	ND		ug/kg	38		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	105		30-150	Α
DCAA	82		30-150	В

Project Name: TREMONT CROSSING PHASE II

Project Number:

Lab Number:

L1705986

1700516

Report Date:

03/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

97,8151A 03/02/17 20:21

Analyst:

DM

Extraction Method: EPA 8151A

02/28/17 15:00 **Extraction Date:**

03/01/17 21:13 Methylation Date:

Parameter	Result	Qualifier Units	RL	MDL	Column
MCP Chlorinated Herbicides -	Westborough Lab	for sample(s): 05	Batch:	WG981666-1	
MCPP	ND	ug/kg	3300		А
MCPA	ND	ug/kg	3300		А
Dalapon	ND	ug/kg	33		Α
Dicamba	ND	ug/kg	33		A
Dichloroprop	ND	ug/kg	33		Α
2,4-D	ND	ug/kg	33		Α
2,4-DB	ND	ug/kg	33		Α
2,4,5-T	ND	ug/kg	33		Α
2,4,5-TP (Silvex)	ND	ug/kg	33		А
Dinoseb	ND	ug/kg	33		Α

			Acceptance)
Surrogate	%Recovery	Qualifier	Criteria	Column
DCAA	89		30-150	Α
DCAA	66		30-150	В

L1705986

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8081B Analytical Date: 03/05/17 20:30

Analyst: KEG

Extraction Method: EPA 3546
Extraction Date: 03/01/17 10:30
Cleanup Method: EPA 3620B
Cleanup Date: 03/02/17

Parameter	Result	Qualifier	Units	I	RL	MDL	Column
MCP Organochlorine Pesticides	- Westborough	Lab for sar	mple(s):	05	Batch:	WG981906-1	
Delta-BHC	ND		ug/kg	7	.71		Α
Lindane	ND		ug/kg	2	.57		Α
Alpha-BHC	ND		ug/kg	3	.21		Α
Beta-BHC	ND		ug/kg	7	.71		Α
Heptachlor	ND		ug/kg	3	.86		Α
Aldrin	ND		ug/kg	7	.71		Α
Heptachlor epoxide	ND		ug/kg	1	4.5		Α
Endrin	ND		ug/kg	3	.21		Α
Endrin ketone	ND		ug/kg	7	.71		Α
Dieldrin	ND		ug/kg	4	.82		Α
4,4'-DDE	ND		ug/kg	7	.71		Α
4,4'-DDD	ND		ug/kg	7	.71		Α
4,4'-DDT	ND		ug/kg	1	4.5		Α
Endosulfan I	ND		ug/kg	7	.71		Α
Endosulfan II	ND		ug/kg	7	.71		Α
Endosulfan sulfate	ND		ug/kg	3	.21		Α
Methoxychlor	ND		ug/kg	1	4.5		Α
Chlordane	ND		ug/kg	6	2.7		Α
Hexachlorobenzene	ND		ug/kg	7	.71		Α

	Acceptance							
Surrogate	%Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	80		30-150	В				
Decachlorobiphenyl	65		30-150	В				
2,4,5,6-Tetrachloro-m-xylene	89		30-150	A				
Decachlorobiphenyl	91		30-150	A				
Decachlorobiphenyl	91		30-150	Α				

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1705986

Report Date:

03/06/17

Parameter	LCS %Recovery	Qual	LCSD %Recover	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
MCP Chlorinated Herbicides - Westborough L	ab Associated	sample(s):	05 Batch: \	WG981666-2	WG981666-3				
МСРР	112		75		40-140	40	Q	30	А
MCPA	93		64		40-140	37	Q	30	А
Dalapon	67		50		40-140	29		30	А
Dicamba	82		60		40-140	31	Q	30	Α
Dichloroprop	134		94		40-140	35	Q	30	Α
2,4-D	92		67		40-140	31	Q	30	Α
2,4-DB	110		76		40-140	37	Q	30	Α
2,4,5-T	88		68		40-140	26		30	Α
2,4,5-TP (Silvex)	82		60		40-140	31	Q	30	Α
Dinoseb	5	Q	3	Q	40-140	59	Q	30	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
DCAA	104		75		30-150	Α
DCAA	89		64		30-150	В

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986

Report Date: 03/06/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
MCP Organochlorine Pesticides - Westborou	gh Lab Associa	ited sample(s):	05 Batch:	WG981906-2	WG981906-3				
Delta-BHC	84		96		40-140	13		30	Α
Lindane	84		93		40-140	10		30	А
Alpha-BHC	94		106		40-140	12		30	А
Beta-BHC	95		107		40-140	12		30	А
Heptachlor	87		102		40-140	16		30	А
Aldrin	92		110		40-140	18		30	А
Heptachlor epoxide	93		104		40-140	11		30	А
Endrin	88		102	1	40-140	15		30	А
Endrin ketone	84		92		40-140	9		30	А
Dieldrin	95		109		40-140	14		30	Α
4,4'-DDE	91		105		40-140	14		30	А
4,4'-DDD	93		103		40-140	10		30	Α
4,4'-DDT	95		103		40-140	8		30	А
Endosulfan I	91		102		40-140	11		30	А
Endosulfan II	94		105		40-140	11		30	А
Endosulfan sulfate	74		80		40-140	8		30	А
Methoxychlor	95		108		40-140	13		30	А
Hexachlorobenzene	82		89		40-140	8		30	А

Project Name: TREMONT CROSSING PHASE II

Lab Number:

L1705986

Project Number: 1700516

Report Date:

03/06/17

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

MCP Organochlorine Pesticides - Westborough Lab Associated sample(s): 05 Batch: WG981906-2 WG981906-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	83		86		30-150	В	
Decachlorobiphenyl	69		70		30-150	В	
2,4,5,6-Tetrachloro-m-xylene	91		97		30-150	Α	
Decachlorobiphenyl	94		100		30-150	Α	

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-01 Date Collected: 02/26/17 12:55

Client ID: 1700516-TP-101(0-3') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil
Percent Solids: 84%

reident Solids.	0470					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals -	- Mansfield	d Lab									
Antimony, Total	ND		mg/kg	2.3		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Arsenic, Total	5.1		mg/kg	0.46		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Barium, Total	54		mg/kg	0.46		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Beryllium, Total	0.36		mg/kg	0.23		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Cadmium, Total	ND		mg/kg	0.46		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Chromium, Total	11		mg/kg	0.46		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Lead, Total	130		mg/kg	2.3		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Mercury, Total	0.417		mg/kg	0.075		1	03/01/17 08:4	0 03/02/17 10:58	EPA 7471B	97,7471B	BV
Nickel, Total	8.3		mg/kg	1.2		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Selenium, Total	ND		mg/kg	2.3		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Silver, Total	ND		mg/kg	0.46	\- <u>-</u> -	1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Thallium, Total	ND		mg/kg	2.3		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Vanadium, Total	21		mg/kg	0.46		1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
Zinc, Total	100		mg/kg	2.3	\	1	02/28/17 23:0	0 03/01/17 22:17	EPA 3050B	97,6010C	AB
·											

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-02 Date Collected: 02/26/17 09:00

Client ID: 1700516-TP-103(0-3') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil
Percent Solids: 92%

reiterit Solius.	92 /0					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCD Total Matala	Manafial	dlab									
MCP Total Metals	- Manshei	u Lab									
Arsenic, Total	5.2		mg/kg	0.43		1	02/28/17 23:00	0 03/01/17 22:22	EPA 3050B	97,6010C	AB
Barium, Total	34		mg/kg	0.43		1	02/28/17 23:00	0 03/01/17 22:22	EPA 3050B	97,6010C	AB
Cadmium, Total	ND		mg/kg	0.43		1	02/28/17 23:00	0 03/01/17 22:22	EPA 3050B	97,6010C	AB
Chromium, Total	13		mg/kg	0.43		1	02/28/17 23:00	0 03/01/17 22:22	EPA 3050B	97,6010C	AB
Lead, Total	38		mg/kg	2.2		1	02/28/17 23:00	0 03/01/17 22:22	EPA 3050B	97,6010C	AB
Mercury, Total	0.326		mg/kg	0.071		1	03/01/17 08:40	0 03/02/17 11:00	EPA 7471B	97,7471B	BV
Selenium, Total	ND		mg/kg	2.2		1	02/28/17 23:00	0 03/01/17 22:22	EPA 3050B	97,6010C	AB
Silver, Total	ND		mg/kg	0.43		1	02/28/17 23:00	0 03/01/17 22:22	EPA 3050B	97,6010C	AB

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-03 Date Collected: 02/26/17 09:30

Client ID: 1700516-TP-104(0-3') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil
Percent Solids: 85%

Percent Solids.	05%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MOD Total Matala	N4====£:=1	-11-1-									
MCP Total Metals	- Manshei	u Lab									
Arsenic, Total	7.1		mg/kg	0.47		1	02/28/17 23:00	0 03/01/17 22:26	EPA 3050B	97,6010C	AB
Barium, Total	47		mg/kg	0.47		1	02/28/17 23:00	0 03/01/17 22:26	EPA 3050B	97,6010C	AB
Cadmium, Total	ND		mg/kg	0.47		1	02/28/17 23:00	0 03/01/17 22:26	EPA 3050B	97,6010C	AB
Chromium, Total	15		mg/kg	0.47		1	02/28/17 23:00	0 03/01/17 22:26	EPA 3050B	97,6010C	AB
Lead, Total	97		mg/kg	2.3		1	02/28/17 23:00	0 03/01/17 22:26	EPA 3050B	97,6010C	AB
Mercury, Total	0.420		mg/kg	0.078		1	03/01/17 08:40	03/02/17 11:02	EPA 7471B	97,7471B	BV
Selenium, Total	ND		mg/kg	2.3		1	02/28/17 23:00	03/01/17 22:26	EPA 3050B	97,6010C	AB
Silver, Total	ND		mg/kg	0.47		1	02/28/17 23:00	03/01/17 22:26	EPA 3050B	97,6010C	AB

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-05 Date Collected: 02/26/17 13:30

Client ID: 1700516-TP-105(0-10') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil
Percent Solids: 85%

Dilution Date Date Prep **Analytical** Method Factor **Prepared** Method **Analyzed** Result Qualifier RL MDL **Parameter** Units **Analyst** MCP Total Metals - Mansfield Lab 02/28/17 23:00 03/01/17 22:30 EPA 3050B Antimony, Total ND mg/kg 2.3 1 97,6010C AΒ 12 1 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97,6010C Arsenic, Total mg/kg 0.45 AΒ 79 1 97,6010C 0.45 02/28/17 23:00 03/01/17 22:30 EPA 3050B Barium, Total mg/kg AB 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97,6010C Beryllium, Total 0.33 mg/kg 0.23 1 AB ND 1 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97,6010C Cadmium, Total mg/kg 0.45 AΒ 12 0.45 1 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97,6010C AΒ Chromium, Total mg/kg 02/28/17 23:00 03/01/17 22:30 EPA 3050B Lead, Total 270 2.3 1 97,6010C AB mg/kg Mercury, Total 0.532 mg/kg 0.078 1 03/01/17 08:40 03/02/17 11:06 EPA 7471B 97,7471B ΒV 24 1 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97,6010C Nickel, Total mg/kg 1.1 AB Selenium, Total ND mg/kg 2.3 1 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97,6010C AΒ Silver, Total ND 0.45 1 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97,6010C AB mg/kg Thallium, Total ND 2.3 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97,6010C AB mg/kg 1 Vanadium, Total 23 mg/kg 0.45 1 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97,6010C AΒ Zinc, Total 190 mg/kg 2.3 1 02/28/17 23:00 03/01/17 22:30 EPA 3050B 97.6010C AB

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-06 Date Collected: 02/26/17 07:40

Client ID: 1700516-TP-106(0-2') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil
Percent Solids: 87%

reicent Solius.	0770					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Mansfield	d Lab									
mor rotal motals	manonon	u 245									
Arsenic, Total	4.3		mg/kg	0.45		1	02/28/17 23:00	03/01/17 22:35	EPA 3050B	97,6010C	AB
Barium, Total	24		mg/kg	0.45		1	02/28/17 23:00	03/01/17 22:35	EPA 3050B	97,6010C	AB
Cadmium, Total	ND		mg/kg	0.45		1	02/28/17 23:00	03/01/17 22:35	EPA 3050B	97,6010C	AB
Chromium, Total	6.8		mg/kg	0.45		1	02/28/17 23:00	03/01/17 22:35	EPA 3050B	97,6010C	AB
Lead, Total	52		mg/kg	2.2		1	02/28/17 23:00	03/01/17 22:35	EPA 3050B	97,6010C	AB
Mercury, Total	0.262		mg/kg	0.072		1	03/01/17 08:40	03/02/17 11:07	EPA 7471B	97,7471B	BV
Selenium, Total	ND		mg/kg	2.2		1	02/28/17 23:00	03/01/17 22:35	EPA 3050B	97,6010C	AB
Silver, Total	ND		mg/kg	0.45		1	02/28/17 23:00	03/01/17 22:35	EPA 3050B	97,6010C	AB

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-07 Date Collected: 02/26/17 10:55

Client ID: 1700516-TP-107(0-3') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil
Percent Solids: 87%

r ercent Solids.	01 /0					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MOD Tatal Matala	Manafial	-l l - l-									
MCP Total Metals	- Mansilei	d Lab									
Antimony, Total	ND		mg/kg	2.2		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Arsenic, Total	8.2		mg/kg	0.45		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Barium, Total	98		mg/kg	0.45		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Beryllium, Total	0.36		mg/kg	0.22		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Cadmium, Total	ND		mg/kg	0.45		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Chromium, Total	17		mg/kg	0.45		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Lead, Total	290		mg/kg	2.2		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Mercury, Total	1.25		mg/kg	0.073		1	03/01/17 08:4	0 03/02/17 11:09	EPA 7471B	97,7471B	BV
Nickel, Total	11		mg/kg	1.1		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Selenium, Total	ND		mg/kg	2.2		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Silver, Total	ND		mg/kg	0.45		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Thallium, Total	ND		mg/kg	2.2		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Vanadium, Total	21		mg/kg	0.45		1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB
Zinc, Total	110		mg/kg	2.2	\	1	02/28/17 23:0	0 03/01/17 22:39	EPA 3050B	97,6010C	AB

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-09 Date Collected: 02/26/17 12:05

Client ID: 1700516-TP-108(0-8') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil
Percent Solids: 86%

r ercent Johas.	0070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Mansfiel	d Lab									
Arsenic, Total	5.0		mg/kg	0.46		1	02/28/17 23:00	0 03/01/17 22:43	EPA 3050B	97,6010C	AB
Barium, Total	42		mg/kg	0.46		1	02/28/17 23:00	0 03/01/17 22:43	EPA 3050B	97,6010C	AB
Cadmium, Total	ND		mg/kg	0.46		1	02/28/17 23:00	0 03/01/17 22:43	EPA 3050B	97,6010C	AB
Chromium, Total	12		mg/kg	0.46		1	02/28/17 23:00	0 03/01/17 22:43	EPA 3050B	97,6010C	AB
Lead, Total	80		mg/kg	2.3		1	02/28/17 23:00	0 03/01/17 22:43	EPA 3050B	97,6010C	AB
Mercury, Total	0.460		mg/kg	0.074		1	03/01/17 08:40	0 03/02/17 11:11	EPA 7471B	97,7471B	BV
Selenium, Total	ND		mg/kg	2.3		1	02/28/17 23:00	03/01/17 22:43	EPA 3050B	97,6010C	AB
Silver, Total	ND		ma/ka	0.46		1	02/28/17 23:00	n 03/01/17 22:43	FPA 3050B	97,6010C	AB

L1705986

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: Report Date: 1700516 03/06/17

Λ

Method	l Blank	Analysis
Batch	Quality	Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - Mar	nsfield Lab for sampl	e(s): 01-0	3,05-07	,09 Bat	ch: WG98	1726-1			
Antimony, Total	ND	mg/kg	2.0		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Arsenic, Total	ND	mg/kg	0.40		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Barium, Total	ND	mg/kg	0.40		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Beryllium, Total	ND	mg/kg	0.20		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Cadmium, Total	ND	mg/kg	0.40		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Chromium, Total	ND	mg/kg	0.40		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Lead, Total	ND	mg/kg	2.0		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Nickel, Total	ND	mg/kg	1.0		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Selenium, Total	ND	mg/kg	2.0		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Silver, Total	ND	mg/kg	0.40		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Thallium, Total	ND	mg/kg	2.0		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Vanadium, Total	ND	mg/kg	0.40	-	1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB
Zinc, Total	ND	mg/kg	2.0		1	02/28/17 23:00	03/01/17 21:15	97,6010C	AB

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	_	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - Mar	nsfield Lab for sample	e(s): 01-0	3,05-07,	09 Bato	h: WG98	1806-1			
Mercury, Total	ND	mg/kg	0.083		1	03/01/17 08:40	03/02/17 10:49	97,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1705986

Report Date:

03/06/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Total Metals - Mansfield Lab Associated s	ample(s): 01-03,	05-07,09	Batch: WG98172	6-2 WG98	31726-3 SRM Lot N	umber: D09	91-540	
Antimony, Total	138		146		1-200	6		30
Arsenic, Total	96		103		80-121	7		30
Barium, Total	91		96		84-117	5		30
Beryllium, Total	92		99		83-117	7		30
Cadmium, Total	92		100		83-117	8		30
Chromium, Total	91		91		80-119	0		30
Lead, Total	89		96		82-118	8		30
Nickel, Total	93		101		83-117	8		30
Selenium, Total	90		96		79-121	6		30
Silver, Total	102		102		76-124	0		30
Thallium, Total	92		99		80-121	7		30
Vanadium, Total	87		96		78-122	10		30
Zinc, Total	93		98		82-118	5		30
MCP Total Metals - Mansfield Lab Associated s	ample(s): 01-03,	05-07,09	Batch: WG98180	6-2 WG98	31806-3 SRM Lot N	umber: D09	91-540	
Mercury, Total	104		97		72-128	7		30

INORGANICS & MISCELLANEOUS

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-05 Date Collected: 02/26/17 13:30

Client ID: 1700516-TP-105(0-10') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Damp Soil

Particle Size: Medium
Preliminary Burning Time (sec): 120

			Date	Analytical		
Parameter	Result		Analyzed	Method	Analyst	
Ignitability of Solid	ds - Westborough Lab					
Ignitability	NI		02/27/17 20:36	1,1030	JC	

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-01 Date Collected: 02/26/17 12:55

Client ID: 1700516-TP-101(0-3') Date Received: 02/27/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab)								
Solids, Total	84.4		%	0.100	NA	1	-	02/27/17 19:59	121,2540G	SB

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-02 Date Collected: 02/26/17 09:00

Client ID: 1700516-TP-103(0-3') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specific

Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	91.7		%	0.100	NA	1	-	02/27/17 19:59	121,2540G	SB

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-03 Date Collected: 02/26/17 09:30

Client ID: 1700516-TP-104(0-3') Date Received: 02/27/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	84.7		%	0.100	NA	1	-	02/27/17 19:59	121.2540G	SB

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-04 Date Collected: 02/26/17 13:25 Client ID: 1700516-TP-105(10') Date Received: 02/27/17

Client ID: 1700516-TP-105(10') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil

Dilution Date Date Analytical
Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Analyst

 General Chemistry - Westborough Lab

 Solids, Total
 80.0
 %
 0.100
 NA
 1
 02/27/17 19:59
 121,2540G
 SB

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-05 Date Collected: 02/26/17 13:30 Client ID: 1700516-TP-105(0-10') Date Received: 02/27/17

Client ID: 1700516-TP-105(0-10') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	borough Lab								
Specific Conductance @ 25 C	110	umhos/cm	10		1	-	02/28/17 01:26	1,9050A	KA
Solids, Total	85.3	%	0.100	NA	1		02/27/17 19:59	121,2540G	SB
pH (H)	8.1	SU	-	NA	1	-	02/27/17 20:48	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	03/01/17 18:15	03/01/17 19:55	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	03/01/17 18:15	03/01/17 19:46	1,7.3	TL
Oxidation/Reduction Potential	190	mv	-	NA	1	-	02/28/17 03:29	68,1498	KA
Paint Filter Liquid	NEGATIVE	-	0	NA	1	-	03/01/17 16:29	1,9095B	AS

L1705986

Project Name: TREMONT CROSSING PHASE II Lab Number:

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

 Lab ID:
 L1705986-06
 Date Collected:
 02/26/17 07:40

 Client ID:
 1700516-TP-106(0-2')
 Date Received:
 02/27/17

Client ID: 1700516-TP-106(0-2') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids Total	87 3		%	0.100	NΔ	1	-	02/27/17 19:59	121 2540G	SB

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

 Lab ID:
 L1705986-07
 Date Collected:
 02/26/17 10:55

 Client ID:
 1700516-TP-107(0-3')
 Date Received:
 02/27/17

Client ID: 1700516-TP-107(0-3') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids Total	86.7		%	0.100	NΑ	1	_	02/27/17 19:59	121 2540G	SB

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

 Lab ID:
 L1705986-08
 Date Collected:
 02/26/17 11:50

 Client ID:
 1700516-TP-108(8')
 Date Received:
 02/27/17

Client ID: 1700516-TP-108(8') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab								
Solids, Total	81.8	%	0.100	NA	1	-	02/27/17 19:59	121.2540G	SB

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 1700516 Report Date: 03/06/17

SAMPLE RESULTS

Lab ID: L1705986-09 Date Collected: 02/26/17 12:05

Client ID: 1700516-TP-108(0-8') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total % 0.100 NA 1 02/27/17 19:59 121,2540G SB

L1705986

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/06/17

Method Blank Analysis	
Batch Quality Control	

Parameter	Result Qualifi	er Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - W	estborough Lab for s	sample(s): 05	Batch:	WG98	32029-1				
Cyanide, Reactive	ND	mg/kg	10		1	03/01/17 18:15	03/01/17 19:54	1,7.3	TL
General Chemistry - W	estborough Lab for s	sample(s): 05	Batch:	WG98	32032-1				
Sulfide, Reactive	ND	mg/kg	10		1	03/01/17 18:15	03/01/17 19:45	1,7.3	TL

Lab Control Sample Analysis Batch Quality Control

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1705986

03/06/17

Report Date:

Parameter	LCS %Recovery Qu	LCSD ıal %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 05	Batch: WG981411-1						
рН	100	-		99-101	-			
General Chemistry - Westborough Lab	Associated sample(s): 05	Batch: WG981443-1						
Specific Conductance	100	•		99-101	-			
General Chemistry - Westborough Lab	Associated sample(s): 05	Batch: WG981444-1						
Oxidation/Reduction Potential	99			90-110	-		20	
General Chemistry - Westborough Lab	Associated sample(s): 05	Batch: WG982029-2						
Cyanide, Reactive	41			30-125	-		40	
General Chemistry - Westborough Lab	Associated sample(s): 05	Batch: WG982032-2						
Contract Charmony Westborough Lab	ricocolatou bampio(b). 00	Daton: 110002002 2						
Sulfide, Reactive	84	-		60-125	-		40	

Lab Duplicate Analysis
Batch Quality Control

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1705986

Renort I

Report Date: 03/06/17

Parameter	Native Sample	Duplicate Sar	mple <u>Uni</u> ts	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated samp 10')	le(s): 05 QC Batch ID:	WG981444-2	QC Sample: L170598	6-05 Clien	t ID: 1700516-TP-105(0-
Oxidation/Reduction Potential	190	200	mv	5	20

Project Name: TREMONT CROSSING PHASE II

Lab Number: L1705986 **Report Date:** 03/06/17 Project Number: 1700516

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	rmation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1705986-01A	Glass 120ml/4oz unpreserved	Α	N/A	2.4	Υ	Absent	MCP-8082-10(365),TS(7)
L1705986-01B	Glass 60ml unpreserved split	A	N/A	2.4	Y	Absent	MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-7471T-10(28),MCP-CD-6010T-10(180),MCP-RG-6010T-10(180),MCP-SB-6010T-10(180),MCP-SB-6010T-10(180),MCP-SE-6010T-10(180),MCP-BE-6010T-10(180),MCP-BE-6010T-10(180),MCP-BA-6010T-10(180),MCP-NI-6010T-10(180),MCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180)
L1705986-01C	Glass 60mL/2oz unpreserved	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()
L1705986-02A	Glass 120ml/4oz unpreserved	Α	N/A	2.4	Y	Absent	MCP-8082-10(365),TS(7)
L1705986-02B	Glass 60ml unpreserved split	A	N/A	2.4	Y	Absent	MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-7471T-10(28),MCP-CD-6010T-10(180),MCP-AG-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-PB-6010T-10(180)
L1705986-02C	Glass 60mL/2oz unpreserved	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()
L1705986-03A	Glass 120ml/4oz unpreserved	А	N/A	2.4	Υ	Absent	MCP-8082-10(365),TS(7)
L1705986-03B	Glass 60ml unpreserved split	A	N/A	2.4	Y	Absent	MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-7471T-10(28),MCP-CD-6010T-10(180),MCP-AG-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-PB-6010T-10(180)
L1705986-03C	Glass 60mL/2oz unpreserved	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()
L1705986-04A	Vial MeOH preserved	Α	N/A	2.4	Υ	Absent	MCP-8260H-10(14)
L1705986-04D	Plastic 2oz unpreserved for TS	Α	N/A	2.4	Υ	Absent	TS(7)
L1705986-05A	Glass 500ml/16oz unpreserved	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986 **Report Date:** 03/06/17

Container Info		Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1705986-05B	Glass 60mL/2oz unpreserved	A	N/A	2.4	Y	Absent	MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-7471T-10(28),MCP-CD-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-SB-6010T-10(180),MCP-SB-6010T-10(180),MCP-SE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-BA-6010T-10(180),MCP-V-6010T-10(180),MCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180)
L1705986-05C	Glass 500ml/16oz unpreserved	A	N/A	2.4	Y	Absent	IGNIT-1030(14),MCP-8082- 10(365),ORP- 9045(1),REACTS(14),MCP- 8081-10(14),MCP-8151- 10(14),MCP-8270- 10(14),TS(7),PH- 9045(1),PAINTF(),REACTCN(14), TPH-DRO-D(14),COND- 9050(28)
L1705986-06A	Glass 120ml/4oz unpreserved	Α	N/A	2.4	Υ	Absent	MCP-8082-10(365),TS(7)
L1705986-06B	Glass 60ml unpreserved split	A	N/A	2.4	Y	Absent	MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-7471T-10(28),MCP-CD-6010T-10(180),MCP-AG-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-PB-6010T-10(180)
L1705986-06C	Glass 60mL/2oz unpreserved	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()
L1705986-07A	Glass 120ml/4oz unpreserved	Α	N/A	2.4	Υ	Absent	MCP-8082-10(365),TS(7)
L1705986-07B	Glass 60ml unpreserved split	A	N/A	2.4	Y	Absent	MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-7471T-10(28),MCP-CD-6010T-10(180),MCP-AG-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-SB-6010T-10(180),MCP-BE-6010T-10(180),MCP-BE-6010T-10(180),MCP-B-6010T-10(180),MCP-NI-6010T-10(180),MCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180)
L1705986-07C	Glass 60mL/2oz unpreserved	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()
L1705986-08A	Vial MeOH preserved	Α	N/A	2.4	Υ	Absent	VPH-DELUX-10(28)
L1705986-08B	Plastic 2oz unpreserved for TS	Α	N/A	2.4	Υ	Absent	TS(7)
L1705986-08C	Glass 120ml/4oz unpreserved	Α	N/A	2.4	Υ	Absent	EPH-DELUX-10(14)
L1705986-09A	Glass 120ml/4oz unpreserved	Α	N/A	2.4	Υ	Absent	MCP-8082-10(365),TS(7)

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1705986 **Report Date:** 03/06/17

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1705986-09B	Glass 60ml unpreserved split	А	N/A	2.4	Υ	Absent	MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-7471T-10(28),MCP-CD-6010T-10(180),MCP-AG-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-PB-6010T-10(180)
L1705986-09C	Glass 60mL/2oz unpreserved	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986
Project Number: 1700516 Report Date: 03/06/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSING PHASE IILab Number:L1705986Project Number:1700516Report Date:03/06/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: TREMONT CROSSING PHASE II Lab Number: L1705986

Project Number: 4700546 Papert Date: 03/06/17

Project Number: 1700516 Report Date: 03/06/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Annual Book of ASTM (American Society for Testing and Materials) Standards following extraction by SW-846 EPA Method 9045C under the requirements of MADEP BWSC, WSC-CAM-VIB. August 2004.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Chain-of	-Custody Reco	rd			Labora	atory:				ALPH						Labo (Lab us		y Job	#		
		355		ont Crossing	Phase I	i		Project Information Project Location: Boston, Massachusetts									Page 1 of 1				
G	Consultants	Project Number: 1700516					10-2	Project Manager: Cathy Johnson (o) 781-721-4093 (c) 781-424-9912													
	nicorn Park Drive	Send Repo	ort to:	Jess Engle	nart			T	I T	T	Γ	T	Pres	ervati					Г		Sample Handling
Woburn, MA 01801 PH: 781.721.4000 FX: 781.721.4073 Send EDD to: labdata@geiconsultants.com						МеОН	MeOH	None	None	None	None	None	None	None	None	None	None	None			
	IPTIVE CERTAINTY REC	QUIRED -	YES (NO)				sp				Î	Ai	alysis <u>ø</u>			des				Samples Field Filtered YES NO NA
If Yes, Are MC	P Analytical Methods Req	uired?		(YES)	NO	NA		Solids				L E	d 3s)	14 Total Metals			bici		a)		Sampled Shipped
	nking Water Samples Sub			YES	(NO)	NA		%	spi			eun	ate	al N	tals	ج ا	Her		nide		With Ice
	ou Met Minimum Field QC		nts?	YES	NO	(NA)		260	Solids		827	r to	orin rls (Tot	8 Metals	tivit ity	es,	nids	Cya ty		(YES) NO
Lab Sample	GEI Sample ID	rtoquironic	-	ection	Matrix	No. of	Sampler(s)	88	8		S	I Pe	chl	14	8	duc	icid	ij	de/)RP	Sample Specific Remarks
Number			Date	Time		Bottles	Initials	VOCs 8260,	VPH,	EPH	SVOCs 8270	Total Petroleum Hydrocarbons (TPH)	Polychlorinated Biphenyls (PCBs)	MCP	RCRA	Conductivity ignitability	Pesticides, Herbicides	Free liquids	Sulfide/Cyanide Reactivity	pH/ORP	
	1700516-TP-101 (0-3')		2/26/2017	12:55	so	2	JTN						х	х							
	1700516-TP-103 (0-3')		2/26/2017	9:00	so	2	JTN						x		х						Q 1000
	1700516-TP-104 (0-3')		2/26/2017	9:30	SO	2	JTN						x		х						
	1700516-TP-105 (10')		2/26/2017	13:25	SO	2	JTN	x					-	32013200							
	1700516-TP-105 (0-10')		2/26/2017	13:30	SO	4	JTN				х	x	х	х		х	х	х	х	х	
	1700516-TP-106 (0-2')		2/26/2017	7:40	SO	2	JTN	\					х		x						
	1700516-TP-107 (0-3')		2/26/2017	10:55	so	2	JTN						х	х							
	1700516-TP-108 (8')		2/26/2017	11:50	so	3	JTN		х	x)		
	1700516-TP-108 (0-8')		2/26/2017	12:05	so	2	JTN						x		x						
4051 111																					
WICP Level Ne whenever poss	eded: GEI requires the mo	ost stringen	Method 1 M	ICP standard	be met f	or all anal	ytes						narour								
Relinquished by samp		Date :	Time:	Received by: (sig	nature)			The second second		Na			siness								
1. Chian	ull	2/26/2017	15:25	1. GEI Sam	ole Fridae						rmal _) Day										
Relinquished by: (sign	nature)	Date :	Time:	Received by: (sig		7					Day _		3-Day		-0,						
GEL SAM	APLE FRINGE	2/27/17	13:25	2. C.M	ala	grade	_			J-L		Name and Address of the Owner, where the Owner, which is the Owner, which is the Owner, where the Owner, which is the Owner,	The same of the sa	nal Re	quire	ments	/Com	ment	s/Rem	narks:	
Relinquished by: (sign	nature)	Date:	Time:	Received by: (sig		1		Please ru	n TCLF	if any	metals										
3. C.Ma	Lagrda		13:25			sto A	AL	Please ru	ın hexa	valent	chromi	um if to	tal chr	omium	excee	ds 100 r	mg/kg.				
Relinquished by: (sign	do Maesto	Date: 2/27/17	18:25	Received by: (sig	nature)	de															

Chain-of	-Custody Reco	rd			Labora	atory:			Charles .	ALPH						Labo (Lab us		y Job) #		
G	IFI O		ime: Tremo	ont Crossin	Phase I	I		Project Information Project Location: Boston, Massachusetts Project Manager: Cathy Johnson (o) 781-721-4093 (c)781-424-9912								Page 1 of 1					
	Consultants										(o) 78	31-721-		-		9912					
	nicorn Park Drive ourn, MA 01801	Send Repo	ort to:	Jess Engle	nart			Ī	ΙΞ	1 0				ervati	ve					1	Sample Handling
PH	: 781.721.4000 : 781.721.4073	Send EDD	to: labdata(@geiconsulta	ants.com			МеОН	МеОН	None	None	None	Ar	Nalysis	Non	None	None	None	None	None	Camples Field Filters d
MCP PRESUM	IPTIVE CERTAINTY REC	UIRED	YES (NO				Solids				m (TPH)		als			ides				Samples Field Filtered YES NO NA
If Yes, Are MC	P Analytical Methods Req	uired?		(YES)	NO	NA		So				E	ed Bs)	Met	s		rbic		e e		Sampled Shipped
If Yes, Are Drin	nking Water Samples Subi	mitted?		YES	(NO)	NA		0, %	Solids	4	6	Petroleum carbons ((PC	otal	8 Metals	ity,	, He	ş	anic		With Ice
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I	ou Met Minimum Field QC	Requireme	nts?	YES	NO	(NA)		826	% S		s 82	Cart	nolu	4 T	8	ictiv	ides	quic	Vity S	يو ا	(YES) NO
Lab Sample Number	GEI Sample ID		Date Colle	Time	Matrix	No. of Bottles	Sampler(s) Initials	VOCs 8260,	VPH,	ЕРН	SVOCs 8270	Total Petroleur Hydrocarbons	Polychlorinated Biphenyls (PCBs)	MCP 14 Total Metals	RCRA	Conductivity, ignitability	Pesticides, Herbicides	Free liquids	Sulfide/Cyanide Reactivity	pH/ORP	Sample Specific Remarks
	1700516-TP-101 (0-3')		2/26/2017	12:55	SO	2	JTN						х	x		-	_		-	_	
	1700516-TP-103 (0-3')		2/26/2017	9:00	so	2	JTN						x		х						
	1700516-TP-104 (0-3')		2/26/2017	9:30	so	2	JTN						x		х						
	1700516-TP-105 (10')		2/26/2017	13:25	so	2	JTN	x			1			271.00							
	1700516-TP-105 (0-10')		2/26/2017	13:30	SO	4	JTN				х	х	х	х		х	х	х	х	х	
	1700516-TP-106 (0-2')		2/26/2017	7:40	SO	2	JTN	\					х		x						
	1700516-TP-107 (0-3')		2/26/2017	10:55	so	2	JTN						х	х							
	1700516-TP-108 (8')	_	2/26/2017	11:50	so	3	JTN		х	x											
	1700516-TP-108 (0-8')		2/26/2017	12:05	SO	2	JTN						х		x						
MCD Lovel No	eded: GEI requires the mo	act etringent	Mothed 1 N	CD standar	l ha mat f	or all analy	dos					_		1.7							
whenever poss		ost stringerit	INCUIOU I IV	ior standart	i de meu	or all arial	ytes						narour siness								
Relinquished by sam	1, 75	Date :	Time:	Received by: (sig	nature)					No	rmal _		Other								
1. The !		2/26/2017	15:25	1. GEI Sam	ole Fridge						Day _										
Relinquished by: (sig	nature)	Date :	Time:	Received by: (sig	nature)	, ,) (ay _)		3-Day								
2. GEL SAM	MPLE FRINCE	227/17	13:25		ala	grdo						A	dition	nal Re	quire	ments	/Com	ment	s/Ren	narks:	
Relinquished by: (sign	nature)	Date:	Time:	Received by: (sig		1	111	Please ru													
3. (· / /a Relinquished by: (şigi	Lagrda	2/27/7 Date:	13:25 Time:	3. KOP Received by: (sig		sto A	AL	Please ru	ın hexa	valent	chromi	um if to	tal chr	omium	excee	ds 100 i	ng/kg.				
VI		2(27)17	18:25	II .	nature)	de					_										

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1705986 **Project Name** : TREMONT CROSSING PHASE II **Project Number** : 1700516 Lab File ID : V10170302A05

Lab Sample ID Instrument ID : WG982317-5

: VOA110 Analysis Date Matrix : SOIL : 03/02/17 08:38

Client Sample No.	Lab Sample ID	Analysis Date
WG982317-3LCS	WG982317-3	03/02/17 06:54
WG982317-4LCSD	WG982317-4	03/02/17 07:20
1700516-TP-105(10')	L1705986-04	03/02/17 09:56

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1705986
Project Name : TREMONT CROSSING PHASE II Project Number : 1700516
Instrument ID : VOA110 Calibration Date : 03/02/17 06:54

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(m
Fluorobenzene	1	1 0 404	-	0	20	138	0
Dichlorodifluoromethane	0.351	0.404	-	-15.1	20	164	0
Chloromethane	0.269	0.307	-	-14.1	20	158	0
Vinyl chloride	0.267	0.295	-	-10.5	20	156	0
Bromomethane	0.202	0.195	-	3.5	20	143	.01
Chloroethane	0.168	0.154	-	8.3	20	127	.04
Trichlorofluoromethane	0.445	0.466	-	-4.7	20	139	.04
Ethyl ether	0.158	0.146	-	7.6	20	132	0
1,1-Dichloroethene	0.221	0.25	-	-13.1	20	163	.01
Carbon disulfide	20	17.279	-	13.6	20	125	.02
Freon-113	0.206	0.236	-	-14.6	20	160	.02
Acrolein	0.046	0.045	•	2.2	20	151	0
Methylene chloride	20	18.966	-	5.2	20	139	0
Acetone	0.056	0.066	-	-17.9	20	169	0
trans-1,2-Dichloroethene	0.25	0.272	-	-8.8	20	154	0
Methyl acetate	0.153	0.147	-	3.9	20	139	0
Methyl tert-butyl ether	0.676	0.736		-8.9	20	158	0
tert-Butyl alcohol	0.018	0.02	-	-11.1	20	160	01
Diisopropyl ether	0.758	0.841	-	-10.9	20	154	0
1,1-Dichloroethane	0.425	0.458	-	-7.8	20	148	0
Halothane	0.17	0.181	-	-6.5	20	150	0
Acrylonitrile	20	18.959	-	5.2	20	138	0
Ethyl tert-butyl ether	0.616	0.695	-	-12.8	20	160	0
Vinyl acetate	20	19.066	-	4.7	20	146	0
cis-1,2-Dichloroethene	0.269	0.283	-	-5.2	20	146	0
2,2-Dichloropropane	0.313	0.377	-	-20.4*	20	177	0
Bromochloromethane	0.128	0.127	-	0.8	20	135	0
Cyclohexane	0.342	0.411	-	-20.2*	20	168	0
Chloroform	0.457	0.459	-	-0.4	20	137	0
Ethyl acetate	0.204	0.207		-1.5	20	142	0
Carbon tetrachloride	0.32	0.338		-5.6	20	153	0
Tetrahydrofuran	0.072	0.088		-22.2*	20	166	0
Dibromofluoromethane	0.256	0.25		2.3	20	133	0
1,1,1-Trichloroethane	0.393	0.425	-	-8.1	20	152	0
2-Butanone	0.09	0.074	-	17.8	20	126	.01
1,1-Dichloropropene	0.09	0.074		-12.6	20	155	0
Benzene	0.31	1.034	-	-12.6	20	143	0
			-				0
tert-Amyl methyl ether	0.54	0.606	-	-12.2	20	164	
1,2-Dichloroethane-d4	0.27	0.254	-	5.9	20	129	0
1,2-Dichloroethane	0.339	0.32	-	5.6	20	129	0
Methyl cyclohexane	0.35	0.396	-	-13.1	20	167	0
Trichloroethene	0.262	0.265	-	-1.1	20	141	0
Dibromomethane	0.151	0.139	-	7.9	20	128	0
1,2-Dichloropropane	0.232	0.23	-	0.9	20	138	0
2-Chloroethyl vinyl ether	20	16.654	-	16.7	20	146	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1705986 **Project Name** : TREMONT CROSSING PHASE II Project Number : 1700516

Instrument ID Calibration Date : VOA110 : 03/02/17 06:54 Init. Calib. Date(s) : 02/21/17 Lab File ID : V10170302A01 02/21/17 Init. Calib. Times 19:20 : 16:17

: WG982317-2 Sample No

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Bromodichloromethane	0.337	0.303	-	10.1	20	127	0
1,4-Dioxane	0.00229	0.00216	-	5.7	20	136	0
cis-1,3-Dichloropropene	20	18.345	-	8.3	20	145	0
Chlorobenzene-d5	1	1	-	0	20	137	0
Toluene-d8	1.233	1.264	-	-2.5	20	138	0
Toluene	0.846	0.86	-	-1.7	20	138	0
4-Methyl-2-pentanone	0.089	0.08	-	10.1	20	149	0
Tetrachloroethene	0.33	0.338	-	-2.4	20	143	0
trans-1,3-Dichloropropene	0.402	0.405	-	-0.7	20	143	0
Ethyl methacrylate	20	16.61	7	17	20	139	0
1,1,2-Trichloroethane	0.243	0.234	-	3.7	20	130	0
Chlorodibromomethane	0.324	0.284		12.3	20	125	0
1,3-Dichloropropane	0.472	0.457	-	3.2	20	132	0
1,2-Dibromoethane	0.267	0.253	-	5.2	20	131	0
2-Hexanone	20	15.221	-	23.9*	20	144	0
Chlorobenzene	0.965	0.923	-	4.4	20	130	0
Ethylbenzene	1.513	1.568	-	-3.6	20	137	0
1,1,2-Tetrachloroethane	0.334	0.312		6.6	20	128	0
p/m Xylene	0.58	0.61	-	-5.2	20	135	0
o Xylene	0.54	0.563	-	-4.3	20	135	0
Styrene	0.952	0.933	-	2	20	126	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	128	0
Bromoform	0.396	0.326	-	17.7	20	116	0
Isopropylbenzene	2.879	3.172	-	-10.2	20	141	0
4-Bromofluorobenzene	0.867	0.919	-	-6	20	138	0
Bromobenzene	0.743	0.709		4.6	20	126	0
n-Propylbenzene	3.513	3.767		-7.2	20	136	0
1,4-Dichlorobutane	0.894	0.902		-0.9	20	130	0
1,1,2,2-Tetrachloroethane	0.714	0.657	<u> </u>	8	20	122	0
4-Ethyltoluene	2.879	3.092	-	-7.4	20	134	0
2-Chlorotoluene	2.146	2.211	<u> </u>	-3	20	129	0
1,3,5-Trimethylbenzene	2.51	2.652	<u> </u>	-5.7	20	130	0
1,2,3-Trichloropropane	0.577	0.541		6.2	20	125	0
trans-1,4-Dichloro-2-buten	0.175	0.16	-	8.6	20	120	0
4-Chlorotoluene	2.122	2.195	<u> </u>	-3.4	20	130	0
tert-Butylbenzene	2.051	2.195	-	-7.3	20	138	0
1,2,4-Trimethylbenzene	2.467	2.2	-	-7.3 -5.6	20	130	0
•				-8.2			
sec-Butylbenzene	3.173	3.434	-		20	136	0
p-Isopropyltoluene 1,3-Dichlorobenzene	2.626	2.798	-	-6.5 4	20 20	135 124	0
•	1.484	1.425	-				0
1,4-Dichlorobenzene	1.534	1.423	-	7.2	20	121	0
p-Diethylbenzene	1.524	1.6	-	-5	20	134	0
n-Butylbenzene	2.502	2.691	-	-7.6	20	134	0
1,2-Dichlorobenzene	1.392	1.279	-	8.1	20	122	0
1,2,4,5-Tetramethylbenzene	20	17.973	-	10.1	20	130	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1705986
Project Name : TREMONT CROSSING PHASE II Project Number : 1700516
Instrument ID : VOA110 Calibration Date : 03/02/17 06:54

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dibromo-3-chloropropan	0.09	0.074	-	17.8	20	115	0
1,3,5-Trichlorobenzene	1.022	0.971	-	5	20	123	0
Hexachlorobutadiene	0.493	0.474	-	3.9	20	134	0
1,2,4-Trichlorobenzene	0.876	0.839	-	4.2	20	127	0
Naphthalene	20	16.947	-	15.3	20	124	0
1,2,3-Trichlorobenzene	0.839	0.783	-	6.7	20	123	0

^{*} Value outside of QC limits.

I:\Pest18\170305a\18170305a-01.d

Data File Name 18170305a-01.d I:\Pest18\170305a\ Data File Path Operator **PEST18:RLLOADED** Date Acquired 3/5/2017 15:40 Acq. Method File **PEST.M** deg std pp7743

Sample Name

Instrument Name Pest 18

Name Endrin Endrin Aldehyde Endrin Ketone	Ret Time 4.62 5.07 5.58	Response 219619712.7 987037.33 2407069.085	% Breakdown
Enann Kelone	5.58	2407069.085	1.52%
4,4'-DDT 4,4'-DDE	4.68 4.89	417950479.9 730446.415	% Breakdown
4,4'-DDD	4.68	957828.207	0.40%
Endrin #2	5.23	86461154.37	% Breakdown
Endrin Aldehyde #2	5.60	801660.04	
Endrin Ketone #2	6.16	853836.172	1.88%
4,4'-DDT #2	5.60	158556907.4	% Breakdown
4,4'-DDE #2	4.87	362250.074	
4,4'-DDD #2	5.29	984909.046	0.84%

####### Data File Path

I:\Pest17\150918\

wg981906-1,2,3 L1705986-05

ANALYTICAL REPORT

Lab Number: L1706294

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/08/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706294 **Report Date:** 03/08/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1706294-01	1700516-B302-S4 (0-8")	SOIL	BOSTON, MA	02/27/17 23:50	03/01/17
I 1706294-02	1700516-B307-S7 (6-18")	SOIL	BOSTON, MA	02/27/17 19:40	03/01/17

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 **Report Date:** 03/08/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status						
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO					
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO					
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES					

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L1706294

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/08/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 Report Date: 03/08/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The initial calibration, associated with L1706294-01 and -02, did not meet the method required minimum response factor on the lowest calibration standard for acetone (0.0788), 2-butanone (0.0798), 4-methyl-2-pentanone (0.0579), and 1,4-dioxane (0.0021), as well as the average response factor for acetone, 2-butanone, 4-methyl-2-pentanone, and 1,4-dioxane.

The continuing calibration standard, associated with L1706294-01 and -02, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/08/17

Custen Walker Cristin Walker

L1706294

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

•

Report Date: 03/08/17

Lab Number:

SAMII EL NESO

Lab ID: L1706294-01

Client ID: 1700516-B302-S4 (0-8") Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 03/05/17 11:04

Analyst: MV Percent Solids: 79%

Da	te Coll	ected:	02/27/17 23:50)
_	_			

Date Received: 03/01/17
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 High	- Westborough Lab)				
Methylene chloride	ND		ug/kg	500		1
1,1-Dichloroethane	ND		ug/kg	75		1
Chloroform	ND		ug/kg	75		1
Carbon tetrachloride	ND		ug/kg	50		1
1,2-Dichloropropane	ND		ug/kg	180		1
Dibromochloromethane	ND		ug/kg	50		1
1,1,2-Trichloroethane	ND		ug/kg	75		1
Tetrachloroethene	ND		ug/kg	50		1
Chlorobenzene	ND		ug/kg	50		1
Trichlorofluoromethane	ND		ug/kg	200		1
1,2-Dichloroethane	ND		ug/kg	50		1
1,1,1-Trichloroethane	ND		ug/kg	50		1
Bromodichloromethane	ND		ug/kg	50		1
trans-1,3-Dichloropropene	ND		ug/kg	50		1
cis-1,3-Dichloropropene	ND		ug/kg	50		1
1,3-Dichloropropene, Total	ND		ug/kg	50		1
1,1-Dichloropropene	ND		ug/kg	200		1
Bromoform	ND		ug/kg	200		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	50		1
Benzene	ND		ug/kg	50		1
Toluene	ND		ug/kg	75		1
Ethylbenzene	ND		ug/kg	50		1
Chloromethane	ND		ug/kg	200		1
Bromomethane	ND		ug/kg	100		1
Vinyl chloride	ND		ug/kg	100		1
Chloroethane	ND		ug/kg	100		1
1,1-Dichloroethene	ND		ug/kg	50		1
trans-1,2-Dichloroethene	ND		ug/kg	75		1
Trichloroethene	ND		ug/kg	50		1
1,2-Dichlorobenzene	ND		ug/kg	200		1

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 Report Date: 03/08/17

SAMPLE RESULTS

Lab ID: L1706294-01 Date Collected: 02/27/17 23:50

Client ID: 1700516-B302-S4 (0-8") Date Received: 03/01/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics by 5035 High - Westborough Lab ND 200 1,3-Dichlorobenzene ug/kg 1 1,4-Dichlorobenzene ND ug/kg 200 Methyl tert butyl ether ND ug/kg 100 1 p/m-Xylene ND 100 1 ug/kg o-Xylene ND 100 1 ug/kg Xylenes, Total ND 100 1 ug/kg -cis-1,2-Dichloroethene ND 50 1 ug/kg --1,2-Dichloroethene, Total ND ug/kg 50 1 Dibromomethane ND 200 1 ug/kg 1,2,3-Trichloropropane ND 200 1 ug/kg Styrene ND ug/kg 100 1 Dichlorodifluoromethane ND 500 1 ug/kg --ND 1800 1 Acetone ug/kg ND Carbon disulfide 200 1 ug/kg Methyl ethyl ketone ND 500 1 ug/kg Methyl isobutyl ketone ND 500 1 ug/kg ND 2-Hexanone ug/kg 500 1 Bromochloromethane ND 200 1 ug/kg --Tetrahydrofuran ND 200 1 ug/kg ND 2,2-Dichloropropane 250 1 ug/kg --ND 200 1 1,2-Dibromoethane ug/kg 1,3-Dichloropropane ND 200 1 ug/kg 1,1,1,2-Tetrachloroethane ND 50 ug/kg --1 Bromobenzene ND 250 1 ug/kg -n-Butylbenzene ND 50 1 ug/kg sec-Butylbenzene ND 50 1 ug/kg tert-Butylbenzene ND 200 1 ug/kg o-Chlorotoluene ND 200 1 ug/kg ND p-Chlorotoluene 200 1 ug/kg --1,2-Dibromo-3-chloropropane ND ug/kg 200 1 Hexachlorobutadiene ND ug/kg 200 1 ND 50 1 Isopropylbenzene ug/kg p-Isopropyltoluene ND ug/kg 50 1 ND Naphthalene ug/kg 200 --1 n-Propylbenzene ND 50 1 ug/kg --1,2,3-Trichlorobenzene ND 200 1 ug/kg 1,2,4-Trichlorobenzene ND 200 1 ug/kg --ND 1,3,5-Trimethylbenzene 200 1 ug/kg 1,2,4-Trimethylbenzene ND 200 1 ug/kg

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 Report Date: 03/08/17

SAMPLE RESULTS

Lab ID: L1706294-01 Date Collected: 02/27/17 23:50

Client ID: 1700516-B302-S4 (0-8") Date Received: 03/01/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
MCP Volatile Organics by 5035 High - Westborough Lab								
Diethyl ether	ND		ug/kg	250		1		
Diisopropyl Ether	ND		ug/kg	200		1		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200		1		
Tertiary-Amyl Methyl Ether	ND		ug/kg	200		1		
1,4-Dioxane	ND		ug/kg	2000		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	95	70-130	

L1706294

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Report Date: 03/08/17

Lab Number:

Lab ID: L1706294-02

1700516-B307-S7 (6-18") Client ID:

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 03/05/17 11:29

Analyst: MV 81% Percent Solids:

Date Received: 03/01/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 High -	Westborough La	b				
Methylene chloride	ND		ug/kg	530		1
1,1-Dichloroethane	ND		ug/kg	80		1
Chloroform	ND		ug/kg	80		1
Carbon tetrachloride	ND		ug/kg	53		1
1,2-Dichloropropane	ND		ug/kg	180		1
Dibromochloromethane	ND		ug/kg	53		1
1,1,2-Trichloroethane	ND		ug/kg	80		1
Tetrachloroethene	ND		ug/kg	53		1
Chlorobenzene	ND		ug/kg	53		1
Trichlorofluoromethane	ND		ug/kg	210		1
1,2-Dichloroethane	ND		ug/kg	53		1
1,1,1-Trichloroethane	ND		ug/kg	53		1
Bromodichloromethane	ND		ug/kg	53		1
trans-1,3-Dichloropropene	ND		ug/kg	53		1
cis-1,3-Dichloropropene	ND		ug/kg	53		1
1,3-Dichloropropene, Total	ND		ug/kg	53		1
1,1-Dichloropropene	ND		ug/kg	210		1
Bromoform	ND		ug/kg	210		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	53		1
Benzene	ND		ug/kg	53		1
Toluene	ND		ug/kg	80		1
Ethylbenzene	ND		ug/kg	53		1
Chloromethane	ND		ug/kg	210		1
Bromomethane	ND		ug/kg	110		1
Vinyl chloride	ND		ug/kg	110		1
Chloroethane	ND		ug/kg	110		1
1,1-Dichloroethene	ND		ug/kg	53		1
trans-1,2-Dichloroethene	ND		ug/kg	80		1
Trichloroethene	ND		ug/kg	53		1
1,2-Dichlorobenzene	ND		ug/kg	210		1

L1706294

Project Name: TREMONT CROSSING Lab Number:

Project Number: Report Date: 1700516 03/08/17

SAMPLE RESULTS

Lab ID: L1706294-02 Date Collected: 02/27/17 19:40

Client ID: 1700516-B307-S7 (6-18") Date Received: 03/01/17 Sample Location: Not Specified BOSTON, MA Field Prep:

Parameter Result Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics by 5035 High - Westborough Lab ND 210 1,3-Dichlorobenzene ug/kg 1 1,4-Dichlorobenzene ND ug/kg 210 Methyl tert butyl ether ND ug/kg 110 1 p/m-Xylene ND 110 1 ug/kg o-Xylene ND 110 1 ug/kg Xylenes, Total ND 110 1 ug/kg -cis-1,2-Dichloroethene ND 53 1 ug/kg --1,2-Dichloroethene, Total ND ug/kg 53 1 Dibromomethane ND 210 1 ug/kg 1,2,3-Trichloropropane ND 210 1 ug/kg Styrene ND ug/kg 110 1 Dichlorodifluoromethane ND 530 1 ug/kg --ND 1900 1 Acetone ug/kg ND Carbon disulfide 210 1 ug/kg Methyl ethyl ketone ND 530 1 ug/kg Methyl isobutyl ketone ND 530 1 ug/kg ND 530 2-Hexanone ug/kg 1 Bromochloromethane ND 210 1 ug/kg --Tetrahydrofuran ND 210 1 ug/kg ND 2,2-Dichloropropane 260 1 ug/kg --ND 210 1 1,2-Dibromoethane ug/kg 1,3-Dichloropropane ND 210 1 ug/kg 1,1,1,2-Tetrachloroethane ND ug/kg 53 --1 Bromobenzene ND 260 1 ug/kg -n-Butylbenzene ND 53 1 ug/kg sec-Butylbenzene ND 53 1 ug/kg tert-Butylbenzene ND 210 1 ug/kg o-Chlorotoluene ND 210 1 ug/kg ND p-Chlorotoluene 210 1 ug/kg --1,2-Dibromo-3-chloropropane ND ug/kg 210 1 Hexachlorobutadiene ND ug/kg 210 1 ND 53 1 Isopropylbenzene ug/kg p-Isopropyltoluene ND ug/kg 53 1 ND Naphthalene ug/kg 210 --1 n-Propylbenzene ND 53 1 ug/kg --1,2,3-Trichlorobenzene ND 210 1 ug/kg 1,2,4-Trichlorobenzene ND 1 ug/kg 210 --ND 1,3,5-Trimethylbenzene 210 1 ug/kg 1,2,4-Trimethylbenzene ND 210 1 ug/kg

Project Name: Lab Number: TREMONT CROSSING L1706294

Project Number: Report Date: 1700516 03/08/17

SAMPLE RESULTS

Lab ID: L1706294-02 Date Collected: 02/27/17 19:40

1700516-B307-S7 (6-18") Client ID: Date Received: 03/01/17

Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
MCP Volatile Organics by 5035 High - Westborough Lab								
Diethyl ether	ND		ug/kg	260		1		
Diisopropyl Ether	ND		ug/kg	210		1		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	210		1		
Tertiary-Amyl Methyl Ether	ND		ug/kg	210		1		
1,4-Dioxane	ND		ug/kg	2100		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	94		70-130	

