

SITEC ENVIRONMENTAL, Inc.
769 Plain Street, Unit C
Marshfield, MA 02050
Tel. (781) 319-0100 FAX (781) 834-4783

449 Faunce Corner Road Dartmouth, MA 02747 Tel. (508) 998-2125 FAX (508) 998-7554

IMMEDIATE RESPONSE ACTION (IRA) STATUS REPORT NO. 1

Release Tracking No.: 4-27363

Property Located at:

Residential Lot 85 McCabe Street Dartmouth, Massachusetts

Prepared For:

Terceira Construction 1 Cookie Way Dartmouth, MA 02748

Prepared By:

SITEC Environmental, Inc. 769 Plain Street, Unit C Marshfield, MA 02050

SITEC Project Number:

SE18-1375

Date:

December 27, 2018

Table of Contents

Section	on		Page
1.0	_ Inte	RODUCTION	1
	1.1	Limitations	
2.0	PRO	PERTY DESCRIPTION	1
	2.1	Property Location	1
	2.2	Vicinity Characteristics	
	2.3	Property Uses	
	2.4	Uses of Adjoining Properties	
3.0	COM	IPLIANCE HISTORY	3
4.0	COM	IPLETED RESPONSE ACTIONS	3
	4.1	Assessment and Removal of the Viscous Black Petroleum Liquid	3
	4.2	Disposal of Soil Pile	
	4.3	Test Pit Investigation	
5.0	FUT	URE IRA ACTIVITIES	5

TABLES

TABLE 1 - Volatile Organic Compound (VOC) Soil Analysis Summary

TABLE 2 - Poly-cyclic Aromatic Hydrocarbons (PAH), Poly-chlorinated Biphynels (PCB) and Metals Soil Analysis Summary

FIGURES

FIGURE 1 - Locus Map

FIGURE 2 - Site Sketch

ATTACHMENTS

ATTACHMENT 1 - Laboratory Report (Viscous Black Petroleum Substance)

ATTACHMENT 2 - Soil Disposal Documentation

ATTACHMENT 3 - Test Pit Logs

ATTACHMENT 4 - Laboratory Reports (Test Pit Soil)

ATTACHMENT 5 - Laboratory Report (Asbestos)

ATTACHMENT 6 - PRP Authorization

1.0 INTRODUCTION

This document is an *Immediate Response Action (IRA) Status Report No. 1* prepared by SITEC Environmental, Inc. (SITEC) regarding a reported release of oil and/or hazardous materials (OHM) at a vacant residential lot located at 85 McCabe Street in Dartmouth, Massachusetts (the "Site"). This report serves to notify the Massachusetts Department of Environmental Protection (MassDEP) of the results of the completed assessment activities which are performed under authorization from Terceira Construction, the potentially responsible party (PRP) for this release.

The actions were conducted in compliance with Massachusetts General Laws Chapter 21E (MGL Chapter 21E) and the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000. The purpose of this report is to satisfy MCP requirements for IRA status reports at 310 CMR 40.0425. SITEC will prepare and submit subsequent status reports every six months or until an IRA Completion Report is submitted.

1.1 Limitations

The conclusions contained in this report are based solely upon and limited to the information described herein. Overall site observations were limited to clearly visible, unobstructed conditions. In completing this IRA Plan, SITEC did not consider whether this property is in compliance with any other statutes, laws, by-laws, regulations or policies unless compliance was directly related to the reported release. A portion of the information provided in this report is based upon personal interviews by the parties involved. SITEC did not attempt to independently verify the completeness, correctness or accuracy of this information. SITEC reserves the right to change its conclusions upon learning that this information was incomplete, incorrect or inaccurate.

2.0 PROPERTY DESCRIPTION

The following information was obtained during SITEC's Property reconnaissance, from local records review, and a review of publicly available maps and plans.

2.1 Property Location

The Site is located at 85 McCabe Street, Bristol County, Dartmouth, Massachusetts. According to the Town of Dartmouth Assessors Office, the land on which the Site is located is identified on Map 144, as Lot 64 (the "Property"). The coordinates for the Site is approximately 41° 36' 59" North Latitude and 70° 56' 51" West Longitude. The Property is rectangular and consists of approximately 0.20 acres. A Locus Map is included as Figure 1 and a Site Sketch is included as Attachment 2.

2.2 Vicinity Characteristics

The Property is zoned residential and is located in a sub-urban residential area in South Dartmouth. The Property is located approximately 0.3 miles west from the Dartmouth-New Bedford town line. The Property and the vicinity are served by municipal water, gas, and telephone/cable services; however, there is a private drinking water supply well located within 500 feet from the Site.

2.3 Property Uses

The Property is currently unoccupied. There was a former single family residence located on the Property (constructed in 1949) which was demolished. The construction of a new single family residence began in July 2018. The foundation excavation has been completed and the bottom of the excavation is covered with pea stone. Construction was halted upon discovery of the release.

2.4 Uses of Adjoining Properties

Single family residences abut the Property to the west, north, and east. McCabe Street abuts the Property to the south with single family residences located across McCabe Street from the Property.

3.0 COMPLIANCE HISTORY

On July 30, 2018 MassDEP received verbal notification from Michael O'Reilly, Environmental Affairs Coordinator for the Town of Dartmouth regarding a release of OHM at the Site. Mr. O'Reilly reported that deteriorated metal drums containing a black viscous petroleum-based substance, and rusted metal objects, rubber tires, glass, and other discarded debris, were excavated during foundation demolition at the single family residential lot.

On July 31, 2018, SITEC along with MassDEP visited the Site and observed conditions consistent with the observations of Mr. O'Reilly. Visible on the side wall of the excavation was various debris including rusted metal objects, tires, glass bottles, and a black petroleum based substance in the soil. In addition, two damaged metal containers were observed on the pile of excavated soil which were leaking a viscous black petroleum based liquid. Two grab soil samples were collected from the side wall of the excavation by SITEC. Soil sample SS-1 was collected from the western excavation wall and sample SS-2 was collected from the northen wall of the excavation.

Both samples were submitted to Alpha Analytical Laboratories for the analysis of semi-volatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH), pesticides, poly-chlorinated biphynels (PCBs), and MCP Metals. In addition, SITEC submitted the soil sample SS-2 for analysis of Volatile organic Compounds (VOCs). Due to the elevated concentration of total chromium reported in sample SS-1, this sample was also analyzed for Chromium VI.

Chromium VI was not detected and no VOCs were reported above their respective Method 1 Standard. Elevated concentrations of several SVOCs were reported above in both soil samples. There was no instance where a pesticide or PCB was reported exceeding its Method 1 Standard. Elevated concentrations of several metals including lead and chromium were reported in the soil samples. These results of the side wall samples have been incorporated into this report and the laboratory report was included in a previous submittal to MassDEP

On August 30, 2018, SITEC submitted an IRA Plan reporting the assessment activities conducted up to that date and proposed future response actions. Proposed response actions outlined in the IRA Plan included the disposal of the excavated soil stockpile and further assessment via the excavation of test pits.

4.0 COMPLETED IMMEDIATE RESPONSE ACTIONS

The Immediate Response Action (IRA) activities were conducted in accordance with the IRA Plan which was submitted to MassDEP on August 30, 2018. IRAs are assessment and/or remedial actions that are undertaken in an expeditious manner to address a time-critical release or site conditions. During this reporting period of August 31, 2018 to December 27, 2018 (since the submittal of the IRA Plan), the following immediate response action have been conducted.

4.1 Assessment and Removal of the Viscous Black Petroleum Liquid

On August 28, 2018, SITEC collected two samples of the viscous black petroleum liquid leaking out of the drums on the north side of the soil pile. One sample of the black substance was leaking out of a 5 gallon metal pail (DRUM 1) and the other sample was collected from the substance leaking out of a 55-gallon metal drum (DRUM 2). The samples were submitted to Alpha Analytical Laboratories for characterization (petroleum hydrocarbon identification) including analysis of PCBs. Alpha Analytical Laboratories concluded that the material appears to be chemically similar to a coal tar or creosote. A low detection of PCBs (3.77 mg/kg) was reported in the black vicious substance leaking out of the 5 gallon pail. PCBs were not detected in the black vicious substance leaking out of the 55 gallon drum. The viscous black petroleum substance laboratory report is included as Attachment 1.

On September 5, 2018, the drums and viscous black petroleum substance was removed by hand from the soil stockpile and the deteriorated drums, the viscous black petroleum substance, and any contaminated soil/debris was put into 85-gallon drum overpacks. The overpacks were sealed and remain on the Property pending characterization and disposal. No additional deteriorated drums were located in the soil stockpile.

4.2 Disposal of Soil Pile

Once the viscous black petroleum liquid was removed, the stockpile of excavated soil was transported to a recycling facility. A composite soil sample was previously collected from the soil stockpile for waste characterization purposes. Elevated concentrations of VOCs, SVOCs, and TPH were reported in the remediation waste characterization sample. PCBs were not detected in the waste characterization sample. SITEC subsequently received approval to transport the soil to the Ondrick Materials & Recycling, LLC facility in Chicopee, Massachusetts. The laboratory report for the remediation waste characterization sample has been submitted to MassDEP in previous submittals.

On September 27 and 28 and October 1, 2018, ten (10) loads of the stockpiled soil was transported to the Ondrick Materials & Recycling, LLC facility for asphalt batch plant recycling. The soil were handled by a MassDEP Bill of Lading (BOL). A copy of the BOL, facility receipts, and transport logs are included as Attachment 2. A total of 338.82 tons of contaminated soil was recycled at the asphalt batch plant.

4.3 Test Pit Investigation

On October 2, 2018, SITEC observed the excavation of eight test pits on the Site and on October 26, 2018 and SITEC observed an additional 10 test pits on the Site. Each test pit was advanced to a depth of 3 to 5 feet below grade. Urban fill and debris, containing varying amounts of sand, ash, bricks, glass, metal, rubber, tires and a black petroleum substance (tar) were observed in a majorty of the test pits. Test pit logs are included as Attachment 3. The test pits are shown of Figure 2 - Site Sketch.

During test pit advancement, a soil sample was collected from each test pit and placed in pre-cleaned 8-oz jars and the jar headspace was screened for volume/volume of total organic vapors "as isobutylene" in units of parts per million (ppm) using a calibrated Mini-Rea 2000 Photo-ionization Detector (PID). The headspace screening results and sample descriptions are included on test pit logs. Selected soil samples were submitted to Alpha Analytical Laboratory for laboratory analysis of poly-cyclic aromatic hydrocarbons (PAHs), polychlorinated biphynels (PCBs) and 13 MCP Metals. Two samples which exhibited elevated headspace screening results were also submitted for the analysis of volatile organic compounds (VOCs)

Table 1 summarizes the VOC analysis and compares the results to the Method 1 Standards. As noted from Table 1, elevated concentrations of VOCs were reported above their respective S-1, S-2, and S-3 Method 1 Standards in the soil samples collected from the two test pits.

Table 2 summarizes the PAH, PCBs, and metals soil analysis and compares the results to the Method 1 Standards. As noted from Table 2, elevated concentrations of PAHs and Metals were reported above their respective S-1, S-2, and S-3 Method 1 Standards in the soil samples collected from eleven of the 14 test pit soil samples. Barium was reported at TP-6 exceeding its upper concentration limit (UCL). In addition, a concentration of PCBs was reported at TP-12 exceeding its S-1 Method 1 Standard. The soil laboratory reports are included in Attachment 4.

The concentrations of PAHs and Metals reported on the Site are highly variable and no particular pattern was observed. However, higher concentrations of PAHs were generally reported on the center and western portions of the Site and higher concentrations of metals were generally reported on the eastern portion of the Site.

During the test pit excavation on October 26, 2018, samples of apparent transite panel debris was collected from TP-12, TP-17, and from the north side wall of the excavation (SS-1). In addition samples of the harden viscous black petroleum substance was collected from the north side wall (SS-2) and the east side wall (SS-3) of the existing excavation. Each of these samples were submitted to R.I. Analytical in Warwick, Rhode Island for the analysis of asbestos using polarized light microscopy (PLM).

The laboratory reported the apparent transite panels (samples TP-12, TP-17, and SS-1) contained greater than 1% chrysotile asbestos, identifying these materials as asbestos containing materials (ACMs). Asbestos was not detected in samples of the black petroleum substance (SS-2 and SS-3). The Asbestos Laboratory Report from R.I. Analytical is included as Attachment 5.

5.0 FUTURE IRA ACTIVITIES

Future IRA activities will be conducted to supplement current site information and to provide the necessary data for a complete risk characterization. Proposed IRA activities are anticipated to include the installation of groundwater monitoring wells and groundwater sampling. The characterization of groundwater is necessary to define the nature and extent of contamination and to provide adequate data for the risk characterization.

Authorization for SITEC to file this IRA Status Report with MassDEP on behalf of the PRP is included as Attachment 6.

Subject to the limitations previously described and otherwise reference herein, all the available information, research, and Property observations documented to date and contained in this report are, to the best of SITEC's knowledge, true, accurate, and complete.

SITEC ENVIRONMENTAL, INC.

Geoffrey Souza, LSP Project Manager

TABLES

TABLE 1 - VOLATILE ORGANIC COMPOUND (VOC) SOIL ANALYSIS SUMMARY
TABLE 2 - POLY-CYCLIC AROMATIC HYDROCARBONS (PAH), POLY-CHLORINATED
BIPHYNELS (PCB) AND METALS SOIL ANALYSIS SUMMARY

Table 1 Volatile Organic Compounds (VOCs) Soil Analysis Summary

Residential Lot 85 McCable Street Dartmouth, Massachusetts

	ı			Made at 1	C-:1 C41	1- (/1)						1
COMPOUND	S-1,GW-1	S-1,GW-2	S-1,GW-3	S-2,GW-1	Soil Standard	S-2,GW-3	S-3, GW-1	S-3,GW-2	S-3,GW-3	SS-2	TP-4	TP-11
Methylene chloride	0.1	4	400	0.1	4	700	0.1	4	700	0.7 U	89 U	44 U
1,1-Dichloroethane	0.4	9	500	0.4	9	1000	0.4	9	1000	0.14 U	18 U	8.8 U
Chloroform	0.4	0.2	500	0.4	0.2	1000	0.4	0.2	1000	0.21 U	26 U	13 U
Carbon tetrachloride	10	5	30	10	5	100	10	5	1000	0.14 U	18 U	8.8 U
1,2-Dichloropropane	0.1	0.1	30 20	0.1	0.1	100 100	0.1	0.1	1000 500	0.14 U 0.14 U	18 U 18 U	8.8 U 8.8 U
Dibromochloromethane 1,1,2-Trichloroethane	0.003	2	40	0.003	2	200	0.003	2	500	0.14 U	18 U	8.8 U
Tetrachloroethene	1	10	30	1	10	200	1	10	1000	0.07 U	8.9 U	4.4 U
Chlorobenzene	1	3	100	1	3	100	1	3	100	0.07 U	8.9 U	4.4 U
Trichlorofluoromethane	NS	NS	NS		NS	NS	NS	NS	NS	0.56 U	71 U	35 U
1,2-Dichloroethane	0.1	0.1	20	0.1	0.1	100	0.1	0.1	300	0.14 U	18 U	8.8 U
1,1,1-Trichloroethane	30	500	500	30	600	1000	30	600	3000	0.07 U	8.9 U	4.4 U
Bromodichloromethane	0.1	0.1	30 20	0.1	0.1	100 90	0.1	0.1	500 100	0.07 U 0.14 U	8.9 U 18 U	4.4 U 8.8 U
trans-1,3-Dichloropropene cis-1,3-Dichloropropene	0.01	0.4	20	0.01	0.4	90	0.01	0.4	100	0.14 U	8.9 U	4.4 U
1,3-Dichloropropene, Total	0.01	0.4	20	0.01	0.4	90	0.01	0.4	100	0.07 U	8.9 U	4.4 U
1,1-Dichloropropene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.07 U	8.9 U	4.4 U
Bromoform	0.1	1	300	0.1	1	800	0.1	1	800	0.56 U	71 U	35 U
1,1,2,2-Tetrachloroethane	0.005	0.02	10	0.005	0.02	50	0.005	0.02	400	0.07 U	8.9 U	4.4 U
Benzene	2	40	40	2	200	200	2	400	1000	0.24	9.8	12
Toluene	30	500	500	30	1000	1000	30	2000	3000	0.57	18 U	8.8 U
Ethylbenzene	40 NG	500	500	40 NG	1000	1000	40	1000	3000	0.14 U	190 III	160
Chloromethane	NS 0.5	NS 0.5	NS 30	NS 0.5	NS 0.5	NS 30	NS 0.5	NS 0.5	NS 30	0.56 U 0.28 U	71 U	35 U 18 U
Bromomethane Vinvl chloride	0.5	0.5	1	0.5	0.5	7	0.5	0.5	60	0.28 U 0.14 U	35 U 18 U	8.8 U
Chloroethane	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS	0.14 U	35 U	8.8 U
1,1-Dichloroethene	3	40	500	3	40	1000	3	40	3000	0.14 U	18 U	8.8 U
trans-1,2-Dichloroethene	1	1	500	1	1	1000	1	1	3000	0.21 U	26 U	13 U
Trichloroethene	0.3	0.3	30	0.3	0.3	60	0.3	0.3	60	0.07 U	8.9 U	4.4 U
1,2-Dichlorobenzene	9	100	300	9	100	300	9	100	300	0.28 U	35 U	18 U
1,3-Dichlorobenzene	3	100	100	3	200	500	3	200	500	0.28 U	35 U	18 U
1,4-Dichlorobenzene	0.7	1	80	0.7	1	400	0.7	1	2000	0.28 U	35 U	18 U
Methyl tert butyl ether p/m-Xylene	0.1 400	100	100 500	0.1 400	100 100	500 1000	0.1 400	100 100	500 3000	0.28 U 0.33	35 U	18 U 79
o-Xylene	400	100	500	400	100	1000	400	100	3000	0.33 0.14 U	60	59
Xylenes, Total	400	100	500	400	100	1000	400	100	3000	0.33	200	140
cis-1,2-Dichloroethene	0.3	0.1	100	0.3	0.1	500	0.3	0.1	500	0.14 U	18 U	8.8 U
1,2-Dichloroethene, Total	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.14 U	18 U	8.8 U
Dibromomethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
1,2,3-Trichloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
Styrene	3	4	70	3	4	300	3	4	2000	0.28	18 U	8.8 U
Dichlorodifluoromethane Acetone	NS 6	NS 50	NS 400	NS 6	NS 50	NS 400	NS 6	NS 50	NS 400	1.4 U 1.4 U	180 U 180 U	88 U 88 U
Carbon disulfide	NS	NS	NS	NS	NS	NS NS	NS	NS	NS NS	1.4 U	180 U	88 U
Methyl ethyl ketone	4	50	400	4	50	400	4	50	400	1.4 U	180 U	88 U
Methyl isobutyl ketone	0.4	50	400	0.4	50	400	0.4	50	400	1.4 U	180 U	88 U
2-Hexanone	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.4 U	180 U	88 U
Bromochloromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
Tetrahydrofuran	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.56 U	71 U	35 U
2,2-Dichloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
1,2-Dibromoethane	0.1	0.1	1 NC	0.1	0.1	5 NC	0.1	0.1	40 NC	0.14 U	18 U	8.8 U
1,3-Dichloropropane 1,1,1,2-Tetrachloroethane	0.1	0.1	NS 80	0.1	0.1	NS 400	0.1	0.1	NS 500	0.28 U 0.07 U	35 U 8.9 U	18 U 4.4 U
Bromobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
n-Butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.14 U	18 U	8.8 U
sec-Butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.14 U	18 U	8.8 U
tert-Butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
o-Chlorotoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
p-Chlorotoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
1,2-Dibromo-3-chloropropane	NS 20	NS 20	NS 20	NS 100	NS 100	NS 100	NS 100	NS 100	NS 100	0.42 U	53 U	26 U
Hexachlorobutadiene Isopropylbenzene	30 NS	30 NS	30 NS	100 NS	100 NS	100 NS	100 NS	100 NS	100 NS	0.56 U 0.14 U	71 U 23	35 U 29
p-Isopropyltoluene	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	0.14 U	18 U	8.8 U
Naphthalene	4	20	500	4	20	1000	4	20	3000	1.2	2600	1800
n-Propylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.14 U	28	32
1,2,3-Trichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
1,2,4-Trichlorobenzene	2	6	700	2	6	3000	2	6	5000	0.28 U	35 U	18 U
1,3,5-Trimethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	24
1,2,4-Trimethylbenzene	NS	NS	NS NC	NS	NS	NS	NS	NS NC	NS NC	0.28 U	100	120
Diethyl ether Diisopropyl Ether	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.28 U 0.28 U	35 U 35 U	18 U 18 U
Ethyl-Tert-Butyl-Ether	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.28 U	35 U	18 U
Tertiary-Amyl Methyl Ether	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.28 U	35 U	18 U
1,4-Dioxane	0.2	6	20	0.2	6	90	0.2	6	500	14 U	1800 U	880 U

U = Analyzed but not found; detection limit listed

 $NS = No \ Standard \ for \ Indicated \ Parameter$

NA = Not Analyzed for Indicated Parameter

⁼ Yellow shade Indicates an exceedances of MCP S-1, GW-1, GW-2 or GW-3 Method 1 Standard

⁼ Blue Hatching Indicates an exceedances of MCP S-2, GW-1, GW-2 or GW-3 Method 1 Standard

⁼ Red Text Indicates an exceedances of MCP S-3, GW-1, GW-2 or GW-3 Method 1 Standard

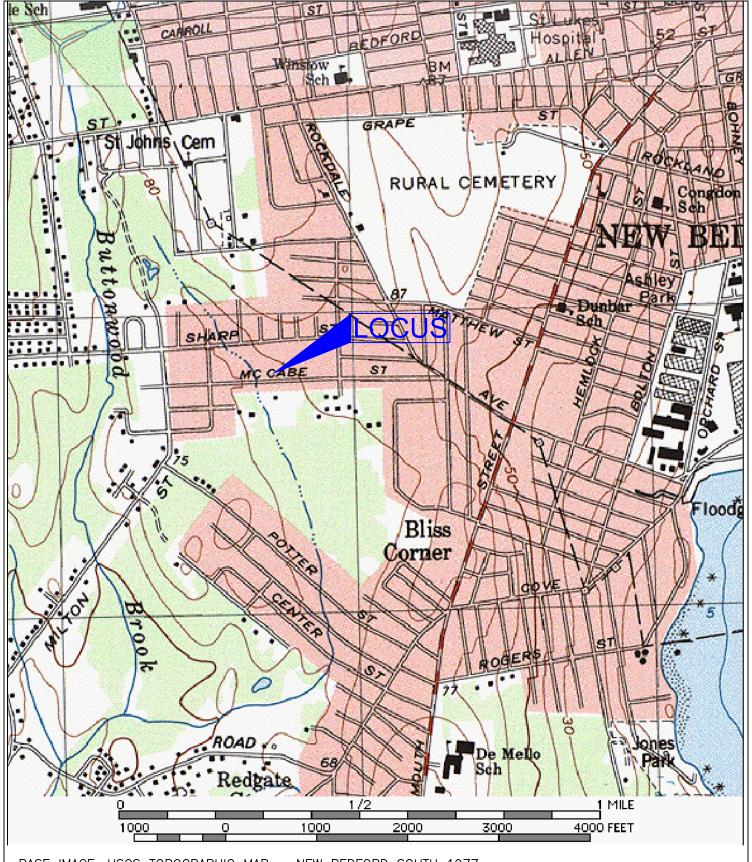
Table 2
Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and Metals Soil Analysis Summary

Residential Lot 85 McCable Street Dartmouth, Massachusetts

	1			Method 1	Soil Standard	ds (mg/kg)				1							Result	s (mg/kg)							
COMPOUND	S-1 GW-1	S-1.GW-2	S-1.GW-3		S-2,GW-2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S-3.GW-1	S-3.GW-2	S-3.GW-3	SS-1	SS-2	TP-1	TP-2	TP-3	TP-4	TP-5	TP-6	TP-7	TP-8	TP-10	TP-11	TP-12	TP-15	TP-17	TP-18
	5 1,5 1,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , ,	, , , , , , ,	,	, , , , , , , , , , , , , , , , , , , ,		Poly-cycl	lic Aromatic H	vdrocarbons (1	PAHs)	I .			1		1	1	· ·		1	
Acenaphthene	4	1000	1000	4	3000	3000	4	5000	5000	0.74 U	7.7	0.17 U	0.16 U	0.23	25	1	1.1 U	3.1	0.76 U	0.16 U	25	4	0.22 U	0.89 U	1.9
Fluoranthene	1000	1000	1000	3000	3000	3000	5000	5000	5000	4	45	0.13	2.4	6.6	18	26	5.2	7.1	14	0.12 U	18	56	5.4	2.4	17
Naphthalene	4	20	500	4	20	1000	4	20	3000	0.92	28	0.21 U	0.2 U	0.2 U	530	5.8	1.3	32	1.4	0.2 U	540	5.4	0.28	1.1 U	1.5
Benzo(a)anthracene	7	7	7	40	40	40	300	300	300	2.8	46	0.13 U	1.6	3.5	15	18	2.6	4	8.4	0.12 U	9.2	20	2	1	6.2
Benzo(a)pyrene	2	2	2	7	7	7	30	30	30	2.3	42	0.17 U	1.4	3	13 U	14	2.9	3.5	5.5	0.16 U	7.5	16	1.8	0.89 U	5.6
Benzo(b)fluoranthene	7	7	7	40	40	40	300	300	300	2.9	42	0.13 U	2	4.5	9.7 U	17	3.5	4.2	7.4	0.12 U	6.3	20	2.4	1	7.5
Benzo(k)fluoranthene	70	70	70	400	400	400	3000	3000	3000	0.73	10	0.13 U	0.52	1.4	9.7 U	5.2	0.92	1.4	2.5	0.12 U	2.1	5.8	0.56	0.66 U	1.9
Chrysene	70	70	70	400	400	400	3000	3000	3000	3.5	56	0.13 U	2	4	16	25	3	4.6	9.2	0.12 U	11	23	2.6	1.1	6.6
Acenaphthylene	1	600	10	1	600	10	1	600	10	2.5	64	0.17 U	0.86	1 1	13 U	9.5	1.1 U	2.5	3.6	0.16 U	5.6	7.1	0.81	0.89 U	0.5
Anthracene	1000	1000	1000	3000	3000	3000	5000	5000	5000	1.8	47	0.13 U	0.67	1.2	13	7.3	1.6	2.4	3	0.12 U	9.9	12	0.84	0.66 U	4
Benzo(ghi)perylene	1000	1000	1000	3000	3000	3000	5000	5000	5000	1.5	22	0.17 U	0.76	1.6	13 U	8.5	1.5	2.4	4.6	0.16 U	2.2	7.8	0.9	0.89 U	3.2
Fluorene	1000	1000	1000	3000	3000	3000	5000	5000	5000	0.92 U	20	0.21 U	0.21	0.51	32	3.4	1.3 U	4	1	0.2 U	28	6.4	0.38	1.1 U	1.9
Phenanthrene	10	500	500	20	1000	1000	20	3000	3000	3	49	0.14	1.3	4	73	24	5.4	10	11	0.12 U	59	37	4.1	1.7	20
Dibenzo(a,h)anthracene	0.7	0.7	0.7	4	4	4	30	30	30	0.55 U	8.9	0.13 U	0.22	0.46	9.7 U	2.6	0.8 U	1.3 U	1	0.12 U	0.7	2	0.24	0.66 U	0.85
Indeno(1,2,3-cd)pyrene	7	7	7	40	40	40	300	300	300	1.4	21	0.17 U	0.8	1.8	13 U	8.2	1.6	2.6	4.7	0.16 U	2.2	8	0.89	0.89 U	3.3
Pyrene	1000	1000	1000	3000	3000	3000	5000	5000	5000	5.6	89	0.18	2.7	6	28	41	5.2	8.9	15	0.12 U	34	56	6.3	2.1	15
2-Methylnaphthalene	0.7	80	300	1	80	500	1	80	500	1.1	33	0.25 U	0.24 U	0.24 U	200	3.2	1.6 U	3.9	1.1 U	0.24 U	200	3.2 U	0.33 U	1.3 U	0.75
A1 1016	1 1	1	1	1 4	1 4	4	1 4	4	4	0.0372 U	0.0398 U	chlorinated Bi	· · ·	/	0.11.11	0.0472 U	0.0524 U	0.0873 U	0.0366 U	0.0395 U	0.2.11	0.526 U	0.0536 U	0.0449 U	0.0384 U
Aroclor 1016 Aroclor 1221	1	1	1	4	4	4	4	4	4	0.0372 U 0.0372 U	0.0398 U	0.0402 U	0.0392 U 0.0392 U	0.039 U 0.039 U	0.11 U 0.11 U	0.0472 U	0.0524 U	0.0873 U 0.0873 U	0.0366 U	0.0395 U	0.2 U 0.2 U	0.526 U	0.0536 U	0.0449 U	0.0384 U
Aroclor 1232	1	1	1	4	4	4	4	4	4	0.0372 U	0.0398 U	0.0402 U	0.0392 U	0.039 U	0.11 U	0.0472 U	0.0524 U	0.0873 U	0.0366 U	0.0395 U	0.2 U	0.526 U	0.0536 U	0.0449 U	0.0384 U
Aroclor 1232 Aroclor 1242	1	1	1	4	4	4	4	4	4	0.0372 U	0.0398 U	0.0402 U	0.0392 U	0.039 U	0.11 U	0.0472 U	0.0524 U	0.0873 U	0.0366 U	0.0395 U	0.2 U	0.526 U	0.0536 U	0.0449 U	0.0384 U
Aroclor 1248	1	1	1	4	4	4	4	4	4	0.0372 U	0.0398 U	0.0402 U	0.0392 U	0.039 U	0.11 U	0.0472 U	0.0524 U	0.0873 U	0.0366 U	0.0395 U	0.2 U	0.526 U	0.0536 U	0.0449 U	0.0384 U
Aroclor 1254	1	1	1	4	4	4	4	4	4	0.0372 U	0.0398 U	0.0402 U	0.0392 U	0.039 0	0.11 U	0.0472 U	0.0524 U	0.0873 U	0.0366 U	0.0395 U	0.2 U	0.526 U	0.0330 0	0.325	0.0384 U
Aroclor 1260	1	1	1	4	4	4	4	4	4	0.0572 0	0.0398 U	0.0402 U	0.0392 U	0.042 0.039 U	0.11 U	0.0472 0	0.0524 U	0.0873 U	0.0366 U	0.0395 U	0.2 U	0.526 U	0.102	0.145	0.0384 U
Aroclor 1262	1	1	1	4	4	4	4	4	4	0.0372 U	0.0398 U	0.0402 U	0.0392 U	0.039 U	0.11 U	0.0472 U	0.0524 U	0.0873 U	0.0366 U	0.0395 U	0.2 U	0.526 U	0.0536 U	0.0449 U	0.0384 U
Aroclor 1268	1	1	1	4	4	4	4	4	4	0.0372 U	0.0398 U	0.0402 U	0.0392 U	0.039 U	0.11 U	0.0472 U	0.0524 U	0.0873 U	0.0366 U	0.0395 U	0.2 U	2.96	0.0832	0.317	0.0384 U
PCBs, Total	1	1	1	4	4	4	4	4	4	0.0607	0.0398 U	0.0402 U	0.0392 U	0.042	0.11 U	0.0823	0.0524 U	0.0873 U	0.0366 U	0.0395 U	0.2 U	2.96	0.378	0.787	0.0384 U
,			II.		1	l	1			ш		Total M													
Antimony	20	20	20	30	30	30	30	30	30	13.7	9.48	2.5 U	2.35 U	2.42 U	6.54 U	27.6	6.11	7.83	6.23	2.37 U	11.4 U	11.2	3.29 U	2.63 U	2.26 U
Arsenic	20	20	20	20	20	20	50	50	50	18.4	23.3	1.57	1.79	2.33	2.73	12.2	5.77	4.42	7.55	1.61	9.85	42.2	7.18	18.5	3.84
Barium	1000	1000	1000	3000	3000	3000	5000	5000	5000	943	339	632	595	1130	132	484	15600	3520	658	26.8	294	454	8860	5300	676
Beryllium	90	90	90	200	200	200	200	200	200	0.213 U	0.234 U	0.25 U	0.235 U	0.242 U	0.654 U	0.285 U	0.545	0.51 U	0.229 U	0.237 U	1.14 U	0.639 U	0.329	0.273	0.276
Cadmium	70	70	70	100	100	100	100	100	100	0.426 U	37.2	8	0.499	0.484 U	4.48	38.7	2.64	1.64	13.3	0.473 U	4.99	62.8	5.96	2.66	0.805
Chromium	100	100	100	200	200	200	200	200	200	3200	102	6.12	8.37	5.45	18.5	104	348	84.5	79.3	23.6	54	139	86.3	391	8.21
Chromium XI	100	100	100	200	200	200	200	200	200	4.5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	200	200	200	600	600	600	600	600	600	4270	1370	61.2	76	62.9	274	690	5150	389	2970	2.37 U	280	733	747	4660	220
Nickel	600	600	600	1000	1000	1000	1000	1000	1000	145	79.4	10.8	4.99	4.62	10.5	54.5	65	34.7	26.2	7.04	11.8	135	29	21.3	6.27
Selenium	400	400	400	700	700	700	700	700	700	12.3	2.34 U	2.5 U	2.35 U	2.42 U	6.54 U	4.93	12.3	6.89	4.13	2.37 U	11.4 U	8.3	4.01	2.63 U	2.26 U
Silver	100	100	100	200	200	200	200	200	200	1	1.18	0.5 U	0.471 U	0.484 U	1.31 U	0.571 U	0.619 U	1.02 U	0.458 U	0.473 U	2.29 U	1.28 U	2.21	0.526 U	0.452 U
Thallium	8	8	8	60	60	60	80	80	80	2.13 U	2.34 U	2.5 U	2.35 U	2.42 U	6.54 U	2.85 U	3.1 U	5.1 U	2.29 U	2.37 U	11.4 U	6.39 U	3.29 U	2.63 U	2.26 U
Vanadium	400	400	400	700	700	700	700	700	700	854	37.3	6.54	12.8	5.82	9.34	39.8	143	33.4	36.4	14.6	30.2	70.4	33.4	20.4	11.4
Zinc	1000	1000	1000	3000	3000	3000	5000	5000	5000	303	910	942	54	53.2	648	1510	807	400	7430	10.8	450	1380	294	367	120

