

SITEC ENVIRONMENTAL, Inc.
769 Plain Street, Unit C
Marshfield, MA 02050
Tel. (781) 319-0100 FAX (781) 834-4783

449 Faunce Corner Road Dartmouth, MA 02747 Tel. (508) 998-2125 FAX (508) 998-7554

September 24, 2018

Mr. David Costanzo Ondrick Materials & Recycling, LLC 22 Industry Road Chicopee, MA 01020

RE: Recycling of Contaminated Soils

Residential Lot, 85 McCabe Street, Dartmouth, MA

DEP Release Tracking No. 4-27363

Dear Mr. Costanzo:

SITEC Environmental, Inc. (SITEC) is submitting the attached pre-qualification information for the acceptance of approximately 200 cubic yards of petroleum contaminated soil which has been excavated from the above referenced Property. The removal of this soil from the property is part of an approved Immediate Response Action (IRA) conducted in accordance with the Massachusetts Contingency Plan (MCP).

In July 2018, during the construction for a new residential house, several deteriorated metal drums of various sizes containing a viscous petroleum-based liquid (appearing similar to roofing tar or driveway sealer) and surrounding soil was excavated and stockpiled at the above referenced Property. Subsequently the deteriorated drums and any recoverable viscous petroleum based liquid was removed from the soil stockpile and containerized into drums for separate disposal.

On July 31, 2018, SITEC collected a composite soil sample from the soil stockpile (identified as SP-1). The composite sample consisted of 8 grab samples, except for the VOC portion. The soil sample was placed in appropriate containers and transported to Alpha Analytical Laboratories for the analysis of VOCs 8260, SVOCs 8270, TPH 8100, PCBs, flashpoint, reactivity, pH; and total arsenic, cadmium, chromium, lead (total and TCLP), and mercury. In addition, a second composite sample was collected from the stockpile and was analyzed for TPH only (identified as SP-2) to meet the 1 per 100 cubic yards testing frequency for TPH. The analytical results were reported to be below the standards for soil recycling at Ondrick Materials & Recycling, LLC and is consistent with historical use of the site. Based on the laboratory results and site history the soil is non-hazardous, since no characteristic hazardous waste regulatory levels were triggered and the soil does not contain any listed hazardous wastes.

For SITEC Environmental, Inc..

Geoffrey Souza, LSP

Environmental Assessment Manager

Attachments

22 Industry Road, Chicopee, MA 01020

Office (413) 592-2566 OndrickMR.com Fax (413) 592-7451

GENERAL INFORMTAION

PETROLEUM CONTAMINATED SOILS (PCS)

GENERATOR NAME	
Generator Name: Terceira Construction	Contact Name: Jorge Verissimo
Street: 1 Cookie Way	Cell/Phone: 1-774-263-1292
City, State/Zip: Dartmouth, MA 02748	Email: jbraz45@comcast.net
SITE INFORMATION Residential Comm	nercial
Name: Residential Lot	Contact Name: Jorge Verissimo
Street: 85 McCabe Street	Cell/Phone: 1-774-263-1292
City, State/Zip: Dartmouth, MA 02748	Email: jbraz45@comcast.net
21E Release Site (MA Only) MassDEP Re ENVIROMENTIAL CONSULTANT'S INFORMATION	lease Tracking#: 4-27363
Company Name: SITEC Environmental, Inc.	Contact: Geoffrey Souza, LSP
Street: 769 Plain Street, Unit C	Title: Project Manager
City, State/Zip: Marshfield, MA 02050	Email: gsouza@sitecenv.com
City, State, Zip.	Cell/Phone:
BILLING INFORMATION	
Name:	Contact Name:
Street:	Cell/Phone:
City, State, Zip:	Email:
IF DIFFERENT FROM BILLING INFORMATION:	
AP Contact Name:	
AP Contact Phone:	
AP Contact Email:	
	se certificate on file Resale certificate attached
PAYMENT METHOD: Credit Card Credit Ac	count Purchase Order#

v.2018

22 Industry Road, Chicopee, MA 01020

Office (413) 592-2566 OndrickMR.com Fax (413) 592-7451

SOIL INFORMATION

ESTIMATED VOLUME OF PCS:	TONS	200	_CUBIC YARI	DS	
PHYSCIAL DESCRIPTION OF THE PCS (-		-la -4-
In addition please indicate the presen	nce of any const	ruction debr	is, vegetative	e matter, as	sn, etc.
50 % Sand <u>20</u>	% Gravel	20	% Silt	5	% Clay
5 % Other/Debris (please de	_{escribe):} Orgar	nics			
MATERIAL CLASSIFICATION					
MIT USDA	USA	EC	ASEE	AASHO	
All soils must meet our physical and c with poly/plastic, hay, brick, metal, or	•				•
Please describe the process generating	g soils:				
Excavation for new house found	dation				
CONTAMINATION (please check all the	nat apply)				
Lube Oil	Diesel Waste Oil Other (please de	#2 []Jet Fuel [escribe): <u>Unk</u>	#4 Kerosene		ed "tar"
SITE HISTORY:					
Please include current and former usage sample method used (grab, composite pertinent information: Residential since 1949. Undeveloped process.	, etc.) analytical				ce),
Or please see attached					

22 Industry Road, Chicopee, MA 01020

Office (413) 592-2566 OndrickMR.com Fax (413) 592-7451

SITE DIAGRAM:

A Site diagram which includes the following information:

At least one street reference, any adjacent structures, excavation area, stockpile location, location where samples were taken from, name of individual preparing diagram, reference the site name and location and any other pertinent information.

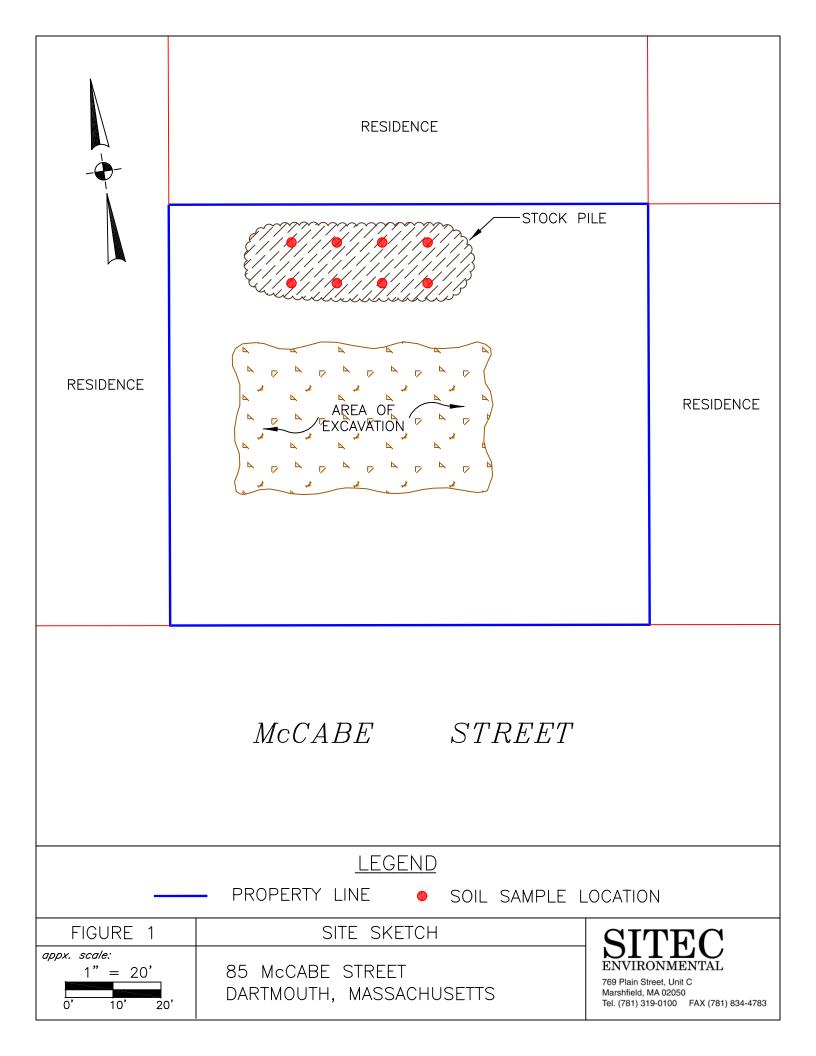
SAMPLING CHARACTERIZATION METHOD:
Stockpile In-Situ Other:
SOILS SAMPLING METHOD:
Grab Composite Soil Boring Test Pit Headspace Screened Additional Comments: Grab sample for VOCs,
CERTIFIED LABORATORY ANALYTICAL DATA:
Analytical Attached 🗸
Please list samples ID's and/or lab reports: SP-1 and SP-2 (TPH)
Sufficient information must be provided in the Site History to justify the limiting of the analytical requirements necessary for recycling.
I, the generator/LSP/QEP, have included sufficient information justifying the limiting of the analytical requirements as part of the Site History Information accompanying the 21E Bill of Lading and Material Shipping Record. This includes, at a minimum, the following:
Analytical Parameters Selected Screening Data (i.e. Total date for TCLP, Headspace) Laboratory Analytical Data
Description of the Release Physical description of the soil including the classification method used Description of the site location with regards to former and current usage Complete Site History

GENERAT	TOR / LSP / QEP STATEMENTS: (Check on	<u>e)</u>	
V	Suspect or believe the PCS has been impact than that of the known source or I have it that are suspected or known to be present known release including any anthropogen	ted by any release of oil or dentified the additional t in the PCS, in addition t	or hazardous materials other oil and hazardous materials
	I, the generator/LSP/QEP, realize that due records reasonably available to the general Such records and information may include location of the generation (Facility if not the generation).	ator of the PCS sufficient e, but are not limited to, t the generator) the Depart	to make the determination. hose of the generator, ment Bureau of Waste Site
Generator	r Signature:	د	Date: 9/24/18
LSP/QEP S	Signature: Geoffrey Souza	2	Date: 9/24//8
LSP/QEP N	4422		
ORI	IGINAL BILL OF LADING OR MATERIA FACILITIES OFFICE BEFOR	L SHIPPING RECORD E THE SOIL IS SHIPPE	MUST BE AT THE D
	OMR INTERN	AL USE ONLY	
Facility i	Approval tracking#	VISTA#_ DATE:	
	Representative Signature:		
Reason	for Acceptance/Refusal:		
	ACCEPTED	REJECTE	D

Please submit form to: soils@ondrickmr.com

Analytical Data Summary Table Remediation Waste Summary

Residential Lot 85 McCabe Street Dartmouth, Massachusetts


Analytical Parameter	Soil Recycling Limits	Results (mg/kg)
Analytical Farameter	(oil contaminated) (mg/kg)	SP-1
Total VOCs (8260)	NA	149
Total Chlorintaed Solvents	5	ND
Total SVOCs (8270)	NA	338
Total Petroleum Hydrocarbons (TPH)	60000	10800 / 12500
Total Poly-chlorinated Bi-Phynels (PCBs)	<2	ND
Total Arsenic	30	5.27
Total Cadmium	30	1.66
Total Chromium	500	49.9
Total Lead	1000	442
Total Mercury	10	0.274
Cyanide, Reactive	non-reactive	ND
Sulfide, Reactive	non-reactive	ND
Ingitability	non-ignitable	non-ignitable
рН	2-12.5	7
TCLP Lead **	5 mg/l	2.3 mg/l

ND = Indicated parameter Not Detected above laboratory detection limits

NA = No Applicable Standard

^{* =} Two samples submitted for TPH analysis (1 per 100 yards)

^{** =} Required if the total concentration is above the theoretical levels at which TCLP can be exceeded

ANALYTICAL REPORT

Lab Number: L1829545

Client: Sitec Environmental, Inc.

769 Plain Street

Unit C

Marshfield, MA 02050

ATTN: Geoff Souza
Phone: (781) 319-0100
Project Name: MCCABE ST.