L1706294

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/08/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 93/05/17 09:46

Analyst: BN

McP Volatile Organics by 8260/5035 - Westborough Lab for sample(s): 01-02 Batch: WG983145-5 Methylene chloride ND ug/kg 500 1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 50 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichloroffuoroethane ND ug/kg 50 Trichloroffuoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 Bromodichloropropene ND ug/kg 50 1,3-Dichloropropene ND	Parameter	Result	Qualifier Units	RL	MDL	
1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50<	MCP Volatile Organics by 8260	/5035 - Westbo	rough Lab for sample	(s): 01-02	Batch: WG983145-5	5
1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50<	Methylene chloride	ND	ug/kg	500		
Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 1,1,2-Trichloropermentane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Chlorofluoromethane ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg 50 1,2-Dichloropropene ND ug/kg <td></td> <td>ND</td> <td></td> <td>75</td> <td></td> <td></td>		ND		75		
1,2-Dichloropropane ND	Chloroform	ND	ug/kg	75		
Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 1,1-2,2-Tetrachloroethane ND	Carbon tetrachloride	ND	ug/kg	50		
1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 200 1,1-Dichloropropene ND ug/kg 200 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 50 1,1,2,2-Tetrachloroethane ND ug/kg	1,2-Dichloropropane	ND	ug/kg	180		
Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 <td>Dibromochloromethane</td> <td>ND</td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	Dibromochloromethane	ND	ug/kg	50		
Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td>ug/kg</td><td>75</td><td></td><td></td></t<>	1,1,2-Trichloroethane	ND	ug/kg	75		
Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 100	Tetrachloroethene	ND	ug/kg	50		
1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100	Chlorobenzene	ND	ug/kg	50		
1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50	Trichlorofluoromethane	ND	ug/kg	200		
Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 <td>1,2-Dichloroethane</td> <td>ND</td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	1,2-Dichloroethane	ND	ug/kg	50		
trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 50	1,1,1-Trichloroethane	ND	ug/kg	50		
cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromodichloromethane	ND	ug/kg	50		
1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	trans-1,3-Dichloropropene	ND	ug/kg	50		
1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	cis-1,3-Dichloropropene	ND	ug/kg	50		
Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,3-Dichloropropene, Total	ND	ug/kg	50		
1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1-Dichloropropene	ND	ug/kg	200		
Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromoform	ND	ug/kg	200		
Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1,2,2-Tetrachloroethane	ND	ug/kg	50		
Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Benzene	ND	ug/kg	50		
Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Toluene	ND	ug/kg	75		
Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Ethylbenzene	ND	ug/kg	50		
Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Chloromethane	ND	ug/kg	200		
Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromomethane	ND	ug/kg	100		
1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Vinyl chloride	ND	ug/kg	100		
trans-1,2-Dichloroethene ND ug/kg 75	Chloroethane	ND	ug/kg	100		
3 3	1,1-Dichloroethene	ND	ug/kg	50		
Trichloroethene ND ug/kg 50	trans-1,2-Dichloroethene	ND	ug/kg	75		
	Trichloroethene	ND	ug/kg	50		

L1706294

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/08/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/05/17 09:46

Analyst: BN

Parameter	Result	Qualifier	Units	RL	MDL
MCP Volatile Organics by 8260/503	5 - Westbo	rough Lab	for sample(s):	01-02	Batch: WG983145-5
1,2-Dichlorobenzene	ND		ug/kg	200	
1,3-Dichlorobenzene	ND		ug/kg	200	
1,4-Dichlorobenzene	ND		ug/kg	200	
Methyl tert butyl ether	ND		ug/kg	100	
p/m-Xylene	ND		ug/kg	100	
o-Xylene	ND		ug/kg	100	
Xylenes, Total	ND		ug/kg	100	
cis-1,2-Dichloroethene	ND		ug/kg	50	
1,2-Dichloroethene, Total	ND		ug/kg	50	
Dibromomethane	ND		ug/kg	200	
1,2,3-Trichloropropane	ND		ug/kg	200	
Styrene	ND		ug/kg	100	
Dichlorodifluoromethane	ND		ug/kg	500	
Acetone	ND		ug/kg	1800	
Carbon disulfide	ND		ug/kg	200	
Methyl ethyl ketone	ND		ug/kg	500	
Methyl isobutyl ketone	ND		ug/kg	500	
2-Hexanone	ND		ug/kg	500	
Bromochloromethane	ND		ug/kg	200	
Tetrahydrofuran	ND		ug/kg	200	
2,2-Dichloropropane	ND		ug/kg	250	
1,2-Dibromoethane	ND		ug/kg	200	
1,3-Dichloropropane	ND		ug/kg	200	
1,1,1,2-Tetrachloroethane	ND		ug/kg	50	
Bromobenzene	ND		ug/kg	250	
n-Butylbenzene	ND		ug/kg	50	
sec-Butylbenzene	ND		ug/kg	50	
tert-Butylbenzene	ND		ug/kg	200	
o-Chlorotoluene	ND		ug/kg	200	

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 Report Date: 03/08/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/05/17 09:46

Analyst: BN

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics by 8260/	5035 - Westbo	orough Lab for	r sample	e(s): 01-02	Batch: WO	3983145-5
p-Chlorotoluene	ND		ug/kg	200		
1,2-Dibromo-3-chloropropane	ND		ug/kg	200		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	200		
1,2,4-Trichlorobenzene	ND		ug/kg	200		
1,3,5-Trimethylbenzene	ND		ug/kg	200		
1,2,4-Trimethylbenzene	ND		ug/kg	200		
Diethyl ether	ND		ug/kg	250		
Diisopropyl Ether	ND		ug/kg	200		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200		
Tertiary-Amyl Methyl Ether	ND		ug/kg	200		
1,4-Dioxane	ND		ug/kg	2000		
2-Chloroethylvinyl ether	ND		ug/kg	1000		
Halothane	ND		ug/kg	2000		
Ethyl Acetate	ND		ug/kg	1000		
Freon-113	ND		ug/kg	1000		
Vinyl acetate	ND		ug/kg	500		

		Į.	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	101		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706294

rameter	LCS %Recovery Qua	LCSD I %Recovery Qu	%Recovery al Limits	RPD	RPD Qual Limits
CP Volatile Organics by 8260/5035 -	Westborough Lab Associated	d sample(s): 01-02 Batch:	WG983145-3 WG983	145-4	
Methylene chloride	91	89	70-130	2	20
1,1-Dichloroethane	104	98	70-130	6	20
Chloroform	100	97	70-130	3	20
Carbon tetrachloride	106	100	70-130	6	20
1,2-Dichloropropane	99	94	70-130	5	20
Dibromochloromethane	90	88	70-130	2	20
1,1,2-Trichloroethane	96	93	70-130	3	20
Tetrachloroethene	97	93	70-130	4	20
Chlorobenzene	93	90	70-130	3	20
Trichlorofluoromethane	106	99	70-130	7	20
1,2-Dichloroethane	97	94	70-130	3	20
1,1,1-Trichloroethane	107	101	70-130	6	20
Bromodichloromethane	94	91	70-130	3	20
trans-1,3-Dichloropropene	99	95	70-130	4	20
cis-1,3-Dichloropropene	89	84	70-130	6	20
1,1-Dichloropropene	106	99	70-130	7	20
Bromoform	86	83	70-130	4	20
1,1,2,2-Tetrachloroethane	92	91	70-130	1	20
Benzene	101	97	70-130	4	20
Toluene	97	93	70-130	4	20
Ethylbenzene	100	95	70-130	5	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706294

Parameter	LCS %Recovery Qua	LCSD I %Recovery Q	%Recovery ual Limits Ri	RPD PD Qual Limits
MCP Volatile Organics by 8260/5035 - We	estborough Lab Associate	d sample(s): 01-02 Batch	WG983145-3 WG983145-4	
Chloromethane	103	98	70-130	5 20
Bromomethane	96	97	70-130	1 20
Vinyl chloride	98	92	70-130	6 20
Chloroethane	89	86	70-130	3 20
1,1-Dichloroethene	104	98	70-130	6 20
trans-1,2-Dichloroethene	101	94	70-130	7 20
Trichloroethene	102	96	70-130	6 20
1,2-Dichlorobenzene	90	88	70-130	2 20
1,3-Dichlorobenzene	93	89	70-130	4 20
1,4-Dichlorobenzene	90	86	70-130	5 20
Methyl tert butyl ether	104	101	70-130	3 20
p/m-Xylene	102	96	70-130	6 20
o-Xylene	100	95	70-130	5 20
cis-1,2-Dichloroethene	100	97	70-130	3 20
Dibromomethane	94	93	70-130	1 20
1,2,3-Trichloropropane	92	92	70-130	0 20
Styrene	96	93	70-130	3 20
Dichlorodifluoromethane	103	97	70-130	6 20
Acetone	115	112	70-130	3 20
Carbon disulfide	81	76	70-130	6 20
Methyl ethyl ketone	94	97	70-130	3 20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706294

arameter	LCS %Recovery Qual	LCSD %Recovery (%Recovery Qual Limits RPD	RPD Qual Limits
ICP Volatile Organics by 8260/5035 -	Westborough Lab Associated	sample(s): 01-02 Batcl	n: WG983145-3 WG983145-4	
Methyl isobutyl ketone	82	80	70-130 2	20
2-Hexanone	69 Q	71	70-130 3	20
Bromochloromethane	100	95	70-130 5	20
Tetrahydrofuran	117	115	70-130 2	20
2,2-Dichloropropane	115	109	70-130 5	20
1,2-Dibromoethane	92	92	70-130 0	20
1,3-Dichloropropane	96	93	70-130 3	20
1,1,1,2-Tetrachloroethane	94	91	70-130 3	20
Bromobenzene	92	89	70-130 3	20
n-Butylbenzene	100	95	70-130 5	20
sec-Butylbenzene	101	96	70-130 5	20
tert-Butylbenzene	99	95	70-130 4	20
o-Chlorotoluene	98	95	70-130 3	20
p-Chlorotoluene	97	94	70-130 3	20
1,2-Dibromo-3-chloropropane	86	84	70-130 2	20
Hexachlorobutadiene	91	87	70-130 4	20
Isopropylbenzene	99	94	70-130 5	20
p-Isopropyltoluene	98	94	70-130 4	20
Naphthalene	80	78	70-130 3	20
n-Propylbenzene	99	94	70-130 5	20
1,2,3-Trichlorobenzene	90	87	70-130 3	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L170

L1706294 03/08/17

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
CP Volatile Organics by 8260/5035 - Wes	tborough Lab Ass	sociated sam	ple(s): 01-02	Batch: WG	G983145-3 WG983	3145-4		
1,2,4-Trichlorobenzene	91		87		70-130	4	20	
1,3,5-Trimethylbenzene	99		95		70-130	4	20	
1,2,4-Trimethylbenzene	99		95		70-130	4	20	
Diethyl ether	91		93		70-130	2	20	
Diisopropyl Ether	104		101		70-130	3	20	
Ethyl-Tert-Butyl-Ether	106		103		70-130	3	20	
Tertiary-Amyl Methyl Ether	108		106		70-130	2	20	
1,4-Dioxane	87		87		70-130	0	20	
2-Chloroethylvinyl ether	46	Q	24	Q	70-130	63	Q 20	
Halothane	103		98		70-130	5	20	
Ethyl Acetate	99		99		70-130	0	20	
Freon-113	106		100		70-130	6	20	
Vinyl acetate	94		92		70-130	2	20	

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
1,2-Dichloroethane-d4	100		100		70-130
Toluene-d8	100		98		70-130
4-Bromofluorobenzene	100		103		70-130
Dibromofluoromethane	103		102		70-130

PETROLEUM HYDROCARBONS

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706294

Report Date:

03/08/17

SAMPLE RESULTS

Lab ID: L1706294-01

Client ID: 1700516-B302-S4 (0-8")

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/06/17 23:29

Analyst: KD Percent Solids: 79% Date Collected:
Date Received:

Field Prep:

02/27/17 23:50 03/01/17

03/0

Not Specified

Quality Control Information

Condition of sample received:
Sample Temperature upon receipt:
Were samples received in methanol?
Methanol ratio:

Satisfactory Received on Ice Covering the Soil

1:1.7

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor							
Volatile Petroleum Hydrocarbons - Westborough Lab												
C5-C8 Aliphatics	ND	mg/kg	2.62		1							
C9-C12 Aliphatics	ND	mg/kg	2.62		1							
C9-C10 Aromatics	ND	mg/kg	2.62		1							
C5-C8 Aliphatics, Adjusted	ND	mg/kg	2.62		1							
C9-C12 Aliphatics, Adjusted	ND	mg/kg	2.62		1							
Benzene	ND	mg/kg	0.105		1							
Toluene	ND	mg/kg	0.105		1							
Ethylbenzene	ND	mg/kg	0.105		1							
p/m-Xylene	ND	mg/kg	0.105		1							
o-Xylene	ND	mg/kg	0.105		1							
Methyl tert butyl ether	ND	mg/kg	0.053		1							
Naphthalene	ND	mg/kg	0.210		1							

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
2,5-Dibromotoluene-PID	117		70-130				
2,5-Dibromotoluene-FID	122		70-130				

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 Report Date: 03/08/17

SAMPLE RESULTS

Lab ID: L1706294-01 Date Collected: 02/27/17 23:50

Client ID: 1700516-B302-S4 (0-8") Date Received: 03/01/17

Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/02/17 10:00
Analytical Date: 03/04/17 07:31 Cleanup Method1: EPH-04-1

Analyst: SR Cleanup Date1: 03/03/17

Percent Solids: 79% Cleanup Date

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Sample Extraction method:

Satisfactory

Received on Ice

Extracted Per the Method

Qualifier Units	RL	MDL	Dilution Factor
ab			
mg/kg	8.14		1
mg/kg	0.407		1
	mg/kg mg/kg	mg/kg 8.14 mg/kg 8.14 mg/kg 8.14 mg/kg 8.14 mg/kg 8.14 mg/kg 0.407	mg/kg 8.14 mg/kg 8.14 mg/kg 8.14 mg/kg 8.14 mg/kg 8.14 mg/kg 0.407

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 Report Date: 03/08/17

SAMPLE RESULTS

Lab ID: L1706294-01 Date Collected: 02/27/17 23:50

Client ID: 1700516-B302-S4 (0-8") Date Received: 03/01/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	65		40-140	
o-Terphenyl	80		40-140	
2-Fluorobiphenyl	91		40-140	
2-Bromonaphthalene	92		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706294

Report Date:

03/08/17

SAMPLE RESULTS

Lab ID: L1706294-02

Client ID: 1700516-B307-S7 (6-18")

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/07/17 00:09

Analyst: KD Percent Solids: 81% Date Collected:
Date Received:

Field Prep:

02/27/17 19:40 03/01/17

Not Specified

Quality Control Information

Condition of sample received:
Sample Temperature upon receipt:
Were samples received in methanol?
Methanol ratio:

Satisfactory Received on Ice Covering the Soil

1:1.5

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor							
olatile Petroleum Hydrocarbons - Westborough Lab												
C5-C8 Aliphatics	ND	mg/kg	2.82		1							
C9-C12 Aliphatics	ND	mg/kg	2.82		1							
C9-C10 Aromatics	ND	mg/kg	2.82		1							
C5-C8 Aliphatics, Adjusted	ND	mg/kg	2.82		1							
C9-C12 Aliphatics, Adjusted	ND	mg/kg	2.82		1							
Benzene	ND	mg/kg	0.113		1							
Toluene	ND	mg/kg	0.113		1							
Ethylbenzene	ND	mg/kg	0.113		1							
p/m-Xylene	ND	mg/kg	0.113		1							
o-Xylene	ND	mg/kg	0.113		1							
Methyl tert butyl ether	ND	mg/kg	0.056		1							
Naphthalene	ND	mg/kg	0.226		1							

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	103		70-130	
2,5-Dibromotoluene-FID	108		70-130	

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 Report Date: 03/08/17

AMDLE DECLILTO

SAMPLE RESULTS

Lab ID: L1706294-02 Date Collected: 02/27/17 19:40

Client ID: 1700516-B307-S7 (6-18") Date Received: 03/01/17

Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/02/17 10:00
Analytical Date: 03/04/17 08:13 Cleanup Method1: EPH-04-1

Analyst: SR Cleanup Date1: 03/03/17

Percent Solids: 81%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Sample Extraction method:

Satisfactory

Received on Ice

Extracted Per the Method

Qualifier Units MDL **Dilution Factor Parameter** Result RL **Extractable Petroleum Hydrocarbons - Westborough Lab** C9-C18 Aliphatics ND mg/kg 8.21 --1 ND 1 C19-C36 Aliphatics mg/kg 8.21 ND C11-C22 Aromatics mg/kg 8.21 1 ND C11-C22 Aromatics, Adjusted mg/kg 8.21 1 --Naphthalene ND mg/kg 0.410 1 --ND 0.410 1 2-Methylnaphthalene mg/kg Acenaphthylene ND mg/kg 0.410 1 --ND 1 Acenaphthene mg/kg 0.410 --Fluorene ND 0.410 1 mg/kg Phenanthrene ND 0.410 1 mg/kg --Anthracene ND mg/kg 0.410 1 Fluoranthene ND 0.410 1 mg/kg --Pyrene ND mg/kg 0.410 1 Benzo(a)anthracene ND 0.410 1 mg/kg ND Chrysene mg/kg 0.410 1 --1 Benzo(b)fluoranthene ND mg/kg 0.410 ND Benzo(k)fluoranthene mg/kg 0.410 1 Benzo(a)pyrene ND 0.410 1 mg/kg --Indeno(1,2,3-cd)Pyrene ND mg/kg 0.410 1 Dibenzo(a,h)anthracene ND 0.410 1 mg/kg ND Benzo(ghi)perylene 0.410 1 mg/kg --

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 Report Date: 03/08/17

Result

SAMPLE RESULTS

Qualifier

Lab ID: L1706294-02

Client ID: 1700516-B307-S7 (6-18")

Sample Location: BOSTON, MA

Parameter

Date Collected: 02/27/17 19:40
Date Received: 03/01/17

Field Prep: Not Specified

Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	62		40-140	
o-Terphenyl	83		40-140	
2-Fluorobiphenyl	92		40-140	
2-Bromonaphthalene	93		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706294

Report Date: 03/08/17

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 03/04/17 00:07

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 03/02/17 10:00
Cleanup Method: EPH-04-1

Cleanup Date: 03/03/17

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbon	s - Westbo	rough Lab	for sample	(s): 01-02	Batch: WG982202-1
C9-C18 Aliphatics	ND		mg/kg	6.42	
C19-C36 Aliphatics	ND		mg/kg	6.42	
C11-C22 Aromatics	ND		mg/kg	6.42	
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.42	
Naphthalene	ND		mg/kg	0.321	
2-Methylnaphthalene	ND		mg/kg	0.321	
Acenaphthylene	ND		mg/kg	0.321	
Acenaphthene	ND		mg/kg	0.321	
Fluorene	ND		mg/kg	0.321	
Phenanthrene	ND		mg/kg	0.321	
Anthracene	ND		mg/kg	0.321	
Fluoranthene	ND		mg/kg	0.321	
Pyrene	ND		mg/kg	0.321	
Benzo(a)anthracene	ND		mg/kg	0.321	
Chrysene	ND		mg/kg	0.321	
Benzo(b)fluoranthene	ND		mg/kg	0.321	
Benzo(k)fluoranthene	ND		mg/kg	0.321	
Benzo(a)pyrene	ND		mg/kg	0.321	
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.321	
Dibenzo(a,h)anthracene	ND		mg/kg	0.321	
Benzo(ghi)perylene	ND		mg/kg	0.321	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Chloro-Octadecane	44		40-140	
o-Terphenyl	69		40-140	
2-Fluorobiphenyl	69		40-140	
2-Bromonaphthalene	70		40-140	

L1706294

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/08/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/06/17 18:27

Analyst: KD

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Petroleum Hydrocarbons - \	Vestborough	n Lab for s	ample(s):	01-02	Batch: WG983639-4
C5-C8 Aliphatics	ND		mg/kg	2.67	
C9-C12 Aliphatics	ND		mg/kg	2.67	
C9-C10 Aromatics	ND		mg/kg	2.67	
C5-C8 Aliphatics, Adjusted	ND		mg/kg	2.67	
C9-C12 Aliphatics, Adjusted	ND		mg/kg	2.67	
Benzene	ND		mg/kg	0.107	
Toluene	ND		mg/kg	0.107	
Ethylbenzene	ND		mg/kg	0.107	
p/m-Xylene	ND		mg/kg	0.107	
o-Xylene	ND		mg/kg	0.107	
Methyl tert butyl ether	ND		mg/kg	0.053	
Naphthalene	ND		mg/kg	0.213	

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria				
2.2.0							
2,5-Dibromotoluene-PID	89		70-130				
2,5-Dibromotoluene-FID	93		70-130				

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706294

Parameter	LCS %Recovery		CSD covery Qu	%Recov al Limits	•	Qual	RPD Limits	
Extractable Petroleum Hydrocarbons - Westb	orough Lab Ass	sociated sample(s):	01-02 Batch:	WG982202-2	WG982202-3			
C9-C18 Aliphatics	43		61	40-140	35	Q	25	
C19-C36 Aliphatics	48		69	40-140	36	Q	25	
C11-C22 Aromatics	81		69	40-140	16		25	
Naphthalene	68		55	40-140	21		25	
2-Methylnaphthalene	69		55	40-140	23		25	
Acenaphthylene	72		58	40-140	22		25	
Acenaphthene	74		60	40-140	21		25	
Fluorene	76		63	40-140	19		25	
Phenanthrene	77		66	40-140	15		25	
Anthracene	82		71	40-140	14		25	
Fluoranthene	77		68	40-140	12		25	
Pyrene	77		69	40-140	11		25	
Benzo(a)anthracene	76		65	40-140	16		25	
Chrysene	81		71	40-140	13		25	
Benzo(b)fluoranthene	78		65	40-140	18		25	
Benzo(k)fluoranthene	82		71	40-140	14		25	
Benzo(a)pyrene	72		62	40-140	15	_	25	
Indeno(1,2,3-cd)Pyrene	77		65	40-140	17		25	
Dibenzo(a,h)anthracene	82		70	40-140	16		25	
Benzo(ghi)perylene	73		61	40-140	18		25	
Nonane (C9)	36	_	50	30-140	33	Q	25	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706294

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Extractable Petroleum Hydrocarbons - V	Vestborough Lab Ass	ociated samp	ole(s): 01-02	Batch: WG	982202-2 WG982	202-3			
Decane (C10)	39	Q	56		40-140	36	Q	25	
Dodecane (C12)	41		58		40-140	34	Q	25	
Tetradecane (C14)	42		60		40-140	35	Q	25	
Hexadecane (C16)	44		63		40-140	36	Q	25	
Octadecane (C18)	45		66		40-140	38	Q	25	
Nonadecane (C19)	45		66		40-140	38	Q	25	
Eicosane (C20)	46		68		40-140	39	Q	25	
Docosane (C22)	47		68		40-140	37	Q	25	
Tetracosane (C24)	47		68		40-140	37	Q	25	
Hexacosane (C26)	47		68		40-140	37	Q	25	
Octacosane (C28)	47		68		40-140	37	Q	25	
Triacontane (C30)	46		67		40-140	37	Q	25	
Hexatriacontane (C36)	45		63		40-140	33	Q	25	

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Chloro-Octadecane	39	Q	61		40-140
o-Terphenyl	93		81		40-140
2-Fluorobiphenyl	75		70		40-140
2-Bromonaphthalene	78		73		40-140
% Naphthalene Breakthrough	0		0		
% 2-Methylnaphthalene Breakthrough	0		0		

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706294

Parameter	LCS %Recovery	LCSD Qual %Recov			RPD Qual Limits	
Volatile Petroleum Hydrocarbons - Westboro	ugh Lab Associ	ated sample(s): 01-02	Batch: WG983639-2 WG	983639-3		
C5-C8 Aliphatics	102	102	70-130	0	25	
C9-C12 Aliphatics	102	102	70-130	0	25	
C9-C10 Aromatics	95	97	70-130	1	25	
Benzene	95	95	70-130	0	25	
Toluene	95	95	70-130	0	25	
Ethylbenzene	95	95	70-130	0	25	
p/m-Xylene	96	96	70-130	0	25	
o-Xylene	96	96	70-130	1	25	
Methyl tert butyl ether	93	95	70-130	2	25	
Naphthalene	90	95	70-130	5	25	
1,2,4-Trimethylbenzene	95	97	70-130	2	25	
Pentane	100	101	70-130	1	25	
2-Methylpentane	101	101	70-130	0	25	
2,2,4-Trimethylpentane	103	104	70-130	1	25	
n-Nonane	103	103	30-130	0	25	
n-Decane	101	101	70-130	0	25	
n-Butylcyclohexane	102	103	70-130	1	25	

Project Name: TREMONT CROSSING Lab Number:

L1706294

Project Number: 1700516

Report Date:

03/08/17

	LCS	LCSD		%Recovery	RPD			
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01-02 Batch: WG983639-2 WG983639-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	95		94		70-130	
2,5-Dibromotoluene-FID	98		96		70-130	

INORGANICS & MISCELLANEOUS

Project Name: TREMONT CROSSING

Project Number: 1700516 Lab Number:

L1706294

Report Date:

03/08/17

SAMPLE RESULTS

Lab ID: L1706294-01

1700516-B302-S4 (0-8") Client ID: BOSTON, MA

Sample Location: Matrix:

Soil

Date Collected:

02/27/17 23:50

Date Received:

03/01/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	78.8		%	0.100	NA	1	-	03/02/17 09:11	121,2540G	RO

Project Name: TREMONT CROSSING

1700516

Lab Number:

L1706294

Report Date:

03/08/17

SAMPLE RESULTS

Lab ID: L1706294-02

Client ID: 1700516-B307-S7 (6-18")

Sample Location: BOSTON, MA

Matrix: Soil

Project Number:

Date Collected:

02/27/17 19:40

Date Received:

03/01/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	80.7		%	0.100	NA	1	-	03/02/17 09:11	121,2540G	RO

Project Name: TREMONT CROSSING Lab Number: L1706294

Project Number: 1700516 Report Date: 03/08/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706294-01A	Vial MeOH preserved	Α	N/A	5.6	Υ	Absent	VPH-DELUX-10(28)
L1706294-01B	Vial MeOH preserved	Α	N/A	5.6	Υ	Absent	MCP-8260H-10(14)
L1706294-01D	Glass 120ml/4oz unpreserved	Α	N/A	5.6	Υ	Absent	TS(7),EPH-DELUX-10(14)
L1706294-02A	Vial MeOH preserved	Α	N/A	5.6	Y	Absent	VPH-DELUX-10(28)
L1706294-02B	Vial MeOH preserved	Α	N/A	5.6	Υ	Absent	MCP-8260H-10(14)
L1706294-02D	Glass 120ml/4oz unpreserved	Α	N/A	5.6	Υ	Absent	EPH-DELUX-10(14)
L1706294-02E	Plastic 2oz unpreserved for TS	Α	N/A	5.6	Υ	Absent	TS(7)

Project Name: TREMONT CROSSING Lab Number: L1706294
Project Number: 1700516 Report Date: 03/08/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

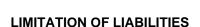
The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSINGLab Number:L1706294Project Number:1700516Report Date:03/08/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.



Project Name:TREMONT CROSSINGLab Number:L1706294Project Number:1700516Report Date:03/08/17

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility **SM 2540D: TSS**

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Chain-of-Custody Reco	nain-of-Custody Record			Laboratory: ALPHA			Serial No:03081714:28 Laboratory Job #				lo:03081714:28			
, , , , ,						the second second second	-61		2 20	(Lab u	se only)	41	706	294
GEI	Project Na	ame: Tre	119120 01921110				Project Location: Boston, MA Project Manager: Cathy Johnson					Page <u></u> of <u></u>		
400 Unicorn Park Drive Woburn, MA 01801 PH: 781.721.4000 FX: 781.721.4073	Send Report to: Jessica Englehart Send EDD to: labdata@geiconsultants.com				Macri		Preservative				Sample Handling Samples Field Filtered			
MCP PRESUMPTIVE CERTAINTY REC	UIRED -	YES	NO		e francis	No transfer								YES NO (NA
If Yes, Are MCP Analytical Methods Rec Are Drinking Water Samples Submitted' If Yes, Have Drinking Water Sampling R Lab Sample GEI Sample ID Number	?	S Been Met		YES YES YES Matrix	NO NO NO No. of Bottles	NA NA NA Sampler(s) Initials	Vocs	VPH	ED+	7. Solias				Sampled Shipped With Ice VES NO Sample Specific Remarks
06294-01 1700316-8302-54 (0		2.27.17	2350	So	3	JTV.	×	×	×	У				
-02 1700516 8307 - S7		2.27.17	1940	30	4	JTN	×	**	У	*				
2. Elinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature)	Pr possible. Date: 228.17 Date: 3/1/17 Date: 3/1/17	Time: CI 30 Time: LIOD Time:	Received by: (signature) Somplesignature) Luccian Signature)	sle Fr	od 1 MCP Tolge	10	(Bi ormal -Day _ Day _>	usines	7-Da 3-Da	s): er y v	turn notif that	around fy the la the TA	mitting rush samples, you must boratory to confirm I can be achieved. s/Remarks:

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1706294 Project Name **Project Number** : 1700516 : TREMONT CROSSING : WG983145-5 Lab File ID : V10170305A05

Lab Sample ID Instrument ID : VOA110

Analysis Date Matrix : SOIL : 03/05/17 09:46

Client Sample No.	Lab Sample ID	Analysis Date
WG983145-3LCS	WG983145-3	03/05/17 08:29
WG983145-4LCSD	WG983145-4	03/05/17 08:55
1700516-B302-S4 (0-8")	L1706294-01	03/05/17 11:04
1700516-B307-S7 (6-18'')	L1706294-02	03/05/17 11:29

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706294
Project Name : TREMONT CROSSING Project Number : 1700516
Instrument ID : VOA110 Calibration Date : 03/05/17 08:29

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(m
Fluorobenzene	1	1	-	0	20	101	0
Dichlorodifluoromethane	0.351	0.363	-	-3.4	20	108	0
Chloromethane	0.269	0.276	-	-2.6	20	104	0
Vinyl chloride	0.267	0.261	-	2.2	20	101	0
Bromomethane	0.202	0.194	-	4	20	104	0
Chloroethane	0.168	0.149	-	11.3	20	90	.04
Trichlorofluoromethane	0.445	0.473	-	-6.3	20	103	.04
Ethyl ether	0.158	0.144	-	8.9	20	95	0
1,1-Dichloroethene	0.221	0.229	-	-3.6	20	109	.01
Carbon disulfide	20	16.26	7	18.7	20	86	.02
Freon-113	0.206	0.218	-	-5.8	20	108	.02
Acrolein	0.046	0.042	-	8.7	20	102	0
Methylene chloride	20	18.209	-	9	20	98	0
Acetone	0.056	0.065	-	-16.1	20	122	0
trans-1,2-Dichloroethene	0.25	0.253	-	-1.2	20	104	0
Methyl acetate	0.153	0.146	-	4.6	20	101	0
Methyl tert-butyl ether	0.676	0.703		-4	20	111	0
tert-Butyl alcohol	0.018	0.019		-5.6	20	112	01
Diisopropyl ether	0.758	0.786	-	-3.7	20	105	0
1,1-Dichloroethane	0.425	0.44	-	-3.5	20	104	0
Halothane	0.17	0.176	-	-3.5	20	106	0
Acrylonitrile	20	18.935	-	5.3	20	100	0
Ethyl tert-butyl ether	0.616	0.651	-	-5.7	20	110	0
Vinyl acetate	20	18.904	-	5.5	20	105	0
cis-1,2-Dichloroethene	0.269	0.268	-	0.4	20	101	0
2,2-Dichloropropane	0.313	0.359	-	-14.7	20	123	0
Bromochloromethane	0.128	0.128		0	20	99	0
Cyclohexane	0.342	0.376		-9.9	20	113	0
Chloroform	0.457	0.459		-0.4	20	100	0
Ethyl acetate	0.204	0.201		1.5	20	100	0
Carbon tetrachloride	0.32	0.34		-6.3	20	112	0
Tetrahydrofuran	0.072	0.084		-0.3	20	115	0
Dibromofluoromethane	0.256	0.263	-	-10.7	20	102	0
1,1,1-Trichloroethane	0.393	0.421		-2. <i>1</i> -7.1	20	110	0
2-Butanone	0.09	0.421		5.6	20	106	.01
	0.09	0.085		-5.8	20	106	
1,1-Dichloropropene			-				0
Benzene	0.996	1.01	-	-1.4	20	102	0
tert-Amyl methyl ether	0.54	0.581	-	-7.6	20	115	0
1,2-Dichloroethane-d4	0.27	0.269	-	0.4	20	100	0
1,2-Dichloroethane	0.339	0.329	-	2.9	20	97	0
Methyl cyclohexane	0.35	0.365	-	-4.3	20	113	0
Trichloroethene	0.262	0.268	-	-2.3	20	104	0
Dibromomethane	0.151	0.143	-	5.3	20	97	0
1,2-Dichloropropane	0.232	0.229	-	1.3	20	100	0
2-Chloroethyl vinyl ether	20	9.093	-	54.5*	20	55	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706294
Project Name : TREMONT CROSSING Project Number : 1700516
Instrument ID : VOA110 Calibration Date : 03/05/17 08:29

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Bromodichloromethane	0.337	0.318	-	5.6	20	98	0
1,4-Dioxane	0.00229	0.002	-	12.7	20	93	0
cis-1,3-Dichloropropene	20	17.712	-	11.4	20	102	0
Chlorobenzene-d5	1	1	-	0	20	105	0
Toluene-d8	1.233	1.231	-	0.2	20	103	0
Toluene	0.846	0.82	-	3.1	20	102	0
4-Methyl-2-pentanone	0.089	0.073	-	18	20	104	0
Tetrachloroethene	0.33	0.321	-	2.7	20	104	0
trans-1,3-Dichloropropene	0.402	0.396	-	1.5	20	107	0
Ethyl methacrylate	20	15.631	-	21.8*	20	100	0
1,1,2-Trichloroethane	0.243	0.232	-	4.5	20	99	0
Chlorodibromomethane	0.324	0.294	-	9.3	20	99	0
1,3-Dichloropropane	0.472	0.451	-	4.4	20	100	0
1,2-Dibromoethane	0.267	0.245	-	8.2	20	97	0
2-Hexanone	20	13.824	-	30.9*	20	100	0
Chlorobenzene	0.965	0.902	-	6.5	20	98	0
Ethylbenzene	1.513	1.509		0.3	20	102	0
1,1,1,2-Tetrachloroethane	0.334	0.315		5.7	20	100	0
p/m Xylene	0.58	0.591	-	-1.9	20	101	0
o Xylene	0.54	0.543	-	-0.6	20	100	0
Styrene	0.952	0.918		3.6	20	95	0
1,4-Dichlorobenzene-d4	1	1		0	20	105	0
Bromoform	0.396	0.342		13.6	20	99	0
Isopropylbenzene	2.879	2.854	-	0.9	20	103	0
4-Bromofluorobenzene	0.867	0.868	-	-0.1	20	103	0
		0.681			20	99	0
Bromobenzene	0.743	3.465	-	8.3	20	102	
n-Propylbenzene	3.513		•	1.4			0
1,4-Dichlorobutane	0.894	0.869	-	2.8	20	103	0
1,1,2,2-Tetrachloroethane	0.714	0.66	-	7.6	20	100	0
4-Ethyltoluene	2.879	2.853	-	0.9	20	101	0
2-Chlorotoluene	2.146	2.102	•	2.1	20	100	0
1,3,5-Trimethylbenzene	2.51	2.483	-	1.1	20	100	0
1,2,3-Trichloropropane	0.577	0.532	-	7.8	20	100	0
trans-1,4-Dichloro-2-buten	0.175	0.165	-	5.7	20	101	0
4-Chlorotoluene	2.122	2.059	-	3	20	100	0
tert-Butylbenzene	2.051	2.025	-	1.3	20	103	0
1,2,4-Trimethylbenzene	2.467	2.431	-	1.5	20	99	0
sec-Butylbenzene	3.173	3.196	-	-0.7	20	104	0
p-Isopropyltoluene	2.626	2.569	-	2.2	20	101	0
1,3-Dichlorobenzene	1.484	1.382	-	6.9	20	98	0
1,4-Dichlorobenzene	1.534	1.384	-	9.8	20	97	0
p-Diethylbenzene	1.524	1.465	-	3.9	20	100	0
n-Butylbenzene	2.502	2.514	-	-0.5	20	103	0
1,2-Dichlorobenzene	1.392	1.246	-	10.5	20	97	0
1,2,4,5-Tetramethylbenzene	20	16.51	-	17.4	20	97	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706294
Project Name : TREMONT CROSSING Project Number : 1700516
Instrument ID : VOA110 Calibration Date : 03/05/17 08:29

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dibromo-3-chloropropan	0.09	0.078	-	13.3	20	99	0
1,3,5-Trichlorobenzene	1.022	0.934	-	8.6	20	96	0
Hexachlorobutadiene	0.493	0.45	-	8.7	20	104	0
1,2,4-Trichlorobenzene	0.876	0.794	-	9.4	20	98	0
Naphthalene	20	15.898	-	20.5*	20	95	0
1,2,3-Trichlorobenzene	0.839	0.751	-	10.5	20	96	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1706297

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/08/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING

Project Number: 1700516 Lab Number: L1706297

Report Date: 03/08/17

Collection Date/Time Alpha Sample ID Sample Location **Receive Date Client ID** Matrix 1700516-B303-S9 (0-5") SOIL BOSTON, MA 02/28/17 22:30 03/01/17 L1706297-01

Project Name: TREMONT CROSSING Lab Number: L1706297

Project Number: 1700516 Report Date: 03/08/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/08/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/08/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The initial calibration, associated with L1706297-01, did not meet the method required minimum response factor on the lowest calibration standard for acetone (0.0788), 2-butanone (0.0798), 4-methyl-2-pentanone (0.0579), and 1,4-dioxane (0.0021), as well as the average response factor for acetone, 2-butanone, 4-methyl-2-pentanone, and 1,4-dioxane.

The continuing calibration standard, associated with L1706297-01, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/08/17

Custen Walker Cristin Walker

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706297

Report Date: 03/08/17

Lab ID: L1706297-01 Date Collected: 02/28/17 22:30

1700516-B303-S9 (0-5") Client ID:

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 03/05/17 11:55

Analyst: MV 81% Percent Solids:

02/20/17 22.50
03/01/17
Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics by 5035 High -	Westborough Lab)					
Methylene chloride	ND		ug/kg	530		1	
1,1-Dichloroethane	ND		ug/kg	79		1	
Chloroform	ND		ug/kg	79		1	
Carbon tetrachloride	ND		ug/kg	53		1	
1,2-Dichloropropane	ND		ug/kg	180		1	
Dibromochloromethane	ND		ug/kg	53		1	
1,1,2-Trichloroethane	ND		ug/kg	79		1	
Tetrachloroethene	ND		ug/kg	53		1	
Chlorobenzene	ND		ug/kg	53		1	
Trichlorofluoromethane	ND		ug/kg	210		1	
1,2-Dichloroethane	ND		ug/kg	53		1	
1,1,1-Trichloroethane	ND		ug/kg	53		1	
Bromodichloromethane	ND		ug/kg	53		1	
trans-1,3-Dichloropropene	ND		ug/kg	53		1	
cis-1,3-Dichloropropene	ND		ug/kg	53		1	
1,3-Dichloropropene, Total	ND		ug/kg	53		1	
1,1-Dichloropropene	ND		ug/kg	210		1	
Bromoform	ND		ug/kg	210		1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	53		1	
Benzene	ND		ug/kg	53		1	
Toluene	ND		ug/kg	79		1	
Ethylbenzene	ND		ug/kg	53		1	
Chloromethane	ND		ug/kg	210		1	
Bromomethane	ND		ug/kg	100		1	
Vinyl chloride	ND		ug/kg	100		1	
Chloroethane	ND		ug/kg	100		1	
1,1-Dichloroethene	ND		ug/kg	53		1	
trans-1,2-Dichloroethene	ND		ug/kg	79		1	
Trichloroethene	ND		ug/kg	53		1	
1,2-Dichlorobenzene	ND		ug/kg	210		1	

Project Name: TREMONT CROSSING Lab Number: L1706297

Project Number: 1700516 Report Date: 03/08/17

SAMPLE RESULTS

Lab ID: Date Collected: 02/28/17 22:30

Client ID: 1700516-B303-S9 (0-5") Date Received: 03/01/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Campio Locationi Doci City in t					۲.	riot opcomed	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics by 5035 High - V	Vestborough Lal	b					
1,3-Dichlorobenzene	ND		ug/kg	210		1	
1,4-Dichlorobenzene	ND		ug/kg	210		1	
Methyl tert butyl ether	ND		ug/kg	100		1	
p/m-Xylene	ND		ug/kg	100		1	
o-Xylene	ND		ug/kg	100		1	
Xylenes, Total	ND		ug/kg	100		1	
cis-1,2-Dichloroethene	ND		ug/kg	53		1	
1,2-Dichloroethene, Total	ND		ug/kg	53	-	1	
Dibromomethane	ND		ug/kg	210		1	
1,2,3-Trichloropropane	ND		ug/kg	210		1	
Styrene	ND		ug/kg	100		1	
Dichlorodifluoromethane	ND		ug/kg	530		1	
Acetone	ND		ug/kg	1900		1	
Carbon disulfide	ND		ug/kg	210		1	
Methyl ethyl ketone	ND		ug/kg	530		1	
Methyl isobutyl ketone	ND		ug/kg	530		1	
2-Hexanone	ND		ug/kg	530		1	
Bromochloromethane	ND		ug/kg	210		1	
Tetrahydrofuran	ND		ug/kg	210		1	
2,2-Dichloropropane	ND		ug/kg	260		1	
1,2-Dibromoethane	ND		ug/kg	210		1	
1,3-Dichloropropane	ND		ug/kg	210		1	
1,1,1,2-Tetrachloroethane	ND		ug/kg	53		1	
Bromobenzene	ND		ug/kg	260		1	
n-Butylbenzene	ND		ug/kg	53		1	
sec-Butylbenzene	ND		ug/kg	53		1	
tert-Butylbenzene	ND		ug/kg	210		1	
o-Chlorotoluene	ND		ug/kg	210		1	
p-Chlorotoluene	ND		ug/kg	210		1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	210		1	
Hexachlorobutadiene	ND		ug/kg	210		1	
Isopropylbenzene	ND		ug/kg	53		1	
p-Isopropyltoluene	ND		ug/kg	53		1	
Naphthalene	ND		ug/kg	210		1	
n-Propylbenzene	ND		ug/kg	53		1	
1,2,3-Trichlorobenzene	ND		ug/kg	210		1	
1,2,4-Trichlorobenzene	ND		ug/kg	210		1	
1,3,5-Trimethylbenzene	ND		ug/kg	210		1	
1,2,4-Trimethylbenzene	ND		ug/kg	210		1	

1

Project Name: Lab Number: TREMONT CROSSING L1706297

Project Number: 1700516 **Report Date:** 03/08/17

SAMPLE RESULTS

Lab ID: L1706297-01 Date Collected: 02/28/17 22:30

Client ID: 1700516-B303-S9 (0-5") Date Received: 03/01/17 Sample Location: Field Prep: BOSTON, MA Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** MCP Volatile Organics by 5035 High - Westborough Lab Diethyl ether ND 260 ug/kg 1 Diisopropyl Ether ND 210 1 ug/kg Ethyl-Tert-Butyl-Ether ND 1 ug/kg 210 Tertiary-Amyl Methyl Ether ND 210 1 ug/kg ND

ug/kg

2100

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	95	70-130	

1,4-Dioxane

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/08/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/05/17 09:46

Analyst: BN

ICP Volatile Organics by 8260/5035 - Westborough Lab for sample(s): 01 Batch: WG983145-5 Methylene chloride ND ug/kg 500 1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 1,2-Dichloroptoethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 Bromodichloropropene ND ug/kg 50 cis-1,3-Dichloropropene	arameter	Result	Qualifier	Units	RL	MDL	
1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 1,2-Dichlorofluoromethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 dis-1,3-Dichloropropene ND ug/kg	ICP Volatile Organics by 8260/50	035 - Westbo	rough Lab	for sample	(s): 01 Ba	atch: WG983145	5-5
Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 Trichlorofluoromethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug	Methylene chloride	ND		ug/kg	500		
Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichloroethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 Bromoform ND ug/kg	1,1-Dichloroethane	ND		ug/kg	75		
1,2-Dichloropropane ND ug/kg 180 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 Bromodichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg	Chloroform	ND		ug/kg	75		
Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 1,1,2,2-Tetrachloroethane ND <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	Carbon tetrachloride	ND		ug/kg	50		
1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg <	1,2-Dichloropropane	ND		ug/kg	180		
Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50	Dibromochloromethane	ND		ug/kg	50		
Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td></td><td>ug/kg</td><td>75</td><td></td><td></td></t<>	1,1,2-Trichloroethane	ND		ug/kg	75		
Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	Tetrachloroethene	ND		ug/kg	50		
1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 200 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	Chlorobenzene	ND		ug/kg	50		
1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 1,1,2,2-Tetrachloroethane ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Ethylbenzene ND ug/kg 200 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50	Trichlorofluoromethane	ND		ug/kg	200		
Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 1,1,2,2-Tetrachloroethane ND ug/kg 50 Toluene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50	1,2-Dichloroethane	ND		ug/kg	50		
trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50	1,1,1-Trichloroethane	ND		ug/kg	50		
cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Vinyl chloride ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromodichloromethane	ND		ug/kg	50		
1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	trans-1,3-Dichloropropene	ND		ug/kg	50		
1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	cis-1,3-Dichloropropene	ND		ug/kg	50		
Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,3-Dichloropropene, Total	ND		ug/kg	50		
1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1-Dichloropropene	ND		ug/kg	200		
Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromoform	ND		ug/kg	200		
Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1,2,2-Tetrachloroethane	ND		ug/kg	50		
Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Benzene	ND		ug/kg	50		
Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Toluene	ND		ug/kg	75		
Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Ethylbenzene	ND		ug/kg	50		
Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Chloromethane	ND		ug/kg	200		
Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromomethane	ND		ug/kg	100		
1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Vinyl chloride	ND		ug/kg	100		
trans-1,2-Dichloroethene ND ug/kg 75	Chloroethane	ND		ug/kg	100		
	1,1-Dichloroethene	ND		ug/kg	50		
Trichloroethene ND ug/kg 50	trans-1,2-Dichloroethene	ND		ug/kg	75		
	Trichloroethene	ND		ug/kg	50		

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/08/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/05/17 09:46

Analyst: ΒN

MCP Volatile Organics by 8260/5035 - Westborough Lab for sample(s): 01 Batch: WG983145-5	Parameter	Result	Qualifier Units	RL	MDL
1,3-Dichlorobenzene ND ug/kg 200 1,4-Dichlorobenzene ND ug/kg 200 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 200 1,2-Dichloroethene, Total ND ug/kg 200 1,2-3-Trichloropropane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 200	MCP Volatile Organics by 8260/503	5 - Westbo	rough Lab for sample(s)	: 01	Batch: WG983145-5
1,3-Dichlorobenzene ND ug/kg 200 1,4-Dichlorobenzene ND ug/kg 200 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 200 1,2-Dichloroethene, Total ND ug/kg 200 1,2-3-Trichloropropane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 200	1,2-Dichlorobenzene	ND	ug/kg	200	
1,4-Dichlorobenzene ND ug/kg 200 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,2-Trichloroptenene ND ug/kg 200 Dibromomethane ND ug/kg 200 Styrene ND ug/kg 200 Styrene ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 <tr< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>200</td><td></td></tr<>	1,3-Dichlorobenzene	ND		200	
Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 100 xylenes, Total ND ug/kg 50 1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 200 Styrene ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 <t< td=""><td>1,4-Dichlorobenzene</td><td>ND</td><td></td><td>200</td><td></td></t<>	1,4-Dichlorobenzene	ND		200	
o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 100 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 100 Styrene ND ug/kg 500 Acetone ND ug/kg 500 Acetone ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 <tr< td=""><td>Methyl tert butyl ether</td><td>ND</td><td>ug/kg</td><td>100</td><td></td></tr<>	Methyl tert butyl ether	ND	ug/kg	100	
o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 100 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 100 Styrene ND ug/kg 500 Acetone ND ug/kg 500 Acetone ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 <tr< td=""><td>p/m-Xylene</td><td>ND</td><td>ug/kg</td><td>100</td><td></td></tr<>	p/m-Xylene	ND	ug/kg	100	
cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dibromoethane ND ug/kg 200	o-Xylene	ND		100	
cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 100 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dibloropropane ND ug/kg 200	Xylenes, Total	ND	ug/kg	100	
Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 100 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50	cis-1,2-Dichloroethene	ND	ug/kg	50	
1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 100 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dibromoethane ND ug/kg 250 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 <	1,2-Dichloroethene, Total	ND	ug/kg	50	
Styrene ND ug/kg 100 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dichloropropane ND ug/kg 250 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50	Dibromomethane	ND	ug/kg	200	
Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 200 <	1,2,3-Trichloropropane	ND	ug/kg	200	
Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200 </td <td>Styrene</td> <td>ND</td> <td>ug/kg</td> <td>100</td> <td></td>	Styrene	ND	ug/kg	100	
Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Dichlorodifluoromethane	ND	ug/kg	500	
Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Acetone	ND	ug/kg	1800	
Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Carbon disulfide	ND	ug/kg	200	
2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Methyl ethyl ketone	ND	ug/kg	500	
Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Methyl isobutyl ketone	ND	ug/kg	500	
Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	2-Hexanone	ND	ug/kg	500	
2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Bromochloromethane	ND	ug/kg	200	
1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Tetrahydrofuran	ND	ug/kg	200	
1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	2,2-Dichloropropane	ND	ug/kg	250	
1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	1,2-Dibromoethane	ND	ug/kg	200	
Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	1,3-Dichloropropane	ND	ug/kg	200	
n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	1,1,1,2-Tetrachloroethane	ND	ug/kg	50	
sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Bromobenzene	ND	ug/kg	250	
tert-Butylbenzene ND ug/kg 200	n-Butylbenzene	ND	ug/kg	50	
	sec-Butylbenzene	ND	ug/kg	50	
o-Chlorotoluene ND ug/kg 200	tert-Butylbenzene	ND	ug/kg	200	
	o-Chlorotoluene	ND	ug/kg	200	

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/08/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/05/17 09:46

Analyst: BN

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics by 8260/	5035 - Westbo	rough Lab f	or sample	e(s): 01 Bat	ch: WG983145-	·5
p-Chlorotoluene	ND		ug/kg	200		
1,2-Dibromo-3-chloropropane	ND		ug/kg	200		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	200		
1,2,4-Trichlorobenzene	ND		ug/kg	200		
1,3,5-Trimethylbenzene	ND		ug/kg	200		
1,2,4-Trimethylbenzene	ND		ug/kg	200		
Diethyl ether	ND		ug/kg	250		
Diisopropyl Ether	ND		ug/kg	200		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200		
Tertiary-Amyl Methyl Ether	ND		ug/kg	200		
1,4-Dioxane	ND		ug/kg	2000		
2-Chloroethylvinyl ether	ND		ug/kg	1000		
Halothane	ND		ug/kg	2000		
Ethyl Acetate	ND		ug/kg	1000		
Freon-113	ND		ug/kg	1000		
Vinyl acetate	ND		ug/kg	500		

		Į.	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	101		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706297

Report Date: 03/08/17

Parameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - We	stborough Lab Associate	ed sample(s): 01 Batch:	WG983145-3 WG983145-4	1	
Methylene chloride	91	89	70-130	2	20
1,1-Dichloroethane	104	98	70-130	6	20
Chloroform	100	97	70-130	3	20
Carbon tetrachloride	106	100	70-130	6	20
1,2-Dichloropropane	99	94	70-130	5	20
Dibromochloromethane	90	88	70-130	2	20
1,1,2-Trichloroethane	96	93	70-130	3	20
Tetrachloroethene	97	93	70-130	4	20
Chlorobenzene	93	90	70-130	3	20
Trichlorofluoromethane	106	99	70-130	7	20
1,2-Dichloroethane	97	94	70-130	3	20
1,1,1-Trichloroethane	107	101	70-130	6	20
Bromodichloromethane	94	91	70-130	3	20
trans-1,3-Dichloropropene	99	95	70-130	4	20
cis-1,3-Dichloropropene	89	84	70-130	6	20
1,1-Dichloropropene	106	99	70-130	7	20
Bromoform	86	83	70-130	4	20
1,1,2,2-Tetrachloroethane	92	91	70-130	1	20
Benzene	101	97	70-130	4	20
Toluene	97	93	70-130	4	20
Ethylbenzene	100	95	70-130	5	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706297

Report Date: 03/08/17

Parameter	LCS %Recovery Qua	LCSD MRecovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - W	estborough Lab Associate	d sample(s): 01 Batch:	WG983145-3 WG983145-4		
Chloromethane	103	98	70-130	5	20
Bromomethane	96	97	70-130	1	20
Vinyl chloride	98	92	70-130	6	20
Chloroethane	89	86	70-130	3	20
1,1-Dichloroethene	104	98	70-130	6	20
trans-1,2-Dichloroethene	101	94	70-130	7	20
Trichloroethene	102	96	70-130	6	20
1,2-Dichlorobenzene	90	88	70-130	2	20
1,3-Dichlorobenzene	93	89	70-130	4	20
1,4-Dichlorobenzene	90	86	70-130	5	20
Methyl tert butyl ether	104	101	70-130	3	20
p/m-Xylene	102	96	70-130	6	20
o-Xylene	100	95	70-130	5	20
cis-1,2-Dichloroethene	100	97	70-130	3	20
Dibromomethane	94	93	70-130	1	20
1,2,3-Trichloropropane	92	92	70-130	0	20
Styrene	96	93	70-130	3	20
Dichlorodifluoromethane	103	97	70-130	6	20
Acetone	115	112	70-130	3	20
Carbon disulfide	81	76	70-130	6	20
Methyl ethyl ketone	94	97	70-130	3	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1

L1706297

Report Date:

03/08/17

Parameter	LCS %Recovery Qua	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 -	Westborough Lab Associated	d sample(s): 01 Batch:	WG983145-3 WG983145	-4	
Methyl isobutyl ketone	82	80	70-130	2	20
2-Hexanone	69 Q	71	70-130	3	20
Bromochloromethane	100	95	70-130	5	20
Tetrahydrofuran	117	115	70-130	2	20
2,2-Dichloropropane	115	109	70-130	5	20
1,2-Dibromoethane	92	92	70-130	0	20
1,3-Dichloropropane	96	93	70-130	3	20
1,1,1,2-Tetrachloroethane	94	91	70-130	3	20
Bromobenzene	92	89	70-130	3	20
n-Butylbenzene	100	95	70-130	5	20
sec-Butylbenzene	101	96	70-130	5	20
tert-Butylbenzene	99	95	70-130	4	20
o-Chlorotoluene	98	95	70-130	3	20
p-Chlorotoluene	97	94	70-130	3	20
1,2-Dibromo-3-chloropropane	86	84	70-130	2	20
Hexachlorobutadiene	91	87	70-130	4	20
Isopropylbenzene	99	94	70-130	5	20
p-Isopropyltoluene	98	94	70-130	4	20
Naphthalene	80	78	70-130	3	20
n-Propylbenzene	99	94	70-130	5	20
1,2,3-Trichlorobenzene	90	87	70-130	3	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706297

Report Date: 03/08/17

Parameter	LCS %Recovery (Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics by 8260/5035 - We	estborough Lab Assoc	ated sam	ple(s): 01 Bato	ch: WG983	145-3 WG983145	i-4			
1,2,4-Trichlorobenzene	91		87		70-130	4		20	
1,3,5-Trimethylbenzene	99		95		70-130	4		20	
1,2,4-Trimethylbenzene	99		95		70-130	4		20	
Diethyl ether	91		93		70-130	2		20	
Diisopropyl Ether	104		101		70-130	3		20	
Ethyl-Tert-Butyl-Ether	106		103		70-130	3		20	
Tertiary-Amyl Methyl Ether	108		106		70-130	2		20	
1,4-Dioxane	87		87		70-130	0		20	
2-Chloroethylvinyl ether	46	Q	24	Q	70-130	63	Q	20	
Halothane	103		98		70-130	5		20	
Ethyl Acetate	99		99		70-130	0		20	
Freon-113	106		100		70-130	6		20	
Vinyl acetate	94		92		70-130	2		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	100		100		70-130	
Toluene-d8	100		98		70-130	
4-Bromofluorobenzene	100		103		70-130	
Dibromofluoromethane	103		102		70-130	

PETROLEUM HYDROCARBONS

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706297

Report Date:

03/08/17

SAMPLE RESULTS

Lab ID: L1706297-01

Client ID: 1700516-B303-S9 (0-5")