U = Analyzed but not found; detection limit listed

NA = Not Analyzed for Indicated Parameter


= Yellow shade Indicates an exceedances of MCP S-1; GW-1, GW-2 or GW-3 Method 1 Standard

= Blue Hatching Indicates an exceedances of MCP S-2; GW-1, GW-2 or GW-3 Method 1 Standard

7390 = Red Text Indicates an exceedances of MCP S-3; GW-1, GW-2 or GW-3 Method 1 Standard

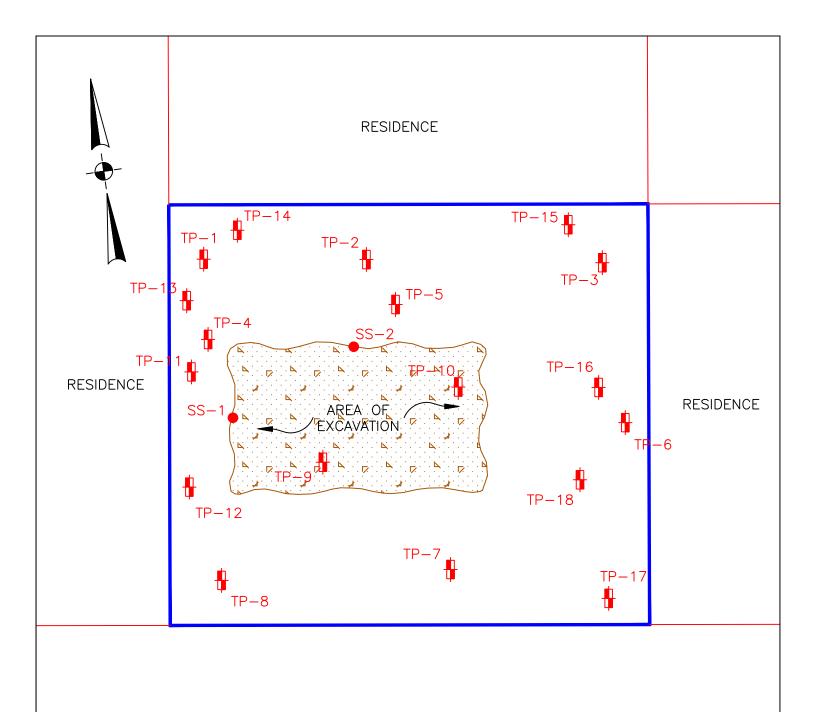

FIGURES

FIGURE 1 - LOCUS MAP FIGURE 2 - SITE SKETCH

BASE IMAGE: USGS TOPOGRAPHIC MAP - NEW BEDFORD SOUTH 1977

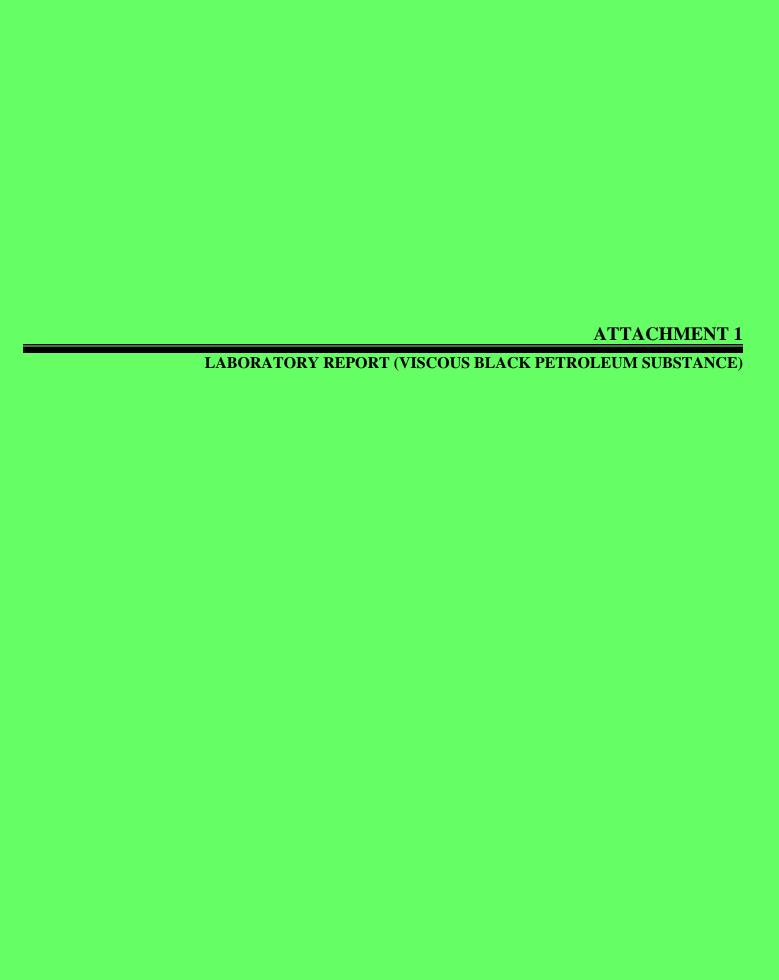

FIGURE 1	LOCUS MAP	-SITEC
appx. scale: AS SHOWN	85 MCCABE STREET DARTMOUTH, MASSACHUSETTS	ENVIRONMENTAL 769 Plain Street, Unit C Marshfield, MA 02050 Tel. (781) 319-0100 FAX (781) 834-4783

FIGURE 2	SITE SKETCH	SITEC
appx. scale: 1" = 20' 0' 10' 20'	85 McCabe street Dartmouth, massachusetts	ENVIRONMENTAL 769 Plain Street, Unit C Marshfield, MA 02050 Tel. (781) 319-0100 FAX (781) 834-4783

ANALYTICAL REPORT

Lab Number: L1834277

Client: Sitec Environmental, Inc.

769 Plain Street

Unit C

Marshfield, MA 02050

ATTN: Geoff Souza
Phone: (781) 319-0100
Project Name: MCCABE ST.

Project Number: SE18-1375
Report Date: 09/11/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MCCABE ST. Project Number: SE18-1375

Lab Number: L1834277 Report Date:

09/11/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1834277-01	DRUM-1	SOIL	Not Specified	08/28/18 09:30	08/30/18
L1834277-02	DRUM-2	SOIL	Not Specified	08/28/18 10:00	08/30/18

Project Name:MCCABE ST.Lab Number:L1834277Project Number:SE18-1375Report Date:09/11/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800.	-624-9220	with an	nv c	nuestions
i icasc	Contact	Ciletit	OCI VICES	at 000	-024-3220	with a	ıy c	fuestions.

Project Name:MCCABE ST.Lab Number:L1834277Project Number:SE18-1375Report Date:09/11/18

Case Narrative (continued)

Petroleum Hydrocarbon Identification by GC-FID

L1834277-01 and -02: The sample was extracted and then analyzed using a gas chromatograph equipped with a flame ionization detector (GC/FID). The temperature program and associated experimental conditions were optimized to obtain maximum resolution in an eighty minute chromatographic run representative of hydrocarbons in the n-Octane (C8) to n-Tetracontane (C40) range. Qualitative evaluation of the sample was conducted by reviewing the sample chromatogram in conjunction with a chromatogram of a normal alkane series generated with the same chromatographic conditions. Chromatograms of hydrocarbon reference materials obtained from our library of 74 reference standards were also utilized to provide the best possible sample match. Quantitative determination of the sample's hydrocarbon concentration was performed in accordance with EPA Method 8015M. The sample's total hydrocarbon concentration and all associated quality control data are included in the report.

The following qualitative information is based on a tentative interpretation of chromatographic pattern recognition and boiling point ranges:

Total Petroleum Identification

L1834277-01 and -02 contain hydrocarbons eluting in the range of n-Nonane (C9) to after the elution of n-Tetracontane (C40).

Based on the data generated, L1834277-01 and -02 contain material eluting in the low, mid, to heavy molecular weight ranges of the chromatogram. The material appears to be similar to a coal tar/creosote. L1834277-01 and -02: The surrogate recovery is outside the acceptance criteria for d50-tetracosane (224% and 225%, respectively); however, the sample was not re-extracted due to coelution with obvious interferences. A copy of the chromatogram is included as an attachment to this report.

PCBs

L1834277-01 and -02: The sample has elevated detection limits due to the dilution required by the sample matrix.

L1834277-01: The surrogate recoveries are below the acceptance criteria for 2,4,5,6-tetrachloro-m-xylene (0%) and decachlorobiphenyl (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Cripps
Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

ANALYTICA

Date: 09/11/18

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: Lab Number: MCCABE ST. L1834277

Project Number: Report Date: SE18-1375 09/11/18

SAMPLE RESULTS

Lab ID: Date Collected: 08/28/18 09:30 L1834277-01 Client ID: Date Received: DRUM-1 08/30/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA OP-013 Matrix: Soil

Extraction Date: 09/03/18 08:11 Analytical Method: 1,8015D(M) Analytical Date: 09/07/18 01:16

Analyst: TS 67% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Petroleum Hydrocarbon Identification I	oy GC-FID - Mans	field Lab					
Total Petroleum Hydrocarbons (C9-C44)	363000		mg/kg	3210		1	
Surrogate			% Recovery	Qualifier		eptance iteria	
o-Terphenyl			90		į.	50-130	
d50-Tetracosane			224	Q		50-130	

Project Name: Lab Number: MCCABE ST. L1834277

Project Number: Report Date: SE18-1375 09/11/18

SAMPLE RESULTS

Lab ID: Date Collected: 08/28/18 10:00 L1834277-02

Date Received: Client ID: DRUM-2 08/30/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA OP-013 Matrix: Soil

Extraction Date: 09/03/18 08:11 Analytical Method: 1,8015D(M) Analytical Date: 09/07/18 02:44

Analyst: TS 56% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Identification	by GC-FID - Mans	field Lab				
Total Petroleum Hydrocarbons (C9-C44)	526000		mg/kg	4710		1
Surrogate			% Recovery	Qualifier		eptance iteria
o-Terphenyl			94		Ę	50-130
d50-Tetracosane			225	Q	į	50-130

Project Name: MCCABE ST.

Lab Number:

L1834277

Project Number: SE18-1375

Report Date:

09/11/18

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date: 1,8015D(M) 09/06/18 19:24

Analyst:

TS

Extraction Method: ALPHA OP-013

Extraction Date:

09/03/18 08:11

_,

Parameter Result Qualifier Units RL MDL

Petroleum Hydrocarbon Identification by GC-FID - Mansfield Lab for sample(s): 01-02 Batch:
WG1153156-1

Total Petroleum Hydrocarbons (C9-C44) ND mg/kg 2.20 ---

		Acceptance	
Surrogate	%Recovery Qualific	er Criteria	
			_
o-Terphenyl	89	50-130	
d50-Tetracosane	94	50-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST.

Lab Number: L1834277

09/11/18

Project Number:	SE18-1375	Report Date:	(

LCS		LCSD		%Recovery			RPD
%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
FID - Mansfield	Lab Associate	d sample(s):	01-02 Batch	: WG1153156-2	WG1153156	6-3	
73		70		50-130	4		30
78		72		50-130	8		30
85		79		50-130	7		30
88		82		50-130	7		30
93		88		50-130	6		30
97		94		50-130	3		30
92		90		50-130	2		30
93		91		50-130	2		30
92		92		50-130	0		30
95		96		50-130	1		30
90		92		50-130	2		30
89		93		50-130	4		30
88		93		50-130	6		30
85		93		50-130	9		30
	%Recovery FID - Mansfield 73 78 85 88 93 97 92 93 92 93 92 93 92 93 92 93 92 95 90 89 88	%Recovery Qual FID - Mansfield Lab Associate 73 78 85 88 93 97 92 93 92 95 90 89 88 88	%Recovery Qual %Recovery FID - Mansfield Lab Associated sample(s): 73 70 78 72 85 79 88 82 93 88 97 94 92 90 93 91 92 92 95 96 90 92 89 93 88 93	%Recovery Qual %Recovery Qual FID - Mansfield Lab Associated sample(s): 01-02 Batch 73 70 78 72 85 79 88 82 93 88 97 94 92 90 93 91 92 92 95 96 90 92 89 93 88 93	%Recovery Qual %Recovery Qual Limits FID - Mansfield Lab Associated sample(s): 01-02 Batch: WG1153156-2 73 70 50-130 78 72 50-130 85 79 50-130 88 82 50-130 93 88 50-130 97 94 50-130 92 90 50-130 93 91 50-130 92 92 50-130 95 96 50-130 90 92 50-130 89 93 50-130 88 93 50-130	%Recovery Qual %Recovery Qual Limits RPD FID - Mansfield Lab Associated sample(s): 01-02 Batch: WG1153156-2 WG1153156-2 73 70 50-130 4 78 72 50-130 8 85 79 50-130 7 88 82 50-130 7 93 88 50-130 6 97 94 50-130 3 92 90 50-130 2 93 91 50-130 2 92 92 50-130 0 95 96 50-130 1 90 92 50-130 2 89 93 50-130 4 88 93 50-130 6	%Recovery Qual %Recovery Qual Limits RPD Qual FID - Mansfield Lab Associated sample(s): 01-02 Batch: WG1153156-2 WG1153156-3 73 70 50-130 4 4 78 72 50-130 8 85 79 50-130 7 88 82 50-130 7 93 88 50-130 6 97 94 50-130 3 92 90 50-130 2 93 91 50-130 2 92 92 50-130 0 95 96 50-130 1 90 92 50-130 2 89 93 50-130 4 88 93 50-130 6

Surrogate	LCS	LCSD	Acceptance
	%Recovery	Qual %Recovery	Qual Criteria
o-Terphenyl	94	90	50-130
d50-Tetracosane	92	94	50-130

PCBS

Project Name: MCCABE ST. Lab Number: L1834277

Project Number: SE18-1375 Report Date: 09/11/18

SAMPLE RESULTS

Lab ID: L1834277-01 D Date Collected: 08/28/18 09:30

Client ID: DRUM-1 Date Received: 08/30/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 09/06/18 17:39

Analyst: 09/07/18 13:46 Cleanup Method: EPA 3665A Cleanup Date: 09/06/18

Analyst: AWS Cleanup Date: 09/06/18
Percent Solids: 67% Cleanup Method: EPA 3660B
Cleanup Date: 09/06/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by Go	C - Westborough Lab						
Aroclor 1016	ND		ug/kg	2630		20	Α
Aroclor 1221	ND		ug/kg	2630		20	Α
Aroclor 1232	ND		ug/kg	2630		20	Α
Aroclor 1242	ND		ug/kg	2630		20	Α
Aroclor 1248	ND		ug/kg	2630		20	Α
Aroclor 1254	3770		ug/kg	2630		20	В
Aroclor 1260	ND		ug/kg	2630		20	Α
Aroclor 1262	ND		ug/kg	2630		20	Α
Aroclor 1268	ND		ug/kg	2630		20	Α
PCBs, Total	3770		ug/kg	2630		20	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	Α
Decachlorobiphenyl	0	Q	30-150	Α

Project Name: MCCABE ST. Lab Number: L1834277

Project Number: SE18-1375 Report Date: 09/11/18

SAMPLE RESULTS

Lab ID: L1834277-02 D Date Collected: 08/28/18 10:00

Client ID: DRUM-2 Date Received: 08/30/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 09/03/18 11:02

Analytical Date: 09/06/18 18:10 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 09/04/18
Percent Solids: 56% Cleanup Method: EPA 3660B

Percent Solids: 56% Cleanup Method: EPA 3660 Cleanup Date: 09/04/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westl	oorough Lab						
Aroclor 1016	ND		ug/kg	831		5	Α
Aroclor 1221	ND		ug/kg	831		5	Α
Aroclor 1232	ND		ug/kg	831		5	Α
Aroclor 1242	ND		ug/kg	831		5	Α
Aroclor 1248	ND		ug/kg	831		5	Α
Aroclor 1254	ND		ug/kg	831		5	Α
Aroclor 1260	ND		ug/kg	831		5	Α
Aroclor 1262	ND		ug/kg	831		5	Α
Aroclor 1268	ND		ug/kg	831		5	Α
PCBs, Total	ND		ug/kg	831		5	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	37		30-150	В
Decachlorobiphenyl	54		30-150	В
2,4,5,6-Tetrachloro-m-xylene	35		30-150	Α
Decachlorobiphenyl	44		30-150	Α

Project Name:MCCABE ST.Lab Number:L1834277Project Number:SE18-1375Report Date:09/11/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 09/06/18 14:43

Analyst: JW

Extraction Method: EPA 3546
Extraction Date: 09/03/18 11:02
Cleanup Method: EPA 3665A
Cleanup Date: 09/04/18
Cleanup Date: 09/04/18

Parameter	Result	Qualifier Units	RL	MDL	Column
Polychlorinated Biphenyls by G0	C - Westborough	Lab for sample(s):	02 Batch:	WG1153177	-1
Aroclor 1016	ND	ug/kg	32.5		Α
Aroclor 1221	ND	ug/kg	32.5		Α
Aroclor 1232	ND	ug/kg	32.5		Α
Aroclor 1242	ND	ug/kg	32.5		Α
Aroclor 1248	ND	ug/kg	32.5		Α
Aroclor 1254	ND	ug/kg	32.5		Α
Aroclor 1260	ND	ug/kg	32.5		Α
Aroclor 1262	ND	ug/kg	32.5		Α
Aroclor 1268	ND	ug/kg	32.5		Α
PCBs, Total	ND	ug/kg	32.5		Α

		Acceptano	ce
Surrogate	%Recovery Qualifi	er Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70	30-150	В
Decachlorobiphenyl	68	30-150	В
2,4,5,6-Tetrachloro-m-xylene	65	30-150	Α
Decachlorobiphenyl	67	30-150	Α

Project Name:MCCABE ST.Lab Number:L1834277Project Number:SE18-1375Report Date:09/11/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 09/07/18 00:46

Analyst: JW

Extraction Method: EPA 3546
Extraction Date: 09/06/18 17:39
Cleanup Method: EPA 3665A
Cleanup Date: 09/06/18
Cleanup Method: EPA 3660B
Cleanup Date: 09/06/18

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for sa	ample(s):	01	Batch:	WG1154343-	-1
Aroclor 1016	ND		ug/kg	;	31.4		Α
Aroclor 1221	ND		ug/kg	;	31.4		Α
Aroclor 1232	ND		ug/kg	;	31.4		Α
Aroclor 1242	ND		ug/kg		31.4		Α
Aroclor 1248	ND		ug/kg	;	31.4		Α
Aroclor 1254	ND		ug/kg	;	31.4		Α
Aroclor 1260	ND		ug/kg	;	31.4		Α
Aroclor 1262	ND		ug/kg	;	31.4		Α
Aroclor 1268	ND		ug/kg	;	31.4		Α
PCBs, Total	ND		ug/kg	;	31.4		Α

		Acceptance	ce
Surrogate	%Recovery Qualif	ier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	85	30-150	В
Decachlorobiphenyl	86	30-150	В
2,4,5,6-Tetrachloro-m-xylene	79	30-150	Α
Decachlorobiphenyl	88	30-150	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number:

L1834277

Report Date:

09/11/18

Parameter	LCS %Recovery	Qual	LCSD %Recover	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associate	ed sample(s):	02 Batcl	n: WG1153177-	2 WG1153177-	3			
Aroclor 1016	63		70		40-140	11		50	А
Aroclor 1260	60		68		40-140	13		50	Α

Surrogate	LCS %Recovery Q	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	64	72	30-150 B
Decachlorobiphenyl	67	72	30-150 B
2,4,5,6-Tetrachloro-m-xylene	61	68	30-150 A
Decachlorobiphenyl	67	72	30-150 A

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number:

L1834277

Report Date:

09/11/18

Parameter	LCS %Recovery Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	RPD Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associated samp	ple(s): 01 Batch:	WG1154343-2	WG1154343	-3		
Aroclor 1016	65	74		40-140	13	50	Α
Aroclor 1260	69	74		40-140	7	50	Α

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	71	79	30-150 B
Decachlorobiphenyl	74	83	30-150 B
2,4,5,6-Tetrachloro-m-xylene	68	78	30-150 A
Decachlorobiphenyl	76	85	30-150 A

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: MCCABE ST. L1834277 **Project Number:** SE18-1375

Report Date: 09/11/18

SAMPLE RESULTS

Lab ID: Date Collected: L1834277-01 08/28/18 09:30 Client ID: DRUM-1 Date Received: 08/30/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	66.8		%	0.100	NA	1	-	08/31/18 12:13	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1834277 **Project Number:** SE18-1375

Report Date: 09/11/18

SAMPLE RESULTS

Lab ID: Date Collected: L1834277-02 08/28/18 10:00 Client ID: DRUM-2 Date Received: 08/30/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	55.5		%	0.100	NA	1	-	08/31/18 12:13	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L1834277

Report Date:

09/11/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Asse	ociated sample(s): 01-02 QC	C Batch ID: WG1152641-1	QC Sample:	L1834502-04	Client ID:	DUP Sample
Solids, Total	83.3	81.6	%	2		20

Project Name:

Project Number: SE18-1375

MCCABE ST.

Project Name: MCCABE ST. **Lab Number:** L1834277 Project Number: SE18-1375

Report Date: 09/11/18

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1834277-01A	Glass 250ml/8oz unpreserved	Α	NA		3.8	Υ	Absent		PCB-8082(14),TS(7)
L1834277-01X	Glass 60ml unpreserved split	Α	NA		3.8	Υ	Absent		A2-PHI(14)
L1834277-02A	Glass 250ml/8oz unpreserved	Α	NA		3.8	Υ	Absent		PCB-8082(14),TS(7)
L1834277-02X	Glass 60ml unpreserved split	Α	NA		3.8	Υ	Absent		A2-PHI(14)

Project Name: Lab Number: MCCABE ST. L1834277 **Project Number:** SE18-1375 **Report Date:** 09/11/18

GLOSSARY

Acronyms

EPA

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

- Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:MCCABE ST.Lab Number:L1834277Project Number:SE18-1375Report Date:09/11/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:09111810:03

Project Name:MCCABE ST.Lab Number:L1834277Project Number:SE18-1375Report Date:09/11/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:09111810:03

Published Date: 1/8/2018 4:15:49 PM

ID No.:17873

Revision 11

Page 1 of 1

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

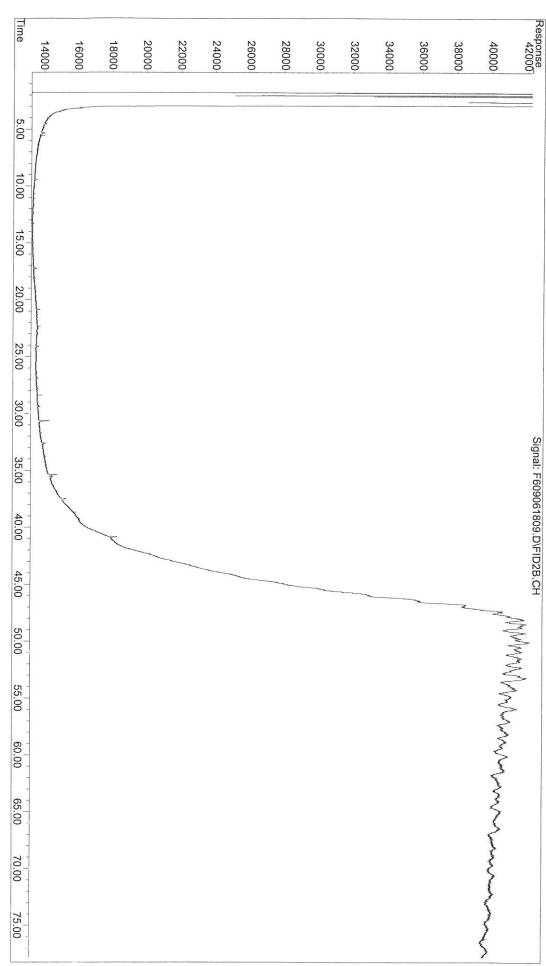
EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ΔIPHA	CHAIN O	F CUSTO	YDC	PAGE	1 00 /						,		-1			73111010.00	
A STATE OF THE A	N	Project Inform		110000	For (- Date	Rec'd in	Lab:		81	30	118	AL	PHA.	Job #:	L1830	427
8 Walkup Dri Westboro, M Tel: 508-898	A DIESE	Project Name:	AA	1			ort Info	rmatic	on - Da	ata D	elive	rables			forma		
Client Informat	1000 000	Project Name: / Project Location:	VICLA	be s	st	dKAI	DEx		J EMA	L			_	100000000000000000000000000000000000000	Client i		
Client: SITE	Environney/	Desiron CE				Regu	latory	Requi	remer	its	& F	roject	NAME OF TAXABLE PARTY.			rements	7. 3
Address: 769	Plan St Intl	Project #: SE	-18-1	375		☐ Yes	□ No N	IA MCI latrix S	Analy	tical N	Seath -	2				T RCP Analytica norganics)	al Method
Marsh	Plain St, Unit C field, MACOCSO	Project Manager:	vert	-Sou	2a	100000000000000000000000000000000000000	1 4 4 4	4 4 4 44 44	or reality	s (Info	Requ	ired for	(Req Metals	uired fo & EPH	r MCP with Tar	norganics)	
Phone: 781-	319-0100		WANTE V				☐ No N er State /							Crite		9-1-7	
Email: 95007	2a@sitecenv.com	Turn-Around 1	ime	5				7	2/	,/,	7.	11	7	/ /	/	177	
Additional F	Project Information:	Date Due:	□ RUSH (an	ty confirmed if pre	-Approved)	ANA	METALS: DABN DPAH	METALS: DRCRAS DMCP 14 DE	VPH. C. C. Ranges & Targets DPP+	nges & Targer	7PH. DQuant C	Only Ofingerprint	//	//	//	SAMPLI Filtration	do
ALPHA Lab ID (Lab Use Only)	Sample ID	The second secon	ection	Sample	Sampler	SVO.	TALS	7465	2 2	80	00	//	//	/ /	1)	Preserva Lab to	
1277 -01	Drum-1	8/28	Time	Matrix	Initials	3/3	/ W	EP RE	1 5	K PCB	E /	//	/ /	/	/ /	Sample Comr	
702	Drum-2	The second second	936	SG	05					X	X					Gampie Comi	nents
	12/01/1	8/98	1000	SG	os					7	X				1		
													1		+		-
TE 2011										1		11	+	+	+		-
-										+	+	++	+	+	+		_
					1			\forall	+	+	+	++	+	-	-		
						++	+		+	+	+	++	-		-		
							-		+	+	+	++	+-	-			
								1	+	+	+	-	+-		-		
	9.85					++		+	+	+	+-		-				
ainer Type lastic mber glass	A= None			Contain	er Type		-			-	-		-		_		
ial ilass acteria cun	B= HCI C= HNO ₃ D= H ₂ SO ₄				ervative	++	+		4	-	-						
other		elinquished By:		Date/T		1	Receive	0.5	1	A							
OD Bottle	H = Na ₂ S ₂ O ₇ . I= Ascorbic Acid J = NH ₄ Cl	005	14 8	180/18	1140 0	the !	1/al	ON A	40	1	1	Date/Tim	e	All san	nples si	ibmitted are sub	ingt to
	K= Zn Acetate O= Other	real	4 8	30/15	1735	-		5	A H	8	30	18		See re	s terms verse si	and Conditions	ject to