Project Number: SE18-1375
Report Date: 08/10/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1829545 **Report Date:** 08/10/18

Alpha Sample ID Client ID Matrix Soll Not Specified O7/31/18 12:30 O7/31/18

Project Name:MCCABE ST.Lab Number:L1829545Project Number:SE18-1375Report Date:08/10/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/10/18

Custen Walker Cristin Walker

ORGANICS

VOLATILES

Project Name: Lab Number: MCCABE ST. L1829545

Project Number: Report Date: SE18-1375 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 Date Collected: 07/31/18 12:30

Client ID: SP-1 Date Received: 07/31/18

Sample Location: Field Prep: Not Specified Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 08/06/18 12:02

PΚ Analyst: 78% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035	- Westborough Lab						
Methylene chloride	ND		ug/kg	530		1	
1,1-Dichloroethane	ND		ug/kg	110		1	
Chloroform	ND		ug/kg	160		1	
Carbon tetrachloride	ND		ug/kg	110		1	
1,2-Dichloropropane	ND		ug/kg	110		1	
Dibromochloromethane	ND		ug/kg	110		1	
1,1,2-Trichloroethane	ND		ug/kg	110		1	
Tetrachloroethene	ND		ug/kg	53		1	
Chlorobenzene	ND		ug/kg	53		1	
Trichlorofluoromethane	ND		ug/kg	430		1	
1,2-Dichloroethane	ND		ug/kg	110		1	
1,1,1-Trichloroethane	ND		ug/kg	53		1	
Bromodichloromethane	ND		ug/kg	53		1	
trans-1,3-Dichloropropene	ND		ug/kg	110		1	
cis-1,3-Dichloropropene	ND		ug/kg	53		1	
1,3-Dichloropropene, Total	ND		ug/kg	53		1	
1,1-Dichloropropene	ND		ug/kg	53		1	
Bromoform	ND		ug/kg	430		1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	53		1	
Benzene	180		ug/kg	53		1	
Toluene	270		ug/kg	110		1	
Ethylbenzene	6100		ug/kg	110		1	
Chloromethane	ND		ug/kg	430		1	
Bromomethane	ND		ug/kg	210		1	
Vinyl chloride	ND		ug/kg	110		1	
Chloroethane	ND		ug/kg	210		1	
1,1-Dichloroethene	ND		ug/kg	110		1	
trans-1,2-Dichloroethene	ND		ug/kg	160		1	

Project Name: MCCABE ST. Lab Number: L1829545

Project Number: SE18-1375 Report Date: 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 Date Collected: 07/31/18 12:30

Client ID: SP-1 Date Received: 07/31/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-503	35 - Westborough Lab					
Trichloroethene	ND		ug/kg	53		1
1,2-Dichlorobenzene	ND		ug/kg	210		1
1,3-Dichlorobenzene	ND		ug/kg	210		1
1,4-Dichlorobenzene	ND		ug/kg	210		1
Methyl tert butyl ether	ND		ug/kg	210		1
p/m-Xylene	6600		ug/kg	210		1
o-Xylene	5900		ug/kg	110		1
Xylenes, Total	13000		ug/kg	110		1
cis-1,2-Dichloroethene	ND		ug/kg	110		1
1,2-Dichloroethene, Total	ND		ug/kg	110		1
Dibromomethane	ND		ug/kg	210		1
1,4-Dichlorobutane	ND		ug/kg	1100		1
1,2,3-Trichloropropane	220		ug/kg	210		1
Styrene	170		ug/kg	110		1
Dichlorodifluoromethane	ND		ug/kg	1100		1
Acetone	ND		ug/kg	1100		1
Carbon disulfide	ND		ug/kg	1100		1
2-Butanone	ND		ug/kg	1100		1
Vinyl acetate	ND		ug/kg	1100		1
4-Methyl-2-pentanone	ND		ug/kg	1100		1
2-Hexanone	ND		ug/kg	1100		1
Ethyl methacrylate	ND		ug/kg	1100		1
Acrylonitrile	ND		ug/kg	430		1
Bromochloromethane	ND		ug/kg	210		1
Tetrahydrofuran	ND		ug/kg	430		1
2,2-Dichloropropane	ND		ug/kg	210		1
1,2-Dibromoethane	ND		ug/kg	110		1
1,3-Dichloropropane	ND		ug/kg	210		1
1,1,1,2-Tetrachloroethane	ND		ug/kg	53		1
Bromobenzene	ND		ug/kg	210		1
n-Butylbenzene	480		ug/kg	110		1
sec-Butylbenzene	ND		ug/kg	110		1
tert-Butylbenzene	ND		ug/kg	210		1
o-Chlorotoluene	ND		ug/kg	210		1
p-Chlorotoluene	ND		ug/kg	210		1
1,2-Dibromo-3-chloropropane	ND		ug/kg	320		1
Hexachlorobutadiene	ND		ug/kg	430		1

Project Name: Lab Number: MCCABE ST. L1829545

Project Number: SE18-1375 Report Date: 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 Date Collected: 07/31/18 12:30

Client ID: SP-1 Date Received: 07/31/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035	- Westborough Lab						
Isopropylbenzene	2500		ug/kg	110		1	
p-Isopropyltoluene	2100		ug/kg	110		1	
Naphthalene	87000	E	ug/kg	430		1	
n-Propylbenzene	1400		ug/kg	110		1	
1,2,3-Trichlorobenzene	ND		ug/kg	210		1	
1,2,4-Trichlorobenzene	ND		ug/kg	210		1	
1,3,5-Trimethylbenzene	7200		ug/kg	210		1	
1,2,4-Trimethylbenzene	16000		ug/kg	210		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	530		1	
Ethyl ether	ND		ug/kg	210		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	87	70-130	

Project Name: Lab Number: MCCABE ST. L1829545

Project Number: Report Date: SE18-1375 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 D Date Collected: 07/31/18 12:30

Client ID: SP-1

Date Received: 07/31/18 Sample Location: Field Prep: Not Specified Not Specified

Sample Depth:

Matrix: Soil 1,8260C Analytical Method: Analytical Date: 08/07/18 09:41

Analyst: MV78% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - Westbo	rough Lab					
Naphthalene	61000		ug/kg	4300		10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	90	70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/07/18 08:49

Volatile Organics by EPA 5035 High - Westborough Lab for sample(s): 01 Batch: WG1143515-10 Methylene chloride 270 ug/kg 250 1,1-Dichloroethane ND ug/kg 50 Chloroform ND ug/kg 50 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 25 Chlorobenzene ND ug/kg 25 Trichlorofluoromethane ND ug/kg 20 1,1-Trichloroethane ND ug/kg 50 1,1-Trichloropropene ND ug/kg 25 trans-1,3-Dichloropropene	Parameter	Result	Qualifier	Units	RL		MDL
1,1-Dichloroethane	olatile Organics by EPA 5035 High	h - Westbor	ough Lab fo	or sample(s):	01	Batch:	WG1143515-10
1,1-Dichloroethane	Methylene chloride	270		ug/kg	250		
Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 2-Chloroethylvinyl ether ND ug/kg 1000 Tetrachloroethane ND ug/kg 25 Chlorobenzene ND ug/kg 25 Chloroethane ND ug/kg 20 1,2-Dichloroethane ND ug/kg 50 1,1-1-Trichloroethane ND ug/kg 25 Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 25 trans-1,3-Dichloropropene, Total ND ug/kg		ND			50		
1,2-Dichloropropane ND	Chloroform	ND			75		
Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 2-Chloroethylvinyl ether ND ug/kg 1000 Tetrachloroethene ND ug/kg 25 Chlorobenzene ND ug/kg 25 Trichloroffluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 25 Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 25 1,1,2,2-Tetrachloroethane ND	Carbon tetrachloride	ND		ug/kg	50		
1,1,2-Trichloroethane ND ug/kg 50 2-Chloroethylvinyl ether ND ug/kg 1000 Tetrachloroethene ND ug/kg 25 Chlorobenzene ND ug/kg 25 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 25 Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 50 ts-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 25 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg	1,2-Dichloropropane	ND		ug/kg	50		
2-Chloroethylvinyl ether ND ug/kg 1000 Tetrachloroethene ND ug/kg 25 Chlorobenzene ND ug/kg 25 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 25 Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 25 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 50 Ethylbenzene ND ug/kg 50	Dibromochloromethane	ND		ug/kg	50		
Tetrachloroethene ND ug/kg 25 Chlorobenzene ND ug/kg 25 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 25 Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 25 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 50 Toluene ND ug/kg 50	1,1,2-Trichloroethane	ND		ug/kg	50		
Chlorobenzene ND ug/kg 25 Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 25 Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 25 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200	2-Chloroethylvinyl ether	ND		ug/kg	1000		
Trichlorofluoromethane ND ug/kg 200 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 25 Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 25 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 50 -	Tetrachloroethene	ND		ug/kg	25		
1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 25 Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 1,1-2-Tetrachloropropene ND ug/kg 25 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 50	Chlorobenzene	ND		ug/kg	25		
1,1,1-Trichloroethane ND ug/kg 25 Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Bromomethane ND ug/kg 50 Chloroethane ND ug/kg 100	Trichlorofluoromethane	ND		ug/kg	200		
Bromodichloromethane ND ug/kg 25 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 50 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	1,2-Dichloroethane	ND		ug/kg	50		
trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 50	1,1,1-Trichloroethane	ND		ug/kg	25		
cis-1,3-Dichloropropene ND ug/kg 25 1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 50	Bromodichloromethane	ND		ug/kg	25		
1,3-Dichloropropene, Total ND ug/kg 25 1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	trans-1,3-Dichloropropene	ND		ug/kg	50		
1,1-Dichloropropene ND ug/kg 25 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	cis-1,3-Dichloropropene	ND		ug/kg	25		
Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	1,3-Dichloropropene, Total	ND		ug/kg	25		
1,1,2,2-Tetrachloroethane ND ug/kg 25 Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	1,1-Dichloropropene	ND		ug/kg	25		
Benzene ND ug/kg 25 Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	Bromoform	ND		ug/kg	200		
Toluene ND ug/kg 50 Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	1,1,2,2-Tetrachloroethane	ND		ug/kg	25		
Ethylbenzene ND ug/kg 50 Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	Benzene	ND		ug/kg	25		
Chloromethane ND ug/kg 200 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	Toluene	ND		ug/kg	50		
Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 50 Chloroethane ND ug/kg 100	Ethylbenzene	ND		ug/kg	50		
Vinyl chlorideNDug/kg50ChloroethaneNDug/kg100	Chloromethane	ND		ug/kg	200		
Chloroethane ND ug/kg 100	Bromomethane	ND		ug/kg	100		
	Vinyl chloride	ND		ug/kg	50		
1,1-Dichloroethene ND ug/kg 50	Chloroethane	ND		ug/kg	100		
	1,1-Dichloroethene	ND		ug/kg	50		
trans-1,2-Dichloroethene ND ug/kg 75	trans-1,2-Dichloroethene	ND		ug/kg	75		