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/07/17 00:48

Analyst: KD Percent Solids: 81% Date Collected:
Date Received:

Field Prep:

02/28/17 22:30 03/01/17

03/

Not Specified

Quality Control Information

Condition of sample received:
Sample Temperature upon receipt:
Were samples received in methanol?
Methanol ratio:

Satisfactory Received on Ice Covering the Soil

1:1.5

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab				
C5-C8 Aliphatics	ND	mg/kg	2.77		1
C9-C12 Aliphatics	ND	mg/kg	2.77		1
C9-C10 Aromatics	ND	mg/kg	2.77		1
C5-C8 Aliphatics, Adjusted	ND	mg/kg	2.77		1
C9-C12 Aliphatics, Adjusted	ND	mg/kg	2.77		1
Benzene	ND	mg/kg	0.111		1
Toluene	ND	mg/kg	0.111		1
Ethylbenzene	ND	mg/kg	0.111		1
p/m-Xylene	ND	mg/kg	0.111		1
o-Xylene	ND	mg/kg	0.111		1
Methyl tert butyl ether	ND	mg/kg	0.055		1
Naphthalene	ND	mg/kg	0.221		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	90		70-130	
2,5-Dibromotoluene-FID	95		70-130	

Project Name: Lab Number: TREMONT CROSSING L1706297

Project Number: 1700516 **Report Date:** 03/08/17

SAMPLE RESULTS

Lab ID: L1706297-01

Date Collected: 02/28/17 22:30 Client ID: Date Received: 03/01/17

1700516-B303-S9 (0-5") Sample Location: Field Prep: Not Specified

BOSTON, MA Matrix: Soil

Analytical Method: 98,EPH-04-1.1

Extraction Date: 03/02/17 10:00 Cleanup Method1: Analytical Date: 03/04/17 08:56 EPH-04-1

Analyst: SR Percent Solids: 81%

Sample Extraction method:

Quality Control Information

Condition of sample received: Sample Temperature upon receipt: Satisfactory Received on Ice

Extraction Method:

Cleanup Date1:

Extracted Per the Method

EPA 3546

03/03/17

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbon	s - Westborough La	ab			
C9-C18 Aliphatics	ND	mg/kg	7.81		1
C19-C36 Aliphatics	ND	mg/kg	7.81		1
C11-C22 Aromatics	ND	mg/kg	7.81		1
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.81		1
Naphthalene	ND	mg/kg	0.390		1
2-Methylnaphthalene	ND	mg/kg	0.390		1
Acenaphthylene	ND	mg/kg	0.390		1
Acenaphthene	ND	mg/kg	0.390		1
Fluorene	ND	mg/kg	0.390		1
Phenanthrene	ND	mg/kg	0.390		1
Anthracene	ND	mg/kg	0.390		1
Fluoranthene	ND	mg/kg	0.390		1
Pyrene	ND	mg/kg	0.390		1
Benzo(a)anthracene	ND	mg/kg	0.390		1
Chrysene	ND	mg/kg	0.390		1
Benzo(b)fluoranthene	ND	mg/kg	0.390		1
Benzo(k)fluoranthene	ND	mg/kg	0.390		1
Benzo(a)pyrene	ND	mg/kg	0.390		1
Indeno(1,2,3-cd)Pyrene	ND	mg/kg	0.390		1
Dibenzo(a,h)anthracene	ND	mg/kg	0.390		1
Benzo(ghi)perylene	ND	mg/kg	0.390		1

02/28/17 22:30

Project Name: TREMONT CROSSING Lab Number: L1706297

Project Number: 1700516 Report Date: 03/08/17

SAMPLE RESULTS

Lab ID: L1706297-01 Date Collected:

Client ID: 1700516-B303-S9 (0-5") Date Received: 03/01/17

Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	50		40-140	
o-Terphenyl	85		40-140	
2-Fluorobiphenyl	99		40-140	
2-Bromonaphthalene	101		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706297

Report Date: 03/08/17

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 03/04/17 00:07

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 03/02/17 10:00
Cleanup Method: EPH-04-1
Cleanup Date: 03/03/17

Parameter	Result	Qualifier	Units	RL		MDL	
extractable Petroleum Hydrocar	bons - Westbo	rough Lab	for sample	(s): 01	Batch:	WG982202-1	
C9-C18 Aliphatics	ND		mg/kg	6.42			
C19-C36 Aliphatics	ND		mg/kg	6.42			
C11-C22 Aromatics	ND		mg/kg	6.42			
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.42			
Naphthalene	ND		mg/kg	0.321			
2-Methylnaphthalene	ND		mg/kg	0.321			
Acenaphthylene	ND		mg/kg	0.321			
Acenaphthene	ND		mg/kg	0.321			
Fluorene	ND		mg/kg	0.321			
Phenanthrene	ND		mg/kg	0.321			
Anthracene	ND		mg/kg	0.321			
Fluoranthene	ND		mg/kg	0.321			
Pyrene	ND		mg/kg	0.321			
Benzo(a)anthracene	ND		mg/kg	0.321			
Chrysene	ND		mg/kg	0.321			
Benzo(b)fluoranthene	ND		mg/kg	0.321			
Benzo(k)fluoranthene	ND		mg/kg	0.321			
Benzo(a)pyrene	ND		mg/kg	0.321			
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.321			
Dibenzo(a,h)anthracene	ND		mg/kg	0.321			
Benzo(ghi)perylene	ND		mg/kg	0.321			

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Chloro-Octadecane	44		40-140	
o-Terphenyl	69		40-140	
2-Fluorobiphenyl	69		40-140	
2-Bromonaphthalene	70		40-140	

Lab Number:

Project Name: TREMONT CROSSING

Project Number: Report Date: 1700516 03/08/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/06/17 18:27

Analyst: KD

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Petroleum Hydrocarbons - V	Vestborough	Lab for sa	ample(s):	01 Batch:	WG983639-4
C5-C8 Aliphatics	ND		mg/kg	2.67	
C9-C12 Aliphatics	ND		mg/kg	2.67	
C9-C10 Aromatics	ND		mg/kg	2.67	
C5-C8 Aliphatics, Adjusted	ND		mg/kg	2.67	
C9-C12 Aliphatics, Adjusted	ND		mg/kg	2.67	
Benzene	ND		mg/kg	0.107	
Toluene	ND		mg/kg	0.107	
Ethylbenzene	ND		mg/kg	0.107	
p/m-Xylene	ND		mg/kg	0.107	
o-Xylene	ND		mg/kg	0.107	
Methyl tert butyl ether	ND		mg/kg	0.053	
Naphthalene	ND		mg/kg	0.213	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2.2.0				
2,5-Dibromotoluene-PID	89		70-130	
2,5-Dibromotoluene-FID	93		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706297

Report Date: 03/08/17

Extractable Petroleum Hydrocarbons - Westborough La C9-C18 Aliphatics 43 C19-C36 Aliphatics 48 C11-C22 Aromatics 81 Naphthalene 68 2-Methylnaphthalene 69 Acenaphthylene 72 Acenaphthene 74 Fluorene 76 Phenanthrene 77 Anthracene 82 Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76 Chrysene 81	66 68 58 58 58	40-140 40-140 40-140 5 40-140 5 40-140	35 36 16 21 23 22	Q 25 Q 25 25 25 25 25 25	
C19-C36 Aliphatics 48 C11-C22 Aromatics 81 Naphthalene 68 2-Methylnaphthalene 69 Acenaphthylene 72 Acenaphthene 74 Fluorene 76 Phenanthrene 77 Anthracene 82 Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76	69 69 59 59 60	40-140 40-140 5 40-140 5 40-140	36 16 21 23 22	Q 25 25 25 25 25 25	
C11-C22 Aromatics 81 Naphthalene 68 2-Methylnaphthalene 69 Acenaphthylene 72 Acenaphthene 74 Fluorene 76 Phenanthrene 77 Anthracene 82 Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76	55 55 56 60	40-140 5 40-140 5 40-140 3 40-140	16 21 23 22	25 25 25 25 25	
Naphthalene 68 2-Methylnaphthalene 69 Acenaphthylene 72 Acenaphthene 74 Fluorene 76 Phenanthrene 77 Anthracene 82 Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76	55 55 56	5 40-140 5 40-140 3 40-140	21 23 22	25 25 25 25	
2-Methylnaphthalene 69 Acenaphthylene 72 Acenaphthene 74 Fluorene 76 Phenanthrene 77 Anthracene 82 Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76	55	5 40-140 3 40-140	23 22	25 25	
Acenaphthylene 72 Acenaphthene 74 Fluorene 76 Phenanthrene 77 Anthracene 82 Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76	58	3 40-140	22	25	
Acenaphthene 74 Fluorene 76 Phenanthrene 77 Anthracene 82 Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76	66				
Fluorene 76 Phenanthrene 77 Anthracene 82 Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76		0 40-140	21	0.5	
Phenanthrene77Anthracene82Fluoranthene77Pyrene77Benzo(a)anthracene76	C		21	25	
Anthracene 82 Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76	63	3 40-140	19	25	
Fluoranthene 77 Pyrene 77 Benzo(a)anthracene 76	66	40-140	15	25	
Pyrene 77 Benzo(a)anthracene 76	7'	40-140	14	25	
Benzo(a)anthracene 76	68	3 40-140	12	25	
	69	9 40-140	11	25	
Chrysono	65	5 40-140	16	25	
Chrysene	7	40-140	13	25	
Benzo(b)fluoranthene 78	65	5 40-140	18	25	
Benzo(k)fluoranthene 82	7	40-140	14	25	
Benzo(a)pyrene 72	62	2 40-140	15	25	
Indeno(1,2,3-cd)Pyrene 77	65	5 40-140	17	25	
Dibenzo(a,h)anthracene 82	70	40-140	16	25	
Benzo(ghi)perylene 73	6	40-140	18	25	
Nonane (C9) 36	50	30-140	33	Q 25	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706297

Report Date: 03/08/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sam	ple(s): 01 Batch	: WG982202-2 WG982202	2-3		
Decane (C10)	39	Q	56	40-140	36	Q	25
Dodecane (C12)	41		58	40-140	34	Q	25
Tetradecane (C14)	42		60	40-140	35	Q	25
Hexadecane (C16)	44		63	40-140	36	Q	25
Octadecane (C18)	45		66	40-140	38	Q	25
Nonadecane (C19)	45		66	40-140	38	Q	25
Eicosane (C20)	46		68	40-140	39	Q	25
Docosane (C22)	47		68	40-140	37	Q	25
Tetracosane (C24)	47		68	40-140	37	Q	25
Hexacosane (C26)	47		68	40-140	37	Q	25
Octacosane (C28)	47		68	40-140	37	Q	25
Triacontane (C30)	46		67	40-140	37	Q	25
Hexatriacontane (C36)	45		63	40-140	33	Q	25

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Chloro-Octadecane	39	Q	61		40-140
o-Terphenyl	93		81		40-140
2-Fluorobiphenyl	75		70		40-140
2-Bromonaphthalene	78		73		40-140
% Naphthalene Breakthrough	0		0		
% 2-Methylnaphthalene Breakthrough	0		0		

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706297

Report Date: 03/08/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
Volatile Petroleum Hydrocarbons - Westboro	ugh Lab Associ	ated sample(s):	01 Batch:	WG983639-2	WG983639-3		
C5-C8 Aliphatics	102		102		70-130	0	25
C9-C12 Aliphatics	102		102		70-130	0	25
C9-C10 Aromatics	95		97		70-130	1	25
Benzene	95		95		70-130	0	25
Toluene	95		95		70-130	0	25
Ethylbenzene	95		95		70-130	0	25
p/m-Xylene	96		96		70-130	0	25
o-Xylene	96		96		70-130	1	25
Methyl tert butyl ether	93		95		70-130	2	25
Naphthalene	90		95		70-130	5	25
1,2,4-Trimethylbenzene	95		97		70-130	2	25
Pentane	100		101		70-130	1	25
2-Methylpentane	101		101		70-130	0	25
2,2,4-Trimethylpentane	103		104		70-130	1	25
n-Nonane	103		103		30-130	0	25
n-Decane	101		101		70-130	0	25
n-Butylcyclohexane	102		103		70-130	1	25

TREMONT CROSSING

Lab Number:

L1706297

Project Number: 1700516

Report Date:

03/08/17

Project Name:

Parameter

LCS %Recovery

Qual %

LCSD %Recovery

Qual

%Recovery Limits

RPD

Qual Li

RPD Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG983639-2 WG983639-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	95		94		70-130	
2,5-Dibromotoluene-FID	98		96		70-130	

INORGANICS & MISCELLANEOUS

Serial_No:03081714:08

Project Name: TREMONT CROSSING

Project Number: 1700516 Lab Number:

L1706297

Report Date:

03/08/17

SAMPLE RESULTS

Lab ID: L1706297-01

1700516-B303-S9 (0-5") Client ID:

Sample Location:

BOSTON, MA

Date Collected:

02/28/17 22:30

Date Received:

03/01/17

Field Prep:

Not Specified

Matrix: Soil

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab								
Solids, Total	80.9	%	0.100	NA	1	-	03/02/17 14:10	121,2540G	RO

Serial_No:03081714:08

Project Name: TREMONT CROSSING Lab Number: L1706297

Project Number: 1700516 Report Date: 03/08/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706297-01A	Vial MeOH preserved	Α	N/A	5.6	Υ	Absent	VPH-DELUX-10(28)
L1706297-01B	Vial MeOH preserved	Α	N/A	5.6	Υ	Absent	MCP-8260H-10(14)
L1706297-01D	Glass 120ml/4oz unpreserved	Α	N/A	5.6	Υ	Absent	TS(7),EPH-DELUX-10(14)

Project Name: TREMONT CROSSING Lab Number: L1706297

Project Number: 1700516 Report Date: 03/08/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSINGLab Number:L1706297Project Number:1700516Report Date:03/08/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:TREMONT CROSSINGLab Number:L1706297Project Number:1700516Report Date:03/08/17

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:03081714:08

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1706297 : TREMONT CROSSING **Project Number Project Name** : 1700516 : WG983145-5 Lab File ID : V10170305A05

Lab Sample ID Instrument ID : VOA110

Analysis Date Matrix : SOIL : 03/05/17 09:46

Client Sample No.	Lab Sample ID	Analysis Date
WG983145-3LCS	WG983145-3	03/05/17 08:29
WG983145-4LCSD	WG983145-4	03/05/17 08:55
1700516-B303-S9 (0-5')	L1706297-01	03/05/17 11:55

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706297

Project Name : TREMONT CROSSING Project Number : 1700516

Instrument ID : VOA110 Calibration Date : 03/05/17 08:29

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(m
Fluorobenzene	1	1	-	0	20	101	0
Dichlorodifluoromethane	0.351	0.363	-	-3.4	20	108	0
Chloromethane	0.269	0.276	-	-2.6	20	104	0
Vinyl chloride	0.267	0.261	-	2.2	20	101	0
Bromomethane	0.202	0.194	-	4	20	104	0
Chloroethane	0.168	0.149	-	11.3	20	90	.04
Trichlorofluoromethane	0.445	0.473	-	-6.3	20	103	.04
Ethyl ether	0.158	0.144	-	8.9	20	95	0
1,1-Dichloroethene	0.221	0.229	-	-3.6	20	109	.01
Carbon disulfide	20	16.26	7	18.7	20	86	.02
Freon-113	0.206	0.218	-	-5.8	20	108	.02
Acrolein	0.046	0.042	-	8.7	20	102	0
Methylene chloride	20	18.209	-	9	20	98	0
Acetone	0.056	0.065	-	-16.1	20	122	0
trans-1,2-Dichloroethene	0.25	0.253	-	-1.2	20	104	0
Methyl acetate	0.153	0.146	-	4.6	20	101	0
Methyl tert-butyl ether	0.676	0.703		-4	20	111	0
tert-Butyl alcohol	0.018	0.019		-5.6	20	112	01
Diisopropyl ether	0.758	0.786	-	-3.7	20	105	0
1,1-Dichloroethane	0.425	0.44	-	-3.5	20	104	0
Halothane	0.17	0.176	-	-3.5	20	106	0
Acrylonitrile	20	18.935	-	5.3	20	100	0
Ethyl tert-butyl ether	0.616	0.651	-	-5.7	20	110	0
Vinyl acetate	20	18.904	-	5.5	20	105	0
cis-1,2-Dichloroethene	0.269	0.268	-	0.4	20	101	0
2,2-Dichloropropane	0.313	0.359	-	-14.7	20	123	0
Bromochloromethane	0.128	0.128		0	20	99	0
Cyclohexane	0.342	0.376		-9.9	20	113	0
Chloroform	0.457	0.459		-0.4	20	100	0
Ethyl acetate	0.204	0.201		1.5	20	100	0
Carbon tetrachloride	0.32	0.34		-6.3	20	112	0
Tetrahydrofuran	0.072	0.084		-0.3	20	115	0
Dibromofluoromethane	0.256	0.263	-	-10.7	20	102	0
1,1,1-Trichloroethane	0.393	0.421		-2. <i>1</i> -7.1	20	110	0
2-Butanone	0.09	0.421		5.6	20	106	.01
	0.09	0.085		-5.8	20	106	
1,1-Dichloropropene			-				0
Benzene	0.996	1.01	-	-1.4	20	102	0
tert-Amyl methyl ether	0.54	0.581	-	-7.6	20	115	0
1,2-Dichloroethane-d4	0.27	0.269	-	0.4	20	100	0
1,2-Dichloroethane	0.339	0.329	-	2.9	20	97	0
Methyl cyclohexane	0.35	0.365	-	-4.3	20	113	0
Trichloroethene	0.262	0.268	-	-2.3	20	104	0
Dibromomethane	0.151	0.143	-	5.3	20	97	0
1,2-Dichloropropane	0.232	0.229	-	1.3	20	100	0
2-Chloroethyl vinyl ether	20	9.093	-	54.5*	20	55	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706297
Project Name : TREMONT CROSSING Project Number : 1700516

Instrument ID : VOA110 Calibration Date : 03/05/17 08:29

Channel :

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Bromodichloromethane	0.337	0.318	-	5.6	20	98	0
1,4-Dioxane	0.00229	0.002	-	12.7	20	93	0
cis-1,3-Dichloropropene	20	17.712	-	11.4	20	102	0
Chlorobenzene-d5	1	1	-	0	20	105	0
Toluene-d8	1.233	1.231	-	0.2	20	103	0
Toluene	0.846	0.82	-	3.1	20	102	0
4-Methyl-2-pentanone	0.089	0.073	-	18	20	104	0
Tetrachloroethene	0.33	0.321	-	2.7	20	104	0
trans-1,3-Dichloropropene	0.402	0.396	-	1.5	20	107	0
Ethyl methacrylate	20	15.631	-	21.8*	20	100	0
1,1,2-Trichloroethane	0.243	0.232	-	4.5	20	99	0
Chlorodibromomethane	0.324	0.294	-	9.3	20	99	0
1,3-Dichloropropane	0.472	0.451	-	4.4	20	100	0
1,2-Dibromoethane	0.267	0.245	-	8.2	20	97	0
2-Hexanone	20	13.824	-	30.9*	20	100	0
Chlorobenzene	0.965	0.902	-	6.5	20	98	0
Ethylbenzene	1.513	1.509		0.3	20	102	0
1,1,1,2-Tetrachloroethane	0.334	0.315	-	5.7	20	100	0
p/m Xylene	0.58	0.591	-	-1.9	20	101	0
o Xylene	0.54	0.543	-	-0.6	20	100	0
Styrene	0.952	0.918	-	3.6	20	95	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	105	0
Bromoform	0.396	0.342	-	13.6	20	99	0
Isopropylbenzene	2.879	2.854	-	0.9	20	103	0
4-Bromofluorobenzene	0.867	0.868	-	-0.1	20	107	0
Bromobenzene	0.743	0.681	-	8.3	20	99	0
n-Propylbenzene	3.513	3.465	-	1.4	20	102	0
1,4-Dichlorobutane	0.894	0.869	-	2.8	20	103	0
1,1,2,2-Tetrachloroethane	0.714	0.66	-	7.6	20	100	0
4-Ethyltoluene	2.879	2.853	-	0.9	20	101	0
2-Chlorotoluene	2.146	2.102	-	2.1	20	100	0
1,3,5-Trimethylbenzene	2.51	2.483	-	1.1	20	100	0
1,2,3-Trichloropropane	0.577	0.532	-	7.8	20	100	0
trans-1,4-Dichloro-2-buten	0.175	0.165	-	5.7	20	101	0
4-Chlorotoluene	2.122	2.059	-	3	20	100	0
tert-Butylbenzene	2.051	2.025	-	1.3	20	103	0
1,2,4-Trimethylbenzene	2.467	2.431	-	1.5	20	99	0
sec-Butylbenzene	3.173	3.196	-	-0.7	20	104	0
p-Isopropyltoluene	2.626	2.569	-	2.2	20	101	0
1,3-Dichlorobenzene	1.484	1.382	-	6.9	20	98	0
1,4-Dichlorobenzene	1.534	1.384	-	9.8	20	97	0
p-Diethylbenzene	1.524	1.465	-	3.9	20	100	0
n-Butylbenzene	2.502	2.514	-	-0.5	20	103	0
1,2-Dichlorobenzene	1.392	1.246	-	10.5	20	97	0
1,2,4,5-Tetramethylbenzene	20	16.51	-	17.4	20	97	0
1,2,7,5-1 CHAINCHIYIDCHZCHC	20	10.01	-	17.4	20	31	U

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706297
Project Name : TREMONT CROSSING Project Number : 1700516

Instrument ID : VOA110 Calibration Date : 03/05/17 08:29

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dibromo-3-chloropropan	0.09	0.078	-	13.3	20	99	0
1,3,5-Trichlorobenzene	1.022	0.934	-	8.6	20	96	0
Hexachlorobutadiene	0.493	0.45	-	8.7	20	104	0
1,2,4-Trichlorobenzene	0.876	0.794	-	9.4	20	98	0
Naphthalene	20	15.898	-	20.5*	20	95	0
1,2,3-Trichlorobenzene	0.839	0.751	-	10.5	20	96	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1706486

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/09/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).


Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Lab Number: L1706486 Report Date: 03/09/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1706486-01	1700516-B308-S2 (0-18")	SOIL	BOSTON, MASSACHUSETTS	03/01/17 20:40	03/02/17
L1706486-02	1700516-B308-S7 (0-10")	SOIL	BOSTON, MASSACHUSETTS	03/01/17 22:10	03/02/17
L1706486-03	1700516-B308-COMP (0-8")	SOIL	BOSTON, MASSACHUSETTS	03/01/17 20:45	03/02/17
L1706486-04	1700516-B308-COMP (8-22")	SOIL	BOSTON, MASSACHUSETTS	03/01/17 22:30	03/02/17

Project Number: 1700516 Report Date: 03/09/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	response to questions G, H and I is required for "Presumptive Certainty" status								
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO							
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO							
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES							

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:TREMONT CROSSING PHASE IILab Number:L1706486Project Number:1700516Report Date:03/09/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:TREMONT CROSSING PHASE IILab Number:L1706486Project Number:1700516Report Date:03/09/17

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

In reference to question H:

A Matrix Spike was not submitted for the analysis of Metals.

Volatile Organics

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The initial calibration, associated with L1706486-01 and -02, did not meet the method required minimum response factor on the lowest calibration standard for acetone (0.0788), 2-butanone (0.0798), 4-methyl-2-pentanone (0.0579), and 1,4-dioxane (0.0021), as well as the average response factor for acetone, 2-butanone, 4-methyl-2-pentanone, and 1,4-dioxane.

The continuing calibration standard, associated with L1706486-01 and -02, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

Pesticides

A copy of the Degradation Standards for 4,4'-DDT and Endrin breakdown products is included as an addendum.

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

Herbicides

In reference to question H:

The WG982131-2/-3 LCS/LCSD recoveries, associated with L1706486-03, are below the acceptance criteria for dinoseb (7%/9%); however, the recoveries are due to a noted method interference caused by the hydrolysis step of the extraction procedure. The results of the associated samples are reported; however, all results are

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486
Project Number: 1700516 Report Date: 03/09/17

Case Narrative (continued)

considered to have a potentially low bias for this compound.

The WG982756-2/-3 LCS/LCSD recoveries, associated with L1706486-04, are below the acceptance criteria for dinoseb (3%/6%); however, the recoveries are due to a noted method interference caused by the hydrolysis step of the extraction procedure. The results of the associated samples are reported; however, all results are considered to have a potentially low bias for this compound.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/09/17

Curley Walker Cristin Walker

L1706486

03/09/17

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

SAMPLE RESULTS

Date Collected: 03/01/17 20:40

Lab Number:

Report Date:

Date Received: 03/02/17
Field Prep: Not Specified

Lab ID: L1706486-01

Client ID: 1700516-B308-S2 (0-18")
Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 03/05/17 12:20

Analyst: MV Percent Solids: 92%

	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 High - Wes	tborough Lab)				
Methylene chloride	ND		ug/kg	480		1
1,1-Dichloroethane	ND		ug/kg	73		1
Chloroform	ND		ug/kg	73		1
Carbon tetrachloride	ND		ug/kg	48		1
1,2-Dichloropropane	ND		ug/kg	170		1
Dibromochloromethane	ND		ug/kg	48		1
1,1,2-Trichloroethane	ND		ug/kg	73		1
Tetrachloroethene	ND		ug/kg	48		1
Chlorobenzene	ND		ug/kg	48		1
Trichlorofluoromethane	ND		ug/kg	190		1
1,2-Dichloroethane	ND		ug/kg	48		1
1,1,1-Trichloroethane	ND		ug/kg	48		1
Bromodichloromethane	ND		ug/kg	48		1
trans-1,3-Dichloropropene	ND		ug/kg	48		1
cis-1,3-Dichloropropene	ND		ug/kg	48		1
1,3-Dichloropropene, Total	ND		ug/kg	48		1
1,1-Dichloropropene	ND		ug/kg	190		1
Bromoform	ND		ug/kg	190		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	48		1
Benzene	49		ug/kg	48		1
Toluene	ND		ug/kg	73		1
Ethylbenzene	ND		ug/kg	48		1
Chloromethane	ND		ug/kg	190		1
Bromomethane	ND		ug/kg	97		1
Vinyl chloride	ND		ug/kg	97		1
Chloroethane	ND		ug/kg	97		1
1,1-Dichloroethene	ND		ug/kg	48		1
trans-1,2-Dichloroethene	ND		ug/kg	73		1
Trichloroethene	ND		ug/kg	48		1
1,2-Dichlorobenzene	ND		ug/kg	190		1

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/01/17 20:40

Client ID: 1700516-B308-S2 (0-18") Date Received: 03/02/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter Res MCP Volatile Organics by 5035 High - Westborou 1,3-Dichlorobenzene N 1,4-Dichlorobenzene N Methyl tert butyl ether N p/m-Xylene N o-Xylene N Xylenes, Total N cis-1,2-Dichloroethene N 1,2-Dichloroethene, Total N	gh Lab D D D D D D	ug/kg ug/kg ug/kg ug/kg ug/kg	190 190 97 97	 Dilution Factor 1 1 1
1,3-Dichlorobenzene N 1,4-Dichlorobenzene N Methyl tert butyl ether N p/m-Xylene N o-Xylene N Xylenes, Total N cis-1,2-Dichloroethene N	D D D D D D	ug/kg ug/kg ug/kg	190 97	 1
1,4-Dichlorobenzene N Methyl tert butyl ether N p/m-Xylene N o-Xylene N Xylenes, Total N cis-1,2-Dichloroethene N	D D D D	ug/kg ug/kg ug/kg	190 97	 1
1,4-Dichlorobenzene Nethyl tert butyl ether Np/m-Xylene No-Xylene Nylenes, Total Nylenes, Total Nylenes, Total Nylenes, Total	D D D D	ug/kg ug/kg ug/kg	190 97	1
Methyl tert butyl ether p/m-Xylene no-Xylene N Xylenes, Total N cis-1,2-Dichloroethene	D D D	ug/kg ug/kg	97	
p/m-Xylene N o-Xylene N Xylenes, Total N cis-1,2-Dichloroethene N	D D D	ug/kg		
o-Xylene N Xylenes, Total N cis-1,2-Dichloroethene N	D D			 1
Xylenes, Total N cis-1,2-Dichloroethene N	D	~9,9	97	 1
cis-1,2-Dichloroethene N	_	ug/kg	97	 1
	D	ug/kg	48	 1
		ug/kg	48	 1
Dibromomethane N	D	ug/kg	190	 1
,2,3-Trichloropropane N	D	ug/kg	190	 1
Styrene N	D	ug/kg	97	 1
Dichlorodifluoromethane N	D	ug/kg	480	 1
Acetone N	D .	ug/kg	1700	 1
Carbon disulfide N	D	ug/kg	190	 1
Methyl ethyl ketone N		ug/kg	480	 1
Methyl isobutyl ketone N		ug/kg	480	 1
-Hexanone N	D	ug/kg	480	 1
Bromochloromethane N	D	ug/kg	190	 1
- etrahydrofuran N		ug/kg	190	 1
,2-Dichloropropane N	D	ug/kg	240	 1
,2-Dibromoethane		ug/kg	190	 1
,3-Dichloropropane N		ug/kg	190	 1
,1,1,2-Tetrachloroethane N	D	ug/kg	48	 1
Bromobenzene N	D	ug/kg	240	 1
n-Butylbenzene N	D	ug/kg	48	 1
ec-Butylbenzene N	D	ug/kg	48	 1
ert-Butylbenzene N	D	ug/kg	190	 1
p-Chlorotoluene N	D	ug/kg	190	 1
o-Chlorotoluene N	D	ug/kg	190	 1
,2-Dibromo-3-chloropropane N	D	ug/kg	190	 1
Hexachlorobutadiene N	D	ug/kg	190	 1
sopropylbenzene N	D	ug/kg	48	 1
-Isopropyltoluene N		ug/kg	48	 1
Naphthalene N		ug/kg	190	 1
n-Propylbenzene N		ug/kg	48	 1
,2,3-Trichlorobenzene N		ug/kg	190	 1
,2,4-Trichlorobenzene N		ug/kg	190	 1
,3,5-Trimethylbenzene N		ug/kg	190	 1
,2,4-Trimethylbenzene N	D	ug/kg	190	 1

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

 Lab ID:
 L1706486-01
 Date Collected:
 03/01/17 20:40

 Client ID:
 1700516-B308-S2 (0-18")
 Date Received:
 03/02/17

Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 High - Westb	orough Lab					
Diethyl ether	ND		ug/kg	240		1
Diisopropyl Ether	ND		ug/kg	190		1
Ethyl-Tert-Butyl-Ether	ND		ug/kg	190		1
Tertiary-Amyl Methyl Ether	ND		ug/kg	190		1
1,4-Dioxane	ND		ug/kg	1900		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	105	70-130
Dibromofluoromethane	91	70-130

L1706486

03/09/17

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

SAMPLE RESULTS

Date Collected: 03/01/17 22:10

Lab Number:

Report Date:

Date Received: 03/02/17 Field Prep: Not Specified

Lab ID: L1706486-02

Client ID: 1700516-B308-S7 (0-10")
Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 03/05/17 12:46

Analyst: MV Percent Solids: 93%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 High	- Westborough Lab					
Methylene chloride	ND		ug/kg	400		1
1,1-Dichloroethane	ND		ug/kg	61		1
Chloroform	ND		ug/kg	61		1
Carbon tetrachloride	ND		ug/kg	40		1
1,2-Dichloropropane	ND		ug/kg	140		1
Dibromochloromethane	ND		ug/kg	40		1
1,1,2-Trichloroethane	ND		ug/kg	61		1
Tetrachloroethene	ND		ug/kg	40		1
Chlorobenzene	ND		ug/kg	40		1
Trichlorofluoromethane	ND		ug/kg	160		1
1,2-Dichloroethane	ND		ug/kg	40		1
1,1,1-Trichloroethane	ND		ug/kg	40		1
Bromodichloromethane	ND		ug/kg	40		1
trans-1,3-Dichloropropene	ND		ug/kg	40		1
cis-1,3-Dichloropropene	ND		ug/kg	40		1
1,3-Dichloropropene, Total	ND		ug/kg	40		1
1,1-Dichloropropene	ND		ug/kg	160		1
Bromoform	ND		ug/kg	160		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	40		1
Benzene	ND		ug/kg	40		1
Toluene	ND		ug/kg	61		1
Ethylbenzene	ND		ug/kg	40		1
Chloromethane	ND		ug/kg	160		1
Bromomethane	ND		ug/kg	81		1
Vinyl chloride	ND		ug/kg	81		1
Chloroethane	ND		ug/kg	81		1
1,1-Dichloroethene	ND		ug/kg	40		1
trans-1,2-Dichloroethene	ND		ug/kg	61		1
Trichloroethene	250		ug/kg	40		1
1,2-Dichlorobenzene	ND		ug/kg	160		1

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/01/17 22:10

Client ID: 1700516-B308-S7 (0-10") Date Received: 03/02/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor MCP Volatile Organics by 5035 High - Westborough Lab ND ug/kg 160 1 1,3-Dichlorobenzene ND ug/kg 160 1 1,4-Dichlorobenzene ND ug/kg 81 1 Methyl tert butyl ether ND ug/kg 81 1 p/m-Xylene ND ug/kg 81 1 e-Xylenes, Total ND ug/kg 81 1 Xylenes, Total ND ug/kg 40 1 cis-1,2-Dichloroethene ND ug/kg 40 1 1,2-Dichloroethene, Total ND ug/kg 160 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 81 1 Styrene ND ug/kg	ipie Location.
1,3-Dichlorobenzene ND ug/kg 160 1 1,4-Dichlorobenzene ND ug/kg 160 1 Methyl tert butyl ether ND ug/kg 81 1 p/m-Xylene ND ug/kg 81 1 o-Xylene ND ug/kg 81 1 Xylenes, Total ND ug/kg 81 1 cis-1,2-Dichloroethene ND ug/kg 40 1 1,2-Dichloroethene, Total ND ug/kg 40 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	ameter
1,4-Dichlorobenzene ND ug/kg 160 1 Methyl tert butyl ether ND ug/kg 81 1 p/m-Xylene ND ug/kg 81 1 o-Xylene ND ug/kg 81 1 Xylenes, Total ND ug/kg 81 1 cis-1,2-Dichloroethene ND ug/kg 40 1 1,2-Dichloroethene, Total ND ug/kg 40 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	P Volatile Organic
1,4-Dichlorobenzene ND ug/kg 160 1 Methyl tert butyl ether ND ug/kg 81 1 p/m-Xylene ND ug/kg 81 1 o-Xylene ND ug/kg 81 1 Xylenes, Total ND ug/kg 81 1 cis-1,2-Dichloroethene ND ug/kg 40 1 1,2-Dichloroethene, Total ND ug/kg 40 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	Dichlorobenzene
Methyl tert butyl ether ND ug/kg 81 1 p/m-Xylene ND ug/kg 81 1 o-Xylene ND ug/kg 81 1 Xylenes, Total ND ug/kg 81 1 cis-1,2-Dichloroethene ND ug/kg 40 1 1,2-Dichloroethene, Total ND ug/kg 40 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	
p/m-Xylene ND ug/kg 81 1 o-Xylene ND ug/kg 81 1 Xylenes, Total ND ug/kg 81 1 cis-1,2-Dichloroethene ND ug/kg 40 1 1,2-Dichloroethene, Total ND ug/kg 40 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	
o-Xylene ND ug/kg 81 1 Xylenes, Total ND ug/kg 81 1 cis-1,2-Dichloroethene ND ug/kg 40 1 1,2-Dichloroethene, Total ND ug/kg 40 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	-
Xylenes, Total ND ug/kg 81 1 cis-1,2-Dichloroethene ND ug/kg 40 1 1,2-Dichloroethene, Total ND ug/kg 40 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	
cis-1,2-Dichloroethene ND ug/kg 40 1 1,2-Dichloroethene, Total ND ug/kg 40 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	
1,2-Dichloroethene, Total ND ug/kg 40 1 Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	
Dibromomethane ND ug/kg 160 1 1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	
1,2,3-Trichloropropane ND ug/kg 160 1 Styrene ND ug/kg 81 1	
Styrene ND ug/kg 81 1	
Distribution and a second a second and cond and cond and a second and a second and	
Acetone ND ug/kg 1400 1	
Carbon disulfide ND ug/kg 160 1	
Methyl ethyl ketone ND ug/kg 400 1	
	-
	•
-5/19	
-510	
39.0	
1,3-Dichloropropane ND ug/kg 160 1	
1,1,1,2-Tetrachloroethane ND ug/kg 40 1	
Bromobenzene ND ug/kg 200 1	
n-Butylbenzene ND ug/kg 40 1	
sec-Butylbenzene ND ug/kg 40 1	
tert-Butylbenzene ND ug/kg 160 1	-
o-Chlorotoluene ND ug/kg 160 1	
p-Chlorotoluene ND ug/kg 160 1	
1,2-Dibromo-3-chloropropane ND ug/kg 160 1	
Hexachlorobutadiene ND ug/kg 160 1	
Isopropylbenzene ND ug/kg 40 1	
p-Isopropyltoluene ND ug/kg 40 1	
Naphthalene ND ug/kg 160 1	
n-Propylbenzene ND ug/kg 40 1	
1,2,3-Trichlorobenzene ND ug/kg 160 1	
1,2,4-Trichlorobenzene ND ug/kg 160 1	
1,3,5-Trimethylbenzene ND ug/kg 160 1	
1,2,4-Trimethylbenzene ND ug/kg 160 1	I-Trimethylbenzene

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-02 Date Collected: 03/01/17 22:10

Client ID: 1700516-B308-S7 (0-10") Date Received: 03/02/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics by 5035 High - Wes	tborough Lal)					
Diethyl ether	ND		ug/kg	200		1	
Diisopropyl Ether	ND		ug/kg	160		1	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	160		1	
Tertiary-Amyl Methyl Ether	ND		ug/kg	160		1	
1,4-Dioxane	ND		ug/kg	1600		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	107	70-130
Dibromofluoromethane	94	70-130

Project Number: 1700516 Report Date: 03/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/05/17 09:46

Analyst: BN

McP Volatile Organics by 8260/5035 - Westborough Lab for sample(s): 01-02 Batch: WG983145-5 Methylene chloride ND ug/kg 500 1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 50 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichloroffuoroethane ND ug/kg 50 Trichloroffuoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 Bromodichloropropene ND ug/kg 50 1,3-Dichloropropene ND	Parameter	Result	Qualifier Units	RL	MDL	
1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg <td< td=""><td>MCP Volatile Organics by 8260</td><td>/5035 - Westbo</td><td>rough Lab for sample</td><td>(s): 01-02</td><td>Batch: WG983145-5</td><td>5</td></td<>	MCP Volatile Organics by 8260	/5035 - Westbo	rough Lab for sample	(s): 01-02	Batch: WG983145-5	5
1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg <td< td=""><td>Methylene chloride</td><td>ND</td><td>ug/kg</td><td>500</td><td></td><td></td></td<>	Methylene chloride	ND	ug/kg	500		
Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 1,1,2-Trichloropermentane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Chlorofluoromethane ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg 50 1,2-Dichloropropene ND ug/kg <td></td> <td>ND</td> <td></td> <td>75</td> <td></td> <td></td>		ND		75		
1,2-Dichloropropane ND	Chloroform	ND	ug/kg	75		
Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 1,1-2,2-Tetrachloroethane ND	Carbon tetrachloride	ND	ug/kg	50		
1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 200 1,1-Dichloropropene ND ug/kg 200 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 50 1,1,2,2-Tetrachloroethane ND ug/kg	1,2-Dichloropropane	ND	ug/kg	180		
Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 <td>Dibromochloromethane</td> <td>ND</td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	Dibromochloromethane	ND	ug/kg	50		
Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td>ug/kg</td><td>75</td><td></td><td></td></t<>	1,1,2-Trichloroethane	ND	ug/kg	75		
Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 100	Tetrachloroethene	ND	ug/kg	50		
1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100	Chlorobenzene	ND	ug/kg	50		
1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50	Trichlorofluoromethane	ND	ug/kg	200		
Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 <td>1,2-Dichloroethane</td> <td>ND</td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	1,2-Dichloroethane	ND	ug/kg	50		
trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 50	1,1,1-Trichloroethane	ND	ug/kg	50		
cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromodichloromethane	ND	ug/kg	50		
1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	trans-1,3-Dichloropropene	ND	ug/kg	50		
1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	cis-1,3-Dichloropropene	ND	ug/kg	50		
Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,3-Dichloropropene, Total	ND	ug/kg	50		
1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1-Dichloropropene	ND	ug/kg	200		
Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromoform	ND	ug/kg	200		
Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1,2,2-Tetrachloroethane	ND	ug/kg	50		
Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Benzene	ND	ug/kg	50		
Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Toluene	ND	ug/kg	75		
Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Ethylbenzene	ND	ug/kg	50		
Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Chloromethane	ND	ug/kg	200		
Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromomethane	ND	ug/kg	100		
1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Vinyl chloride	ND	ug/kg	100		
trans-1,2-Dichloroethene ND ug/kg 75	Chloroethane	ND	ug/kg	100		
3 3	1,1-Dichloroethene	ND	ug/kg	50		
Trichloroethene ND ug/kg 50	trans-1,2-Dichloroethene	ND	ug/kg	75		
	Trichloroethene	ND	ug/kg	50		

Project Number: 1700516 Report Date: 03/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/05/17 09:46

Analyst: BN

ACP Volatile Organics by 8260/5035 - Westborough Lab for sample(s): 01-02 Batch: WG983145-5	Parameter	Result	Qualifier U	nits	RL	MDL	
1,3-Dichlorobenzene ND ug/kg 200 1,4-Dichlorobenzene ND ug/kg 200 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Styrene ND ug/kg 500 Acetone ND ug/kg 500	MCP Volatile Organics by 8260/503	35 - Westbo	rough Lab for	sample(s):	01-02	Batch:	WG983145-5
1,3-Dichlorobenzene ND ug/kg 200 1,4-Dichlorobenzene ND ug/kg 200 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Styrene ND ug/kg 500 Acetone ND ug/kg 500	1,2-Dichlorobenzene	ND	U	ig/kg	200	<u></u>	
1,4-Dichlorobenzene ND	1,3-Dichlorobenzene	ND			200		
Methyl tert butyl ether ND ug/kg 100	1,4-Dichlorobenzene	ND			200		
o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 100 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Acetone ND ug/kg 200 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 <td>Methyl tert butyl ether</td> <td>ND</td> <td></td> <td></td> <td>100</td> <td></td> <td></td>	Methyl tert butyl ether	ND			100		
Xylenes, Total ND ug/kg 100 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 250	p/m-Xylene	ND	U	ig/kg	100		
cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dibloropropane ND ug/kg 250	o-Xylene	ND	U	ıg/kg	100		
1,2-Dichloroethene, Total ND	Xylenes, Total	ND	U	ıg/kg	100		
Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 100 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50	cis-1,2-Dichloroethene	ND	u	ıg/kg	50		
1,2,3-Trichloropropane	1,2-Dichloroethene, Total	ND	U	ıg/kg	50		
Styrene ND ug/kg 100 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 50 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50	Dibromomethane	ND	u	ıg/kg	200		
Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 200 <	1,2,3-Trichloropropane	ND	u	ıg/kg	200		
Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200 </td <td>Styrene</td> <td>ND</td> <td>U</td> <td>ıg/kg</td> <td>100</td> <td></td> <td></td>	Styrene	ND	U	ıg/kg	100		
Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Dichlorodifluoromethane	ND	U	ıg/kg	500		
Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Acetone	ND	U	ıg/kg	1800		
Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Carbon disulfide	ND	U	ıg/kg	200		
2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Methyl ethyl ketone	ND	U	ıg/kg	500		
Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Methyl isobutyl ketone	ND	U	ıg/kg	500		
Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	2-Hexanone	ND	U	ıg/kg	500		
2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Bromochloromethane	ND	U	ıg/kg	200		
1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Tetrahydrofuran	ND	U	ıg/kg	200		
1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	2,2-Dichloropropane	ND	U	ıg/kg	250		
1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	1,2-Dibromoethane	ND	U	ıg/kg	200		
Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	1,3-Dichloropropane	ND	U	ıg/kg	200		
n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	1,1,1,2-Tetrachloroethane	ND	U	ıg/kg	50		
sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Bromobenzene	ND	U	ıg/kg	250		
tert-Butylbenzene ND ug/kg 200	n-Butylbenzene	ND	u	ıg/kg	50		
	sec-Butylbenzene	ND	u	ıg/kg	50		
o-Chlorotoluene ND ug/kg 200	tert-Butylbenzene	ND	u	ıg/kg	200		
	o-Chlorotoluene	ND	u	ıg/kg	200		

Project Number: 1700516 Report Date: 03/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/05/17 09:46

Analyst: BN

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics by 8260/	5035 - Westbo	orough Lab	for sample	e(s): 01-02	Batch: WG	983145-5
p-Chlorotoluene	ND		ug/kg	200		
1,2-Dibromo-3-chloropropane	ND		ug/kg	200		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	200		
1,2,4-Trichlorobenzene	ND		ug/kg	200		
1,3,5-Trimethylbenzene	ND		ug/kg	200		
1,2,4-Trimethylbenzene	ND		ug/kg	200		
Diethyl ether	ND		ug/kg	250		
Diisopropyl Ether	ND		ug/kg	200		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200		
Tertiary-Amyl Methyl Ether	ND		ug/kg	200		
1,4-Dioxane	ND		ug/kg	2000		
2-Chloroethylvinyl ether	ND		ug/kg	1000		
Halothane	ND		ug/kg	2000		
Ethyl Acetate	ND		ug/kg	1000		
Freon-113	ND		ug/kg	1000		
Vinyl acetate	ND		ug/kg	500		

Surrogate	%Recovery	Qualifier	Acceptance Criteria
40 Pi H H H	404		70.400
1,2-Dichloroethane-d4	104		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	101		70-130

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1706486

Report Date: 03/09/17

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recover Qual Limits	ry RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - West	oorough Lab Asso	ociated sample(s): 01-02	Batch: WG983145-3 W	/G983145-4	
Methylene chloride	91	89	70-130	2	20
1,1-Dichloroethane	104	98	70-130	6	20
Chloroform	100	97	70-130	3	20
Carbon tetrachloride	106	100	70-130	6	20
1,2-Dichloropropane	99	94	70-130	5	20
Dibromochloromethane	90	88	70-130	2	20
1,1,2-Trichloroethane	96	93	70-130	3	20
Tetrachloroethene	97	93	70-130	4	20
Chlorobenzene	93	90	70-130	3	20
Trichlorofluoromethane	106	99	70-130	7	20
1,2-Dichloroethane	97	94	70-130	3	20
1,1,1-Trichloroethane	107	101	70-130	6	20
Bromodichloromethane	94	91	70-130	3	20
trans-1,3-Dichloropropene	99	95	70-130	4	20
cis-1,3-Dichloropropene	89	84	70-130	6	20
1,1-Dichloropropene	106	99	70-130	7	20
Bromoform	86	83	70-130	4	20
1,1,2,2-Tetrachloroethane	92	91	70-130	1	20
Benzene	101	97	70-130	4	20
Toluene	97	93	70-130	4	20
Ethylbenzene	100	95	70-130	5	20

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1

L1706486

Report Date:

03/09/17

Armomethane 96 97 70-130 1 20 Vinyl chloride 98 92 70-130 6 20 Chloroethane 89 86 70-130 3 20 II,1-Dichloroethene 104 98 70-130 6 20 Trichloroethene 101 94 70-130 7 20 Trichloroethene 102 96 70-130 6 20 II,2-Dichlorobenzene 90 88 70-130 6 20 II,3-Dichlorobenzene 93 89 70-130 6 20 II,4-Dichlorobenzene 93 89 70-130 4 20 II,4-Dichlorobenzene 90 86 70-130 5 20 Wethyl tert butyl ether 104 101 70-130 3 20 Wethyl tert butyl ether 104 101 70-130 5 20 Wethyl tert butyl ether 100 96 70-130 6 20 DockmayJene 100 95 70-130 6 20 DockmayJene 100 97 70-130 5 20 Dichloroethene 100 97 70-130 3 20 Dichloroethene 99 99 93 70-130 1 20 Dichloroethene 100 97 70-130 3 20 Dichloroethene 99 99 99 70-130 1 20 Dichloroethene 99 99 99 70-130 1 20 Dichloroethene 99 99 70-130 1 20 Dichloroethene 99 99 70-130 1 20 Dichloroethene 96 93 70-130 3 20 Dichloroethene 96 93 70-130 3 20 Dichloroethene 96 93 70-130 3 20 Dichloroethene 96 93 70-130 3 20 Dichloroethene 103 97 70-130 6 20 Dichloroethene 103 97 70-130 6 20 Dichloroethene 103 97 70-130 6 20 Dichloroethene 103 97 70-130 6 20 Dichloroethene 115 112 70-130 3 20 Dactoon disulfide 81 76 70-130 6 20	nmeter	LCS %Recovery Qua	LCSD I %Recovery G	%Recovery Qual Limits	RPD	RPD Qual Limits
Bromomethane 96 97 70-130 1 20 Viryl chloride 98 92 70-130 6 20 Chloroethane 89 86 70-130 3 20 1,1-Dichloroethene 104 98 70-130 6 20 trans-1,2-Dichloroethene 101 94 70-130 7 20 Trichloroethene 102 96 70-130 6 20 1,2-Dichlorobenzene 90 88 70-130 2 20 1,3-Dichlorobenzene 93 89 70-130 4 20 1,4-Dichlorobenzene 90 86 70-130 5 20 Methyl tert butyl ether 104 101 70-130 5 20 Methyl tert butyl ether 102 96 70-130 6 20 po-Xylene 102 95 70-130 6 20 O-Xylene 100 97 70-130 3 20	P Volatile Organics by 8260/5035 -	Westborough Lab Associate	d sample(s): 01-02 Batch	: WG983145-3 WG98314	15-4	
Viryl chloride 98 92 70-130 6 20 Chloroethane 89 86 70-130 3 20 1,1-Dichloroethene 104 98 70-130 6 20 trans-1,2-Dichloroethene 101 94 70-130 7 20 Trichloroethene 102 96 70-130 6 20 1,2-Dichlorobenzene 90 88 70-130 2 20 1,3-Dichlorobenzene 93 89 70-130 4 20 1,4-Dichlorobenzene 90 86 70-130 4 20 Methyl tert butyl ether 104 101 70-130 5 20 Methyl tert butyl ether 102 96 70-130 6 20 p/m-Xylene 102 96 70-130 6 20 o-Xylene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 0 20 <td>Chloromethane</td> <td>103</td> <td>98</td> <td>70-130</td> <td>5</td> <td>20</td>	Chloromethane	103	98	70-130	5	20
Chloroethane 89 86 70-130 3 20 1,1-Dichloroethene 104 98 70-130 6 20 trans-1,2-Dichloroethene 101 94 70-130 7 20 Trichloroethene 102 96 70-130 6 20 1,2-Dichlorobenzene 90 88 70-130 2 20 1,3-Dichlorobenzene 93 89 70-130 4 20 1,4-Dichlorobenzene 90 86 70-130 5 20 Methyl tert butyl ether 104 101 70-130 3 20 p/m-Xylene 102 96 70-130 6 20 o-Xylene 100 95 70-130 5 20 cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 0 20 Styrene 96 93 70-130 6 20 <t< td=""><td>Bromomethane</td><td>96</td><td>97</td><td>70-130</td><td>1</td><td>20</td></t<>	Bromomethane	96	97	70-130	1	20
1,1-Dichloroethene 104 98 70-130 6 20 trans-1,2-Dichloroethene 101 94 70-130 7 20 Trichloroethene 102 96 70-130 6 20 1,2-Dichloroethene 90 88 70-130 2 20 1,3-Dichlorobenzene 93 89 70-130 4 20 1,4-Dichlorobenzene 90 86 70-130 5 20 Methyl tent butyl ether 104 101 70-130 3 20 pym-Xylene 102 96 70-130 6 20 0-Xylene 100 95 70-130 6 20 0-Xylene 100 97 70-130 5 20 0-Xylene 100 97 70-130 5 20 0-Xylene 100 97 70-130 5 20 0-Xylene 100 97 70-130 5 20 0-Xylene 100 97 70-130 5 20 0-Xylene 100 97 70-130 5 20 0-Xylene 100 97 70-130 5 20 0-Xylene 100 97 70-130 3 20 0-Xylene 100 97 70-130 3 20 0-Xylene 94 93 70-130 1 20 0-Xylene 95 92 92 70-130 0 20 0-Xylene 96 93 70-130 1 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 3 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 93 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-130 6 20 0-Xylene 96 96 97 70-1	Vinyl chloride	98	92	70-130	6	20
trans-1,2-Dichloroethene 101 94 70-130 7 20 Trichloroethene 102 96 70-130 6 20 1,2-Dichlorobenzene 90 88 70-130 2 20 1,3-Dichlorobenzene 93 89 70-130 4 20 1,4-Dichlorobenzene 90 86 70-130 5 20 Methyl tert butyl ether 104 101 70-130 3 20 p/m-Xylene 102 96 70-130 6 20 p-Xylene 100 95 70-130 5 20 cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 1 20 Styrene 96 93 70-130 3 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 <t< td=""><td>Chloroethane</td><td>89</td><td>86</td><td>70-130</td><td>3</td><td>20</td></t<>	Chloroethane	89	86	70-130	3	20
Trichloroethene 102 96 70-130 6 20 1,2-Dichlorobenzene 90 88 70-130 2 20 1,3-Dichlorobenzene 93 89 70-130 4 20 Methyl terl butyl ether 90 86 70-130 5 20 Methyl terl butyl ether 104 101 70-130 3 20 p/m-Xylene 102 96 70-130 6 20 o-Xylene 100 95 70-130 5 20 cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 1 20 1,2,3-Trichloropropane 92 92 70-130 3 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 6 20	1,1-Dichloroethene	104	98	70-130	6	20
1,2-Dichlorobenzene 90 88 70-130 2 20 1,3-Dichlorobenzene 93 89 70-130 4 20 1,4-Dichlorobenzene 90 86 70-130 5 20 Methyl tert butyl ether 104 101 70-130 3 20 p/m-Xylene 102 96 70-130 6 20 o-Xylene 100 95 70-130 5 20 cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 1 20 1,2,3-Trichloropropane 92 92 70-130 0 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 3 20 Carbon disulfide 81 76 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	trans-1,2-Dichloroethene	101	94	70-130	7	20
1,3-Dichlorobenzene 93 89 70-130 4 20 1,4-Dichlorobenzene 90 86 70-130 5 20 Methyl tert butyl ether 104 101 70-130 3 20 p/m-Xylene 102 96 70-130 6 20 o-Xylene 100 95 70-130 5 20 cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 1 20 1,2,3-Trichloropropane 92 92 70-130 0 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	Trichloroethene	102	96	70-130	6	20
1,4-Dichlorobenzene 90 86 70-130 5 20 Methyl tert butyl ether 104 101 70-130 3 20 p/m-Xylene 102 96 70-130 6 20 o-Xylene 100 95 70-130 5 20 cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 1 20 1,2,3-Trichloropropane 92 92 70-130 0 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 3 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	1,2-Dichlorobenzene	90	88	70-130	2	20
Methyl tert butyl ether 104 101 70-130 3 20 p/m-Xylene 102 96 70-130 6 20 o-Xylene 100 95 70-130 5 20 cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 1 20 1,2,3-Trichloropropane 92 92 70-130 0 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	1,3-Dichlorobenzene	93	89	70-130	4	20
p/m-Xylene 102 96 70-130 6 20 o-Xylene 100 95 70-130 5 20 cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 1 20 1,2,3-Trichloropropane 92 92 70-130 0 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	1,4-Dichlorobenzene	90	86	70-130	5	20
to-Xylene 100 95 70-130 5 20 cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 1 20 1,2,3-Trichloropropane 92 92 70-130 0 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	Methyl tert butyl ether	104	101	70-130	3	20
cis-1,2-Dichloroethene 100 97 70-130 3 20 Dibromomethane 94 93 70-130 1 20 1,2,3-Trichloropropane 92 92 70-130 0 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	p/m-Xylene	102	96	70-130	6	20
Dibromomethane 94 93 70-130 1 20 1,2,3-Trichloropropane 92 92 70-130 0 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	o-Xylene	100	95	70-130	5	20
1,2,3-Trichloropropane 92 92 70-130 0 20 Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	cis-1,2-Dichloroethene	100	97	70-130	3	20
Styrene 96 93 70-130 3 20 Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	Dibromomethane	94	93	70-130	1	20
Dichlorodifluoromethane 103 97 70-130 6 20 Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	1,2,3-Trichloropropane	92	92	70-130	0	20
Acetone 115 112 70-130 3 20 Carbon disulfide 81 76 70-130 6 20	Styrene	96	93	70-130	3	20
Carbon disulfide 81 76 70-130 6 20	Dichlorodifluoromethane	103	97	70-130	6	20
	Acetone	115	112	70-130	3	20
Methyl ethyl ketone 94 97 70-130 3 20	Carbon disulfide	81	76	70-130	6	20
	Methyl ethyl ketone	94	97	70-130	3	20