GC-FID Chromatogram

Operator Acquired :0:\Forensics\Data\FID6\2018\SEP\SEP06.SEC\F609061809.D FID6:TS 06 Sep 2018 FID6 5:56 pm using AcqMethod FID6A.M

Sample Name: Instrument

IB609061801R

Misc Info : Vial Number: ភ

Acquired Operator Instrument :O:\Forensics\Data\FID6\2018\SEP\SEP06.SEC\F609061811.D : FID6:TS 06 Sep 2018 FID6 7:24 pm using AcqMethod FID6A.M

Sample Name: Misc Info

WG1154346,WG1153156,ICAL14592 56

Response

Signal: F609061811.D\FID2B.CH

Vial Number:

Page 30 of 36

Time

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

100000

50000

200000

150000

250000

300000

350000

450000

400000

500000

Acquired Operator :O:\Forensics\Data\FID6\2018\SEP\SEP06.SEC\F609061813.D: FID6:TS 06 Sep 2018 FID6 8:53 pm using AcqMethod FID6A.M

Misc Vial Sample Name: Instrument Info

WG1153156-2 (laboratory control sample) WG1154346, WG1153156, ICAL14592

Response 650000

Signal: F609061813.D\FID2B.CH

600000

Number: 57

Page 31 of 36

Time

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

100000

50000

150000

200000

250000

300000

350000

400000

450000

500000

550000

Vial

Response_

Signal: F609061819.D\FID2B.CH

2800000

2000000

1800000

1600000

1400000

1000000

800000

600000

1200000

2200000

2400000

2600000

Acquired Operator :0:\Forensics\Data\FID6\2018\SEP\SEP06.SEC\F609061819.D : FID6:TS 1:16 am using AcqMethod FID6A.M

Misc Sample Name: Instrument Info

07 Sep 2018 FID6

L1834277-01

Number:

60

WG1154346, WG1153156, ICAL14592

Page 32 of 36

Time

5.00

200000

400000

Operator Acquired Instrument :0:\Forensics\Data\FID6\2018\SEP\SEP06.SEC\F609061821.D 07 Sep 2018 FID6 FID6:TS 2:44 am using AcqMethod FID6A.M

Misc Vial Sample Name: Info

L1834277-02

WG1154346, WG1153156, ICAL14592

Number: 61

Time Response_ 1500000 1100000 1000000 1200000 1300000 1400000 100000 200000 400000 900000 300000 500000 600000 700000 800000 5.00 10.00 15.00 20.00 25.00 30.00 Signal: F609061821.D\FID2B.CH 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00

Petroleum Reference Standards

Instrument: Sample Name: Misc Info: Vial Number:

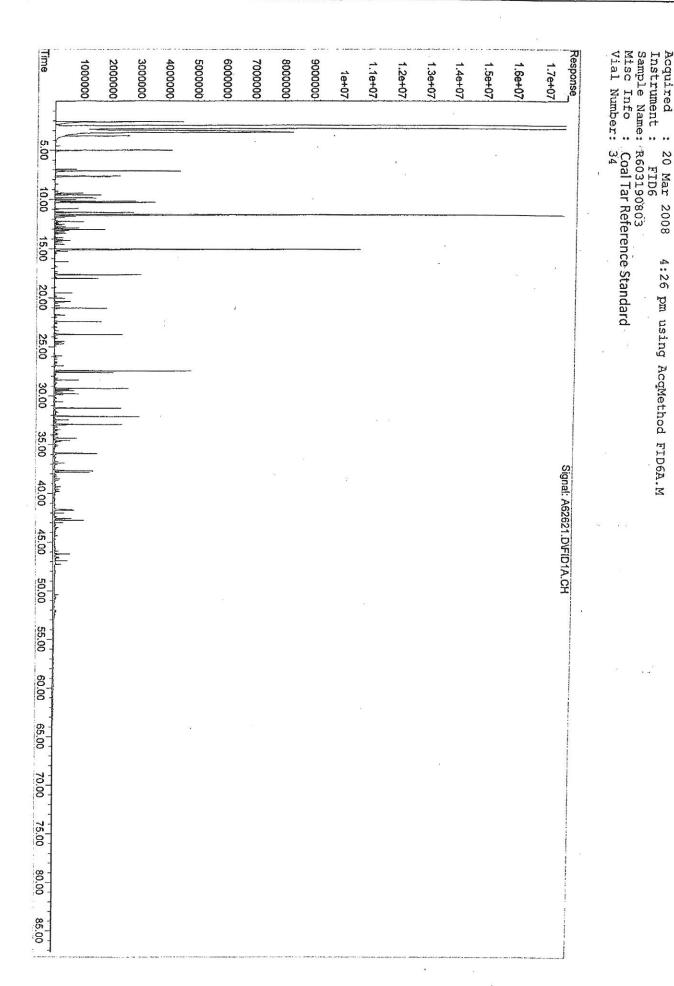
53

WG1154346-1 (alkane reference standard C9-C40 WG1154346,FRBA35 50 ug/ml

Operator Acquired

FID6:TS 06 Sep 2018 FID6

:0:\Forensics\Data\FID6\2018\SEP\SEP06.SEC\F609061805.D


2:58 pm using AcqMethod FID6A.M

Time Response_ 3000000 3200000 2200000 2600000 2800000 1400000 1800000 1000000 1200000 1600000 2000000 2400000 600000 800000 200000 400000 5.00 10.00 15.00 20.00 25.00 30.00 Signal: F609061805.D\FID2B.CH 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00

Operator Acquired

:0:\Forensics\Data\FID6\MAR08\MAR18\A62621.D
: NLJr

4:26 pm using AcqMethod FID6A.M

SOIL DISPOSAL DOCUMENTATION

BWSC 112

Release Tracking Number

BILL OF LADING (pursuant to 310 CMR 40.0030)

- 27363

A. LOCATION OF SITE OR DISPOSAL SITE WHERE R	REMEDIATION WASTE WAS GENERATED:
1. Release Name/Location Aid: RESIDENTIAL LOT	<u> </u>
2. Street Address: 85 MCCABE STREET	
3. City/Town: DARTMOUTH	4. Zip Code: 027480000
5. Check here if the disposal site that is the source of the a. Tier I b. Tier ID c. Tier II	ne release is Tier Classified. Check the current Tier Classification Category.
B. THIS FORM IS BEING USED TO: (check one: B1-B4):	
1. Submit a Bill of Lading (BOL) to transport Remediation Response Actions associated with this BOL (check all t	
▼ a. Immediate Response Action (IRA)	Ce. Comprehensive Response Actions
□ b. Release Abatement Measure (RAM)□ c. Downgradient Property Status (DPS)	Tf. Limited Removal Action (LRA): (must be retained pursuant to 310 CMR 40.0034(6); can't be submitted via eDEP)
d. Utility Release Abatement Measure (URAM)	g. Other
5. Date Bill of Lading submitted to the Department:	b. eDEP Transaction ID: mm/dd/yyyy) to 7/30/2018 to 7/30/2018
_	$\frac{1}{(\text{mm/dd/yyyy})} \frac{1}{(\text{mm/dd/yyyy})}$
	n must be filled out unless otherwise noted above) Attestation of Completion of Shipment is received by the Department.
C. DESCRIPTION OF WASTE AND WASTE SOURCE:	
1. Contaminated Media/Debris (check all that apply):	
▼ a. Soil	rer
☐ f. Demolition/Construction Waste ☐ g. Inorganic A	bsorbent Materials h. Other:
2. Uncontainerized Waste (check all that apply):	
a. Inorganic Absorbent Materials	

BWSC 112

Release Tracking Number

- 27363

BILL OF LADING (pursuant to 310 CMR 40.0030)

C. DESCRIPTION OF WASTE AND WASTE SOURCE (cont.):
3. Containerized Waste (check all that apply):
a. Tank Bottoms/Sludges
□ e. Other:
4. Estimated Quantity: 200
5. Contaminant Source (check one):
a. Transportation Accident
▼ d. Other: <u>DUMPING</u>
6. Type of Contaminant (check all that apply):
a. Gasoline b. Diesel Fuel c. #2 Fuel Oil d. #4 Fuel Oil e. #6 Fuel Oil f. Jet Fuel
g. Waste Oil h. Kerosene i. Chlorinated Solvents j. Urban Fill k. Other: MSCOUS PETROLEUM-BASED LIQUID
7. Constituents of Concern (check all that apply):
Га. As Гb. Cd Гc. Cr Гd. Pb Гe. Hg Гf. EPH/TPH Гg. VPH
☐ h. PCBs ☐ i. VOCs ☐ j. SVOCs ☐ k. Other:
8. If applicable, check the box for the Reportable Concentration Category of the site:
□ a. RCS-1 □ b. RCS-2 □ c. RCGW-1 □ d. RCGW-2
9. Remediation Waste Characterization Documentation (check at least one):
a. Site History Information b. Sampling Analytical Methods and Procedures c. Laboratory Data
d. Field Screening Data e. Characterization Documentation previously submitted to the Department
i. Date submitted: ii. Type of Documentation:
(mm/dd/yyyy)
D. TRANSPORTER OR COMMON CARRIER INFORMATION:
1. Transporter/Common Carrier Name: W.L. FRENCH EXCAVATING CORP
2. Contact First Name: CHRIS 3. Last Name: PAULINO
4. Street: 3 SURVEY CIRCLE 5. Title:
6. City/Town: NORTH BILLERICA 7. State: MA 8. Zip Code: 018620000
9. Telephone: 9786632623 10. Ext: 11. Email:

BILL OF LADING (pursuant to 310 CMR 40.0030)

BWSC 112

Release Tracking Number

4 - 27363

	cility Name: OND	RICK MATERIALS & RECYCL	ING.					
2. Contact First	(-		3. Last Na	me: cos	TANZO			
4. Street: 22 l	NDUSTRY ROAD		-	5. Title:	ENVIRONME	NTAL DIVISION M	ANAGER	
6. City/Town:	CHICOPEE			7. State:	MA	8. Zip Code:	010200000	
9. Telephone:	4135922566	10. Ext:		11. Email:		- ?		
12. Type of fac	ility: (check one)			7.				
a. Tempora	ry Storage	i. Period of Tempo	orary Storage			to		
ii. Reason f	or Temporary Storag	ge:		(mı	n/dd/yyyy)		(mm/dd/yyyy)	
□ b. Aspha	alt Batch/Hot Mix	C. Landfill/Disposal	Г	d. Landfill	Structural Fil	Гe. L	andfill/Daily Cove	r
▽ f. Aspha	lt Batch/Cold Mix	g. Thermal Processin	ıg Гh.:	Incinerator	□ i. Other:			
13. Division of	Hazardous Waste/C	lass A Permit Number:	X258844			7.		
14. Division of	Solid Waste Permit	Number:						
15. EPA Identif	ication Number:	MAR000529677						
E I CD CLCNIAT	TURE AND STAM	D.						
to the best of m (are) the subject 40.0000, and su	ny knowledge, infor et of this submittal fo ach facility is permit	e provisions of 309 CMR 4. mation and belief, the ass or acceptance at the facilitated to accept Remediation as may result, including, but	essment acti y identified Waste havii	on(s) undert in this subm ng the chara	aken to chara ittal comply v cteristics desc	cterize the Rem vith applicable p cribed in this su	ediation Waste whorovisions of 310 C bmittal.	ich is CMR
1. LSP#:		eriany incomplete.						
	4122		2.1.4	N				
2. First Name:4. Telephone:	GEOFFREY	5. Ext:	3. Last	6. Email:	OUZA			
7. Signature:	7813190100		11	O. Email:	0 I CD C+			_
C	GEOFFREY SOUZA	4		_	9. LSP Stam	p:		1
8. Date:	9/25/2018 (mm/dd/yyyy)				aoi Compo	Electro Sea		

BWSC 112

BILL OF LADING (pursuant to 310 CMR 40.0030)

Release Tracking Number

4 - 27363

G. PERSO	N SUBMITTIN	G BILL OF LADING:			
1. Check al	II that apply:	☐ a. change in contact name	Tb. chan	ge of address	c. change in the person undertaking response actions
2. Name of	Organization:	TERCEIRA CONSTRUCTION			
3. Contact l	First Name:	ORGE	4. Last Nan	ne: VERISS	SIMO
5. Street:	1 COOKIE WAY			6. Title:	
7. City/Tow	vn: Dartmouth	1		8. State:	MA 9. Zip Code: 027480000
10. Telepho	one: 774263129	11. Ext;		12. Email:	
H. RELAT	TONSHIP TO S	SITE OF PERSON SUBMITT	ING BILL OF	LADING:	Check here to change relationship
▼ 1. RP or	PRP 6	a. Owner	perator	┌ c. Gen	erator
Ге. О	ther RP or PRP	Specify:			
2. Fiduc	iary, Secured Ler	nder or Municipality with Exemp	t Status (as defi	ned by M.G.L	c. 21E, s. 2)
☐ 3. Age	ncy or Public Util	lity on a Right of Way (as define	d by M.G.L. c. 2	21E, s. 5(j))	
☐ 4. Any	Other Person U	ndertaking Response Actions:	Specify R	elationship:	
I. REQUIR	RED ATTACHW	1ENT AND SUBMITTALS:			
					were) subject to any order(s), permit(s) and/or tidentifying the applicable provisions thereof.
	ck here if any no C.eDEP@state.ma		ed on this form	is incorrect, e	.g. Release Address/Location Aid. Send corrections to
▽ 3. Chec	ck here to certify	that the LSP Opinion containing	g the material fa	icts, data, and	other information is attached.
J. CERTIF	ICATION OF I	PERSON SUBMITTING BIL	L OF LADING	G:	
am fa that, l in this attest am/is	based on my inquest submittal is, to tation on behalf as aware that there	information contained in this su uiry of those individuals immed the best of my knowledge and of the entity legally responsible	ibmittal, includ iately responsib belief, true, acc e for this submi	ing any and a ole for obtaining urate and constitual. I/the per	ties or perjury (i) that I have personally examined and all documents accompanying this transmittal form, (ii) ing the information, the material information contained uplete, and (iii) that I am fully authorized to make this rson or entity on whose behalf this submittal is made saible fines and imprisonment, for willfully submitting
2. By:	SITEC ENVIRONM	IENTAL, INC.		3. Title:	
4. For:	TERCEIRA CONST	RUCTION		5. Date: 9	9/25/2018
	(Name	of person or entity recorded in S	ection G)		(mm/dd/yyyy)

BWSC 112

BILL OF LADING (pursuant to 310 CMR 40.0030)

4 -

Release Tracking Number

- 27363

J. CERTIFICATION OF PERSON SUBMITTING BILL OF LADING (cont.): 6. Check here if the address of the person providing certification is different from address recorded in Section G. 7. Street: 8. City/Town: 9. State: 10. Zip Code: 11. Telephone: 12. Ext: 13. Email:

YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE ASSURANCE FEE OF UP TO \$10,000 PER BILLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST LEGIBLY COMPLETE ALL RELEVANT SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE.

Date Stamp (MassDEP USE ONLY):

teceived b	y DEP	on 9/25/20	018 4:43:1	7 PM

22 Ind	ustry Road, Chico	pee, MA 01020		9/27/18	11:34 AM
Truck ID	LAROCHELLE	LAROCHELLE	Gross Tare	107660 Lb 35800 Lb	*
Customer Order	10125 18-9-14790MA	W. L. French Excavating Corporatio Res. 85 McCabe St Dartmouth MA	Net	35.93 Ton	*
P.O.					
Product	OIL MA			Today	To Date
	OTE WIT		Loads	1	1
Site Addr.	Residential 85 McCabe St Dartmouth, MA (02748	Qty	35.93	35.93
Driver:		July Hill			# **
Customer:	W-1				
Arrival Time	e:	Depart Time:			

Ticket

302759

Ondrick Materials & Recycling, LLC

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, heroafter referred to as Soller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the soiler for the purchaser was loaded in excess of its permitted and certified capacity, Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Soller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, IT'S REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF IT'S PERMITTED AND CERTIFIED CAPACITY

CALITION- HOT MATERIAL (275°F-325°F) Avoid contact with skin & eves - Thermal Burns could result. Fumes count cause nausea or irritation. Seek proper medical assistance in all emergencies.

Ondrick 22 Ind	Materials & Fustry Road, Chicop	Recycling, LLC pee, MA 01020		Ticket 9/27/18	302760 11:37 AM
Truck ID	LAROCHELLE2	LAROCHELLE2	Gross	104680 Lb	*
Customer	10125	W. L. French Excavating Corporatio	Tare	33500 Lb	*
Order	18-9-14790MA	Res. 85 McCabe St Dartmouth MA	Net	35.59 Ton	*
P.O.					
Product	OIL MA			Today	To Date
Froduct	OIL WA		Loads	2	2
Site Addr.	Residential		Qty	71.52	71.52
	85 McCabe St Dartmouth, MA 0	2748			
Driver:		Joh Al Tille			egipti. deregi
Customer:		ν.			
Arrival Time	9:	Depart Time:			

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE (The seller's PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER'S LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Sollor's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result. Furnes count cause naused or irritation. Seek proper medical assistance in all emergencies.

Ondrick 22 Ind	K Materials & F Justry Road, Chico	Recycling, LLC pee, MA 01020		Ticket 9/27/18	302763 12:01 PM
Truck ID	FRENCH121	FRENCH121	Gross	99180 Lb	*
Customer Order	10125 18-9-14790MA	W. L. French Excavating Corporatio Res. 85 McCabe St Dartmouth MA	Tare Net	35000 Lb 32.09 Ton	*
P.O.					
Product	OIL MA			Today	To Date
rioduci	OIL MA		Loads	3	3
Site Addr.	Residential 85 McCabe St Dartmouth, MA 0)2748	Qty	103.61	103.61
Driver:					
_					

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity, Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Sellor's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF 15Y PERMITTED AND CERTIFIED CAPACITY

_____ Depart Time:

Customer:

Arrival Time:

	Materials & Fustry Road, Chico	Recycling, LLC pee, MA 01020		Ticket 9/27/18	302771 12:51 PM
Truck ID	FRENCH161	FRENCH161	Gross	100600 Lb	*
Customer	10125	W. L. French Excavating Corporatio	Tare	35600 Lb	*
Order	18-9-14790 M A	Res. 85 McCabe St Dartmouth MA	Net	32.50 Ton	*
P.O.					
Product	OIL MA			Today	To Date
Froduct	OIL IVIA		Loads	4	4
Site Addr.	Residential		Qty	136.11	136.11
	85 McCabe St	02740			
	Dartmouth, MA 0	~ ~ >			
Driver:		rolly.			
Customer:					
Arrival Time	e:	Depart Time:			

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBLITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the sellor for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Sellor's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

I	— , I

BILL Page	OF LADING Transport Log Sheet		Release	Tracking N	umber
I. LOAD INFORMATION: Load 1: Date of Shipment: G/27/18 Truck/Tractor Registration: Z 26 43 - A	Time of Shipment: 930 Trailer Registration (if any):	Receiving Facility/Temporary Date of Receipt: G Z 7 // 8 Load Size (cu. yds. ttons):	Time of Receipt:	À AM	PM
Date of Shipment: Output Out	Transporter Representative: War Color Willing Time of Shipment: G 35 AM PM Trailer Registration (if any):	Receiving Facility/Temporal Date of Receipt: 1 2 7 / 5 Load Size (cu. yds/tons):	ry Storage Representative: Time of Receipt: 1137 35,59	[] AM	PM
Load 3: Signature of Date of Shipment: 9/27/8 Truck/Tractor Registration:	Transporter Representative: Time of Shipment: AM PM Trailer Registration (if any):	Receiving Facility/Temporar Date of Receipt: GAN 18 Load Size (cu. yds./tons):	y Storage Representative: Time of Receipt: [20 0	АМ	[] FM
Load 4: Signature of Date of Shipment: 9/27/18 Truck/Tractor Registration: 5436 A	Transporter Representative: Time of Shipment: AM PM Trailer Registration (if any):	Receiving Facility/Temporary Date of Receipt: Load Size (cu. yds./tons):	y Storage Representative: Time of Receipt: 1260 30.50	ПАМ	<u></u> □ ÞM
Load 5: Signature of To Date of Shipment: Truck/Tractor Registration:	Transporter Representative: Time of Shipment: AM PM Trailer Registration (if any):	Receiving Facility/Temporar	ry Storage Representative: Time of Receipt:	AM	PM
Load 6: Signatiure of	Transporter Representative:	Load Size (cu. yds./tons): Receiving Facility/Temporar	ry Storage Representative:		
Date of Shipment: Truck/Tractor Registration:	Time of Shipment: AM PM Trailer Registration (if any):	Date of Receipt: Load Size (cu. yds./tons);	Time of Receipt:	АМ	PM
J. LOG SHEET VOLUME	Total Carried Forward	orded This Page (cu. yds./tons) vard (cu. yds./tons): vard and This Page (cu. yds./to			

Ondrick 22 Ind	Materials & Flustry Road, Chico	Recycling, LLC pee, MA 01020		Ticket 9/28/18	302826 10:05 AM
Truck ID Customer Order P.O.	LAROCHELLE 10125 18-9-14790MA	LAROCHELLE W. L. French Excavating Corporatio Res. 85 McCabe St Dartmouth MA	Gross Tare Net	105780 Lb 33500 Lb 36.14 Ton	* *
Product Site Addr.	OIL MA Residential 85 McCabe St		Loads Qty	Today 1 36.14	To Date 5 172.25
Driver: Customer:	Dartmouth, MA 0	2748 LEA LELOR			sah.
Arrival Time		Depart Time:			

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE the soller for the purchaser was loaded in excess of its permitted and certified capacity, Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Soller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, NAMIE, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER NDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result. Fumes count cause nausea or irritation. Seek proper medical assistance in all emergencies.

Ondrick 22 Inc	K Materials & F dustry Road, Chicop	Recycling, LLC Dee, MA 01020		Ticket 9/28/18	302830 10:17 AM
Truck ID	LAROCHELLE2	LAROCHELLE2	C	10.10.0	
Customer	10125	W. L. French Excavating Corporation	Gross Tare	104220 Lb 36900 Lb	*
Order	18-9-14790 M A	Res. 85 McCabe St Dartmouth MA	Net	33.66 Ton	* .
P.O.					
Product	OIL MA			Today	To Date
Site Addr.	Residential 85 McCabe St	27.40	Loads Qty	2 69.80	6 205.91
Driver:	Dartmouth, MA 02	Wolfe Adda			
Customer:					
Arrival Time		Depart Time:			
NOTICE TO PURCHA	SERS: The Purchager, through the				

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the Amount of the Purchase PRICE the soller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Soller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result, Furnes count cause nausea or irritation. Seek proper medical assistance in all emergencies.

Ondrick 22 Inc	K Materials & I	Recycling, LLC pee, MA 01020				Ticket 9/28/18	302873 3:38 PM
Truck ID	GATOR1	GATOR1					0.00 FW
Customer Order	10125 18-9-14790MA	W. L. French Excavating Corporat	Ta	oss re	104140 36900		*
P.O.	10 3-147 90IVIA	Res. 85 McCabe St Dartmouth MA	Ne	t	33.62	Ton	*
Product	OIL MA		_		Today		To Date
Site Addr.	Residential 85 McCabe St Dartmouth, MA 0	2748	Loa Qty		3 103.42		7 239.53
Driver:		le del					
Customer:							
Arrival Time		Depart Time:					

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Sellor, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the sellor for the purchaser was loaded in excess of its permitted and certified capacity, Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of product from Ted Ondrick Construction of Sollor's product, To RelEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, UCCESSORS AND ASSIGNS OF AND FORM ANY AND ALL DEBTS, DEMANDS, NAME, WHETHER KNOWN OR DINKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY EASON, MATTER OR CAUSE, AND PURCHASER FURTHER PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result. Furnes count cause nausea or irritation. Seek proper medical assistance in all emergencies.

PURCHASER IN EACESS OF ITS PERIMIT IED AND CERTIFIED CAFACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result, Fumes count cause nausea or irritation. Seek proper medical assistance in all emergencies.

Consult Material Safety Data Sheet for more information. KNOW & RESPECT THE PRODUCTS YOU HANDLE.

Ondrick 22 Inc	Materials & Idustry Road, Chico	Recycling, LLC pee, MA 01020			icket	302874
Truck ID	LAROCHELLE	LAROCHELLE			9/28/18	3:41 PM
Customer Order	10125 18-9-14790МА	W. L. French Excavating Corporati	Gross Tare	99380 33500		*
P.O.	10 0 147 90IVIA	Res. 85 McCabe St Dartmouth MA	Net	32.94	Ton	*
Product	OIL MA			Today		To Date
Site Addr.	Residential 85 McCabe St Dartmouth, MA 02	2748	Loads Qty	4 136.36		8 272.47
Driver:		Color-Piller				
Customer:						<u>.</u>
Arrival Time	SERS: The Purchasor than 1 in	Depart Time:				

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE of SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by solder for the purchasor was loaded in excess of its permitted and certified capacity, Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of product the solder for the purchase and loading the solder for the purchase. The Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDER, VINETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDER, INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result. Furnes count cause nausea or irritation. Seek proper medical assistance in all emergencies.