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/07/18 08:49

	Parameter	Result	Qualifier	Units	RL		MDL
1,2-Dichlorobenzene ND	Volatile Organics by EPA 5035 High	- Westbord	ough Lab fo	or sample(s):	01	Batch:	WG1143515-10
1,2-Dichlorobenzene ND ug/kg 100 1,3-Dichlorobenzene ND ug/kg 100 1,4-Dichlorobenzene ND ug/kg 100 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 50 o-Xylene ND ug/kg 50 xylenes, Total ND ug/kg 50 xylenes, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,4-Dichlorobutane ND ug/kg 50 1,2,3-Trichloropropane ND ug/kg 50 Styrene ND ug/kg 50 Dichlorodiffuoromethane ND ug/kg 50 Acetone ND ug/kg 500 </td <td>Trichloroethene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>25</td> <td></td> <td></td>	Trichloroethene	ND		ug/kg	25		
1,4-Dichlorobenzene ND ug/kg 100 Methyl tert butyl ether ND ug/kg 100 p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 50 Xylenes, Total ND ug/kg 50 Xylenes, Total ND ug/kg 50 1,2-Dichlorothene ND ug/kg 50 1,2-Dichlorothene, Total ND ug/kg 50 Dibromomethane ND ug/kg 50 1,2-Dichlorothane ND ug/kg 500 1,4-Dichlorobutane ND ug/kg 50 Styrene ND ug/kg 50 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 50 Acetone ND ug/kg 50 <	1,2-Dichlorobenzene	ND			100		
Methyl tert butyl ether ND ug/kg 100	1,3-Dichlorobenzene	ND		ug/kg	100		
p/m-Xylene ND ug/kg 100 o-Xylene ND ug/kg 50 Xylenes, Total ND ug/kg 50 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 500 1,2-Dichloropthane ND ug/kg 500 1,2-Dichloropthane ND ug/kg 500 Acetone ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 <td>1,4-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>100</td> <td></td> <td></td>	1,4-Dichlorobenzene	ND		ug/kg	100		
o-Xylene ND ug/kg 50 Xylenes, Total ND ug/kg 50 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 500 1,4-Dichlorobutane ND ug/kg 500 1,4-Dichloropropane ND ug/kg 50 1,2,3-Trichloropropane ND ug/kg 50 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 50 Acetone ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500	Methyl tert butyl ether	ND		ug/kg	100		
Xylenes, Total ND ug/kg 50 cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 100 1,4-Dichlorobutane ND ug/kg 500 1,2,3-Trichloropropane ND ug/kg 50 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 50 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 <td>p/m-Xylene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>100</td> <td></td> <td></td>	p/m-Xylene	ND		ug/kg	100		
cis-1,2-Dichloroethene ND ug/kg 50 1,2-Dichloroethene, Total ND ug/kg 50 Dibromomethane ND ug/kg 100 1,4-Dichlorobutane ND ug/kg 500 1,2,3-Trichloropropane ND ug/kg 50 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 200	o-Xylene	ND		ug/kg	50		
1,2-Dichloroethene, Total ND	Xylenes, Total	ND		ug/kg	50		
Dibromomethane ND ug/kg 100 1,4-Dichlorobutane ND ug/kg 500 1,2,3-Trichloropropane ND ug/kg 100 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 500 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 200	cis-1,2-Dichloroethene	ND		ug/kg	50		
1,4-Dichlorobutane ND ug/kg 500 1,2,3-Trichloropropane ND ug/kg 100 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 200 Acrylonitrile ND ug/kg 100 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 100	1,2-Dichloroethene, Total	ND		ug/kg	50		
1,2,3-Trichloropropane ND ug/kg 100 Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 500 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 200 Tetrahydrofuran ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	Dibromomethane	ND		ug/kg	100		
Styrene ND ug/kg 50 Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 100 2,2-Dichloropropane ND ug/kg 50 1,2-Dibromoethane ND ug/kg 50	1,4-Dichlorobutane	ND		ug/kg	500		
Dichlorodifluoromethane ND ug/kg 500 Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 50 1,2-Dibromoethane ND ug/kg 50	1,2,3-Trichloropropane	ND		ug/kg	100		
Acetone ND ug/kg 500 Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	Styrene	ND		ug/kg	50		
Carbon disulfide ND ug/kg 500 2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	Dichlorodifluoromethane	ND		ug/kg	500		
2-Butanone ND ug/kg 500 Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 7etrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	Acetone	ND		ug/kg	500		
Vinyl acetate ND ug/kg 500 4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	Carbon disulfide	ND		ug/kg	500		
4-Methyl-2-pentanone ND ug/kg 500 2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	2-Butanone	ND		ug/kg	500		
2-Hexanone ND ug/kg 500 Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	Vinyl acetate	ND		ug/kg	500		
Ethyl methacrylate ND ug/kg 500 Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	4-Methyl-2-pentanone	ND		ug/kg	500		
Acrolein ND ug/kg 1200 Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	2-Hexanone	ND		ug/kg	500		
Acrylonitrile ND ug/kg 200 Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	Ethyl methacrylate	ND		ug/kg	500		
Bromochloromethane ND ug/kg 100 Tetrahydrofuran ND ug/kg 200 2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	Acrolein	ND		ug/kg	1200		
TetrahydrofuranNDug/kg2002,2-DichloropropaneNDug/kg1001,2-DibromoethaneNDug/kg50	Acrylonitrile	ND		ug/kg	200		
2,2-Dichloropropane ND ug/kg 100 1,2-Dibromoethane ND ug/kg 50	Bromochloromethane	ND		ug/kg	100		
1,2-Dibromoethane ND ug/kg 50	Tetrahydrofuran	ND		ug/kg	200		
	2,2-Dichloropropane	ND		ug/kg	100		
1,3-Dichloropropane ND ug/kg 100	1,2-Dibromoethane	ND		ug/kg	50		
	1,3-Dichloropropane	ND		ug/kg	100		

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/07/18 08:49

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westbord	ough Lab fo	or sample(s):	01	Batch:	WG1143515-10
1,1,1,2-Tetrachloroethane	ND		ug/kg	25		
Bromobenzene	ND		ug/kg	100		
n-Butylbenzene	ND		ug/kg	50		
sec-Butylbenzene	ND		ug/kg	50		
tert-Butylbenzene	ND		ug/kg	100		
1,3,5-Trichlorobenzene	ND		ug/kg	100		
o-Chlorotoluene	ND		ug/kg	100		
p-Chlorotoluene	ND		ug/kg	100		
1,2-Dibromo-3-chloropropane	ND		ug/kg	150		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	100		
1,2,4-Trichlorobenzene	ND		ug/kg	100		
1,3,5-Trimethylbenzene	ND		ug/kg	100		
1,2,4-Trimethylbenzene	ND		ug/kg	100		
trans-1,4-Dichloro-2-butene	ND		ug/kg	250		
Ethyl ether	ND		ug/kg	100		
Methyl Acetate	ND		ug/kg	200		
Ethyl Acetate	ND		ug/kg	500		
Isopropyl Ether	ND		ug/kg	100		
Cyclohexane	ND		ug/kg	500		
Tert-Butyl Alcohol	ND		ug/kg	1000		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	100		
Tertiary-Amyl Methyl Ether	ND		ug/kg	100		
1,4-Dioxane	ND		ug/kg	5000		
Methyl cyclohexane	ND		ug/kg	200		

Project Name:MCCABE ST.Lab Number:L1829545

Project Number: SE18-1375 Report Date: 08/10/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/07/18 08:49

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 High	- Westboro	ough Lab fo	r sample(s):	01	Batch:	WG1143515-10
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	200		

	Acceptance					
Surrogate	%Recovery Qua	alifier Criteria				
40 8:11	20	70.400				
1,2-Dichloroethane-d4	90	70-130				
Toluene-d8	107	70-130				
4-Bromofluorobenzene	105	70-130				
Dibromofluoromethane	88	70-130				

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/18 11:11

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westbord	ough Lab fo	or sample(s):	01	Batch:	WG1143515-5
Methylene chloride	ND		ug/kg	250		
1,1-Dichloroethane	ND		ug/kg	50		
Chloroform	ND		ug/kg	75		
Carbon tetrachloride	ND		ug/kg	50		
1,2-Dichloropropane	ND		ug/kg	50		
Dibromochloromethane	ND		ug/kg	50		
1,1,2-Trichloroethane	ND		ug/kg	50		
2-Chloroethylvinyl ether	ND		ug/kg	1000		
Tetrachloroethene	ND		ug/kg	25		
Chlorobenzene	ND		ug/kg	25		
Trichlorofluoromethane	ND		ug/kg	200		
1,2-Dichloroethane	ND		ug/kg	50		
1,1,1-Trichloroethane	ND		ug/kg	25		
Bromodichloromethane	ND		ug/kg	25		
trans-1,3-Dichloropropene	ND		ug/kg	50		
cis-1,3-Dichloropropene	ND		ug/kg	25		
1,3-Dichloropropene, Total	ND		ug/kg	25		
1,1-Dichloropropene	ND		ug/kg	25		
Bromoform	ND		ug/kg	200		
1,1,2,2-Tetrachloroethane	ND		ug/kg	25		
Benzene	ND		ug/kg	25		
Toluene	ND		ug/kg	50		
Ethylbenzene	ND		ug/kg	50		
Chloromethane	ND		ug/kg	200		
Bromomethane	ND		ug/kg	100		
Vinyl chloride	ND		ug/kg	50		
Chloroethane	ND		ug/kg	100		
1,1-Dichloroethene	ND		ug/kg	50		
trans-1,2-Dichloroethene	ND		ug/kg	75		

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/18 11:11

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 High	- Westbore	ough Lab fo	or sample(s):	01	Batch:	WG1143515-5
Trichloroethene	ND		ug/kg	25		
1,2-Dichlorobenzene	ND		ug/kg	100		
1,3-Dichlorobenzene	ND		ug/kg	100		
1,4-Dichlorobenzene	ND		ug/kg	100		
Methyl tert butyl ether	ND		ug/kg	100		
p/m-Xylene	ND		ug/kg	100		
o-Xylene	ND		ug/kg	50		
Xylenes, Total	ND		ug/kg	50		
cis-1,2-Dichloroethene	ND		ug/kg	50		
1,2-Dichloroethene, Total	ND		ug/kg	50		
Dibromomethane	ND		ug/kg	100		
1,4-Dichlorobutane	ND		ug/kg	500		
1,2,3-Trichloropropane	ND		ug/kg	100		
Styrene	ND		ug/kg	50		
Dichlorodifluoromethane	ND		ug/kg	500		
Acetone	ND		ug/kg	500		
Carbon disulfide	ND		ug/kg	500		
2-Butanone	ND		ug/kg	500		
Vinyl acetate	ND		ug/kg	500		
4-Methyl-2-pentanone	ND		ug/kg	500		
2-Hexanone	ND		ug/kg	500		
Ethyl methacrylate	ND		ug/kg	500		
Acrolein	ND		ug/kg	1200		
Acrylonitrile	ND		ug/kg	200		
Bromochloromethane	ND		ug/kg	100		
Tetrahydrofuran	ND		ug/kg	200		
2,2-Dichloropropane	ND		ug/kg	100		
1,2-Dibromoethane	ND		ug/kg	50		
1,3-Dichloropropane	ND		ug/kg	100		