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1706486

Report Date: 03/09/17

arameter	LCS %Recovery Qual	LCSD %Recovery (%Recovery Qual Limits RP	RPD D Qual Limits
ICP Volatile Organics by 8260/5035 -	Westborough Lab Associated	sample(s): 01-02 Batcl	n: WG983145-3 WG983145-4	
Methyl isobutyl ketone	82	80	70-130 2	20
2-Hexanone	69 Q	71	70-130 3	3 20
Bromochloromethane	100	95	70-130 5	5 20
Tetrahydrofuran	117	115	70-130 2	20
2,2-Dichloropropane	115	109	70-130 5	5 20
1,2-Dibromoethane	92	92	70-130 0	20
1,3-Dichloropropane	96	93	70-130 3	3 20
1,1,1,2-Tetrachloroethane	94	91	70-130 3	3 20
Bromobenzene	92	89	70-130 3	3 20
n-Butylbenzene	100	95	70-130 5	5 20
sec-Butylbenzene	101	96	70-130 5	5 20
tert-Butylbenzene	99	95	70-130 4	20
o-Chlorotoluene	98	95	70-130 3	3 20
p-Chlorotoluene	97	94	70-130 3	3 20
1,2-Dibromo-3-chloropropane	86	84	70-130 2	20
Hexachlorobutadiene	91	87	70-130 4	20
Isopropylbenzene	99	94	70-130 5	20
p-Isopropyltoluene	98	94	70-130 4	20
Naphthalene	80	78	70-130 3	3 20
n-Propylbenzene	99	94	70-130 5	20
1,2,3-Trichlorobenzene	90	87	70-130 3	3 20

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706486

Report Date:

03/09/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ICP Volatile Organics by 8260/5035 - V	Vestborough Lab Ass	ociated san	nple(s): 01-02	Batch: WG	983145-3 WG98	33145-4		
1,2,4-Trichlorobenzene	91		87		70-130	4		20
1,3,5-Trimethylbenzene	99		95		70-130	4		20
1,2,4-Trimethylbenzene	99		95		70-130	4		20
Diethyl ether	91		93		70-130	2		20
Diisopropyl Ether	104		101		70-130	3		20
Ethyl-Tert-Butyl-Ether	106		103		70-130	3		20
Tertiary-Amyl Methyl Ether	108		106		70-130	2		20
1,4-Dioxane	87		87		70-130	0		20
2-Chloroethylvinyl ether	46	Q	24	Q	70-130	63	Q	20
Halothane	103		98		70-130	5		20
Ethyl Acetate	99		99		70-130	0		20
Freon-113	106		100		70-130	6		20
Vinyl acetate	94		92		70-130	2		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	100		100		70-130	
Toluene-d8	100		98		70-130	
4-Bromofluorobenzene	100		103		70-130	
Dibromofluoromethane	103		102		70-130	

L1706486

Project Name: Lab Number: TREMONT CROSSING PHASE II

Report Date: **Project Number:** 1700516 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-03 Date Collected: 03/01/17 20:45

1700516-B308-COMP (0-8") Client ID: Date Received: 03/02/17 Sample Location: **BOSTON, MASSACHUSETTS** Field Prep:

Not Specified Extraction Method: EPA 3546 Matrix: Soil Analytical Method: 97,8270D Extraction Date: 03/04/17 10:22 Analytical Date: 03/05/17 21:26

Analyst: **ALS** 86% Percent Solids:

1,2,4-Trichlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2,4-Trichlorobenzene ND Ug/kg 190 1 1 1 1 1 1 1 1	MCP Semivolatile Organics - Westboroug	gh Lab					
1,2,4-Trichlorobenzene ND Ug/kg 190 1 1 1 1 1 1 1 1	Acenaphthene	3900		ug/kg	150		1
Hexachlorobenzene ND Ug/kg 110 1 1 1 1 1 1 1 1	1,2,4-Trichlorobenzene	ND			190		1
2-Chloronaphthalene	Hexachlorobenzene	ND			110		1
1,2-Dichlorobenzene	Bis(2-chloroethyl)ether	ND		ug/kg	170		1
1,4-Dichlorobenzene ND ug/kg 190 1 1 1,4-Dichlorobenzene ND ug/kg 190 1 1 1,4-Dichlorobenzene ND ug/kg 190 1 1 1 1 1 1 1 1	2-Chloronaphthalene	ND		ug/kg	190		1
1,4-Dichlorobenzene	1,2-Dichlorobenzene	ND		ug/kg	190		1
ND	1,3-Dichlorobenzene	ND		ug/kg	190		1
2,4-Dinitrotoluene ND ug/kg 190 1 2,6-Dinitrotoluene ND ug/kg 190 1 Azobenzene ND ug/kg 190 1 Fluoranthene 35000 E ug/kg 110 1 4-Bromophenyl phenyl ether ND ug/kg 190 1 Bis(2-chlorostopropyl)ether ND ug/kg 230 1 Bis(2-chlorosthoxy)methane ND ug/kg 210 1 Hexachlorobutadiene ND ug/kg 190 1 Hexachlorothane ND ug/kg 150 1 Hexachlorothane ND ug/kg 170 1 Isophorone ND ug/kg 170 1 Naphthalene 550 ug/kg 190 1 Nitrobenzene ND ug/kg 190 <td< td=""><td>1,4-Dichlorobenzene</td><td>ND</td><td></td><td>ug/kg</td><td>190</td><td></td><td>1</td></td<>	1,4-Dichlorobenzene	ND		ug/kg	190		1
ND	3,3'-Dichlorobenzidine	ND		ug/kg	190		1
Azobenzene ND ug/kg 190 1 Fluoranthene 35000 E ug/kg 110 1 H-Bromophenyl phenyl ether ND ug/kg 230 1 Bis(2-chloroisopropyl)ether ND ug/kg 230 1 Bis(2-chloroisopropyl)ether ND ug/kg 210 1 Bis(2-chlorothoxy)methane ND ug/kg 210 1 Hexachlorobutadiene ND ug/kg 190 1 Hexachlorobutadiene ND ug/kg 150 1 ND ug/kg 150 1 ND ug/kg 150 1 Naphthalene S50 ug/kg 170 1 Nitrobenzene ND ug/kg 170 1 Sis(2-ethylhexyl)phthalate ND ug/kg 190 1 Din-n-butylphthalate ND ug/kg 190 1 Din-n-otylphthalate ND ug/kg 190 1 Din-notylphthalate ND ug/kg 190 1	2,4-Dinitrotoluene	ND		ug/kg	190		1
Fluoranthene 35000 E ug/kg 110 1	2,6-Dinitrotoluene	ND		ug/kg	190		1
A-Bromophenyl phenyl ether ND	Azobenzene	ND		ug/kg	190		1
ND	Fluoranthene	35000	E	ug/kg	110		1
Bis(2-chloroethoxy)methane	4-Bromophenyl phenyl ether	ND		ug/kg	190		1
Hexachlorobutadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/kg	230		1
Hexachloroethane ND	Bis(2-chloroethoxy)methane	ND		ug/kg	210		1
ND	Hexachlorobutadiene	ND		ug/kg	190		1
Naphthalene 550 ug/kg 190 1	Hexachloroethane	ND		ug/kg	150		1
Nitrobenzene ND ug/kg 170 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 1 Butyl benzyl phthalate ND ug/kg 190 1 Di-n-butylphthalate 360 ug/kg 190 1 Di-n-octylphthalate ND ug/kg 190 1 Diethyl phthalate ND ug/kg 190 1	Isophorone	ND		ug/kg	170		1
ND	Naphthalene	550		ug/kg	190		1
Butyl benzyl phthalate	Nitrobenzene	ND		ug/kg	170		1
Di-n-butylphthalate 360 ug/kg 190 1 Di-n-octylphthalate ND ug/kg 190 1 Diethyl phthalate ND ug/kg 190 1 Dimethyl phthalate ND ug/kg 190 1 Benzo(a)anthracene 16000 E ug/kg 110 1 Benzo(a)pyrene 14000 E ug/kg 150 1	Bis(2-ethylhexyl)phthalate	ND		ug/kg	190		1
Di-n-octylphthalate ND ug/kg 190 1 Diethyl phthalate ND ug/kg 190 1 Dimethyl phthalate ND ug/kg 190 1 Benzo(a)anthracene 16000 E ug/kg 110 1 Benzo(a)pyrene 14000 E ug/kg 150 1	Butyl benzyl phthalate	ND		ug/kg	190		1
Diethyl phthalate ND ug/kg 190 1 Dimethyl phthalate ND ug/kg 190 1 Benzo(a)anthracene 16000 E ug/kg 110 1 Benzo(a)pyrene 14000 E ug/kg 150 1	Di-n-butylphthalate	360		ug/kg	190		1
Dimethyl phthalate ND ug/kg 190 1 Benzo(a)anthracene 16000 E ug/kg 110 1 Benzo(a)pyrene 14000 E ug/kg 150 1	Di-n-octylphthalate	ND		ug/kg	190		1
Benzo(a)anthracene 16000 E ug/kg 110 1 Benzo(a)pyrene 14000 E ug/kg 150 1	Diethyl phthalate	ND		ug/kg	190		1
Benzo(a)pyrene 14000 E ug/kg 150 1	Dimethyl phthalate	ND		ug/kg	190		1
	Benzo(a)anthracene	16000	E	ug/kg	110		1
Benzo(b)fluoranthene 18000 E ug/kg 110 1	Benzo(a)pyrene	14000	E	ug/kg	150		1
	Benzo(b)fluoranthene	18000	E	ug/kg	110		1

03/01/17 20:45

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-03

Client ID: 1700516-B308-COMP (0-8") Date Received Sample Location: BOSTON, MASSACHUSETTS Field Prep:

Date Received: 03/02/17
Field Prep: Not Specified

Date Collected:

Parameter Qualifier Units RL MDL **Dilution Factor** MCP Semivolatile Organics - Westborough Lab Benzo(k)fluoranthene 4100 110 ug/kg 1 Е Chrysene 14000 ug/kg 110 1 230 Acenaphthylene 1 ug/kg 150 11000 Е Anthracene 110 1 ug/kg Benzo(ghi)perylene 7600 150 1 ug/kg 5600 Fluorene 190 1 ug/kg --34000 Е Phenanthrene 110 1 ug/kg --2000 1 Dibenzo(a,h)anthracene ug/kg 110 8300 Е Indeno(1,2,3-cd)pyrene 150 1 ug/kg 29000 Е Pyrene 110 1 ug/kg ND Aniline ug/kg 230 1 4-Chloroaniline ND 190 1 ug/kg --Dibenzofuran 2600 190 1 ug/kg 740 1 2-Methylnaphthalene ug/kg 230 ND 190 1 Acetophenone -ug/kg 2,4,6-Trichlorophenol ND 110 1 ug/kg 2-Chlorophenol ND 190 ug/kg --1 2,4-Dichlorophenol ND 170 1 ug/kg --2,4-Dimethylphenol ND 190 1 ug/kg ND 1 2-Nitrophenol 410 ug/kg --4-Nitrophenol ND 270 1 ug/kg 2,4-Dinitrophenol ND ug/kg 920 1 Pentachlorophenol ND 380 1 ug/kg --Phenol ND 190 1 ug/kg --2-Methylphenol ND ug/kg 190 1 3-Methylphenol/4-Methylphenol ND ug/kg 280 1 2,4,5-Trichlorophenol ND ug/kg 190 1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	76	30-130
Phenol-d6	78	30-130
Nitrobenzene-d5	88	30-130
2-Fluorobiphenyl	61	30-130
2,4,6-Tribromophenol	70	30-130
4-Terphenyl-d14	47	30-130

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-03 D

Client ID: 1700516-B308-COMP (0-8")
Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil Analytical Method: 97,8270D

Analytical Date: 03/09/17 06:56

Analyst: CB Percent Solids: 86% Date Collected: 03/01/17 20:45

Date Received: 03/02/17
Field Prep: Not Specified
Extraction Method: EPA 3546

Extraction Date: 03/04/17 10:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westbor	ough Lab					
						>
Fluoranthene	40000		ug/kg	1100		10
Benzo(a)anthracene	16000		ug/kg	1100		10
Benzo(a)pyrene	15000		ug/kg	1500		10
Benzo(b)fluoranthene	19000		ug/kg	1100		10
Chrysene	15000		ug/kg	1100		10
Anthracene	11000		ug/kg	1100		10
Phenanthrene	37000		ug/kg	1100		10
Indeno(1,2,3-cd)pyrene	8800		ug/kg	1500		10
Pyrene	32000		ug/kg	1100		10

L1706486

03/09/17

Project Name: TREMONT CROSSING PHASE II Lab Number:

Project Number: 1700516

SAMPLE RESULTS

Lab ID: L1706486-04 Date Collected: 03/01/17 22:30

Client ID: 1700516-B308-COMP (8-22")
Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil

Analytical Method: 97,8270D Analytical Date: 03/05/17 21:51

Analyst: ALS Percent Solids: 90%

Date Collected: 03/01/17 22:30

Date Received: 03/02/17

Field Prep: Not Specified

Extraction Method: EPA 3546

Extraction Date: 03/04/17 10:22

Report Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westb	orough Lab					
Acenaphthene	ND		ug/kg	150		1
1,2,4-Trichlorobenzene	ND		ug/kg	180		 1
Hexachlorobenzene	ND		ug/kg	110		1
Bis(2-chloroethyl)ether	ND		ug/kg	160		1
2-Chloronaphthalene	ND		ug/kg	180		1
1,2-Dichlorobenzene	ND		ug/kg	180		1
1,3-Dichlorobenzene	ND		ug/kg	180		1
1,4-Dichlorobenzene	ND		ug/kg	180	<u></u>	1
3,3'-Dichlorobenzidine	ND		ug/kg ug/kg	180		1
2,4-Dinitrotoluene	ND		ug/kg ug/kg	180		1
2,6-Dinitrotoluene	ND			180		1
Azobenzene	ND		ug/kg	180		1
Fluoranthene	410		ug/kg	110		1
			ug/kg			1
4-Bromophenyl phenyl ether	ND		ug/kg	180		
Bis(2-chloroisopropyl)ether	ND		ug/kg	220		1
Bis(2-chloroethoxy)methane	ND		ug/kg	200		1
Hexachlorobutadiene	ND		ug/kg	180		1
Hexachloroethane	ND		ug/kg	150		1
Isophorone	ND		ug/kg	160		1
Naphthalene	ND		ug/kg	180		1
Nitrobenzene	ND		ug/kg	160		1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180		1
Butyl benzyl phthalate	ND		ug/kg	180		1
Di-n-butylphthalate	210		ug/kg	180		1
Di-n-octylphthalate	ND		ug/kg	180		1
Diethyl phthalate	ND		ug/kg	180		1
Dimethyl phthalate	ND		ug/kg	180		1
Benzo(a)anthracene	200		ug/kg	110		1
Benzo(a)pyrene	170		ug/kg	150		1
Benzo(b)fluoranthene	200		ug/kg	110		1

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-04 Date Collected: 03/01/17 22:30

Client ID: 1700516-B308-COMP (8-22") Date Received: 03/02/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics	- Westborough Lab					
Benzo(k)fluoranthene	ND		ug/kg	110		1
Chrysene	180		ug/kg	110		1
Acenaphthylene	ND		ug/kg	150		1
Anthracene	ND		ug/kg	110		1
Benzo(ghi)perylene	ND		ug/kg	150		1
Fluorene	ND		ug/kg	180		1
Phenanthrene	340		ug/kg	110		1
Dibenzo(a,h)anthracene	ND		ug/kg	110		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150		1
Pyrene	360		ug/kg	110		1
Aniline	ND		ug/kg	220		1
4-Chloroaniline	ND		ug/kg	180		1
Dibenzofuran	ND		ug/kg	180		1
2-Methylnaphthalene	ND		ug/kg	220		1
Acetophenone	ND		ug/kg	180		1
2,4,6-Trichlorophenol	ND		ug/kg	110		1
2-Chlorophenol	ND		ug/kg	180		1
2,4-Dichlorophenol	ND		ug/kg	160		1
2,4-Dimethylphenol	ND		ug/kg	180		1
2-Nitrophenol	ND		ug/kg	400		1
4-Nitrophenol	ND		ug/kg	260		1
2,4-Dinitrophenol	ND		ug/kg	880		1
Pentachlorophenol	ND		ug/kg	370		1
Phenol	ND		ug/kg	180		1
2-Methylphenol	ND		ug/kg	180		1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260		1
2,4,5-Trichlorophenol	ND		ug/kg	180		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	75		30-130	
Phenol-d6	79		30-130	
Nitrobenzene-d5	84		30-130	
2-Fluorobiphenyl	69		30-130	
2,4,6-Tribromophenol	74		30-130	
4-Terphenyl-d14	52		30-130	

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706486

Report Date:

03/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 03/05/17 20:10

Analyst: PS

Extraction Method: EPA 3546
Extraction Date: 03/04/17 10:22

arameter	Result	Qualifier Un	its	RL	MDL
ICP Semivolatile Organics - W	estborough Lab	o for sample(s):	03-04	Batch:	WG982906-1
Acenaphthene	ND	ug	J/kg	130	
1,2,4-Trichlorobenzene	ND	ug	ı/kg	160	
Hexachlorobenzene	ND	ug	ı/kg	99	
Bis(2-chloroethyl)ether	ND	ug	ı/kg	150	
2-Chloronaphthalene	ND	ug	ı/kg	160	
1,2-Dichlorobenzene	ND	ug	ı/kg	160	
1,3-Dichlorobenzene	ND	ug	ı/kg	160	
1,4-Dichlorobenzene	ND	ug	J/kg	160	
3,3'-Dichlorobenzidine	ND	ug	J/kg	160	
2,4-Dinitrotoluene	ND	ug	J/kg	160	
2,6-Dinitrotoluene	ND	ug	J/kg	160	
Azobenzene	ND	ug	ı/kg	160	
Fluoranthene	ND	ug	ı/kg	99	
4-Bromophenyl phenyl ether	ND	ug	ı/kg	160	
Bis(2-chloroisopropyl)ether	ND	ug	ı/kg	200	
Bis(2-chloroethoxy)methane	ND	ug	ı/kg	180	
Hexachlorobutadiene	ND	ug	ı/kg	160	
Hexachloroethane	ND	ug	ı/kg	130	
Isophorone	ND	ug	ı/kg	150	
Naphthalene	ND		ı/kg	160	
Nitrobenzene	ND	ug	ı/kg	150	
Bis(2-ethylhexyl)phthalate	ND		ı/kg	160	
Butyl benzyl phthalate	ND		ı/kg	160	
Di-n-butylphthalate	ND		J/kg	160	
Di-n-octylphthalate	ND		J/kg	160	
Diethyl phthalate	ND		J/kg	160	
Dimethyl phthalate	ND		J/kg	160	
Benzo(a)anthracene	ND		J/kg	99	
Benzo(a)pyrene	ND		ı/kg	130	

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706486

Report Date:

03/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 03/05/17 20:10

Analyst: PS

Extraction Method: EPA 3546
Extraction Date: 03/04/17 10:22

Benzo(b)fluoranthene ND ug/kg 99	Parameter	Result	Qualifier Ur	nits	RL	MDL
Benzo(k)fluoranthene ND ug/kg 99 Chrysene ND ug/kg 99 Acenaphthylene ND ug/kg 130 Anthracene ND ug/kg 99 Benzo(ghi)perylene ND ug/kg 130 Fluorene ND ug/kg 99 Phenanthrene ND ug/kg 99 Dibenzo(a,h)anthracene ND ug/kg 99 Indeno(1,2,3-od)pyrene ND ug/kg 99 Indeno(1,2,3-od)pyrene ND ug/kg 99 Aniline ND ug/kg 99 Aniline ND ug/kg 99 4-Chloroaniline ND ug/kg 160 Dibenzofuran ND ug/kg 160 2-Methylnaphthalene ND ug/kg 200 Ac	MCP Semivolatile Organics - We	estborough Lab	o for sample(s)	: 03-04	Batch:	WG982906-1
Chrysene ND ug/kg 99 Acenaphthylene ND ug/kg 130 Anthracene ND ug/kg 99 Benzo(ghi)perylene ND ug/kg 130 Fluorene ND ug/kg 160 Phenanthrene ND ug/kg 99 Dibenzo(a,h)anthracene ND ug/kg 99 Indeno(1,2,3-cd)pyrene ND ug/kg 99 Indeno(1,2,3-cd)pyrene ND ug/kg 130 Pyrene ND ug/kg 99 Aniline ND ug/kg 99 4-Chloroaniline ND ug/kg 160 2-Methylnaphthalene ND ug/kg 200 Acetophenone ND ug/kg 200 2-Aethylnaphthalene ND ug/kg 99 2-	Benzo(b)fluoranthene	ND	u	g/kg	99	
Acenaphthylene ND ug/kg 130 Anthracene ND ug/kg 99 Benzo(ghi)perylene ND ug/kg 130 Fluorene ND ug/kg 160 Phenanthrene ND ug/kg 99 Dibenzo(a,h)anthracene ND ug/kg 99 Indeno(1,2,3-cd)pyrene ND ug/kg 130 Pyrene ND ug/kg 99 Aniline ND ug/kg 200 4-Chloroaniline ND ug/kg 160 Dibenzofuran ND ug/kg 160 2-Methylnaphthalene ND ug/kg 200 Acetophenone ND ug/kg 99 Acetophenone ND ug/kg 99 2-Holtorophenol ND ug/kg 160 2-Chloroph	Benzo(k)fluoranthene	ND	u	g/kg	99	
Anthracene ND ug/kg 99 Benzo(ghi)perylene ND ug/kg 130 Fluorene ND ug/kg 160 Phenanthrene ND ug/kg 99 Dibenzo(a,h)anthracene ND ug/kg 99 Indeno(1,2,3-cd)pyrene ND ug/kg 130 Pyrene ND ug/kg 99 Aniline ND ug/kg 200 4-Chloroaniline ND ug/kg 160 4-Chloroaniline ND ug/kg 160 2-Methylinaphthalene ND ug/kg 200 Acetophenone ND ug/kg 99 2-Methylinaphthalene ND ug/kg 99 2-Acitorophenol ND ug/kg 99 2-Chlorophenol ND ug/kg 160 <td< td=""><td>Chrysene</td><td>ND</td><td>u</td><td>g/kg</td><td>99</td><td></td></td<>	Chrysene	ND	u	g/kg	99	
Benzo(ghi)perylene	Acenaphthylene	ND	u	g/kg	130	
Fluorene ND Ug/kg 160	Anthracene	ND	u	g/kg	99	
Phenanthrene ND ug/kg 99 Dibenzo(a,h)anthracene ND ug/kg 99 Indeno(1,2,3-cd)pyrene ND ug/kg 130 Pyrene ND ug/kg 99 Aniline ND ug/kg 200 4-Chloroaniline ND ug/kg 160 2-Hochloroaniline ND ug/kg 160 2-Holloroaniline ND ug/kg 160 2-Holloroaniline ND ug/kg 160 2-Methylnaphthalene ND ug/kg 200 2-Methylnaphthalene ND ug/kg 160 2-Acetophenone ND ug/kg 160 2-A,6-Trichlorophenol ND ug/kg 160 2-A-Dichlorophenol ND ug/kg 160 2-A-Dimethylphenol ND ug/kg 360	Benzo(ghi)perylene	ND	ug	g/kg	130	
Dibenzo(a,h)anthracene ND ug/kg 99 Indeno(1,2,3-cd)pyrene ND ug/kg 130 Pyrene ND ug/kg 99 Aniline ND ug/kg 200 4-Chloroaniline ND ug/kg 160 Dibenzofuran ND ug/kg 160 2-Methylnaphthalene ND ug/kg 200 Acetophenone ND ug/kg 160 2,4,6-Trichlorophenol ND ug/kg 99 2-Chlorophenol ND ug/kg 160 2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 360 2-Nitrophenol ND ug/kg 360 2,4-Dinitrophenol ND ug/kg 790 2,4-Dinitrophenol ND ug/kg 330	Fluorene	ND	ug	g/kg	160	
ND	Phenanthrene	ND	ug	g/kg	99	
Pyrene ND ug/kg 99 Aniline ND ug/kg 200 4-Chloroaniline ND ug/kg 160 Dibenzofuran ND ug/kg 160 2-Methylnaphthalene ND ug/kg 200 Acetophenone ND ug/kg 160 2,4,6-Trichlorophenol ND ug/kg 99 2-Chlorophenol ND ug/kg 160 2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 360 2-Nitrophenol ND ug/kg 360 4-Nitrophenol ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 330 Pentachlorophenol ND ug/kg 330 2-Methylphenol ND ug/kg 160	Dibenzo(a,h)anthracene	ND	u	g/kg	99	
Aniline ND ug/kg 200 4-Chloroaniline ND ug/kg 160 Dibenzofuran ND ug/kg 160 2-Methylnaphthalene ND ug/kg 200 Acetophenone ND ug/kg 160 2,4,6-Trichlorophenol ND ug/kg 99 2-Chlorophenol ND ug/kg 160 2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 360 2-Nitrophenol ND ug/kg 360 4-Nitrophenol ND ug/kg 230 2,4-Dinitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160	Indeno(1,2,3-cd)pyrene	ND	ug	g/kg	130	
4-Chloroaniline ND ug/kg 160 Dibenzofuran ND ug/kg 160 2-Methylnaphthalene ND ug/kg 200 Acetophenone ND ug/kg 160 2,4,6-Trichlorophenol ND ug/kg 99 2-Chlorophenol ND ug/kg 160 2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 160 2-Nitrophenol ND ug/kg 360 4-Nitrophenol ND ug/kg 230 2,4-Dinitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	Pyrene	ND	ug	g/kg	99	
Dibenzofuran ND ug/kg 160 2-Methylnaphthalene ND ug/kg 200 Acetophenone ND ug/kg 160 2,4,6-Trichlorophenol ND ug/kg 99 2-Chlorophenol ND ug/kg 160 2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 360 2-Nitrophenol ND ug/kg 330 4-Nitrophenol ND ug/kg 790 2,4-Dinitrophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	Aniline	ND	u	g/kg	200	
2-Methylnaphthalene ND ug/kg 200 Acetophenone ND ug/kg 160 2,4,6-Trichlorophenol ND ug/kg 99 2-Chlorophenol ND ug/kg 160 2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 360 2-Nitrophenol ND ug/kg 230 4-Nitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	4-Chloroaniline	ND	uį	g/kg	160	
Acetophenone ND ug/kg 160 2,4,6-Trichlorophenol ND ug/kg 99 2-Chlorophenol ND ug/kg 160 2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 360 2-Nitrophenol ND ug/kg 330 4-Nitrophenol ND ug/kg 790 2,4-Dinitrophenol ND ug/kg 330 Pentachlorophenol ND ug/kg 160 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	Dibenzofuran	ND	uį	g/kg	160	
2,4,6-Trichlorophenol ND ug/kg 99 2-Chlorophenol ND ug/kg 160 2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 160 2-Nitrophenol ND ug/kg 360 4-Nitrophenol ND ug/kg 230 2,4-Dinitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	2-Methylnaphthalene	ND	uį	g/kg	200	
2-Chlorophenol ND ug/kg 160 2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 160 2-Nitrophenol ND ug/kg 360 4-Nitrophenol ND ug/kg 230 2,4-Dinitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	Acetophenone	ND	uį	g/kg	160	
2,4-Dichlorophenol ND ug/kg 150 2,4-Dimethylphenol ND ug/kg 160 2-Nitrophenol ND ug/kg 360 4-Nitrophenol ND ug/kg 230 2,4-Dinitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	2,4,6-Trichlorophenol	ND	uį	g/kg	99	
2,4-Dimethylphenol ND ug/kg 160 2-Nitrophenol ND ug/kg 360 4-Nitrophenol ND ug/kg 230 2,4-Dinitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	2-Chlorophenol	ND	uį	g/kg	160	
2-Nitrophenol ND ug/kg 360 4-Nitrophenol ND ug/kg 230 2,4-Dinitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	2,4-Dichlorophenol	ND	uį	g/kg	150	
4-Nitrophenol ND ug/kg 230 2,4-Dinitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	2,4-Dimethylphenol	ND	uį	g/kg	160	
2,4-Dinitrophenol ND ug/kg 790 Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	2-Nitrophenol	ND	uį	g/kg	360	
Pentachlorophenol ND ug/kg 330 Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	4-Nitrophenol	ND	uį	g/kg	230	
Phenol ND ug/kg 160 2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	2,4-Dinitrophenol	ND	uį	g/kg	790	
2-Methylphenol ND ug/kg 160 3-Methylphenol/4-Methylphenol ND ug/kg 240	Pentachlorophenol	ND	u	g/kg	330	
3-Methylphenol/4-Methylphenol ND ug/kg 240	Phenol	ND	u	g/kg	160	
7, 7,	2-Methylphenol	ND	uį	g/kg	160	
2,4,5-Trichlorophenol ND ug/kg 160	3-Methylphenol/4-Methylphenol	ND	uį	g/kg	240	
	2,4,5-Trichlorophenol	ND	uį	g/kg	160	

Project Name: TREMONT CROSSING PHASE II Lab Number:

Project Number: 1700516 Report Date: 03/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Extraction Method: EPA 3546
Analytical Date: 03/05/17 20:10 Extraction Date: 03/04/17 10:22

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Semivolatile Organics -	Westborough Lab	o for sample(s	s): 03-04	Batch:	WG982906-1	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	80	30-130
Phenol-d6	80	30-130
Nitrobenzene-d5	83	30-130
2-Fluorobiphenyl	74	30-130
2,4,6-Tribromophenol	67	30-130
4-Terphenyl-d14	76	30-130

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1706486

Report Date: 03/09/17

rameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
CP Semivolatile Organics - Westborough	Lab Associated sample	e(s): 03-04 Batch: W	G982906-2 WG982906-3		
Acenaphthene	81	74	40-140	9	30
1,2,4-Trichlorobenzene	75	68	40-140	10	30
Hexachlorobenzene	71	66	40-140	7	30
Bis(2-chloroethyl)ether	80	74	40-140	8	30
2-Chloronaphthalene	80	73	40-140	9	30
1,2-Dichlorobenzene	75	70	40-140	7	30
1,3-Dichlorobenzene	74	69	40-140	7	30
1,4-Dichlorobenzene	74	69	40-140	7	30
3,3'-Dichlorobenzidine	41	38	Q 40-140	8	30
2,4-Dinitrotoluene	88	79	40-140	11	30
2,6-Dinitrotoluene	95	86	40-140	10	30
Azobenzene	91	84	40-140	8	30
Fluoranthene	82	75	40-140	9	30
4-Bromophenyl phenyl ether	73	67	40-140	9	30
Bis(2-chloroisopropyl)ether	83	76	40-140	9	30
Bis(2-chloroethoxy)methane	82	76	40-140	8	30
Hexachlorobutadiene	75	68	40-140	10	30
Hexachloroethane	80	75	40-140	6	30
Isophorone	82	75	40-140	9	30
Naphthalene	78	71	40-140	9	30
Nitrobenzene	91	85	40-140	7	30

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1706486

Report Date: 03/09/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
MCP Semivolatile Organics - Westborough	Lab Associated s	ample(s): 0	3-04 Batch: W	G982906-2	WG982906-3		
Bis(2-ethylhexyl)phthalate	88		80		40-140	10	30
Butyl benzyl phthalate	86		79		40-140	8	30
Di-n-butylphthalate	85		79		40-140	7	30
Di-n-octylphthalate	87		80		40-140	8	30
Diethyl phthalate	80		75		40-140	6	30
Dimethyl phthalate	81		74		40-140	9	30
Benzo(a)anthracene	78		72		40-140	8	30
Benzo(a)pyrene	75		70		40-140	7	30
Benzo(b)fluoranthene	74		70		40-140	6	30
Benzo(k)fluoranthene	75		69		40-140	8	30
Chrysene	76		70		40-140	8	30
Acenaphthylene	82		74		40-140	10	30
Anthracene	83		75		40-140	10	30
Benzo(ghi)perylene	73		68		40-140	7	30
Fluorene	80		74		40-140	8	30
Phenanthrene	82		74		40-140	10	30
Dibenzo(a,h)anthracene	72		66		40-140	9	30
Indeno(1,2,3-cd)pyrene	73		66		40-140	10	30
Pyrene	82		74		40-140	10	30
Aniline	34	Q	29	Q	40-140	16	30
4-Chloroaniline	77		71		40-140	8	30

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L170

L1706486

Report Date:

03/09/17

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
CP Semivolatile Organics - Westboro	·	•	VG982906-2 WG982906-3	10.2	
Dibenzofuran	80	72	40-140	11	30
2-Methylnaphthalene	80	73	40-140	9	30
Acetophenone	80	74	40-140	8	30
2,4,6-Trichlorophenol	82	73	30-130	12	30
2-Chlorophenol	80	76	30-130	5	30
2,4-Dichlorophenol	85	77	30-130	10	30
2,4-Dimethylphenol	92	82	30-130	11	30
2-Nitrophenol	88	81	30-130	8	30
4-Nitrophenol	104	105	30-130	1	30
2,4-Dinitrophenol	50	53	30-130	6	30
Pentachlorophenol	61	58	30-130	5	30
Phenol	79	72	30-130	9	30
2-Methylphenol	85	80	30-130	6	30
3-Methylphenol/4-Methylphenol	92	83	30-130	10	30
2,4,5-Trichlorophenol	82	75	30-130	9	30

Qual

Project Name: TREMONT CROSSING PHASE II

Lab Number:

L1706486

1700516

Report Date:

03/09/17

Parameter

Project Number:

LCS %Recovery

LCSD %Recovery

%Recovery Limits

RPD

Qual

RPD Limits

MCP Semivolatile Organics - Westborough Lab Associated sample(s): 03-04 Batch: WG982906-2 WG982906-3

Qual

	LCS		LCSD	Acceptance
Surrogate	%Recovery	Qual	%Recovery Qual	Criteria
2-Fluorophenol	82		77	30-130
Phenol-d6	84		78	30-130
Nitrobenzene-d5	88		81	30-130
2-Fluorobiphenyl	78		70	30-130
2,4,6-Tribromophenol	73		68	30-130
4-Terphenyl-d14	71		65	30-130

PETROLEUM HYDROCARBONS

Project Name: Lab Number: TREMONT CROSSING PHASE II L1706486

Project Number: Report Date: 1700516 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-03 Date Collected: 03/01/17 20:45

1700516-B308-COMP (0-8") Client ID: BOSTON, MASSACHUSETTS Sample Location:

Matrix: Soil

Analytical Method: 1,8015C(M) Analytical Date: 03/04/17 19:23

Analyst: ΕK 86% Percent Solids:

Date Received: 03/02/17 Field Prep: Not Specified Extraction Method: EPA 3546 03/03/17 17:21 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation - Wes	tborough Lab					
ТРН	313000		ug/kg	36500		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	83		40-140	

Project Name: Lab Number: TREMONT CROSSING PHASE II L1706486

Project Number: Report Date: 1700516 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-04 Date Collected: 03/01/17 22:30

1700516-B308-COMP (8-22") Client ID: BOSTON, MASSACHUSETTS Sample Location:

Matrix: Soil

Analytical Method: 1,8015C(M) Analytical Date: 03/04/17 19:55

Analyst: ΕK 90% Percent Solids:

Date Received: 03/02/17 Field Prep: Not Specified Extraction Method: EPA 3546 03/03/17 17:21 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation - Wes	tborough Lab					
TPH	ND		ug/kg	36600		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	89		40-140	

Project Name: TREMONT CROSSING PHASE II Lab Number:

Project Number: 1700516 Report Date: 03/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015C(M) Extraction Method: EPA 3546
Analytical Date: 03/04/17 12:56 Extraction Date: 03/03/17 17:21

Analyst: DG

Parameter	Result	Qualifier	Units	RL	MDL	
Petroleum Hydrocarbon Quantitation	n - Westbore	ough Lab fo	or sample(s): 03-04	Batch: WG982789-1	
TPH	ND		ug/kg	31500		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
o-Terphenyl	76	40-140

Project Name: TREMONT CROSSING PHASE II Lab Number:

L1706486

Project Number: 1700516

Report Date:

03/09/17

Parameter	LCS %Recovery	LCSD Qual %Recov		%Recovery Limits	RPD	RPD Qual Limits	
Petroleum Hydrocarbon Quantitation - W	estborough Lab Asso	ciated sample(s): 03-0	04 Batch: WC	G982789-2			
ТРН	86	-		40-140	-	40	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
o-Terphenyl	84		40-140

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/01/17 20:45

Client ID: 1700516-B308-COMP (0-8") Date Received: 03/02/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil Extraction Method: ERA 3546

Matrix:SoilExtraction Method: EPA 3546Analytical Method:97,8082AExtraction Date: 03/03/17 07:59Analytical Date:03/03/17 16:40Cleanup Method: EPA 3665AAnalyst:JACleanup Date: 03/03/17

Percent Solids: 86% Cleanup Method: EPA 3660B Cleanup Date: 03/03/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyl	s - Westborough Lab						
						,	
Aroclor 1016	ND		ug/kg	38.4		1	Α
Aroclor 1221	ND		ug/kg	38.4		1	Α
Aroclor 1232	ND		ug/kg	38.4		1	Α
Aroclor 1242	ND		ug/kg	38.4		1	Α
Aroclor 1248	ND		ug/kg	38.4		1	Α
Aroclor 1254	ND		ug/kg	38.4		1	Α
Aroclor 1260	ND		ug/kg	38.4		1	Α
Aroclor 1262	ND		ug/kg	38.4		1	Α
Aroclor 1268	ND		ug/kg	38.4		1	А
PCBs, Total	ND		ua/ka	38.4		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78		30-150	Α
Decachlorobiphenyl	52		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	61		30-150	В

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/01/17 22:30

Client ID: 1700516-B308-COMP (8-22") Date Received: 03/02/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 97,8082A Extraction Date: 03/03/17 07:59
Analytical Date: 03/03/17 16:52 Cleanup Method: EPA 3665A
Analyst: JA Cleanup Date: 03/03/17

Percent Solids: 90% Cleanup Method: EPA 3660B Cleanup Date: 03/03/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls -	Westborough Lab						
Aroclor 1016	ND		ug/kg	35.5		1	Α
Aroclor 1221	ND		ug/kg	35.5		1	Α
Aroclor 1232	ND		ug/kg	35.5		1	Α
Aroclor 1242	ND		ug/kg	35.5		1	А
Aroclor 1248	ND		ug/kg	35.5		1	Α
Aroclor 1254	ND		ug/kg	35.5		1	Α
Aroclor 1260	ND		ug/kg	35.5		1	Α
Aroclor 1262	ND		ug/kg	35.5		1	Α
Aroclor 1268	ND		ug/kg	35.5		1	Α
PCBs, Total	ND		ug/kg	35.5		1	Α

Surrogate	% Recovery Qua	Acceptance lifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	85	30-150	A
Decachlorobiphenyl	49	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	83	30-150	В
Decachlorobiphenyl	60	30-150	В

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/09/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8082A Analytical Date: 97,8082A 03/03/17 16:03

Analyst: AF

Extraction Method: EPA 3546
Extraction Date: 03/03/17 07:59
Cleanup Method: EPA 3665A
Cleanup Date: 03/03/17
Cleanup Method: EPA 3660B
Cleanup Date: 03/03/17

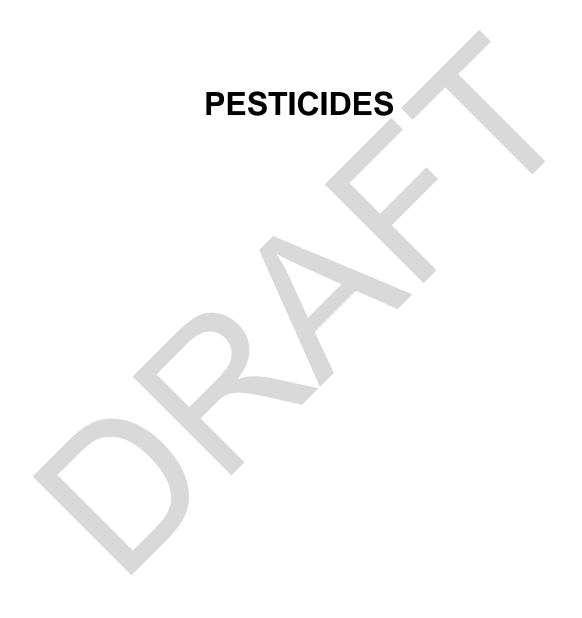
Parameter	Result	Qualifier	Units	RL	MDL	Column
MCP Polychlorinated Biphenyls - W	estborough/	Lab for sai	mple(s):	03-04 Batch:	WG98256	4-1
Aroclor 1016	ND		ug/kg	32.0		А
Aroclor 1221	ND		ug/kg	32.0		Α
Aroclor 1232	ND		ug/kg	32.0		А
Aroclor 1242	ND		ug/kg	32.0		Α
Aroclor 1248	ND		ug/kg	32.0		Α
Aroclor 1254	ND		ug/kg	32.0		Α
Aroclor 1260	ND		ug/kg	32.0		Α
Aroclor 1262	ND		ug/kg	32.0		Α
Aroclor 1268	ND		ug/kg	32.0		Α
PCBs, Total	ND		ug/kg	32.0		Α

			acceptance)
	%Recovery	Qualifier	Criteria	Column
				-
loro-m-xylene	86		30-150	Α
nenyl	56		30-150	Α
loro-m-xylene	79		30-150	В
nenyl	61		30-150	В
1	nloro-m-xylene nenyl nloro-m-xylene nenyl	nloro-m-xylene 86 nenyl 56 nloro-m-xylene 79	%Recovery Qualifier aloro-m-xylene 86 henyl 56 aloro-m-xylene 79	%Recovery Qualifier Criteria alloro-m-xylene 86 30-150 nenyl 56 30-150 alloro-m-xylene 79 30-150

Project Name: TREMONT CROSSING PHASE II

Lab Number:

L1706486


Project Number: 1700516

Report Date: 03/09/17

	LCS		LCSD	%	Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
MCP Polychlorinated Biphenyls - Westbo	orough Lab Associate	ed sample(s):	03-04 Batch:	WG982564-2	WG982564-3				
Aroclor 1016	74		81		40-140	9		30	Α
Aroclor 1260	66		72		40-140	9		30	Α

Surrogate	LCS %Recovery G	LCSD Qual %Recovery Qual	Acceptance Criteria Column
			_
2,4,5,6-Tetrachloro-m-xylene	91	95	30-150 A
Decachlorobiphenyl	55	55	30-150 A
2,4,5,6-Tetrachloro-m-xylene	85	90	30-150 B
Decachlorobiphenyl	63	62	30-150 B

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-03 Date Collected: 03/01/17 20:45

Client ID: 1700516-B308-COMP (0-8") Date Received: 03/02/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix:SoilExtraction Method: EPA 3546Analytical Method:97,8081BExtraction Date: 03/03/17 09:38Analytical Date:03/07/17 18:36Cleanup Method: EPA 3620B

Analyst: RL Cleanup Date: 03/03/17
Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Organochlorine Pesticides - V	Vestborough Lab						
Delta-BHC	ND		ug/kg	9.21		1	Α
Lindane	ND		ug/kg	3.07		1	Α
Alpha-BHC	ND		ug/kg	3.84		1	А
Beta-BHC	ND		ug/kg	9.21		1	А
Heptachlor	ND		ug/kg	4.60		1	Α
Aldrin	ND		ug/kg	9.21		1	Α
Heptachlor epoxide	ND		ug/kg	17.3		1	Α
Endrin	ND		ug/kg	3.84		1	Α
Endrin ketone	ND		ug/kg	9.21		1	Α
Dieldrin	ND		ug/kg	5.76		1	Α
4,4'-DDE	ND		ug/kg	9.21		1	Α
4,4'-DDD	ND		ug/kg	9.21		1	В
4,4'-DDT	ND		ug/kg	17.3		1	Α
Endosulfan I	ND		ug/kg	9.21		1	Α
Endosulfan II	ND		ug/kg	9.21		1	Α
Endosulfan sulfate	ND		ug/kg	3.84		1	Α
Methoxychlor	ND		ug/kg	17.3		1	Α
Chlordane	ND		ug/kg	74.8		1	Α
Hexachlorobenzene	ND		ug/kg	9.21		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В
Decachlorobiphenyl	80		30-150	В
2,4,5,6-Tetrachloro-m-xylene	74		30-150	Α
Decachlorobiphenyl	80		30-150	Α

03/09/17

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516

SAMPLE RESULTS

Lab ID: L1706486-03 Date Collected: 03/01/17 20:45

Client ID: 1700516-B308-COMP (0-8")
Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil
Analytical Method: 97,8151A
Analytical Date: 03/08/17 03:46

Analyst: DM Percent Solids: 86%

Methylation Date: 03/03/17 10:28

Date Received: 03/02/17

Field Prep: Not Specified

Extraction Method: EPA 8151A

Report Date:

Extraction Date: 03/02/17 23:36

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Column				
MCP Chlorinated Herbicides - Westborough Lab										
MODE	ND		A 0000		,	Δ.				
MCPP	ND	ug/kg	3800	Y	1	Α				
MCPA	ND	ug/kg	3800		1	Α				
Dalapon	ND	ug/kg	38		1	Α				
Dicamba	ND	ug/kg	38		1	Α				
Dichloroprop	ND	ug/kg	38		1	Α				
2,4-D	ND	ug/kg	38		1	Α				
2,4-DB	ND	ug/kg	38		1	Α				
2,4,5-T	ND	ug/kg	38		1	Α				
2,4,5-TP (Silvex)	ND	ug/kg	38		1	Α				
Dinoseb	ND	ug/kg	38		1	Α				

Surrogate	% Recovery Qualifier	Acceptance Criteria	Column
DCAA	127	30-150	Α
DCAA	124	30-150	В

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-04 Date Collected: 03/01/17 22:30

Client ID: 1700516-B308-COMP (8-22") Date Received: 03/02/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix:SoilExtraction Method: EPA 3546Analytical Method:97,8081BExtraction Date: 03/03/17 09:38Analytical Date:03/07/17 18:52Cleanup Method: EPA 3620B

Analyst: RL Cleanup Date: 03/03/17
Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Organochlorine Pesticides - V	Vestborough Lab						
Delta-BHC	ND		ug/kg	8.54		1	Α
Lindane	ND		ug/kg	2.85		1	Α
Alpha-BHC	ND		ug/kg	3.56		1	А
Beta-BHC	ND		ug/kg	8.54		1	А
Heptachlor	ND		ug/kg	4.27		1	Α
Aldrin	ND		ug/kg	8.54		1	Α
Heptachlor epoxide	ND		ug/kg	16.0		1	Α
Endrin	ND		ug/kg	3.56		1	Α
Endrin ketone	ND		ug/kg	8.54		1	Α
Dieldrin	ND		ug/kg	5.34		1	Α
4,4'-DDE	ND		ug/kg	8.54		1	Α
4,4'-DDD	ND		ug/kg	8.54		1	В
4,4'-DDT	ND		ug/kg	16.0		1	Α
Endosulfan I	ND		ug/kg	8.54		1	Α
Endosulfan II	ND		ug/kg	8.54		1	Α
Endosulfan sulfate	ND		ug/kg	3.56		1	Α
Methoxychlor	ND		ug/kg	16.0		1	Α
Chlordane	ND		ug/kg	69.4		1	Α
Hexachlorobenzene	ND		ug/kg	8.54		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82		30-150	В
Decachlorobiphenyl	89		30-150	В
2,4,5,6-Tetrachloro-m-xylene	80		30-150	Α
Decachlorobiphenyl	86		30-150	Α

03/09/17

Project Name: Lab Number: TREMONT CROSSING PHASE II L1706486

Project Number: 1700516

SAMPLE RESULTS

Lab ID: L1706486-04

1700516-B308-COMP (8-22") Client ID: Sample Location: **BOSTON, MASSACHUSETTS**

Matrix: Soil Analytical Method: 97,8151A Analytical Date: 03/08/17 07:02

Analyst: DM 90% Percent Solids:

Methylation Date: 03/04/17 20:26 Date Collected: 03/01/17 22:30 Date Received: 03/02/17

Report Date:

Field Prep: Not Specified Extraction Method: EPA 8151A Extraction Date: 03/03/17 15:38

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Chlorinated Herbicides - West	borough Lab		///				
						·	
MCPP	ND		ug/kg	3700		1	Α
MCPA	ND		ug/kg	3700		1	Α
Dalapon	ND		ug/kg	37		1	Α
Dicamba	ND		ug/kg	37		1	Α
Dichloroprop	ND		ug/kg	37		1	Α
2,4-D	ND		ug/kg	37		1	Α
2,4-DB	ND		ug/kg	37		1	Α
2,4,5-T	ND		ug/kg	37		1	Α
2,4,5-TP (Silvex)	ND		ug/kg	37		1	Α
Dinoseb	ND		ug/kg	37		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	117		30-150	Α
DCAA	100		30-150	В

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8151A Analytical Date: 03/07/17 22:52

Analyst: DM

Methylation Date: 03/02/17 22:01

Extraction Method: EPA 8151A Extraction Date: 03/02/17 01:53

Parameter	Result	Qualifier Units	RL	MDL	Column
MCP Chlorinated Herbicides - \	Vestborough Lab	o for sample(s): 03	Batch:	WG982131-1	
MCPP	ND	ug/kg	3200		Α
МСРА	ND	ug/kg	3200		Α
Dalapon	ND	ug/kg	32		А
Dicamba	ND	ug/kg	32		Α
Dichloroprop	ND	ug/kg	32		Α
2,4-D	ND	ug/kg	32		Α
2,4-DB	ND	ug/kg	32		Α
2,4,5-T	ND	ug/kg	32		Α
2,4,5-TP (Silvex)	ND	ug/kg	32		Α
Dinoseb	ND	ug/kg	32		Α

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria	Column		
DCAA	128		30-150	Α		
DCAA	112		30-150	В		

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 **Report Date:** 03/09/17

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 97,8081B Analytical Date: 03/07/17 17:17

Analyst: RL Extraction Method: EPA 3546 Extraction Date: 03/03/17 09:38 Cleanup Method: EPA 3620B

Cleanup Date: 03/03/17

Parameter	Result	Qualifier	Units	RL		MDL	Column
MCP Organochlorine Pesticides -	Westborough	Lab for sa	mple(s):	03-04	Batch:	WG98261	0-1
Delta-BHC	ND		ug/kg	7.64			Α
Lindane	ND		ug/kg	2.55			Α
Alpha-BHC	ND		ug/kg	3.18			Α
Beta-BHC	ND		ug/kg	7.64			Α
Heptachlor	ND		ug/kg	3.82			А
Aldrin	ND		ug/kg	7.64			Α
Heptachlor epoxide	ND		ug/kg	14.3			Α
Endrin	ND		ug/kg	3.18			Α
Endrin ketone	ND		ug/kg	7.64			Α
Dieldrin	ND		ug/kg	4.78			Α
4,4'-DDE	ND		ug/kg	7.64			Α
4,4'-DDD	ND		ug/kg	7.64			Α
4,4'-DDT	ND		ug/kg	14.3			Α
Endosulfan I	ND		ug/kg	7.64			Α
Endosulfan II	ND		ug/kg	7.64			Α
Endosulfan sulfate	ND		ug/kg	3.18			Α
Methoxychlor	ND		ug/kg	14.3			Α
Chlordane	ND		ug/kg	62.1			А
Hexachlorobenzene	ND		ug/kg	7.64			Α

		Acceptance	ınce		
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	79		30-150	В	
Decachlorobiphenyl	106		30-150	В	
2,4,5,6-Tetrachloro-m-xylene	73		30-150	Α	
Decachlorobiphenyl	81		30-150	Α	

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/09/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8151A Analytical Date: 03/05/17 20:51

Analyst: DM

Methylation Date: 03/04/17 20:15

Extraction Method: EPA 8151A Extraction Date: 03/03/17 15:38

Parameter	Result	Qualifier U	Inits	RL	MDL	Column
MCP Chlorinated Herbicides - '	Westborough La	b for sample(s): 04	Batch:	WG982756-1	
MCPP	ND	ı	ıg/kg	3300		Α
MCPA	ND	U	ıg/kg	3300		Α
Dalapon	ND	ı	ıg/kg	33		А
Dicamba	ND	L	ıg/kg	33		А
Dichloroprop	ND	l	ıg/kg	33		Α
2,4-D	ND	l	ıg/kg	33		Α
2,4-DB	ND	ı	ıg/kg	33		Α
2,4,5-T	ND	U	ıg/kg	33		Α
2,4,5-TP (Silvex)	ND	ι	ıg/kg	33		Α
Dinoseb	ND	U	ıg/kg	33		Α

		Acceptance							
Surrogate	%Recovery	Qualifier	Criteria	Column					
DCAA	101		30-150	Α					
DCAA	83		30-150	В					

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706486

Report Date:

03/09/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
MCP Chlorinated Herbicides - Westborough L	ab Associated	sample(s):	03 Batch: W	/G982131-2	WG982131-3				
МСРР	83		142	Q	40-140	52	Q	30	А
MCPA	60		104		40-140	54	Q	30	А
Dalapon	47		83		40-140	55	Q	30	А
Dicamba	61		99		40-140	48	Q	30	Α
Dichloroprop	92		131		40-140	35	Q	30	Α
2,4-D	69		105		40-140	41	Q	30	Α
2,4-DB	62		103		40-140	50	Q	30	Α
2,4,5-T	62		100		40-140	47	Q	30	А
2,4,5-TP (Silvex)	60		95		40-140	45	Q	30	Α
Dinoseb	7	Q	9	Q	40-140	32	Q	30	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
DCAA DCAA	78 72		128 116		30-150 30-150	A B

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1706486

Report Date: 03/09/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
MCP Organochlorine Pesticides - Westborou	gh Lab Associa	ated sample(s):	03-04 Batch:	WG982610-	2 WG982610-3				
Delta-BHC	91		105		40-140	14		30	Α
Lindane	83		95		40-140	13		30	А
Alpha-BHC	59		69		40-140	16		30	А
Beta-BHC	68		76		40-140	11		30	А
Heptachlor	80		91		40-140	13		30	А
Aldrin	89		99		40-140	11		30	А
Heptachlor epoxide	85		97		40-140	13		30	Α
Endrin	89		102		40-140	14		30	Α
Endrin ketone	74		84		40-140	13		30	Α
Dieldrin	92		106		40-140	14		30	Α
4,4'-DDE	68		78		40-140	14		30	А
4,4'-DDD	83		94		40-140	12		30	Α
4,4'-DDT	86		98		40-140	13		30	А
Endosulfan I	82		93		40-140	13		30	А
Endosulfan II	80		91		40-140	13		30	А
Endosulfan sulfate	56		56		40-140	0		30	Α
Methoxychlor	72		81		40-140	12		30	А
Hexachlorobenzene	61		67		40-140	9		30	А

Project Name: TREMONT CROSSING PHASE II Lab Number:

L1706486

Project Number: 1700516

Report Date:

03/09/17

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits **Parameter** Qual Qual RPD Qual

MCP Organochlorine Pesticides - Westborough Lab Associated sample(s): 03-04 Batch: WG982610-2 WG982610-3

Surrogate	LCS %Recovery	Qual	LCSD Qual %Recovery Qu		Acceptance Qual Criteria		
2,4,5,6-Tetrachloro-m-xylene	74		81		30-150	В	
Decachlorobiphenyl	86		94		30-150	В	
2,4,5,6-Tetrachloro-m-xylene	68		77		30-150	Α	
Decachlorobiphenyl	74		83	Y Y	30-150	Α	

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706486

Report Date:

03/09/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
MCP Chlorinated Herbicides - Westborough L	ab Associated	sample(s):	04 Batch: WG	982756-2	WG982756-3				
MCPP	98		93		40-140	5		30	Α
МСРА	91		92		40-140	1		30	Α
Dalapon	59		62		40-140	5		30	А
Dicamba	77		79		40-140	3		30	А
Dichloroprop	137		133		40-140	3		30	А
2,4-D	97		102		40-140	5		30	А
2,4-DB	87		99		40-140	13		30	Α
2,4,5-T	84		87		40-140	4		30	А
2,4,5-TP (Silvex)	78		82		40-140	5		30	Α
Dinoseb	3	Q	6	Q	40-140	55	Q	30	А

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
DCAA DCAA	98 81		100 86		30-150 30-150	A B

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-03 Date Collected: 03/01/17 20:45

Client ID: 1700516-B308-COMP (0-8") Date Received: 03/02/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals	- Mansfield	d Lab									
Antimony, Total	ND		mg/kg	2.3		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Arsenic, Total	3.3		mg/kg	0.45		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	MC
Barium, Total	48		mg/kg	0.45		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	MC
Beryllium, Total	ND		mg/kg	0.23		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Cadmium, Total	ND		mg/kg	0.45		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Chromium, Total	9.1		mg/kg	0.45		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Lead, Total	56		mg/kg	2.3		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Mercury, Total	0.207		mg/kg	0.074		1	03/03/17 08:00	03/03/17 14:59	EPA 7471B	97,7471B	BV
Nickel, Total	6.3		mg/kg	1.1		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Selenium, Total	ND		mg/kg	2.3		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Silver, Total	ND		mg/kg	0.45	-	1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Thallium, Total	ND		mg/kg	2.3	\-\	1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Vanadium, Total	11		mg/kg	0.45		1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС
Zinc, Total	50		mg/kg	2.3	\	1	03/03/17 18:43	3 03/04/17 00:37	EPA 3050B	97,6010C	МС