BILL C	OF LADING Transport Log Sheet		Tracking Number	
Page	OF		4-	27363
I. LOAD INFORMATION: Load 1: Date of Shipment:	Signature of Transporter Representative: Time of Shipment:	Receiving Facility/Temporar	y Storage Representative:	
9/29/18 Truck/Tractor Registration: 59414 A	730 TAM PM	Date of Receipt:	Time of Receipt:	MAM PM
, , ,		Load Size (cu. yds./tons):	36.14	
Date of Shipment: . 9/28/18 Truck/Tractor Registration: 24597/A	Time of Shipment: 735 Trailer Registration (if any):	Receiving Facility/Temporal Date of Receipt:	Time of Receipt: 1015	BAM PM
Date of Shipment: 0 9 28 18 Truck/Tractor Registration: 34597A- UT	Trailer Registration (if any):	Receiving Facility/Temporal My Date of Receipt: 09-28-16 Load Size (cu. yds/tons):	ry Storage Representative: Time of Receipt: 3137µ 33.62	AM PM
Load 4: Signature of Tra	Insporter Representative: Time of Shipment:	Receiving Facility/Temporar		
09-2878	2:00 AM PM Trailer Registration (if any):	Date of Receipt: 09 29 18 Load Size (cu. yds./fons):	Time of Receipt: 3/39pc 30,94	□ АМ □ РМ
Load 5: Signature of Tra	nsporter Representative:	Receiving Facility/Tempora	ry Storage Representative:	
Date of Shipment:	Time of Shipment:	Date of Receipt:	Time of Receipt:	AM PM
Truck/Tractor Registration:	Trailer Registration (if any):	Load Size (cu. yds./tons):		
Load 6: Signatiure of Tra	insporter Representative:	Receiving Facility/Tempora	ry Storage Representative:	
Date of Shipment:	Time of Shipment:	Date of Receipt:	Time of Receipt:	AM PM
Truck/Tractor Registration:	Trailer Registration (if any):	Load Size (cu. yds./tons):		
J. LOG SHEET VOLUME IN	Total Carried Forwa	rded This Page (cu. yds./tons) ard (cu. yds./tons): ノスし ard and This Page (cu. yds./to	2.//	

Ondrick Materials & Recycling, LLC 22 Industry Road, Chicopee, MA 01020				Ticket 10/1/18	302906 10:06 AM
Truck ID	GATOR107	GATOR107	Gross	102560 Lb	*
Customer	10125	W. L. French Excavating Corporatio	Tare	36900 Lb	*
Order	18-9-14790MA	Res. 85 McCabe St Dartmouth MA	Net	32.83 Ton	*
P.O.	`				
D 1 4	OU NAA			Today	To Date
Product	OIL MA		Loads	1	9
Site Addr.	Residential		Qty	32.83	305.30
	85 McCabe St				
	Dartmouth, MA 0	02748	1		
Driver:		Who Coll			
Customer:					
Arrival Time	e:	Depart Time:			

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the soller for the purchaser was loaded in excess of its permitted and certified capacity, Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Soller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIBBILITIES WHATSOEVER OF EVERY NATURE AND NAMIE; WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDIANNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

	22 Industry Road, Chicopee, MA 01020			10/1/18	2:52 PM
Truck ID	GATOR107	GATOR107	Gross	103940 Lb	*
Customer Order	10125 18-9-14790MA	W. L. French Excavating Corporatio Res. 85 McCabe St Dartmouth MA	Tare Net	36900 Lb 33.52 Ton	* .
P.O.					
Product	OIL MA			Today	To Date
Product	OIL IVIA		Loads	2	10
Site Addr.	Residential 85 McCabe St Dartmouth, MA 0	02748	Qty	66.35	338.82
Driver:		Witherard			
Customer:					
Arrival Time	e:	Depart Time:			4

Ticket

302046

Ondrick Materials & Recycling, LLC

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity, Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Sollor's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER FURTHER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

BILL OF LADING Transport Log Sheet

Release Tracking Number

Page	OF		4 -	2730	
I. LOAD INFORMATION: Load 1:	Signature of Transporter Representative:	Receiving Facility/Temporary	Storage Representative:	_	
Truck/Tractor Registration:	Trailer Registration (if any):	Date of Receipt:	Time of Receipt: / 00 4	MAM	PM
	ransporter Representative:	Load Size (cu. yds./tons):	A	·//- <u></u>	4,-,,
Date of Shipment: $\frac{10 - 0}{1 - 16}$ Truck/Tractor Registration:	Time of Shipment: AM PM Trailer Registration (if any):	Date of Receipt:	Time of Receipt: 2:50pc.	AM	- P M
Load 3: Signature of T	ransporter Representative:	Receiving Facility/Temporar	y Storage Representative:		
Date of Shipment:	Time of Shipment: AM PM Trailer Registration (if any):	Date of Receipt:	Time of Receipt:	AM	<u></u> РМ
Truck/Tractor Registration:	Trailer (vegistration (ir arry).	Load Size (cu. yds./tons):			
Load 4: Signature of T	ransporter Representative:	Receiving Facility/Temporary	Storage Representative:		-
Date of Shipment: Truck/Tractor Registration:	Time of Shipment:	Date of Receipt:	Time of Receipt:	АМ	РМ
Truck Tractor Registration.	Trailer Registration (if any):	Load Size (cu. yds./tons):			
Load 5: Signature of Ti	ransporter Representative:	Receiving Facility/Temporar	y Storage Representative:		-
Date of Shipment:	Time of Shipment:	Date of Receipt:	Time of Receipt:	AM	PM
Truck/Tractor Registration:	Trailer Registration (if any):	Load Size (cu. yds./tons):			
Load 6: Signatiure of T	ransporter Representative:	Receiving Facility/Temporar	y Storage Representative:		
Date of Shipment:	Time of Shipment:	Date of Receipt:	Time of Receipt:	AM	<u></u> РМ
Truck/Tractor Registration:	Trailer Registration (if any):	Load Size (cu. yds./tons):			
J. LOG SHEET VOLUME I	Total Carried Forw	orded This Page (cu. yds./tons) ard (cu. yds./tons):	66.35		

ATTACHMENT 3

TEST PIT LOGS

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-1** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 2, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 4 feet Depth to Groundwater: 2 feet City, State: Dartmouth, Massachusetts Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-3: Fill, Fine-Med Sand, some Brick 1 1-3: Trash (tires, rubber) 2 Sample @ 2-3 0.0 3 Organic Soil (peat) End of Excavation 4' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-2** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 2, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 4 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 2 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-3: Fill, Fine-Med Sand 1 1-3: trace Wood 2 Sample @ 2-3 0.0 3 Organic Soil (peat) End of Excavation 4' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-3** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 2, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 4 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 2 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-3: Fill, Fine-Med Sand 1 2 Sample @ 2-3 0.0 3 Organic Soil (peat) End of Excavation 4' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-4** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 2, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 5 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 3 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-4: Fill, Fine-Med Sand, some Silt and Gravel 1 2 2-3: Trash (metal, glass, wood); petroleum odor 22.8 Sample @ 3-4 4-5: Organic Soil (peat) End of Excavation 4' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-5** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 2, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 4 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 3 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Fill, Sand 0.5-3: Fill, Fine-Med Sand, trace Brick 1 1-3: Trash (metal, rubber inner tubes) 2 Sample @ 2-3 0.1 3 3-4: Organic Soil (peat) End of Excavation 4' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-6** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 2, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 4 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 3 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-3: Fill, Fine-Med Sand 1 1-3: trace Wood 2 Sample @ 2-3 0.0 3 3-4: Clay End of Excavation 4' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-7** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 Date: October 2, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 5 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 4 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-4: Fill, Fine-Med Sand, trace Brick 1 2 2-4: Trash (metal) 3 Sample @ 3-4 0.0 4-5: Organic Soil (peat) End of Excavation 5' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-8** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 Date: October 2, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 4 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 4 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-4: Fill, Fine-Med Sand, some Ash 1 2 Sample @ 2-3 0.0 End of Excavation 5' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-9** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 3 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 0 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-2: Pea Stone 1 2 2-3: Clay Sample @ 2-3 0.0 3 End of Excavation 3' 5 6 7 8 9 10 11 12 13 14 15 **Notes:** Inside House Foundation Area

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-10** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 3 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 0 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-2: Pea Stone 1 2 2-3: Clay Sample @ 2-3 0.0 3 End of Excavation 3' 5 6 7 8 9 10 11 12 13 14 15 Notes: Inside House Foundation Area

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-11** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 5 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 3 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-4: Fill, Fine-Med Sand 1 2 2-4: Trash (metal, glass, wood); petroleum odor 92.0 Sample @ 3-4 4-5: Clay End of Excavation 5' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-12** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 5 feet **Depth to Groundwater:** 3 feet City, State: Dartmouth, Massachusetts Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-4: Fill, Fine-Med Sand 1 2 2-4: Trash (metal, glass, wood); petroleum odor 3 Sample @ 3-4 1.5 End of Excavation 4' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-13** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 4 feet Depth to Groundwater: 2 feet City, State: Dartmouth, Massachusetts Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-3: Fill, Fine-Med Sand, some Brick 1 1-3: Trash (glass, metal) 2 3 Organic Soil (peat) End of Excavation 4' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-14** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 2 feet Depth to Groundwater: 2 feet City, State: Dartmouth, Massachusetts Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-2: Fill, Fine-Med Sand, some Brick 1 1-2: Trash (fabric) 2 End of Excavation 2' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-15** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 2 feet Depth to Groundwater: 2 feet City, State: Dartmouth, Massachusetts Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm)0 0-0.5: Top Soil 0.5-3: Fill, Fine-Med Sand 1 Sample @ 1-2 0.9 2 End of Excavation 2' 3 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-16** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 4 feet **Depth to Groundwater:** 3 feet City, State: Dartmouth, Massachusetts Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-3: Fill, Fine-Med Sand 1 1-3: Trash (rubber tires, glass, metal) 2 Sample @ 2-3 0.0 3 End of Excavation 3' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-17** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 5 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 4 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-0.5: Top Soil 0.5-3: Fill, Fine-Med Sand 1 2 3 3-4: Fill, Fine-Med Sand and Ash Sample @ 3-4 0.5 End of Excavation 4' 6 8 9 10 11 12 13 14 15 Notes:

SITEC Environmental, Inc. Test Pit Log 769 Plain Street, Unit C Test Pit No.: page 1 of 1 Marshfield, MA 02050 **TP-18** Phone: (781) 319-0100 FAX: (781) 834-4783 Project No: SE18-1375 **Date:** October 26, 2018 **Project Name:** 85 McCabe Street Test Pit Depth: 4 feet City, State: Dartmouth, Massachusetts Depth to Groundwater: 3 feet Soil Sampling Device: Hand Trowel Field Technician: G Souza Excavation Contractor: Terceira Construction Field Screening: Photo-ionization Detector in ppmV as Excavation Equipment: Mini-Excavator isobutylene Depth Soil Description Notes (feet) (ppm) 0 0-3: Fill, Fine-Med Sand 1 2 0-3: Fill, Fine-Med Sand and Ash Sample @ 2-3 0.0 3 End of Excavation 3' 5 6 8 9 10 11 12 13 14 15 Notes:

ANALYTICAL REPORT

Lab Number: L1839763

Client: Sitec Environmental, Inc.

769 Plain Street

Unit C

Marshfield, MA 02050

ATTN: Geoff Souza
Phone: (781) 319-0100
Project Name: MCCABE ST.

Project Number: SE18-1375
Report Date: 10/14/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1839763 **Report Date:** 10/14/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1839763-01	TP-1, 2-3	SOIL	Not Specified	10/02/18 09:15	10/03/18
L1839763-02	TP-2, 2-3	SOIL	Not Specified	10/02/18 09:25	10/03/18
L1839763-03	TP-3, 2-3	SOIL	Not Specified	10/02/18 09:35	10/03/18
L1839763-04	TP-4, 3-4	SOIL	Not Specified	10/02/18 09:45	10/03/18
L1839763-05	TP-5, 2-3	SOIL	Not Specified	10/02/18 10:00	10/03/18
L1839763-06	TP-6, 2-3	SOIL	Not Specified	10/02/18 10:15	10/03/18
L1839763-07	TP-7, 3-4	SOIL	Not Specified	10/02/18 10:30	10/03/18
L1839763-08	TP-8, 2-3	SOIL	Not Specified	10/02/18 10:45	10/03/18

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status						
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO				
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO				
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO				

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

In reference to question H:

A Matrix Spike was not submitted for the analysis of Total Metals.

Volatile Organics

In reference to question G:

L1839763-01: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The initial calibration, associated with L1839763-04, did not meet the method required minimum response factor on the lowest calibration standard for trichloroethene (0.1978), 2-butanone (0.0660), 4-methyl-2-pentanone (0.0786), and 1,4-dioxane (0.0012), as well as the average response factor for acetone, 2-butanone, 4-methyl-2-pentanone, and 1,4-dioxane.

The continuing calibration standard, associated with L1839763-04, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

Semivolatile Organics

L1839763-04: The sample has elevated detection limits due to limited sample volume available for analysis and due to the dilution required by the sample matrix..

L1839763-05, -06, -07 and -08: The sample has elevated detection limits due to the dilution required by the sample matrix.

In reference to question G:

L1839763-04 through -08: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

Case Narrative (continued)

Total Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 10/14/18

elisy

ORGANICS

VOLATILES

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-04 D Date Collected: 10/02/18 09:45

Client ID: TP-4, 3-4 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 10/10/18 10:06

Analyst: MV Percent Solids: 30%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 8260/50	035 - Westborough Lal	b				
Methylene chloride	ND		ug/kg	89000		20
1,1-Dichloroethane	ND		ug/kg	18000		20
Chloroform	ND		ug/kg	26000		20
Carbon tetrachloride	ND		ug/kg	18000		20
1,2-Dichloropropane	ND		ug/kg	18000		20
Dibromochloromethane	ND		ug/kg	18000		20
1,1,2-Trichloroethane	ND		ug/kg	18000		20
Tetrachloroethene	ND		ug/kg	8900		20
Chlorobenzene	ND		ug/kg	8900		20
Trichlorofluoromethane	ND		ug/kg	71000		20
1,2-Dichloroethane	ND		ug/kg	18000		20
1,1,1-Trichloroethane	ND		ug/kg	8900		20
Bromodichloromethane	ND		ug/kg	8900		20
trans-1,3-Dichloropropene	ND		ug/kg	18000		20
cis-1,3-Dichloropropene	ND		ug/kg	8900		20
1,3-Dichloropropene, Total	ND		ug/kg	8900		20
1,1-Dichloropropene	ND		ug/kg	8900		20
Bromoform	ND		ug/kg	71000		20
1,1,2,2-Tetrachloroethane	ND		ug/kg	8900		20
Benzene	9800		ug/kg	8900		20
Toluene	ND		ug/kg	18000		20
Ethylbenzene	190000		ug/kg	18000		20
Chloromethane	ND		ug/kg	71000		20
Bromomethane	ND		ug/kg	35000		20
Vinyl chloride	ND		ug/kg	18000		20
Chloroethane	ND		ug/kg	35000		20
1,1-Dichloroethene	ND		ug/kg	18000		20
trans-1,2-Dichloroethene	ND		ug/kg	26000		20

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-04 D Date Collected: 10/02/18 09:45

Client ID: TP-4, 3-4 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 8260/	/5035 - Westborough Lab					
Trichloroethene	ND		ug/kg	8900		20
1,2-Dichlorobenzene	ND		ug/kg	35000		20
1,3-Dichlorobenzene	ND		ug/kg	35000		20
1,4-Dichlorobenzene	ND		ug/kg	35000		20
Methyl tert butyl ether	ND		ug/kg	35000		20
p/m-Xylene	140000		ug/kg	35000		20
o-Xylene	60000		ug/kg	18000		20
Xylenes, Total	200000		ug/kg	18000		20
cis-1,2-Dichloroethene	ND		ug/kg	18000		20
1,2-Dichloroethene, Total	ND		ug/kg	18000		20
Dibromomethane	ND		ug/kg	35000		20
1,2,3-Trichloropropane	ND		ug/kg	35000		20
Styrene	ND		ug/kg	18000		20
Dichlorodifluoromethane	ND		ug/kg	180000		20
Acetone	ND		ug/kg	180000		20
Carbon disulfide	ND		ug/kg	180000		20
Methyl ethyl ketone	ND		ug/kg	180000		20
Methyl isobutyl ketone	ND		ug/kg	180000		20
2-Hexanone	ND		ug/kg	180000		20
Bromochloromethane	ND		ug/kg	35000		20
Tetrahydrofuran	ND		ug/kg	71000		20
2,2-Dichloropropane	ND		ug/kg	35000		20
1,2-Dibromoethane	ND		ug/kg	18000		20
1,3-Dichloropropane	ND		ug/kg	35000		20
1,1,1,2-Tetrachloroethane	ND		ug/kg	8900		20
Bromobenzene	ND		ug/kg	35000		20
n-Butylbenzene	ND		ug/kg	18000		20
sec-Butylbenzene	ND		ug/kg	18000		20
tert-Butylbenzene	ND		ug/kg	35000		20
o-Chlorotoluene	ND		ug/kg	35000		20
p-Chlorotoluene	ND		ug/kg	35000		20
1,2-Dibromo-3-chloropropane	ND		ug/kg	53000		20
Hexachlorobutadiene	ND		ug/kg	71000		20
Isopropylbenzene	23000		ug/kg	18000		20
p-Isopropyltoluene	ND		ug/kg	18000		20
Naphthalene	2600000		ug/kg	71000		20
n-Propylbenzene	28000		ug/kg	18000		20
			-			

Project Name:MCCABE ST.Lab Number:L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-04 D Date Collected: 10/02/18 09:45

Client ID: TP-4, 3-4 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
MCP Volatile Organics by 8260/50	MCP Volatile Organics by 8260/5035 - Westborough Lab							
1,2,3-Trichlorobenzene	ND		ug/kg	35000		20		
1,2,4-Trichlorobenzene	ND		ug/kg	35000		20		
1,3,5-Trimethylbenzene	ND		ug/kg	35000		20		
1,2,4-Trimethylbenzene	100000		ug/kg	35000		20		
Diethyl ether	ND		ug/kg	35000		20		
Diisopropyl Ether	ND		ug/kg	35000		20		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	35000		20		
Tertiary-Amyl Methyl Ether	ND		ug/kg	35000		20		
1,4-Dioxane	ND		ug/kg	1800000		20		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	99	70-130	

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/10/18 08:21

Analyst: MV

Parameter	Result	Qualifier	Units	RL		MDL
MCP Volatile Organics by 8260/50	35 - Westbo	rough Lab f	or sample(s):	04	Batch:	WG1166812-5
Methylene chloride	ND		ug/kg	250		
1,1-Dichloroethane	ND		ug/kg	50		
Chloroform	ND		ug/kg	75		
Carbon tetrachloride	ND		ug/kg	50		
1,2-Dichloropropane	ND		ug/kg	50		
Dibromochloromethane	ND		ug/kg	50		
1,1,2-Trichloroethane	ND		ug/kg	50		
Tetrachloroethene	ND		ug/kg	25		
Chlorobenzene	ND		ug/kg	25		
Trichlorofluoromethane	ND		ug/kg	200		
1,2-Dichloroethane	ND		ug/kg	50		
1,1,1-Trichloroethane	ND		ug/kg	25		
Bromodichloromethane	ND		ug/kg	25		
trans-1,3-Dichloropropene	ND		ug/kg	50		
cis-1,3-Dichloropropene	ND		ug/kg	25		
1,3-Dichloropropene, Total	ND		ug/kg	25		
1,1-Dichloropropene	ND		ug/kg	25		
Bromoform	ND		ug/kg	200		
1,1,2,2-Tetrachloroethane	ND		ug/kg	25		
Benzene	ND		ug/kg	25		
Toluene	ND		ug/kg	50		
Ethylbenzene	ND		ug/kg	50		
Chloromethane	ND		ug/kg	200		
Bromomethane	ND		ug/kg	100		
Vinyl chloride	ND		ug/kg	50		
Chloroethane	ND		ug/kg	100		
1,1-Dichloroethene	ND		ug/kg	50		
trans-1,2-Dichloroethene	ND		ug/kg	75		
Trichloroethene	ND		ug/kg	25		

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 10/10/18 08:21

Analyst: MV

Parameter	Result	Qualifier	Units	RL		MDL
MCP Volatile Organics by 8260/50	035 - Westbo	rough Lab	for sample(s):	04	Batch:	WG1166812-5
1,2-Dichlorobenzene	ND		ug/kg	100		
1,3-Dichlorobenzene	ND		ug/kg	100		
1,4-Dichlorobenzene	ND		ug/kg	100		
Methyl tert butyl ether	ND		ug/kg	100		
p/m-Xylene	ND		ug/kg	100		
o-Xylene	ND		ug/kg	50		
Xylenes, Total	ND		ug/kg	50		
cis-1,2-Dichloroethene	ND		ug/kg	50		
1,2-Dichloroethene, Total	ND		ug/kg	50		
Dibromomethane	ND		ug/kg	100		
1,2,3-Trichloropropane	ND		ug/kg	100		
Styrene	ND		ug/kg	50		
Dichlorodifluoromethane	ND		ug/kg	500		
Acetone	ND		ug/kg	500		
Carbon disulfide	ND		ug/kg	500		
Methyl ethyl ketone	ND		ug/kg	500		
Methyl isobutyl ketone	ND		ug/kg	500		
2-Hexanone	ND		ug/kg	500		
Bromochloromethane	ND		ug/kg	100		
Tetrahydrofuran	ND		ug/kg	200		
2,2-Dichloropropane	ND		ug/kg	100		
1,2-Dibromoethane	ND		ug/kg	50		
1,3-Dichloropropane	ND		ug/kg	100		
1,1,1,2-Tetrachloroethane	ND		ug/kg	25		
Bromobenzene	ND		ug/kg	100		
n-Butylbenzene	ND		ug/kg	50		
sec-Butylbenzene	ND		ug/kg	50		
tert-Butylbenzene	ND		ug/kg	100		
o-Chlorotoluene	ND		ug/kg	100		

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/10/18 08:21

Analyst: MV

Parameter	Result	Qualifier	Units	RL		MDL
MCP Volatile Organics by 8260	/5035 - Westbo	rough Lab fo	or sample(s):	04	Batch:	WG1166812-5
p-Chlorotoluene	ND		ug/kg	100		
1,2-Dibromo-3-chloropropane	ND		ug/kg	150		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	100		
1,2,4-Trichlorobenzene	ND		ug/kg	100		
1,3,5-Trimethylbenzene	ND		ug/kg	100		
1,2,4-Trimethylbenzene	ND		ug/kg	100		
Diethyl ether	ND		ug/kg	100		
Diisopropyl Ether	ND		ug/kg	100		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	100		
Tertiary-Amyl Methyl Ether	ND		ug/kg	100		
1,4-Dioxane	ND		ug/kg	5000		
2-Chloroethylvinyl ether	ND		ug/kg	1000		
Halothane	ND		ug/kg	500		
Ethyl Acetate	ND		ug/kg	500		
Freon-113	ND		ug/kg	200		
Vinyl acetate	ND		ug/kg	500		

	Acceptance				
Surrogate	%Recovery Qua	alifier Criteria			
1,2-Dichloroethane-d4	94	70-130			
Toluene-d8	97	70-130			
4-Bromofluorobenzene	94	70-130			
Dibromofluoromethane	97	70-130			

L1839763

Lab Number:

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST.

Batch Quality Contro

Project Number: SE18-1375 Report Date: 10/14/18

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 8260/5035 - W	Vestborough Lab Ass	ociated sample(s): 04 Bate	ch: WG1166812-3 WG11668	312-4	
Methylene chloride	85	83	70-130	2	20
1,1-Dichloroethane	90	88	70-130	2	20
Chloroform	90	90	70-130	0	20
Carbon tetrachloride	87	87	70-130	0	20
1,2-Dichloropropane	94	94	70-130	0	20
Dibromochloromethane	99	99	70-130	0	20
1,1,2-Trichloroethane	104	103	70-130	1	20
Tetrachloroethene	90	91	70-130	1	20
Chlorobenzene	89	89	70-130	0	20
Trichlorofluoromethane	91	90	70-130	1	20
1,2-Dichloroethane	91	89	70-130	2	20
1,1,1-Trichloroethane	87	86	70-130	1	20
Bromodichloromethane	96	98	70-130	2	20
trans-1,3-Dichloropropene	91	90	70-130	1	20
cis-1,3-Dichloropropene	95	95	70-130	0	20
1,1-Dichloropropene	84	84	70-130	0	20
Bromoform	101	100	70-130	1	20
1,1,2,2-Tetrachloroethane	106	102	70-130	4	20
Benzene	87	88	70-130	1	20
Toluene	88	89	70-130	1	20
Ethylbenzene	86	86	70-130	0	20
Chloromethane	86	83	70-130	4	20
Bromomethane	90	90	70-130	0	20

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1839763

Report Date:

10/14/18

arameter	LCS %Recovery Qu	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
CP Volatile Organics by 8260/503	5 - Westborough Lab Associat	ted sample(s): 04 Batc	th: WG1166812-3 WG11668	312-4	
Vinyl chloride	88	88	70-130	0	20
Chloroethane	93	92	70-130	1	20
1,1-Dichloroethene	86	84	70-130	2	20
trans-1,2-Dichloroethene	87	85	70-130	2	20
Trichloroethene	89	89	70-130	0	20
1,2-Dichlorobenzene	93	94	70-130	1	20
1,3-Dichlorobenzene	90	91	70-130	1	20
1,4-Dichlorobenzene	92	93	70-130	1	20
Methyl tert butyl ether	90	88	70-130	2	20
p/m-Xylene	87	88	70-130	1	20
o-Xylene	86	87	70-130	1	20
cis-1,2-Dichloroethene	89	89	70-130	0	20
Dibromomethane	100	98	70-130	2	20
1,2,3-Trichloropropane	102	99	70-130	3	20
Styrene	86	86	70-130	0	20
Dichlorodifluoromethane	86	86	70-130	0	20
Acetone	84	77	70-130	9	20
Carbon disulfide	84	82	70-130	2	20
Methyl ethyl ketone	74	70	70-130	6	20
Methyl isobutyl ketone	88	81	70-130	8	20
2-Hexanone	85	81	70-130	5	20
Bromochloromethane	103	101	70-130	2	20
Tetrahydrofuran	102	97	70-130	5	20

10/14/18

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST.

Lab Number: L1839763

Project Number: SE18-1375 Report Date:

	LCS	LCSD	%Recovery		RPD
arameter	%Recovery	Qual %Recovery	Qual Limits	RPD	Qual Limits
MCP Volatile Organics by 8260/5035 - V	Westborough Lab Asso	ciated sample(s): 04 Bate	ch: WG1166812-3 WG1166	312-4	
2,2-Dichloropropane	88	87	70-130	1	20
1,2-Dibromoethane	103	101	70-130	2	20
1,3-Dichloropropane	98	98	70-130	0	20
1,1,1,2-Tetrachloroethane	96	96	70-130	0	20
Bromobenzene	91	90	70-130	1	20
n-Butylbenzene	88	90	70-130	2	20
sec-Butylbenzene	87	87	70-130	0	20
tert-Butylbenzene	83	85	70-130	2	20
o-Chlorotoluene	93	94	70-130	1	20
p-Chlorotoluene	84	87	70-130	4	20
1,2-Dibromo-3-chloropropane	92	89	70-130	3	20
Hexachlorobutadiene	84	85	70-130	1	20
Isopropylbenzene	83	84	70-130	1	20
p-Isopropyltoluene	85	85	70-130	0	20
Naphthalene	87	88	70-130	1	20
n-Propylbenzene	86	86	70-130	0	20
1,2,3-Trichlorobenzene	90	92	70-130	2	20
1,2,4-Trichlorobenzene	89	91	70-130	2	20
1,3,5-Trimethylbenzene	85	86	70-130	1	20
1,2,4-Trimethylbenzene	85	86	70-130	1	20
Diethyl ether	94	91	70-130	3	20
Diisopropyl Ether	85	83	70-130	2	20
Ethyl-Tert-Butyl-Ether	87	85	70-130	2	20

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST.

Lab Number:

L1839763

Project Number: SE18-1375

Report Date:

10/14/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics by 8260/5035 - We	stborough Lab Ass	sociated samp	le(s): 04 Batc	h: WG1166	812-3 WG1166	812-4		
Tertiary-Amyl Methyl Ether	89		88		70-130	1		20
1,4-Dioxane	96		97		70-130	1		20
2-Chloroethylvinyl ether	73		71		70-130	3		20
Halothane	84		84		70-130	0		20
Ethyl Acetate	94		89		70-130	5		20
Freon-113	81		80		70-130	1		20
Vinyl acetate	78		75		70-130	4		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	96	92	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	94	94	70-130
Dibromofluoromethane	102	101	70-130

SEMIVOLATILES

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-01 Date Collected: 10/02/18 09:15

Client ID: TP-1, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/08/18 07:52
Analytical Date: 10/11/18 17:12

Analyst: EK Percent Solids: 79%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	170		1
Fluoranthene	130		ug/kg	130		1
Naphthalene	ND		ug/kg	210		1
Benzo(a)anthracene	ND		ug/kg	130		1
Benzo(a)pyrene	ND		ug/kg	170		1
Benzo(b)fluoranthene	ND		ug/kg	130		1
Benzo(k)fluoranthene	ND		ug/kg	130		1
Chrysene	ND		ug/kg	130		1
Acenaphthylene	ND		ug/kg	170		1
Anthracene	ND		ug/kg	130		1
Benzo(ghi)perylene	ND		ug/kg	170		1
Fluorene	ND		ug/kg	210		1
Phenanthrene	140		ug/kg	130		1
Dibenzo(a,h)anthracene	ND		ug/kg	130		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	170		1
Pyrene	180		ug/kg	130		1
2-Methylnaphthalene	ND		ug/kg	250		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	63		30-130
2-Fluorobiphenyl	60		30-130
4-Terphenyl-d14	39		30-130

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-02 Date Collected: 10/02/18 09:25

Client ID: TP-2, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/08/18 07:52
Analytical Date: 10/11/18 17:37

Analyst: EK
Percent Solids: 81%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP PAHs - Westborough Lab							
Acenaphthene	ND		ug/kg	160		1	
Fluoranthene	2400		ug/kg	120		1	
Naphthalene	ND		ug/kg	200		1	
Benzo(a)anthracene	1600		ug/kg	120		1	
Benzo(a)pyrene	1400		ug/kg	160		1	
Benzo(b)fluoranthene	2000		ug/kg	120		1	
Benzo(k)fluoranthene	520		ug/kg	120		1	
Chrysene	2000		ug/kg	120		1	
Acenaphthylene	860		ug/kg	160		1	
Anthracene	670		ug/kg	120		1	
Benzo(ghi)perylene	760		ug/kg	160		1	
Fluorene	210		ug/kg	200		1	
Phenanthrene	1300		ug/kg	120		1	
Dibenzo(a,h)anthracene	220		ug/kg	120		1	
Indeno(1,2,3-cd)pyrene	800		ug/kg	160		1	
Pyrene	2700		ug/kg	120		1	
2-Methylnaphthalene	ND		ug/kg	240		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	73		30-130
2-Fluorobiphenyl	71		30-130
4-Terphenyl-d14	48		30-130

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-03 Date Collected: 10/02/18 09:35

Client ID: TP-3, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/08/18 07:52
Analytical Date: 10/11/18 18:02

Analyst: EK
Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Acenaphthene	230		ug/kg	160		1
Fluoranthene	6600		ug/kg	120		1
Naphthalene	ND		ug/kg	200		1
Benzo(a)anthracene	3500		ug/kg	120		1
Benzo(a)pyrene	3000		ug/kg	160		1
Benzo(b)fluoranthene	4500		ug/kg	120		1
Benzo(k)fluoranthene	1400		ug/kg	120		1
Chrysene	4000		ug/kg	120		1
Acenaphthylene	1000		ug/kg	160		1
Anthracene	1200		ug/kg	120		1
Benzo(ghi)perylene	1600		ug/kg	160		1
Fluorene	510		ug/kg	200		1
Phenanthrene	4000		ug/kg	120		1
Dibenzo(a,h)anthracene	460		ug/kg	120		1
Indeno(1,2,3-cd)pyrene	1800		ug/kg	160		1
Pyrene	6000		ug/kg	120		1
2-Methylnaphthalene	ND		ug/kg	240		1

Surrogate	% Recovery	Acceptan Qualifier Criteria	
Nitrobenzene-d5	67	30-13	0
2-Fluorobiphenyl	65	30-13	0
4-Terphenyl-d14	41	30-13	0

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-04 D Date Collected: 10/02/18 09:45

Client ID: TP-4, 3-4 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/08/18 07:52
Analytical Date: 10/12/18 13:53