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/18 11:11

	Parameter	Result	Qualifier	Units	RL		MDL
Bromobenzene ND ug/kg 100 n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100 1,3,5-Trichlorobenzene ND ug/kg 100 o-Chlorotoluene ND ug/kg 100 p-Chlorotoluene ND ug/kg 100 p-Chlorotoluene ND ug/kg 100 p-Chlorotoluene ND ug/kg 100 p-Chlorotoluene ND ug/kg 200 Hexachlorobutadiene ND ug/kg 200 Isopropylbenzene ND ug/kg 50 Isopropylbenzene ND ug/kg 50 p-Isopropylbenzene ND ug/kg 50 1,2,3-Trichlorobenzene ND ug/kg 100 <td>olatile Organics by EPA 5035 High</td> <td>- Westbore</td> <td>ough Lab fo</td> <td>or sample(s):</td> <td>01</td> <td>Batch:</td> <td>WG1143515-5</td>	olatile Organics by EPA 5035 High	- Westbore	ough Lab fo	or sample(s):	01	Batch:	WG1143515-5
n-Butylbenzene ND ug/kg 50 sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100 1,3,5-Trichlorobenzene ND ug/kg 100 o-Chlorotoluene ND ug/kg 100 p-Chlorotoluene ND ug/kg 100 1,2-Dibromo-3-chloropropane ND ug/kg 150 Hexachlorobutadiene ND ug/kg 200 Hexachlorobutadiene ND ug/kg 50 Hexachlorobutadiene ND ug/kg 50 Isopropylbenzene ND ug/kg 50 P-Isopropylbenzene ND ug/kg 50 ND ug/kg 50 n-Propylbenzene ND ug/kg 100 1,2,3-Trichlorobenzene ND ug/kg 100	1,1,1,2-Tetrachloroethane	ND		ug/kg	25		
sec-Butylbenzene ND ug/kg 50 tert-Butylbenzene ND ug/kg 100 1,3,5-Trichlorobenzene ND ug/kg 100 o-Chlorotoluene ND ug/kg 100 p-Chlorotoluene ND ug/kg 100 1,2-Dibromo-3-chloropropane ND ug/kg 150 Hexachlorobutadiene ND ug/kg 200 Hexachlorobutadiene ND ug/kg 50 Isopropylbenzene ND ug/kg 50 Isopropylbenzene ND ug/kg 50 P-Isopropylbenzene ND ug/kg 50 Naphthalene ND ug/kg 50 n-Propylbenzene ND ug/kg 100 1,2,3-Trichlorobenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100<	Bromobenzene	ND		ug/kg	100		
tert-Butylbenzene ND ug/kg 100 1,3,5-Trichlorobenzene ND ug/kg 100 o-Chlorotoluene ND ug/kg 100 p-Chlorotoluene ND ug/kg 100 1,2-Dibromo-3-chloropropane ND ug/kg 150 Hexachlorobutadiene ND ug/kg 200 Isopropylbenzene ND ug/kg 50 Isopropylbenzene ND ug/kg 50 P-Isopropyltoluene ND ug/kg 50 Naphthalene ND ug/kg 200 N-Propylbenzene ND ug/kg 50 1,2,3-Trichlorobenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100 Ethyl ether ND ug/kg 250<	n-Butylbenzene	ND		ug/kg	50		
1,3,5-Trichlorobenzene ND ug/kg 100 o-Chlorotoluene ND ug/kg 100 p-Chlorotoluene ND ug/kg 100 1,2-Dibromo-3-chloropropane ND ug/kg 150 Hexachlorobutadiene ND ug/kg 200 Isopropylbenzene ND ug/kg 50 P-Isopropyltoluene ND ug/kg 50 Naphthalene ND ug/kg 50 N-Propylbenzene ND ug/kg 50 1,2,3-Trichlorobenzene ND ug/kg 100 1,2,4-Trichlorobenzene ND ug/kg 100 1,3,5-Trimethylbenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 250 tethyl Acetate ND ug/kg	sec-Butylbenzene	ND		ug/kg	50		
o-Chlorotoluene ND ug/kg 100	tert-Butylbenzene	ND		ug/kg	100		
P-Chlorotoluene	1,3,5-Trichlorobenzene	ND		ug/kg	100		
1,2-Dibromo-3-chloropropane ND ug/kg 150 Hexachlorobutadiene ND ug/kg 200 Isopropylbenzene ND ug/kg 50 p-Isopropyltoluene ND ug/kg 50 Naphthalene ND ug/kg 200 n-Propylbenzene ND ug/kg 50 1,2,3-Trichlorobenzene ND ug/kg 100 1,2,4-Trichlorobenzene ND ug/kg 100 1,3,5-Trimethylbenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100 trans-1,4-Dichloro-2-butene ND ug/kg 250 Ethyl ether ND ug/kg 200 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg	o-Chlorotoluene	ND		ug/kg	100		
Hexachlorobutadiene ND	p-Chlorotoluene	ND		ug/kg	100		
Isopropylbenzene ND	1,2-Dibromo-3-chloropropane	ND		ug/kg	150		
P-Isopropyltoluene ND	Hexachlorobutadiene	ND		ug/kg	200		
Naphthalene ND ug/kg 200 n-Propylbenzene ND ug/kg 50 1,2,3-Trichlorobenzene ND ug/kg 100 1,2,4-Triichlorobenzene ND ug/kg 100 1,3,5-Trimethylbenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100 trans-1,4-Dichloro-2-butene ND ug/kg 250 Ethyl ether ND ug/kg 100 Ethyl Acetate ND ug/kg 200 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg	Isopropylbenzene	ND		ug/kg	50		
n-Propylbenzene ND ug/kg 50 1,2,3-Trichlorobenzene ND ug/kg 100 1,2,4-Trichlorobenzene ND ug/kg 100 1,3,5-Trimethylbenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100 trans-1,4-Dichloro-2-butene ND ug/kg 250 Ethyl ether ND ug/kg 100 Methyl Acetate ND ug/kg 200 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 100 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 5000 1,4-Dioxane ND ug/kg <	p-Isopropyltoluene	ND		ug/kg	50		
1,2,3-Trichlorobenzene ND ug/kg 100 1,2,4-Trichlorobenzene ND ug/kg 100 1,3,5-Trimethylbenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100 trans-1,4-Dichloro-2-butene ND ug/kg 250 Ethyl ether ND ug/kg 100 Methyl Acetate ND ug/kg 200 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 100 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	Naphthalene	ND		ug/kg	200		
1,2,4-Trichlorobenzene ND ug/kg 100 1,3,5-Trimethylbenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100 trans-1,4-Dichloro-2-butene ND ug/kg 250 Ethyl ether ND ug/kg 100 Methyl Acetate ND ug/kg 200 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 100 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	n-Propylbenzene	ND		ug/kg	50		
1,3,5-Trimethylbenzene ND ug/kg 100 1,2,4-Trimethylbenzene ND ug/kg 100 trans-1,4-Dichloro-2-butene ND ug/kg 250 Ethyl ether ND ug/kg 100 Methyl Acetate ND ug/kg 500 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 500 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 100 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	1,2,3-Trichlorobenzene	ND		ug/kg	100		
1,2,4-Trimethylbenzene ND ug/kg 100 trans-1,4-Dichloro-2-butene ND ug/kg 250 Ethyl ether ND ug/kg 100 Methyl Acetate ND ug/kg 200 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 1000 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	1,2,4-Trichlorobenzene	ND		ug/kg	100		
trans-1,4-Dichloro-2-butene ND ug/kg 250 Ethyl ether ND ug/kg 100 Methyl Acetate ND ug/kg 200 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 1000 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	1,3,5-Trimethylbenzene	ND		ug/kg	100		
Ethyl ether ND ug/kg 100 Methyl Acetate ND ug/kg 200 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 1000 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	1,2,4-Trimethylbenzene	ND		ug/kg	100		
Methyl Acetate ND ug/kg 200 Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 1000 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	trans-1,4-Dichloro-2-butene	ND		ug/kg	250		
Ethyl Acetate ND ug/kg 500 Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 1000 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	Ethyl ether	ND		ug/kg	100		
Isopropyl Ether ND ug/kg 100 Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 1000 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	Methyl Acetate	ND		ug/kg	200		
Cyclohexane ND ug/kg 500 Tert-Butyl Alcohol ND ug/kg 1000 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	Ethyl Acetate	ND		ug/kg	500		
Tert-Butyl Alcohol ND ug/kg 1000 Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	Isopropyl Ether	ND		ug/kg	100		
Ethyl-Tert-Butyl-Ether ND ug/kg 100 Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	Cyclohexane	ND		ug/kg	500		
Tertiary-Amyl Methyl Ether ND ug/kg 100 1,4-Dioxane ND ug/kg 5000	Tert-Butyl Alcohol	ND		ug/kg	1000		
1,4-Dioxane ND ug/kg 5000	Ethyl-Tert-Butyl-Ether	ND		ug/kg	100		
	Tertiary-Amyl Methyl Ether	ND		ug/kg	100		
Methyl cyclohexane ND ug/kg 200	1,4-Dioxane	ND		ug/kg	5000		
	Methyl cyclohexane	ND		ug/kg	200		

Project Name:MCCABE ST.Lab Number:L1829545

Project Number: SE18-1375 Report Date: 08/10/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/18 11:11

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by EPA 5035 High	- Westboro	ugh Lab fo	r sample(s):	01	Batch:	WG1143515-5	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	200			

	Acceptance					
Surrogate	%Recovery Qua	lifier Criteria				
40 8:44	00	70.400				
1,2-Dichloroethane-d4	92	70-130				
Toluene-d8	107	70-130				
4-Bromofluorobenzene	107	70-130				
Dibromofluoromethane	88	70-130				

Project Name: MCCABE ST.

Lab Number: L1829545

Project Number: SE18-1375

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 High - Westb	oorough Lab Ass	ociated sample	(s): 01 E	Batch: WG11	43515-3 WG1143	515-4	
Methylene chloride	97		92		70-130	5	30
1,1-Dichloroethane	94		90		70-130	4	30
Chloroform	89		85		70-130	5	30
Carbon tetrachloride	74		70		70-130	6	30
1,2-Dichloropropane	99		96		70-130	3	30
Dibromochloromethane	91		90		70-130	1	30
1,1,2-Trichloroethane	103		102		70-130	1	30
2-Chloroethylvinyl ether	97		100		70-130	3	30
Tetrachloroethene	85		80		70-130	6	30
Chlorobenzene	94		90		70-130	4	30
Trichlorofluoromethane	68	Q	60	Q	70-139	13	30
1,2-Dichloroethane	86		83		70-130	4	30
1,1,1-Trichloroethane	78		75		70-130	4	30
Bromodichloromethane	86		83		70-130	4	30
trans-1,3-Dichloropropene	98		95		70-130	3	30
cis-1,3-Dichloropropene	90		87		70-130	3	30
1,1-Dichloropropene	86		80		70-130	7	30
Bromoform	93		93		70-130	0	30
1,1,2,2-Tetrachloroethane	107		110		70-130	3	30
Benzene	91		87		70-130	4	30
Toluene	97		90		70-130	7	30
Ethylbenzene	95		90		70-130	5	30
Chloromethane	97		88		52-130	10	30

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1829545

rameter	LCS %Recovery Qual	LCSD %Recovery (%Recovery Qual Limits	RPD	RPD Qual Limits
latile Organics by EPA 5035 High	n - Westborough Lab Associated	sample(s): 01 Batch: \	WG1143515-3 WG11435	15-4	
Bromomethane	80	76	57-147	5	30
Vinyl chloride	72	66	Q 67-130	9	30
Chloroethane	64	60	50-151	6	30
1,1-Dichloroethene	83	78	65-135	6	30
trans-1,2-Dichloroethene	86	82	70-130	5	30
Trichloroethene	82	79	70-130	4	30
1,2-Dichlorobenzene	97	94	70-130	3	30
1,3-Dichlorobenzene	96	91	70-130	5	30
1,4-Dichlorobenzene	95	92	70-130	3	30
Methyl tert butyl ether	89	88	66-130	1	30
p/m-Xylene	93	88	70-130	6	30
o-Xylene	94	90	70-130	4	30
cis-1,2-Dichloroethene	88	85	70-130	3	30
Dibromomethane	86	85	70-130	1	30
1,4-Dichlorobutane	113	114	70-130	1	30
1,2,3-Trichloropropane	105	109	68-130	4	30
Styrene	104	101	70-130	3	30
Dichlorodifluoromethane	68	63	30-146	8	30
Acetone	97	97	54-140	0	30
Carbon disulfide	84	78	59-130	7	30
2-Butanone	100	105	70-130	5	30
Vinyl acetate	99	98	70-130	1	30
4-Methyl-2-pentanone	109	112	70-130	3	30

Project Name: MCCABE ST.