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-04 Date Collected: 03/01/17 22:30

Client ID: 1700516-B308-COMP (8-22") Date Received: 03/02/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil
Percent Solids: 90%

reiterit Solius.	30 76					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Mansfield	d Lab									
Antimony, Total	ND		mg/kg	2.2		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	MC
Arsenic, Total	3.0		mg/kg	0.44		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Barium, Total	25		mg/kg	0.44		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Beryllium, Total	ND		mg/kg	0.22		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Cadmium, Total	ND		mg/kg	0.44		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Chromium, Total	16		mg/kg	0.44		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Lead, Total	12		mg/kg	2.2		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Mercury, Total	ND		mg/kg	0.072		1	03/03/17 08:0	0 03/03/17 15:00	EPA 7471B	97,7471B	BV
Nickel, Total	10		mg/kg	1.1		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Selenium, Total	ND		mg/kg	2.2		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Silver, Total	ND		mg/kg	0.44		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Thallium, Total	ND		mg/kg	2.2		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Vanadium, Total	19		mg/kg	0.44		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС
Zinc, Total	38		mg/kg	2.2		1	03/03/17 18:4	3 03/04/17 00:41	EPA 3050B	97,6010C	МС

L1706486

Lab Number:

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 **Report Date:** 03/09/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
MCP Total Metals - Man	sfield Lab for sampl	e(s): 03-0)4 Batc	h: WG	982531-1				
Mercury, Total	ND	mg/kg	0.083		1	03/03/17 08:00	03/03/17 14:34	97,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals -	Mansfield Lab for samp	le(s): 03-0	04 Bato	h: WG	982796-1		<u> </u>		
Antimony, Total	ND	mg/kg	2.0		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Arsenic, Total	ND	mg/kg	0.40		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Barium, Total	ND	mg/kg	0.40	-	1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Beryllium, Total	ND	mg/kg	0.20		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Cadmium, Total	ND	mg/kg	0.40		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Chromium, Total	ND	mg/kg	0.40	\\\-\\	1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Lead, Total	ND	mg/kg	2.0		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Nickel, Total	ND	mg/kg	1.0	+	1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Selenium, Total	ND	mg/kg	2.0		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Silver, Total	ND	mg/kg	0.40		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Thallium, Total	ND	mg/kg	2.0		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Vanadium, Total	ND	mg/kg	0.40		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC
Zinc, Total	ND	mg/kg	2.0		1	03/03/17 18:43	03/03/17 23:33	97,6010C	MC

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706486

Report Date:

03/09/17

Parameter	LCS %Recovery	LCSD Qual %Recove	%Recove ry Qual Limits		Qual RPD Limits
MCP Total Metals - Mansfield Lab Asso	ciated sample(s): 03-04	Batch: WG982531-2	WG982531-3 SRM Lot Num	nber: D091-540	
Mercury, Total	89	93	72-128	4	30
MCP Total Metals - Mansfield Lab Asso	ciated sample(s): 03-04	Batch: WG982796-2	WG982796-3 SRM Lot Num	nber: D091-540	
Antimony, Total	163	163	1-200	0	30
Arsenic, Total	103	103	80-121	0	30
Barium, Total	91	96	84-117	5	30
Beryllium, Total	97	100	83-117	3	30
Cadmium, Total	102	102	83-117	0	30
Chromium, Total	91	98	80-119	7	30
Lead, Total	103	96	82-118	7	30
Nickel, Total	93	93	83-117	0	30
Selenium, Total	101	96	79-121	5	30
Silver, Total	93	93	76-124	0	30
Thallium, Total	106	106	80-121	0	30
Vanadium, Total	96	96	78-122	0	30
Zinc, Total	103	103	82-118	0	30

INORGANICS & MISCELLANEOUS

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-03 Date Collected: 03/01/17 20:45

Client ID: 1700516-B308-COMP (0-8") Date Received: 03/02/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Damp Soil

Particle Size: Medium
Preliminary Burning Time (sec): 120

			Date	Analytical		
Parameter	Result		Analyzed	Method	Analyst	
Ignitability of Solid	ds - Westborough Lal)				
Ignitability	NI		03/03/17 13:08	1,1030	AB	

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-04 Date Collected: 03/01/17 22:30

Client ID: 1700516-B308-COMP (8-22") Date Received: 03/02/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Damp Soil

Particle Size: Coarse
Preliminary Burning Time (sec): 120

			Date	Analytical		
Parameter	Result		Analyzed	Method	Analyst	
Ignitability of Solid	ls - Westborough La	ab				
Ignitability	NI		03/03/17 13:08	1,1030	AB	

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-01

Client ID: 1700516-B308-S2 (0-18")
Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil

Date Collected: 03/01/17 20:40

Date Received: 03/02/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	91.7		%	0.100	NA	1	-	03/03/17 09:42	121,2540G	RO

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-02

Client ID: 1700516-B308-S7 (0-10")
Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil

Date Received: 03/02/17
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	93.3		%	0.100	NA	1	-	03/03/17 09:42	121,2540G	RO

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-03

Client ID: 1700516-B308-COMP (0-8")
Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil

Date Collected: 03/01/17 20:45

Date Received: 03/02/17

Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	borough Lab								
Specific Conductance @ 25 C	300	umhos/cm	10		1	-	03/03/17 02:05	1,9050A	VB
Solids, Total	85.9	%	0.100	NA	1	-	03/03/17 09:42	121,2540G	RO
pH (H)	8.2	SU	-	NA	1	-	03/02/17 19:50	1,9045D	MR
Cyanide, Reactive	ND	mg/kg	10		1	03/06/17 18:00	03/06/17 20:24	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	03/06/17 18:00	03/06/17 20:16	1,7.3	TL
Oxidation/Reduction Potential	140	mv	-	NA	1	-	03/02/17 19:50	68,1498	MR
Paint Filter Liquid	NEGATIVE	-	0	NA	1	-	03/03/17 18:55	1,9095B	AS

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

SAMPLE RESULTS

Lab ID: L1706486-04

Client ID: 1700516-B308-COMP (8-22")
Sample Location: BOSTON, MASSACHUSETTS

Matrix: Soil

Date Collected: 03/01/17 22:30

Date Received: 03/02/17 Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	borough Lab)							
Specific Conductance @ 25 C	91	umhos/cm	n 10		1	-	03/03/17 02:05	1,9050A	VB
Solids, Total	89.7	%	0.100	NA	1	-	03/03/17 09:42	121,2540G	RO
pH (H)	8.4	SU	-	NA	1	-	03/02/17 19:50	1,9045D	MR
Cyanide, Reactive	ND	mg/kg	10		1	03/06/17 18:00	03/06/17 20:24	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	03/06/17 18:00	03/06/17 20:17	1,7.3	TL
Oxidation/Reduction Potential	130	mv	-	NA	1	-	03/02/17 19:50	68,1498	MR
Paint Filter Liquid	NEGATIVE	-	0	NA	1	-	03/03/17 18:55	1,9095B	AS

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706486

Project Number: 1700516 Report Date: 03/09/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab for san	nple(s): 03-	-04 Ba	itch: Wo	G983247-1				
Cyanide, Reactive	ND	mg/kg	10		1	03/06/17 18:00	03/06/17 20:24	1,7.3	TL
General Chemistry - \	Westborough Lab for sam	nple(s): 03-	-04 Ba	itch: W0	G983248-1				
Sulfide, Reactive	ND	mg/kg	10		1	03/06/17 18:00	03/06/17 20:16	1,7.3	TL

Lab Control Sample Analysis Batch Quality Control

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706486

Report Date:

03/09/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s)	: 03-04	Batch: WG9824						
рН	101		-		99-101	-			
General Chemistry - Westborough Lab	Associated sample(s)	: 03-04	Batch: WG9824	61-1					
Oxidation/Reduction Potential	99		-		90-110	-		20	
General Chemistry - Westborough Lab	Associated sample(s)	: 03-04	Batch: WG9825	00-1					
Specific Conductance	100				99-101	-			
General Chemistry - Westborough Lab	Associated sample(s)	: 03-04	Batch: WG9832	47-2					
Cyanide, Reactive	79				30-125	-		40	
General Chemistry - Westborough Lab	Associated sample(s)	: 03-04	Batch: WG9832	48-2					
Sulfide, Reactive	88		-		60-125	-		40	

Lab Duplicate Analysis Batch Quality Control

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706486

Report Date:

03/09/17

Parameter	Native Sam	ple D	uplicate Sampl	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass COMP (0-8")	sociated sample(s): 03-04	QC Batch ID:	WG982460-2	QC Sample:	L1706486-03	Client ID:	1700516-B308-
рН (Н)	8.2		8.2	SU	0		5
General Chemistry - Westborough Lab Ass COMP (0-8")	sociated sample(s): 03-04	QC Batch ID:	WG982461-2	QC Sample:	L1706486-03	Client ID:	1700516-B308-
Oxidation/Reduction Potential	140	_	140	mv	0		20
General Chemistry - Westborough Lab Ass COMP (0-8")	sociated sample(s): 03-04	QC Batch ID:	WG982500-2	QC Sample:	L1706486-03	Client ID:	1700516-B308-
Specific Conductance @ 25 C	300		300	umhos/cm	0		20

Project Name: TREMONT CROSSING PHASE II

Lab Number: L1706486 **Report Date:** 03/09/17 Project Number: 1700516

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706486-01A	Vial MeOH preserved	Α	N/A	2.8	Υ	Absent	MCP-8260H-10(14)
L1706486-01D	Plastic 2oz unpreserved for TS	Α	N/A	2.8	Υ	Absent	TS(7)
L1706486-02A	Vial MeOH preserved	Α	N/A	2.8	Υ	Absent	MCP-8260H-10(14)
L1706486-02D	Plastic 2oz unpreserved for TS	Α	N/A	2.8	Υ	Absent	TS(7)
L1706486-03A	Glass 120ml/4oz unpreserved/No H	Α	N/A	2.8	Υ	Absent	HEXCR-RELOG()
L1706486-03B	Glass 60mL/2oz unpreserved	A	N/A	2.8	Y	Absent	MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-7471T-10(28),MCP-CD-6010T-10(180),MCP-RG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-BE-6010T-10(180),MCP-BE-6010T-10(180),MCP-BA-6010T-10(180),MCP-V-6010T-10(180),MCP-V-6010T-10(180),MCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180)
L1706486-03C	Glass 500ml/16oz unpreserved	A	N/A	2.8	Y	Absent	IGNIT-1030(14),MCP-8082- 10(365),ORP- 9045(1),REACTS(14),MCP- 8081-10(14),MCP-8151- 10(14),MCP-8270- 10(14),TS(7),PH- 9045(1),PAINTF(),REACTCN(14), TPH-DRO-D(14),COND- 9050(28)
L1706486-03D	Glass 500ml/16oz unpreserved	A	N/A	2.8	Y	Absent	IGNIT-1030(14),MCP-8082- 10(365),ORP- 9045(1),REACTS(14),MCP- 8081-10(14),MCP-8151- 10(14),MCP-8270- 10(14),TS(7),PH- 9045(1),PAINTF(),REACTCN(14), TPH-DRO-D(14),COND- 9050(28)
L1706486-04A	Glass 120ml/4oz unpreserved/No H	Α	N/A	2.8	Υ	Absent	HEXCR-RELOG()

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1706486 Report Date: 03/09/17

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706486-04B	Glass 60mL/2oz unpreserved	A	N/A	2.8	Y	Absent	MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-7471T-10(28),MCP-CD-6010T-10(180),MCP-RG-6010T-10(180),MCP-SB-6010T-10(180),MCP-SB-6010T-10(180),MCP-SE-6010T-10(180),MCP-SE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180)
L1706486-04C	Glass 500ml/16oz unpreserved	A	N/A	2.8	Y	Absent	IGNIT-1030(14),MCP-8082- 10(365),ORP- 9045(1),REACTS(14),MCP- 8081-10(14),MCP-8151- 10(14),MCP-8270- 10(14),TS(7),PH- 9045(1),PAINTF(),REACTCN(14), TPH-DRO-D(14),COND- 9050(28)
L1706486-04D	Glass 500ml/16oz unpreserved	A	N/A	2.8	Y	Absent	IGNIT-1030(14),MCP-8082- 10(365),ORP- 9045(1),REACTS(14),MCP- 8081-10(14),MCP-8151- 10(14),MCP-8270- 10(14),TS(7),PH- 9045(1),PAINTF(),REACTCN(14), TPH-DRO-D(14),COND- 9050(28)

Project Name:TREMONT CROSSING PHASE IILab Number:L1706486Project Number:1700516Report Date:03/09/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

-The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSING PHASE IILab Number:L1706486Project Number:1700516Report Date:03/09/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:TREMONT CROSSING PHASE IILab Number:L1706486Project Number:1700516Report Date:03/09/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Annual Book of ASTM (American Society for Testing and Materials) Standards following extraction by SW-846 EPA Method 9045C under the requirements of MADEP BWSC, WSC-CAM-VIB. August 2004.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Chain-of-Custody Record					Labora	tory:		ALPHA Laboratory Job # L1706486										
							Project		Committee of the Commit								IIIE BROWN	
		Project Na	me: Tremo	nt Crossin	g Phase II	I		Project Location: Boston, Massachusetts							Page 1 of 1			
\Box		Project Nu	ımber: 1700)516				Project	Manag	ger: C					**			
U	Consultants										` '	_	4093	(c)78	1-424	-9912		
	icorn Park Drive	Send Repo	ort to:	Jess Engle	hart			I			- Ammont	No. of the last of	vative					Sample Handling
0.00000000	urn, MA 01801 781.721.4000							MeOH	None	None	None	None	None	None	None	None	None	
	781.721.4073	Send EDD	to: labdata@	geiconsult	tants.com					1		Analy						Samples Field Filtered
MCP PRESUM	PTIVE CERTAINTY REQ	UIRED	YES	6) (TV)	>			ids		£		sis						YES NO NA
If Yes, Are MC	P Analytical Methods Req	uired?		(YES)	NO	NA		Solids		Total Petroleum Hydrocarbons (TPH)	Polychlorinated Biphenyls (PCBs)	MCP 14 Total Metals				e e		Sampled Shipped
	iking Water Samples Subi			YES	(NO)	NA		%	2	ons	(PC	ta	Ę,		S	anic		With Ice
90	ou Met Minimum Field QC		ents?	YES	NO	(NA)		3260	8270	etro	lori	4 To	iity cti	des	bink	it y	Δ.	(YES) NO
Lab Sample	GEI Sample ID		Colle		Matrix	No. of	Sampler(s)	VOCs 8260,	SVOCS	Total Petroleum Hydrocarbons (7	ych hen	P 1	Conductivity ignitability	Pesticides, Herbicides	Free liquids	Sulfide/Cyanide Reactivity	pH/ORP	Sample Specific Remarks
Number			Date	Time		Bottles	Initials	9	SV	Tot Hyd	Pol Bip	MC	S ig	Pes	Fre	Sul Rea	pH/	
06 486-01	1700516-B308-S2(0-18")		3/1/2017	20:40	SO	2	JTN	х										
	1700516-B308-S7(0-10")		3/1/2017	22:10	so	2	JTN	х										
-03	1700516-B308-COMP(0-8	8')	3/1/2017	20:45	SO	4	JTN		х	х	х	х	х	х	x	х	х	
-04	1700516-B308-COMP(8-2	22')	3/1/2017	22:30	SO	4	JTN		х	х	х	х	х	х	х	х	х	
*														_				
												53						
														-				
MCP Level Ne	eded: GEI requires the mo	ost stringen	t Method 1 N	ACP standa	rd be met	for all an	alvtes				Turnar	ound '	Time					
whenever poss	ible. /										Busin							
Relinquished by samp	ler (sgrature)	Date:	Time:	Received by: (sig	gnature)	0 T	- 2101 -		Norma	ıl _X	Ot	her _						
1.// DSK	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3.2.17	0135			cen	idge		10-Day	·	7-	Day _						
Relinguished by: (sign		Date:	Time:	Received by: (sig	gnature)	1			5-Day	_x								
2./() (I S	ample trida	3/2/17 Date:	1330 Time:	2. Received by: (sig	anatura) S	21	2/17								nts/C	omme	ents/R	Remarks:
o (Sign		3/2/17	1330	a em				Please ru							AYCO	ade 100	malka	,
Relinquished by: (sign	ature)	Date :/		Received by: (sig	gnature)	3	9AL13:30	e icase it	III IIEXd	valetit	CHIOIII	um n t	otal CIII	-	GACE	- CG 100	mg/kg	,
4 Jahr Sh	20113/	2/17	10 18		1 (1 0	Mer												

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1706486 : 1700516 **Project Name** : TREMONT CROSSING PHASE II **Project Number** Lab File ID : V10170305A05

Lab Sample ID Instrument ID : WG983145-5

: VOA110 Analysis Date Matrix : SOIL : 03/05/17 09:46

Client Sample No.	Lab Sample ID	Analysis Date
WG983145-3LCS	WG983145-3	03/05/17 08:29
WG983145-4LCSD	WG983145-4	03/05/17 08:55
1700516-B308-S2 (0-18")	L1706486-01	03/05/17 12:20
1700516-B308-S7 (0-10")	L1706486-02	03/05/17 12:46

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706486
Project Name : TREMONT CROSSING PHASE II Project Number : 1700516
Instrument ID : VOA110 Calibration Date : 03/05/17 08:29

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(ı
Fluorobenzene	1	1	-	0	20	101	0
Dichlorodifluoromethane	0.351	0.363	-	-3.4	20	108	0
Chloromethane	0.269	0.276	-	-2.6	20	104	0
Vinyl chloride	0.267	0.261	-	2.2	20	101	0
Bromomethane	0.202	0.194	-	4	20	104	0
Chloroethane	0.168	0.149	•	11.3	20	90	.04
Trichlorofluoromethane	0.445	0.473	-	-6.3	20	103	.04
Ethyl ether	0.158	0.144	-	8.9	20	95	0
1,1-Dichloroethene	0.221	0.229	-	-3.6	20	109	.01
Carbon disulfide	20	16.26	-	18.7	20	86	.02
Freon-113	0.206	0.218	-	-5.8	20	108	.02
Acrolein	0.046	0.042	-	8.7	20	102	0
Methylene chloride	20	18.209	-	9	20	98	0
Acetone	0.056	0.065	-	-16.1	20	122	0
trans-1,2-Dichloroethene	0.25	0.253	-	-1.2	20	104	0
Methyl acetate	0.153	0.146	-	4.6	20	101	0
Methyl tert-butyl ether	0.676	0.703		-4	20	111	0
tert-Butyl alcohol	0.018	0.019		-5.6	20	112	01
Diisopropyl ether	0.758	0.786		-3.7	20	105	0
1,1-Dichloroethane	0.425	0.44	-	-3.5	20	104	0
Halothane	0.17	0.176	-	-3.5	20	106	0
Acrylonitrile	20	18.935	-	5.3	20	100	0
Ethyl tert-butyl ether	0.616	0.651	-	-5.7	20	110	0
Vinyl acetate	20	18.904	-	5.5	20	105	0
cis-1,2-Dichloroethene	0.269	0.268	-	0.4	20	101	0
2,2-Dichloropropane	0.313	0.359	-	-14.7	20	123	0
Bromochloromethane	0.128	0.128		0	20	99	0
Cyclohexane	0.342	0.376	-	-9.9	20	113	0
Chloroform	0.342	0.376	-	-9.9	20	100	0
Ethyl acetate	0.457	0.459	-	1.5	20	100	0
	0.204	0.201			20	112	
Carbon tetrachloride	0.32	0.34	-	-6.3	20	115	0
Tetrahydrofuran			-	-16.7			0
Dibromofluoromethane	0.256	0.263	•	-2.7	20	102	0
1,1,1-Trichloroethane	0.393	0.421	-	-7.1	20	110	0
2-Butanone	0.09	0.085	-	5.6	20	106	.01
1,1-Dichloropropene	0.31	0.328	-	-5.8	20	106	0
Benzene	0.996	1.01	-	-1.4	20	102	0
tert-Amyl methyl ether	0.54	0.581	•	-7.6	20	115	0
1,2-Dichloroethane-d4	0.27	0.269	-	0.4	20	100	0
1,2-Dichloroethane	0.339	0.329	-	2.9	20	97	0
Methyl cyclohexane	0.35	0.365	-	-4.3	20	113	0
Trichloroethene	0.262	0.268	-	-2.3	20	104	0
Dibromomethane	0.151	0.143	-	5.3	20	97	0
1,2-Dichloropropane	0.232	0.229	-	1.3	20	100	0
2-Chloroethyl vinyl ether	20	9.093	-	54.5*	20	55	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706486
Project Name : TREMONT CROSSING PHASE II Project Number : 1700516
Instrument ID : VOA110 Calibration Date : 03/05/17 08:29

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(r
Bromodichloromethane	0.337	0.318	-	5.6	20	98	0
1,4-Dioxane	0.00229	0.002	-	12.7	20	93	0
cis-1,3-Dichloropropene	20	17.712	-	11.4	20	102	0
Chlorobenzene-d5	1	1	-	0	20	105	0
Toluene-d8	1.233	1.231	-	0.2	20	103	0
Toluene	0.846	0.82	-	3.1	20	102	0
4-Methyl-2-pentanone	0.089	0.073	-	18	20	104	0
Tetrachloroethene	0.33	0.321	-	2.7	20	104	0
trans-1,3-Dichloropropene	0.402	0.396	-	1.5	20	107	0
Ethyl methacrylate	20	15.631	-	21.8*	20	100	0
1,1,2-Trichloroethane	0.243	0.232	-	4.5	20	99	0
Chlorodibromomethane	0.324	0.294	-	9.3	20	99	0
1,3-Dichloropropane	0.472	0.451	-	4.4	20	100	0
1,2-Dibromoethane	0.267	0.245	-	8.2	20	97	0
2-Hexanone	20	13.824	-	30.9*	20	100	0
Chlorobenzene	0.965	0.902	-	6.5	20	98	0
Ethylbenzene	1.513	1.509		0.3	20	102	0
1,1,1,2-Tetrachloroethane	0.334	0.315	-	5.7	20	100	0
p/m Xylene	0.58	0.591	-	-1.9	20	101	0
o Xylene	0.54	0.543	-	-0.6	20	100	0
Styrene	0.952	0.918	-	3.6	20	95	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	105	0
Bromoform	0.396	0.342	-	13.6	20	99	0
Isopropylbenzene	2.879	2.854	-	0.9	20	103	0
4-Bromofluorobenzene	0.867	0.868	-	-0.1	20	107	0
Bromobenzene	0.743	0.681	-	8.3	20	99	0
n-Propylbenzene	3.513	3.465	-	1.4	20	102	0
1,4-Dichlorobutane	0.894	0.869		2.8	20	103	0
1,1,2,2-Tetrachloroethane	0.714	0.66		7.6	20	100	0
4-Ethyltoluene	2.879	2.853		0.9	20	101	0
2-Chlorotoluene	2.146	2.102		2.1	20	100	0
1,3,5-Trimethylbenzene	2.51	2.483		1.1	20	100	0
1,2,3-Trichloropropane	0.577	0.532	<u>-</u>	7.8	20	100	0
trans-1,4-Dichloro-2-buten	0.175	0.532	-	5.7	20	100	0
4-Chlorotoluene	2.122	2.059	-	3.7	20	100	0
tert-Butylbenzene	2.122				20	100	
		2.025	-	1.3			0
1,2,4-Trimethylbenzene	2.467	2.431	-	1.5	20	99	0
sec-Butylbenzene	3.173	3.196	-	-0.7	20	104	0
p-Isopropyltoluene	2.626	2.569	-	2.2	20	101	0
1,3-Dichlorobenzene	1.484	1.382	-	6.9	20	98	0
1,4-Dichlorobenzene	1.534	1.384	-	9.8	20	97	0
p-Diethylbenzene	1.524	1.465	-	3.9	20	100	0
n-Butylbenzene	2.502	2.514	-	-0.5	20	103	0
1,2-Dichlorobenzene	1.392	1.246	-	10.5	20	97	0
1,2,4,5-Tetramethylbenzene	20	16.51	•	17.4	20	97	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706486

Project Name : TREMONT CROSSING PHASE II Project Number : 1700516

Instrument ID : VOA110 Calibration Date : 03/05/17 08:29

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dibromo-3-chloropropan	0.09	0.078	-	13.3	20	99	0
1,3,5-Trichlorobenzene	1.022	0.934	-	8.6	20	96	0
Hexachlorobutadiene	0.493	0.45	-	8.7	20	104	0
1,2,4-Trichlorobenzene	0.876	0.794	-	9.4	20	98	0
Naphthalene	20	15.898	-	20.5*	20	95	0
1,2,3-Trichlorobenzene	0.839	0.751	-	10.5	20	96	0

I:\Pest11\170307\11170307-01.d

Data File Name
Data File Path
Operator
Date Acquired
Acq. Method File

11170307-01.d
I:\Pest11\170307\
PEST11:keg
3/7/2017 13:05
PEST_P11.M

Sample Name pem1117030701,42ee,,deg sl

Instrument Name Pest 11

Name 4,4'-DDT 4,4'-DDE 4,4'-DDD	Ret Time 5.16 4.51 4.96	Response 569848849.4 1188979.779 4521940.696	% Breakdown 0.99%
Endrin	4.91	327961106	% Breakdown
Endrin Aldehyde Endrin Ketone	5.36 5.85	7561542.315 9263231.621	4.88%
4,4'-DDT #2	5.71	520390244.7	% Breakdown
4,4'-DDE #2	5.07	1599849.787	
4,4'-DDD #2	5.49	4436905	1.15%
Endrin #2 Endrin Aldehyde #2	5.44 5.82	307244643 7717003.231	% Breakdown
Endrin Ketone #2	6.38	9587183.739	5.33%

WG982610-1, -2, -3, -4, -5 L1706486-03, -04

ANALYTICAL REPORT

Lab Number: L1706625

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/10/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number: L1706625 **Report Date:** 03/10/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1706625-01	1700516-TP-101(0-3')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 12:55	02/27/17
L1706625-02	1700516-TP-105(0-10')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 13:30	02/27/17
I 1706625-03	1700516-TP-107(0-3')	SOIL	BOSTON, MASSACHUSETTS	02/26/17 10:55	02/27/17

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706625
Project Number: 1700516 Report Date: 03/10/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Nails Amita Naik

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 03/10/17

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706625

Project Number: Report Date: 1700516 03/10/17

SAMPLE RESULTS

Lab ID: L1706625-01 Date Collected:

02/26/17 12:55 Client ID: 1700516-TP-101(0-3') Date Received: 02/27/17

Sample Location: **BOSTON, MASSACHUSETTS** Field Prep: Not Specified TCLP/SPLP Ext. Date: 03/07/17 21:48 Matrix: Soil

Dilution Date Date Prep Analytical Method Factor **Prepared** Analyzed Method Qualifier **Parameter** Result Units RL MDL

Analyst TCLP Metals by EPA 1311 - Mansfield Lab 03/09/17 11:16 03/09/17 16:10 EPA 3015 1,6010C Lead, TCLP ND 0.50 1 mg/l AB

Project Name: Lab Number: TREMONT CROSSING PHASE II L1706625

Project Number: 1700516 **Report Date:** 03/10/17

SAMPLE RESULTS

Lab ID: Date Collected: L1706625-02 02/26/17 13:30

Client ID: 1700516-TP-105(0-10') Date Received: 02/27/17 Sample Location: BOSTON, MASSACHUSETTS Field Prep:

Not Specified TCLP/SPLP Ext. Date: 03/07/17 21:48 Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
TCLP Metals by EP	A 1311 - I	Mansfield L	.ab								
Lead, TCLP	ND		mg/l	0.50		1	03/09/17 11:1	6 03/09/17 16:57	EPA 3015	1,6010C	AB

Project Name: TREMONT CROSSING PHASE II Lab Number: L1706625

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706625-03 Date Collected: 02/26/17 10:55

Client ID: 1700516-TP-107(0-3') Date Received: 02/27/17
Sample Location: BOSTON, MASSACHUSETTS Field Prep: Not Specified

Matrix: Soil TCLP/SPLP Ext. Date: 03/07/17 21:48

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
TCLP Metals by	EPA 1311 -	Mansfield I	_ab								
Lead TCLP	ND		ma/l	0.50		1	03/09/17 11:1	6 03/09/17 17:01	EPA 3015	1.6010C	ΔR

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706625

Report Date:

03/10/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
TCLP Metals by EPA	1311 - Mansfield Lab	for sample	e(s): 01	-03 Ba	tch: WG984	1176-1			
Lead, TCLP	ND	mg/l	0.50		1	03/09/17 11:16	03/09/17 14:37	7 1,6010C	AB

Prep Information

Digestion Method: EPA 3015

TCLP/SPLP Extraction Date: 03/07/17 21:48

Lab Control Sample Analysis Batch Quality Control

Project Name: TREMONT CROSSING PHASE II

Lab Number:

L1706625

Project Number: 1700516

Report Date:

03/10/17

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual RPD Limits	
TCLP Metals by EPA 1311 - Mansfield Lab	Associated sample(s): 01-03	Batch: WG98417	6-2				
Lead, TCLP	106	-		75-125	_	20	

Matrix Spike Analysis Batch Quality Control

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516

Lab Number:

L1706625

Report Date:

03/10/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	/ RPD (RPD Qual Limits
TCLP Metals by EPA 1311	- Mansfield Lab	Associated	sample(s): 0	1-03 QC Bat	ch ID: WG984176-3	3 QC Sample	e: L1706737-01	Client ID	: MS Sample
Lead, TCLP	ND	5.1	5.6	110	-	-	75-125	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** TREMONT CROSSING PHASE II L1706625

03/10/17 **Project Number:** 1700516 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limit	ts
TCLP Metals by EPA 1311 - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG984176-4	QC Sample:	L1706737-01	Client ID: DUP Sa	mple
Lead, TCLP	ND	ND	mg/l	NC	20	

Lab Number: L1706625

Project Name: TREMONT CROSSING PHASE II

Project Number: 1700516 Report Date: 03/10/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Information				Temp				
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)	
L1706625-01A	Glass 120ml/4oz unpreserved	Α	N/A	2.4	Υ	Absent	-	
L1706625-01X	Plastic 120ml HNO3 preserved Ext	Α	<2	2.4	Υ	Absent	PB-CI(180)	
L1706625-01X9	Tumble Vessel	Α	N/A	2.4	Υ	Absent	-	
L1706625-02A	Glass 500ml/16oz unpreserved	Α	N/A	2.4	Υ	Absent	-	
L1706625-02X	Plastic 120ml HNO3 preserved Ext	Α	<2	2.4	Υ	Absent	PB-CI(180)	
L1706625-02X9	Tumble Vessel	Α	N/A	2.4	Υ	Absent	-	
L1706625-03A	Glass 120ml/4oz unpreserved	Α	N/A	2.4	Υ	Absent	-	
L1706625-03X	Plastic 120ml HNO3 preserved Ext	Α	<2	2.4	Υ	Absent	PB-CI(180)	
L1706625-03X9	Tumble Vessel	A	N/A	2.4	Υ	Absent	-	

Project Name:TREMONT CROSSING PHASE IILab Number:L1706625Project Number:1700516Report Date:03/10/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSING PHASE IILab Number:L1706625Project Number:1700516Report Date:03/10/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:TREMONT CROSSING PHASE IILab Number:L1706625Project Number:1700516Report Date:03/10/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

coc edited 3/3/17-KER

11705946

jk 3/7/17 L1706625 Chain-of-Custody Record Laboratory: **ALPHA** Laboratory Job # (Lab use only) Project Information Project Name: Tremont Crossing Phase II Project Location: Boston, Massachusetts Project Number: 1700516 Project Manager: Cathy Johnson Page 1 of 1 (o) 781-721-4093 (c) 781-424-9912 400 Unicorn Park Drive Send Report to: Jess Englehart Woburn, MA 01801 Preservative PH: 781.721.4000 Sample Handling Send EDD to: labdata@geiconsultants.com FX: 781.721.4073 Analysis MCP PRESUMPTIVE CERTAINTY REQUIRED - YES NO. apples Field Filtered If Yes, Are MCP Analytical Methods Required? NO (NA) YES NO NA If Yes, Are Drinking Water Samples Submitted? YES NO NA Sampled Shipped If Yes, Have You Met Minimum Field QC Requirements? With Ice YES NO NA GEI Sample ID Collection Number Matrix No of Samplen's) (YES NO 1 Date Time Bottles Initials Sample Specific Remarks -01 1700516-TP-101 (0-3') 2/26/2017 12:55 SO 2 JTN 1700516-TP-103 (0-3') 2/26/2017 9:00 SO 2 JTN 1700516-TP-104 (0-3') 2/26/2017 9:30 SO 2 JTN 1700516-TP-105 (10') 2/26/2017 13:25 SO 2 JTN -02 1700516-TP-105 (0-10') 2/26/2017 13:30 SO 4 JTN 1700516-TP-106 (0-2') 2/26/2017 7:40 SO 2 JTN X -03 1700516-TP-107 (0-3') 2/26/2017 10:55 SO JTN 1700516-TP-108 (8') 2/26/2017 11:50 SO X 3 JTN 1700516-TP-108 (0-8') 2/26/2017 12:05 SO 2 JTN MCP Level Needed: GEI requires the most stringent Method 1 MCP standard be met for all analytes whenever possible Turnaround Time Relinquished by samp er. (signature) Received by (signature) (Business days) Normal_X__ 2/26/2017 15:25 Other GEI Sample Fridge Relinquished by: (signature) 10-Day ____ 7-Day ____ 5-Day X Additional Requirements/Comments/Remarks: Please run TCLP if any metals exceed 20x rule. Rob Maisto AAL Please run hexavalent chromium if total chromium exceeds 100 mg/kg.

ANALYTICAL REPORT

Lab Number: L1706656

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/10/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706656 **Report Date:** 03/10/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1706656-01	1700516-B301-S7(10-15")	SOIL	BOSTON, MA	03/02/17 23:55	03/03/17
L1706656-02	1700516-B301-COMP (0-3')	SOIL	BOSTON, MA	03/02/17 00:30	03/03/17
L1706656-03	1700516-B305-S7(9-13")	SOIL	BOSTON, MA	03/02/17 21:10	03/03/17

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status						
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO					
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO					
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES					

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/10/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question G:

L1706656-01 and -03: One or more of the target analytes did not achieve the requested CAM reporting limits. In reference to question H:

The initial calibration, associated with L1706656-01 and -03, did not meet the method required minimum response factor on the lowest calibration standard for acetone (0.0788), 2-butanone (0.0798), 4-methyl-2-pentanone (0.0579), and 1,4-dioxane (0.0021), as well as the average response factor for acetone, 2-butanone, 4-methyl-2-pentanone, and 1,4-dioxane.

The continuing calibration standard, associated with L1706656-01 and -03, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/10/17

Melissa Cripps Melissa Cripps

Not Specified

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706656

Report Date: 03/10/17

OAIII LE RES

Lab ID: Date Collected: 03/02/17 2

Client ID: 1700516-B301-S7(10-15")

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 03/06/17 10:34

Analyst: MV Percent Solids: 89%

Date Collected:	03/02/17 23:55
Date Received:	03/03/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 High	n - Westborough Lat)				
Methylene chloride	ND		ug/kg	300		1
1,1-Dichloroethane	ND		ug/kg	46		1
Chloroform	ND		ug/kg	46		1
Carbon tetrachloride	ND		ug/kg	30		1
1,2-Dichloropropane	ND		ug/kg	110		1
Dibromochloromethane	ND		ug/kg	30		1
1,1,2-Trichloroethane	ND		ug/kg	46		1
Tetrachloroethene	ND		ug/kg	30		1
Chlorobenzene	ND		ug/kg	30		1
Trichlorofluoromethane	ND		ug/kg	120		1
1,2-Dichloroethane	ND		ug/kg	30		1
1,1,1-Trichloroethane	ND		ug/kg	30		1
Bromodichloromethane	ND		ug/kg	30		1
trans-1,3-Dichloropropene	ND		ug/kg	30		1
cis-1,3-Dichloropropene	ND		ug/kg	30		1
1,3-Dichloropropene, Total	ND		ug/kg	30		1
1,1-Dichloropropene	ND		ug/kg	120		1
Bromoform	ND		ug/kg	120		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	30		1
Benzene	ND		ug/kg	30		1
Toluene	ND		ug/kg	46		1
Ethylbenzene	ND		ug/kg	30		1
Chloromethane	ND		ug/kg	120		1
Bromomethane	ND		ug/kg	61		1
Vinyl chloride	ND		ug/kg	61		1
Chloroethane	ND		ug/kg	61		1
1,1-Dichloroethene	ND		ug/kg	30		1
trans-1,2-Dichloroethene	ND		ug/kg	46		1
Trichloroethene	ND		ug/kg	30		1
1,2-Dichlorobenzene	ND		ug/kg	120		1

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706656-01 Date Collected: 03/02/17 23:55

Client ID: 1700516-B301-S7(10-15") Date Received: 03/03/17

Sample Location: BOSTON, MA Field Prep: Not Specified **Parameter** Result Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics by 5035 High - Westborough Lab ND 120 1,3-Dichlorobenzene ug/kg 1 1,4-Dichlorobenzene ND ug/kg 120 Methyl tert butyl ether ND ug/kg 61 1 p/m-Xylene ND 61 1 ug/kg o-Xylene ND 61 1 ug/kg Xylenes, Total ND 61 1 ug/kg -cis-1,2-Dichloroethene ND 30 1 ug/kg --1,2-Dichloroethene, Total ND ug/kg 30 1 Dibromomethane ND 120 1 ug/kg 1,2,3-Trichloropropane ND 120 1 ug/kg Styrene ND ug/kg 61 1 Dichlorodifluoromethane ND 300 1 ug/kg --ND 1100 1 Acetone ug/kg ND Carbon disulfide 120 1 ug/kg Methyl ethyl ketone ND 300 1 ug/kg Methyl isobutyl ketone ND 300 1 ug/kg ND 2-Hexanone ug/kg 300 1 Bromochloromethane ND 120 1 ug/kg --Tetrahydrofuran ND 120 1 ug/kg ND 2,2-Dichloropropane 150 1 ug/kg --ND 120 1 1,2-Dibromoethane ug/kg 1,3-Dichloropropane ND 120 1 ug/kg 1,1,1,2-Tetrachloroethane ND 30 ug/kg --1 Bromobenzene ND 150 1 ug/kg -n-Butylbenzene ND 30 1 ug/kg sec-Butylbenzene ND 30 1 ug/kg tert-Butylbenzene ND 120 1 ug/kg o-Chlorotoluene ND 120 1 ug/kg ND p-Chlorotoluene 120 1 ug/kg --1,2-Dibromo-3-chloropropane ND ug/kg 120 1 Hexachlorobutadiene ND ug/kg 120 1 ND 30 1 Isopropylbenzene ug/kg p-Isopropyltoluene ND ug/kg 30 1 ND Naphthalene ug/kg 120 --1 n-Propylbenzene ND 30 1 ug/kg --1,2,3-Trichlorobenzene ND 120 1 ug/kg 1,2,4-Trichlorobenzene ND 120 1 ug/kg --ND 1,3,5-Trimethylbenzene 120 1 ug/kg

ND

1

120

ug/kg

1,2,4-Trimethylbenzene

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706656-01 Date Collected: 03/02/17 23:55

Client ID: 1700516-B301-S7(10-15") Date Received: 03/03/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
MCP Volatile Organics by 5035 High - Westborough Lab									
Diethyl ether	ND		ug/kg	150		1			
Diisopropyl Ether	ND		ug/kg	120		1			
Ethyl-Tert-Butyl-Ether	ND		ug/kg	120		1			
Tertiary-Amyl Methyl Ether	ND		ug/kg	120		1			
1,4-Dioxane	ND		ug/kg	1200		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	96		70-130	

L1706656

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number:

Report Date: 03/10/17

Lab ID: L1706656-03

Client ID: 1700516-B305-S7(9-13")

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 03/06/17 11:00

Analyst: MV92% Percent Solids:

Date Collected:	03/02/17 21:10
Date Concetta.	00,02,11 21110

Date Received: 03/03/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 Hig	h - Westborough Lat)				
Methylene chloride	ND		ug/kg	370		1
1,1-Dichloroethane	ND		ug/kg	56		 1
Chloroform	ND		ug/kg	56		 1
Carbon tetrachloride	ND		ug/kg	37		 1
1,2-Dichloropropane	ND		ug/kg	130		1
Dibromochloromethane	ND		ug/kg	37		 1
1,1,2-Trichloroethane	ND		ug/kg	56		1
Tetrachloroethene	ND		ug/kg	37		1
Chlorobenzene	ND		ug/kg ug/kg	37		1
Trichlorofluoromethane	ND		ug/kg ug/kg	150		1
1,2-Dichloroethane	ND			37		1
1,1,1-Trichloroethane	ND		ug/kg	37		1
Bromodichloromethane	ND		ug/kg	37		1
	ND ND		ug/kg			1
trans-1,3-Dichloropropene			ug/kg	37		
cis-1,3-Dichloropropene	ND		ug/kg	37		1
1,3-Dichloropropene, Total	ND		ug/kg	37		1
1,1-Dichloropropene	ND		ug/kg	150		1
Bromoform	ND		ug/kg	150		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	37		1
Benzene	ND		ug/kg	37		1
Toluene	ND		ug/kg	56		1
Ethylbenzene	ND		ug/kg	37		1
Chloromethane	ND		ug/kg	150		1
Bromomethane	ND		ug/kg	75		1
Vinyl chloride	ND		ug/kg	75		1
Chloroethane	ND		ug/kg	75		1
1,1-Dichloroethene	ND		ug/kg	37		1
trans-1,2-Dichloroethene	ND		ug/kg	56		1
Trichloroethene	ND		ug/kg	37		1
1,2-Dichlorobenzene	ND		ug/kg	150		1

L1706656

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Report Date: 03/10/17

Lab Number:

Lab ID: L1706656-03

Client ID: 1700516-B305-S7(9-13")

Sample Location: BOSTON, MA Date Collected: 03/02/17 21:10

Date Received: 03/03/17 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics by 5035 High - Westborough Lab ND 150 1,3-Dichlorobenzene ug/kg 1 1,4-Dichlorobenzene ND ug/kg 150 75 Methyl tert butyl ether ND ug/kg 1 75 p/m-Xylene ND 1 ug/kg o-Xylene ND 75 1 ug/kg Xylenes, Total ND 75 1 ug/kg -cis-1,2-Dichloroethene ND 37 1 ug/kg --1,2-Dichloroethene, Total ND ug/kg 37 1 Dibromomethane ND 150 1 ug/kg 1,2,3-Trichloropropane ND 150 1 ug/kg Styrene ND ug/kg 75 1 Dichlorodifluoromethane ND 370 1 ug/kg --ND 1300 1 Acetone ug/kg ND Carbon disulfide 150 1 ug/kg Methyl ethyl ketone ND 370 1 ug/kg Methyl isobutyl ketone ND 370 1 ug/kg ND 370 2-Hexanone ug/kg 1 Bromochloromethane ND 150 1 ug/kg --Tetrahydrofuran ND 150 1 ug/kg ND 2,2-Dichloropropane 190 1 ug/kg --ND 150 1 1,2-Dibromoethane ug/kg 1,3-Dichloropropane ND 150 1 ug/kg 1,1,1,2-Tetrachloroethane ND 37 ug/kg --1 Bromobenzene ND 190 1 ug/kg -n-Butylbenzene ND 37 1 ug/kg sec-Butylbenzene ND 37 1 ug/kg tert-Butylbenzene ND 150 1 ug/kg o-Chlorotoluene ND 150 1 ug/kg ND p-Chlorotoluene 150 1 ug/kg --1,2-Dibromo-3-chloropropane ND ug/kg 150 1 Hexachlorobutadiene ND ug/kg 150 1 ND 37 1 Isopropylbenzene ug/kg p-Isopropyltoluene ND ug/kg 37 1 ND Naphthalene ug/kg 150 --1 n-Propylbenzene ND 37 1 ug/kg --1,2,3-Trichlorobenzene ND 150 1 ug/kg 1,2,4-Trichlorobenzene ND 150 1 ug/kg --ND 1,3,5-Trimethylbenzene 150 1 ug/kg 1,2,4-Trimethylbenzene ND 150 1 ug/kg

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706656-03 Date Collected: 03/02/17 21:10

Client ID: 1700516-B305-S7(9-13") Date Received: 03/03/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
MCP Volatile Organics by 5035 High - Westborough Lab									
Diethyl ether	ND		ug/kg	190		1			
Diisopropyl Ether	ND		ug/kg	150		1			
Ethyl-Tert-Butyl-Ether	ND		ug/kg	150		1			
Tertiary-Amyl Methyl Ether	ND		ug/kg	150		1			
1,4-Dioxane	ND		ug/kg	1500		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	98		70-130	

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/06/17 09:17

Analyst: BN

Methylene chloride ND ug/kg 500 1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50	Parameter	Result	Qualifier Units	RL	MDL	
1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene, Total ND ug/kg	MCP Volatile Organics by 8260/5	035 - Westbo	rough Lab for sample	e(s): 01,03	Batch: WG983399	9-5
Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 1,1,2-Trichloropermene ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg <td>Methylene chloride</td> <td>ND</td> <td>ug/kg</td> <td>500</td> <td></td> <td></td>	Methylene chloride	ND	ug/kg	500		
Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1-1-Trichloroethane ND ug/kg 50 8romodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg	1,1-Dichloroethane	ND	ug/kg	75		
1,2-Dichloropropane ND	Chloroform	ND	ug/kg	75		
Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 1,1-2,2-Tetrachloroethane ND u	Carbon tetrachloride	ND	ug/kg	50		
1,1,2-Trichloroethane ND ug/kg 75 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 50 1,1,2-2-Tetrachloroethane ND ug/kg	1,2-Dichloropropane	ND	ug/kg	180		
Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 5	Dibromochloromethane	ND	ug/kg	50		
Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td>ug/kg</td><td>75</td><td></td><td></td></t<>	1,1,2-Trichloroethane	ND	ug/kg	75		
Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 100	Tetrachloroethene	ND	ug/kg	50		
1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100	Chlorobenzene	ND	ug/kg	50		
1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50	Trichlorofluoromethane	ND	ug/kg	200		
Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 <td>1,2-Dichloroethane</td> <td>ND</td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	1,2-Dichloroethane	ND	ug/kg	50		
trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50	1,1,1-Trichloroethane	ND	ug/kg	50		
cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromodichloromethane	ND	ug/kg	50		
1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	trans-1,3-Dichloropropene	ND	ug/kg	50		
1,1-Dichloropropene ND ug/kg 200 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	cis-1,3-Dichloropropene	ND	ug/kg	50		
Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,3-Dichloropropene, Total	ND	ug/kg	50		
1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1-Dichloropropene	ND	ug/kg	200		
Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromoform	ND	ug/kg	200		
Toluene ND ug/kg 75 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	1,1,2,2-Tetrachloroethane	ND	ug/kg	50		
Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Benzene	ND	ug/kg	50		
Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Toluene	ND	ug/kg	75		
Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Ethylbenzene	ND	ug/kg	50		
Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Chloromethane	ND	ug/kg	200		
Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Bromomethane	ND	ug/kg	100		
1,1-Dichloroethene ND ug/kg 50 trans-1,2-Dichloroethene ND ug/kg 75	Vinyl chloride	ND	ug/kg	100		
trans-1,2-Dichloroethene ND ug/kg 75	Chloroethane	ND	ug/kg	100		
3 3	1,1-Dichloroethene	ND	ug/kg	50		
Trichloroethene ND ug/kg 50	trans-1,2-Dichloroethene	ND	ug/kg	75		
	Trichloroethene	ND	ug/kg	50		

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 93/06/17 09:17

Analyst: BN

ACP Volatile Organics by 8260/5035 - Westborough Lab for sample(s): 01,03 Batch: WG983399-5 1,2-Dichlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	
1,3-Dichlorobenzene ND ug/kg 200 1,4-Dichlorobenzene ND ug/kg 200 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Styrene ND ug/kg 500 Acetone ND ug/kg 500	MCP Volatile Organics by 8260/503	35 - Westbo	rough Lab f	or sample	(s): 01,03	Batch: WG983399-	5
1,3-Dichlorobenzene ND ug/kg 200 1,4-Dichlorobenzene ND ug/kg 200 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Styrene ND ug/kg 500 Acetone ND ug/kg 500	1,2-Dichlorobenzene	ND		ug/kg	200		
Methyl tert butyl ether ND ug/kg 100	1,3-Dichlorobenzene	ND		ug/kg	200		
p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 100 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Styrene ND ug/kg 500 Acetone ND ug/kg 500 Acetone ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Tetrahydrofuran ND ug/kg 200 T	1,4-Dichlorobenzene	ND		ug/kg	200		
o-Xylene ND ug/kg 100 Xylenes, Total ND ug/kg 100 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Acetone ND ug/kg 200 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl tisobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 <td< td=""><td>Methyl tert butyl ether</td><td>ND</td><td></td><td>ug/kg</td><td>100</td><td></td><td></td></td<>	Methyl tert butyl ether	ND		ug/kg	100		
Xylenes, Total ND ug/kg 100 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 250	p/m-Xylene	ND		ug/kg	100		
cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 500 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dibloropropane ND ug/kg 250	o-Xylene	ND		ug/kg	100		
1,2-Dichloroethene, Total ND	Xylenes, Total	ND		ug/kg	100		
Dibromomethane ND ug/kg 200 1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 100 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50	cis-1,2-Dichloroethene	ND		ug/kg	50		
1,2,3-Trichloropropane ND ug/kg 200 Styrene ND ug/kg 100 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Diblromoethane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 <t< td=""><td>1,2-Dichloroethene, Total</td><td>ND</td><td></td><td>ug/kg</td><td>50</td><td></td><td></td></t<>	1,2-Dichloroethene, Total	ND		ug/kg	50		
Styrene ND ug/kg 100 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 1,2-Dibloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 50 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50	Dibromomethane	ND		ug/kg	200		
Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 200 <	1,2,3-Trichloropropane	ND		ug/kg	200		
Acetone ND ug/kg 1800 Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200 </td <td>Styrene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>100</td> <td></td> <td></td>	Styrene	ND		ug/kg	100		
Carbon disulfide ND ug/kg 200 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Dichlorodifluoromethane	ND		ug/kg	500		
Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Acetone	ND		ug/kg	1800		
Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Carbon disulfide	ND		ug/kg	200		
2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Methyl ethyl ketone	ND		ug/kg	500		
Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Methyl isobutyl ketone	ND		ug/kg	500		
Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	2-Hexanone	ND		ug/kg	500		
2,2-Dichloropropane ND ug/kg 250 1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Bromochloromethane	ND		ug/kg	200		
1,2-Dibromoethane ND ug/kg 200 1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Tetrahydrofuran	ND		ug/kg	200		
1,3-Dichloropropane ND ug/kg 200 1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	2,2-Dichloropropane	ND		ug/kg	250		
1,1,1,2-Tetrachloroethane ND ug/kg 50 Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	1,2-Dibromoethane	ND		ug/kg	200		
Bromobenzene ND ug/kg 250 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	1,3-Dichloropropane	ND		ug/kg	200		
n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	1,1,1,2-Tetrachloroethane	ND		ug/kg	50		
sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 200	Bromobenzene	ND		ug/kg	250		
tert-Butylbenzene ND ug/kg 200	n-Butylbenzene	ND		ug/kg	50		
	sec-Butylbenzene	ND		ug/kg	50		
o-Chlorotoluene ND ug/kg 200	tert-Butylbenzene	ND		ug/kg	200		
	o-Chlorotoluene	ND		ug/kg	200		

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/06/17 09:17

Analyst: BN

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics by 8260/503	5 - Westbo	rough Lab	for sample	e(s): 01,03	Batch: WG983	3399-5
p-Chlorotoluene	ND		ug/kg	200		
1,2-Dibromo-3-chloropropane	ND		ug/kg	200		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	200		
1,2,4-Trichlorobenzene	ND		ug/kg	200		
1,3,5-Trimethylbenzene	ND		ug/kg	200		
1,2,4-Trimethylbenzene	ND		ug/kg	200		
Diethyl ether	ND		ug/kg	250		
Diisopropyl Ether	ND		ug/kg	200		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200		
Tertiary-Amyl Methyl Ether	ND		ug/kg	200		
1,4-Dioxane	ND		ug/kg	2000		
2-Chloroethylvinyl ether	ND		ug/kg	1000		
Halothane	ND		ug/kg	2000		
Ethyl Acetate	ND		ug/kg	1000		
Freon-113	ND		ug/kg	1000		
Vinyl acetate	ND		ug/kg	500		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	104		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

meter	LCS %Recovery Quai	LCSD %Recovery Q	%Recovery ual Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035	- Westborough Lab Associated	d sample(s): 01,03 Batch	WG983399-3 WG983	3399-4	
Methylene chloride	94	88	70-130	7	20
1,1-Dichloroethane	102	102	70-130	0	20
Chloroform	100	102	70-130	2	20
Carbon tetrachloride	100	101	70-130	1	20
1,2-Dichloropropane	98	98	70-130	0	20
Dibromochloromethane	90	89	70-130	1	20
1,1,2-Trichloroethane	97	94	70-130	3	20
Tetrachloroethene	94	94	70-130	0	20
Chlorobenzene	92	93	70-130	1	20
Trichlorofluoromethane	99	98	70-130	1	20
1,2-Dichloroethane	99	97	70-130	2	20
1,1,1-Trichloroethane	102	103	70-130	1	20
Bromodichloromethane	94	95	70-130	1	20
trans-1,3-Dichloropropene	96	97	70-130	1	20
cis-1,3-Dichloropropene	91	91	70-130	0	20
1,1-Dichloropropene	101	101	70-130	0	20
Bromoform	82	84	70-130	2	20
1,1,2,2-Tetrachloroethane	92	90	70-130	2	20
Benzene	100	100	70-130	0	20
Toluene	94	95	70-130	1	20
Ethylbenzene	97	98	70-130	1	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

arameter	LCS %Recovery Qual	LCSD %Recovery (%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 -	Westborough Lab Associated	sample(s): 01,03 Batcl	n: WG983399-3 WG9833	399-4	
Chloromethane	101	102	70-130	1	20
Bromomethane	97	94	70-130	3	20
Vinyl chloride	92	93	70-130	1	20
Chloroethane	86	88	70-130	2	20
1,1-Dichloroethene	99	98	70-130	1	20
trans-1,2-Dichloroethene	98	98	70-130	0	20
Trichloroethene	99	100	70-130	1	20
1,2-Dichlorobenzene	88	88	70-130	0	20
1,3-Dichlorobenzene	91	90	70-130	1	20
1,4-Dichlorobenzene	88	88	70-130	0	20
Methyl tert butyl ether	104	104	70-130	0	20
p/m-Xylene	100	99	70-130	1	20
o-Xylene	98	98	70-130	0	20
cis-1,2-Dichloroethene	99	99	70-130	0	20
Dibromomethane	96	96	70-130	0	20
1,2,3-Trichloropropane	93	92	70-130	1	20
Styrene	96	96	70-130	0	20
Dichlorodifluoromethane	92	93	70-130	1	20
Acetone	108	109	70-130	1	20
Carbon disulfide	78	80	70-130	3	20
Methyl ethyl ketone	85	77	70-130	10	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 -	Westborough Lab Associated	sample(s): 01,03 Batc	h: WG983399-3 WG9833	399-4	
Methyl isobutyl ketone	76	81	70-130	6	20
2-Hexanone	71	70	70-130	1	20
Bromochloromethane	102	99	70-130	3	20
Tetrahydrofuran	119	107	70-130	11	20
2,2-Dichloropropane	110	113	70-130	3	20
1,2-Dibromoethane	93	93	70-130	0	20
1,3-Dichloropropane	96	95	70-130	1	20
1,1,1,2-Tetrachloroethane	95	94	70-130	1	20
Bromobenzene	90	89	70-130	1	20
n-Butylbenzene	95	95	70-130	0	20
sec-Butylbenzene	95	94	70-130	1	20
tert-Butylbenzene	94	94	70-130	0	20
o-Chlorotoluene	95	94	70-130	1	20
p-Chlorotoluene	95	94	70-130	1	20
1,2-Dibromo-3-chloropropane	86	85	70-130	1	20
Hexachlorobutadiene	88	87	70-130	1	20
Isopropylbenzene	95	94	70-130	1	20
p-Isopropyltoluene	94	94	70-130	0	20
Naphthalene	78	77	70-130	1	20
n-Propylbenzene	95	94	70-130	1	20
1,2,3-Trichlorobenzene	89	90	70-130	1	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recov / Qual Limits		RPD Qual Limits	
MCP Volatile Organics by 8260/5035 -	Westborough Lab Asso	ciated sample(s): 01,03	Batch: WG983399-3	WG983399-4		
1,2,4-Trichlorobenzene	88	88	70-130	0	20	
1,3,5-Trimethylbenzene	96	95	70-130	1	20	
1,2,4-Trimethylbenzene	97	95	70-130	2	20	
Diethyl ether	91	98	70-130	7	20	
Diisopropyl Ether	104	104	70-130	0	20	
Ethyl-Tert-Butyl-Ether	105	105	70-130	0	20	
Tertiary-Amyl Methyl Ether	108	108	70-130	0	20	
1,4-Dioxane	88	93	70-130	6	20	
2-Chloroethylvinyl ether	98	99	70-130	1	20	
Halothane	100	99	70-130	1	20	
Ethyl Acetate	101	98	70-130	3	20	
Freon-113	96	98	70-130	2	20	
Vinyl acetate	95	95	70-130	0	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	102		100		70-130	
Toluene-d8	100		101		70-130	
4-Bromofluorobenzene	101		102		70-130	
Dibromofluoromethane	104		103		70-130	