Analyst: IM
Percent Solids: 30%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP PAHs - Westborough Lab							
Acenaphthene	25000		ug/kg	13000		10	
Fluoranthene	18000		ug/kg	9700		10	
Naphthalene	530000		ug/kg	16000		10	
Benzo(a)anthracene	15000		ug/kg	9700		10	
Benzo(a)pyrene	ND		ug/kg	13000		10	
Benzo(b)fluoranthene	ND		ug/kg	9700		10	
Benzo(k)fluoranthene	ND		ug/kg	9700		10	
Chrysene	16000		ug/kg	9700		10	
Acenaphthylene	ND		ug/kg	13000		10	
Anthracene	13000		ug/kg	9700		10	
Benzo(ghi)perylene	ND		ug/kg	13000		10	
Fluorene	32000		ug/kg	16000		10	
Phenanthrene	73000		ug/kg	9700		10	
Dibenzo(a,h)anthracene	ND		ug/kg	9700		10	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	13000		10	
Pyrene	28000		ug/kg	9700		10	
2-Methylnaphthalene	200000		ug/kg	19000		10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	82		30-130
2-Fluorobiphenyl	66		30-130
4-Terphenyl-d14	40		30-130

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-05 D Date Collected: 10/02/18 10:00

Client ID: TP-5, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/08/18 07:52
Analytical Date: 10/12/18 17:04

Analyst: EK
Percent Solids: 68%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP PAHs - Westborough Lab							
Acenaphthene	1000		ug/kg	960		5	
Fluoranthene	26000		ug/kg	720		5	
Naphthalene	5800		ug/kg	1200		5	
Benzo(a)anthracene	18000		ug/kg	720		5	
Benzo(a)pyrene	14000		ug/kg	960		5	
Benzo(b)fluoranthene	17000		ug/kg	720		5	
Benzo(k)fluoranthene	5200		ug/kg	720		5	
Chrysene	25000		ug/kg	720		5	
Acenaphthylene	9500		ug/kg	960		5	
Anthracene	7300		ug/kg	720		5	
Benzo(ghi)perylene	8500		ug/kg	960		5	
Fluorene	3400		ug/kg	1200		5	
Phenanthrene	24000		ug/kg	720		5	
Dibenzo(a,h)anthracene	2600		ug/kg	720		5	
Indeno(1,2,3-cd)pyrene	8200		ug/kg	960		5	
Pyrene	41000		ug/kg	720		5	
2-Methylnaphthalene	3200		ug/kg	1400		5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	58		30-130
2-Fluorobiphenyl	58		30-130
4-Terphenyl-d14	55		30-130

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-06 D Date Collected: 10/02/18 10:15

Client ID: TP-6, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/08/18 07:52
Analytical Date: 10/12/18 17:30

Analyst: EK
Percent Solids: 62%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	1100		5
Fluoranthene	5200		ug/kg	800		5
Naphthalene	1300		ug/kg	1300		5
Benzo(a)anthracene	2600		ug/kg	800		5
Benzo(a)pyrene	2900		ug/kg	1100		5
Benzo(b)fluoranthene	3500		ug/kg	800		5
Benzo(k)fluoranthene	920		ug/kg	800		5
Chrysene	3000		ug/kg	800		5
Acenaphthylene	ND		ug/kg	1100		5
Anthracene	1600		ug/kg	800		5
Benzo(ghi)perylene	1500		ug/kg	1100		5
Fluorene	ND		ug/kg	1300		5
Phenanthrene	5400		ug/kg	800		5
Dibenzo(a,h)anthracene	ND		ug/kg	800		5
Indeno(1,2,3-cd)pyrene	1600		ug/kg	1100		5
Pyrene	5200		ug/kg	800		5
2-Methylnaphthalene	ND		ug/kg	1600		5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	75		30-130
2-Fluorobiphenyl	72		30-130
4-Terphenyl-d14	59		30-130

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-07 D Date Collected: 10/02/18 10:30

Client ID: TP-7, 3-4 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/08/18 07:52
Analytical Date: 10/12/18 18:15

Analyst: EK
Percent Solids: 38%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP PAHs - Westborough Lab							
Acenaphthene	3100		ug/kg	1800		5	
Fluoranthene	7100		ug/kg	1300		5	
Naphthalene	32000		ug/kg	2200		5	
Benzo(a)anthracene	4000		ug/kg	1300		5	
Benzo(a)pyrene	3500		ug/kg	1800		5	
Benzo(b)fluoranthene	4200		ug/kg	1300		5	
Benzo(k)fluoranthene	1400		ug/kg	1300		5	
Chrysene	4600		ug/kg	1300		5	
Acenaphthylene	2500		ug/kg	1800		5	
Anthracene	2400		ug/kg	1300		5	
Benzo(ghi)perylene	2400		ug/kg	1800		5	
Fluorene	4000		ug/kg	2200		5	
Phenanthrene	10000		ug/kg	1300		5	
Dibenzo(a,h)anthracene	ND		ug/kg	1300		5	
Indeno(1,2,3-cd)pyrene	2600		ug/kg	1800		5	
Pyrene	8900		ug/kg	1300		5	
2-Methylnaphthalene	3900		ug/kg	2600		5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	82	30-130	
2-Fluorobiphenyl	72	30-130	
4-Terphenyl-d14	43	30-130	

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-08 D Date Collected: 10/02/18 10:45

Client ID: TP-8, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/08/18 07:52
Analytical Date: 10/12/18 18:39

Analyst: EK
Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	760		5
Fluoranthene	14000		ug/kg	570		5
Naphthalene	1400		ug/kg	940		5
Benzo(a)anthracene	8400		ug/kg	570		5
Benzo(a)pyrene	5500		ug/kg	760		5
Benzo(b)fluoranthene	7400		ug/kg	570		5
Benzo(k)fluoranthene	2500		ug/kg	570		5
Chrysene	9200		ug/kg	570		5
Acenaphthylene	3600		ug/kg	760		5
Anthracene	3000		ug/kg	570		5
Benzo(ghi)perylene	4600		ug/kg	760		5
Fluorene	1000		ug/kg	940		5
Phenanthrene	11000		ug/kg	570		5
Dibenzo(a,h)anthracene	1000		ug/kg	570		5
Indeno(1,2,3-cd)pyrene	4700		ug/kg	760		5
Pyrene	15000		ug/kg	570		5
2-Methylnaphthalene	ND		ug/kg	1100		5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	78		30-130
2-Fluorobiphenyl	80		30-130
4-Terphenyl-d14	58		30-130

Project Name: Lab Number: MCCABE ST. L1839763 **Project Number:** SE18-1375 **Report Date:** 10/14/18

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 97,8270D Analytical Date: 10/11/18 11:20

Analyst: ΕK Extraction Method: EPA 3546 10/08/18 07:52 **Extraction Date:**

arameter	Result	Qualifier Unit	s	RL	MDL
ICP Semivolatile Organics - \	Westborough Lab	for sample(s):	01-08	Batch:	WG1165343-1
Acenaphthene	ND	ug/l	кg	130	
Fluoranthene	ND	ug/l	кg	99	
Naphthalene	ND	ug/l	кg	160	
Benzo(a)anthracene	ND	ug/l	кg	99	
Benzo(a)pyrene	ND	ug/l	кg	130	
Benzo(b)fluoranthene	ND	ug/l	кg	99	
Benzo(k)fluoranthene	ND	ug/l	кg	99	
Chrysene	ND	ug/l	кg	99	
Acenaphthylene	ND	ug/l	кg	130	
Anthracene	ND	ug/l	кg	99	
Benzo(ghi)perylene	ND	ug/l	кg	130	
Fluorene	ND	ug/l	кg	160	
Phenanthrene	ND	ug/l	кg	99	
Dibenzo(a,h)anthracene	ND	ug/l	кg	99	
Indeno(1,2,3-cd)pyrene	ND	ug/l	кg	130	
Pyrene	ND	ug/l	кg	99	
2-Methylnaphthalene	ND	ug/l	кg	200	

Tentatively Identified Compounds No Tentatively Identified Compounds ND ug/kg

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8270D Extraction Method: EPA 3546
Analytical Date: 10/11/18 11:20 Extraction Date: 10/08/18 07:52

Analyst: EK

ParameterResultQualifierUnitsRLMDLMCP Semivolatile Organics - Westborough Lab for sample(s):01-08Batch:WG1165343-1

		Acceptance	
Surrogate	%Recovery Q	ualifier Criteria	
Nitrobenzene-d5	74	30-130	
2-Fluorobiphenyl	79	30-130	
4-Terphenyl-d14	76	30-130	

L1839763

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST.

Lab Number:

Project Number: SE18-1375

Report Date: 10/14/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Semivolatile Organics - Westborough La	ab Associated	sample(s):	01-08 Batch: V	/G1165343-2	WG1165343-3			
Acenaphthene	84		86		40-140	2		30
Fluoranthene	84		86		40-140	2		30
Naphthalene	81		83		40-140	2		30
Benzo(a)anthracene	81		82		40-140	1		30
Benzo(a)pyrene	89		90		40-140	1		30
Benzo(b)fluoranthene	88		90		40-140	2		30
Benzo(k)fluoranthene	89		90		40-140	1		30
Chrysene	87		89		40-140	2		30
Acenaphthylene	81		81		40-140	0		30
Anthracene	86		88		40-140	2		30
Benzo(ghi)perylene	82		89		40-140	8		30
Fluorene	82		85		40-140	4		30
Phenanthrene	83		85		40-140	2		30
Dibenzo(a,h)anthracene	81		85		40-140	5		30
Indeno(1,2,3-cd)pyrene	79		86		40-140	8		30
Pyrene	84		84		40-140	0		30
2-Methylnaphthalene	81		82		40-140	1		30

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST.

Lab Number:

L1839763

Project Number: SE18-1375

Report Date:

10/14/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

MCP Semivolatile Organics - Westborough Lab Associated sample(s): 01-08 Batch: WG1165343-2 WG1165343-3

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	73	76	30-130
2-Fluorobiphenyl	78	80	30-130
4-Terphenyl-d14	74	75	30-130

PCBS

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-01 Date Collected: 10/02/18 09:15

Client ID: TP-1, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/08/18 08:34
Analytical Date: 10/11/18 22:07 Cleanup Method: EPA 3665A
Analytical Method: WP Cleanup Date: 10/08/18

Analyst: WR
Percent Solids: 79%
Cleanup Date: 10/08/18
Cleanup Method: EPA 3660B
Cleanup Date: 10/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls -	Westborough Lab						
Aroclor 1016	ND		ug/kg	40.2		1	Α
Aroclor 1221	ND		ug/kg	40.2		1	Α
Aroclor 1232	ND		ug/kg	40.2		1	Α
Aroclor 1242	ND		ug/kg	40.2		1	Α
Aroclor 1248	ND		ug/kg	40.2		1	Α
Aroclor 1254	ND		ug/kg	40.2		1	Α
Aroclor 1260	ND		ug/kg	40.2		1	Α
Aroclor 1262	ND		ug/kg	40.2		1	Α
Aroclor 1268	ND		ug/kg	40.2		1	Α
PCBs, Total	ND		ug/kg	40.2		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	66		30-150	В
Decachlorobiphenyl	55		30-150	В
2,4,5,6-Tetrachloro-m-xylene	65		30-150	Α
Decachlorobiphenyl	48		30-150	Α

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-02 Date Collected: 10/02/18 09:25

Client ID: TP-2, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/08/18 08:34
Analytical Date: 10/11/18 22:19 Cleanup Method: EPA 3665A

Analyst: WR
Percent Solids: 81%

Cleanup Date: 10/08/18
Cleanup Method: EPA 3660B
Cleanup Date: 10/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - We	stborough Lab						
Aroclor 1016	ND		a/lsa	39.2		1	Α
			ug/kg			•	
Aroclor 1221	ND		ug/kg	39.2		1	Α
Aroclor 1232	ND		ug/kg	39.2		1	Α
Aroclor 1242	ND		ug/kg	39.2		1	Α
Aroclor 1248	ND		ug/kg	39.2		1	Α
Aroclor 1254	ND		ug/kg	39.2		1	Α
Aroclor 1260	ND		ug/kg	39.2		1	В
Aroclor 1262	ND		ug/kg	39.2		1	Α
Aroclor 1268	ND		ug/kg	39.2		1	Α
PCBs, Total	ND		ug/kg	39.2		1	В

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	58		30-150	В
2,4,5,6-Tetrachloro-m-xylene	72		30-150	Α
Decachlorobiphenyl	54		30-150	Α

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-03 Date Collected: 10/02/18 09:35

Client ID: TP-3, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/08/18 08:34
Analytical Date: 10/11/18 22:32 Cleanup Method: EPA 3665A
Analyst: WR Cleanup Date: 10/08/18

Analyst: WR
Percent Solids: 82%

Cleanup Date: 10/08/18
Cleanup Method: EPA 3660B
Cleanup Date: 10/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - We	estborough Lab						
	ND			22.2		,	
Aroclor 1016	ND		ug/kg	39.0		1	Α
Aroclor 1221	ND		ug/kg	39.0		1	Α
Aroclor 1232	ND		ug/kg	39.0		1	Α
Aroclor 1242	ND		ug/kg	39.0		1	Α
Aroclor 1248	ND		ug/kg	39.0		1	Α
Aroclor 1254	42.0		ug/kg	39.0		1	А
Aroclor 1260	ND		ug/kg	39.0		1	Α
Aroclor 1262	ND		ug/kg	39.0		1	Α
Aroclor 1268	ND		ug/kg	39.0		1	В
PCBs, Total	42.0		ug/kg	39.0		1	В

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В
Decachlorobiphenyl	66		30-150	В
2,4,5,6-Tetrachloro-m-xylene	78		30-150	Α
Decachlorobiphenyl	61		30-150	Α

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: 10/02/18 09:45

Client ID: TP-4, 3-4 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/08/18 08:34
Analytical Date: 10/11/18 22:44 Cleanup Method: EPA 3665A

Analytical Method: WB.

Analyst: WR
Percent Solids: 30%

Cleanup Date: 10/08/18
Cleanup Method: EPA 3660B
Cleanup Date: 10/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - W	estborough Lab						
Aroclor 1016	ND		ug/kg	110		1	Α
Aroclor 1221	ND		ug/kg	110		 1	A
Aroclor 1232	ND		ug/kg	110		1	Α
Aroclor 1242	ND		ug/kg	110		1	Α
Aroclor 1248	ND		ug/kg	110		1	Α
Aroclor 1254	ND		ug/kg	110		1	Α
Aroclor 1260	ND		ug/kg	110		1	Α
Aroclor 1262	ND		ug/kg	110		1	Α
Aroclor 1268	ND		ug/kg	110		1	Α
PCBs, Total	ND		ug/kg	110		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	49		30-150	В
Decachlorobiphenyl	42		30-150	В
2,4,5,6-Tetrachloro-m-xylene	52		30-150	Α
Decachlorobiphenyl	42		30-150	Α

Project Name: MCCABE ST. **Lab Number:** L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-05 Date Collected: 10/02/18 10:00

Client ID: TP-5, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/08/18 08:34
Analytical Date: 10/11/18 22:56 Cleanup Method: EPA 3665A

Analyst: WR Cleanup Date: 10/08/18
Percent Solids: 68% Cleanup Method: EPA 3660B
Cleanup Date: 10/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - W	Vestborough Lab						
Aroclor 1016	ND		ug/kg	47.2		1	Α
Aroclor 1221	ND		ug/kg	47.2		1	Α
Aroclor 1232	ND		ug/kg	47.2		1	Α
Aroclor 1242	ND		ug/kg	47.2		1	Α
Aroclor 1248	ND		ug/kg	47.2		1	Α
Aroclor 1254	ND		ug/kg	47.2		1	Α
Aroclor 1260	82.3	Р	ug/kg	47.2		1	Α
Aroclor 1262	ND		ug/kg	47.2		1	Α
Aroclor 1268	ND		ug/kg	47.2		1	В
PCBs, Total	82.3		ug/kg	47.2		1	В

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	92		30-150	В
2,4,5,6-Tetrachloro-m-xylene	66		30-150	Α
Decachlorobiphenyl	80		30-150	Α

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: 10/02/18 10:15

Client ID: TP-6, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/08/18 08:34
Analytical Date: 10/11/18 23:09 Cleanup Method: EPA 3665A
Analyst: WR Cleanup Date: 10/08/18

Analyst: WR
Percent Solids: 62%

Cleanup Date: 10/08/18
Cleanup Method: EPA 3660B
Cleanup Date: 10/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - W	estborough Lab						
Aroclor 1016	ND		ug/kg	52.4		1	Α
Aroclor 1221	ND		ug/kg	52.4		1	Α
Aroclor 1232	ND		ug/kg	52.4		1	Α
Aroclor 1242	ND		ug/kg	52.4		1	Α
Aroclor 1248	ND		ug/kg	52.4		1	Α
Aroclor 1254	ND		ug/kg	52.4		1	Α
Aroclor 1260	ND		ug/kg	52.4		1	Α
Aroclor 1262	ND		ug/kg	52.4		1	Α
Aroclor 1268	ND		ug/kg	52.4		1	Α
PCBs, Total	ND		ug/kg	52.4		1	Α

_	a. =		Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В
Decachlorobiphenyl	69		30-150	В
2,4,5,6-Tetrachloro-m-xylene	76		30-150	Α
Decachlorobiphenyl	60		30-150	Α

Project Name: MCCABE ST. **Lab Number:** L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: L1839763-07 Date Collected: 10/02/18 10:30

Client ID: TP-7, 3-4 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/08/18 08:34
Analytical Date: 10/11/18 23:21 Cleanup Method: EPA 3665A

Cleanup Date: 10/08/18

Analyst: WR
Percent Solids: 38%

Cleanup Date: 10/08/18
Cleanup Method: EPA 3660B
Cleanup Date: 10/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - W	estborough Lab						
Aroclor 1016	ND		ug/kg	87.3		1	Α
Aroclor 1221	ND		ug/kg	87.3		1	Α
Aroclor 1232	ND		ug/kg	87.3		1	Α
Aroclor 1242	ND		ug/kg	87.3		1	Α
Aroclor 1248	ND		ug/kg	87.3		1	Α
Aroclor 1254	ND		ug/kg	87.3		1	Α
Aroclor 1260	ND		ug/kg	87.3		1	Α
Aroclor 1262	ND		ug/kg	87.3		1	Α
Aroclor 1268	ND		ug/kg	87.3		1	Α
PCBs, Total	ND		ug/kg	87.3		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В
Decachlorobiphenyl	66		30-150	В
2,4,5,6-Tetrachloro-m-xylene	78		30-150	Α
Decachlorobiphenyl	62		30-150	Α

Project Name: MCCABE ST. Lab Number: L1839763

Project Number: SE18-1375 Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: 10/02/18 10:45

Client ID: TP-8, 2-3 Date Received: 10/03/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/08/18 08:34
Analytical Date: 10/11/18 23:33 Cleanup Method: EPA 3665A
Applyot: WP. Cleanup Date: 10/08/18

Analyst: WR
Percent Solids: 86%
Cleanup Date: 10/08/18
Cleanup Method: EPA 3660B
Cleanup Date: 10/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - We	stborough Lab						
Aroclor 1016	ND		ug/kg	36.6		1	Α
Aroclor 1221	ND		ug/kg	36.6		1	Α
Aroclor 1232	ND		ug/kg	36.6		1	Α
Aroclor 1242	ND		ug/kg	36.6		1	Α
Aroclor 1248	ND		ug/kg	36.6		1	Α
Aroclor 1254	ND		ug/kg	36.6		1	Α
Aroclor 1260	ND		ug/kg	36.6		1	В
Aroclor 1262	ND		ug/kg	36.6		1	Α
Aroclor 1268	ND		ug/kg	36.6		1	В
PCBs, Total	ND		ug/kg	36.6		1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	91		30-150	В
2,4,5,6-Tetrachloro-m-xylene	71		30-150	Α
Decachlorobiphenyl	85		30-150	Α

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

Mothed Plants Analysis

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8082A Analytical Date: 97,8082A 10/09/18 22:40

Analyst: HT

Extraction Method: EPA 3546
Extraction Date: 10/07/18 19:31
Cleanup Method: EPA 3665A
Cleanup Date: 10/08/18
Cleanup Date: 10/09/18

Parameter	Result	Qualifier	Units	RI	-	MDL	Column
MCP Polychlorinated Biphenyls -	Westborough	Lab for sa	mple(s):	01-08	Batch:	WG1165	265-1
Aroclor 1016	ND		ug/kg	32.	7		А
Aroclor 1221	ND		ug/kg	32.	7		Α
Aroclor 1232	ND		ug/kg	32.	7		Α
Aroclor 1242	ND		ug/kg	32.	7		Α
Aroclor 1248	ND		ug/kg	32.	7		Α
Aroclor 1254	ND		ug/kg	32.	7		А
Aroclor 1260	ND		ug/kg	32.	7		Α
Aroclor 1262	ND		ug/kg	32.	7		Α
Aroclor 1268	ND		ug/kg	32.	7		Α
PCBs, Total	ND		ug/kg	32.	7		А

		Acceptance				
Surrogate	%Recovery Qualifi	er Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	90	30-150	В			
Decachlorobiphenyl	75	30-150	В			
2,4,5,6-Tetrachloro-m-xylene	90	30-150	Α			
Decachlorobiphenyl	70	30-150	Α			

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number:

L1839763 10/14/18

Report Date:

	LCS		LCSD	%Recovery	%Recovery				
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
MCP Polychlorinated Biphenyls - Westboro	ough Lab Associat	WG11652	265-2 WG1165265	-3					
Aroclor 1016	70		73		40-140	4		30	А
Aroclor 1260	62		65		40-140	5		30	А

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	84	86	30-150 B
Decachlorobiphenyl	69	70	30-150 B
2,4,5,6-Tetrachloro-m-xylene	85	88	30-150 A
Decachlorobiphenyl	62	62	30-150 A

METALS

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

SAMPLE RESULTS

Lab ID:L1839763-01Date Collected:10/02/18 09:15Client ID:TP-1, 2-3Date Received:10/03/18Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 79%

Percent Solids:	79%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Manstiel	d Lab									
Antimony, Total	ND		mg/kg	2.50		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Arsenic, Total	1.57		mg/kg	0.500		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Barium, Total	632		mg/kg	0.500		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Beryllium, Total	ND		mg/kg	0.250		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Cadmium, Total	8.00		mg/kg	0.500		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Chromium, Total	6.12		mg/kg	0.500		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Lead, Total	61.2		mg/kg	2.50		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Nickel, Total	10.8		mg/kg	1.25		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Selenium, Total	ND		mg/kg	2.50		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	0.500		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	2.50		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Vanadium, Total	6.54		mg/kg	0.500		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB
Zinc, Total	942		mg/kg	2.50		1	10/11/18 19:29	10/12/18 00:04	EPA 3050B	97,6010D	AB

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

SAMPLE RESULTS

Lab ID:L1839763-02Date Collected:10/02/18 09:25Client ID:TP-2, 2-3Date Received:10/03/18Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 81%

Percent Solids:	01%					Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	
Parameter	Result	Qualifier	Units	RL	MDL	1 actor	гтератец	Allalyzeu	Wiethou	Wictiou	Analyst
MCP Total Metals	- Mansfiel	d Lab									
Antimony, Total	ND		mg/kg	2.35		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Arsenic, Total	1.79		mg/kg	0.471		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Barium, Total	595		mg/kg	0.471		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Beryllium, Total	ND		mg/kg	0.235		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Cadmium, Total	0.499		mg/kg	0.471		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Chromium, Total	8.37		mg/kg	0.471		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Lead, Total	76.0		mg/kg	2.35		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Nickel, Total	4.99		mg/kg	1.18		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Selenium, Total	ND		mg/kg	2.35		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	0.471		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	2.35		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Vanadium, Total	12.8		mg/kg	0.471		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB
Zinc, Total	54.0		mg/kg	2.35		1	10/11/18 19:29	9 10/12/18 00:09	EPA 3050B	97,6010D	AB

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

SAMPLE RESULTS

Lab ID:L1839763-03Date Collected:10/02/18 09:35Client ID:TP-3, 2-3Date Received:10/03/18Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 82%

Percent Solids:	02 /0					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Manefield	d Lab									
IVICI TOTAL IVICTAIS	- Manshell	u Lab									
Antimony, Total	ND		mg/kg	2.42		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Arsenic, Total	2.33		mg/kg	0.484		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Barium, Total	1130		mg/kg	0.484		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Beryllium, Total	ND		mg/kg	0.242		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Cadmium, Total	ND		mg/kg	0.484		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Chromium, Total	5.45		mg/kg	0.484		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Lead, Total	62.9		mg/kg	2.42		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Nickel, Total	4.62		mg/kg	1.21		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Selenium, Total	ND		mg/kg	2.42		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	0.484		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	2.42		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Vanadium, Total	5.82		mg/kg	0.484		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB
Zinc, Total	53.2		mg/kg	2.42		1	10/11/18 19:29	10/12/18 00:13	EPA 3050B	97,6010D	AB

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

SAMPLE RESULTS

Lab ID:L1839763-04Date Collected:10/02/18 09:45Client ID:TP-4, 3-4Date Received:10/03/18Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 30%

Percent Solids: Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals	- Mansfiel	d Lab									
Antimony, Total	ND		mg/kg	6.54		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Arsenic, Total	2.73		mg/kg	1.31		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Barium, Total	132		mg/kg	1.31		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Beryllium, Total	ND		mg/kg	0.654		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Cadmium, Total	4.48		mg/kg	1.31		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Chromium, Total	18.5		mg/kg	1.31		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Lead, Total	274		mg/kg	6.54		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Nickel, Total	10.5		mg/kg	3.27		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Selenium, Total	ND		mg/kg	6.54		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	1.31		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	6.54		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Vanadium, Total	9.34		mg/kg	1.31		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB
Zinc, Total	648		mg/kg	6.54		1	10/11/18 19:29	9 10/12/18 01:46	EPA 3050B	97,6010D	AB

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

SAMPLE RESULTS

Lab ID:L1839763-05Date Collected:10/02/18 10:00Client ID:TP-5, 2-3Date Received:10/03/18Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 68%

Percent Solids:	00%	Ovalities	Unito	D.	MDI	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Amalust
Parameter	Result	Qualifier	Units	RL	MDL		Troparou	7			Analyst
MCP Total Metals	- Mansfiel	d Lab									
Antimony, Total	27.6		mg/kg	2.85		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Arsenic, Total	12.2		mg/kg	0.571		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Barium, Total	484		mg/kg	0.571		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Beryllium, Total	ND		mg/kg	0.285		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Cadmium, Total	38.7		mg/kg	0.571		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Chromium, Total	104		mg/kg	0.571		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Lead, Total	690		mg/kg	2.85		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Nickel, Total	54.5		mg/kg	1.43		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Selenium, Total	4.93		mg/kg	2.85		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	0.571		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	2.85		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Vanadium, Total	39.8		mg/kg	0.571		1	10/11/18 19:29	9 10/12/18 01:51	EPA 3050B	97,6010D	AB
Zinc, Total	1510		mg/kg	14.3		5	10/11/18 19:29	9 10/12/18 03:37	EPA 3050B	97,6010D	AB

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

SAMPLE RESULTS

Lab ID:L1839763-06Date Collected:10/02/18 10:15Client ID:TP-6, 2-3Date Received:10/03/18Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 62%

Percent Solids.	02 /0					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals -	Mansfiel	d Lab									
Antimony, Total	6.11		mg/kg	3.10		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Arsenic, Total	5.77		mg/kg	0.619		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Barium, Total	15600		mg/kg	6.19		10	10/11/18 19:29	10/12/18 03:41	EPA 3050B	97,6010D	AB
Beryllium, Total	0.545		mg/kg	0.310		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Cadmium, Total	2.64		mg/kg	0.619		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Chromium, Total	348		mg/kg	0.619		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Lead, Total	5150		mg/kg	3.10		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Nickel, Total	65.0		mg/kg	1.55		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Selenium, Total	12.3		mg/kg	3.10		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	0.619		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	3.10		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Vanadium, Total	143		mg/kg	0.619		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB
Zinc, Total	807		mg/kg	3.10		1	10/11/18 19:29	10/12/18 01:55	EPA 3050B	97,6010D	AB

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

SAMPLE RESULTS

Lab ID:L1839763-07Date Collected:10/02/18 10:30Client ID:TP-7, 3-4Date Received:10/03/18Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 38%

Percent Solids:	30 /0					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals -	- Manefiel	d Lah									
WOI TOTAL WICTAIS	Mananch	a Lab									
Antimony, Total	7.83		mg/kg	5.10		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Arsenic, Total	4.42		mg/kg	1.02		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Barium, Total	3520		mg/kg	1.02		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Beryllium, Total	ND		mg/kg	0.510		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Cadmium, Total	1.64		mg/kg	1.02		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Chromium, Total	84.5		mg/kg	1.02		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Lead, Total	389		mg/kg	5.10		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Nickel, Total	34.7		mg/kg	2.55		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Selenium, Total	6.89		mg/kg	5.10		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	1.02		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	5.10		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Vanadium, Total	33.4		mg/kg	1.02		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB
Zinc, Total	400		mg/kg	5.10		1	10/11/18 19:29	10/12/18 02:00	EPA 3050B	97,6010D	AB

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

SAMPLE RESULTS

Lab ID:L1839763-08Date Collected:10/02/18 10:45Client ID:TP-8, 2-3Date Received:10/03/18Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 86%

Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Mansfiel	d Lab									
Antimony, Total	6.23		mg/kg	2.29		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Arsenic, Total	7.55		mg/kg	0.458		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Barium, Total	658		mg/kg	0.458		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Beryllium, Total	ND		mg/kg	0.229		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Cadmium, Total	13.3		mg/kg	0.458		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Chromium, Total	79.3		mg/kg	0.458		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Lead, Total	2970		mg/kg	2.29		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Nickel, Total	26.2		mg/kg	1.14		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Selenium, Total	4.13		mg/kg	2.29		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	0.458		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	2.29		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Vanadium, Total	36.4		mg/kg	0.458		1	10/11/18 19:29	10/12/18 02:05	EPA 3050B	97,6010D	AB
Zinc, Total	7430		mg/kg	22.9		10	10/11/18 19:29	10/12/18 03:46	EPA 3050B	97,6010D	AB

Project Name: Lab Number: MCCABE ST. L1839763 Project Number: SE18-1375 **Report Date:** 10/14/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - Mai	nsfield Lab for samp	le(s): 01-0	08 Bato	h: WG	1167150-1				
Antimony, Total	ND	mg/kg	2.00		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Arsenic, Total	ND	mg/kg	0.400		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Barium, Total	ND	mg/kg	0.400		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Beryllium, Total	ND	mg/kg	0.200		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Cadmium, Total	ND	mg/kg	0.400		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Chromium, Total	ND	mg/kg	0.400		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Lead, Total	ND	mg/kg	2.00		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Nickel, Total	ND	mg/kg	1.00		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Selenium, Total	ND	mg/kg	2.00		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Silver, Total	ND	mg/kg	0.400		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Thallium, Total	ND	mg/kg	2.00		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Vanadium, Total	ND	mg/kg	0.400		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB
Zinc, Total	ND	mg/kg	2.00		1	10/11/18 19:29	10/11/18 23:41	97,6010D	AB

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST.