Lab Number: L1829545

Project Number: SE18-1375

Colatile Organics by EPA 5035 High - Westborough Lab Associated sample(s): 01 Batch: WG1143515-3 WG1143515-4	Parameter	LCS %Recovery	LCSE Qual %Recov	,	r RPD	RPD Qual Limits
Ethyl methacrylate 999 999 70-130 0 30 Acrolein 94 95 70-130 1 30 Acrylonitrile 103 107 70-130 4 30 Bromochloromethane 86 84 70-130 2 30 Tetrahydrofuran 99 103 66-130 4 30 2,2-Dichloropropane 79 75 70-130 5 30 1,2-Dibromoethane 95 94 70-130 1 30 1,3-Dichloropropane 105 102 69-130 3 30 1,1,1,2-Tetrachloroethane 92 87 70-130 6 30 Bromochenzene 96 94 70-130 6 30 Bromochenzene 99 99 93 70-130 6 30 Bromochenzene 99 99 93 70-130 6 30 In-Butylbenzene 99 99 93 70-130 6 30 tet-Butylbenzene 99 99 93 70-130 6 30 tet-Butylbenzene 99 99 93 70-130 6 30 1,3-Trichlorobenzene 97 92 70-130 5 30 1,3-Trichlorobenzene 97 92 70-130 5 30 1,1-S-Trichlorobenzene 97 99 93 70-130 5 30 1,1-Dibromo-3-chloropropane 87 82 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 In-Butylbenzene 99 99 94 70-130 5 30 In-Butylbenzene 99 99 94 70-130 5 30 In-Butylbenzene 99 99 99 99 99 99 99 99 99 99 99 99 99	Volatile Organics by EPA 5035 High - Westbo	orough Lab Ass	sociated sample(s): 01	Batch: WG1143515-3 WG11	143515-4	
Acrolein 94 95 70-130 1 30 Acrylonitrile 103 107 70-130 4 30 Bromochloromethane 86 84 70-130 2 30 Tetrahydrofuran 99 103 66-130 4 30 2,2-Dichloropropane 79 75 70-130 5 30 1,2-Ditromethane 95 94 70-130 1 30 1,3-Dichloropropane 105 102 69-130 3 30 1,1,1,2-Tetrachloroethane 92 87 70-130 6 30 Bromobanzene 96 94 70-130 2 30 n-Butylbenzene 98 92 70-130 6 30 tert-Butylbenzene 99 93 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 tert-Butylbenzene 97 92 70-130 5 30	2-Hexanone	98	100	70-130	2	30
Acrylonitrile 103 107 70-130 4 30 Bromochloromethane 86 84 70-130 2 30 Tetrahydrofuran 99 103 66-130 4 30 2,2-Dichloropropane 79 75 70-130 5 30 1,2-Dibromoethane 95 94 70-130 1 30 1,3-Dichloropropane 105 102 69-130 3 30 1,1,1,2-Tetrachloroethane 92 87 70-130 6 30 Bromobenzene 96 94 70-130 6 30 Bromobenzene 98 92 70-130 6 30 sec-Butylbenzene 98 92 70-130 6 30 sec-Butylbenzene 99 93 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-130 4 30 <td>Ethyl methacrylate</td> <td>99</td> <td>99</td> <td>70-130</td> <td>0</td> <td>30</td>	Ethyl methacrylate	99	99	70-130	0	30
Bromochloromethane 86 84 70-130 2 30 Tetrahydrofuran 99 103 66-130 4 30 2,2-Dichloropropane 79 75 70-130 5 30 1,2-Dibromoethane 95 94 70-130 1 30 1,3-Dichloropropane 105 102 69-130 3 30 1,1,1,2-Tetrachloroethane 92 87 70-130 6 30 Bromobenzene 96 94 70-130 6 30 Bromobenzene 98 92 70-130 6 30 n-Butylbenzene 98 92 70-130 6 30 sec-Butylbenzene 99 93 70-130 6 30 tetr-Butylbenzene 97 92 70-130 6 30 tetr-Butylbenzene 87 82 70-139 6 30 c-Chlorotoluene 114 110 70-130 4 30	Acrolein	94	95	70-130	1	30
Tetrahydrofuran 99 103 66-130 4 30 2,2-Dichloropropane 79 75 70-130 5 30 1,2-Dibromoethane 95 94 70-130 1 30 1,3-Dichloropropane 105 102 69-130 3 30 1,1,12-Tetrachloroethane 92 87 70-130 6 30 Bromobenzene 96 94 70-130 2 30 n-Butylbenzene 98 92 70-130 6 30 sec-Butylbenzene 99 93 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-139 6 30 o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 </td <td>Acrylonitrile</td> <td>103</td> <td>107</td> <td>70-130</td> <td>4</td> <td>30</td>	Acrylonitrile	103	107	70-130	4	30
2,2-Dichloropropane 79 75 70-130 5 30 1,2-Dibromoethane 95 94 70-130 1 30 1,3-Dichloropropane 105 102 69-130 3 30 1,1,1,2-Tetrachloroethane 92 87 70-130 6 30 Bromobenzene 96 94 70-130 2 30 n-Butylbenzene 98 92 70-130 6 30 sec-Butylbenzene 99 93 70-130 6 30 sec-Butylbenzene 97 92 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-139 6 30 o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30	Bromochloromethane	86	84	70-130	2	30
1,2-Dibromoethane 95 94 70-130 1 30 1,3-Dichloropropane 105 102 69-130 3 30 1,1,1,2-Tetrachloroethane 92 87 70-130 6 30 Bromobenzene 96 94 70-130 2 30 n-Butylbenzene 98 92 70-130 6 30 sec-Butylbenzene 99 93 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-139 6 30 o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30<	Tetrahydrofuran	99	103	66-130	4	30
1,3-Dichloropropane 105 102 69-130 3 30 1,1,1,2-Tetrachloroethane 92 87 70-130 6 30 Bromobenzene 96 94 70-130 2 30 n-Butylbenzene 98 92 70-130 6 30 sec-Butylbenzene 99 93 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-139 6 30 o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 P-Isopropyltoluene 96 91 70-130 5 30	2,2-Dichloropropane	79	75	70-130	5	30
1,1,1,2-Tetrachloroethane 92 87 70-130 6 30 Bromobenzene 96 94 70-130 2 30 n-Butylbenzene 98 92 70-130 6 30 sec-Butylbenzene 99 93 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-139 6 30 0-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	1,2-Dibromoethane	95	94	70-130	1	30
Bromobenzene 96 94 70-130 2 30 n-Butylbenzene 98 92 70-130 6 30 sec-Butylbenzene 99 93 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-139 6 30 o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 P-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	1,3-Dichloropropane	105	102	69-130	3	30
n-Butylbenzene 98 92 70-130 6 30 sec-Butylbenzene 99 93 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-139 6 30 o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	1,1,1,2-Tetrachloroethane	92	87	70-130	6	30
sec-Butylbenzene 99 93 70-130 6 30 tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-139 6 30 o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	Bromobenzene	96	94	70-130	2	30
tert-Butylbenzene 97 92 70-130 5 30 1,3,5-Trichlorobenzene 87 82 70-139 6 30 o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	n-Butylbenzene	98	92	70-130	6	30
1,3,5-Trichlorobenzene 87 82 70-139 6 30 o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	sec-Butylbenzene	99	93	70-130	6	30
o-Chlorotoluene 114 110 70-130 4 30 p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	tert-Butylbenzene	97	92	70-130	5	30
p-Chlorotoluene 101 96 70-130 5 30 1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	1,3,5-Trichlorobenzene	87	82	70-139	6	30
1,2-Dibromo-3-chloropropane 84 88 68-130 5 30 Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	o-Chlorotoluene	114	110	70-130	4	30
Hexachlorobutadiene 87 81 67-130 7 30 Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	p-Chlorotoluene	101	96	70-130	5	30
Isopropylbenzene 99 94 70-130 5 30 p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	1,2-Dibromo-3-chloropropane	84	88	68-130	5	30
p-Isopropyltoluene 96 91 70-130 5 30 Naphthalene 97 97 70-130 0 30	Hexachlorobutadiene	87	81	67-130	7	30
Naphthalene 97 97 70-130 0 30	Isopropylbenzene	99	94	70-130	5	30
	p-Isopropyltoluene	96	91	70-130	5	30
n-Propylbenzene 101 95 70-130 6 30	Naphthalene	97	97	70-130	0	30
	n-Propylbenzene	101	95	70-130	6	30

Project Name: MCCABE ST.

Lab Number:

L1829545

Project Number: SE18-1375

Report Date:

08/10/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
olatile Organics by EPA 5035 High - We	stborough Lab Asso	ciated samp	ole(s): 01 Bato	h: WG1143515-3 WG1143	515-4		
1,2,3-Trichlorobenzene	93		90	70-130	3	30	
1,2,4-Trichlorobenzene	90		85	70-130	6	30	
1,3,5-Trimethylbenzene	98		94	70-130	4	30	
1,2,4-Trimethylbenzene	98		93	70-130	5	30	
trans-1,4-Dichloro-2-butene	99		102	70-130	3	30	
Ethyl ether	96		94	67-130	2	30	
Methyl Acetate	100		102	65-130	2	30	
Ethyl Acetate	100		102	70-130	2	30	
Isopropyl Ether	106		102	66-130	4	30	
Cyclohexane	92		86	70-130	7	30	
Tert-Butyl Alcohol	82		86	70-130	5	30	
Ethyl-Tert-Butyl-Ether	93		90	70-130	3	30	
Tertiary-Amyl Methyl Ether	86		85	70-130	1	30	
1,4-Dioxane	81		86	65-136	6	30	
Methyl cyclohexane	82		78	70-130	5	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	79		73	70-130	8	30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria
1,2-Dichloroethane-d4	94	94	70-130
Toluene-d8	109	108	70-130
4-Bromofluorobenzene	108	108	70-130
Dibromofluoromethane	90	92	70-130

Project Name: MCCABE ST.

Lab Number: L1829545

i rojoot riamo.	MOONDE OT.								21020010	_
Project Number:	SE18-1375						Repo	ort Date:	08/10/18	
Parameter		LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	

Parameter	LCS %Recovery	LCSD Qual %Recover	%Recovery Y Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Westh	oorough Lab Ass	sociated sample(s): 01 B	atch: WG1143515-8 WG1143	3515-9	
Methylene chloride	113	114	70-130	1	30
1,1-Dichloroethane	103	103	70-130	0	30
Chloroform	96	96	70-130	0	30
Carbon tetrachloride	88	86	70-130	2	30
1,2-Dichloropropane	107	108	70-130	1	30
Dibromochloromethane	99	101	70-130	2	30
1,1,2-Trichloroethane	109	110	70-130	1	30
2-Chloroethylvinyl ether	106	111	70-130	5	30
Tetrachloroethene	101	100	70-130	1	30
Chlorobenzene	104	104	70-130	0	30
Trichlorofluoromethane	83	79	70-139	5	30
1,2-Dichloroethane	90	91	70-130	1	30
1,1,1-Trichloroethane	91	90	70-130	1	30
Bromodichloromethane	92	94	70-130	2	30
trans-1,3-Dichloropropene	103	106	70-130	3	30
cis-1,3-Dichloropropene	98	100	70-130	2	30
1,1-Dichloropropene	104	100	70-130	4	30
Bromoform	100	103	70-130	3	30
1,1,2,2-Tetrachloroethane	111	117	70-130	5	30
Benzene	102	101	70-130	1	30
Toluene	106	106	70-130	0	30
Ethylbenzene	106	106	70-130	0	30
Chloromethane	103	100	52-130	3	30

Project Name: MCCABE ST.

Lab Number: L1829545

Project Number: SE18-1375

arameter	LCS %Recovery	LCSD Qual %Recover	%Recovery Y Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 High - We	estborough Lab Ass	ociated sample(s): 01 B	Batch: WG1143515-8 WG1143	515-9	
Bromomethane	96	93	57-147	3	30
Vinyl chloride	81	80	67-130	1	30
Chloroethane	72	71	50-151	1	30
1,1-Dichloroethene	98	96	65-135	2	30
trans-1,2-Dichloroethene	101	98	70-130	3	30
Trichloroethene	96	96	70-130	0	30
1,2-Dichlorobenzene	106	107	70-130	1	30
1,3-Dichlorobenzene	107	107	70-130	0	30
1,4-Dichlorobenzene	108	107	70-130	1	30
Methyl tert butyl ether	95	98	66-130	3	30
p/m-Xylene	105	105	70-130	0	30
o-Xylene	103	105	70-130	2	30
cis-1,2-Dichloroethene	100	99	70-130	1	30
Dibromomethane	93	96	70-130	3	30
1,4-Dichlorobutane	116	120	70-130	3	30
1,2,3-Trichloropropane	111	116	68-130	4	30
Styrene	111	111	70-130	0	30
Dichlorodifluoromethane	73	73	30-146	0	30
Acetone	107	101	54-140	6	30
Carbon disulfide	96	95	59-130	1	30
2-Butanone	120	117	70-130	3	30
Vinyl acetate	104	109	70-130	5	30
4-Methyl-2-pentanone	114	122	70-130	7	30

Project Name: MCCABE ST.