PETROLEUM HYDROCARBONS

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

03/10/17

SAMPLE RESULTS

Lab ID: L1706656-01

Client ID: 1700516-B301-S7(10-15")

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/08/17 21:53

Analyst: JM Percent Solids: 89% Date Collected:
Date Received:

03/02/17 23:55

03/03/17

Field Prep: Not Specified

Quality Control Information

Condition of sample received:
Sample Temperature upon receipt:
Were samples received in methanol?
Methanol ratio:

Satisfactory Received on Ice Covering the Soil

1:1.5

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons -	Westborough Lab				
C5-C8 Aliphatics	ND	mg/kg	2.28		1
C9-C12 Aliphatics	ND	mg/kg	2.28		1
C9-C10 Aromatics	ND	mg/kg	2.28		1
C5-C8 Aliphatics, Adjusted	ND	mg/kg	2.28		1
C9-C12 Aliphatics, Adjusted	ND	mg/kg	2.28		1
Benzene	ND	mg/kg	0.091		1
Toluene	ND	mg/kg	0.091		1
Ethylbenzene	ND	mg/kg	0.091		1
p/m-Xylene	ND	mg/kg	0.091		1
o-Xylene	ND	mg/kg	0.091		1
Methyl tert butyl ether	ND	mg/kg	0.046		1
Naphthalene	ND	mg/kg	0.182		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	91		70-130	
2,5-Dibromotoluene-FID	96		70-130	

03/02/17 23:55

Not Specified

EPA 3546

Date Collected:

Extraction Method:

Field Prep:

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706656-01

Client ID: 1700516-B301-S7(10-15") Date Received: 03/03/17

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/05/17 17:56
Analytical Date: 03/07/17 19:00 Cleanup Method1: EPH-04-1

Analytical Date: 03/07/17 19:00 Cleanup Method1: EPH-04-1
Analyst: DV Cleanup Date1: 03/07/17

Percent Solids: 89%

Quality Control Information

Condition of sample received: Sample Temperature upon receipt: Sample Extraction method: Satisfactory Received on Ice

Extracted Per the Method

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbons	s - Westborough La	ab			
C9-C18 Aliphatics	ND	mg/kg	7.38		1
C19-C36 Aliphatics	ND	mg/kg	7.38		1
C11-C22 Aromatics	ND	mg/kg	7.38		1
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.38		1
Naphthalene	ND	mg/kg	0.369		1
2-Methylnaphthalene	ND	mg/kg	0.369		1
Acenaphthylene	ND	mg/kg	0.369		1
Acenaphthene	ND	mg/kg	0.369		1
Fluorene	ND	mg/kg	0.369		1
Phenanthrene	ND	mg/kg	0.369		1
Anthracene	ND	mg/kg	0.369		1
Fluoranthene	ND	mg/kg	0.369		1
Pyrene	ND	mg/kg	0.369		1
Benzo(a)anthracene	ND	mg/kg	0.369		1
Chrysene	ND	mg/kg	0.369		1
Benzo(b)fluoranthene	ND	mg/kg	0.369		1
Benzo(k)fluoranthene	ND	mg/kg	0.369		1
Benzo(a)pyrene	ND	mg/kg	0.369		1
Indeno(1,2,3-cd)Pyrene	ND	mg/kg	0.369		1
Dibenzo(a,h)anthracene	ND	mg/kg	0.369		1
Benzo(ghi)perylene	ND	mg/kg	0.369		1

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706656-01 Date Collected: 03/02/17 23:55

Client ID: 1700516-B301-S7(10-15") Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	59		40-140	
o-Terphenyl	70		40-140	
2-Fluorobiphenyl	74		40-140	
2-Bromonaphthalene	75		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

03/10/17

SAMPLE RESULTS

Lab ID: L1706656-03

Client ID: 1700516-B305-S7(9-13")

Sample Location: BOSTON, MA

Matrix: Soi

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/08/17 22:33

Analyst: JM Percent Solids: 92%

Date Collected:
Date Received:

Field Prep:

03/02/17 21:10 03/03/17

Not Specified

Quality Control Information

Condition of sample received:
Sample Temperature upon receipt:
Were samples received in methanol?
Methanol ratio:

Satisfactory Received on Ice Covering the Soil

1:1.6

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons -	Westborough Lab				
C5-C8 Aliphatics	ND	mg/kg	2.06		1
C9-C12 Aliphatics	ND	mg/kg	2.06		1
C9-C10 Aromatics	ND	mg/kg	2.06		1
C5-C8 Aliphatics, Adjusted	ND	mg/kg	2.06		1
C9-C12 Aliphatics, Adjusted	ND	mg/kg	2.06		1
Benzene	ND	mg/kg	0.082		1
Toluene	ND	mg/kg	0.082		1
Ethylbenzene	ND	mg/kg	0.082		1
p/m-Xylene	ND	mg/kg	0.082		1
o-Xylene	ND	mg/kg	0.082		1
Methyl tert butyl ether	ND	mg/kg	0.041		1
Naphthalene	ND	mg/kg	0.165		1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	89		70-130			
2,5-Dibromotoluene-FID	94		70-130			

Extraction Method:

0.345

0.345

0.345

0.345

--

--

mg/kg

mg/kg

mg/kg

mg/kg

EPA 3546

Lab Number: **Project Name:** TREMONT CROSSING L1706656

Project Number: 1700516 **Report Date:** 03/10/17

SAMPLE RESULTS

Lab ID: L1706656-03

Date Collected: 03/02/17 21:10 Client ID: 1700516-B305-S7(9-13") Date Received: 03/03/17

Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Soil

Analytical Method: 98,EPH-04-1.1 **Extraction Date:** 03/05/17 17:56 Analytical Date: 03/07/17 19:31 Cleanup Method1: EPH-04-1

Analyst: DV Cleanup Date1: 03/07/17

Percent Solids: 92%

Quality Control Information

Condition of sample received: Satisfactory Received on Ice Sample Temperature upon receipt: Extracted Per the Method Sample Extraction method:

Qualifier Units MDL **Dilution Factor Parameter** Result RL **Extractable Petroleum Hydrocarbons - Westborough Lab** C9-C18 Aliphatics ND mg/kg 6.90 --1 ND 1 C19-C36 Aliphatics mg/kg 6.90 ND C11-C22 Aromatics mg/kg 6.90 1 ND C11-C22 Aromatics, Adjusted mg/kg 6.90 1 --Naphthalene ND mg/kg 0.345 1 --0.345 ND 1 2-Methylnaphthalene mg/kg Acenaphthylene ND mg/kg 0.345 1 --ND 1 Acenaphthene mg/kg 0.345 --Fluorene ND 0.345 1 mg/kg Phenanthrene ND 0.345 1 mg/kg --Anthracene ND mg/kg 0.345 1 Fluoranthene ND 0.345 1 mg/kg --Pyrene ND mg/kg 0.345 1 Benzo(a)anthracene ND 0.345 1 mg/kg ND Chrysene mg/kg 0.345 1 --1 Benzo(b)fluoranthene ND mg/kg 0.345 ND Benzo(k)fluoranthene mg/kg 0.345 1

ND

ND

ND

ND

1

1

1

1

Benzo(a)pyrene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: L1706656-03 Date Collected: 03/02/17 21:10

Client ID: 1700516-B305-S7(9-13") Date Received: 03/03/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	54		40-140	
o-Terphenyl	68		40-140	
2-Fluorobiphenyl	74		40-140	
2-Bromonaphthalene	76		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

03/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 98,EPH-04-1.1 03/07/17 17:25

Analyst:

DV

Extraction Method: EPA 3546
Extraction Date: 03/05/17 17:56

Cleanup Method: EPH-04-1 Cleanup Date: 03/07/17

Parameter	Result	Qualifier	Units	RL	MDL	
Extractable Petroleum Hydrocarbo	ons - Westbo	rough Lab f	or sample	(s): 01,03	Batch: WG983035-	1
C9-C18 Aliphatics	ND		mg/kg	6.51		
C19-C36 Aliphatics	ND		mg/kg	6.51		
C11-C22 Aromatics	ND		mg/kg	6.51		
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.51		
Naphthalene	ND		mg/kg	0.326		
2-Methylnaphthalene	ND		mg/kg	0.326		
Acenaphthylene	ND		mg/kg	0.326		
Acenaphthene	ND		mg/kg	0.326		
Fluorene	ND		mg/kg	0.326		
Phenanthrene	ND		mg/kg	0.326		
Anthracene	ND		mg/kg	0.326		
Fluoranthene	ND		mg/kg	0.326		
Pyrene	ND		mg/kg	0.326		
Benzo(a)anthracene	ND		mg/kg	0.326		
Chrysene	ND		mg/kg	0.326		
Benzo(b)fluoranthene	ND		mg/kg	0.326		
Benzo(k)fluoranthene	ND		mg/kg	0.326		
Benzo(a)pyrene	ND		mg/kg	0.326		
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.326		
Dibenzo(a,h)anthracene	ND		mg/kg	0.326		
Benzo(ghi)perylene	ND		mg/kg	0.326		

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
Chloro-Octadecane	57		40-140
o-Terphenyl	71		40-140
2-Fluorobiphenyl	86		40-140
2-Bromonaphthalene	88		40-140

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/08/17 13:33

Analyst: JM

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons - V	Vestboroug	h Lab for s	ample(s):	01,03	Batch:	WG984121-3
C5-C8 Aliphatics	ND		mg/kg	2.67		
C9-C12 Aliphatics	ND		mg/kg	2.67		
C9-C10 Aromatics	ND		mg/kg	2.67		
C5-C8 Aliphatics, Adjusted	ND		mg/kg	2.67		
C9-C12 Aliphatics, Adjusted	ND		mg/kg	2.67		
Benzene	ND		mg/kg	0.107		
Toluene	ND		mg/kg	0.107		
Ethylbenzene	ND		mg/kg	0.107		
p/m-Xylene	ND		mg/kg	0.107		
o-Xylene	ND		mg/kg	0.107		
Methyl tert butyl ether	ND		mg/kg	0.053		
Naphthalene	ND		mg/kg	0.213		

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	92		70-130		
2,5-Dibromotoluene-FID	98		70-130		

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706656

Report Date: 03/10/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - Wes	stborough Lab Ass	ociated sam	ple(s): 01,03 Batc	h: WG983035-2 WG983	035-3	
C9-C18 Aliphatics	72		56	40-140	25	25
C19-C36 Aliphatics	54		64	40-140	17	25
C11-C22 Aromatics	91		83	40-140	9	25
Naphthalene	66		64	40-140	3	25
2-Methylnaphthalene	68		65	40-140	5	25
Acenaphthylene	72		69	40-140	4	25
Acenaphthene	74		71	40-140	4	25
Fluorene	80		75	40-140	6	25
Phenanthrene	87		78	40-140	11	25
Anthracene	93		84	40-140	10	25
Fluoranthene	90		80	40-140	12	25
Pyrene	90		80	40-140	12	25
Benzo(a)anthracene	87		77	40-140	12	25
Chrysene	90		80	40-140	12	25
Benzo(b)fluoranthene	86		77	40-140	11	25
Benzo(k)fluoranthene	90		86	40-140	5	25
Benzo(a)pyrene	82		73	40-140	12	25
Indeno(1,2,3-cd)Pyrene	85		76	40-140	11	25
Dibenzo(a,h)anthracene	87		78	40-140	11	25
Benzo(ghi)perylene	79		71	40-140	11	25
Nonane (C9)	57		43	30-140	28	Q 25

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

03/10/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
xtractable Petroleum Hydrocarbons - We	estborough Lab Ass	ociated samp	ole(s): 01,03 E	Batch: WG	983035-2 WG983	035-3		
Decane (C10)	64		48		40-140	29	Q	25
Dodecane (C12)	66		50		40-140	28	Q	25
Tetradecane (C14)	67		52		40-140	25		25
Hexadecane (C16)	73		55		40-140	28	Q	25
Octadecane (C18)	80		58		40-140	32	Q	25
Nonadecane (C19)	80		58		40-140	32	Q	25
Eicosane (C20)	81		58		40-140	33	Q	25
Docosane (C22)	81		59		40-140	31	Q	25
Tetracosane (C24)	81		59		40-140	31	Q	25
Hexacosane (C26)	81		58		40-140	33	Q	25
Octacosane (C28)	80		58		40-140	32	Q	25
Triacontane (C30)	79		58		40-140	31	Q	25
Hexatriacontane (C36)	78		57		40-140	31	Q	25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Chloro-Octadecane	71		56		40-140
o-Terphenyl	98		90		40-140
2-Fluorobiphenyl	89		80		40-140
2-Bromonaphthalene	93		83		40-140
% Naphthalene Breakthrough	0		0		
% 2-Methylnaphthalene Breakthrough	0		0		

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

03/10/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Petroleum Hydrocarbons - Westbo	rough Lab Associa	ated sample(s)	: 01,03 Batcl	n: WG9841	21-1 WG984121	-2	
C5-C8 Aliphatics	104		104		70-130	0	25
C9-C12 Aliphatics	102		102		70-130	0	25
C9-C10 Aromatics	97		95		70-130	2	25
Benzene	96		96		70-130	0	25
Toluene	97		96		70-130	1	25
Ethylbenzene	96		96		70-130	1	25
p/m-Xylene	97		97		70-130	1	25
o-Xylene	97		96		70-130	1	25
Methyl tert butyl ether	92		96		70-130	4	25
Naphthalene	88		91		70-130	3	25
1,2,4-Trimethylbenzene	97		95		70-130	2	25
Pentane	101		101		70-130	0	25
2-Methylpentane	102		103		70-130	1	25
2,2,4-Trimethylpentane	106		106		70-130	0	25
n-Nonane	103		104		30-130	1	25
n-Decane	101		101		70-130	0	25
n-Butylcyclohexane	102		103		70-130	1	25

Project Name: TREMONT CROSSING

Lab Number:

L1706656

Project Number: 1700516

Report Date:

03/10/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01,03 Batch: WG984121-1 WG984121-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	93		95		70-130	
2,5-Dibromotoluene-FID	95		99		70-130	

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/02/17 00:30

Client ID: 1700516-B301-COMP (0-3') Date Received: 03/03/17

Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 97,8082A Extraction Date: 03/06/17 17:34
Analytical Date: 03/07/17 02:55 Cleanup Method: EPA 3665A

Analyst: JW Cleanup Date: 03/06/17
Percent Solids: 86% Cleanup Method: EPA 3660B

Cleanup Date: 03/07/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - Wes	stborough Lab						
						·	
Aroclor 1016	ND		ug/kg	38.0		1	Α
Aroclor 1221	ND		ug/kg	38.0		1	Α
Aroclor 1232	ND		ug/kg	38.0		1	Α
Aroclor 1242	ND		ug/kg	38.0		1	Α
Aroclor 1248	ND		ug/kg	38.0		1	Α
Aroclor 1254	ND		ug/kg	38.0		1	Α
Aroclor 1260	ND		ug/kg	38.0		1	Α
Aroclor 1262	ND		ug/kg	38.0		1	Α
Aroclor 1268	ND		ug/kg	38.0		1	Α
PCBs, Total	ND		ug/kg	38.0		1	Α

Surrogate	% Recovery Q	Acceptance ualifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	56	30-150	Α
Decachlorobiphenyl	66	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	51	30-150	В
Decachlorobiphenyl	75	30-150	В

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/10/17

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8082A Analytical Date: 03/07/17 00:41

Analyst: HT

Extraction Method: EPA 3546 Extraction Date: 03/06/17 17:34 Cleanup Method: EPA 3665A Cleanup Date: 03/06/17 Cleanup Method: EPA 3660B Cleanup Date: 03/07/17

Parameter	Result	Qualifier	Units	RL	MDL	Column
MCP Polychlorinated Biphenyls -	- Westborough	Lab for sar	nple(s):	02 Batch:	WG983266-1	
Aroclor 1016	ND		ug/kg	31.5		Α
Aroclor 1221	ND		ug/kg	31.5		Α
Aroclor 1232	ND		ug/kg	31.5		Α
Aroclor 1242	ND		ug/kg	31.5		Α
Aroclor 1248	ND		ug/kg	31.5		Α
Aroclor 1254	ND		ug/kg	31.5		Α
Aroclor 1260	ND		ug/kg	31.5		Α
Aroclor 1262	ND		ug/kg	31.5		Α
Aroclor 1268	ND		ug/kg	31.5		Α
PCBs, Total	ND		ug/kg	31.5		Α

	Acceptance								
Surrogate	%Recovery	Qualifier	Criteria	Column					
2,4,5,6-Tetrachloro-m-xylene	81		30-150	Α					
Decachlorobiphenyl	72		30-150	Α					
2,4,5,6-Tetrachloro-m-xylene	91		30-150	В					
Decachlorobiphenyl	69		30-150	В					

Project Name:

TREMONT CROSSING

Project Number: 1700516 Lab Number:

L1706656

Report Date:

03/10/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
MCP Polychlorinated Biphenyls - West	borough Lab Associate	ed sample(s):	02 Batch:	WG983266-2	WG983266-3				
Aroclor 1016	74		80		40-140	8		30	Α
Aroclor 1260	86		94		40-140	9		30	Α

Surrogate	LCS %Recovery 0	LCSD Qual %Recovery Qua	Acceptance al Criteria Column
2,4,5,6-Tetrachloro-m-xylene	88	94	30-150 A
Decachlorobiphenyl	75	81	30-150 A
2,4,5,6-Tetrachloro-m-xylene	93	99	30-150 B
Decachlorobiphenyl	70	78	30-150 B

INORGANICS & MISCELLANEOUS

Project Name: TREMONT CROSSING

Project Number: 1700516 Lab Number:

L1706656

Report Date:

03/10/17

SAMPLE RESULTS

Lab ID: L1706656-01

1700516-B301-S7(10-15") Client ID:

BOSTON, MA Sample Location:

Matrix: Soil Date Collected:

03/02/17 23:55

Date Received:

03/03/17

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	89.4		%	0.100	NA	1	-	03/04/17 17:08	121,2540G	SB

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706656

Report Date:

03/10/17

SAMPLE RESULTS

Lab ID: L1706656-02

Client ID: 1700516-B301-COMP (0-3')

Sample Location: BOSTON, MA

Matrix: Soil

Date Collected:

03/02/17 00:30

Date Received:

03/03/17

Field Prep:

Not Specified

Dilution Date Date Analytical
Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Analyst

Lab Number:

Project Name: TREMONT CROSSING

L1706656

Project Number: Report Date: 03/10/17 1700516

SAMPLE RESULTS

Lab ID: Date Collected: L1706656-03 03/02/17 21:10 1700516-B305-S7(9-13")

Client ID: Date Received: 03/03/17 BOSTON, MA Not Specified Sample Location: Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lat)								
Solide Total	02.3		0/_	0.100	NΔ	1		03/04/17 17:08	121 25/00	SB

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1706656

Report Date:

03/10/17

Parameter	Native Sam	ple Duplic	ate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab S7(10-15")	Associated sample(s): 01-03	QC Batch ID: WG9	982925-1 QC	Sample: L17	706656-01	Client ID:	1700516-B301-
Solids, Total	89.4		90.6	%	1		20

Project Name:

Project Number:

TREMONT CROSSING

1700516

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	Container Information								
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)		
L1706656-01A	Vial MeOH preserved	Α	N/A	5.1	Υ	Absent	VPH-DELUX-10(28)		
L1706656-01B	Glass 120ml/4oz unpreserved	Α	N/A	5.1	Υ	Absent	TS(7),EPH-DELUX-10(14)		
L1706656-01C	Vial MeOH preserved	Α	N/A	5.1	Υ	Absent	MCP-8260H-10(14)		
L1706656-02A	Glass 120ml/4oz unpreserved	Α	N/A	5.1	Υ	Absent	MCP-8082-10(365),TS(7)		
L1706656-03A	Vial MeOH preserved	Α	N/A	5.1	Υ	Absent	VPH-DELUX-10(28)		
L1706656-03B	Glass 120ml/4oz unpreserved	Α	N/A	5.1	Υ	Absent	TS(7),EPH-DELUX-10(14)		
L1706656-03C	Vial MeOH preserved	Α	N/A	5.1	Υ	Absent	MCP-8260H-10(14)		

Project Name: TREMONT CROSSING Lab Number: L1706656

Project Number: 1700516 Report Date: 03/10/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSINGLab Number:L1706656Project Number:1700516Report Date:03/10/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:TREMONT CROSSINGLab Number:L1706656Project Number:1700516Report Date:03/10/17

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Chain-of-Custody Reco	Chain-of-Custody Record			Laboratory: ALPHA				Laboratory Job # L1706656							
GEI Consultants	Project Na Project Nu	nhar:	ment iro 1700516				Project Location: Boston, M4 Project Manager: Cathy Johnson					Page _	_ of <u>\</u>		
PH: 781.721.4000 FX: 781.721.4073 Send EDD to: labdata@geicor			Englehart nsultants.com			Macch	HOOM	NOWE	J. N. J.	rvative lysis			Sample F Sample Filte	s Field	
If Yes, Are MCP Analytical Methods Requ Are Drinking Water Samples Submitted? If Yes, Have Drinking Water Sampling Re Lab Sample Number	uired?		NO t?	YES YES YES Matrix	NO NO NO. of Bottles	NA NA NA Sampler(s) Initials	Voce	МДЛ	EPH	PCBS	Solids			7	Shipped Ice
1700576-B301-S7() 1700576-B301-Com 1700576-B305-S7()	np (0-3')	3 Z 17 3 Z 17 3 Z 17	2355 0030 211 Ø	\$0 \$0 \$0	3 1 3	JTN JTN	*	*	*	<i>></i> -	×				
1. Relinquished by: (signature) 2. OS Simple Frida	Possible Ti	me: 2221 me: 135	Received by: (1. GE\ Received by: (2. Perceived by: (signature) Samp signature)	, T	od 1 MCP	10-	(Bu rmal _2 Day Day _3	<u></u>	Othe 7-Da 3-Day	s): er y	turna notif that	around : fy the lal the TAT	mitting rush samples, you boratory to confice an be ach	onfirm
3. (Signature) Da	3/3/17 Tid	1135	Received by: (s	Mech		11:35 3/17 2		- *							

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1706656 : TREMONT CROSSING **Project Number Project Name** : 1700516 : WG983399-5 Lab File ID : V10170306A06

Lab Sample ID Instrument ID : VOA110

Analysis Date Matrix : SOIL : 03/06/17 09:17

Client Sample No.	Lab Sample ID	Analysis Date
WG983399-3LCS	WG983399-3	03/06/17 08:00
WG983399-4LCSD	WG983399-4	03/06/17 08:26
1700516-B301-S7(10-15")	L1706656-01	03/06/17 10:34
1700516-B305-S7(9-13')	L1706656-03	03/06/17 11:00

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706656 **Project Name** : TREMONT CROSSING Project Number : 1700516

Instrument ID Calibration Date : VOA110 : 03/06/17 08:00

Init. Calib. Date(s) : 02/21/17 Lab File ID : V10170306A03 02/21/17 Sample No : WG983399-2 Init. Calib. Times 19:20 : 16:17

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(m
Fluorobenzene	1	1	-	0	20	95	0
Dichlorodifluoromethane	0.351	0.321	-	8.5	20	90	0
Chloromethane	0.269	0.272	-	-1.1	20	97	0
Vinyl chloride	0.267	0.247	-	7.5	20	90	0
Bromomethane	0.202	0.196	-	3	20	99	0
Chloroethane	0.168	0.145	-	13.7	20	82	.04
Trichlorofluoromethane	0.445	0.441	- \	0.9	20	90	.04
Ethyl ether	0.158	0.144	-	8.9	20	90	0
1,1-Dichloroethene	0.221	0.218	-	1.4	20	98	0
Carbon disulfide	20	15.623	-	21.9*	20	79	.02
Freon-113	0.206	0.197	-	4.4	20	92	.02
Acrolein	0.046	0.043		6.5	20	98	0
Methylene chloride	20	18.814	-	5.9	20	95	0
Acetone	0.056	0.061	-	-8.9	20	108	0
trans-1,2-Dichloroethene	0.25	0.244	-	2.4	20	95	0
Methyl acetate	0.153	0.151	-	1.3	20	98	0
Methyl tert-butyl ether	0.676	0.701		-3.7	20	104	0
tert-Butyl alcohol	0.018	0.019		-5.6	20	107	01
Diisopropyl ether	0.758	0.789		-4.1	20	99	0
1,1-Dichloroethane	0.425	0.435	•	-2.4	20	97	0
Halothane	0.17	0.171	-	-0.6	20	97	0
Acrylonitrile	20	19.401	-	3	20	97	0
Ethyl tert-butyl ether	0.616	0.65	-	-5.5	20	103	0
Vinyl acetate	20	19.028		4.9	20	100	0
cis-1,2-Dichloroethene	0.269	0.267	-	0.7	20	95	0
2,2-Dichloropropane	0.313	0.346	-	-10.5	20	112	0
Bromochloromethane	0.128	0.131	-	-2.3	20	96	0
Cyclohexane	0.342	0.336	<u> </u>	1.8	20	95	0
Chloroform	0.457	0.458	<u> </u>	-0.2	20	94	0
	0.437	0.456	-	-0.2	20	97	0
Ethyl acetate		0.206			20		
Carbon tetrachloride	0.32	0.32	-	0	20	100	0
Tetrahydrofuran	0.072		-	-19.4		111	0
Dibromofluoromethane	0.256	0.267	-	-4.3	20	98	0
1,1,1-Trichloroethane	0.393	0.403	-	-2.5	20	99	0
2-Butanone	0.09	0.077	-	14.4	20	90	.01
1,1-Dichloropropene	0.31	0.313	-	-1	20	95	0
Benzene	0.996	0.997	-	-0.1	20	95	0
tert-Amyl methyl ether	0.54	0.582	-	-7.8	20	109	0
1,2-Dichloroethane-d4	0.27	0.276	•	-2.2	20	97	0
1,2-Dichloroethane	0.339	0.337	-	0.6	20	94	0
Methyl cyclohexane	0.35	0.329	-	6	20	96	0
Trichloroethene	0.262	0.26	-	0.8	20	95	0
Dibromomethane	0.151	0.145	-	4	20	93	0
1,2-Dichloropropane	0.232	0.228	-	1.7	20	94	0
2-Chloroethyl vinyl ether	20	19.505	-	2.5	20	120	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706656
Project Name : TREMONT CROSSING Project Number : 1700516
Instrument ID : VOA110 Calibration Date : 03/06/17 08:00

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(m
Bromodichloromethane	0.337	0.316	-	6.2	20	92	0
1,4-Dioxane	0.00229	0.00201	-	12.2	20	88	0
cis-1,3-Dichloropropene	20	18.229	-	8.9	20	99	0
Chlorobenzene-d5	1	1	-	0	20	100	0
Toluene-d8	1.233	1.229	-	0.3	20	98	0
Toluene	0.846	0.799	-	5.6	20	95	0
4-Methyl-2-pentanone	0.089	0.067	-	24.7*	20	91	0
Tetrachloroethene	0.33	0.31	-	6.1	20	96	0
trans-1,3-Dichloropropene	0.402	0.384	-	4.5	20	100	0
Ethyl methacrylate	20	15.315	-	23.4*	20	94	0
1,1,2-Trichloroethane	0.243	0.235	-	3.3	20	96	0
Chlorodibromomethane	0.324	0.292	•	9.9	20	94	0
1,3-Dichloropropane	0.472	0.452	-	4.2	20	96	0
1,2-Dibromoethane	0.267	0.248	-	7.1	20	94	0
2-Hexanone	20	14.198	-	29*	20	98	0
Chlorobenzene	0.965	0.891	-	7.7	20	93	0
Ethylbenzene	1.513	1.469		2.9	20	94	0
1,1,1,2-Tetrachloroethane	0.334	0.318	-	4.8	20	96	0
p/m Xylene	0.58	0.579	-	0.2	20	94	0
o Xylene	0.54	0.53	-	1.9	20	94	0
Styrene	0.952	0.911	-	4.3	20	90	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	101	0
Bromoform	0.396	0.327	-	17.4	20	91	0
Isopropylbenzene	2.879	2.728	-	5.2	20	95	0
4-Bromofluorobenzene	0.867	0.878	-	-1.3	20	104	0
Bromobenzene	0.743	0.671	-	9.7	20	94	0
n-Propylbenzene	3.513	3.34	-	4.9	20	95	0
1,4-Dichlorobutane	0.894	0.87		2.7	20	99	0
1,1,2,2-Tetrachloroethane	0.714	0.66		7.6	20	96	0
4-Ethyltoluene	2.879	2.741		4.8	20	93	0
2-Chlorotoluene	2.146	2.045		4.7	20	93	0
1,3,5-Trimethylbenzene	2.51	2.408		4.1	20	93	0
1,2,3-Trichloropropane	0.577	0.537		6.9	20	97	0
trans-1,4-Dichloro-2-buten	0.175	0.162	<u> </u>	7.4	20	95	0
4-Chlorotoluene	2.122	2.022		4.7	20	95	0
tert-Butylbenzene	2.051	1.918			20	94	0
•			-	6.5			
1,2,4-Trimethylbenzene	2.467	2.386	-	3.3	20	94	0
sec-Butylbenzene	3.173	3.016	-	4.9	20	94	0
p-Isopropyltoluene	2.626	2.476	-	5.7	20	94	0
1,3-Dichlorobenzene	1.484	1.352	-	8.9	20	92	0
1,4-Dichlorobenzene	1.534	1.352	-	11.9	20	91	0
p-Diethylbenzene	1.524	1.4	-	8.1	20	92	0
n-Butylbenzene	2.502	2.38	-	4.9	20	93	0
1,2-Dichlorobenzene	1.392	1.226	-	11.9	20	91	0
1,2,4,5-Tetramethylbenzene	20	16.004	-	20	20	90	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706656
Project Name : TREMONT CROSSING Project Number : 1700516
Instrument ID : VOA110 Calibration Date : 03/06/17 08:00

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dibromo-3-chloropropan	0.09	0.077	-	14.4	20	94	0
1,3,5-Trichlorobenzene	1.022	0.91	-	11	20	90	0
Hexachlorobutadiene	0.493	0.435	-	11.8	20	96	0
1,2,4-Trichlorobenzene	0.876	0.768	-	12.3	20	91	0
Naphthalene	20	15.61	-	22*	20	89	0
1,2,3-Trichlorobenzene	0.839	0.744	-	11.3	20	92	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1706855

Client: GEI Consultants

400 Unicorn Park Drive

Woburn, MA 01801

ATTN: Cathy Johnson Phone: (781) 721-4000

Project Name: TREMONT CROSSING

Project Number: 1700516

Report Date: 03/13/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TREMONT CROSSING

Project Number: 1700516

 Lab Number:
 L1706855

 Report Date:
 03/13/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1706855-01	1700516-B306-S7(8-14")	SOIL	BOSTON, MA	03/03/17 20:50	03/06/17

Project Name: TREMONT CROSSING Lab Number: L1706855

Project Number: 1700516 Report Date: 03/13/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status								
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO							
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO							
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES							

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: TREMONT CROSSING Lab Number: L1706855

Project Number: 1700516 Report Date: 03/13/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: TREMONT CROSSING Lab Number: L1706855

Project Number: 1700516 Report Date: 03/13/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question G:

L1706855-01: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The initial calibration, associated with L1706855-01, did not meet the method required minimum response factor on the lowest calibration standard for acetone (0.0788), 2-butanone (0.0798), 4-methyl-2-pentanone (0.0579), and 1,4-dioxane (0.0021), as well as the average response factor for acetone, 2-butanone, 4-methyl-2-pentanone, and 1,4-dioxane.

The continuing calibration standard, associated with L1706855-01, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/13/17

Melissa Cripps Melissa Cripps

Serial_No:03131713:36

Project Name: TREMONT CROSSING

Project Number: 1700516

SAMPLE RESULTS

Lab Number: L1706855

Report Date: 03/13/17

Lab ID: L1706855-01

1700516-B306-S7(8-14") Client ID:

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 03/09/17 11:35

Analyst: JC 87% Percent Solids:

Date Collected: 03/03/17 20:50

Date Received: 03/06/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 5035 Hig	gh - Westborough Lat	0				
Methylene chloride	ND		ug/kg	490		1
1,1-Dichloroethane	ND		ug/kg	74		1
Chloroform	ND		ug/kg	74		1
Carbon tetrachloride	ND		ug/kg	49		1
1,2-Dichloropropane	ND		ug/kg	170		1
Dibromochloromethane	ND		ug/kg	49		1
1,1,2-Trichloroethane	ND		ug/kg	74		1
Tetrachloroethene	ND		ug/kg	49		1
Chlorobenzene	ND		ug/kg	49		1
Trichlorofluoromethane	ND		ug/kg	200		1
1,2-Dichloroethane	ND		ug/kg	49		1
1,1,1-Trichloroethane	ND		ug/kg	49		1
Bromodichloromethane	ND		ug/kg	49		1
trans-1,3-Dichloropropene	ND		ug/kg	49		1
cis-1,3-Dichloropropene	ND		ug/kg	49		1
1,3-Dichloropropene, Total	ND		ug/kg	49		1
1,1-Dichloropropene	ND		ug/kg	200		1
Bromoform	ND		ug/kg	200		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	49		1
Benzene	ND		ug/kg	49		1
Toluene	ND		ug/kg	74		1
Ethylbenzene	ND		ug/kg	49		1
Chloromethane	ND		ug/kg	200		1
Bromomethane	ND		ug/kg	98		1
Vinyl chloride	ND		ug/kg	98		1
Chloroethane	ND		ug/kg	98		1
1,1-Dichloroethene	ND		ug/kg	49		1
trans-1,2-Dichloroethene	ND		ug/kg	74		1
Trichloroethene	63		ug/kg	49		1
1,2-Dichlorobenzene	ND		ug/kg	200		1

Serial_No:03131713:36

Project Name: TREMONT CROSSING Lab Number: L1706855

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706855-01 Date Collected: 03/03/17 20:50

Client ID: 1700516-B306-S7(8-14") Date Received: 03/06/17
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Location:	BOSTON, MA				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organ	nics by 5035 High - V	Vestborough La	b				
1,3-Dichlorobenzene		ND		ug/kg	200		1
1,4-Dichlorobenzene		ND		ug/kg	200		1
Methyl tert butyl ether		ND		ug/kg	98		1
p/m-Xylene		ND		ug/kg	98		1
o-Xylene		ND		ug/kg	98		1
Xylenes, Total		ND		ug/kg	98		1
cis-1,2-Dichloroethene		ND		ug/kg	49		1
1,2-Dichloroethene, Total		ND		ug/kg	49		1
Dibromomethane		ND		ug/kg	200		1
1,2,3-Trichloropropane		ND		ug/kg	200		1
Styrene		ND		ug/kg	98		1
Dichlorodifluoromethane		ND		ug/kg	490		1
Acetone		ND		ug/kg	1800		1
Carbon disulfide		ND		ug/kg	200		1
Methyl ethyl ketone		ND		ug/kg	490		1
Methyl isobutyl ketone		ND		ug/kg	490		1
2-Hexanone		ND		ug/kg	490		1
Bromochloromethane		ND		ug/kg	200		1
Tetrahydrofuran		ND		ug/kg	200		1
2,2-Dichloropropane		ND		ug/kg	240		1
1,2-Dibromoethane		ND		ug/kg	200		1
1,3-Dichloropropane		ND		ug/kg	200		1
1,1,1,2-Tetrachloroethane		ND		ug/kg	49		1
Bromobenzene		ND		ug/kg	240		1
n-Butylbenzene		ND		ug/kg	49		1
sec-Butylbenzene		ND		ug/kg	49		1
tert-Butylbenzene		ND		ug/kg	200		1
o-Chlorotoluene		ND		ug/kg	200		1
p-Chlorotoluene		ND		ug/kg	200		1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	200		1
Hexachlorobutadiene		ND		ug/kg	200		1
Isopropylbenzene		ND		ug/kg	49		1
p-Isopropyltoluene		ND		ug/kg	49		1
Naphthalene		ND		ug/kg	200		1
n-Propylbenzene		ND		ug/kg	49		1
1,2,3-Trichlorobenzene		ND		ug/kg	200		1
1,2,4-Trichlorobenzene		ND		ug/kg	200		1
1,3,5-Trimethylbenzene		ND		ug/kg	200		1
1,2,4-Trimethylbenzene		ND		ug/kg	200		1

Serial_No:03131713:36

Project Name: TREMONT CROSSING Lab Number: L1706855

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706855-01 Date Collected: 03/03/17 20:50

Client ID: 1700516-B306-S7(8-14") Date Received: 03/06/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics by 5035 H	igh - Westborough Lab						
Diethyl ether	ND		ug/kg	240		1	
Diisopropyl Ether	ND		ug/kg	200		1	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200		1	
Tertiary-Amyl Methyl Ether	ND		ug/kg	200		1	
1,4-Dioxane	ND		ug/kg	2000		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	100	70-130
Dibromofluoromethane	93	70-130

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/09/17 08:33

Analyst: MV

arameter	Result	Qualifier	Units	RL	MDL
MCP Volatile Organics by 8260/50	035 - Westbo	rough Lab	for sample	(s): 01	Batch: WG984130-10
Methylene chloride	ND		ug/kg	500	
1,1-Dichloroethane	ND		ug/kg	75	
Chloroform	ND		ug/kg	75	
Carbon tetrachloride	ND		ug/kg	50	
1,2-Dichloropropane	ND		ug/kg	180	
Dibromochloromethane	ND		ug/kg	50	
1,1,2-Trichloroethane	ND		ug/kg	75	
Tetrachloroethene	ND		ug/kg	50	
Chlorobenzene	ND		ug/kg	50	
Trichlorofluoromethane	ND		ug/kg	200	
1,2-Dichloroethane	ND		ug/kg	50	
1,1,1-Trichloroethane	ND		ug/kg	50	
Bromodichloromethane	ND		ug/kg	50	
trans-1,3-Dichloropropene	ND		ug/kg	50	
cis-1,3-Dichloropropene	ND		ug/kg	50	
1,3-Dichloropropene, Total	ND		ug/kg	50	
1,1-Dichloropropene	ND		ug/kg	200	
Bromoform	ND		ug/kg	200	
1,1,2,2-Tetrachloroethane	ND		ug/kg	50	
Benzene	ND		ug/kg	50	
Toluene	ND		ug/kg	75	
Ethylbenzene	ND		ug/kg	50	
Chloromethane	ND		ug/kg	200	
Bromomethane	ND		ug/kg	100	
Vinyl chloride	ND		ug/kg	100	
Chloroethane	ND		ug/kg	100	
1,1-Dichloroethene	ND		ug/kg	50	
trans-1,2-Dichloroethene	ND		ug/kg	75	
Trichloroethene	ND		ug/kg	50	

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/09/17 08:33

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics by 8260/503	5 - Westbo	rough Lab fo	or sample	e(s): 01 Ba	atch: WG98413	30-10
1,2-Dichlorobenzene	ND		ug/kg	200		
1,3-Dichlorobenzene	ND		ug/kg	200		
1,4-Dichlorobenzene	ND		ug/kg	200		
Methyl tert butyl ether	ND		ug/kg	100		
p/m-Xylene	ND		ug/kg	100		
o-Xylene	ND		ug/kg	100		
Xylenes, Total	ND		ug/kg	100		
cis-1,2-Dichloroethene	ND		ug/kg	50		
1,2-Dichloroethene, Total	ND		ug/kg	50		
Dibromomethane	ND		ug/kg	200		
1,2,3-Trichloropropane	ND		ug/kg	200		
Styrene	ND		ug/kg	100		
Dichlorodifluoromethane	ND		ug/kg	500		
Acetone	ND		ug/kg	1800		
Carbon disulfide	ND		ug/kg	200		
Methyl ethyl ketone	ND		ug/kg	500		
Methyl isobutyl ketone	ND		ug/kg	500		
2-Hexanone	ND		ug/kg	500		
Bromochloromethane	ND		ug/kg	200		
Tetrahydrofuran	ND		ug/kg	200		
2,2-Dichloropropane	ND		ug/kg	250		
1,2-Dibromoethane	ND		ug/kg	200		
1,3-Dichloropropane	ND		ug/kg	200		
1,1,1,2-Tetrachloroethane	ND		ug/kg	50		
Bromobenzene	ND		ug/kg	250		
n-Butylbenzene	ND		ug/kg	50		
sec-Butylbenzene	ND		ug/kg	50		
tert-Butylbenzene	ND		ug/kg	200		
o-Chlorotoluene	ND		ug/kg	200		

Project Name: TREMONT CROSSING Lab Number:

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/09/17 08:33

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics by 8260/	5035 - Westbo	rough Lab f	or sample	e(s): 01 Bat	ch: WG98413	0-10
p-Chlorotoluene	ND		ug/kg	200		
1,2-Dibromo-3-chloropropane	ND		ug/kg	200		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	200		
1,2,4-Trichlorobenzene	ND		ug/kg	200		
1,3,5-Trimethylbenzene	ND		ug/kg	200		
1,2,4-Trimethylbenzene	ND		ug/kg	200		
Diethyl ether	ND		ug/kg	250		
Diisopropyl Ether	ND		ug/kg	200		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200		
Tertiary-Amyl Methyl Ether	ND		ug/kg	200		
1,4-Dioxane	ND		ug/kg	2000		
2-Chloroethylvinyl ether	ND		ug/kg	1000		
Halothane	ND		ug/kg	2000		
Ethyl Acetate	ND		ug/kg	1000		
Freon-113	ND		ug/kg	1000		
Vinyl acetate	ND		ug/kg	500		

0	0/ 🗖		Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	101		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	100		70-130

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706855

Report Date: 03/13/17

Parameter	LCS %Recovery Qua	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - We	estborough Lab Associated	d sample(s): 01 Batch:	WG984130-8 WG984130-9		
Methylene chloride	96	88	70-130	9	20
1,1-Dichloroethane	101	100	70-130	1	20
Chloroform	96	96	70-130	0	20
Carbon tetrachloride	100	99	70-130	1	20
1,2-Dichloropropane	94	95	70-130	1	20
Dibromochloromethane	83	83	70-130	0	20
1,1,2-Trichloroethane	87	87	70-130	0	20
Tetrachloroethene	91	91	70-130	0	20
Chlorobenzene	87	88	70-130	1	20
Trichlorofluoromethane	96	94	70-130	2	20
1,2-Dichloroethane	93	93	70-130	0	20
1,1,1-Trichloroethane	101	100	70-130	1	20
Bromodichloromethane	89	88	70-130	1	20
trans-1,3-Dichloropropene	90	92	70-130	2	20
cis-1,3-Dichloropropene	87	88	70-130	1	20
1,1-Dichloropropene	101	100	70-130	1	20
Bromoform	78	79	70-130	1	20
1,1,2,2-Tetrachloroethane	84	83	70-130	1	20
Benzene	98	96	70-130	2	20
Toluene	90	89	70-130	1	20
Ethylbenzene	90	92	70-130	2	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706855

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - W	estborough Lab Associated	sample(s): 01 Batch:	WG984130-8 WG984130-	9	
Chloromethane	104	98	70-130	6	20
Bromomethane	93	91	70-130	2	20
Vinyl chloride	92	88	70-130	4	20
Chloroethane	82	80	70-130	2	20
1,1-Dichloroethene	100	98	70-130	2	20
trans-1,2-Dichloroethene	98	96	70-130	2	20
Trichloroethene	94	94	70-130	0	20
1,2-Dichlorobenzene	82	83	70-130	1	20
1,3-Dichlorobenzene	85	85	70-130	0	20
1,4-Dichlorobenzene	83	83	70-130	0	20
Methyl tert butyl ether	102	102	70-130	0	20
p/m-Xylene	93	94	70-130	1	20
o-Xylene	92	93	70-130	1	20
cis-1,2-Dichloroethene	97	95	70-130	2	20
Dibromomethane	90	91	70-130	1	20
1,2,3-Trichloropropane	82	83	70-130	1	20
Styrene	89	89	70-130	0	20
Dichlorodifluoromethane	100	94	70-130	6	20
Acetone	104	103	70-130	1	20
Carbon disulfide	77	74	70-130	4	20
Methyl ethyl ketone	78	79	70-130	1	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706855

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 -	Westborough Lab Associate	ed sample(s): 01 Bato	ch: WG984130-8 WG98413	0-9	
Methyl isobutyl ketone	74	73	70-130	1	20
2-Hexanone	62	Q 61	Q 70-130	2	20
Bromochloromethane	97	95	70-130	2	20
Tetrahydrofuran	111	100	70-130	10	20
2,2-Dichloropropane	111	110	70-130	1	20
1,2-Dibromoethane	85	87	70-130	2	20
1,3-Dichloropropane	88	89	70-130	1	20
1,1,1,2-Tetrachloroethane	88	88	70-130	0	20
Bromobenzene	85	85	70-130	0	20
n-Butylbenzene	87	87	70-130	0	20
sec-Butylbenzene	89	87	70-130	2	20
tert-Butylbenzene	88	88	70-130	0	20
o-Chlorotoluene	90	87	70-130	3	20
p-Chlorotoluene	89	88	70-130	1	20
1,2-Dibromo-3-chloropropane	78	78	70-130	0	20
Hexachlorobutadiene	81	83	70-130	2	20
Isopropylbenzene	90	90	70-130	0	20
p-Isopropyltoluene	88	88	70-130	0	20
Naphthalene	71	73	70-130	3	20
n-Propylbenzene	89	88	70-130	1	20
1,2,3-Trichlorobenzene	81	84	70-130	4	20

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706855

	LCS	_	LCSD	%Recovery		RPD
rameter	%Recovery	Qual	%Recovery	Qual Limits	RPD	Qual Limits
CP Volatile Organics by 8260/5035	- Westborough Lab Asso	ciated san	nple(s): 01 Batch	: WG984130-8 WG98413	30-9	
1,2,4-Trichlorobenzene	82		84	70-130	2	20
1,3,5-Trimethylbenzene	90		89	70-130	1	20
1,2,4-Trimethylbenzene	90		90	70-130	0	20
Diethyl ether	85		86	70-130	1	20
Diisopropyl Ether	100		100	70-130	0	20
Ethyl-Tert-Butyl-Ether	104		104	70-130	0	20
Tertiary-Amyl Methyl Ether	105		106	70-130	1	20
1,4-Dioxane	92		93	70-130	1	20
2-Chloroethylvinyl ether	78		89	70-130	13	20
Halothane	99		96	70-130	3	20
Ethyl Acetate	92		94	70-130	2	20
Freon-113	101		98	70-130	3	20
Vinyl acetate	89		89	70-130	0	20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	97		96		70-130	
Toluene-d8	98		98		70-130	
4-Bromofluorobenzene	102		99		70-130	
Dibromofluoromethane	102		102		70-130	

PETROLEUM HYDROCARBONS

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706855

Report Date:

03/13/17

SAMPLE RESULTS

Lab ID: L1706855-01

Client ID: 1700516-B306-S7(8-14")

Sample Location: BOSTON, MA

Matrix: Soil

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/09/17 15:14

Analyst: JM Percent Solids: 87%

Date Collected:
Date Received:

Field Prep:

03/03/17 20:50

03/06/17 Not Specified

Quality Control Information

Condition of sample received: Sample Temperature upon receipt: Were samples received in methanol? Satisfactory
Received on Ice
Covering the Soil

1:1.5

Methanol ratio:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab				
C5-C8 Aliphatics	ND	mg/kg	2.40		1
C9-C12 Aliphatics	ND	mg/kg	2.40		1
C9-C10 Aromatics	ND	mg/kg	2.40		1
C5-C8 Aliphatics, Adjusted	ND	mg/kg	2.40		1
C9-C12 Aliphatics, Adjusted	ND	mg/kg	2.40		1
Benzene	ND	mg/kg	0.096		1
Toluene	ND	mg/kg	0.096		1
Ethylbenzene	ND	mg/kg	0.096		1
p/m-Xylene	ND	mg/kg	0.096		1
o-Xylene	ND	mg/kg	0.096		1
Methyl tert butyl ether	ND	mg/kg	0.048		1
Naphthalene	ND	mg/kg	0.192		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	102		70-130	
2,5-Dibromotoluene-FID	110		70-130	

03/03/17 20:50

Not Specified

EPA 3546

03/09/17

Date Collected:

Extraction Method:

Cleanup Date1:

Field Prep:

Project Name: TREMONT CROSSING Lab Number: L1706855

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

L1706855-01

Client ID: 1700516-B306-S7(8-14") Date Received: 03/06/17

Sample Location: BOSTON, MA

Matrix: Soil

Lab ID:

 Analytical Method:
 98,EPH-04-1.1
 Extraction Date:
 03/08/17 21:13

 Analytical Date:
 03/09/17 22:59
 Cleanup Method1:
 EPH-04-1

Analyst: EK
Percent Solids: 87%

Quality Control Information

Condition of sample received: Sample Temperature upon receipt:

Sample Extraction method:

Satisfactory Received on Ice

Extracted Per the Method

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbons	- Westborough L	ab			
C9-C18 Aliphatics	ND	mg/kg	7.28		1
C19-C36 Aliphatics	ND	mg/kg	7.28		1
C11-C22 Aromatics	ND	mg/kg	7.28		1
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.28		1
Naphthalene	ND	mg/kg	0.364		1
2-Methylnaphthalene	ND	mg/kg	0.364		1
Acenaphthylene	ND	mg/kg	0.364		1
Acenaphthene	ND	mg/kg	0.364		1
Fluorene	ND	mg/kg	0.364		1
Phenanthrene	ND	mg/kg	0.364		1
Anthracene	ND	mg/kg	0.364		1
Fluoranthene	ND	mg/kg	0.364		1
Pyrene	ND	mg/kg	0.364		1
Benzo(a)anthracene	ND	mg/kg	0.364		1
Chrysene	ND	mg/kg	0.364		1
Benzo(b)fluoranthene	ND	mg/kg	0.364		1
Benzo(k)fluoranthene	ND	mg/kg	0.364		1
Benzo(a)pyrene	ND	mg/kg	0.364		1
Indeno(1,2,3-cd)Pyrene	ND	mg/kg	0.364		1
Dibenzo(a,h)anthracene	ND	mg/kg	0.364		1
Benzo(ghi)perylene	ND	mg/kg	0.364		1

Project Name: TREMONT CROSSING Lab Number: L1706855

Project Number: 1700516 Report Date: 03/13/17

SAMPLE RESULTS

Lab ID: L1706855-01 Date Collected: 03/03/17 20:50

Client ID: 1700516-B306-S7(8-14") Date Received: 03/06/17 Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	70		40-140	
o-Terphenyl	73		40-140	
2-Fluorobiphenyl	75		40-140	
2-Bromonaphthalene	77		40-140	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number:

L1706855

03/09/17

Report Date:

03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

98,EPH-04-1.1 03/09/17 17:42

Analyst: ΕK

Extraction Method: EPA 3546 Extraction Date: 03/08/17 21:13 Cleanup Method: EPH-04-1 Cleanup Date:

RL MDL	
. 04 Detah: WC004044 4	_

Parameter	Result	Qualifier	Units	RL		MDL
Extractable Petroleum Hydrocarbon	s - Westbo	rough Lab	for sample	e(s): 01	Batch:	WG984011-1
C9-C18 Aliphatics	ND		mg/kg	6.41		
C19-C36 Aliphatics	ND		mg/kg	6.41		
C11-C22 Aromatics	ND		mg/kg	6.41		
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.41		
Naphthalene	ND		mg/kg	0.321		
2-Methylnaphthalene	ND		mg/kg	0.321		
Acenaphthylene	ND		mg/kg	0.321		
Acenaphthene	ND		mg/kg	0.321		
Fluorene	ND		mg/kg	0.321		
Phenanthrene	ND		mg/kg	0.321		
Anthracene	ND		mg/kg	0.321		
Fluoranthene	ND		mg/kg	0.321		
Pyrene	ND		mg/kg	0.321		
Benzo(a)anthracene	ND		mg/kg	0.321		
Chrysene	ND		mg/kg	0.321		
Benzo(b)fluoranthene	ND		mg/kg	0.321		
Benzo(k)fluoranthene	ND		mg/kg	0.321		
Benzo(a)pyrene	ND		mg/kg	0.321		
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.321		
Dibenzo(a,h)anthracene	ND		mg/kg	0.321		
Benzo(ghi)perylene	ND		mg/kg	0.321		

		1		
Surrogate	%Recovery	Qualifier	Criteria	
Chloro-Octadecane	75		40-140	
o-Terphenyl	66		40-140	
2-Fluorobiphenyl	69		40-140	
2-Bromonaphthalene	67		40-140	

L1706855

Lab Number:

Project Name: TREMONT CROSSING

Project Number: 1700516 Report Date: 03/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/09/17 09:00

Analyst: JM

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Petroleum Hydrocarbons - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG984574-3
C5-C8 Aliphatics	ND		mg/kg	2.67	
C9-C12 Aliphatics	ND		mg/kg	2.67	
C9-C10 Aromatics	ND		mg/kg	2.67	
C5-C8 Aliphatics, Adjusted	ND		mg/kg	2.67	
C9-C12 Aliphatics, Adjusted	ND		mg/kg	2.67	
Benzene	ND		mg/kg	0.107	
Toluene	ND		mg/kg	0.107	
Ethylbenzene	ND		mg/kg	0.107	
p/m-Xylene	ND		mg/kg	0.107	
o-Xylene	ND		mg/kg	0.107	
Methyl tert butyl ether	ND		mg/kg	0.053	
Naphthalene	ND		mg/kg	0.213	

	Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	
0.5.0%	0.4		70.400	
2,5-Dibromotoluene-PID	91		70-130	
2,5-Dibromotoluene-FID	97		70-130	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706855

Parameter	LCS %Recovery	LCSD Qual %Recover	%Recovery ry Qual Limits	RPD	RPD Qual Limits	
Extractable Petroleum Hydrocarbons - West	borough Lab Assoc	ciated sample(s): 01	Batch: WG984011-2 WG98401	1-3		
C9-C18 Aliphatics	61	74	40-140	19	25	
C19-C36 Aliphatics	82	90	40-140	9	25	
C11-C22 Aromatics	66	80	40-140	19	25	
Naphthalene	46	60	40-140	26	Q 25	
2-Methylnaphthalene	46	59	40-140	25	25	
Acenaphthylene	48	62	40-140	25	25	
Acenaphthene	53	67	40-140	23	25	
Fluorene	58	73	40-140	23	25	
Phenanthrene	61	72	40-140	17	25	
Anthracene	61	72	40-140	17	25	
Fluoranthene	67	77	40-140	14	25	
Pyrene	68	79	40-140	15	25	
Benzo(a)anthracene	71	82	40-140	14	25	
Chrysene	74	85	40-140	14	25	
Benzo(b)fluoranthene	73	85	40-140	15	25	
Benzo(k)fluoranthene	75	86	40-140	14	25	
Benzo(a)pyrene	69	80	40-140	15	25	
Indeno(1,2,3-cd)Pyrene	73	86	40-140	16	25	
Dibenzo(a,h)anthracene	76	89	40-140	16	25	
Benzo(ghi)perylene	68	80	40-140	16	25	
Nonane (C9)	47	56	30-140	17	25	

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706855

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
xtractable Petroleum Hydrocarbons - Wes	tborough Lab Ass	ociated san	nple(s): 01 Batch	n: WG984	4011-2 WG984011	-3		
Decane (C10)	55		64		40-140	15	25	
Dodecane (C12)	57		67		40-140	16	25	
Tetradecane (C14)	59		69		40-140	16	25	
Hexadecane (C16)	69		77		40-140	11	25	
Octadecane (C18)	77		81		40-140	5	25	
Nonadecane (C19)	78		81		40-140	4	25	
Eicosane (C20)	78		82		40-140	5	25	
Docosane (C22)	80		84		40-140	5	25	
Tetracosane (C24)	81		85		40-140	5	25	
Hexacosane (C26)	82		86		40-140	5	25	
Octacosane (C28)	82		86		40-140	5	25	
Triacontane (C30)	83		87		40-140	5	25	
Hexatriacontane (C36)	82		86		40-140	5	25	