Lab Number: L

L1839763

Project Number: SE18-1375

Report Date: 10/14/18

arameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Total Metals - Mansfield Lab As	ssociated sample(s): 01-08	Batch: WG1	167150-2 W	G1167150-3	SRM Lot Number	: D102-540		
Antimony, Total	174		157		1-199	10		30
Arsenic, Total	99		91		83-117	8		30
Barium, Total	106		94		83-118	12		30
Beryllium, Total	102		88		83-116	15		30
Cadmium, Total	100		100		83-118	0		30
Chromium, Total	99		87		83-117	13		30
Lead, Total	98		92		82-118	6		30
Nickel, Total	98		91		83-117	7		30
Selenium, Total	100		94		79-121	6		30
Silver, Total	101		90		80-120	12		30
Thallium, Total	100		98		81-119	2		30
Vanadium, Total	98		87		80-120	12		30
Zinc, Total	96		89		81-118	8		30

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: MCCABE ST. L1839763 Project Number: SE18-1375

Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: L1839763-01 10/02/18 09:15 Client ID: TP-1, 2-3 Date Received: 10/03/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	78.8		%	0.100	NA	1	-	10/04/18 15:43	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1839763 Project Number: SE18-1375

Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: L1839763-02 10/02/18 09:25 Client ID: TP-2, 2-3 Date Received: 10/03/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	80.7		%	0.100	NA	1	-	10/04/18 15:43	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1839763 **Project Number:** SE18-1375

Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: L1839763-03 10/02/18 09:35 Client ID: TP-3, 2-3 Date Received: 10/03/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	82.1		%	0.100	NA	1	-	10/04/18 15:43	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1839763 **Project Number:**

Report Date: 10/14/18 SE18-1375

SAMPLE RESULTS

Lab ID: Date Collected: L1839763-04 10/02/18 09:45 Client ID: TP-4, 3-4 Date Received: 10/03/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	30.3		%	0.100	NA	1	-	10/04/18 15:43	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1839763 Project Number: SE18-1375

Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: L1839763-05 10/02/18 10:00 Client ID: TP-5, 2-3 Date Received: 10/03/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	68.1		%	0.100	NA	1	_	10/04/18 15:43	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1839763 Project Number: SE18-1375

Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: L1839763-06 10/02/18 10:15 Client ID: TP-6, 2-3 Date Received: 10/03/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	62.1		%	0.100	NA	1	-	10/04/18 15:43	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1839763 **Project Number:** SE18-1375

Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: L1839763-07 10/02/18 10:30 Client ID: TP-7, 3-4 Date Received: 10/03/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	37.5		%	0.100	NA	1	-	10/04/18 15:43	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1839763 **Project Number:** SE18-1375

Report Date: 10/14/18

SAMPLE RESULTS

Lab ID: Date Collected: L1839763-08 10/02/18 10:45 Client ID: TP-8, 2-3 Date Received: 10/03/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	85.7		%	0.100	NA	1	-	10/04/18 15:43	121,2540G	RI

Project Name: MCCABE ST. **Lab Number:** L1839763 Project Number: SE18-1375

Report Date: 10/14/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1839763-01D	Glass 60ml unpreserved split	Α	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BC-6010T-10(180),MCP-BC-010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1839763-01E	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1839763-02D	Glass 60ml unpreserved split	A	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1839763-02E	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1839763-03D	Glass 60ml unpreserved split	Α	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-SB-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1839763-03E	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1839763-04A	Vial MeOH preserved	Α	NA		3.7	Υ	Absent		MCP-8260HLW-10(14)
L1839763-04B	Vial water preserved	Α	NA		3.7	Υ	Absent	02-OCT-18 16:00	MCP-8260HLW-10(14)
L1839763-04C	Vial water preserved	Α	NA		3.7	Υ	Absent	02-OCT-18 16:00	MCP-8260HLW-10(14)

Lab Number: L1839763

Report Date: 10/14/18

Project Name: MCCABE ST.Project Number: SE18-1375

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L1839763-04D	Glass 60ml unpreserved split	A	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-SE-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1839763-04E	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1839763-05D	Glass 60ml unpreserved split	А	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BE-6010T-10(180),MCP-NCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1839763-05E	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1839763-06D	Glass 60ml unpreserved split	А	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BE-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180)
L1839763-06E	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1839763-07D	Glass 60ml unpreserved split	А	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BE-6010T-10(180),MCP-NCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180)
L1839763-07E	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1839763-08D	Glass 60ml unpreserved split	А	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-SD-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BE-6010T-10(180),MCP-NCP-NC-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180)
L1839763-08E	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)

Project Name: Lab Number: MCCABE ST. L1839763 **Project Number:** SE18-1375 **Report Date:** 10/14/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

MS

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:MCCABE ST.Lab Number:L1839763Project Number:SE18-1375Report Date:10/14/18

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10141819:02

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Serial No:10141819:02 CHAIN OF CUSTODY PAGE OF ALPHA Job #: L1839763 Date Rec'd in Lab: 10/3/18 **Billing Information** Project Information Report Information - Data Deliverables 320 Forbes Blvd 8 Walkup Drive ☐ Same as Client info PO#: McCabo St ADEX □ EMAIL Westboro, MA 01581 Mansfield, MA 02048 Project Name: Tel: 508-898-9220 Tel: 508-822-9300 Regulatory Requirements & Project Information Requirements Client Information Project Location: ☐ Yes ☐ No CT RCP Analytical Methods Yes No MA MCP Analytical Methods Project #: 5E18-13 75 Client SITEC Environments/ ☐ Yes ☐ No Matrix Spike Required on this SDG? (Required for MCP Inorganics) ☐ Yes ☐ No GW1 Standards (Info Required for Metals & EPH with Targets) Address: 769 Plain St, UnitC Project Manager: ☐ Yes ☐ No NPDES RGP Marshfield MACOCSO ALPHA Quote # □ Other State /Fed Program 781-319-0100 **Turn-Around Time** Ranges Only Only Email: 95002a @ Sitecenucom ANALYSIS Standard **DFingerprint** RUSH (only continued if pre-approved!) METALS: DRCRAS DRCRAS U 524.2 EPH: DRanges & Targets D R. VPH: DRanges & Targets D. R. Date Due: SAMPLE INFO Additional Project Information: X8260 D 624 Filtration Samp 65 frezen 10/2 @ 16:00 Douant Only ☐ Field C PEST DABN ☐ Lab to do 0 Preservation ☐ Lab to do SVOC. TPH: ALPHA Lab ID Collection Sample Sampler Sample ID Sample Comments Matrix Initials (Lab Use Only) Date Time 915 X 39763-01 925 5 935 10/2 03 Voc low 945 X 10/2 04 1000 05 1015 X 06 1030 07 08 G 6 Preservative Container Type Container Type P= Plastic A= None A= Amber glass Preservative V= Vial C= HNO₃ G= Glass D= H,SO, Date/Time B= Bacteria cup E= NaOH Received By: Relinguished By: Date/Time C= Cube F= MeOH All samples submitted are subject to O= Other G= NaHSO₄ Alpha's Terms and Conditions.

See reverse side.

FORM NO: 01-01 (rev. 12-Mar-2012)

E= Encore

D= BOD Bottle

 $H = Na_2S_2O_3$

J = NH₄CI K= Zn Acetate

O= Other

I= Ascorbic Acid

Method Blank Summary Form 4 VOLATILES

Client : Sitec Environmental, Inc. Lab Number : L1839763

Project Name : MCCABE ST. Project Number : SE18-1375

Lab Sample ID : WG1166812-5 Lab File ID : V00181010A05

Instrument ID : VOA100 Matrix : SOIL

Matrix : SOIL Analysis Date : 10/10/18 08:21

Client Sample No.	Lab Sample ID	Analysis Date	
WG1166812-3LCS	WG1166812-3	10/10/18 06:38	
WG1166812-4LCSD	WG1166812-4	10/10/18 07:04	
TP-4, 3-4	L1839763-04D	10/10/18 10:06	

23:32

Continuing Calibration Form 7

Init. Calib. Times

: 20:03

Client : Sitec Environmental, Inc. Lab Number : L1839763
Project Name : MCCABE ST. Project Number : SE18-1375

Sample No : WG1166812-2 Channel :

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev
Fluorobenzene	1	1	-	0	20	168	0
Dichlorodifluoromethane	0.229	0.198	•	13.5	20	151	0
Chloromethane	0.295	0.255	-	13.6	20	151	0
Vinyl chloride	0.284	0.25	-	12	20	145	0
Bromomethane	0.175	0.157	-	10.3	20	168	0
Chloroethane	0.172	0.16	-	7	20	154	0
Trichlorofluoromethane	0.294	0.269	-	8.5	20	146	0
Ethyl ether	0.125	0.117	-	6.4	20	161	0
1,1-Dichloroethene	0.202	0.173	-	14.4	20	142	0
Carbon disulfide	0.71	0.599	-	15.6	20	148	0
Freon-113	0.208	0.169	-	18.7	20	137	0
Acrolein	0.029	0.022*	-	24.1*	20	132	0
Methylene chloride	0.266	0.227	-	14.7	20	156	0
Acetone	20	16.856	-	15.7	20	152	0
trans-1,2-Dichloroethene	0.233	0.202	-	13.3	20	144	0
Methyl acetate	0.114	0.108	-	5.3	20	176	0
Methyl tert-butyl ether	0.567	0.513	-	9.5	20	155	0
tert-Butyl alcohol	0.017	0.017*	-	0	20	158	0
Diisopropyl ether	0.809	0.684	-	15.5	20	143	0
1,1-Dichloroethane	0.447	0.4	-	10.5	20	150	0
Halothane	0.174	0.145	-	16.7	20	134	0
Acrylonitrile	20	18.778	-	6.1	20	169	0
Ethyl tert-butyl ether	0.686	0.594	-	13.4	20	147	0
Vinyl acetate	0.473	0.368	-	22.2*	20	130	0
cis-1,2-Dichloroethene	0.248	0.22	-	11.3	20	147	0
2,2-Dichloropropane	0.329	0.289	-	12.2	20	146	0
Bromochloromethane	0.099	0.102	-	-3	20	164	0
Cyclohexane	0.385	0.319	-	17.1	20	129	0
Chloroform	0.416	0.375	-	9.9	20	149	0
Ethyl acetate	0.167	0.156	-	6.6	20	157	0
Carbon tetrachloride	0.276	0.241	-	12.7	20	140	0
Tetrahydrofuran	20	20.509	-	-2.5	20	174	0
Dibromofluoromethane	0.235	0.24	-	-2.1	20	172	0
1,1,1-Trichloroethane	0.324	0.281	-	13.3	20	137	0
2-Butanone	0.077	0.057*	-	26*	20	115	.01
1,1-Dichloropropene	0.303	0.255	-	15.8	20	132	0
Benzene	0.948	0.829	•	12.6	20	145	0
tert-Amyl methyl ether	0.575	0.51	-	11.3	20	151	0
1,2-Dichloroethane-d4	0.24	0.229	-	4.6	20	164	0
1,2-Dichloroethane	0.269	0.244	-	9.3	20	151	0
Methyl cyclohexane	0.375	0.309	-	17.6	20	129	0
Trichloroethene	0.225	0.201	-	10.7	20	144	0
Dibromomethane	0.113	0.113	-	0	20	163	0
1,2-Dichloropropane	0.236	0.221	<u> </u>	6.4	20	154	0
2-Chloroethyl vinyl ether	0.086	0.062		27.9*	20	135	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Sitec Environmental, Inc. Lab Number : L1839763
Project Name : MCCABE ST. Project Number : SE18-1375

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Bromodichloromethane	0.281	0.271	-	3.6	20	157	0
1,4-Dioxane	0.00166	0.0016*	-	3.6	20	152	0
cis-1,3-Dichloropropene	0.343	0.325	-	5.2	20	152	0
Chlorobenzene-d5	1	1	-	0	20	168	0
Toluene-d8	1.421	1.392	-	2	20	164	0
Toluene	0.843	0.743	-	11.9	20	146	0
4-Methyl-2-pentanone	0.094	0.083*	-	11.7	20	150	0
Tetrachloroethene	0.32	0.29	-	9.4	20	139	0
trans-1,3-Dichloropropene	20	18.141	-	9.3	20	159	0
Ethyl methacrylate	0.353	0.3	-	15	20	140	0
1,1,2-Trichloroethane	0.206	0.215	-	-4.4	20	167	0
Chlorodibromomethane	0.274	0.271	-	1.1	20	163	0
1,3-Dichloropropane	0.437	0.429	-	1.8	20	159	0
1,2-Dibromoethane	0.221	0.228	-	-3.2	20	164	0
2-Hexanone	0.16	0.136	-	15	20	136	0
Chlorobenzene	0.885	0.784	-	11.4	20	147	0
Ethylbenzene	1.575	1.347	-	14.5	20	140	0
1,1,1,2-Tetrachloroethane	0.286	0.274	-	4.2	20	153	0
p/m Xylene	0.588	0.511	-	13.1	20	140	0
o Xylene	0.572	0.493	-	13.8	20	140	0
Styrene	0.938	0.807	-	14	20	138	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	171	0
Bromoform	0.337	0.342	-	-1.5	20	176	0
Isopropylbenzene	3.02	2.511	-	16.9	20	136	0
4-Bromofluorobenzene	1.036	0.973	-	6.1	20	161	0
Bromobenzene	0.705	0.641	-	9.1	20	151	0
n-Propylbenzene	3.699	3.167	-	14.4	20	141	0
1,4-Dichlorobutane	0.897	0.841	-	6.2	20	158	0
1,1,2,2-Tetrachloroethane	0.612	0.646	-	-5.6	20	174	0
4-Ethyltoluene	3.102	2.514	-	19	20	135	0
2-Chlorotoluene	2.221	2.064	-	7.1	20	158	0
1,3,5-Trimethylbenzene	2.558	2.17	-	15.2	20	141	0
1,2,3-Trichloropropane	0.484	0.493	-	-1.9	20	167	0
trans-1,4-Dichloro-2-buten	0.168	0.155	-	7.7	20	162	0
4-Chlorotoluene	2.225	1.878	-	15.6	20	143	0
tert-Butylbenzene	2.1	1.744	-	17	20	137	0
1,2,4-Trimethylbenzene	2.539	2.158	-	15	20	142	0
sec-Butylbenzene	3.195	2.773	-	13.2	20	142	0
p-Isopropyltoluene	2.685	2.286	-	14.9	20	139	0
1,3-Dichlorobenzene	1.348	1.218	-	9.6	20	150	0
1,4-Dichlorobenzene	1.37	1.264	-	7.7	20	157	0
p-Diethylbenzene	1.665	1.332	-	20	20	132	0
n-Butylbenzene	2.585	2.282	-	11.7	20	146	0
1,2-Dichlorobenzene	1.219	1.134	•	7	20	157	0
1,2,4,5-Tetramethylbenzene	2.578	2.006	-	22.2*	20	131	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Sitec Environmental, Inc. Lab Number : L1839763
Project Name : MCCABE ST. Project Number : SE18-1375
Instrument ID : VOA100 Calibration Date : 10/10/18 06:38

 Lab File ID
 : V00181010A01
 Init. Calib. Date(s)
 : 08/02/18
 08/02/18

 Sample No
 : WG1166812-2
 Init. Calib. Times
 : 20:03
 23:32

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dibromo-3-chloropropan	20	18.342	-	8.3	20	163	0
1,3,5-Trichlorobenzene	1.018	0.877	-	13.9	20	143	0
Hexachlorobutadiene	0.477	0.401	-	15.9	20	136	0
1,2,4-Trichlorobenzene	0.868	0.776	-	10.6	20	148	0
Naphthalene	1.798	1.566	-	12.9	20	144	0
1,2,3-Trichlorobenzene	0.778	0.704	-	9.5	20	151	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1844061

Client: Sitec Environmental, Inc.

769 Plain Street

Unit C

Marshfield, MA 02050

ATTN: Geoff Souza
Phone: (781) 319-0100
Project Name: MCCABE ST.

Project Number: SE18-1375 Report Date: 11/07/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1844061 **Report Date:** 11/07/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1844061-01	TP-10	SOIL	Not Specified	10/26/18 08:20	10/29/18
L1844061-02	TP-11	SOIL	Not Specified	10/26/18 08:45	10/29/18
L1844061-03	TP-12	SOIL	Not Specified	10/26/18 08:55	10/29/18
L1844061-04	TP-15	SOIL	Not Specified	10/26/18 09:30	10/29/18
L1844061-05	TP-16	SOIL	Not Specified	10/26/18 09:45	10/29/18
L1844061-06	TP-17	SOIL	Not Specified	10/26/18 10:00	10/29/18
L1844061-07	TP-18	SOIL	Not Specified	10/26/18 10:30	10/29/18

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

In reference to question H:

A Matrix Spike was not submitted for the analysis of Total Metals.

Volatile Organics

In reference to question G:

L1844061-02: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The initial calibration, associated with L1844061-02, did not meet the method required minimum response factor on the lowest calibration standard for 4-methyl-2-pentanone (0.0733) and 1,4-dioxane (0.0013), as well as the average response factor for 4-methyl-2-pentanone and 1,4-dioxane.

The continuing calibration standard, associated with L1844061-02, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

PAHs

L1844061-05: The sample has elevated detection limits due to the dilution required by the sample matrix. In reference to question G:

L1844061-03 and -05: One or more of the target analytes did not achieve the requested CAM reporting limits. In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

PCBs

L1844061-03, -04, and- 05 contain peaks which match the retention times for Aroclor 1268, but do not match the area ratios typical for this aroclor. The result for Aroclor 1268 is reported as "altered".

In reference to question G:

L1844061-03: One or more of the target analytes did not achieve the requested CAM reporting limits.

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

Case Narrative (continued)

In reference to question H:

The surrogate recoveries for the following samples are outside the acceptance criteria for decachlorobiphenyl; however, the samples were not re-extracted due to coelution with Aroclor 1268. The results are not considered to be biased:

L1844061-03: 1630%/2080% L1844061-04: 155%/162% L1844061-05: 437%/521%

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 11/07/18

600, Shawow Kelly Stenstrom

ORGANICS

VOLATILES

Project Name: Lab Number: MCCABE ST. L1844061

Project Number: Report Date: SE18-1375 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-02 D Date Collected: 10/26/18 08:45

Client ID: TP-11

Date Received: 10/29/18 Field Prep: Sample Location: Not Specified Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 97,8260C Analytical Date: 11/06/18 10:40

JC Analyst: 17% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics by 8260/5035	- Westborough Lal	b					
Methylene chloride	ND		ug/kg	44000		10	
1,1-Dichloroethane	ND		ug/kg	8800		10	
Chloroform	ND		ug/kg	13000		10	
Carbon tetrachloride	ND		ug/kg	8800		10	
1,2-Dichloropropane	ND		ug/kg	8800		10	
Dibromochloromethane	ND		ug/kg	8800		10	
1,1,2-Trichloroethane	ND		ug/kg	8800		10	
Tetrachloroethene	ND		ug/kg	4400		10	
Chlorobenzene	ND		ug/kg	4400		10	
Trichlorofluoromethane	ND		ug/kg	35000		10	
1,2-Dichloroethane	ND		ug/kg	8800		10	
1,1,1-Trichloroethane	ND		ug/kg	4400		10	
Bromodichloromethane	ND		ug/kg	4400		10	
trans-1,3-Dichloropropene	ND		ug/kg	8800		10	
cis-1,3-Dichloropropene	ND		ug/kg	4400		10	
1,3-Dichloropropene, Total	ND		ug/kg	4400		10	
1,1-Dichloropropene	ND		ug/kg	4400		10	
Bromoform	ND		ug/kg	35000		10	
1,1,2,2-Tetrachloroethane	ND		ug/kg	4400		10	
Benzene	12000		ug/kg	4400		10	
Toluene	ND		ug/kg	8800		10	
Ethylbenzene	160000		ug/kg	8800		10	
Chloromethane	ND		ug/kg	35000		10	
Bromomethane	ND		ug/kg	18000		10	
Vinyl chloride	ND		ug/kg	8800		10	
Chloroethane	ND		ug/kg	18000		10	
1,1-Dichloroethene	ND		ug/kg	8800		10	
trans-1,2-Dichloroethene	ND		ug/kg	13000		10	

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-02 D Date Collected: 10/26/18 08:45

Client ID: Date Received: 10/29/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 8260/	5035 - Westborough Lab					
Trichloroethene	ND		ug/kg	4400		10
1,2-Dichlorobenzene	ND		ug/kg	18000		10
1,3-Dichlorobenzene	ND		ug/kg	18000		10
1,4-Dichlorobenzene	ND		ug/kg	18000		10
Methyl tert butyl ether	ND		ug/kg	18000		10
p/m-Xylene	79000		ug/kg	18000		10
o-Xylene	59000		ug/kg	8800		10
Xylenes, Total	140000		ug/kg	8800		10
cis-1,2-Dichloroethene	ND		ug/kg	8800		10
1,2-Dichloroethene, Total	ND		ug/kg	8800		10
Dibromomethane	ND		ug/kg	18000		10
1,2,3-Trichloropropane	ND		ug/kg	18000		10
Styrene	ND		ug/kg	8800		10
Dichlorodifluoromethane	ND		ug/kg	88000		10
Acetone	ND		ug/kg	88000		10
Carbon disulfide	ND		ug/kg	88000		10
Methyl ethyl ketone	ND		ug/kg	88000		10
Methyl isobutyl ketone	ND		ug/kg	88000		10
2-Hexanone	ND		ug/kg	88000		10
Bromochloromethane	ND		ug/kg	18000		10
Tetrahydrofuran	ND		ug/kg	35000		10
2,2-Dichloropropane	ND		ug/kg	18000		10
1,2-Dibromoethane	ND		ug/kg	8800		10
1,3-Dichloropropane	ND		ug/kg	18000		10
1,1,1,2-Tetrachloroethane	ND		ug/kg	4400		10
Bromobenzene	ND		ug/kg	18000		10
n-Butylbenzene	ND		ug/kg	8800		10
sec-Butylbenzene	ND		ug/kg	8800		10
tert-Butylbenzene	ND		ug/kg	18000		10
o-Chlorotoluene	ND		ug/kg	18000		10
p-Chlorotoluene	ND		ug/kg	18000		10
1,2-Dibromo-3-chloropropane	ND		ug/kg	26000		10
Hexachlorobutadiene	ND		ug/kg	35000		10
Isopropylbenzene	29000		ug/kg	8800		10
p-Isopropyltoluene	ND		ug/kg	8800		10
Naphthalene	1800000		ug/kg	35000		10
n-Propylbenzene	32000		ug/kg	8800		10

Project Name:MCCABE ST.Lab Number:L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-02 D Date Collected: 10/26/18 08:45

Client ID: TP-11 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics by 8260/5035	5 - Westborough Lab						
1.2,3-Trichlorobenzene	ND		ug/kg	18000		10	
1,2,4-Trichlorobenzene	ND		ug/kg	18000		10	
1,3,5-Trimethylbenzene	24000		ug/kg	18000		10	
1,2,4-Trimethylbenzene	120000		ug/kg	18000		10	
Diethyl ether	ND		ug/kg	18000		10	
Diisopropyl Ether	ND		ug/kg	18000		10	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	18000		10	
Tertiary-Amyl Methyl Ether	ND		ug/kg	18000		10	
1,4-Dioxane	ND		ug/kg	880000		10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	98	70-130	

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 11/06/18 07:59

Analyst: MV

arameter	Result	Qualifier	Units	RL		MDL
MCP Volatile Organics by 5035 Hig	h - Westbo	rough Lab	for sample(s):	02	Batch:	WG1176392-5
Methylene chloride	ND		ug/kg	250		
1,1-Dichloroethane	ND		ug/kg	50		
Chloroform	ND		ug/kg	75		
Carbon tetrachloride	ND		ug/kg	50		
1,2-Dichloropropane	ND		ug/kg	50		
Dibromochloromethane	ND		ug/kg	50		
1,1,2-Trichloroethane	ND		ug/kg	50		
Tetrachloroethene	ND		ug/kg	25		
Chlorobenzene	ND		ug/kg	25		
Trichlorofluoromethane	ND		ug/kg	200		
1,2-Dichloroethane	ND		ug/kg	50		
1,1,1-Trichloroethane	ND		ug/kg	25		
Bromodichloromethane	ND		ug/kg	25		
trans-1,3-Dichloropropene	ND		ug/kg	50		
cis-1,3-Dichloropropene	ND		ug/kg	25		
1,3-Dichloropropene, Total	ND		ug/kg	25		
1,1-Dichloropropene	ND		ug/kg	25		
Bromoform	ND		ug/kg	200		
1,1,2,2-Tetrachloroethane	ND		ug/kg	25		
Benzene	ND		ug/kg	25		
Toluene	ND		ug/kg	50		
Ethylbenzene	ND		ug/kg	50		
Chloromethane	ND		ug/kg	200		
Bromomethane	ND		ug/kg	100		
Vinyl chloride	ND		ug/kg	50		
Chloroethane	ND		ug/kg	100		
1,1-Dichloroethene	ND		ug/kg	50		
trans-1,2-Dichloroethene	ND		ug/kg	75		
Trichloroethene	ND		ug/kg	25		

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 11/06/18 07:59

Analyst: MV

MCP Volatile Organics by 5035 High - Westborough Lab for sample(s): 02 Batch: WG1176392-5	Parameter	Result	Qualifier	Units	RL		MDL
1,3-Dichlorobenzene ND ug/kg 100 1,4-Dichlorobenzene ND ug/kg 100 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 50 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 100 1,2,3-Trichloropropane ND ug/kg 50 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500	MCP Volatile Organics by 5035 High	ı - Westbor	ough Lab t	for sample(s):	02	Batch:	WG1176392-5
1,3-Dichlorobenzene ND ug/kg 100 1,4-Dichlorobenzene ND ug/kg 100 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 50 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 100 1,2,3-Trichloropropane ND ug/kg 50 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500	1,2-Dichlorobenzene	ND		ug/kg	100		
1,4-Dichlorobenzene ND ug/kg 100 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 50 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 100 1,2-3-Trichloropropane ND ug/kg 100 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 50 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500	1,3-Dichlorobenzene	ND			100		
p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 50 Xylenes, Total ND ug/kg 50 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 100 1,2-Dichloropropane ND ug/kg 100 1,2-Jichloropropane ND ug/kg 50 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg	1,4-Dichlorobenzene	ND			100		
p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 50 Xylenes, Total ND ug/kg 50 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 100 1,2-Dichloroethene, Total ND ug/kg 50 1,2-S-Trichloropropane ND ug/kg 50 ND ug/kg 50 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500	Methyl tert butyl ether	ND		ug/kg	100		
Xylenes, Total ND ug/kg 50 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 100 1,2,3-Trichloropropane ND ug/kg 50 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 100 1-tetrahydrofuran ND ug/kg 100	p/m-Xylene	ND		ug/kg	100		
cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 100 1,2,3-Trichloropropane ND ug/kg 100 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 50	o-Xylene	ND		ug/kg	50		
1,2-Dichloroethene, Total ND	Xylenes, Total	ND		ug/kg	50		
Dibromomethane ND ug/kg 100 1,2,3-Trichloropropane ND ug/kg 100 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 500 Tetrahydrofuran ND ug/kg 200 1,2-Dibromoethane ND ug/kg 100 1,3-Dichloropropane ND ug/kg 50 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 50 <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	cis-1,2-Dichloroethene	ND		ug/kg	50		
1,2,3-Trichloropropane ND ug/kg 100 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 500 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 50 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 50 -	1,2-Dichloroethene, Total	ND		ug/kg	50		
Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 100 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50	Dibromomethane	ND		ug/kg	100		
Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 500 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50	1,2,3-Trichloropropane	ND		ug/kg	100		
Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 50 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100 <td>Styrene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>50</td> <td></td> <td></td>	Styrene	ND		ug/kg	50		
Carbon disulfide ND ug/kg 500 Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	Dichlorodifluoromethane	ND		ug/kg	500		
Methyl ethyl ketone ND ug/kg 500 Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	Acetone	ND		ug/kg	500		
Methyl isobutyl ketone ND ug/kg 500 2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	Carbon disulfide	ND		ug/kg	500		
2-Hexanone ND ug/kg 500 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	Methyl ethyl ketone	ND		ug/kg	500		
Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	Methyl isobutyl ketone	ND		ug/kg	500		
Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	2-Hexanone	ND		ug/kg	500		
2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	Bromochloromethane	ND		ug/kg	100		
1,2-Dibromoethane ND ug/kg 50 1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	Tetrahydrofuran	ND		ug/kg	200		
1,3-Dichloropropane ND ug/kg 100 1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	2,2-Dichloropropane	ND		ug/kg	100		
1,1,1,2-Tetrachloroethane ND ug/kg 25 Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	1,2-Dibromoethane	ND		ug/kg	50		
Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	1,3-Dichloropropane	ND		ug/kg	100		
n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	1,1,1,2-Tetrachloroethane	ND		ug/kg	25		
sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100	Bromobenzene	ND		ug/kg	100		
tert-Butylbenzene ND ug/kg 100	n-Butylbenzene	ND		ug/kg	50		
	sec-Butylbenzene	ND		ug/kg	50		
o-Chlorotoluene ND ug/kg 100	tert-Butylbenzene	ND		ug/kg	100		
	o-Chlorotoluene	ND		ug/kg	100		

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 11/06/18 07:59

Analyst: MV

Parameter	Result	Qualifier	Units	RL		MDL
MCP Volatile Organics by 5035 High	h - Westbor	ough Lab f	or sample(s):	02	Batch:	WG1176392-5
p-Chlorotoluene	ND		ug/kg	100		
1,2-Dibromo-3-chloropropane	ND		ug/kg	150		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	100		
1,2,4-Trichlorobenzene	ND		ug/kg	100		
1,3,5-Trimethylbenzene	ND		ug/kg	100		
1,2,4-Trimethylbenzene	ND		ug/kg	100		
Diethyl ether	ND		ug/kg	100		
Diisopropyl Ether	ND		ug/kg	100		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	100		
Tertiary-Amyl Methyl Ether	ND		ug/kg	100		
1,4-Dioxane	ND		ug/kg	5000		

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	104	70-130			
Toluene-d8	102	70-130			
4-Bromofluorobenzene	101	70-130			
Dibromofluoromethane	98	70-130			

Project Name: MCCABE ST.