Lab Number: L1829545

Project Number: SE18-1375

arameter	LCS %Recovery	LCSD Qual %Recover	%Recovery Y Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 High -	Westborough Lab Ass	ociated sample(s): 01 B	Batch: WG1143515-8 WG114	13515-9	
2-Hexanone	101	108	70-130	7	30
Ethyl methacrylate	106	110	70-130	4	30
Acrolein	102	109	70-130	7	30
Acrylonitrile	108	114	70-130	5	30
Bromochloromethane	97	98	70-130	1	30
Tetrahydrofuran	104	109	66-130	5	30
2,2-Dichloropropane	93	92	70-130	1	30
1,2-Dibromoethane	101	106	70-130	5	30
1,3-Dichloropropane	109	112	69-130	3	30
1,1,1,2-Tetrachloroethane	100	101	70-130	1	30
Bromobenzene	107	107	70-130	0	30
n-Butylbenzene	115	114	70-130	1	30
sec-Butylbenzene	113	111	70-130	2	30
tert-Butylbenzene	110	109	70-130	1	30
1,3,5-Trichlorobenzene	106	104	70-139	2	30
o-Chlorotoluene	127	127	70-130	0	30
p-Chlorotoluene	112	111	70-130	1	30
1,2-Dibromo-3-chloropropane	94	100	68-130	6	30
Hexachlorobutadiene	106	105	67-130	1	30
Isopropylbenzene	112	110	70-130	2	30
p-Isopropyltoluene	111	110	70-130	1	30
Naphthalene	104	110	70-130	6	30
n-Propylbenzene	114	113	70-130	1	30

Project Name: MCCABE ST.

Lab Number:

L1829545 08/10/18

Project Number: SE18-1375

1,1,2-Trichloro-1,2,2-Trifluoroethane

94

Report Date:

Parameter	LCS %Recovery		LCSD Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - \	Westborough Lab Assoc	iated sample(s):	01 Batch:	: WG1143515	5-8 WG11435 ²	15-9		
1,2,3-Trichlorobenzene	106		108		70-130	2		30
1,2,4-Trichlorobenzene	107		107		70-130	0		30
1,3,5-Trimethylbenzene	111		111		70-130	0		30
1,2,4-Trimethylbenzene	110		109		70-130	1		30
trans-1,4-Dichloro-2-butene	104		108		70-130	4		30
Ethyl ether	103		106		67-130	3		30
Methyl Acetate	102		108		65-130	6		30
Ethyl Acetate	104		111		70-130	7		30
Isopropyl Ether	111		112		66-130	1		30
Cyclohexane	105		103		70-130	2		30
Tert-Butyl Alcohol	87		94		70-130	8		30
Ethyl-Tert-Butyl-Ether	99		100		70-130	1		30
Tertiary-Amyl Methyl Ether	94		96		70-130	2		30
1,4-Dioxane	91		96		65-136	5		30
Methyl cyclohexane	98		97		70-130	1		30

92

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	l %Recovery Qual	Criteria
1,2-Dichloroethane-d4	90	91	70-130
Toluene-d8	107	106	70-130
4-Bromofluorobenzene	107	107	70-130
Dibromofluoromethane	90	93	70-130

70-130

2

30

SEMIVOLATILES

Project Name: MCCABE ST. Lab Number: L1829545

Project Number: SE18-1375 Report Date: 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 Date Collected: 07/31/18 12:30

Client ID: SP-1 Date Received: 07/31/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 08/08/18 09:00

Analytical Date: 08/09/18 14:34

Analyst: RC Percent Solids: 78%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	· Westborough Lab						
Acenaphthene	12000	Е	ug/kg	170		1	
Benzidine	ND		ug/kg	700		1	
1,2,4-Trichlorobenzene	ND		ug/kg	210		1	
Hexachlorobenzene	ND		ug/kg	130		1	
Bis(2-chloroethyl)ether	ND		ug/kg	190		1	
2-Chloronaphthalene	ND		ug/kg	210		1	
1,2-Dichlorobenzene	ND		ug/kg	210		1	
1,3-Dichlorobenzene	ND		ug/kg	210		1	
1,4-Dichlorobenzene	ND		ug/kg	210		1	
3,3'-Dichlorobenzidine	ND		ug/kg	210		1	
2,4-Dinitrotoluene	ND		ug/kg	210		1	
2,6-Dinitrotoluene	ND		ug/kg	210		1	
Azobenzene	ND		ug/kg	210		1	
Fluoranthene	26000	Е	ug/kg	130		1	
4-Chlorophenyl phenyl ether	ND		ug/kg	210		1	
4-Bromophenyl phenyl ether	ND		ug/kg	210		1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	250		1	
Bis(2-chloroethoxy)methane	ND		ug/kg	230		1	
Hexachlorobutadiene	ND		ug/kg	210		1	
Hexachlorocyclopentadiene	ND		ug/kg	600		1	
Hexachloroethane	ND		ug/kg	170		1	
Isophorone	ND		ug/kg	190		1	
Naphthalene	20000	Е	ug/kg	210		1	
Nitrobenzene	ND		ug/kg	190		1	
NDPA/DPA	ND		ug/kg	170		1	
n-Nitrosodi-n-propylamine	ND		ug/kg	210		1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	210		1	
Butyl benzyl phthalate	ND		ug/kg	210		1	

Project Name: MCCABE ST. Lab Number: L1829545

Project Number: SE18-1375 Report Date: 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 Date Collected: 07/31/18 12:30

Client ID: SP-1 Date Received: 07/31/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Di-n-butylphthalate	ND		ug/kg	210		1
Di-n-octylphthalate	ND		ug/kg	210		1
Diethyl phthalate	ND		ug/kg	210		1
Dimethyl phthalate	ND		ug/kg	210		1
Benzo(a)anthracene	16000	Е	ug/kg	130		1
Benzo(a)pyrene	12000	Е	ug/kg	170		1
Benzo(b)fluoranthene	12000	E	ug/kg	130		1
Benzo(k)fluoranthene	2700		ug/kg	130		1
Chrysene	19000	Е	ug/kg	130		1
Acenaphthylene	8800	Е	ug/kg	170		1
Anthracene	12000	E	ug/kg	130		1
Benzo(ghi)perylene	5700		ug/kg	170		1
Fluorene	20000	Е	ug/kg	210		1
Phenanthrene	66000	E	ug/kg	130		1
Dibenzo(a,h)anthracene	2000		ug/kg	130		1
Indeno(1,2,3-cd)pyrene	5400		ug/kg	170		1
Pyrene	42000	Е	ug/kg	130		1
Biphenyl	4400		ug/kg	480		1
Aniline	ND		ug/kg	250		1
4-Chloroaniline	ND		ug/kg	210		1
1-Methylnaphthalene	41000	E	ug/kg	210		1
2-Nitroaniline	ND		ug/kg	210		1
3-Nitroaniline	ND		ug/kg	210		1
4-Nitroaniline	ND		ug/kg	210		1
Dibenzofuran	1400		ug/kg	210		1
2-Methylnaphthalene	35000	E	ug/kg	250		1
n-Nitrosodimethylamine	ND		ug/kg	420		1
2,4,6-Trichlorophenol	ND		ug/kg	130		1
p-Chloro-m-cresol	ND		ug/kg	210		1
2-Chlorophenol	ND		ug/kg	210		1
2,4-Dichlorophenol	ND		ug/kg	190		1
2,4-Dimethylphenol	ND		ug/kg	210		1
2-Nitrophenol	ND		ug/kg	460		1
4-Nitrophenol	ND		ug/kg	300		1
2,4-Dinitrophenol	ND		ug/kg	1000		1
4,6-Dinitro-o-cresol	ND		ug/kg	550		1
Pentachlorophenol	ND		ug/kg	170		1

Project Name: Lab Number: MCCABE ST. L1829545

Project Number: Report Date: SE18-1375 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 Date Collected: 07/31/18 12:30

Client ID: SP-1 Date Received: 07/31/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Phenol	ND		ug/kg	210		1			
2-Methylphenol	ND		ug/kg	210		1			
3-Methylphenol/4-Methylphenol	ND		ug/kg	300		1			
2,4,5-Trichlorophenol	ND		ug/kg	210		1			
Benzoic Acid	ND		ug/kg	680		1			
Benzyl Alcohol	ND		ug/kg	210		1			
Carbazole	790		ug/kg	210		1			
Pyridine	ND		ug/kg	230		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	76	25-120	
Phenol-d6	77	10-120	
Nitrobenzene-d5	87	23-120	
2-Fluorobiphenyl	72	30-120	
2,4,6-Tribromophenol	78	10-136	
4-Terphenyl-d14	62	18-120	

Project Name: MCCABE ST. Lab Number: L1829545

Project Number: SE18-1375 Report Date: 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 D Date Collected: 07/31/18 12:30

Client ID: SP-1 Date Received: 07/31/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8270D Extraction Date: 08/08/18 09:00
Analytical Date: 08/09/18 15:26

Analyst: RC Percent Solids: 78%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	10000		ug/kg	1700		10	
Fluoranthene	21000		ug/kg	1300		10	
Naphthalene	16000		ug/kg	2100		10	
Benzo(a)anthracene	14000		ug/kg	1300		10	
Benzo(a)pyrene	12000		ug/kg	1700		10	
Benzo(b)fluoranthene	10000		ug/kg	1300		10	
Chrysene	18000		ug/kg	1300		10	
Acenaphthylene	6600		ug/kg	1700		10	
Anthracene	9500		ug/kg	1300		10	
Fluorene	15000		ug/kg	2100		10	
Phenanthrene	50000		ug/kg	1300		10	
Pyrene	34000		ug/kg	1300		10	
1-Methylnaphthalene	31000		ug/kg	2100		10	
2-Methylnaphthalene	26000		ug/kg	2500		10	

Project Name: MCCABE ST.

Project Number: SE18-1375

Lab Number: L1829545 **Report Date:** 08/10/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/08/18 10:01

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 08/07/18 12:22

arameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01	Batch:	WG1143728-1	
Acenaphthene	ND		ug/kg		130		
Benzidine	ND		ug/kg		540		
1,2,4-Trichlorobenzene	ND		ug/kg		160		
Hexachlorobenzene	ND		ug/kg		98		
Bis(2-chloroethyl)ether	ND		ug/kg		150		
2-Chloronaphthalene	ND		ug/kg		160		
1,2-Dichlorobenzene	ND		ug/kg		160		
1,3-Dichlorobenzene	ND		ug/kg		160		
1,4-Dichlorobenzene	ND		ug/kg		160		
3,3'-Dichlorobenzidine	ND		ug/kg		160		
2,4-Dinitrotoluene	ND		ug/kg		160		
2,6-Dinitrotoluene	ND		ug/kg		160		
Azobenzene	ND		ug/kg		160		
Fluoranthene	ND		ug/kg		98		
4-Chlorophenyl phenyl ether	ND		ug/kg		160		
4-Bromophenyl phenyl ether	ND		ug/kg		160		
Bis(2-chloroisopropyl)ether	ND		ug/kg		200		
Bis(2-chloroethoxy)methane	ND		ug/kg		180		
Hexachlorobutadiene	ND		ug/kg		160		
Hexachlorocyclopentadiene	ND		ug/kg		470		
Hexachloroethane	ND		ug/kg		130		
Isophorone	ND		ug/kg		150		
Naphthalene	ND		ug/kg		160		
Nitrobenzene	ND		ug/kg		150		
NDPA/DPA	ND		ug/kg		130		
n-Nitrosodi-n-propylamine	ND		ug/kg		160		
Bis(2-ethylhexyl)phthalate	ND		ug/kg		160		
Butyl benzyl phthalate	ND		ug/kg		160		
Di-n-butylphthalate	ND		ug/kg		160		

Project Name: MCCABE ST.