	LCS		LCSD		Acceptance Criteria
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Chloro-Octadecane	71		78		40-140
o-Terphenyl	65		75		40-140
2-Fluorobiphenyl	67		73		40-140
2-Bromonaphthalene	68		76		40-140
% Naphthalene Breakthrough	0		0		
% 2-Methylnaphthalene Breakthrough	0		0		

Project Name: TREMONT CROSSING

Project Number: 1700516

Lab Number: L1706855

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Petroleum Hydrocarbons - Westboro	ugh Lab Associ	ated sample(s):	: 01 Batch:	WG984574-1	WG984574-2			
C5-C8 Aliphatics	101		102		70-130	1	25	
C9-C12 Aliphatics	101		102		70-130	1	25	
C9-C10 Aromatics	92		93		70-130	1	25	
Benzene	89		93		70-130	4	25	
Toluene	90		93		70-130	3	25	
Ethylbenzene	91		93		70-130	2	25	
p/m-Xylene	93		94		70-130	1	25	
o-Xylene	92		93		70-130	1	25	
Methyl tert butyl ether	83		92		70-130	10	25	
Naphthalene	86		91		70-130	5	25	
1,2,4-Trimethylbenzene	92		93		70-130	1	25	
Pentane	97		99		70-130	2	25	
2-Methylpentane	99		101		70-130	2	25	
2,2,4-Trimethylpentane	103		104		70-130	1	25	
n-Nonane	102		102		30-130	0	25	
n-Decane	101		101		70-130	0	25	
n-Butylcyclohexane	101		103		70-130	2	25	

TREMONT CROSSING

Lab Number:

L1706855

Project Number: 1700516

Project Name:

Report Date:

03/13/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG984574-1 WG984574-2

	1.00		1.000		Accontance
Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
2,5-Dibromotoluene-PID	90		90		70-130
2,5-Dibromotoluene-FID	94		93		70-130

INORGANICS & MISCELLANEOUS

Project Name: TREMONT CROSSING

Project Number: 1700516 Lab Number:

L1706855

Report Date:

03/13/17

SAMPLE RESULTS

Lab ID: L1706855-01

1700516-B306-S7(8-14") Client ID:

BOSTON, MA Sample Location:

Matrix: Soil Date Collected:

03/03/17 20:50

Date Received:

03/06/17

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	87.2		%	0.100	NA	1	-	03/07/17 13:38	121,2540G	RO

Project Name: TREMONT CROSSING Lab Number: L1706855

Project Number: 1700516 Report Date: 03/13/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1706855-01A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	MCP-8260H-10(14)
L1706855-01B	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	VPH-DELUX-10(28)
L1706855-01C	Glass 250ml/8oz unpreserved	Α	N/A	2.9	Υ	Absent	TS(7),EPH-DELUX-10(14)

Project Name:TREMONT CROSSINGLab Number:L1706855Project Number:1700516Report Date:03/13/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TREMONT CROSSINGLab Number:L1706855Project Number:1700516Report Date:03/13/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:TREMONT CROSSINGLab Number:L1706855Project Number:1700516Report Date:03/13/17

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Chain-of-Custody Rec	ord	Laboratory: ALO	Laboratory	Job#
		Project Inform	(Lab use only)	61706855
GEI Consultants	Project Name: Tremca	t Crossing	Project Location:	Page _ of _
400 Unicorn Park Drive Woburn, MA 01801 PH: 781.721.4000	Send Report to: Jessica	Englehart	Preservative	Sample Handling
FX: 781.721.4073	Send EDD to: labdata@geico	nsultants.com	HODAY YOU A Analysis	Samples Field
MCP PRESUMPTIVE CERTAINTY RE				Filtered
If Yes, Are MCP Analytical Methods Re		YES NO NA		YES NO (NA
Are Drinking Water Samples Submitted If Yes, Have Drinking Water Sampling F		YES NO NA	XS 2H 3H Solidus	Sampled Shipped With Ice
Lab Sample GEI Sample ID Number	Collection Date Time	YES NO NA Matrix No. of Sampler(s) Bottles Initials	YPH PPH S. S81	YES NO Sample Specific Remarks
068550/1700016-830X0-5				The state of the s
		3 3.0	XXXX	
MCP Level Needed: GEI requires that, w	vithin the specified method, the m	nost stringent Method 1 MCP	T	
elinquished by sampler: (signature)	r possible Date: Time: Received by: (3.3.17 2330 1. GE)	signature)	Turnaround Time (Business days): Normal Other	Before submitting rush turnaround samples, you must notify the laboratory to confirm
GET Sample Friday	Date: Time: Received by: (s 3, 6, 17, 1246, 2, //////////////////////////////////	Sample Fridge	10-Day 7-Day 5-Day 3-Day	that the TAT can be achieved.
sinquisped by: (signature)	Date: Time: Received by: (s	ggnature)	Additional Requirement	s/Comments/Remarks:
simplified by: (signature)	Date: Time: Received by: (s	ignature)		
	4. 500			

Method Blank Summary Form 4

Client : GEI Consultants Lab Number : L1706855 **Project Number Project Name** : TREMONT CROSSING : 1700516 Lab File ID : V10170309A05

Lab Sample ID Instrument ID : WG984130-10

: VOA110 Analysis Date Matrix : SOIL : 03/09/17 08:33

Client Sample No.	Lab Sample ID	Analysis Date
WG984130-8LCS	WG984130-8	03/09/17 06:50
WG984130-9LCSD	WG984130-9	03/09/17 07:15
1700516-B306-S7(8-14'')	L1706855-01	03/09/17 11:35

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706855

Project Name : TREMONT CROSSING Project Number : 1700516

Instrument ID : VOA110 Calibration Date : 03/09/17 06:50

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Fluorobenzene	1	1	-	0	20	116	0
Dichlorodifluoromethane	0.351	0.351	-	0	20	119	0
Chloromethane	0.269	0.28	-	-4.1	20	121	0
Vinyl chloride	0.267	0.245	-	8.2	20	109	0
Bromomethane	0.202	0.187	-	7.4	20	115	.01
Chloroethane	0.168	0.137	-	18.5	20	95	.04
Trichlorofluoromethane	0.445	0.426	-	4.3	20	106	.04
Ethyl ether	0.158	0.134	-	15.2	20	102	.01
1,1-Dichloroethene	0.221	0.221	-	0	20	120	0
Carbon disulfide	20	15.412	-	22.9*	20	94	.02
Freon-113	0.206	0.208	-	-1	20	118	.02
Acrolein	0.046	0.041	-	10.9	20	116	0
Methylene chloride	20	19.185	-	4.1	20	117	0
Acetone	0.056	0.058	-	-3.6	20	126	0
trans-1,2-Dichloroethene	0.25	0.246	-	1.6	20	116	0
Methyl acetate	0.153	0.139	-	9.2	20	111	0
Methyl tert-butyl ether	0.676	0.686		-1.5	20	124	0
tert-Butyl alcohol	0.018	0.019	-	-5.6	20	129	0
Diisopropyl ether	0.758	0.761	-	-0.4	20	117	0
1,1-Dichloroethane	0.425	0.43	-	-1.2	20	117	0
Halothane	0.17	0.168	-	1.2	20	116	0
Acrylonitrile	20	17.881	-	10.6	20	108	0
Ethyl tert-butyl ether	0.616	0.643	•	-4.4	20	124	0
Vinyl acetate	20	17.757	-	11.2	20	113	0
cis-1,2-Dichloroethene	0.269	0.262	-	2.6	20	113	0
2,2-Dichloropropane	0.313	0.348	-	-11.2	20	137	0
Bromochloromethane	0.128	0.125	-	2.3	20	111	0
Cyclohexane	0.342	0.349	-	-2	20	120	0
Chloroform	0.457	0.441	-	3.5	20	110	0
Ethyl acetate	0.204	0.187	-	8.3	20	107	0
Carbon tetrachloride	0.32	0.318	-	0.6	20	120	0
Tetrahydrofuran	0.072	0.08	-	-11.1	20	126	0
Dibromofluoromethane	0.256	0.262		-2.3	20	117	0
1,1,1-Trichloroethane	0.393	0.397	-	-1	20	119	0
2-Butanone	0.09	0.07	-	22.2*	20	101	.01
1,1-Dichloropropene	0.09	0.313	<u> </u>	-1	20	116	0
Benzene	0.996	0.972	<u> </u>	2.4	20	112	0
			-				0
tert-Amyl methyl ether	0.54	0.566	•	-4.8	20	128	
1,2-Dichloroethane-d4	0.27	0.261	-	3.3	20	111	0
1,2-Dichloroethane	0.339	0.314	-	7.4	20	106	0
Methyl cyclohexane	0.35	0.332	-	5.1	20	117	0
Trichloroethene	0.262	0.247	-	5.7	20	110	0
Dibromomethane	0.151	0.136	-	9.9	20	105	0
1,2-Dichloropropane	0.232	0.217	-	6.5	20	109	0
2-Chloroethyl vinyl ether	20	15.643	-	21.8*	20	114	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706855 **Project Name** : TREMONT CROSSING Project Number : 1700516

Instrument ID Calibration Date : VOA110 : 03/09/17 06:50

: V10170309A01 Init. Calib. Date(s) : 02/21/17 Lab File ID 02/21/17 Sample No : WG984130-7 Init. Calib. Times : 16:17 19:20

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Bromodichloromethane	0.337	0.298	-	11.6	20	105	0
1,4-Dioxane	0.00229	0.00211	-	7.9	20	112	0
cis-1,3-Dichloropropene	20	17.325	-	13.4	20	114	0
Chlorobenzene-d5	1	1	-	0	20	123	0
Toluene-d8	1.233	1.212	-	1.7	20	119	0
Toluene	0.846	0.765	-	9.6	20	111	0
4-Methyl-2-pentanone	0.089	0.066	-	25.8*	20	110	0
Tetrachloroethene	0.33	0.302	-	8.5	20	115	0
trans-1,3-Dichloropropene	0.402	0.361	-	10.2	20	114	0
Ethyl methacrylate	20	13.931	-	30.3*	20	104	0
1,1,2-Trichloroethane	0.243	0.211	-	13.2	20	105	0
Chlorodibromomethane	0.324	0.269	•	17	20	106	0
1,3-Dichloropropane	0.472	0.413	-	12.5	20	107	0
1,2-Dibromoethane	0.267	0.226	-	15.4	20	105	0
2-Hexanone	20	12.428	-	37.9*	20	104	0
Chlorobenzene	0.965	0.841	-	12.8	20	107	0
Ethylbenzene	1.513	1.366		9.7	20	107	0
1,1,1,2-Tetrachloroethane	0.334	0.293	-	12.3	20	108	0
p/m Xylene	0.58	0.541	•	6.7	20	108	0
o Xylene	0.54	0.498	-	7.8	20	108	0
Styrene	0.952	0.844	-	11.3	20	102	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	120	0
Bromoform	0.396	0.307	-	22.5*	20	102	0
Isopropylbenzene	2.879	2.596	-	9.8	20	108	0
4-Bromofluorobenzene	0.867	0.883	-	-1.8	20	124	0
Bromobenzene	0.743	0.634	-	14.7	20	105	0
n-Propylbenzene	3.513	3.124	-	11.1	20	106	0
1,4-Dichlorobutane	0.894	0.79	-	11.6	20	107	0
1,1,2,2-Tetrachloroethane	0.714	0.599	-	16.1	20	104	0
4-Ethyltoluene	2.879	2.586	-	10.2	20	105	0
2-Chlorotoluene	2.146	1.922	-	10.4	20	105	0
1,3,5-Trimethylbenzene	2.51	2.246	-	10.5	20	103	0
1,2,3-Trichloropropane	0.577	0.476		17.5	20	103	0
trans-1,4-Dichloro-2-buten	0.175	0.148	<u> </u>	15.4	20	103	0
4-Chlorotoluene	2.122	1.881	<u> </u>	11.4	20	105	0
tert-Butylbenzene	2.051	1.81	<u> </u>	11.8	20	106	0
1,2,4-Trimethylbenzene	2.467	2.223	-	9.9	20	104	0
sec-Butylbenzene	3.173	2.81		11.4	20	104	0
p-Isopropyltoluene	2.626	2.314	<u> </u>	11.9	20	104	0
1,3-Dichlorobenzene	1.484	1.262	-	15	20	104	0
1,4-Dichlorobenzene	1.534	1.276	-	16.8	20	102	0
	1.524	1.304	-	14.4	20	102	0
p-Diethylbenzene			•				
n-Butylbenzene 1,2-Dichlorobenzene	2.502	2.179	-	12.9	20	102	0
i z-i iichioroponzopo	1.392	1.148	-	17.5	20	102	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : GEI Consultants Lab Number : L1706855

Project Name : TREMONT CROSSING Project Number : 1700516

Instrument ID : VOA110 Calibration Date : 03/09/17 06:50

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dibromo-3-chloropropan	0.09	0.071	-	21.1*	20	103	0
1,3,5-Trichlorobenzene	1.022	0.855	-	16.3	20	101	0
Hexachlorobutadiene	0.493	0.398	-	19.3	20	105	0
1,2,4-Trichlorobenzene	0.876	0.721	-	17.7	20	102	0
Naphthalene	20	14.144	-	29.3*	20	96	0
1,2,3-Trichlorobenzene	0.839	0.683	-	18.6	20	100	0

^{*} Value outside of QC limits.

MassDEP RTN 3-15009 and RTN 3-36365 DRAFT Supplemental Phase II Comprehensive Site Assessment, Phase III Remedial Action Plan Addendum, and Temporary Solution Statement Parcel P-3: Tremont and Whittier Streets, Boston (Roxbury), Massachusetts January 11, 2021

Appendix G

Substantial Hazard Evaluation

Table G-1 **EXPOSURE ASSUMPTIONS Default Tresspasser** Parcel P-3, Tremont Street & Whittier Streets

Boston, Massachusetts

RECEPTOR: Default Tresspasser					
TIMING: Current conditions and land-use					
EXPOSURE / SCENARIO: Tresspassing					
Variable	Subchronic Hazard Index Calculations	Chronic Hazard Index Calculations	Excess Lifetime Cancer Risk Calculations	Units	Notes & References
GENERAL INFO:					
Age	7	7 to 14	7 to 14	years	
Bodyweight	23.5	35.5	35.5	kg	MADEP, 1995 - age-weighted 50th percentile for females
Total Skin Area	9,360	11,751	11,751	cm2	MADEP, 1995 - age-weighted 50th percentile for females
Averaging Period	183	2,555	25,550	days	6 months; 7 years; 70 year lifetime
INGESTION OF SOIL:				-	
Ingestion Rate	50	50	50	mg/day	MADEP, 2002b - age-weighted
Exposure Frequency	0.29	0.17	0.17	events/day	2 of 7 days; 7 of 12 months
Exposure Duration	1	1	1	days/event	MADEP, 1995
Exposure Period	213	2,555	2,555	days	7 months; 7 years
Conversion Factor	1E-06	1E-06	1E-06	kg/mg	
DERMAL ABSORPTION OF SOIL:					
Fraction of Skin Area Exposed Per Day	0.26	0.28	0.28	1/day	MADEP, 1995 - age-weighted 50th percentile for females; face hands; forearms; lower legs; feet
Soil Adherence Factor	0.14	0.14	0.14	mg/cm2	MADEP, 2002a
Exposure Frequency	0.29	0.17	0.17	events/day	2 of 7 days; 7 of 12 months
Exposure Duration	1	1	1	days/event	MADEP, 1995
Exposure Period	213	2,555	2,555	days	7 months; 7 years
Conversion Factor	1E-06	1E-06	1E-06	kg/mg	
INHALATION AND INGESTION OF FUGITIVE DUST:					
Respirable Particulate Concentration	0.032	0.032	0.032	mg/m3	MADEP, 1995
Proportion of Particulates from the Site	1	1	1	unitless	Assumed 100%
Deposition Efficiency in the Lung	0.5	0.5	0.5	unitless	MADEP, 1997
Inhalation Rate	6	6	6	L/min	MADEP, 1995
Exposure Frequency	0.29	0.17	0.17	events/day	2 of 7 days; 7 of 12 months
Exposure Duration	2	2	2	hr/event	Assumed
I	0.40	0.555	0.555		

References:

Exposure Period

Conversion Factor 1 (Inhalation ADE)

MADEP, 2002a. Technical Update: Weighted Skin-Soil Adherence Factors. Office of Research and Standards.

MADEP, 2002b. Technical Update: Calculation of an Enhanced Soil Ingestion Rate. Office of Research and Standards.

213

24

60

1E-03

2,555

24

60

1E-03

2,555

24

60

1E-03

days

hr/day

min/hr

m3/L

7 months; 7 years

MADEP, 1997. Methodology for Relating Soil Contaminant Levels and Risk to Human Health.

Office of Research and Standards. Section 6.1.4

Conversion Factor 2 (Inhalation ADD and ingestion)

Conversion Factor 3 (Inhalation ADD and ingestion)

MADEP, 1995. Guidance for Disposal Site Risk Characterization in Support of the MCP.

Bureau of Waste Site Cleanup and Office of Research and Standards.

Table G-2 EXPOSURE ASSUMPTIONS Commercial Worker

Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

RECEPTOR: Commercial Worker
TIMING: Current conditions and land-use
EXPOSURE / SCENARIO: Commercial Work

Variable	Subchronic Hazard Index Calculations	Chronic Hazard Index Calculations	Excess Lifetime Cancer Risk Calculations	Units	Notes & References
GENERAL INFO:					
Age	22	18 to 43	18 to 43	years	
Bodyweight	57	60	60	kg	MADEP, 1995 - age-weighted 50th percentile for females
Total Skin Area	16,900	16,900	16,900	cm2	MADEP, 1995 - age-weighted 50th percentile for females
Averaging Period	92	9,125	25,550	days	3 months; 25 year employment; 70 year lifetime
INGESTION OF SOIL:					
Ingestion Rate	50	50	50	mg/day	MADEP, 2002b
Exposure Frequency	0.71	0.42	0.42	events/day	5 of 7 days; 7 of 12 months
Exposure Duration	1	1	1	days/event	MADEP, 1995
Exposure Period	92	9,125	9,125	days	3 months; 25 year employment
Conversion Factor	1E-06	1E-06	1E-06	kg/mg	
DERMAL ABSORPTION OF SOIL:					
Fraction of Skin Area Exposed Per Day	0.21	0.21	0.21	1/day	MADEP, 1995 - age-weighted 50th percentile for females; face, hands; forearms; lower legs; feet
Soil Adherence Factor	0.03	0.03	0.03	mg/cm2	MADEP, 2002a; Industrial/Commercial Worker
Exposure Frequency	0.71	0.42	0.42	events/day	5 of 7 days; 7 of 12 months
Exposure Duration	1	1	1	days/event	MADEP, 1995
Exposure Period	92	9,125	9,125	days	3 months; 25 year employment
Conversion Factor	1E-06	1E-06	1E-06	kg/mg	
INHALATION AND INGESTION OF FUGITIVE DUST:					
Respirable Particulate Concentration	0.032	0.032	0.032	mg/m3	MADEP, 1995
Proportion of Particulates from the Site	1	1	1	unitless	Assumed 100%
Deposition Efficiency in the Lung	0.5	0.5	0.5	unitless	MADEP, 1997
Inhalation Rate	20	20	20	L/min	MADEP, 1995
Exposure Frequency	0.71	0.42	0.42	events/day	5 of 7 days; 7 of 12 months
Exposure Duration	8	8	8	hr/event	Assumed
Exposure Period	92	9,125	9,125	days	3 months; 25 year employment
Conversion Factor 1 (Inhalation ADE)	24	24	24	hr/day	
Conversion Factor 2 (Inhalation ADD and ingestion)	60	60	60	min/hr	
Conversion Factor 3 (Inhalation ADD and ingestion)	1E-03	1E-03	1E-03	m3/L	

References:

 ${\sf MADEP,\,2002a.\,\,Technical\,\,Update:\,\,Weighted\,\,Skin-Soil\,\,Adherence\,\,Factors.\,\,Office\,\,of\,\,Research\,\,and\,\,Standards.}$

MADEP, 2002b. Technical Update: Calculation of an Enhanced Soil Ingestion Rate. Office of Research and Standards.

MADEP, 1997. Methodology for Relating Soil Contaminant Levels and Risk to Human Health. Office of Research and Standards. Section 6.1.4

MADEP, 1995. Guidance for Disposal Site Risk Characterization in Support of the MCP.

Bureau of Waste Site Cleanup and Office of Research and Standards.

Table G- 3 EXPOSURE ASSUMPTIONS Emergency Utility Worker Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

RECEPT	DR: Emergency Utility Worker
TIMING:	conditions and land-use

Variable	Hazard Index			
		Cancer Risk		
05115541 1150	Calculations	Calculations	Units	Notes & References
GENERAL INFO:				
Age	22	22	years	
Bodyweight	57	57	kg	MADEP, 1995 - age-weighted 50th percentile for females
Total Skin Area	16,900	16,900	cm2	MADEP, 1995 - age-weighted 50th percentile for females
Averaging Period	365	25,550	days	1 year, 70 year lifetime
NGESTION OF SOIL:				
ngestion Rate	100	100	mg/day	MADEP, 2002b - Enhanced soil ingestion rate
Exposure Frequency	0.003	0.003	events/day	MADEP, 1995 - 1 day utility repair per year
Exposure Duration	1	1	days/event	MADEP, 1995
Exposure Period	365	365	days	MADEP, 1995 - 1 day utility repair per year
Conversion Factor	1E-06	1E-06	kg/mg	
DERMAL ABSORPTION OF SOIL:				
Fraction of Skin Area Exposed Per Day	0.21	0.21	1/day	MADEP, 1995 - age-weighted 50th percentile for females for face, forearms, hands and feet
Soil Adherence Factor	0.29	0.29	mg/cm2	MADEP, 2002a - Utility worker / heavy construction
Exposure Frequency	0.003	0.003	events/day	MADEP, 1995 - 1 day utility repair per year
Exposure Duration	1	1	days/event	MADEP, 1995
Exposure Period	365	365	days	MADEP, 1995 - 1 day utility repair per year
Conversion Factor	1E-06	1E-06	kg/mg	*
NHALATION OF OUTDOOR AIR:				
Exposure Frequency	0.003	0.003	events/day	MADEP, 1995 - 1 day utility repair per year
Exposure Duration	8	8	hr/event	8 hour work day
Exposure Period	365	365	days	MADEP, 1995 - 1 day utility repair per year
Conversion Factor	24	24	hr/day	
DERMAL ABSORPTION OF GROUNDWATER:				
Fraction of Skin Area Exposed	0.21	0.21	unitless	MADEP, 1995 - age-weighted 50th percentile for females
Exposure Frequency	0.003	0.003	events/day	MADEP, 1995 - 1 day utility repair per year
Exposure Duration (tevent)	0.5	0.5	hr/event	Assumed
Exposure Period	365	365	days	MADEP, 1995 - 1 day utility repair per year
Conversion Factor	1E-03	1E-03	L/cm3	

References:

 $MADEP, 2002a. \ Technical \ Update: Weighted \ Skin-Soil \ Adherence \ Factors. \ Office \ of \ Research \ and \ Standards.$

MADEP, 2002b. Technical Update: Calculation of an Enhanced Soil Ingestion Rate. Office of Research and Standards.

MADEP, 1997. Methodology for Relating Soil Contaminant Levels and Risk to Human Health.

Office of Research and Standards. Section 6.1.4

MADEP, 1995. Guidance for Disposal Site Risk Characterization in Support of the MCP.

Bureau of Waste Site Cleanup and Office of Research and Standards.

Table G-4 Subchronic Toxicity and Absorption Factors Parcel P-3 Boston, Massachusetts

	Cubabaaaia							Cubabaaaia	Cubabaasia								Absorptio	n Factors for Evaluating S	Subchronic Expos	sures
CHEMICAL	Subchronic Oral	RfD	Test	Study Type	Critical Effect	Confidence	Uncertainty	Subchronic Inhalation	Subchronic	RfC	Test	Study Type	Critical Effect	Confidence	Uncertainty	Modifying	Soil Ingestion	Soil Dermal Absorption	Dermal Water	Inhalati
	RfD	Source	Species	& Length		Level	Modifying	RfD	RfC	Source	Species			Level	Factor	Factor	RAF	RAF	RAF	RAF
/olatile Organic Compounds	(mg/kg-day)					+	Factors	(mg/kg-day)	(mg/m³)						-		(unitless)	(unitless)	(unitless)	(unitless
Benzene	1.00E-02	IRIS (chronic, duration adjusted) as cited in	human	study mean exposure	decreased lymphocyte count	medium	1.00E+02	2.86E-03	1.00E-02	MADEP 2014	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
		MADEP (2006)		6.7 years																<u> </u>
Chloroform	1.00E-02	IRIS (chronic, not duration adjusted)	dog	7.5-year oral capsule	moderate/marked fatty cyst formation in liver and elevated SGPT	medium	1.00E+03	1.89E-01	6.60E-01	MADEP (1995) (chronic ATC) as cited in MADEP (2006)	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
1,2-Dichloroethylene (mixed isomers)	9.00E-03	HEAST (1,1- dichloroethylene - IRIS chronic, duration adjusted)	rat	2-year drinking water	liver lesions	NA	1.00E+03	1.71E-02	6.00E-02	, ,	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.2E+00	1.0E+00
1,2-Dichloroethylene (cis) Ethyl ether	2.00E-02 2.00E+00		NA rat	NA 13-week oral gavage	NA depressed body weights	NA low	NA 3.00E+02	1.71E-02 4.57E-01	6.00E-02 1.60E+00	MADEP 2014 MADEP (1995) (chronic ATC)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.0E+00 9.9E-01	3.0E-02 1.1E-01	1.2E+00 1.0E+00	1.0E+00 1.0E+00
Tetrachloroethylene (PCE)	6.00E-03		NA	NA	NA	NA	NA	1.14E-02	4.00E-02	MADEP 2014	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Trichloroethylene (TCE)			NA	NA	NA	NA	NA	5.71E-04		MADEP 2014	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Vinyl chloride	3.00E-03	IRIS (chronic, not duration adjusted) as cited in MADEP (2006)	rat	150-week oral diet	liver cell polymorphism and cysts	medium	3.00E+01	2.86E-02	1.00E-01	IRIS (chronic, not duration adjusted) as cited in MADEF (2006)		150-week oral diet	liver cell polymorphism and cysts	medium	3.00E+01	1.00E+00	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Xylenes (mixed isomers)	4.00E-01	` '	NA	NA	NA	NA	NA	1.14E-01	4.00E-01	MADEP 2014	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Saminalatila Ourania Com												4								
Semivolatile Organic Compounds Non-Carcinogenic PAHs			+			1													1	+
Acenaphthene			NA	NA	NA	NA	NA	1.43E-01		MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Acenaphthylene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Anthracene	1.00E+00	HEAST (IRIS chronic, duration adjusted) as cited in MADEP (2006)	mouse	90 day gavage subchronic study	none observed	low	3.00E+02	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Benzo(ghi)perylene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Fluoranthene	4.00E-01	HEAST (IRIS chronic, duration adjusted) as cited in MADEP (2006)	mouse	13 week, gavage subchronic oral bioassay	nephropathy, increased liver weights, hematological alterations, and clinical effects	low	3.00E+02	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Fluorene	4.00E-01	HEAST (IRIS chronic, duration adjusted) as cited in MADEP (2006)	mouse	,	decreased RBCs, packed cell volume,	low	3.00E+02	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
2-Methylnaphthalene	4.00E-03	MADEP (2008)	mouse		pulmonary alveolar proteinosis	low	1000	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Naphthalene	2.00E-01	IRIS (chronic, duration adjusted) as cited in MADEP (2006)	rat	13 week, subchronic oral bioassay, corn oil gavage	decreased mean terminal body weight in males	low	300	8.57E-04	3.00E-03	IRIS (chronic, not duration adjusted) as cited in MADEF (2006)	mouse	2-year inhalation	respiratory epithelium hyperplasia; olfactory epithelium metaplasia	medium	3.00E+03	1.00E+00	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Phenanthrene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Pyrene	3.00E-01	HEAST (IRIS chronic, duration adjusted) as cited in MADEP (2006)	mouse	13 week, subchronic oral bioassay, corn oil gavage	renal tubular pathology, decreased kidney weights	low	3.00E+02	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Carcinogenic PAHs																				
Benz(a)anthracene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Benzo(a)pyrene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Benzo(b)fluoranthene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Benzo(k)fluoranthene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Chrysene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Dibenz(ah)anthracene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Indeno(1,2,3-cd)pyrene	3.00E-01	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-01	5.00E-01	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Polychlorinated Biphenyls Polychlorinated biphenyls (PCBs)	5.00E-05	HEAST (Aroclor 1254 - IRIS chronic, duration adjusted) as cited in MADEP (2006)	monkey	5 year oral capsule study	ocular exudate, deformed nail growth, inflamed Meibomian glands, decreased antibody response		1.00E+02	5.71E-06	2.00E-05	MADEP (1995) (chronic ATC) as cited in MADEP (2006)	NA	NA	NA	NA	NA	NA	1.0E+00	1.0E-01	1.1E+00	1.0E+00
Metals Arsenic	3.00E-04	HEAST (IRIS chronic, not duration adjusted) as cited in MADEP (2006)		chronic oral drinking water, food	hyperpigmentation, keratosis, vascular complications	medium	3.00E+00	5.71E-06	2.00E-05	MADEP 2014	NA	NA	NA	NA	NA	NA	5.0E-01	3.0E-02	1.0E+00	1.0E+00
Barium	7.00E-02		NA	NA	NA	NA	NA	1.43E-03	5.00E-03	HEAST (alternate method)	rat	4 month, intermittent	fetotoxicity	NA	1.00E+02	1.00E+00	1.0E+00	1.0E-01	1.1E+00	1.0E+00
Beryllium	5.00E-03	MADEP 2014	NA	NA	NA	NA	NA	5.71E-06	2.00E-05	as cited in MADEP (2006) IRIS (chronic, not duration adjusted) as cited in MADEF		inhalation occupational, community study	lung - beryllium sensitization, disease	medium	1.00E+01	1.00E+00	1.0E+00	1.0E-01	1.0E+02	1.0E+00
		MADEP 2014	NA	NA	NA	NA	NA	5.70E-06		(2006) MADEP 2014	NA	NA	NA	NA	NA	NA	1.0E+00	1.0E-02	NA	1.0E+00

Table G-4 Subchronic Toxicity and Absorption Factors Parcel P-3 Boston, Massachusetts

																	Absorpti	ion Factors for Evaluating S	Subchronic Expo	sures
	Subchronic							Subchronic	Subchroni											
CHEMICAL	Oral	RfD	Test	Study Type	Critical Effect	Confidence	Uncertainty	Inhalation	Inhalation		Test	Study Type	Critical Effect	Confidence	Uncertainty	Modifying	Soil Ingestion			
	RfD	Source	Species	& Length		Level	Modifying	RfD	RfC	Source	Species	& Length		Level	Factor	Factor	RAF	RAF	RAF	RAF
	(mg/kg-day)						Factors	(mg/kg-day)									(unitless)	(unitless)	(unitless)	(unitless)
Lead	7.50E-04	MADEP (1992) (Residential Shortform) as cited in MADEP (2006)	NA	NA	NA	NA	NA	2.86E-04	1.00E-03	MADEP (1995) (chronic ATC) as cited in MADEP (2006)	NA	NA	NA	NA	NA	NA	5.0E-01	6.0E-03	1.0E+00	1.0E+00
Mercury	3.00E-04	IRIS (mercuric chloride - chronic, not duration adjusted)	rat	subchronic feeding study	autoimmune effects	high	1.00E+03	8.57E-05	3.00E-04	IRIS (elemental mercury - chronic, not duration adjusted) as cited in MADEP (2006)	human	inhalation, occupational	hand tremor, increased memory disturbance, autonomic dysfunction	medium	3.00E+01	1.00E+00	5.0E-01	1.0E-01	1.1E+00	1.0E+00
Nickel	2.00E-02	HEAST (nickel soluble salts - IRIS chronic, not duration adjusted) as cited in MADEP (2006)	rat	2 year, feeding study	decreased body and liver weights, increased heart to body weight ratio	medium-low	3.00E+02	2.86E-04	1.00E-03	MADEP (1995) (chronic ATC) as cited in MADEP (2006)	NA	NA	NA	NA	NA	NA	1.0E+00	2.0E-01	1.0E+01	1.0E+00
Vanadium	9.00E-03	MassDEP 2014	NA	NA	NA	NA	NA	2.86E-04	1.00E-03	MADEP (1995) (chronic ATC) as cited in MADEP (2006)	NA	NA	NA	NA	NA	NA	1.0E+00	1.0E-01	2.0E+01	1.0E+00
Zinc	3.00E-01	IRIS (chronic, not duration adjusted)	human	clinical studies of diet supplements	decreased erythrocyte Cu, Zn- superoxide dismutase (ESOD) activity	med - high	3.00E+00	4.00E-04	1.40E-03	MADEP 2006	NA	NA	NA	NA	NA	NA	1.0E+00	1.0E-01	2.2E+00	1.0E+00
Notes:																				+
NA = not available/not applicable																				1
References:																				
Massachusetts Department of Enviro	nmental Prote	tion (MADEP), 2002, 0	Characteri	zina Risks Posed b	v Petroleum Contaminated Sites:	Implementation	n of MADE	VPH/EPH A	Approach, F	inal Policy. Bureau of Wa	aste Site Cl	eanup, October,								
Massachusetts Department of Enviro													:04.htm)							
Massachusetts Department of Enviro															1	+	+		1	+

Table G-5 Chronic Toxicity and Absorption Factors Parcel P-3 Boston, Massachusetts

																	A b	ption Factors for Evaluating	Chronic E	uroe
	Chronic							Chronic	Chronic								ADSOF	ption ractors for Evaluating	Chronic Expost	ires
CHEMICAL	Oral	RfD	Test	Study Type	Critical Effect	Confidence	Uncertainty	Inhalation	Inhalation	RfC	Test	Study Type	Critical Effect	Confidence		Modifying		Soil Dermal Absorption	Dermal Water	
	RfD /mg/kg/day/	Source	Species	& Length		Level	Modifying Factors	RfD	RfC (mg/m³)	Source	Species	& Length		Level	Factor	Factor	RAF (unitless)	RAF (unitless)	RAF (unitless)	RAF (unitless
Volatile Organic Compounds	(mg/kg/day))					raciois	(mg/kg-day)	(ilig/ili)								(unitiess)	(unitiess)	(unitiess)	(unitiess)
Benzene	4.00E-03	IRIS		occupational inhalation study mean exposure 6.7 years	decreased lymphocyte count	medium	3.00E+02	2.86E-03	1.00E-02	MADEP 2014	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Chloroform	1.00E-02	IRIS	dog	7.5-year oral capsule	moderate/marked fatty cyst formation in liver and elevated SGPT	medium	1.00E+03	1.89E-01	6.60E-01	MADEP, 1995 (ATC) a cited in MADEP (2006)		NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
1,2-Dichloroethylene (mixed isomers)	9.00E-03	HEAST (1,1- dichloroethylene - IRIS)	rat	2-year drinking water	liver lesions	NA	1.00E+03	3.14E-01	1.10E+00	MADEP 2014	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.2E+00	1.0E+00
1,2-Dichloroethylene (cis)				NA .	NA	NA	NA	1.71E-03		MADEP 2014			NA	NA	NA	NA	1.0E+00	3.0E-02	1.2E+00	1.0E+00
Ethyl ether	2.00E-01	IRIS	rat	13-week oral gavage	depressed body weights	low	3.00E+03	4.57E-01	1.60E+00	MADEP (1995) (ATC)	NA	NA	NA	NA	NA	NA	9.9E-01	1.1E-01	1.0E+00	1.0E+00
Tetrachloroethylene (PCE)	6.00E-03			NA	NA	NA	NA	1.14E-02		MADEP 2014	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Trichloroethylene (TCE) Vinyl chloride	5.00E-04 3.00E-03		NA rat	NA 150-week oral diet	NA liver cell polymorphism and cysts	NA medium	NA 3.00E+01	5.71E-04 2.86E-02	2.00E-03 1.00E-01	MADEP 2014 IRIS	NA rat	NA 150-week oral diet	NA liver cell	NA medium	NA 3.00E+01	NA 1.00E+00	1.0E+00	3.0E-02 3.0E-02	1.0E+00 1.0E+00	1.0E+00
vinyi chionde	3.00E-03	irio			liver cen polymorphism and cysts	medium	3.00E+01	2.00E-02	1.00E-01	INIO	rat	150-week of all diet	polymorphism and cysts	medium	3.00E+01	1.00E+00	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Xylenes (mixed isomers)	2.00E-01	MADEP 2014	NA	NA	NA	NA	NA	2.86E-02	1.00E-01	MADEP 2014	NA	NA	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Semivolatile Organic Compounds Non-Carcinogenic PAHs																				
Acenaphthene	6.00E-02			NA	NA	NA	NA	1.43E-02		MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Acenaphthylene	3.00E-02	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Anthracene	3.00E-01		mouse	90 day gavage subchronic study	none observed	low	3.00E+03	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Benzo(ghi)perylene	3.00E-02	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Fluoranthene	4.00E-02		mouse	13 week, gavage subchronic oral	nephropathy, increased liver weights, hematological alterations, and clinical		3.00E+03	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Fluorene	4.00E-02	IRIS	mouse	13 week, subchronic oral bioassay, corn oil	effects decreased RBCs, packed cell volume, and hemoglobin	low	3.00E+03	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
2-Methylnaphthalene	4.00E-03	IRIS	mouse	gavage 81-week dietary study	pulmonary alveolar proteinosis	low	1.00E+03	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Naphthalene	2.00E-02	IRIS	rat	13 week, subchronic oral bioassay, corn oil gavage	decreased mean terminal body weight in males	low	3.00E+03	8.57E-04	3.00E-03	IRIS	mouse	2-year inhalation	respiratory epithelium hyperplasia; olfactory epithelium metaplasia	medium	3.00E+03	1.00E+00	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Phenanthrene	3.00E-02	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Pyrene	3.00E-02			13 week, subchronic oral bioassay, corn oil gavage		low	3.00E+03	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	1.0E-01	1.1E+00	1.0E+00
Carcinogenic PAHs				gavage																+
Benz(a)anthracene	3.00E-02		NA	NA	NA	NA	NA	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Benzo(a)pyrene	3.00E-02	pyrene toxicity value) MADEP (2006) (based on	NΔ	NA	NA	NA	NA	1.43E-02	5.00F-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Benzo(a)pyrene	0.002-02	pyrene toxicity value)				I W	10/	1.402-02	0.002-02	W/ (2000)	10.0	101	TO V	101	100	10/				
Benzo(b)fluoranthene	3.00E-02	MADEP (2006) (based on pyrene toxicity value)	NA	NA	NA	NA	NA	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Benzo(k)fluoranthene	3.00E-02	MADEP (2006) (based on	NA	NA	NA	NA	NA	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Chrysene	3.00E-02	pyrene toxicity value) MADEP (2006) (based on	NA	NA	NA	NA	NA	1.43E-02	5.00E-02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Dibenz(ah)anthracene	3.00E-02	pyrene toxicity value) MADEP (2006) (based on	NA	NA	NA	NA	NA	1.43E-02	5.00E.02	MADEP (2006)	NA	NA	NA	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Dibenz(ah)anthracene Indeno(1,2,3-cd)pyrene	3.00E-02	pyrene toxicity value) MADEP (2006) (based on		NA NA	NA NA	NA NA	NA NA	1.43E-02		MADEP (2006)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3.0E-01	2.0E-02 2.0E-02	1.1E+00	1.0E+00
		pyrene toxicity value)																		
Polychlorinated Biphenyls Polychlorinated biphenyls (PCBs)	2.00E-05	IRIS (Aroclor 1254) as cited in MADEP (2006)	monkey	5 year oral capsule study	ocular exudate, deformed nail growth inflamed Meibomian glands, decreased antibody response	, medium	3.00E+02	5.71E-06	2.00E-05	MADEP (1995) (ATC) as cited in MADEP (2006)	NA	NA	NA	NA	NA	NA	1.0E+00	1.0E-01	1.1E+00	1.0E+00
Madela						1		-												
Metals Arsenic	3.00E-04	IRIS	human	chronic oral drinking	hyperpigmentation, keratosis,	medium	3.00E+00	5.71E-06	2.00E-05	MADEP 2014	NA	NA	NA	NA	NA	NA	5.0E-01	3.0E-02	1.0E+00	1.0E+00
Barium	2.00E-01	MADEP 2014	NA	water, food NA	vascular complications NA	NA	NA	1.43E-04	5.00E-04	HEAST (Alternate Method) as cited in	rat	4 month, intermittent inhalation	fetotoxicity	NA	1.00E+03	1.00E+00	1.0E+00	1.0E-01	1.1E+00	1.0E+00
Beryllium	2.00E-03	MADEP 2014	NA	NA	NA	NA	NA	5.71E-06	2.00E-05	MADEP (2006) IRIS	human	occupational,	lung - beryllium sensitization, disease	medium	1.00E+01	1.00E+00	1.0E+00	1.0E-01	1.0E+02	1.0E+00
												5 6 6 6 7								
Cadmium (in soil, sediment, or tissue)				NA 2 year fooding	NA	NA	NA 1 00F + 02			MADEP 2014	NA	NA	NA Lestate	NA	NA 2 00F : 02	NA 1 00E : 00	1.0E+00	1.0E-02	NA 0.45.00	1.0E+00
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	1.50E+00	SINI	rat	2 year feeding	none observed	low	1.00E+03	2.86E-05	1.00E-04	לואו	rat	subchronic study	lactate dehydrogenase	medium	3.00E+02	1.00E+00	1.0E+00	1.0E-01	9.1E+00	1.0E+00
Lead	7.50E-04	MADEP (1992) (Residential Shortform) as cited in MADEP (2006)	NA	NA	NA	NA	NA	2.86E-04	1.00E-03	MADEP (1995) (ATC) as cited in MADEP (2006)	NA	NA	NA NA	NA	NA	NA	5.0E-01	6.0E-03	1.0E+00	1.0E+00
Mercury	3.00E-04	IRIS (mercuric chloride)		subchronic feeding study	autoimmune effects	high	1.00E+03	8.57E-05	3.00E-04	IRIS (elemental mercury)	human	inhalation, occupational	hand tremor, increased memory disturbance,	medium	3.00E+01	1.00E+00	5.0E-01	1.0E-01	1.1E+00	1.0E+00
													autonomic dysfunction							

Table G-5 Chronic Toxicity and Absorption Factors Parcel P-3 Boston, Massachusetts

				1						1		1		1						
																	Absor	tion Factors for Evaluating	Chronic Exposu	ires
	Chronic							Chronic	Chronic											
CHEMICAL	Oral	RfD	Test	Study Type	Critical Effect	Confidence	Uncertainty	Inhalation	Inhalation	RfC	Test	Study Type	Critical Effect	Confidence	Uncertainty	Modifying	Soil Ingestion	Soil Dermal Absorption	Dermal Water	Inhalation
	RfD	Source	Species	& Length		Level	Modifying	RfD	RfC	Source	Species	& Length		Level	Factor	Factor	RAF	RAF	RAF	RAF
	(mg/kg/day)						Factors	(mg/kg-day)									(unitless)	(unitless)	(unitless)	(unitless)
Nickel	2.00E-02	IRIS (nickel soluble salts)	rat	2 year, feeding study	decreased body and liver weights, increased heart to body weight ratio	medium-low	3.00E+02	2.86E-04	1.00E-03	MADEP (1995) (ATC) as cited in MADEP (2006)	NA	NA	NA	NA	NA	NA	1.0E+00	2.0E-01	1.0E+01	1.0E+00
Vanadium	9.00E-03	MADEP 2014	NA	NA	NA	NA	NA	2.86E-04	1.00E-03	MADEP (1995) (ATC) as cited in MADEP (2006)	NA	NA	NA	NA	NA	NA	1.0E+00	1.0E-01	2.0E+01	1.0E+00
Zinc	3.00E-01	IRIS	human	clinical studies of diet supplements	decreased erythrocyte Cu, Zn- superoxide dismutase (ESOD) activity	med - high	3.00E+00	4.00E-04	1.40E-03	MADEP ORS as cited in MADEP (2006)	NA	NA	NA	NA	NA	NA	1.0E+00	1.0E-01	2.2E+00	1.0E+00
Notes:																				1
NA = not available/not applicable																				1
References:																				
Massachusetts Department of Enviror	mental Protect	ion (MADEP). 2002. Ch	aracterizin	g Risks Posed by Pe	etroleum Contaminated Sites: Im	plementation of	of MADEP VI	PH/EPH Appi	roach, Fina	Policy. Bureau of W	aste Site Cl	eanup. October.								
Massachusetts Department of Enviror																				
Massachusetts Department of Enviror	mental Protect	ion (MADEP). 2014. Sp	readsheets	Detailing the Devel	opment of the MCP Numerical S	tandards. MC	P Toxicity we	orkbook. June	e, 2014. (ht	tp://www.mass.gov/lis	sts/risk-asse	essment-informati	on)							
United States Environmental Protection	n Agency (USE	PA). 2020. Integrated F	Risk Informa	ation System (IRIS).	On-line database (http://www.ep	a.gov/iris).														

Table G-6 Cancer Potency Factors Parcel P-3 Boston, Massachusetts

								110.4 = 1		1				Abso	rption Factors for Evaluatin	g Carcinogenici	ty
CHEMICAL	Cancer Slope		Weight of	Test	Study Type	Tumor	Inhalation	Unit Risk Factor	•	Weight of	Test	Study Type	Tumor	Soil Ingestion	Soil Dermal Absorption	Dermal Water	Inhalation
OTILIMIOAL	Factor (CSF)	Source	Evidence	Species	& Length	Туре	Slope Factor	(URF)	Source	Evidence	Species	& Length	Type	RAF	RAF	RAF	RAF
	(mg/kg/day) ⁻¹		Classification	эргээг	g	.,,,,	(mg/kg-day) ⁻¹	(mg/m ³) ⁻¹		Classification	эрээлэ	g	- 7,5-	(unitless)	(unitless)	(unitless)	(unitless)
Volatile Organic Compounds																	
Benzene	5.50E-02	IRIS Oral Slope Factor Range (1.5E-2 to 5.5E- 2)	A	human	occupational, inhalation	leukemia	2.73E-02	7.80E-06	MADEP 2014	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Chloroform	NA	IRIS (mode of action is	B2 *	dog	7.5-years oral	liver and kidney	8.05E-02	2.30E-05	IRIS -Do not use if [air]	B2 *	mouse	78-week gavage	hepatocellular	NC	NC	1.0E+00	1.0E+00
		non-linear, chronic RfD is protective of cancer)			capsule				exceeds 400 ug/c.m. **				carcinoma				
1,2-Dichloroethylene (mixed isomers)	NA	MADEP 2014	NA	NA	NA	NA	NA	NA	MADEP 2014	NA	NA	NA	NA	NC	NC	1.0E+00	NC
1,2-Dichloroethylene (cis)	NA	MADEP 2014	NA	NA	NA	NA	NA	NA	MADEP 2014	NA	NA	NA	NA	NC	NC	1.0E+00	NC
Ethyl ether	NA						NA	NA						NC	NC	1.0E+00	NA
Tetrachloroethylene (PCE)	2.00E-02	MADEP 2014	NA	NA	NA	NA	1.05E-02	+	MADEP 2014	NA	NA	NA	NA	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Trichloroethylene (TCE)	5.00E-02	MADEP 2014	NA	NA rat	NA 144 week erel diet	NA liver tumore	1.40E-02	4.00E-06		NA	NA rat	NA 52-week inhalation	NA liver tumore	1.0E+00	3.0E-02	1.0E+00	1.0E+00
Vinyl chloride	1.40E+00	IRIS (number is based on lifetime exposure from birth SEE IRIS for lifetime exposure during adulthood for non- residential scenarios)	A	Tal	144-week oral diet	liver tumors	3.08E-02	8.80E-06	IRIS (number is based on lifetime exposure from birth SEE IRIS for lifetime exposure during adulthood for non- residential scenarios)	A	rai	52-week innaiation	n liver tumors	1.0E+00	3.0E-02	1.6E+00	1.0E+00
Xylenes (mixed isomers)	NA	MADEP 2014	NA	NA	NA	NA	NA	NA	MADEP 2014	NA	NA	NA	NA	NC	NC	1.0E+00	NA
							_										
Semivolatile Organic Compounds																	1
Non-Carcinogenic PAHs Acenaphthene	NA	MADEP 2014	NA	NA	NA	NA	NA	NA	IRIS	NA	NA	NA	NA	NC	NC	1.0E+00	NA
Acenaphthylene	NA NA	IRIS	D D		NA NA	NA NA	NA NA	NA NA	IRIS	D D	NA	NA NA	NA NA	NC NC	NC NC	1.0E+00 1.0E+00	NA NA
Anthracene	NA NA		_		NA	NA NA	NA NA	NA NA		D	NA	NA	NA NA	NC NC	NC NC	1.0E+00 1.0E+00	NA NA
Benzo(ghi)perylene	NA NA		D		NA	NA	NA	NA		D	NA	NA	NA	NC	NC NC	1.0E+00	NA
Fluoranthene	NA	IRIS	D		NA	NA	NA	NA		D	NA	NA	NA	NC	NC NC	1.0E+00	NA
Fluorene	NA	IRIS	D	NA	NA	NA	NA	NA	IRIS	D	NA	NA	NA	NC	NC	1.0E+00	NA
2-Methylnaphthalene	NA	IRIS	data are inadequate to assess carcinogenic potential	NA	NA	NA	NA	NA	IRIS	data are inadequate to assess carcinogenic potential	NA	NA	NA	NC	NC	1.0E+00	NA
Naphthalene	NA	IRIS	С	NA	NA	NA	NA	NA	IRIS	С	NA	NA	NA	NC	NC	1.0E+00	NA
Phenanthrene	NA	IRIS	D	NA	NA	NA	NA	NA	IRIS	D	NA	NA	NA	NC	NC	1.0E+00	NA
Pyrene	NA	IRIS	D	NA	NA	NA	NA	NA	IRIS	D	NA	NA	NA	NC	NC	1.0E+00	NA
Carcinogenic PAHs																	
Benz(a)anthracene	7.30E-01	USEPA (1993) (provisional value based on benzo[a]pyrene) as cited in MADEP (2006)	B2	NA	NA	NA	7.32E-01	2.09E-04	MADEP (2006) (Converted from oral cancer slope factor ²)	B2	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Benzo(a)pyrene	7.30E+00	IRIS	B2	mouse	1 to 197-days diet	forestomach, squamous cell papillomas and carcinomas	7.32E+00	2.09E-03	MADEP (2006) (Converted from oral cancer slope factor ²)	B2	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Benzo(b)fluoranthene	7.30E-01	USEPA (1993) (provisional value based on benzo[a]pyrene) as cited in MADEP (2006)	B2	NA	NA	NA	7.32E-01	2.09E-04	MADEP (2006) (Converted from oral cancer slope factor²)	B2	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Benzo(k)fluoranthene	7.30E-02	USEPA (1993) (provisional value based on benzo[a]pyrene) as cited in MADEP (2006)		NA	NA	NA	7.32E-02	2.09E-05	MADEP (2006) (Converted from oral cancer slope factor ²)	B2	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Chrysene	7.30E-02	MADEP (2006) (provisional value based on benzo(a)pyrene ³)		NA	NA	NA	7.32E-02	2.09E-05	MADEP (2006) (Converted from oral cancer slope factor ²)	B2	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Dibenz(ah)anthracene	7.30E+00	USEPA (1993) (provisional value based on benzo[a]pyrene) as cited in MADEP (2006)	B2	NA	NA	NA	7.32E+00	2.09E-03	MADEP (2006) (Converted from oral cancer slope factor ²)	B2	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Indeno(1,2,3-cd)pyrene	7.30E-01	USEPA (1993) (provisional value based on benzo[a]pyrene) as cited in MADEP (2006)	B2	NA	NA	NA	7.32E-01	2.09E-04	MADEP (2006) (Converted from oral cancer slope factor ²)	B2	NA	NA	NA	3.0E-01	2.0E-02	1.1E+00	1.0E+00
Polychlorinated Biphenyls		IDIO (DCZ) 177 · · ·					0.505:		IDIO						:		
Polychlorinated biphenyls (PCBs)	2.00E+00	IRIS (PCBs); High risk and persistence; Upper- bound	R.7	rat	25 weeks gavage	liver adenoma, carcinoma, cholangiomas	3.50E-01	1.00E-04	CINIL					1.0E+00	1.0E-01	1.1E+00	1.0E+00
Metals																	
Arsenic	1.50E+00	IRIS	A	human	occupational inhalation; drinking water	lung cancer; multiple organ cancers, skin cancer	1.05E+01	3.00E-03	MADEP 2014	NA	NA	NA	NA	5.0E-01	3.0E-02	1.0E+00	1.0E+00

Table G-6 Cancer Potency Factors Parcel P-3 Boston, Massachusetts

														Abso	rption Factors for Evaluatin	g Carcinogenici	ity
								Unit Risk									
CHEMICAL	Cancer Slope		Weight of	Test	Study Type	Tumor	Inhalation	Factor		Weight of	Test	Study Type	Tumor	Soil Ingestion	Soil Dermal Absorption		
	Factor (CSF)	Source	Evidence	Species	& Length	Туре	Slope Factor	(URF)	Source	Evidence	Species	& Length	Туре	RAF	RAF	RAF	RAF
	(mg/kg/day) ⁻¹		Classification				(mg/kg-day) ⁻¹	(m g/m ³) ⁻¹		Classification				(unitless)	(unitless)	(unitless)	(unitless)
Barium		MADEP 2014		NA	NA	NA	NA	NA	IRIS	D	NA	NA	NA	NC	NC	1.0E+00	NA
Beryllium	NA	MADEP 2014	NA	NA	NA	NA	8.40E+00	2.40E-03	IRIS-Do not use if [air] exceeds 4 ug/c.m.	B2	human	inhalation occupational stud	lung, tumors	NC		1.0E+02	1.0E+00
Cadmium (in soil, sediment, or tissue)	NA	MADEP 2014	NA	NA	NA	NA	6.30E+00	1.80E-03	MADEP 2014	NA	NA	NA	NA	NC	NC	1.0E+00	1.0E+00
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	NA	IRIS	D	NA	NA	NA	NA	NA	IRIS	D	NA	NA	NA	NC	NC	1.0E+00	NA
Lead	NA	IRIS	B2	rat	dietary, subcutaneous injection	renal tumors	NA	NA	IRIS	B2	NA	NA	NA	NC	NC	1.0E+00	NA
Mercury	NA	IRIS (mercuric chloride)	С	NA	NA	NA	NA	NA	IRIS (elemental mercury	y) D	NA	NA	NA	NC	NC	1.0E+00	NA
Nickel	NA	IRIS (nickel soluble salts)	NA	NA	NA	NA	1.68E+00	4.80E-04	IRIS (nickel subsulfide) MADEP 2007	Α	human	occupational	lung and nasal	NC	NC	1.0E+00	1.0E+00
Vanadium	NA	MADEP 2014	NA	NA	NA	NA	NA	NA	IRIS (vanadium pentoxide)	NA	NA	NA	NA	NC	NC	1.0E+00	NA
Zinc	NA	IRIS	data are inadequate to assess carcinogenic potential	NA	NA	NA	NA	NA	IRIS	data are inadequate to assess carcinogenic potential	NA	NA	NA	NC	NC	1.0E+00	NA
Notes:																	1
NA = not available/not applicable																	
References:																	
Massachusetts Department of Environm	ental Protection	on (MADEP). 2002. C	haracterizing Risk	s Posed by Pet	roleum Contamir	ated Sites: Implementa	tion of MADEF	VPH/EP	H Approach, Final Po	olicy. Bureau o	f Waste Site Cle	eanup. October.					
Massachusetts Department of Environm	ental Protection	on (MADEP), 2006. S	preadsheets Deta	iling the Develo	pment of the MC	P Numerical Standards	. MCP Toxicity	y workboo	k. January 12, 2006	. (http://www.m	ass.gov/dep/cle	eanup/laws/pubn	ot04.htm)				
Massachusetts Department of Environm																	1
United States Environmental Protection								,					,	+		 	+