Lab Number: L1844061

Project Number: SE18-1375

Report Date: 11/07/18

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery / Qual Limits	RPD	RPD Qual Limits
ICP Volatile Organics by 5035 High - West	borough Lab Ass	ociated sample(s): 02 B	atch: WG1176392-3 WG11763	392-4	
Methylene chloride	76	76	70-130	0	20
1,1-Dichloroethane	84	87	70-130	4	20
Chloroform	84	84	70-130	0	20
Carbon tetrachloride	77	79	70-130	3	20
1,2-Dichloropropane	88	92	70-130	4	20
Dibromochloromethane	84	88	70-130	5	20
1,1,2-Trichloroethane	88	91	70-130	3	20
Tetrachloroethene	80	81	70-130	1	20
Chlorobenzene	85	86	70-130	1	20
Trichlorofluoromethane	73	74	70-130	1	20
1,2-Dichloroethane	88	90	70-130	2	20
1,1,1-Trichloroethane	81	83	70-130	2	20
Bromodichloromethane	85	87	70-130	2	20
trans-1,3-Dichloropropene	89	92	70-130	3	20
cis-1,3-Dichloropropene	89	92	70-130	3	20
1,1-Dichloropropene	82	84	70-130	2	20
Bromoform	80	83	70-130	4	20
1,1,2,2-Tetrachloroethane	92	94	70-130	2	20
Benzene	84	85	70-130	1	20
Toluene	82	84	70-130	2	20
Ethylbenzene	85	86	70-130	1	20
Chloromethane	79	78	70-130	1	20
Bromomethane	76	78	70-130	3	20

Project Name: MCCABE ST.

Project Number: SE18-1375

Lab Number: L1844061

Report Date: 11/07/18

Parameter	LCS %Recovery	Qual %	LCSD Recov		%Recovery Limits	RPD	RPD Qual Limits
MCP Volatile Organics by 5035 High - Westh	oorough Lab As	sociated sample(s): 02	Batch: WG1	176392-3 WG1176	392-4	
Vinyl chloride	77		76		70-130	1	20
Chloroethane	79		80		70-130	1	20
1,1-Dichloroethene	75		77		70-130	3	20
trans-1,2-Dichloroethene	79		81		70-130	3	20
Trichloroethene	81		82		70-130	1	20
1,2-Dichlorobenzene	86		86		70-130	0	20
1,3-Dichlorobenzene	86		86		70-130	0	20
1,4-Dichlorobenzene	85		85		70-130	0	20
Methyl tert butyl ether	90		94		70-130	4	20
p/m-Xylene	84		85		70-130	1	20
o-Xylene	86		87		70-130	1	20
cis-1,2-Dichloroethene	83		85		70-130	2	20
Dibromomethane	86		87		70-130	1	20
1,2,3-Trichloropropane	87		93		70-130	7	20
Styrene	76		77		70-130	1	20
Dichlorodifluoromethane	60	Q	60	Q	70-130	0	20
Acetone	101		102		70-130	1	20
Carbon disulfide	72		73		70-130	1	20
Methyl ethyl ketone	94		103		70-130	9	20
Methyl isobutyl ketone	89		93		70-130	4	20
2-Hexanone	91		101		70-130	10	20
Bromochloromethane	85		87		70-130	2	20
Tetrahydrofuran	92		101		70-130	9	20

Project Name: MCCABE ST. **Project Number:** SE18-1375

BE ST.

Lab Number: L1844061

Report Date: 11/07/18

Parameter	LCS %Recovery	LCS Qual %Reco		covery nits RPD	RPD Qual Limits
MCP Volatile Organics by 5035 High - We	stborough Lab Ass	sociated sample(s): 02	Batch: WG1176392-3	WG1176392-4	
2,2-Dichloropropane	83	85	70-	130 2	20
1,2-Dibromoethane	87	90	70-	130 3	20
1,3-Dichloropropane	90	93	70-	130 3	20
1,1,1,2-Tetrachloroethane	85	87	70-	130 2	20
Bromobenzene	85	85	70-	130 0	20
n-Butylbenzene	86	86	70-	130 0	20
sec-Butylbenzene	84	84	70-	130 0	20
tert-Butylbenzene	84	84	70-	130 0	20
o-Chlorotoluene	86	85	70-	130 1	20
p-Chlorotoluene	89	88	70-	130 1	20
1,2-Dibromo-3-chloropropane	78	86	70-	130 10	20
Hexachlorobutadiene	81	78	70-	130 4	20
Isopropylbenzene	85	85	70-	130 0	20
p-Isopropyltoluene	85	84	70-	130 1	20
Naphthalene	90	92	70-	130 2	20
n-Propylbenzene	85	85	70-	130 0	20
1,2,3-Trichlorobenzene	90	89	70-	130 1	20
1,2,4-Trichlorobenzene	90	88	70-	130 2	20
1,3,5-Trimethylbenzene	86	86	70-	130 0	20
1,2,4-Trimethylbenzene	88	87	70-	130 1	20
Diethyl ether	89	92	70-	130 3	20
Diisopropyl Ether	95	98	70-	130 3	20
Ethyl-Tert-Butyl-Ether	93	95	70-	130 2	20

Project Name: MCCABE ST.

Lab Number:

L1844061

Project Number: SE18-1375

Report Date:

11/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics by 5035 High - W	estborough Lab Asso	ociated sample	e(s): 02 Batcl	n: WG1176	6392-3 WG11763	92-4		
Tertiary-Amyl Methyl Ether	90		93		70-130	3		20
1,4-Dioxane	83		88		70-130	6		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	106	70-130
Toluene-d8	103	103	70-130
4-Bromofluorobenzene	104	103	70-130
Dibromofluoromethane	98	100	70-130

SEMIVOLATILES

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-01 Date Collected: 10/26/18 08:20

Client ID: TP-10 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/30/18 09:26

Analytical Date: 10/31/18 15:14

Analyst: RC

Percent Solids: 83%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	160		1
Fluoranthene	ND		ug/kg	120		1
Naphthalene	ND		ug/kg	200		1
Benzo(a)anthracene	ND		ug/kg	120		1
Benzo(a)pyrene	ND		ug/kg	160		1
Benzo(b)fluoranthene	ND		ug/kg	120		1
Benzo(k)fluoranthene	ND		ug/kg	120		1
Chrysene	ND		ug/kg	120		1
Acenaphthylene	ND		ug/kg	160		1
Anthracene	ND		ug/kg	120		1
Benzo(ghi)perylene	ND		ug/kg	160		1
Fluorene	ND		ug/kg	200		1
Phenanthrene	ND		ug/kg	120		1
Dibenzo(a,h)anthracene	ND		ug/kg	120		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160		1
Pyrene	ND		ug/kg	120		1
2-Methylnaphthalene	ND		ug/kg	240		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	60	30-130	
2-Fluorobiphenyl	61	30-130	
4-Terphenyl-d14	52	30-130	

Project Name: MCCABE ST. **Lab Number:** L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-02 Date Collected: 10/26/18 08:45

Client ID: TP-11 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/30/18 09:26

Analytical Date: 10/31/18 16:53
Analyst: RC

17%

Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP PAHs - Westborough Lab							
Acenaphthene	25000		ug/kg	790		1	
Fluoranthene	18000		ug/kg	600		1	
Naphthalene	240000	E	ug/kg	990		1	
Benzo(a)anthracene	9200		ug/kg	600		1	
Benzo(a)pyrene	7500		ug/kg	790		1	
Benzo(b)fluoranthene	6300		ug/kg	600		1	
Benzo(k)fluoranthene	2100		ug/kg	600		1	
Chrysene	11000		ug/kg	600		1	
Acenaphthylene	5600		ug/kg	790		1	
Anthracene	9900		ug/kg	600		1	
Benzo(ghi)perylene	2200		ug/kg	790		1	
Fluorene	28000		ug/kg	990		1	
Phenanthrene	71000	E	ug/kg	600		1	
Dibenzo(a,h)anthracene	700		ug/kg	600		1	
Indeno(1,2,3-cd)pyrene	2200		ug/kg	790		1	
Pyrene	34000		ug/kg	600		1	
2-Methylnaphthalene	190000	E	ug/kg	1200		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	61		30-130	
2-Fluorobiphenyl	35		30-130	
4-Terphenyl-d14	56		30-130	

Project Name: Lab Number: MCCABE ST. L1844061

Project Number: Report Date: SE18-1375 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-02 D Date Collected: 10/26/18 08:45

Client ID: TP-11

Date Received: 10/29/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 10/30/18 09:26 Analytical Method: 97,8270D Analytical Date: 11/07/18 09:44

Analyst: **ALS** 17% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Naphthalene	540000		ug/kg	20000		20
Phenanthrene	59000		ug/kg	12000		20
2-Methylnaphthalene	200000		ug/kg	24000		20

Project Name: Lab Number: MCCABE ST. L1844061

Project Number: Report Date: SE18-1375 11/07/18

SAMPLE RESULTS

Lab ID: D Date Collected: 10/26/18 08:55 L1844061-03

Client ID: TP-12

Date Received: 10/29/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 10/30/18 09:26 Analytical Method: 97,8270D Analytical Date: 10/31/18 18:08

Analyst: RC 31% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP PAHs - Westborough Lab							
Acenaphthene	4000		ug/kg	2100		5	
Fluoranthene	56000		ug/kg	1600		5	
Naphthalene	5400		ug/kg	2600		5	
Benzo(a)anthracene	20000		ug/kg	1600		5	
Benzo(a)pyrene	16000		ug/kg	2100		5	
Benzo(b)fluoranthene	20000		ug/kg	1600		5	
Benzo(k)fluoranthene	5800		ug/kg	1600		5	
Chrysene	23000		ug/kg	1600		5	
Acenaphthylene	7100		ug/kg	2100		5	
Anthracene	12000		ug/kg	1600		5	
Benzo(ghi)perylene	7800		ug/kg	2100		5	
Fluorene	6400		ug/kg	2600		5	
Phenanthrene	37000		ug/kg	1600		5	
Dibenzo(a,h)anthracene	2000		ug/kg	1600		5	
Indeno(1,2,3-cd)pyrene	8000		ug/kg	2100		5	
Pyrene	56000		ug/kg	1600		5	
2-Methylnaphthalene	ND		ug/kg	3200		5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	32	30-130	
2-Fluorobiphenyl	62	30-130	
4-Terphenyl-d14	74	30-130	

Project Name: MCCABE ST. **Lab Number:** L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-04 Date Collected: 10/26/18 09:30

Client ID: TP-15 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/30/18 09:26
Analytical Date: 10/31/18 17:18

Analyst: RC Percent Solids: 60%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP PAHs - Westborough Lab							
Acenaphthene	ND		ug/kg	220		1	
Fluoranthene	5400		ug/kg	160		1	
Naphthalene	280		ug/kg	270		1	
Benzo(a)anthracene	2000		ug/kg	160		1	
Benzo(a)pyrene	1800		ug/kg	220		1	
Benzo(b)fluoranthene	2400		ug/kg	160		1	
Benzo(k)fluoranthene	560		ug/kg	160		1	
Chrysene	2600		ug/kg	160		1	
Acenaphthylene	810		ug/kg	220		1	
Anthracene	840		ug/kg	160		1	
Benzo(ghi)perylene	900		ug/kg	220		1	
Fluorene	380		ug/kg	270		1	
Phenanthrene	4100		ug/kg	160		1	
Dibenzo(a,h)anthracene	240		ug/kg	160		1	
Indeno(1,2,3-cd)pyrene	890		ug/kg	220		1	
Pyrene	6300		ug/kg	160		1	
2-Methylnaphthalene	ND		ug/kg	330		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	66	30-130	
2-Fluorobiphenyl	64	30-130	
4-Terphenyl-d14	61	30-130	

Project Name: Lab Number: MCCABE ST. L1844061

Project Number: Report Date: SE18-1375 11/07/18

SAMPLE RESULTS

Lab ID: D Date Collected: 10/26/18 09:45 L1844061-05

Client ID: TP-16

Date Received: 10/29/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 10/30/18 09:26 Analytical Method: 97,8270D Analytical Date: 11/07/18 10:09

Analyst: **ALS** 73% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	890		5
Fluoranthene	2400		ug/kg	660		5
Naphthalene	ND		ug/kg	1100		5
Benzo(a)anthracene	1000		ug/kg	660		5
Benzo(a)pyrene	ND		ug/kg	890		5
Benzo(b)fluoranthene	1000		ug/kg	660		5
Benzo(k)fluoranthene	ND		ug/kg	660		5
Chrysene	1100		ug/kg	660		5
Acenaphthylene	ND		ug/kg	890		5
Anthracene	ND		ug/kg	660		5
Benzo(ghi)perylene	ND		ug/kg	890		5
Fluorene	ND		ug/kg	1100		5
Phenanthrene	1700		ug/kg	660		5
Dibenzo(a,h)anthracene	ND		ug/kg	660		5
Indeno(1,2,3-cd)pyrene	ND		ug/kg	890		5
Pyrene	2100		ug/kg	660		5
2-Methylnaphthalene	ND		ug/kg	1300		5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	46		30-130
2-Fluorobiphenyl	36		30-130
4-Terphenyl-d14	29	Q	30-130

Project Name: MCCABE ST. **Lab Number:** L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-06 Date Collected: 10/26/18 10:00

Client ID: TP-17 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/30/18 09:26
Analytical Date: 10/31/18 15:39

Analyst: RC Percent Solids: 37%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	360		1
Fluoranthene	ND		ug/kg	270		1
Naphthalene	610		ug/kg	450		1
Benzo(a)anthracene	ND		ug/kg	270		1
Benzo(a)pyrene	ND		ug/kg	360		1
Benzo(b)fluoranthene	ND		ug/kg	270		1
Benzo(k)fluoranthene	ND		ug/kg	270		1
Chrysene	ND		ug/kg	270		1
Acenaphthylene	ND		ug/kg	360		1
Anthracene	ND		ug/kg	270		1
Benzo(ghi)perylene	ND		ug/kg	360		1
Fluorene	ND		ug/kg	450		1
Phenanthrene	ND		ug/kg	270		1
Dibenzo(a,h)anthracene	ND		ug/kg	270		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	360		1
Pyrene	ND		ug/kg	270		1
2-Methylnaphthalene	ND		ug/kg	540		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	63		30-130
2-Fluorobiphenyl	60		30-130
4-Terphenyl-d14	48		30-130

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-07 D2 Date Collected: 10/26/18 10:30

Client ID: TP-18 Date Received: 10/29/18 Sample Location: Not Specified Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8270D Extraction Date: 10/30/18 09:26

Analytical Date: 11/07/18 10:35

Analyst: ALS

Percent Solids: 84%

Parameter	Result	Result Qualifier Units		RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Fluoranthene	17000		ug/kg	470		4
Phenanthrene	20000		ug/kg	470		4
Pyrene	15000		ug/kg	470		4

Sample Depth:

Project Name: Lab Number: MCCABE ST. L1844061

Project Number: Report Date: SE18-1375 11/07/18

SAMPLE RESULTS

Lab ID: D Date Collected: 10/26/18 10:30 L1844061-07

Client ID: TP-18

Date Received: 10/29/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 10/30/18 09:26 Analytical Method: 97,8270D Analytical Date: 10/31/18 17:43

Analyst: RC 84% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs - Westborough Lab						
Acenaphthene	1900		ug/kg	320		2
Fluoranthene	22000	Е	ug/kg	240		2
Naphthalene	1500		ug/kg	390		2
Benzo(a)anthracene	6200		ug/kg	240		2
Benzo(a)pyrene	5600		ug/kg	320		2
Benzo(b)fluoranthene	7500		ug/kg	240		2
Benzo(k)fluoranthene	1900		ug/kg	240		2
Chrysene	6600		ug/kg	240		2
Acenaphthylene	500		ug/kg	320		2
Anthracene	4000		ug/kg	240		2
Benzo(ghi)perylene	3200		ug/kg	320		2
Fluorene	1900		ug/kg	390		2
Phenanthrene	24000	E	ug/kg	240		2
Dibenzo(a,h)anthracene	850		ug/kg	240		2
Indeno(1,2,3-cd)pyrene	3300		ug/kg	320		2
Pyrene	19000	E	ug/kg	240		2
2-Methylnaphthalene	750		ug/kg	470		2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	70		30-130	
2-Fluorobiphenyl	73		30-130	
4-Terphenyl-d14	68		30-130	

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 97,8270D 10/30/18 21:03

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 10/30/18 09:26

Parameter	Result	Qualifier Units	RL	MDL
MCP Semivolatile Organics	- Westborough Lab	for sample(s): 01-07	Batch:	WG1173773-1
Acenaphthene	ND	ug/kg	130	
Fluoranthene	ND	ug/kg	99	
Naphthalene	ND	ug/kg	160	
Benzo(a)anthracene	ND	ug/kg	99	
Benzo(a)pyrene	ND	ug/kg	130	
Benzo(b)fluoranthene	ND	ug/kg	99	
Benzo(k)fluoranthene	ND	ug/kg	99	
Chrysene	ND	ug/kg	99	
Acenaphthylene	ND	ug/kg	130	
Anthracene	ND	ug/kg	99	
Benzo(ghi)perylene	ND	ug/kg	130	
Fluorene	ND	ug/kg	160	
Phenanthrene	ND	ug/kg	99	
Dibenzo(a,h)anthracene	ND	ug/kg	99	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	130	
Pyrene	ND	ug/kg	99	
2-Methylnaphthalene	ND	ug/kg	200	

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
Nitrobenzene-d5	75	30-130
2-Fluorobiphenyl	82	30-130
4-Terphenyl-d14	82	30-130

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1844061

Report Date:

11/07/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits
ICP Semivolatile Organics - Westborough La	ab Associated s	sample(s): (01-07 Batch:	WG1173773-2	2 WG1173773-3			
Acenaphthene	64		83		40-140	26		30
Fluoranthene	68		85		40-140	22		30
Naphthalene	64		75		40-140	16		30
Benzo(a)anthracene	66		77		40-140	15		30
Benzo(a)pyrene	69		81		40-140	16		30
Benzo(b)fluoranthene	69		80		40-140	15		30
Benzo(k)fluoranthene	70		81		40-140	15		30
Chrysene	68		78		40-140	14		30
Acenaphthylene	69		83		40-140	18		30
Anthracene	70		81		40-140	15		30
Benzo(ghi)perylene	70		82		40-140	16		30
Fluorene	67		77		40-140	14		30
Phenanthrene	66		78		40-140	17		30
Dibenzo(a,h)anthracene	69		81		40-140	16		30
Indeno(1,2,3-cd)pyrene	69		81		40-140	16		30
Pyrene	68		84		40-140	21		30
2-Methylnaphthalene	66		78		40-140	17		30

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST.

Lab Number:

L1844061

Project Number: SE18-1375

Report Date:

11/07/18

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

MCP Semivolatile Organics - Westborough Lab Associated sample(s): 01-07 Batch: WG1173773-2 WG1173773-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	65	75	30-130
2-Fluorobiphenyl	67	78	30-130
4-Terphenyl-d14	67	82	30-130

PCBS

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-01 Date Collected: 10/26/18 08:20

Client ID: TP-10 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/30/18 09:17
Analytical Date: 11/06/18 05:32 Cleanup Method: EPA 3665A

Analyst: HT Cleanup Date: 10/30/18
Percent Solids: 83% Cleanup Method: EPA 3660B
Cleanup Date: 10/30/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls -	Westborough Lab						
Aroclor 1016	ND		ug/kg	39.5		1	Α
Aroclor 1221	ND		ug/kg	39.5		1	Α
Aroclor 1232	ND		ug/kg	39.5		1	Α
Aroclor 1242	ND		ug/kg	39.5		1	Α
Aroclor 1248	ND		ug/kg	39.5		1	Α
Aroclor 1254	ND		ug/kg	39.5		1	Α
Aroclor 1260	ND		ug/kg	39.5		1	Α
Aroclor 1262	ND		ug/kg	39.5		1	Α
Aroclor 1268	ND		ug/kg	39.5		1	Α
PCBs, Total	ND		ug/kg	39.5		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86		30-150	В
Decachlorobiphenyl	85		30-150	В
2,4,5,6-Tetrachloro-m-xylene	79		30-150	Α
Decachlorobiphenyl	88		30-150	Α

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-02 Date Collected: 10/26/18 08:45

Client ID: TP-11 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/30/18 09:17
Analytical Date: 11/06/18 05:45 Cleanup Method: EPA 3665A

Analyst: HT Cleanup Date: 10/30/18
Percent Solids: 17% Cleanup Method: EPA 3660B
Cleanup Date: 10/30/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - Wes	stborough Lab						
Aroclor 1016	ND		ug/kg	200		1	Α
Aroclor 1221	ND		ug/kg	200		1	Α
Aroclor 1232	ND		ug/kg	200		1	Α
Aroclor 1242	ND		ug/kg	200		1	Α
Aroclor 1248	ND		ug/kg	200		1	Α
Aroclor 1254	ND		ug/kg	200		1	Α
Aroclor 1260	ND		ug/kg	200		1	Α
Aroclor 1262	ND		ug/kg	200		1	Α
Aroclor 1268	ND		ug/kg	200		1	А
PCBs, Total	ND		ug/kg	200		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	58		30-150	В
Decachlorobiphenyl	83		30-150	В
2,4,5,6-Tetrachloro-m-xylene	59		30-150	Α
Decachlorobiphenyl	76		30-150	Α

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-03 D Date Collected: 10/26/18 08:55

Client ID: TP-12 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 97,8082A Extraction Date: 10/30/18 09:17

Analytical Date: 11/07/18 03:24 Cleanup Method: EPA 3665A
Analyst: HT Cleanup Date: 10/30/18
Percent Solids: 31% Cleanup Method: EPA 3660B

Percent Solids: 31% Cleanup Method: EPA 3660 Cleanup Date: 10/30/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - W	estborough Lab						
Aroclor 1016	ND		ug/kg	526		5	Α
Aroclor 1221	ND		ug/kg	526		5	Α
Aroclor 1232	ND		ug/kg	526		5	Α
Aroclor 1242	ND		ug/kg	526		5	Α
Aroclor 1248	ND		ug/kg	526		5	Α
Aroclor 1254	ND		ug/kg	526		5	Α
Aroclor 1260	ND		ug/kg	526		5	Α
Aroclor 1262	ND		ug/kg	526		5	Α
Aroclor 1268	2960		ug/kg	526		5	В
PCBs, Total	2960		ug/kg	526		5	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	54		30-150	В
Decachlorobiphenyl	2080	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	56		30-150	Α
Decachlorobiphenyl	1630	Q	30-150	Α

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-04 Date Collected: 10/26/18 09:30

Client ID: TP-15 Date Received: 10/29/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 97 8082A Extraction Date: 10/30/18 09:

 Analytical Method:
 97,8082A
 Extraction Date:
 10/30/18 09:17

 Analytical Date:
 11/06/18 06:11
 Cleanup Method:
 EPA 3665A

 Analyst:
 HT
 Cleanup Date:
 10/30/18

Percent Solids: 60% Cleanup Method: EPA 3660B Cleanup Date: 10/30/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls	- Westborough Lab						
Aroclor 1016	ND		ua/ka	53.6		1	А
			ug/kg			•	
Aroclor 1221	ND		ug/kg	53.6		1	A
Aroclor 1232	ND		ug/kg	53.6		1	Α
Aroclor 1242	ND		ug/kg	53.6		1	Α
Aroclor 1248	ND		ug/kg	53.6		1	Α
Aroclor 1254	162		ug/kg	53.6		1	В
Aroclor 1260	133		ug/kg	53.6		1	Α
Aroclor 1262	ND		ug/kg	53.6		1	Α
Aroclor 1268	83.2		ug/kg	53.6		1	В
PCBs, Total	378		ug/kg	53.6		1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В
Decachlorobiphenyl	162	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	63		30-150	Α
Decachlorobiphenyl	155	Q	30-150	Α

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: Date Collected: 10/26/18 09:45

Client ID: TP-16 Date Received: 10/29/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/30/18 09:17
Analytical Date: 11/06/18 06:23 Cleanup Method: EPA 3665A

Analyst: HT Cleanup Date: 10/30/18
Percent Solids: 73% Cleanup Method: EPA 3660B
Cleanup Date: 10/30/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - We	stborough Lab						
Aroclor 1016	ND		ug/kg	44.9		1	Α
Aroclor 1221	ND		ug/kg	44.9		1	Α
Aroclor 1232	ND		ug/kg	44.9		1	Α
Aroclor 1242	ND		ug/kg	44.9		1	Α
Aroclor 1248	ND		ug/kg	44.9		1	Α
Aroclor 1254	325		ug/kg	44.9		1	В
Aroclor 1260	145		ug/kg	44.9		1	В
Aroclor 1262	ND		ug/kg	44.9		1	Α
Aroclor 1268	317		ug/kg	44.9		1	В
PCBs, Total	787		ug/kg	44.9		1	В

	o/ 5	0 ""	Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	521	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α
Decachlorobiphenyl	437	Q	30-150	Α

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-06 Date Collected: 10/26/18 10:00

Client ID: TP-17 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/30/18 09:17
Analytical Date: 11/06/18 06:36 Cleanup Method: EPA 3665A

Analyst: HT Cleanup Date: 10/30/18
Percent Solids: 37% Cleanup Method: EPA 3660B
Cleanup Date: 10/30/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - W	estborough Lab						
Aroclor 1016	ND		ug/kg	89.1		1	Α
Aroclor 1221	ND		ug/kg	89.1		1	Α
Aroclor 1232	ND		ug/kg	89.1		1	Α
Aroclor 1242	ND		ug/kg	89.1		1	Α
Aroclor 1248	ND		ug/kg	89.1		1	А
Aroclor 1254	ND		ug/kg	89.1		1	А
Aroclor 1260	ND		ug/kg	89.1		1	А
Aroclor 1262	ND		ug/kg	89.1		1	А
Aroclor 1268	ND		ug/kg	89.1		1	А
PCBs, Total	ND		ug/kg	89.1		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	66		30-150	В
Decachlorobiphenyl	77		30-150	В
2,4,5,6-Tetrachloro-m-xylene	61		30-150	Α
Decachlorobiphenyl	78		30-150	Α

Project Name: MCCABE ST. Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-07 Date Collected: 10/26/18 10:30

Client ID: TP-18 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 97,8082A Extraction Date: 10/30/18 09:17
Analytical Date: 11/06/18 06:49 Cleanup Method: EPA 3665A

Analyst: HT Cleanup Date: 10/30/18
Percent Solids: 84% Cleanup Method: EPA 3660B
Cleanup Date: 10/30/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - We	stborough Lab						
Aroclor 1016	ND		ug/kg	38.4		1	Α
Aroclor 1221	ND		ug/kg	38.4		1	Α
Aroclor 1232	ND		ug/kg	38.4		1	Α
Aroclor 1242	ND		ug/kg	38.4		1	Α
Aroclor 1248	ND		ug/kg	38.4		1	Α
Aroclor 1254	ND		ug/kg	38.4		1	Α
Aroclor 1260	ND		ug/kg	38.4		1	В
Aroclor 1262	ND		ug/kg	38.4		1	Α
Aroclor 1268	ND		ug/kg	38.4		1	В
PCBs, Total	ND		ug/kg	38.4		1	В

Surrogata	% Recovery	Qualifier	Acceptance	Calumn
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	94		30-150	В
2,4,5,6-Tetrachloro-m-xylene	69		30-150	Α
Decachlorobiphenyl	93		30-150	Α

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

Method Blank Analysis

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8082A Analytical Date: 97,8082A 11/06/18 04:53

Analyst: HT

Extraction Method: EPA 3546
Extraction Date: 10/30/18 09:17
Cleanup Method: EPA 3665A
Cleanup Date: 10/30/18
Cleanup Method: EPA 3660B
Cleanup Date: 10/30/18

Parameter	Result	Qualifier	Units	RL	-	MDL	Column
MCP Polychlorinated Biphenyls -	Westborough	Lab for sar	mple(s):	01-07	Batch:	WG11737	63-1
Aroclor 1016	ND		ug/kg	32.	0		Α
Aroclor 1221	ND		ug/kg	32.	0		Α
Aroclor 1232	ND		ug/kg	32.	0		А
Aroclor 1242	ND		ug/kg	32.	0		Α
Aroclor 1248	ND		ug/kg	32.	0		А
Aroclor 1254	ND		ug/kg	32.	0		А
Aroclor 1260	ND		ug/kg	32.	0		А
Aroclor 1262	ND		ug/kg	32.	0		А
Aroclor 1268	ND		ug/kg	32.	0		А
PCBs, Total	ND		ug/kg	32.	0		Α

		Acceptan	ce
Surrogate	%Recovery Qu	ialifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	92	30-150	В
Decachlorobiphenyl	91	30-150	В
2,4,5,6-Tetrachloro-m-xylene	84	30-150	Α
Decachlorobiphenyl	93	30-150	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST.