Project Number: SE18-1375

Lab Number: L1829545 **Report Date:** 08/10/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/08/18 10:01

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 08/07/18 12:22

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/	MS - Westboroug	h Lab for s	ample(s):	01 Bat	ch: WG1143728-1
Di-n-octylphthalate	ND		ug/kg	160	
Diethyl phthalate	ND		ug/kg	160	
Dimethyl phthalate	ND		ug/kg	160	
Benzo(a)anthracene	ND		ug/kg	98	
Benzo(a)pyrene	ND		ug/kg	130	
Benzo(b)fluoranthene	ND		ug/kg	98	
Benzo(k)fluoranthene	ND		ug/kg	98	
Chrysene	ND		ug/kg	98	
Acenaphthylene	ND		ug/kg	130	
Anthracene	ND		ug/kg	98	
Benzo(ghi)perylene	ND		ug/kg	130	
Fluorene	ND		ug/kg	160	
Phenanthrene	ND		ug/kg	98	
Dibenzo(a,h)anthracene	ND		ug/kg	98	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	
Pyrene	ND		ug/kg	98	
Biphenyl	ND		ug/kg	370	
Aniline	ND		ug/kg	200	
4-Chloroaniline	ND		ug/kg	160	
1-Methylnaphthalene	ND		ug/kg	160	
2-Nitroaniline	ND		ug/kg	160	
3-Nitroaniline	ND		ug/kg	160	
4-Nitroaniline	ND		ug/kg	160	
Dibenzofuran	ND		ug/kg	160	
2-Methylnaphthalene	ND		ug/kg	200	
n-Nitrosodimethylamine	ND		ug/kg	330	
2,4,6-Trichlorophenol	ND		ug/kg	98	
p-Chloro-m-cresol	ND		ug/kg	160	
2-Chlorophenol	ND		ug/kg	160	

Project Name: MCCABE ST. **Project Number:**

SE18-1375

Lab Number: L1829545

Report Date: 08/10/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D 08/08/18 10:01

Analyst: ΕK Extraction Method: EPA 3546 08/07/18 12:22 **Extraction Date:**

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS - \	Vestborough	n Lab for s	ample(s):	01	Batch:	WG1143728-1
2,4-Dichlorophenol	ND		ug/kg		150	
2,4-Dimethylphenol	ND		ug/kg		160	
2-Nitrophenol	ND		ug/kg		350	
4-Nitrophenol	ND		ug/kg		230	
2,4-Dinitrophenol	ND		ug/kg		780	
4,6-Dinitro-o-cresol	ND		ug/kg		420	
Pentachlorophenol	ND		ug/kg		130	
Phenol	ND		ug/kg		160	
2-Methylphenol	ND		ug/kg		160	
3-Methylphenol/4-Methylphenol	ND		ug/kg		240	
2,4,5-Trichlorophenol	ND		ug/kg		160	
Benzoic Acid	ND		ug/kg		530	
Benzyl Alcohol	ND		ug/kg		160	
Carbazole	ND		ug/kg		160	
Pyridine	ND		ug/kg		180	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/kg

Project Name:MCCABE ST.Lab Number:L1829545

Project Number: SE18-1375 Report Date: 08/10/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 08/08/18 10:01 Extraction Date: 08/07/18 12:22

Analyst: EK

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS - Westborough Lab for sample(s): 01Batch: WG1143728-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	74	25-120
Phenol-d6	78	10-120
Nitrobenzene-d5	79	23-120
2-Fluorobiphenyl	76	30-120
2,4,6-Tribromophenol	83	10-136
4-Terphenyl-d14	86	18-120

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1829545

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westh	oorough Lab Associat	ed sample(s):	01 Batch:	WG1143728-2	. WG1143728-3			
Acenaphthene	78		74		31-137	5		50
Benzidine	42		35		10-66	18		50
1,2,4-Trichlorobenzene	76		74		38-107	3		50
Hexachlorobenzene	83		76		40-140	9		50
Bis(2-chloroethyl)ether	72		71		40-140	1		50
2-Chloronaphthalene	80		75		40-140	6		50
1,2-Dichlorobenzene	71		73		40-140	3		50
1,3-Dichlorobenzene	68		71		40-140	4		50
1,4-Dichlorobenzene	70		72		28-104	3		50
3,3'-Dichlorobenzidine	67		62		40-140	8		50
2,4-Dinitrotoluene	94		91		40-132	3		50
2,6-Dinitrotoluene	90		82		40-140	9		50
Azobenzene	82		78		40-140	5		50
Fluoranthene	83		78		40-140	6		50
4-Chlorophenyl phenyl ether	80		74		40-140	8		50
4-Bromophenyl phenyl ether	83		76		40-140	9		50
Bis(2-chloroisopropyl)ether	77		74		40-140	4		50
Bis(2-chloroethoxy)methane	77		73		40-117	5		50
Hexachlorobutadiene	77		74		40-140	4		50
Hexachlorocyclopentadiene	64		59		40-140	8		50
Hexachloroethane	72		72		40-140	0		50
Isophorone	77		75		40-140	3		50
Naphthalene	75		74		40-140	1		50

Project Name: MCCABE ST.

Lab Number:

L1829545

Project Number: SE18-1375

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - We	stborough Lab Associ	ated sample(s):	: 01 Batch:	WG1143728-	2 WG1143728-3			
Nitrobenzene	80		77		40-140	4		50
NDPA/DPA	79		75		36-157	5		50
n-Nitrosodi-n-propylamine	77		73		32-121	5		50
Bis(2-ethylhexyl)phthalate	87		81		40-140	7		50
Butyl benzyl phthalate	87		80		40-140	8		50
Di-n-butylphthalate	87		80		40-140	8		50
Di-n-octylphthalate	89		82		40-140	8		50
Diethyl phthalate	83		77		40-140	8		50
Dimethyl phthalate	82		77		40-140	6		50
Benzo(a)anthracene	79		74		40-140	7		50
Benzo(a)pyrene	79		75		40-140	5		50
Benzo(b)fluoranthene	74		81		40-140	9		50
Benzo(k)fluoranthene	83		69		40-140	18		50
Chrysene	80		75		40-140	6		50
Acenaphthylene	82		76		40-140	8		50
Anthracene	82		77		40-140	6		50
Benzo(ghi)perylene	79		75		40-140	5		50
Fluorene	80		77		40-140	4		50
Phenanthrene	80		74		40-140	8		50
Dibenzo(a,h)anthracene	79		74		40-140	7		50
Indeno(1,2,3-cd)pyrene	78		71		40-140	9		50
Pyrene	82		75		35-142	9		50
Biphenyl	84		79		54-104	6		50

Project Name: MCCABE ST.

Project Number:

SE18-1375

Lab Number: L1829545

Report Date: 08/10/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westl	oorough Lab Associ	ated sample(s)	: 01 Batch:	WG1143728-2	2 WG1143728-3			
Aniline	54		50		40-140	8		50
4-Chloroaniline	63		58		40-140	8		50
1-Methylnaphthalene	83		76		26-130	9		50
2-Nitroaniline	90		83		47-134	8		50
3-Nitroaniline	72		70		26-129	3		50
4-Nitroaniline	81		78		41-125	4		50
Dibenzofuran	80		77		40-140	4		50
2-Methylnaphthalene	78		76		40-140	3		50
n-Nitrosodimethylamine	67		69		22-100	3		50
2,4,6-Trichlorophenol	85		81		30-130	5		50
p-Chloro-m-cresol	86		81		26-103	6		50
2-Chlorophenol	80		78		25-102	3		50
2,4-Dichlorophenol	86		82		30-130	5		50
2,4-Dimethylphenol	81		79		30-130	3		50
2-Nitrophenol	87		84		30-130	4		50
4-Nitrophenol	94		92		11-114	2		50
2,4-Dinitrophenol	81		77		4-130	5		50
4,6-Dinitro-o-cresol	86		83		10-130	4		50
Pentachlorophenol	82		79		17-109	4		50
Phenol	73		69		26-90	6		50
2-Methylphenol	81		78		30-130.	4		50
3-Methylphenol/4-Methylphenol	79		74		30-130	7		50
2,4,5-Trichlorophenol	90		83		30-130	8		50

Project Name: MCCABE ST.

Lab Number:

L1829545

Project Number: SE18-1375

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboroo	ugh Lab Associ	ated sample(s):	01 Batch	n: WG1143728-	2 WG1143728-3	3			
Benzoic Acid	62		55		10-110	12		50	
Benzyl Alcohol	81		78		40-140	4		50	
Carbazole	83		78		54-128	6		50	
Pyridine	57		63		10-93	10		50	

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria
Sunogate	///Necovery Qu	nai %Necovery Quar	
2-Fluorophenol	79	79	25-120
Phenol-d6	83	80	10-120
Nitrobenzene-d5	83	80	23-120
2-Fluorobiphenyl	80	75	30-120
2,4,6-Tribromophenol	87	84	10-136
4-Terphenyl-d14	81	75	18-120

PETROLEUM HYDROCARBONS

Project Name: MCCABE ST. Lab Number: L1829545

Project Number: SE18-1375 Report Date: 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 D Date Collected: 07/31/18 12:30

Client ID: SP-1 Date Received: 07/31/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8015D(M) Extraction Date: 08/06/18 19:01
Analytical Date: 08/08/18 18:21

Analyst: MEO Percent Solids: 78%

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quar	titation - Westborough Lab				
ТРН	10800000	ug/kg	819000		20
Surrogate		% Recovery	Qualifier		eptance riteria
o-Terphenyl		112			40-140

Project Name:MCCABE ST.Lab Number:L1829545

Project Number: SE18-1375 Report Date: 08/10/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015D(M) Extraction Method: EPA 3546
Analytical Date: 08/06/18 15:41 Extraction Date: 08/06/18 01:20

Analyst: DG

Parameter	Result	Qualifier	Units	RL		MDL
Petroleum Hydrocarbon Quantitation	- Westbord	ough Lab fo	or sample(s):	01	Batch:	WG1143153-1
ТРН	ND		ug/kg	31600		

		Acceptance		
Surrogate	%Recovery Qualif	ier Criteria		
o-Terphenyl	77	40-140		

Lab Number:

L1829545

Project Number:

Project Name:

MCCABE ST. SE18-1375

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits		
Petroleum Hydrocarbon Quantitation - Westborough Lab Associated sample(s): 01 Batch: WG1143153-2										
ТРН	81		-		40-140	-		40		

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qu	al Criteria
o-Terphenyl	79		40-140

PCBS

Project Name: MCCABE ST. **Lab Number:** L1829545

Project Number: SE18-1375 Report Date: 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01 Date Collected: 07/31/18 12:30

Client ID: SP-1 Date Received: 07/31/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8082A Extraction Date: 08/08/18 08:16
Analytical Date: 08/10/18 09:34 Cleanup Method: EPA 3665A

Analyst: WR
Percent Solids: 78%

Cleanup Date: 08/09/18
Cleanup Method: EPA 3660B
Cleanup Date: 08/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		ug/kg	42.2		1	Α
Aroclor 1221	ND		ug/kg	42.2		1	Α
Aroclor 1232	ND		ug/kg	42.2		1	Α
Aroclor 1242	ND		ug/kg	42.2		1	Α
Aroclor 1248	ND		ug/kg	42.2		1	Α
Aroclor 1254	ND		ug/kg	42.2		1	Α
Aroclor 1260	ND		ug/kg	42.2		1	Α
Aroclor 1262	ND		ug/kg	42.2		1	Α
Aroclor 1268	ND		ug/kg	42.2		1	В
PCBs, Total	ND		ug/kg	42.2		1	В

Surrogate	% Recovery	Qualifier	Acceptance Qualifier Criteria		
- Currogate	70 Recovery	Quanner	Ciliteria	Column	
2,4,5,6-Tetrachloro-m-xylene	75		30-150	Α	
Decachlorobiphenyl	118		30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В	
Decachlorobiphenyl	141		30-150	В	

Project Name: MCCABE ST. Lab Number: L1829545

Project Number: SE18-1375 Report Date: 08/10/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 08/08/18 21:06

Analyst: HT

Extraction Method: EPA 3546
Extraction Date: 08/08/18 08:16
Cleanup Method: EPA 3665A
Cleanup Date: 08/08/18
Cleanup Method: EPA 3660B
Cleanup Date: 08/08/18

Parameter	Result (Qualifier Units	RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westborough	Lab for sample(s):	01 Batch:	WG1144049	-1
Aroclor 1016	ND	ug/kg	32.3		Α
Aroclor 1221	ND	ug/kg	32.3		Α
Aroclor 1232	ND	ug/kg	32.3		А
Aroclor 1242	ND	ug/kg	32.3		Α
Aroclor 1248	ND	ug/kg	32.3		Α
Aroclor 1254	ND	ug/kg	32.3		Α
Aroclor 1260	ND	ug/kg	32.3		Α
Aroclor 1262	ND	ug/kg	32.3		Α
Aroclor 1268	ND	ug/kg	32.3		Α
PCBs, Total	ND	ug/kg	32.3		Α
Aroclor 1262 Aroclor 1268	ND ND	ug/kg ug/kg ug/kg	32.3 32.3		A A

		Acceptai	nce
Surrogate	%Recovery Q	ualifier Criteri	a Column
2,4,5,6-Tetrachloro-m-xylene	79	30-150	А
Decachlorobiphenyl	74	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	76	30-150	В
Decachlorobiphenyl	75	30-150	В

Project Name: MCCABE ST.