Table G-7 SUBCHRONIC RISK CALCULATIONS

Default Tresspasser Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

											Total Subchronic	
											Hazard Index	
	Exposure Point	t Concentrations	Subchronic	Average Daily	Dose and Expos	sure Estimates	Sub	chronic	Hazard Index E	stimates	Estimates	
	Soil	Fugitive Dust	Soil Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil Ingestion		Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil	All
CHEMICAL	(mg/kg)	(mg/m ³)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/m3)						Media
Volatile Organic Compounds												
Benzene	4.90E-02	1.57E-09	3.52E-08	2.40E-09	3.24E-11	2.21E-11	4E-06	2E-07	3E-09	2E-09	4.E-06	4.E-06
Trichloroethylene (TCE)												
Xylenes (mixed isomers)												
Petroleum Hydrocarbon Fractions												
EPH												
C19-C36 Aliphatic	5.50E+01	1.76E-06	3.95E-05	5.38E-05	3.64E-08		7E-06	9E-06	6E-09		2.E-05	2.E-05
C11-C22 Aromatic	1.90E+02	6.08E-06	4.09E-05	9.30E-05	3.77E-08	8.55E-08	1E-04	3E-04	1E-07	2E-07	4.E-04	4.E-04
Semivolatile Organic Compounds												
Non-Carcinogenic PAHs	4.005.00	F 40F 00	2.455.07	7.005.07	2.405.40	7.005.40	05.00	45.00	05.00	45.00	C F 0C	C F 0C
Acenaphthene	1.60E+00	5.12E-08	3.45E-07	7.83E-07	3.18E-10	7.20E-10	2E-06	4E-06	2E-09	1E-09	6.E-06	6.E-06
Acenaphthylene	6.70E-01	2.14E-08	1.44E-07	3.28E-07	1.33E-10	3.02E-10	5E-07	1E-06	4E-10	6E-10	2.E-06	2.E-06
Anthracene	3.70E+00	1.18E-07	7.97E-07	1.81E-06	7.35E-10	1.67E-09	8E-07	2E-06	7E-10	3E-09	3.E-06	3.E-06
Benzo(ghi)perylene	6.10E+00	1.95E-07	1.31E-06	2.99E-06	1.21E-09	2.75E-09	4E-06	1E-05	4E-09	5E-09	1.E-05	1.E-05
Fluoranthene	2.00E+01	6.40E-07	4.31E-06	9.79E-06	3.97E-09	9.00E-09	1E-05	2E-05	1E-08	2E-08	4.E-05	4.E-05
Fluorene	1.40E+00	4.48E-08	3.02E-07	6.85E-07	2.78E-10	6.30E-10	8E-07	2E-06	7E-10	1E-09	2.E-06	2.E-06
2-Methylnaphthalene	3.40E-01	1.09E-08	7.33E-08	1.66E-07	6.75E-11	1.53E-10	2E-05	4E-05	2E-08	3E-10	6.E-05	6.E-05
Naphthalene	6.90E-01	2.21E-08	1.49E-07	3.38E-07	1.37E-10	3.11E-10	7E-07	2E-06	7E-10	1E-07	3.E-06	3.E-06
Phenanthrene	1.80E+01	5.76E-07	3.88E-06	8.81E-06	3.57E-09	8.10E-09	1E-05	3E-05	1E-08	2E-08	4.E-05	4.E-05
Pyrene	1.60E+01	5.12E-07	3.45E-06	7.83E-06	3.18E-09	7.20E-09	1E-05	3E-05	1E-08	1E-08	4.E-05	4.E-05
Carcinogenic PAHs												
Benz(a)anthracene	9.40E+00	3.01E-07	2.03E-06	9.20E-07	1.87E-09	4.23E-09	7E-06	3E-06	6E-09	8E-09	1.E-05	1.E-05
Benzo(a)pyrene	8.70E+00	2.78E-07	1.87E-06	8.52E-07	1.73E-09	3.92E-09	6E-06	3E-06	6E-09	8E-09	9.E-06	9.E-06
Benzo(b)fluoranthene	1.20E+01	3.84E-07	2.59E-06	1.17E-06	2.38E-09	5.40E-09	9E-06	4E-06	8E-09	1E-08	1.E-05	1.E-05
Benzo(k)fluoranthene	4.40E+00	1.41E-07	9.48E-07	4.31E-07	8.74E-10	1.98E-09	3E-06	1E-06	3E-09	4E-09	5.E-06	5.E-06
Chrysene	9.10E+00	2.91E-07	1.96E-06	8.91E-07	1.81E-09	4.10E-09	7E-06	3E-06	6E-09	8E-09	1.E-05	1.E-05
Dibenz(ah)anthracene	1.60E+00	5.12E-08	3.45E-07	1.57E-07	3.18E-10	7.20E-10	1E-06	5E-07	1E-09	1E-09	2.E-06	2.E-06
Indeno(1,2,3-cd)pyrene	7.00E+00	2.24E-07	1.51E-06	6.85E-07	1.39E-09	3.15E-09	5E-06	2E-06	5E-09	6E-09	7.E-06	7.E-06
Put ally days a Picture to												
Polychlorinated Biphenyls	6.80E-02	2.18E-09	4.88E-08	2 225 00	4 FOT 11	3.06E-11	4E 02	7E-04	9E-07	25.00	2.E-03	2 5 02
Polychlorinated biphenyls (PCBs)	6.80E-02	2.18E-09	4.88E-08	3.33E-08	4.50E-11	3.06E-11	1E-03	/E-04	9E-07	2E-06	2.E-03	2.E-03
Metals			*									
Arsenic	1.37E+01	4.37E-07	4.90E-06	2.00E-06	4.52E-09	6.14E-09	2E-02	7E-03	2E-05	3E-04	2.E-02	2.E-02
Barium	7.76E+01	2.48E-06	5.58E-05	3.80E-05	5.14E-08	3.49E-08	8E-04	5E-04	7E-07	7E-06	1.E-03	1.E-03
Bervlium	3.60E-01	1.15E-08	2.59E-07	1.76E-07	2.38E-10	1.62E-10	5E-05	4E-05	5E-08	8E-06	1.E-04	1.E-03
Cadmium (in soil, sediment, or tissue)	2.40E+00	7.68E-08	1.72E-06	1.17E-07	1.59E-09	1.08E-09	3E-03	2E-04	3E-06	5E-05	4.E-03	4.E-03
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	2.61E+01	8.35E-07	1.87E-05	1.28E-05	1.73E-08	1.17E-08	9E-04	6E-04	9E-07	4E-05	2.E-03	2.E-03
Lead	3.36E+02	1.08E-05	1.21E-04	9.87E-06	1.11E-07	1.51E-07	2E-01	1E-02	1E-04	2E-04	2.E-01	2.E-01
Mercury	8.08E-01	2.59E-08	2.90E-07	3.95E-07	2.67E-10	3.64E-10	1E-03	1E-02	9E-07	1E-06	2.E-03	2.E-03
Nickel	1.10E+01	3.52E-07	7.90E-06	1.08E-05	7.28E-09	4.95E-09	4E-04	5E-04	4E-07	5E-06	9.E-04	9.E-04
Vanadium	2.10E+01	6.72E-07	1.51E-05	1.03E-05	1.39E-08	9.45E-09	2E-03	1E-03	2E-06	9E-06	3.E-03	3.E-04
Zinc	1.10E+02	3.52E-06	7.90E-05	5.38E-05	7.28E-08	4.95E-08	3E-04	2E-04	2E-07	4E-05	5.E-04	5.E-04
LING	1.10L+0Z	J.JZL-00	1.501-05	J.JUL-UJ	1.20L=00	7.55L=00	JL-04	2L-04	ZL-01	7 ∟-03	J.L=U4	J.L-04

	Pat	Media Risks	Total		
2E-01	3E-02	2E-04	6E-04	2.E-01	2.1.E-01

Table G-8 CHRONIC RISK CALCULATIONS Default Tresspasser Parcel P-3, Tremont Street & Whittier Streets

Boston, Massachusetts

	Exposure Poir	nt Concentrations	Chronic A	Average Daily I	Oose and Exposi	ure Estimates		Chronic H	azard Index Estir	mates	Total Chronic Hazard Index Estimates	
	Soil	Fugitive Dust	Soil Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil	All
CHEMICAL	(mg/kg)	(mg/m³)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/m3)						Media
Volatile Organic Compounds												
Benzene	4.90E-02	1.57E-09	1.17E-08		1.08E-11	1.11E-11	3E-06		3E-09	1E-09	3.E-06	3.E-06
Trichloroethylene (TCE)												
Xylenes (mixed isomers)												
Petroleum Hydrocarbon Fractions												
EPH												
C19-C36 Aliphatic	5.50E+01	1.76E-06	1.32E-05	2.43E-05	1.21E-08		7E-06	1E-05	6E-09		2.E-05	2.E-05
C11-C22 Aromatic	1.90E+02	6.08E-06	1.36E-05	4.19E-05	1.26E-08	4.31E-08	5E-04	1E-03	4E-07	9E-07	2.E-03	2.E-03
Semivolatile Organic Compounds Non-Carcinogenic PAHs												
Acenaphthene	1.60E+00	5.12E-08	1.15E-07	3.53E-07	1.06E-10	3.63E-10	2E-06	6E-06	2E-09	7E-09	8.E-06	8.E-06
Acenaphthylene	6.70E-01	2.14E-08	4.81E-08	1.48E-07	4.44E-11	1.52E-10	2E-06	5E-06	1E-09	3E-09	7.E-06	7.E-06
Anthracene	3.70E+00	1.18E-07	2.66E-07	8.16E-07	2.45E-10	8.39E-10	9E-07	3E-06	8E-10	2E-08	4.E-06	4.E-06
Benzo(ghi)perylene	6.10E+00	1.95E-07	4.38E-07	1.35E-06	4.04E-10	1.38E-09	1E-05	4E-05	1E-08	3E-08	6.E-05	6.E-05
Fluoranthene	2.00E+01	6.40E-07	1.44E-06	4.41E-06	1.32E-09	4.53E-09	4E-05	1E-04	3E-08	9E-08	1.E-04	1.E-04
Fluorene	1.40E+00	4.48E-08	1.01E-07	3.09E-07	9.27E-11	3.17E-10	3E-06	8E-06	2E-09	6E-09	1.E-05	1.E-05
2-Methylnaphthalene	3.40E-01	1.09E-08	2.44E-08	7.50E-08	2.25E-11	7.71E-11	6E-06	2E-05	6E-09	2E-09	2.E-05	2.E-05
Naphthalene	6.90E-01	2.21E-08	4.96E-08	1.52E-07	4.57E-11	1.56E-10	2E-06	8E-06	2E-09	5E-08	1.E-05	1.E-05
Phenanthrene	1.80E+01	5.76E-07	1.29E-06	3.97E-06	1.19E-09	4.08E-09	4E-05	1E-04	4E-08	8E-08	2.E-04	2.E-04
Pyrene	1.60E+01	5.12E-07	1.15E-06	3.53E-06	1.06E-09	3.63E-09	4E-05	1E-04	4E-08	7E-08	2.E-04	2.E-04
Carcinogenic PAHs												
Benz(a)anthracene	9.40E+00	3.01E-07	6.75E-07	4.15E-07	6.22E-10	2.13E-09	2E-05	1E-05	2E-08	4E-08	4.E-05	4.E-05
Benzo(a)pyrene	8.70E+00	2.78E-07	6.25E-07	3.84E-07	5.76E-10	1.97E-09	2E-05	1E-05	2E-08	4E-08	3.E-05	3.E-05
Benzo(b)fluoranthene	1.20E+01	3.84E-07	8.62E-07	5.29E-07	7.94E-10	2.72E-09	3E-05	2E-05	3E-08	5E-08	5.E-05	5.E-05
Benzo(k)fluoranthene	4.40E+00	1.41E-07	3.16E-07	1.94E-07	2.91E-10	9.97E-10	1E-05	6E-06	1E-08	2E-08	2.E-05	2.E-05
Chrysene	9.10E+00	2.91E-07	6.54E-07	4.01E-07	6.02E-10	2.06E-09	2E-05	1E-05	2E-08	4E-08	4.E-05	4.E-05
Dibenz(ah)anthracene	1.60E+00	5.12E-08	1.15E-07	7.06E-08	1.06E-10	3.63E-10	4E-06	2E-06	4E-09	7E-09	6.E-06	6.E-06
Indeno(1,2,3-cd)pyrene	7.00E+00	2.24E-07	5.03E-07	3.09E-07	4.63E-10	1.59E-09	2E-05	1E-05	2E-08	3E-08	3.E-05	3.E-05
Polychlorinated Biphenyls												
Polychlorinated biphenyls (PCBs)	6.80E-02	2.18E-09	1.63E-08	1.50E-08	1.50E-11	1.54E-11	8E-04	7E-04	8E-07	8E-07	2.E-03	2.E-03
Metals												
Arsenic	1.37E+01	4.37E-07	1.63E-06	9.03E-07	1.51E-09	3.09E-09	5E-03	3E-03	5E-06	2E-04	9.E-03	9.E-03
Barium	7.76E+01	2.48E-06	1.86E-05	1.71E-05	1.71E-08	1.76E-08	9E-05	9E-05	9E-08	4E-05	2.E-04	2.E-04
Bervllium	3.60E-01	1.15E-08	8.62E-08	7.94E-08	7.94E-11	8.16E-11	4E-05	4E-05	4E-08	4E-06	9.E-05	9.E-05
Cadmium (in soil, sediment, or tissue)	2.40E+00	7.68E-08	5.75E-07	5.29E-08	5.30E-10	5.44E-10	1E-03	1E-04	1E-06	3E-05	1.E-03	1.E-03
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	2.61E+01	8.35E-07	6.25E-06	5.76E-06	5.76E-09	5.91E-09	4E-06	4E-06	4E-09	6E-05	7.E-05	7.E-05
Lead	3.36E+02	1.08E-05	4.03E-05	4.45E-06	3.71E-08	7.62E-08	5E-02	6E-03	5E-05	8E-05	6.E-02	6.E-02
Mercury	8.08E-01	2.59E-08	9.67E-08	1.78E-07	8.91E-11	1.83E-10	3E-04	6E-04	3E-07	6E-07	9.E-04	9.E-04
Nickel	1.10E+01	3.52E-07	2.63E-06	4.85E-06	2.43E-09	2.49E-09	1E-04	2E-04	1E-07	2E-06	4.E-04	4.E-04
Vanadium	2.10E+01	6.72E-07	5.03E-06	4.63E-06	4.63E-09	4.76E-09	6E-04	5E-04	5E-07	5E-06	1.E-03	1.E-03
Zinc	1.10E+02	3.52E-06	2.63E-05	2.43E-05	2.43E-08	2.49E-08	9E-05	8E-05	8E-08	2E-05	2.E-04	2.E-04

	Pat	hway Risks		Media Risks	Total
6E-02	1E-02	6E-05	4E-04	8E-02	8E-02

Table G-9 CANCER RISK CALCULATIONS Default Tresspasser Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

	Exposure Poin	nt Concentrations	Av	erage Daily Do	ose (lifetime) Est	imates		Carcinoge	enic Risk Estin	nates	Total Carcinogenic Risk Estimates	
CHEMICAL	Soil (mg/kg)	Fugitive Dust (mg/m³)	Soil Ingestion (mg/kg/day)	Soil Dermal (mg/kg/day)	Fugitive Dust Ingestion (mg/kg/day)	Fugitive Dust Inhalation (ug/m3)	Soil Ingestion		Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil	All Media
	(IIIg/kg)	(ilig/ili)	(IIIg/kg/uay)	(Ilig/kg/uay)	(IIIg/kg/uay)	(ug/ilis)						Weula
Volatile Organic Compounds Benzene	4.90E-02	1.57E-09	1.17E-09	3.24E-10	1.08E-12	1.11E-09	6.E-11	2.E-11	6.E-14	9.E-15	8.E-11	8.E-11
	4.90E-02	1.57 E-09	1.17 =-09	3.24E-10	1.00E-12	1.11E-09	0.E-11	Z.E-11	0.⊑-14	9.⊑-15	0.⊑-11	0.⊑-11
Trichloroethylene (TCE)												
Xylenes (mixed isomers)												
Petroleum Hydrocarbon Fractions EPH												
C19-C36 Aliphatic	5.50E+01	1.76E-06										
C11-C22 Aromatic	1.90E+02	6.08E-06										
Semivolatile Organic Compounds Non-Carcinogenic PAHs												
Acenaphthene	1.60E+00	5.12E-08		4								
Acenaphthylene	6.70E-01	2.14E-08		-								
Anthracene	3.70E+00	1.18E-07										
Benzo(ghi)perylene	6.10E+00	1.95E-07										
Fluoranthene	2.00E+01	6.40E-07			4							
Fluorene	1.40E+00	4.48E-08										
2-Methylnaphthalene	3.40E-01	1.09E-08	_		<u>_</u>							
Naphthalene	6.90E-01	2.21E-08										
Phenanthrene	1.80E+01	5.76E-07										
Pyrene	1.60E+01	5.12E-07										
Carcinogenic PAHs												
Benz(a)anthracene	9.40E+00	3.01E-07	6.75E-08	4.15E-08	6.22E-11	2.13E-07	5.E-08	3.E-08	5.E-11	4.E-11	8.E-08	8.E-08
Benzo(a)pyrene	8.70E+00	2.78E-07	6.25E-08	3.84E-08	5.76E-11	1.97E-07	5.E-07	3.E-07	4.E-10	4.E-10	7.E-07	7.E-07
Benzo(b)fluoranthene	1.20E+01	3.84E-07	8.62E-08	5.29E-08	7.94E-11	2.72E-07	6.E-08	4.E-08	6.E-11	6.E-11	1.E-07	1.E-07
Benzo(k)fluoranthene	4.40E+00	1.41E-07	3.16E-08	1.94E-08	2.91E-11	9.97E-08	2.E-09	1.E-09	2.E-12	2.E-12	4.E-09	4.E-09
Chrysene	9.10E+00	2.91E-07	6.54E-08	4.01E-08	6.02E-11	2.06E-07	5.E-09	3.E-09	4.E-12	4.E-12	8.E-09	8.E-09
Dibenz(ah)anthracene	1.60E+00	5.12E-08	1.15E-08	7.06E-09	1.06E-11	3.63E-08	8.E-08	5.E-08	8.E-11	8.E-11	1.E-07	1.E-07
Indeno(1,2,3-cd)pyrene	7.00E+00	2.24E-07	5.03E-08	3.09E-08	4.63E-11	1.59E-07	4.E-08	2.E-08	3.E-11	3.E-11	6.E-08	6.E-08
Delivebleringted Binhamile												
Polychlorinated Biphenyls Polychlorinated biphenyls (PCBs)	6.80E-02	2.18E-09	1.63E-09	1.50E-09	1.50E-12	1.54E-09	3.E-09	3.E-09	3.E-12	2.E-13	6.E-09	6.E-09
Polychionnated diprientyls (PCBs)	0.00E-02	2.10E-09	1.03E-09	1.500-03	1.50E-12	1.54E-03	J.E-09	3.⊑-09	J.E-12	2.6-13	0.E-09	0.⊑-09
Metals												
Arsenic	1.37E+01	4.37E-07	1.63E-07	9.03E-08	1.51E-10	3.09E-07	2.E-07	1.E-07	2.E-10	9.E-10	4.E-07	4.E-07
Barium	7.76E+01	2.48E-06										
Beryllium	3.60E-01	1.15E-08				8.16E-09				2.E-11	2.E-11	2.E-11
Cadmium (in soil, sediment, or tissue)	2.40E+00	7.68E-08				5.44E-08				1.E-10	1.E-10	1.E-10
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	2.61E+01	8.35E-07										
Lead	3.36E+02	1.08E-05										
Mercury	8.08E-01	2.59E-08										
Nickel	1.10E+01	3.52E-07				2.49E-07				1.E-10	1.E-10	1.E-10
Vanadium	2.10E+01	6.72E-07										
Zinc	1.10E+02	3.52E-06										

	Path	way Risks	Media Risks	Total	
9E-07	6E-07	9E-10	2E-09	2.E-06	2.E-06

Table G-10 SUBCHRONIC RISK CALCULATIONS

Commercial Worker

Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

	1		1				_				Total Subchronic	
											Hazard Index	
	Exposure Poin	t Concentrations	Subchronic	Average Daily	Dose and Expo	sure Estimates	Sub	chronic	Hazard Index E	stimates	Estimates	
	Soil	Fugitive Dust	Soil Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil	All
CHEMICAL	(mg/kg)	(mg/m³)	(mg/kg/day)		(mg/kg/day)	(mg/m3)	J		3			Media
Volatile Organic Compounds												
Benzene	4.90E-02	1.57E-09	3.05E-08	6.50E-10	3.75E-10	1.86E-10	3E-06	6E-08	4E-08	2E-08	3.E-06	3.E-06
Trichloroethylene (TCE)												
Xylenes (mixed isomers)												
Petroleum Hydrocarbon Fractions												
EPH												
C19-C36 Aliphatic	5.50E+01	1.76E-06	3.43E-05	1.46E-05	4.21E-07		6E-06	2E-06	7E-08		8.E-06	8.E-06
C11-C22 Aromatic	1.90E+02	6.08E-06	3.55E-05	2.52E-05	4.36E-07	7.19E-07	1E-04	8E-05	1E-06	1E-06	2.E-04	2.E-04
Semivolatile Organic Compounds												
Non-Carcinogenic PAHs												
Acenaphthene	1.60E+00	5.12E-08	2.99E-07	2.12E-07	3.67E-09	6.06E-09	1E-06	1E-06	2E-08	1E-08	3.E-06	3.E-06
Acenaphthylene	6.70E-01	2.14E-08	1.25E-07	8.89E-08	1.54E-09	2.54E-09	4E-07	3E-07	5E-09	5E-09	7.E-07	7.E-07
Anthracene	3.70E+00	1.18E-07	6.91E-07	4.91E-07	8.49E-09	1.40E-08	7E-07	5E-07	8E-09	3E-08	1.E-06	1.E-06
Benzo(ghi)perylene	6.10E+00	1.95E-07	1.14E-06	8.09E-07	1.40E-08	2.31E-08	4E-06	3E-06	5E-08	5E-08	7.E-06	7.E-06
Fluoranthene	2.00E+01	6.40E-07	3.74E-06	2.65E-06	4.59E-08	7.57E-08	9E-06	7E-06	1E-07	2E-07	2.E-05	2.E-05
Fluorene	1.40E+00	4.48E-08	2.62E-07	1.86E-07	3.21E-09	5.30E-09	7E-07	5E-07	8E-09	1E-08	1.E-06	1.E-06
2-Methylnaphthalene	3.40E-01	1.09E-08	6.35E-08	4.51E-08	7.81E-10	1.29E-09	2E-05	1E-05	2E-07	3E-09	3.E-05	3.E-05
Naphthalene	6.90E-01	2.21E-08	1.29E-07	9.15E-08	1.58E-09	2.61E-09	6E-07	5E-07	8E-09	9E-07	2.E-06	2.E-06
Phenanthrene	1.80E+01	5.76E-07	3.36E-06	2.39E-06	4.13E-08	6.82E-08	1E-05	8E-06	1E-07	1E-07	2.E-05	2.E-05
Pyrene	1.60E+01	5.12E-07	2.99E-06	2.12E-06	3.67E-08	6.06E-08	1E-05	7E-06	1E-07	1E-07	2.E-05	2.E-05
Carcinogenic PAHs												
Benz(a)anthracene	9.40E+00	3.01E-07	1.76E-06	2.49E-07	2.16E-08	3.56E-08	6E-06	8E-07	7E-08	7E-08	7.E-06	7.E-06
Benzo(a)pyrene	8.70E+00	2.78E-07	1.63E-06	2.31E-07	2.00E-08	3.29E-08	5E-06	8E-07	7E-08	7E-08	6.E-06	6.E-06
Benzo(b)fluoranthene	1.20E+01	3.84E-07	2.24E-06	3.18E-07	2.76E-08	4.54E-08	7E-06	1E-06	9E-08	9E-08	9.E-06	9.E-06
Benzo(k)fluoranthene	4.40E+00	1.41E-07	8.22E-07	1.17E-07	1.01E-08	1.67E-08	3E-06	4E-07	3E-08	3E-08	3.E-06	3.E-06
Chrysene	9.10E+00	2.91E-07	1.70E-06	2.41E-07	2.09E-08	3.45E-08	6E-06	8E-07	7E-08	7E-08	7.E-06	7.E-06
Dibenz(ah)anthracene	1.60E+00	5.12E-08	2.99E-07	4.24E-08	3.67E-09	6.06E-09	1E-06	1E-07	1E-08	1E-08	1.E-06	1.E-06
Indeno(1,2,3-cd)pyrene	7.00E+00	2.24E-07	1.31E-06	1.86E-07	1.61E-08	2.65E-08	4E-06	6E-07	5E-08	5E-08	5.E-06	5.E-06
Polychlorinated Biphenyls												
Polychlorinated biphenyls (PCBs)	6.80E-02	2.18E-09	4.24E-08	9.02E-09	5.20E-10	2.57E-10	8E-04	2E-04	1E-05	1E-05	1.E-03	1.E-03
Metals			▼									
Arsenic	1.37E+01	4.37E-07	4.25E-06	5.43E-07	5.22E-08	5.17E-08	1E-02	2E-03	2E-04	3E-03	2.E-02	2.E-02
Barium	7.76E+01	2.48E-06	4.23L-00 4.84E-05	1.03E-05	5.94E-07	2.94E-07	7E-04	1E-04	8E-06	6E-05	9.E-04	9.E-04
Beryllium	3.60E-01	1.15E-08	2.24E-07	4.77E-08	2.76E-09	1.36E-09	4E-05	1E-04	6E-07	7E-05	1.E-04	1.E-04
Cadmium (in soil, sediment, or tissue)	2.40E+00	7.68E-08	1.49E-06	3.18E-08	1.84E-08	9.09E-09	3E-03	6E-05	4E-05	5E-04	4.E-03	4.E-03
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	2.61E+01	8.35E-07	1.62E-05	3.46E-06	2.00E-07	9.88E-08	8E-04	2E-04	1E-05	3E-04	1.E-03	1.E-03
Lead	3.36E+02	1.08E-05	1.05E-04	2.68E-06	1.29E-06	1.27E-06	1E-01	4E-03	2E-03	1E-03	1.E-01	1.E-01
Mercury	8.08E-01	2.59E-08	2.52E-07	1.07E-07	3.09E-09	3.06E-09	8E-04	4E-04	1E-05	1E-05	1.E-03	1.E-01
Nickel	1.10E+01	3.52E-07	6.85E-06	2.92E-06	8.42E-08	4.17E-08	3E-04	1E-04	4E-06	4E-05	5.E-04	5.E-04
Vanadium	2.10E+01	6.72E-07	1.31E-05	2.79E-06	1.61E-07	7.95E-08	1E-03	3E-04	4E-00	8E-05	2.E-03	2.E-03
Zinc	1.10E+02	3.52E-06	6.85E-05	1.46E-05	8.42E-07	4.17E-07	2E-04	5E-05	3E-06	3E-04	6.E-04	6.E-04
Line	1.101.02	J.JZL-00	0.00L-00	1.400-03	U.72L-U/	7.17L-07	2L-04	JL-0J	JL-00	JL-0 1	U.L-UT	U.L-U4

	Pat	Media Risks	Total	ı		
2E-01	7E-03	2E-03	5E-03	2.E-01	1.8.E-01	l

Table G-11 CHRONIC RISK CALCULATIONS

Commercial Worker Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

	Exposure Poir	nt Concentrations	Chronic A	verage Daily [ose and Exposi	ure Estimates		Chronic H	azard Index Estir	mates	Total Chronic Hazard Index Estimates	
	Soil	Fugitive Dust	Soil Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil	All
CHEMICAL	(mg/kg)	(mg/m³)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/m3)						Media
Volatile Organic Compounds			. === ==		=						. =	. =
Benzene	4.90E-02	1.57E-09	1.72E-08		2.11E-10	1.10E-10	4E-06		5E-08	1E-08	4.E-06	4.E-06
Trichloroethylene (TCE)												
Xylenes (mixed isomers)												
Petroleum Hydrocarbon Fractions												
EPH												
C19-C36 Aliphatic	5.50E+01	1.76E-06	1.93E-05	8.20E-06	2.37E-07		1E-05	4E-06	1E-07		1.E-05	1.E-05
C11-C22 Aromatic	1.90E+02	6.08E-06	2.00E-05	1.42E-05	2.45E-07	4.26E-07	7E-04	5E-04	8E-06	9E-06	1.E-03	1.E-03
- · · · · · · · · · · · · · · · · ·		*****										
Semivolatile Organic Compounds												
Non-Carcinogenic PAHs Acenaphthene	1.60E+00	5.12E-08	1.68E-07	1.19E-07	2.06E-09	3.58E-09	3E-06	2E-06	3E-08	7E-08	5.E-06	5.E-06
Acenaphthylene	6.70E-01	2.14E-08	7.04E-08	4.99E-08	8.64E-10	1.50E-09	2E-06	2E-06	3E-08	3E-08	4.E-06	4.E-06
Anthracene	3.70E+00	1.18E-07	3.89E-07	2.76E-07	4.77E-09	8.29E-09	1E-06	9E-07	2E-08	2E-07	2.E-06	2.E-06
Benzo(ghi)perylene	6.10E+00	1.95E-07	6.41E-07	4.55E-07	7.87E-09	1.37E-08	2E-05	2E-05	3E-07	3E-07	4.E-05	4.E-05
Fluoranthene	2.00E+01	6.40E-07	2.10E-06	1.49E-06	2.58E-08	4.48E-08	5E-05	4E-05	6E-07	9E-07	9.E-05	9.E-05
Fluorene	1.40E+00	4.48E-08	1.47E-07	1.43E-00	1.81E-09	3.14E-09	4E-06	3E-06	5E-08	6E-08	6.E-06	6.E-06
2-Methylnaphthalene	3.40E-01	1.09E-08	3.57E-08	2.53E-08	4.39E-10	7.62E-10	9E-06	6E-06	1E-07	2E-08	2.E-05	2.E-05
Naphthalene	6.90E-01	2.21E-08	7.25E-08	5.14E-08	8.90E-10	1.55E-09	4E-06	3E-06	4E-08	5E-07	7.E-06	7.E-06
Phenanthrene	1.80E+01	5.76E-07	1.89E-06	1.34E-06	2.32E-08	4.03E-08	6E-05	4E-05	8E-07	8E-07	1.E-04	1.E-04
Pyrene	1.60E+01	5.12E-07	1.68E-06	1.19E-06	2.06E-08	3.58E-08	6E-05	4E-05	7E-07	7E-07	1.E-04	1.E-04
Carcinogenic PAHs												
Benz(a)anthracene	9.40E+00	3.01E-07	9.87E-07	1.40E-07	1.21E-08	2.11E-08	3E-05	5E-06	4E-07	4E-07	4.E-05	4.E-05
Benzo(a)pyrene	8.70E+00	2.78E-07	9.14E-07	1.30E-07	1.12E-08	1.95E-08	3E-05	4E-06	4E-07	4E-07	4.E-05	4.E-05
Benzo(b)fluoranthene	1.20E+01	3.84E-07	1.26E-06	1.79E-07	1.55E-08	2.69E-08	4E-05	6E-06	5E-07	5E-07	5.E-05	5.E-05
Benzo(k)fluoranthene	4.40E+00	1.41E-07	4.62E-07	6.56E-08	5.68E-09	9.86E-09	2E-05	2E-06	2E-07	2E-07	2.E-05	2.E-05
Chrysene	9.10E+00	2.91E-07	9.56E-07	1.36E-07	1.17E-08	2.04E-08	3E-05	5E-06	4E-07	4E-07	4.E-05	4.E-05
Dibenz(ah)anthracene	1.60E+00	5.12E-08	1.68E-07	2.38E-08	2.06E-09	3.58E-09	6E-06	8E-07	7E-08	7E-08	7.E-06	7.E-06
Indeno(1,2,3-cd)pyrene	7.00E+00	2.24E-07	7.35E-07	1.04E-07	9.03E-09	1.57E-08	2E-05	3E-06	3E-07	3E-07	3.E-05	3.E-05
P. L. H. C. H. IPILL L. I												
Polychlorinated Biphenyls Polychlorinated biphenyls (PCBs)	6.80E-02	2.18E-09	2.38E-08	5.07E-09	2.92E-10	1.52E-10	1E-03	3E-04	1E-05	8E-06	1.E-03	1.E-03
Polychionnated dipneriyis (PCBs)	0.00E-02	2.10E-09	2.36⊑-06	5.07E-09	2.92E-10	1.52E-10	IE-03	3E-04	IE-05	0E-00	1.E-03	1.E-03
Metals			~									
Arsenic	1.37E+01	4.37E-07	2.39E-06	3.05E-07	2.94E-08	3.06E-08	8E-03	1E-03	1E-04	2E-03	1.E-02	1.E-02
Barium	7.76E+01	2.48E-06	2.72E-05	5.79E-06	3.34E-07	1.74E-07	1E-04	3E-05	2E-06	3E-04	5.E-04	5.E-04
Beryllium	3.60E-01	1.15E-08	1.26E-07	2.68E-08	1.55E-09	8.06E-10	6E-05	1E-05	8E-07	4E-05	1.E-04	1.E-04
Cadmium (in soil, sediment, or tissue)	2.40E+00	7.68E-08	8.40E-07	1.79E-08	1.03E-08	5.38E-09	2E-03	4E-05	2E-05	3E-04	2.E-03	2.E-03
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	2.61E+01	8.35E-07	9.13E-06	1.94E-06	1.12E-07	5.84E-08	6E-06	1E-06	7E-08	6E-04	6.E-04	6.E-04
Lead	3.36E+02	1.08E-05	5.89E-05	1.50E-06	7.23E-07	7.53E-07	8E-02	2E-03	1E-03	8E-04	8.E-02	8.E-02
Mercury	8.08E-01 1.10E+01	2.59E-08 3.52E-07	1.41E-07 3.85E-06	6.02E-08 1.64E-06	1.74E-09 4.73E-08	1.81E-09 2.46E-08	5E-04 2E-04	2E-04 8E-05	6E-06 2E-06	6E-06 2E-05	7.E-04 3.E-04	7.E-04 3.E-04
Nickel	1.10E+01 2.10E+01	3.52E-07 6.72E-07	3.85E-06 7.35E-06	1.64E-06 1.57E-06	4.73E-08 9.03E-08	2.46E-08 4.70E-08	2E-04 8E-04	8E-05 2E-04	2E-06 1E-05	2E-05 5E-05	3.E-04 1.E-03	3.E-04 1.E-03
Vanadium Zinc	1.10E+01	6.72E-07 3.52E-06	7.35E-06 3.85E-05	8.20E-06	9.03E-08 4.73E-07	4.70E-08 2.46E-07	8E-04 1E-04	2E-04 3E-05	1E-05 2E-06	5E-05 2E-04	1.E-03 3.E-04	1.E-03 3.E-04
ZIIIC	1.101-02	J.JZL-00	J.UJL-UJ	J.ZUL-00	+.13L=01	2.40L-01	1L=04	JL-0J	ZL-00	ZL-04	J.L=04	J.L-04

	Pat	hway Risks	Media Risks	Total	
9E-02	4E-03	1E-03	4E-03	1E-01	1E-01

Table G-12 CANCER RISK CALCULATIONS Commercial Worker Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

	Exposure Poir	nt Concentrations	Av	erage Daily Do	ose (lifetime) Est	imates	ď	Carcinoge	enic Risk Estim	ates	Total Carcinogenic Risk Estimates	
CHEMICAL	Soil	Fugitive Dust (mg/m³)	Soil Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil Ingestion		Fugitive Dust Ingestion	Fugitive Dust Inhalation	Soil	All Media
	(mg/kg)	(ilig/ili)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(ug/m3)		_				Wedia
/olatile Organic Compounds	4.90E-02	1.57E-09	6.13E-09	3.91E-10	7.53E-11	3.92E-08	3.E-10	2.E-11	4.E-12	3.E-13	4.E-10	4.E-10
Benzene	4.90E-02	1.57E-09	6.13E-09	3.91E-10	7.53E-11	3.92E-06	3.E-10	2.E-11	4.E-12	3.E-13	4.E-10	4.E-10
Trichloroethylene (TCE)												
(ylenes (mixed isomers)												
Petroleum Hydrocarbon Fractions EPH												
C19-C36 Aliphatic	5.50E+01	1.76E-06										
C11-C22 Aromatic	1.90E+02	6.08E-06										
Semivolatile Organic Compounds												
Non-Carcinogenic PAHs												
Acenaphthene	1.60E+00	5.12E-08										
Acenaphthylene	6.70E-01	2.14E-08										
	3.70E+00	1.18E-07										
Anthracene	6.10E+00	1.95E-07										
Benzo(ghi)perylene				7								
Fluoranthene	2.00E+01	6.40E-07				-						
Fluorene	1.40E+00	4.48E-08										
2-Methylnaphthalene	3.40E-01	1.09E-08	_									
Naphthalene	6.90E-01	2.21E-08	-									
Phenanthrene	1.80E+01	5.76E-07										
Pyrene	1.60E+01	5.12E-07										
Carcinogenic PAHs												
Benz(a)anthracene	9.40E+00	3.01E-07	3.53E-07	5.00E-08	4.33E-09	7.52E-06	3.E-07	4.E-08	3.E-09	2.E-09	3.E-07	3.E-07
Benzo(a)pyrene	8.70E+00	2.78E-07	3.26E-07	4.63E-08	4.01E-09	6.96E-06	2.E-06	3.E-07	3.E-08	1.E-08	3.E-06	3.E-06
Benzo(b)fluoranthene	1.20E+01	3.84E-07	4.50E-07	6.39E-08	5.53E-09	9.60E-06	3.E-07	5.E-08	4.E-09	2.E-09	4.E-07	4.E-07
Benzo(k)fluoranthene	4.40E+00	1.41E-07	1.65E-07	2.34E-08	2.03E-09	3.52E-06	1.E-08	2.E-09	1.E-10	7.E-11	1.E-08	1.E-08
Chrysene	9.10E+00	2.91E-07	3.41E-07	4.84E-08	4.19E-09	7.28E-06	2.E-08	4.E-09	3.E-10	2.E-10	3.E-08	3.E-08
Dibenz(ah)anthracene	1.60E+00	5.12E-08	6.00E-08	8.52E-09	7.37E-10	1.28E-06	4.E-07	6.E-08	5.E-09	3.E-09	5.E-07	5.E-07
ndeno(1,2,3-cd)pyrene	7.00E+00	2.24E-07	2.63E-07	3.73E-08	3.23E-09	5.60E-06	2.E-07	3.E-08	2.E-09	1.E-09	2.E-07	2.E-07
Polychlorinated Biphenyls												
Polychlorinated biphenyls (PCBs)	6.80E-02	2.18E-09	8.50E-09	1.81E-09	1.04E-10	5.44E-08	2.E-08	4.E-09	2.E-10	5.E-12	2.E-08	2.E-08
olychionnated biphenyis (1 CDs)	0.001-02	2.102 03	0.502-05	1.012-03	1.046-10	0.44E-00	2.L-00	4.L-03	Z.L-10	J.L-12	2.L-00	Z.L-00
Metals												
Arsenic	1.37E+01	4.37E-07	8.53E-07	1.09E-07	1.05E-08	1.09E-05	1.E-06	2.E-07	2.E-08	3.E-08	1.E-06	1.E-06
Barium	7.76E+01	2.48E-06										
Beryllium	3.60E-01	1.15E-08				2.88E-07				7.E-10	7.E-10	7.E-10
Cadmium (in soil, sediment, or tissue)	2.40E+00	7.68E-08				1.92E-06				3.E-09	3.E-09	3.E-09
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	2.61E+01	8.35E-07										
ead	3.36E+02	1.08E-05										
Mercury	8.08E-01	2.59E-08										
Vickel	1.10E+01	3.52E-07				8.80E-06				4.E-09	4.E-09	4.E-09
/anadium	2.10E+01	6.72E-07				0.00L-00				4.L-03	4.L-03	T.L-03

	Path	way Risks	Media Risks	Total	
5E-06	7E-07	6E-08	6E-08	6.E-06	6.E-06

Table G-13 SUBCHRONIC RISK CALCULATIONS **Emergency Utility Worker** Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

	Exposure Point Concentrations			Subchronic Average Daily Dose and Exposure Estimates						Subc	hronic Hazard	Index Estimates	Total Subchronic Hazard Index Estimates			
	Soil		Groundwater	Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Dermal	Soil Ingestion		Fugitive Dust Ingestion	Fugitive Dust Inhalation	Groundwater Dermal	Soil	Groundwater	All
CHEMICAL	(mg/kg)	(mg/m³)	(mg/l)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/m3)	(mg/kg/day)								Media
Volatile Organic Compounds	4.005.00	0.045.00		0.505.40	0.055.44	0.045.40	4 475 40		05.00	05.00	05.40	45.40		0 = 00		0 = 00
Benzene Chloroform	4.90E-02	2.94E-09	9.10E-03	2.58E-10	2.65E-11	8.91E-12	1.47E-12	1.60E-08	3E-08	3E-09	9E-10	1E-10	2F-06	3.E-08	2.E-06	3.E-08 2.E-06
			9.10E-03 2.40E-03					1.00E-00 1.07E-09					5E-10		5.E-10	5.E-10
Ethyl ether Tetrachloroethylene (PCE)			1.90E-02					2.18E-07					4E-05		4.E-05	4.E-05
Trichloroethylene (TCE)	2.50E-01	1.50E-08	9.30E-02	1.32E-09	4.06E-10	4.55E-11	7.50E-12	3.10E-07	3E-06	8F-07	9E-08	4E-09	6E-04	4.E-06	6.E-04	6.E-04
Vinyl chloride	2.301-01	1.50L-00	6.30E-03	1.52L-03	4.00L-10	4.55L-11	7.50L-12	6.44E-09	JL-00	OL-01	3L-00	4L-03	2E-06	4.L-00	2.E-06	2.E-06
Xylenes (mixed isomers)	3.20E-02	1.92E-09	0.00L-00	1.68E-10	5.20E-11	5.82E-12	9.60E-13	0.441-03	4E-10	1E-10	1E-11	2E-12	2L-00	6.E-10	2.L-00	6.E-10
Petroleum Hydrocarbon Fractions																
EPH																
C19-C36 Aliphatic	5.50E+01	3.30E-06	1.40E-01	2.89E-07	5.96E-07	1.00E-08		2.16E-04	5E-08	1E-07	2E-09		4E-05	1.E-07	4.E-05	4.E-05
C11-C22 Aromatic	1.82E+02	1.09E-05	1.60E-01	2.87E-07	9.86E-07	9.93E-09	5.46E-09	1.02E-05	1E-06	3E-06	3E-08	1E-08	3E-05	4.E-06	3.E-05	4.E-05
Semivolatile Organic Compounds Non-Carcinogenic PAHs																
Acenaphthene	2.56E+00	1.54E-07	2.25E-03	4.05E-09	1.39E-08	1.40E-10	7.69E-11	6.56E-08	2E-08	7E-08	7E-10	2E-10	3E-07	9.E-08	3.E-07	4.E-07
Acenaphthylene	6.00E-01	3.60E-08		9.47E-10	3.25E-09	3.27E-11	1.80E-11		3E-09	1E-08	1E-10	4E-11		1.E-08		1.E-08
Anthracene	3.70E+00	2.22E-07	9.94E-04	5.84E-09	2.00E-08	2.02E-10	1.11E-10	6.46E-08	6E-09	2E-08	2E-10	2E-10	6E-08	3.E-08	6.E-08	9.E-08
Benzo(ghi)perylene	4.10E+00	2.46E-07		6.47E-09	2.22E-08	2.24E-10	1.23E-10		2E-08	7E-08	7E-10	2E-10		1.E-07		1.E-07
Fluoranthene	1.72E+01	1.03E-06	1.57E-03	2.72E-08	9.32E-08	9.39E-10	5.16E-10	1.65E-07	7E-08	2E-07	2E-09	1E-09	4E-07	3.E-07	4.E-07	7.E-07
Fluorene	2.29E+00	1.38E-07	2.10E-03	3.62E-09	1.24E-08	1.25E-10	6.88E-11	8.80E-08	9E-09	3E-08	3E-10	1E-10	2E-07	4.E-08	2.E-07	3.E-07
2-Methylnaphthalene	2.60E+00	1.56E-07	6.52E-04	4.11E-09	1.41E-08	1.42E-10	7.80E-11	1.87E-08	1E-06	4E-06	4E-08	2E-10	5E-06	5.E-06	5.E-06	9.E-06
Naphthalene	1.50E+00	9.00E-08	1.45E-03	2.37E-09	8.13E-09	8.19E-11	4.50E-11	2.02E-08	1E-08	4E-08	4E-10	2E-08	1E-07	7.E-08	1.E-07	2.E-07
Phenanthrene	1.68E+01	1.01E-06	5.53E-03	2.66E-08	9.12E-08	9.19E-10	5.05E-10	3.16E-07	9E-08	3E-07	3E-09	1E-09	1E-06	4.E-07	1.E-06	1.E-06
Pyrene	1.44E+01	8.66E-07	9.42E-04	2.28E-08	7.82E-08	7.88E-10	4.33E-10	1.23E-07	8E-08	3E-07	3E-09	9E-10	4E-07	3.E-07	4.E-07	7.E-07
Carcinogenic PAHs					4		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
Benz(a)anthracene	7.50E+00	4.50E-07		1.18E-08	8.13E-09	4.09E-10	2.25E-10		4E-08	3E-08	1E-09	5E-10		7.E-08		7.E-08
Benzo(a)pyrene	6.64E+00	3.98E-07		1.05E-08	7.19E-09	3.62E-10	1.99E-10		3E-08	2E-08	1E-09	4E-10		6.E-08		6.E-08
Benzo(b)fluoranthene	8.20E+00	4.92E-07		1.29E-08	8.88E-09	4.47E-10	2.46E-10		4E-08	3E-08	1E-09	5E-10		7.E-08		7.E-08
Benzo(k)fluoranthene	5.22E+00	3.13E-07		8.24E-09	5.65E-09	2.85E-10	1.57E-10		3E-08	2E-08	9E-10	3E-10		5.E-08		5.E-08
Chrysene	7.28E+00 1.20E+00	4.37E-07		1.15E-08 1.89E-09	7.89E-09 1.30E-09	3.97E-10 6.55E-11	2.18E-10		4E-08 6E-09	3E-08 4E-09	1E-09 2E-10	4E-10 7E-11		7.E-08 1.E-08		7.E-08 1.E-08
Dibenz(ah)anthracene	4.70E+00	7.20E-08 2.82E-07		7.42E-09	5.09E-09	2.56E-10	3.60E-11 1.41E-10		0E-09 2E-08	4E-09 2E-08	9E-10	7E-11 3E-10		1.E-08 4.E-08		4.E-08
Indeno(1,2,3-cd)pyrene	4.70E+00	2.02E-07		7.42E-09	5.09E-09	2.30E-10	1.41E-10		2E-06	2E-06	9E-10	3E-10		4.E-00		4.E-08
Polychlorinated Biphenyls Polychlorinated biphenyls (PCBs)	4.64E-02	2.78E-09		2.44E-10	2.51E-10	8.44E-12	1.39E-12		5E-06	5E-06	2E-07	7E-08		1.E-05		1.E-05
Polychionnated diprientis (PCBs)	4.04L-02	2.70L=09		2.44L-10	2.51E-10	0.44L-12	1.351-12		JL-00	JL-00	2L-01	/ L=00		1.L-03		1.L-03
Metals	1.01E+01	6.07E-07		2.66E-08	1.64E-08	9.19E-10	3.03E-10		9E-05	5E-05	3E-06	2E-05		2.E-04		2.E-04
Arsenic Barium	7.03E+01	6.07E-07 4.22E-06	1.50E-04	2.66E-08 3.70E-07	1.64E-08 3.81E-07	9.19E-10 1.28E-08	3.03E-10 2.11E-09	1.54E-11	9E-05 5E-06	5E-05 5E-06	3E-06 2E-07	2E-05 4E-07	2F-10	2.E-04 1.E-05	2.F-10	2.E-04 1.E-05
Danum	7.03E+01 3.60E-01	4.22E-06 2.16E-08	1.50E-04	3.70E-07 1.89E-09	3.81E-07 1.95E-09	1.28E-08 6.55E-11	2.11E-09 1.08E-11	1.54E-11	5E-06 4E-07	5E-06 4E-07	2E-07 1E-08	4E-07 5E-07	2E-10	1.E-05 1.E-06	Z.E-10	1.E-05 1.E-06
Beryllium Cadmium (in soil, sediment, or tissue)	2.40E+00	2.16E-06 1.44E-07	4.10E-04	1.89E-09 1.26E-08	1.95E-09 1.30E-09	4.37E-10	7.20E-11		4E-07 3E-05	4E-07 3E-06	9E-07	4E-06		3.E-05		3.E-05
Cadmium (in groundwater or suface water)	2.40E+00	1.44E-07	4.10E-04	1.202 00		4.072 10	7.20E-11	7.66E-10				2E-07	2E-06	2.E-07	2.E-06	2.E-06
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	2.83E+01	1.70E-06		1.49E-07	1.53E-07	5.14E-09	8.48E-10		7E-06	8E-06	3E-07	3E-06		2.E-05	2.2 00	2.E-05
Lead	1.16E+03	6.98E-05		3.06E-06	3.78E-07	1.06E-07	3.49E-08		4E-03	5E-04	1E-04	3E-05		5.E-03		5.E-03
Mercury	5.76E-01	3.46E-08		1.52E-09	3.12E-09	5.24E-11	1.73E-11		5E-06	1E-05	2E-07	6E-08		2.E-05		2.E-05
Nickel	2.40E+01	1.44E-06	2.45E-03	1.26E-07	2.60E-07	4.37E-09	7.20E-10	4.58E-10	6E-06	1E-05	2E-07	7E-07	2E-08	2.E-05	2.E-08	2.E-05
Vanadium	2.30E+01	1.38E-06		1.21E-07	1.25E-07	4.18E-09	6.90E-10		1E-05	1E-05	5E-07	7E-07		3.E-05		3.E-05
Zinc	1.90E+02	1.14E-05		1.00E-06	1.03E-06	3.46E-08	5.70E-09		3E-06	3E-06	1E-07	4E-06		1.E-05		1.E-05
									4E-03	6E-04	Pathway 1E-04	Risks 6E-05	8E-04	Media Risks 5.E-03	8E-04	Total 5.8.E-03
									4E-03	0L-04	IL-V4	0E-03	0L-0 4	J.E-03	UL-U4	J.U.L-U3

Table G-14 CANCER RISK CALCULATIONS Emergency Utility Worker Parcel P-3, Tremont Street & Whittier Streets Boston, Massachusetts

			Access Della December (Market) Fathershap													
	Exposure Point Concentrations		Average Daily Dose (lifetime) Estimates			Carcinogenic Risk Estimates					Total Carcinogenic Risk Estimates					
	Soil	Fugitive Dust	Groundwater	Soil Ingestion	Soil Dermal	Fugitive Dust Ingestion	Fugitive Dust Inhalation	Groundwater Dermal	Soil Ingestion			Fugitive Dust Inhalation	Groundwater Dermal	Soil	Groundwater	All
CHEMICAL	(mg/kg)	(mg/m³)	(mg/l)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(ug/m3)	(mg/kg/day)								Media
Volatile Organic Compounds																
Benzene	4.90E-02	2.94E-09		3.68E-12	1.14E-12	1.27E-13	2.10E-11		2.E-13	6.E-14	7.E-15	2.E-16		3.E-13		3.E-13
Chloroform			9.10E-03					2.28E-10								
Ethyl ether			2.40E-03					1.52E-11								
Tetrachloroethylene (PCE)	0.505.04	4.505.00	1.90E-02	4 005 44	5 00E 40	0.505.40	4.075.40	3.12E-09	0 = 40	2 = 42	2544	45.40	6.E-11	4 5 40	6.E-11	6.E-11
Trichloroethylene (TCE)	2.50E-01	1.50E-08	9.30E-02	1.88E-11	5.80E-12	6.50E-13	1.07E-10	4.43E-09	9.E-13	3.E-13	3.E-14	4.E-16	2.E-10	1.E-12	2.E-10	2.E-10
Vinyl chloride	3.20E-02	1.92E-09	6.30E-03					1.41E-10					2.E-10		2.E-10	2.E-10
Xylenes (mixed isomers)	3.20E-02	1.92E-09					_					-				
Petroleum Hydrocarbon Fractions																
Total Petroleum Hydrocarbons (TPH)	1.24E+03	7.43E-05														
EPH																
C19-C36 Aliphatic	5.50E+01	3.30E-06	1.40E-01					3.08E-06								
C11-C22 Aromatic	1.82E+02	1.09E-05	1.60E-01					1.35E-07								
Semivolatile Organic Compounds																
Non-Carcinogenic PAHs	2.56E+00	1.54E-07	2.25E-03					8.62E-10								
Acenaphthene Acenaphthylene	6.00E-01	3.60E-08	2.25E-03				_	0.02E-10								
Anthracene	3.70E+00	2.22E-07	9.94E-04					8.50E-10								
Benzo(ghi)perylene	4.10E+00	2.46E-07	3.34L=04					0.30L-10								
Fluoranthene	1.72E+01	1.03E-06	1.57E-03				Z.	2.17E-09								
Fluorene	2.29E+00	1.38E-07	2.10E-03					1.16E-09								
2-Methylnaphthalene	2.60E+00	1.56E-07	6.52E-04					2.46E-10								
Naphthalene	1.50E+00	9.00E-08	1.45E-03					2.66E-10								
Phenanthrene	1.68E+01	1.01E-06	5.53E-03					4.16E-09								
Pyrene	1.44E+01	8.66E-07	9.42E-04					1.62E-09								
Carcinogenic PAHs																
Benz(a)anthracene	7.50E+00	4.50E-07		1.69E-10	1.16E-10	5.85E-12	3.21E-09		1.E-10	8.E-11	4.E-12	7.E-13		2.E-10		2.E-10
Benzo(a)pyrene	6.64E+00	3.98E-07		1.50E-10	1.03E-10	5.17E-12	2.84E-09		1.E-09	7.E-10	4.E-11	6.E-12		2.E-09		2.E-09
Benzo(b)fluoranthene	8.20E+00	4.92E-07		1.85E-10	1.27E-10	6.39E-12	3.51E-09		1.E-10	9.E-11	5.E-12	7.E-13		2.E-10		2.E-10
Benzo(k)fluoranthene	5.22E+00	3.13E-07		1.18E-10	8.08E-11	4.07E-12	2.24E-09		9.E-12	6.E-12	3.E-13	5.E-14		1.E-11		1.E-11
Chrysene	7.28E+00	4.37E-07		1.64E-10	1.13E-10	5.67E-12	3.12E-09		1.E-11	8.E-12	4.E-13	7.E-14		2.E-11		2.E-11
Dibenz(ah)anthracene	1.20E+00	7.20E-08		2.71E-11	1.86E-11	9.35E-13	5.14E-10		2.E-10	1.E-10	7.E-12	1.E-12		3.E-10		3.E-10
Indeno(1,2,3-cd)pyrene	4.70E+00	2.82E-07		1.06E-10	7.27E-11	3.66E-12	2.01E-09		8.E-11	5.E-11	3.E-12	4.E-13		1.E-10		1.E-10
Polychlorinated Biphenyls																
Polychlorinated biphenyls (PCBs)	4.64E-02	2.78E-09		3.49E-12	3.59E-12	1.21E-13	1.99E-11		7.E-12	7.E-12	2.E-13	2.E-15		1.E-11		1.E-11
Metals					_											
Arsenic	1.01E+01	6.07E-07		3.80E-10	2.35E-10	1.31E-11	4.33E-09		6.E-10	4.E-10	2.E-11	1.E-11		1.E-09		1.E-09
Barium	7.03E+01	4.22E-06	1.50E-04	3.00L-10	2.00L-10	1.51E-11	4.00L-00	2.00E-13	0.L-10	4.L-10	Z.L-11			1.L-03		1.L-03
Beryllium	3.60E-01	2.16E-08		/			1.54E-10					4.E-13		4.E-13		4.E-13
Cadmium (in soil, sediment, or tissue)	2.40E+00	1.44E-07	4.10E-04				1.03E-09	5.47E-13				2.E-12		2.E-12		2.E-12
Cadmium (in groundwater or suface water)	2.40E+00	1.44E-07	4.10E-04				1.03E-09	5.47E-13				2.E-12		2.E-12		2.E-12
Chromium, total (assumes 1:6 ratio Cr VI:Cr III)	2.83E+01	1.70E-06														
Lead	1.16E+03	6.98E-05														
Mercury	5.76E-01	3.46E-08														
Nickel	2.40E+01	1.44E-06	2.45E-03				1.03E-08	6.54E-13				5.E-12		5.E-12		5.E-12
Vanadium	2.30E+01	1.38E-06	~													
Zinc	1.90E+02	1.14E-05														

		Pathway	Risks	Media Ri	Total		
2E-09	1E-09	8E-11	3E-11	5E-10	4.E-09	5.E-10	4.E-09

Table G-15. Substantial Hazard Evaluation Summary
Supplemental Phase II CSA, Phase III RAP Addendum, and Temporary Solution Statement
Parcel P-3, Tremont Street & Whittier Streets
Boston, Massachusetts

Receptor				Hazard Index (HI)		Excess Lifetime Cancer Risk (ELCR)						
·			Soil	Groundwater	Cumulative HI	Soil	Groundwater	Cumulative ELCR				
	Tresspasser	Subchronic	0.2		0.2	2E-06		2E-06				
0-3'	Current	Chronic	0.08		0.08							
	Commercial Worker	Subchronic	0.2		0.2	6E-06		6E-06				
0-3'	Current	Chronic	0.1		0.1							
	Emergency Utillity Worker Maximum Detected Concentration	Subchronic	0.005	0.001	0.01	4E-09	5E-10	4E-09				
MCP Cu			nulative Risk Limit:		1	MCP Cum	ulative Risk Limit:	1E-05				