Lab Number:

L1844061

Project Number: SE18-1375

Report Date:

11/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
MCP Polychlorinated Biphenyls - Westboro	ough Lab Associate	ed sample(s):	01-07 Batch:	WG11737	63-2 WG1173763	3-3			
Aroclor 1016	90		96		40-140	6		30	А
Aroclor 1260	86		93		40-140	8		30	Α

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	92	100	30-150 B
Decachlorobiphenyl	93	102	30-150 B
2,4,5,6-Tetrachloro-m-xylene	86	94	30-150 A
Decachlorobiphenyl	93	102	30-150 A

METALS

Project Name: Lab Number: MCCABE ST. L1844061 **Project Number: Report Date:** SE18-1375 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-01

Date Collected: 10/26/18 08:20 Client ID: TP-10 Date Received: 10/29/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil 83% Percent Solids:

Percent Solids:	83%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Mansfield	d Lab									
Antimony, Total	ND		mg/kg	2.37		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Arsenic, Total	1.61		mg/kg	0.473		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Barium, Total	26.8		mg/kg	0.473		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Beryllium, Total	ND		mg/kg	0.237		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Cadmium, Total	ND		mg/kg	0.473		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Chromium, Total	23.6		mg/kg	0.473		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Lead, Total	ND		mg/kg	2.37		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Nickel, Total	7.04		mg/kg	1.18		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Selenium, Total	ND		mg/kg	2.37		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	0.473		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	2.37		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Vanadium, Total	14.6		mg/kg	0.473		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB
Zinc, Total	10.8		mg/kg	2.37		1	10/31/18 19:47	7 11/02/18 17:37	EPA 3050B	97,6010D	AB

10/26/18 08:45

Date Collected:

Project Name: Lab Number: MCCABE ST. L1844061 **Project Number: Report Date:** SE18-1375 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-02

Client ID: TP-11

Date Received: 10/29/18 Field Prep: Sample Location: Not Specified Not Specified

Sample Depth:

Matrix: Soil 17%

Percent Solids:	17%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals -	. Manefield	d Lah									
WOI TOTAL WICTAIS	Mananch	a Lab									
Antimony, Total	ND		mg/kg	11.4		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Arsenic, Total	9.85		mg/kg	2.29		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Barium, Total	294		mg/kg	2.29		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Beryllium, Total	ND		mg/kg	1.14		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Cadmium, Total	4.99		mg/kg	2.29		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Chromium, Total	54.0		mg/kg	2.29		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Lead, Total	280		mg/kg	11.4		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Nickel, Total	11.8		mg/kg	5.73		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Selenium, Total	ND		mg/kg	11.4		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	2.29		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	11.4		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Vanadium, Total	30.2		mg/kg	2.29		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB
Zinc, Total	450		mg/kg	11.4		1	10/31/18 19:47	11/02/18 17:42	EPA 3050B	97,6010D	AB

10/26/18 08:55

Date Collected:

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

SAMPLE RESULTS

Lab ID: L1844061-03

Client ID: TP-12 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 31%

Percent Solids: Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst MCP Total Metals - Mansfield Lab Antimony, Total 11.2 mg/kg 6.39 1 10/31/18 19:47 11/02/18 17:46 EPA 3050B 97,6010D AΒ Arsenic, Total 42.2 1.28 1 10/31/18 19:47 11/02/18 17:46 EPA 3050B 97,6010D ΑB mg/kg 1 Barium, Total 454 mg/kg 1.28 10/31/18 19:47 11/02/18 17:46 EPA 3050B 97,6010D AΒ Beryllium, Total ND mg/kg 0.639 1 10/31/18 19:47 11/02/18 17:46 EPA 3050B 97,6010D AΒ 62.8 1 10/31/18 19:47 11/02/18 17:46 EPA 3050B 97,6010D Cadmium, Total mg/kg 1.28 AΒ 139 1.28 1 10/31/18 19:47 11/02/18 17:46 EPA 3050B 97,6010D AΒ Chromium, Total mg/kg --Lead, Total 733 mg/kg 6.39 1 10/31/18 19:47 11/02/18 17:46 EPA 3050B 97,6010D AΒ 135 1 97,6010D Nickel, Total mg/kg 3.20 10/31/18 19:47 11/02/18 17:46 EPA 3050B AB 1 Selenium, Total 8.30 97,6010D mg/kg 6.39 10/31/18 19:47 11/02/18 17:46 EPA 3050B AΒ 1 97,6010D Silver, Total ND mg/kg 1.28 10/31/18 19:47 11/02/18 17:46 EPA 3050B AΒ ND 97,6010D AΒ Thallium, Total 6.39 --1 10/31/18 19:47 11/02/18 17:46 EPA 3050B mg/kg 70.4 1 97,6010D Vanadium, Total mg/kg 1.28 --10/31/18 19:47 11/02/18 17:46 EPA 3050B AΒ 1 97,6010D Zinc, Total 1380 mg/kg 6.39 10/31/18 19:47 11/02/18 17:46 EPA 3050B AB

10/26/18 09:30

Date Collected:

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

SAMPLE RESULTS

Lab ID: L1844061-04

Client ID: TP-15 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 60%

Percent Solids:	60%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Mansfield	d Lab									
Antimony, Total	ND		mg/kg	3.29		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Arsenic, Total	7.18		mg/kg	0.658		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Barium, Total	8860		mg/kg	6.58		10	10/31/18 19:47	7 11/07/18 10:28	EPA 3050B	97,6010D	PE
Beryllium, Total	0.329		mg/kg	0.329		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Cadmium, Total	5.96		mg/kg	0.658		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Chromium, Total	86.3		mg/kg	0.658		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Lead, Total	747		mg/kg	3.29		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Nickel, Total	29.0		mg/kg	1.64		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Selenium, Total	4.01		mg/kg	3.29		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Silver, Total	2.21		mg/kg	0.658		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	3.29		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Vanadium, Total	33.4		mg/kg	0.658		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB
Zinc, Total	294		mg/kg	3.29		1	10/31/18 19:47	7 11/02/18 18:04	EPA 3050B	97,6010D	AB

10/26/18 09:45

Date Collected:

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

SAMPLE RESULTS

Lab ID: L1844061-05

Client ID: TP-16 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 73%

Percent Solids:	73%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals	- Mansfiel	d Lab									
WOT TOTAL WICKING	Marionor	a Lab									
Antimony, Total	ND		mg/kg	2.63		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Arsenic, Total	18.5		mg/kg	0.526		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Barium, Total	5300		mg/kg	5.26		10	10/31/18 19:47	7 11/07/18 10:32	EPA 3050B	97,6010D	PE
Beryllium, Total	0.273		mg/kg	0.263		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Cadmium, Total	2.66		mg/kg	0.526		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Chromium, Total	391		mg/kg	0.526		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Lead, Total	4660		mg/kg	2.63		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Nickel, Total	21.3		mg/kg	1.31		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Selenium, Total	ND		mg/kg	2.63		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	0.526		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	2.63		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Vanadium, Total	20.4		mg/kg	0.526		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB
Zinc, Total	367		mg/kg	2.63		1	10/31/18 19:47	7 11/02/18 18:09	EPA 3050B	97,6010D	AB

10/26/18 10:00

Date Collected:

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

SAMPLE RESULTS

Lab ID: L1844061-06

Client ID: TP-17 Date Received: 10/29/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 37%

Percent Solids:	37%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals -	 Mansfield 	d Lab									
Antimony, Total	ND		mg/kg	5.19		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Arsenic, Total	6.93		mg/kg	1.04		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Barium, Total	6130		mg/kg	1.04		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Beryllium, Total	1.11		mg/kg	0.519		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Cadmium, Total	3.21		mg/kg	1.04		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Chromium, Total	8.64		mg/kg	1.04		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Lead, Total	30.8		mg/kg	5.19		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Nickel, Total	18.9		mg/kg	2.60		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Selenium, Total	ND		mg/kg	5.19		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Silver, Total	ND		mg/kg	1.04		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Thallium, Total	ND		mg/kg	5.19		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Vanadium, Total	12.5		mg/kg	1.04		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB
Zinc, Total	226		mg/kg	5.19		1	10/31/18 19:47	7 11/02/18 18:14	EPA 3050B	97,6010D	AB

10/26/18 10:30

Date Collected:

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

SAMPLE RESULTS

Lab ID: L1844061-07

Client ID: TP-18 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 84%

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst MCP Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.26 1 10/31/18 19:47 11/02/18 18:18 EPA 3050B 97,6010D AΒ Arsenic, Total 3.84 0.452 1 10/31/18 19:47 11/02/18 18:18 EPA 3050B 97,6010D ΑB mg/kg 1 Barium, Total 676 mg/kg 0.452 10/31/18 19:47 11/02/18 18:18 EPA 3050B 97,6010D AΒ Beryllium, Total 0.276 mg/kg 0.226 1 10/31/18 19:47 11/02/18 18:18 EPA 3050B 97,6010D AΒ 0.805 0.452 1 10/31/18 19:47 11/02/18 18:18 EPA 3050B 97,6010D Cadmium, Total mg/kg AΒ 8.21 0.452 1 10/31/18 19:47 11/02/18 18:18 EPA 3050B 97,6010D AΒ Chromium, Total mg/kg --Lead, Total 220 mg/kg 2.26 1 10/31/18 19:47 11/02/18 18:18 EPA 3050B 97,6010D AΒ 6.27 1 97,6010D Nickel, Total mg/kg 10/31/18 19:47 11/02/18 18:18 EPA 3050B AB 1.13 1 Selenium, Total ND 97,6010D mg/kg 2.26 10/31/18 19:47 11/02/18 18:18 EPA 3050B AΒ 1 10/31/18 19:47 11/02/18 18:18 EPA 3050B 97,6010D Silver, Total ND mg/kg 0.452 AΒ ND 97,6010D AΒ Thallium, Total 2.26 --1 10/31/18 19:47 11/02/18 18:18 EPA 3050B mg/kg 1 97,6010D Vanadium, Total 11.4 mg/kg 0.452 --10/31/18 19:47 11/02/18 18:18 EPA 3050B AΒ 120 1 97,6010D Zinc, Total mg/kg 2.26 10/31/18 19:47 11/02/18 18:18 EPA 3050B AB

Project Name: Lab Number: MCCABE ST. L1844061 Project Number: SE18-1375 **Report Date:** 11/07/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - Ma	ansfield Lab for sampl	e(s): 01-0	07 Bato	h: WG	1174523-1				
Antimony, Total	ND	mg/kg	2.00		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Arsenic, Total	ND	mg/kg	0.400		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Barium, Total	ND	mg/kg	0.400		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Beryllium, Total	ND	mg/kg	0.200		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Cadmium, Total	ND	mg/kg	0.400		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Chromium, Total	ND	mg/kg	0.400		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Lead, Total	ND	mg/kg	2.00		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Nickel, Total	ND	mg/kg	1.00		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Selenium, Total	ND	mg/kg	2.00		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Silver, Total	ND	mg/kg	0.400		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Thallium, Total	ND	mg/kg	2.00		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Vanadium, Total	ND	mg/kg	0.400		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB
Zinc, Total	ND	mg/kg	2.00		1	10/31/18 19:47	11/02/18 17:10	97,6010D	AB

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1844061

Report Date: 11/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Total Metals - Mansfield Lab Associated s	sample(s): 01-07	Batch: WC	G1174523-2 W	/G1174523-3	SRM Lot Number	: D102-540		
Antimony, Total	133		144		1-199	8		30
Arsenic, Total	89		95		83-117	7		30
Barium, Total	84		83		83-118	1		30
Beryllium, Total	85		83		83-116	2		30
Cadmium, Total	92		97		83-118	5		30
Chromium, Total	86		85		83-117	1		30
Lead, Total	86		92		82-118	7		30
Nickel, Total	88		95		83-117	8		30
Selenium, Total	93		99		79-121	6		30
Silver, Total	88		87		80-120	1		30
Thallium, Total	91		95		81-119	4		30
Vanadium, Total	86		84		80-120	2		30
Zinc, Total	86		95		81-118	10		30

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: MCCABE ST. L1844061 **Project Number:** SE18-1375

Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: Date Collected: L1844061-01 10/26/18 08:20

Client ID: TP-10 Date Received: 10/29/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	82.9		%	0.100	NA	1	-	10/30/18 13:45	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1844061 **Project Number:** SE18-1375

Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: Date Collected: L1844061-02 10/26/18 08:45

Client ID: TP-11 Date Received: 10/29/18

Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	16.5		%	0.100	NA	1	-	10/30/18 13:45	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1844061 **Project Number:** SE18-1375

Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: Date Collected: L1844061-03 10/26/18 08:55

Client ID: TP-12 Date Received: 10/29/18

Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	31.2		%	0.100	NA	1	-	10/30/18 13:45	121,2540G	RI

Project Name: MCCABE ST.

Lab Number: L1844061

Project Number: SE18-1375 Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: L1844061-04 Date Collected: 10/26/18 09:30

Client ID: TP-15 Date Received: 10/29/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	59.6		%	0.100	NA	1	-	10/30/18 13:45	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1844061 **Project Number:** SE18-1375

Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: Date Collected: L1844061-05 10/26/18 09:45

Client ID: TP-16 Date Received: 10/29/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	73.2		%	0.100	NA	1	-	10/30/18 13:45	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1844061 **Project Number:** SE18-1375

Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: Date Collected: L1844061-06 10/26/18 10:00

Client ID: TP-17 Date Received: 10/29/18

Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Solids, Total	36.6		%	0.100	NA	1	-	10/30/18 13:45	121,2540G	RI

Project Name: Lab Number: MCCABE ST. L1844061 **Project Number:** SE18-1375

Report Date: 11/07/18

SAMPLE RESULTS

Lab ID: Date Collected: L1844061-07 10/26/18 10:30

Client ID: TP-18 Date Received: 10/29/18 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	83.7		%	0.100	NA	1	-	10/30/18 13:45	121,2540G	RI

Project Name: MCCABE ST. Lab Number: L1844061 Project Number: SE18-1375

Report Date: 11/07/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1844061-01A	Glass 60ml unpreserved split	A	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-N-6010T-10(180),MCP-NI-6010T-10(180),MCP-BA-6010T-10(180),MCP-DI-10(180),MCP-DI-10(180)
L1844061-01B	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1844061-02A	Vial MeOH preserved	Α	NA		3.7	Υ	Absent		MCP-8260HLW-10(14)
L1844061-02B	Vial water preserved	Α	NA		3.7	Υ	Absent	26-OCT-18 15:00	MCP-8260HLW-10(14)
L1844061-02C	Vial water preserved	Α	NA		3.7	Υ	Absent	26-OCT-18 15:00	MCP-8260HLW-10(14)
L1844061-02D	Glass 60ml unpreserved split	A	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1844061-02E	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1844061-03A	Glass 60ml unpreserved split	Α	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),MCP-V-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1844061-03B	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)

Lab Number: L1844061

Report Date: 11/07/18

Project Name:MCCABE ST.Project Number:SE18-1375

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рH	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1844061-04A	Glass 60ml unpreserved split	A	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-BE-6010T-10(180),MCP-BE-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1844061-04B	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1844061-05A	Glass 60ml unpreserved split	A	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-BE-6010T-10(180),MCP-BC-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1844061-05B	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1844061-06A	Glass 60ml unpreserved split	A	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-BE-6010T-10(180),MCP-BC-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1844061-06B	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)
L1844061-07A	Glass 60ml unpreserved split	A	NA		3.7	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-TL-6010T-10(180),MCP-AG-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-BE-6010T-10(180),MCP-BE-6010T-10(180),MCP-BC-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180)
L1844061-07B	Glass 250ml/8oz unpreserved	Α	NA		3.7	Υ	Absent		MCP-8082-10(365),TS(7),MCP-PAH-10(14)

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:MCCABE ST.Lab Number:L1844061Project Number:SE18-1375Report Date:11/07/18

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:11071817:49

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ΔLPHA	CHAIN OF C		AGEOF/			10/29			o#: L18440G1
8 Walkup Drive Westboro, MA 0	320 Forbes Blvd	oject Information	A THE REAL PROPERTY.		Sept de constant de participat	tion - Data D	eliverables	Billing Info	STOCK ST
Tel: 508-898-92	BETWEEN BETTER STORY	ject Name: Mc(g be	51	Regu	No. of Concession,	□ EMAIL	& Project I	nformation Re	ient info PO#:
	SERVICE SERVIC	ect #: SE18-13		Yes	□ No MA N	ICP Analytical	Methods	□ Yes □ N	lo CT RCP Analytical Methods
Address: 7/9	Plain St, Un. +C Pro	ject Manager: Geoff	15					(Required for I detals & EPH wi	MCP Inorganics) th Targets)
Marcht		.PHA Quote #:	20129			FO DOD	ntmc		c 1
Phone: 781 - 3	the state of the s	urn-Around Time		u Oun	J J		1 1 1	/ / /	
Additional Pr	@siteconv.com	Date Due:	confirmed if pre-approved()	8260	DABN GRAH	EPH: DRanges & Targets D Ranges D	TPH: COuant Only CFingerprint		SAMPLE INFO Filtration Field Lab to do Preservation Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Time	Sample Sample Matrix Initials	r / g /	METALS:	EPH: C	Por Her		Sample Comments
44061 -01	TP-10	10/26 820	5 65		4 1		(
02	TP-11	10/26 845	50		XX		4		Ч
03	TP-12	10/26 855	1		XX	1	4)
04	TP-15	10/26 930	-		XX				1
9	TP-16	10/26 045	-		IX	1			1
06	TP-17	10/26 1000			XX	1			1
07	TP-18	10/26 1030			+ 1	У			
	7. 70	10100 1 30							
	5								
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄		Container Type	-1	A				
C= Cube C= Cube C= Other E= Encore D= BOD Bottle age 66 of 69	E= NaOH F= MeOH G= NaHSOa H = NaySyO3 I = Ascorbic Acid J = NH _a Cl K= Zn Acetate O= Other	elinquished By:	Date/Time		recei	MA By:	10/29	181224 Alp	samples submitted are subject to ha's Terms and Conditions. e reverse side. RM NO: 01-01 (rev. 12-Mer-2012)

Method Blank Summary Form 4 VOLATILES

Client : Sitec Environmental, Inc. Lab Number : L1844061

Project Name : MCCABE ST. Project Number : SE18-1375

Lab Sample ID : WG1176392-5 Lab File ID : V17181106A04

Instrument ID : VOA117 Matrix : SOIL

Matrix : SOIL Analysis Date : 11/06/18 07:59

Client Sample No.	Lab Sample ID	Analysis Date	
WG1176392-3LCS	WG1176392-3	11/06/18 06:34	
WG1176392-4LCSD	WG1176392-4	11/06/18 07:04	
TP-11	L1844061-02D	11/06/18 10:40	

12:56

Continuing Calibration Form 7

Client : Sitec Environmental, Inc. Lab Number : L1844061
Project Name : MCCABE ST. Project Number : SE18-1375

Sample No : WG1176392-2 Init. Calib. Times : 22:08

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev
Fluorobenzene	1	1	-	0	20	99	0
Dichlorodifluoromethane	0.291	0.173	-	40.5*	20	54	0
Chloromethane	0.32	0.253	-	20.9*	20	75	0
Vinyl chloride	0.388	0.298	-	23.2*	20	72	0
Bromomethane	0.271	0.204	-	24.7*	20	76	0
Chloroethane	0.296	0.234	-	20.9*	20	76	0
Trichlorofluoromethane	0.576	0.418	-	27.4*	20	68	0
Ethyl ether	0.143	0.127	-	11.2	20	85	0
1,1-Dichloroethene	0.217	0.163	-	24.9*	20	71	0
Carbon disulfide	0.682	0.491	-	28*	20	71	0
Methylene chloride	0.258	0.195	-	24.4*	20	78	0
Acetone	20	20.286	-	-1.4	20	92	0
trans-1,2-Dichloroethene	0.242	0.191	-	21.1*	20	75	0
Methyl tert-butyl ether	0.482	0.433	-	10.2	20	85	0
Diisopropyl ether	0.683	0.65	-	4.8	20	90	0
1,1-Dichloroethane	0.454	0.383	-	15.6	20	80	0
Ethyl tert-butyl ether	0.623	0.577	-	7.4	20	87	0
cis-1,2-Dichloroethene	0.257	0.213	-	17.1	20	79	0
2,2-Dichloropropane	0.355	0.295	-	16.9	20	80	0
Bromochloromethane	0.109	0.093	-	14.7	20	79	0
Chloroform	0.425	0.356	-	16.2	20	81	0
Carbon tetrachloride	0.348	0.267		23.3*	20	71	0
Tetrahydrofuran	20	18.406		8	20	88	0
Dibromofluoromethane	0.249	0.245		1.6	20	99	0
1,1,1-Trichloroethane	0.374	0.305	-	18.4	20	76	01
2-Butanone	20	18.795	<u> </u>	6	20	91	0
1,1-Dichloropropene	0.299	0.246	-	17.7	20	75	0
Benzene	0.927	0.246			20	80	0
	0.927	0.777	-	16.2 9.8	20	86	0
tert-Amyl methyl ether		0.451	-				
1,2-Dichloroethane-d4	0.239		-	-4.6	20	105	0
1,2-Dichloroethane	0.278	0.244	-	12.2	20	85	0
Trichloroethene	0.249	0.201	-	19.3	20	77	0
Dibromomethane	0.119	0.103	-	13.4	20	81	0
1,2-Dichloropropane	0.24	0.212	-	11.7	20	84	0
Bromodichloromethane	0.299	0.254	-	15.1	20	79	01
1,4-Dioxane	0.00145	0.00121*	-	16.6	20	81	01
cis-1,3-Dichloropropene	0.337	0.301	-	10.7	20	83	01
Chlorobenzene-d5	1	1	-	0	20	99	0
Toluene-d8	1.292	1.329	-	-2.9	20	101	0
Toluene	0.803	0.663	-	17.4	20	79	01
4-Methyl-2-pentanone	0.074	0.066*	-	10.8	20	87	0
Tetrachloroethene	0.347	0.278	-	19.9	20	73	0
trans-1,3-Dichloropropene	0.39	0.346	-	11.3	20	83	01
1,1,2-Trichloroethane	0.191	0.168	-	12	20	82	0
Chlorodibromomethane	0.291	0.246	-	15.5	20	80	01

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Sitec Environmental, Inc. Lab Number : L1844061
Project Name : MCCABE ST. Project Number : SE18-1375
Instrument ID : VOA117 Calibration Date : 11/06/18 06:34

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min
1,3-Dichloropropane	0.381	0.345	-	9.4	20	83	0
1,2-Dibromoethane	0.218	0.189	-	13.3	20	81	0
2-Hexanone	0.121	0.11	-	9.1	20	94	0
Chlorobenzene	0.888	0.753	-	15.2	20	79	0
Ethylbenzene	1.526	1.294	-	15.2	20	79	01
1,1,1,2-Tetrachloroethane	0.314	0.267	-	15	20	78	01
p/m Xylene	0.599	0.504	-	15.9	20	78	0
o Xylene	0.561	0.48	-	14.4	20	79	0
Styrene	40	30.245	-	24.4*	20	78	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	98	0
Bromoform	0.345	0.275	-	20.3*	20	76	0
Isopropylbenzene	2.914	2.484	-	14.8	20	76	0
4-Bromofluorobenzene	0.871	0.905	-	-3.9	20	102	0
Bromobenzene	0.706	0.6	-	15	20	78	0
n-Propylbenzene	3.551	3.023	-	14.9	20	78	0
1,1,2,2-Tetrachloroethane	0.524	0.481	-	8.2	20	83	0
2-Chlorotoluene	2.05	1.761	-	14.1	20	79	0
1,3,5-Trimethylbenzene	2.478	2.135	-	13.8	20	77	0
1,2,3-Trichloropropane	0.415	0.361	-	13	20	81	0
4-Chlorotoluene	2.054	1.821	-	11.3	20	81	0
tert-Butylbenzene	2.14	1.791	-	16.3	20	75	0
1,2,4-Trimethylbenzene	2.455	2.153	-	12.3	20	79	0
sec-Butylbenzene	3.254	2.736	-	15.9	20	75	0
p-Isopropyltoluene	2.754	2.35	-	14.7	20	75	0
1,3-Dichlorobenzene	1.432	1.226	-	14.4	20	78	0
1,4-Dichlorobenzene	1.457	1.24	-	14.9	20	79	0
n-Butylbenzene	2.672	2.299	-	14	20	76	0
1,2-Dichlorobenzene	1.304	1.116	-	14.4	20	79	0
1,2-Dibromo-3-chloropropan	0.078	0.061	-	21.8*	20	73	0
Hexachlorobutadiene	0.508	0.414	-	18.5	20	72	0
1,2,4-Trichlorobenzene	0.896	0.805	•	10.2	20	82	0
Naphthalene	1.686	1.52	•	9.8	20	80	0
1,2,3-Trichlorobenzene	0.792	0.712	-	10.1	20	82	0

^{*} Value outside of QC limits.

ATTA	CHN	TENT	` 5
TET TI			. •

LABORATORY REPORT (ASBESTOS)

LABORATORY REPORT

SITEC Environmental Attn: Mr. Geoffrey Souza 769 Plain Street, Unit C Marshfield, MA 02050 **Date Received:** 10/31/2018 **Date Reported:** 11/7/2018 **Work Order #:** 1810-23374

Site Location:PROJECT #SE18-1375, MCCABE ST.

Enclosed please find your sample(s) analysis results for asbestos content. The six asbestos types include amosite, chrysotile, crocidolite, anthophyllite, tremolite, and actinolite.

Analysis by Polarized Light Microscopy (PLM) was performed as suggested by EPA 600/R-93/116, July 1993 edition and EPA 600/M4-82-020, December 1982.

R.I. Analytical Laboratories, Inc. maintains bulk asbestos fiber NVLAP accreditation under lab code 101440-0. This report does not serve as a product certification, approval, and/or endorsement by NVLAP, NIST, or any federal agency.

The sample(s) submitted for analysis were accepted by R.I. Analytical unless otherwise noted in the report. If a sample is found to be inhomogeneous, individual components will be analyzed separately. If individual components cannot be separated, the sample will be homogenized and a single result will be provided. These results only pertain to the samples submitted for this Work Order # and this report shall not be reproduced except in its entirety.

Samples submitted for analysis will be retained for three months for future reference.

We certify that the following results are true and accurate to the best of our knowledge. If you have questions or need further assistance, please contact our Customer Service Department.

Approved by:

Asbestos Signatory

Phrista Cronk

R.I. Analytical Laboratories, Inc. LABORATORY REPORT

SITEC Environmental Date Received: 10/31/2018 Work Order #: 1810-23374

Site Location:PROJECT #SE18-1375, MCCABE ST.

METHOD: EPA 600/R-93/116

SAMI			SAMPLE		DATE		
NO.	DESCRIPTION	PARAMETER	RESULTS	S / UNITS	ANALYZED	ANALYST	
001	TP-12	PLM Fiber Analysis					
		Asbestos	Detected		11/7/2018	CRC	
		Chrysotile	5-15	%	11/7/2018	CRC	
		Non-fibrous	85-95	%	11/7/2018	CRC	
		Sample Color	Brown		11/7/2018 11/7/2018	CRC	
002	TP-17	PLM Fiber Analysis			11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018		
		Asbestos	Detected		11/7/2018	CRC	
		Chrysotile	40-60	%	11/7/2018	CRC	
		Non-fibrous	40-60	%	11/7/2018	CRC	
		Sample Color	Black		11/7/2018	CRC	
003	SS-1	PLM Fiber Analysis					
		Asbestos	Detected		11/7/2018	CRC	
		Chrysotile	5-15	%	11/7/2018	CRC	
		Non-fibrous	85-95	%	11/7/2018	CRC	
		Sample Color	Black		11/7/2018	CRC	
004	SS-2	PLM Fiber Analysis					
		Asbestos	Not Detecte	ed	11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018	CRC	
		Non-fibrous	100	%	11/7/2018	CRC	
		Sample Color	Black		11/7/2018	CRC	
005	SS-3	PLM Fiber Analysis					
		Asbestos	Not Detecte	ed	11/7/2018	CRC	
		Non-fibrous	100	%	11/7/2018	CRC	
		Sample Color	Black		11/7/2018	CRC	

									Project Information S &	Project Number: $5E/\beta-/375$	Phone:	Email address:	Common Companies Compani	Lab Use Only Color Color
escryation Code P atrix Code M Je Roes Ye s / ILM	ля 8 М в		X	× →					Project Name: MC (4 be 4	P.O. Number:	STEC	Quote No:	Jiateo Eu Ligar Walik	MCP Data Enhancement QC Package? Yes CC SCIMPLE DGO.
Octatories, Inc. 131 Coolidge St, Bldg. 2 Hudson, MA 01749 Tel: 888-228-3334 Fax: 978-568-0078 of Containers	,#) 	3) ა					Note Inc.	7	408	7	10/30 /50c Via FR	S.S.
CHAIN OF CUSTODY RECO R.I. Analytical Laboratories, Inc. 41 Illinois Avenue 131 Coolidge St, Bld Warwick, RI 02888 Tel: 800-937-2580 Fax: 401-738-1970 Fax: 978-568-0078 Date Time	Collected	1	1	 H 1130 55-3					Chicat Informatio	11691	Marsh K.	Contact Person: (Fee + Sec 2 a	Agadused by	Circle if applicable: GW-1, GW-2, GW-3, S-1, S-2, Circle if applicable: GW-1, GW-2, GW-3, S-1, S-2, Circle if applicable: GW-1, GW-2, GW-3, S-1, S-2, Container Types: P=Poly, G=Glass, AG=Amber Glass, V=Vial, St=Sterile

ATTACHMENT 6

PRP AUTHORIZATION

August 28, 2018

Massachusetts Department of Environmental Protection 20 Riverside Drive Lakeville, MA 02347

RE: 85 McCabe Street

Dartmouth, Massachusetts Release Tracking No.: 4-27363

To Whom It May Concern:

In accordance 310 CMR 40.0009(2), I am authorizing SITEC Environmental, Inc. to act as my agent in electronically filing any required Massachusetts Contingency Plan documents for the above referenced release.

Sincerely,

George Verissimo

Terceira Construction