Lab Number:

L1829545 08/10/18

Project Number: SE18-1375

Report Date:

_	LCS				%Recovery		RPD			
Parameter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westborou	ıgh Lab Associ	ated sample(s)	: 01	Batch:	WG1144049-2	WG1144049-3	3			
Aroclor 1016	72			76		40-140	5		50	А
Aroclor 1260	63			67		40-140	6		50	А

Surrogate	LCS %Recovery	LCSD Qual %Recovery Qua	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	82	84	30-150 A
Decachlorobiphenyl	61	64	30-150 A
2,4,5,6-Tetrachloro-m-xylene	80	84	30-150 B
Decachlorobiphenyl	69	84	30-150 B

METALS

07/31/18 12:30

Date Collected:

Project Name:MCCABE ST.Lab Number:L1829545Project Number:SE18-1375Report Date:08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01

Client ID: SP-1 Date Received: 07/31/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 78%

i ordoni dondo.						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	5.27		mg/kg	0.488		1	08/08/18 12:1	2 08/09/18 08:16	EPA 3050B	1,6010D	LC
Cadmium, Total	1.66		mg/kg	0.488		1	08/08/18 12:1	2 08/09/18 08:16	EPA 3050B	1,6010D	LC
Chromium, Total	49.9		mg/kg	0.488		1	08/08/18 12:1	2 08/09/18 08:16	EPA 3050B	1,6010D	LC
Lead, Total	442		mg/kg	2.44		1	08/08/18 12:1	2 08/09/18 08:16	EPA 3050B	1,6010D	LC
Mercury, Total	0.274		mg/kg	0.080		1	08/07/18 11:0	0 08/07/18 21:49	EPA 7471B	1,7471B	EA

Project Name: MCCABE ST.
Project Number: SE18-1375

Lab Number:

L1829545

Report Date:

08/10/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	field Lab for sample(s):	01 Batch	n: WG1	143644-	-1				
Mercury, Total	ND	mg/kg	0.083		1	08/07/18 11:00	08/07/18 21:33	3 1,7471B	EA

Prep Information

Digestion Method: EPA 7471B

Parameter Total Metals - Mansfield	Result Qualifier Lab for sample(s):	Units 01 Batch	RL : WG11	MDL 144125-	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Arsenic, Total	ND	mg/kg	0.400		1	08/08/18 12:12	08/09/18 07:51	1,6010D	LC
Cadmium, Total	ND	mg/kg	0.400		1	08/08/18 12:12	08/09/18 07:51	1,6010D	LC
Chromium, Total	ND	mg/kg	0.400		1	08/08/18 12:12	08/09/18 07:51	1,6010D	LC
Lead, Total	ND	mg/kg	2.00		1	08/08/18 12:12	08/09/18 07:51	1,6010D	LC

Prep Information

Digestion Method: EPA 3050B

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1

L1829545

Report Date:

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	ole(s): 01 Batch: V	NG1143644-2	SRM Lot Nu	ımber: D09	8-540			
Mercury, Total	134		-		50-149	-		
Total Metals - Mansfield Lab Associated samp	ole(s): 01 Batch: V	WG1144125-2	SRM Lot Nu	ımber: D09	8-540			
Arsenic, Total	103		-		83-117	-		
Cadmium, Total	98		-		82-117	-		
Chromium, Total	91		-		83-119	-		
Lead, Total	97		-		82-117	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1829545

Report Date: 08/10/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch I	D: WG114364	4-3	QC Sample:	L1829809-02	Clien	t ID: MS Sa	ample		
Mercury, Total	ND	0.148	0.259	175	Q	-	-		80-120	-		20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch I	D: WG114412	5-3	QC Sample:	L1828672-03	Clien	t ID: MS S	ample		
Arsenic, Total	2.30	9.76	12.1	100		-	-		75-125	-		20
Cadmium, Total	ND	4.15	3.29	79		-	-		75-125	-		20
Chromium, Total	11.0	16.3	28.0	104		-	-		75-125	-		20
Lead, Total	8.20	41.5	46.8	93		-	-		75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number:

L1829545

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG114364	4-4 QC Sample:	L1829809-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/kg	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG114412	5-4 QC Sample:	L1828672-03	Client ID:	DUP Sample	
Arsenic, Total	2.30	2.62	mg/kg	13		20
Cadmium, Total	ND	ND	mg/kg	NC		20
Chromium, Total	11.0	11.3	mg/kg	3		20
Lead, Total	8.20	12.4	mg/kg	41	Q	20

INORGANICS & MISCELLANEOUS

Project Name: MCCABE ST.

SE18-1375

Lab Number: L1829545

Report Date: 08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01

Client ID: SP-1

Project Number:

Sample Location: Not Specified

Date Collected:

07/31/18 12:30

Date Received: Field Prep:

07/31/18 Not Specified

Sample Depth:

Matrix: Soil

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Damp Soil

Particle Size: Medium
Preliminary Burning Time (sec): 120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	s - Westborough Lab			
Ignitability	NI	08/08/18 01:00	1,1030	SB

Project Name: MCCABE ST. Lab Number: L1829545 Report Date: **Project Number:** SE18-1375

08/10/18

SAMPLE RESULTS

Lab ID: L1829545-01

Client ID: SP-1

Sample Location: Not Specified

Date Collected: 07/31/18 12:30 Date Received: 07/31/18

Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Solids, Total	78.2	%	0.100	NA	1	-	08/07/18 08:54	121,2540G	RI
pH (H)	7.0	SU	-	NA	1	-	08/01/18 18:54	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/03/18 17:57	08/03/18 19:26	125,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	08/03/18 17:57	08/03/18 19:08	125,7.3	TL

Project Name: MCCABE ST.

Project Number: SE18-1375

Lab Number:

L1829545

Report Date: 08/10/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab for	sample(s): 01	Batch:	WG1	142803-1				
Sulfide, Reactive	ND	mg/kg	10		1	08/03/18 17:57	08/03/18 19:03	125,7.3	TL
General Chemistry	- Westborough Lab for	sample(s): 01	Batch:	WG1	142804-1				
Cyanide, Reactive	ND	mg/kg	10		1	08/03/18 17:57	08/03/18 19:22	125,7.3	TL

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number:

L1829545

Report Date:

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recover Qual Limits	ry RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1141941-1				
рН	100	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1142803-2				
Sulfide, Reactive	78	-	60-125	-		40
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1142804-2				
Cyanide, Reactive	34	-	30-125	-		40

Lab Duplicate Analysis Batch Quality Control

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number:

L1829545

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated sa	mple(s): 01 QC Batch ID:	WG1141941-2 QC	C Sample: L1829	526-01 Clie	nt ID: DUP Sample
рН	7.7	7.7	SU	0	5
General Chemistry - Westborough Lab Associated sa	mple(s): 01 QC Batch ID:	WG1142803-3 QC	Sample: L1829	100-01 Clie	nt ID: DUP Sample
Sulfide, Reactive	ND	ND	mg/kg	NC	40
General Chemistry - Westborough Lab Associated sa	mple(s): 01 QC Batch ID:	WG1142804-3 QC	C Sample: L1829	100-01 Clie	nt ID: DUP Sample
Cyanide, Reactive	ND	ND	mg/kg	NC	40
General Chemistry - Westborough Lab Associated sa	mple(s): 01 QC Batch ID:	WG1143594-1 QC	C Sample: L1829	534-01 Clie	nt ID: DUP Sample
Solids, Total	90.2	89.6	%	1	20

Lab Number: L1829545

Report Date: 08/10/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

MCCABE ST.

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: SE18-1375

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1829545-01A	Vial MeOH preserved	Α	NA		3.2	Υ	Absent		8260HLW(14)
L1829545-01B	Plastic 2oz unpreserved for TS	Α	NA		3.2	Υ	Absent		AS-TI(180),CR-TI(180),PB-TI(180),HG- T(28),CD-TI(180)
L1829545-01C	Glass 250ml/8oz unpreserved	Α	NA		3.2	Υ	Absent		8270TCL(14),IGNIT- 1030(14),REACTS(14),PCB-8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH-DRO-D(14)

Project Name:MCCABE ST.Lab Number:L1829545Project Number:SE18-1375Report Date:08/10/18

GLOSSARY

Acronyms

MS

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:MCCABE ST.Lab Number:L1829545Project Number:SE18-1375Report Date:08/10/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:MCCABE ST.Lab Number:L1829545Project Number:SE18-1375Report Date:08/10/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates IIIA, April 1998.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дирна	CHAIN O	F CUSTO	DY PAGE		of	Date	Rec'd in	Lab: (07-	31-	20	KA	LPHA	Job#:	48	2954	5	
6 Walkup Drive Westboro, MA 015 Tel: 508.898-9220		Project Informa Project Name: /		St		The second second	ort info	rmatio	on - Dat D EMAIL			5	Billing I	Informat as Client in	ion		123	
Client Information		Project Location: Project #: 5 E	oject Location: oject #: SEIS-13.75 oject Manager: Good #: Sov26					Regulatory Requirements & Project In Yes No MA MCP Analytical Methods Yes No Matrix Spike Required on this SDG? Yes No GW1 Standards (Info Required for Matrix Spike Regulated No NPDES RGP Other State /Fed Program							☐ Yes ☐ No CT RCP Analytical Methods ?? (Required for MCP Inorganics)			
Phone: 781-3 Email: 950020	19-0100 esitecenucom oject Information:	Turn-Around To Standard Date Due:	me □ RUSH (only confi	imed if pre-appi	ravidl)	78260	D ABN D S.24.2	METALS: DINCP 13 DINCP	EPH: DRanges & Targets DPCP15	D PCB DPEN Targets D Ranges Only	SSY COURT ONLY DELL	Assessment	Hose H		/ F	SAMPLE INFO Filtration Field Lab to do Preservation Lab to do	TOTAL # BOTTLES	
ALPHA Lab ID (Lab Use Only)	Sample ID	Col	lection Time	Sample Matrix	Sampler Initials	, VOC.	SVOC:	METAL	EPH:		ž Š	Jan San	1		Samp	ole Comments	19000	
29545-01	5P-1	7/3	12-30									×,					2	
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 64 of 64	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MaCOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₂ CI	Relinquished By:	194	Pre	ner Type servative	Ch.		Receive	-		V-3	Date/Til	ne 1520 6 15	See reve		tted are subject Conditions 2-Har-2012)	tto	

ANALYTICAL REPORT

Lab Number: L1833665

Client: Sitec Environmental, Inc.

769 Plain Street

Unit C

Marshfield, MA 02050

ATTN: Geoff Souza
Phone: (781) 319-0100
Project Name: MCCABE ST.

Project Number: SE18-1375
Report Date: 08/31/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MCCABE ST. **Project Number:** SE18-1375

Lab Number: L1833665 **Report Date:** 08/31/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1833665-01	SP-1	SOIL	Not Specified	07/31/18 12:30	07/31/18

Serial No:08311812:19

Project Name:MCCABE ST.Lab Number:L1833665Project Number:SE18-1375Report Date:08/31/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Ы	ease	contact	Client	Services	at 800	-624-9	220 wi	ith any o	questions	٠.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/31/18

Melissa Cripps Melissa Cripps

ALPHA

METALS

Serial_No:08311812:19

07/31/18 12:30

Date Collected:

Project Name:MCCABE ST.Lab Number:L1833665Project Number:SE18-1375Report Date:08/31/18

SAMPLE RESULTS

Lab ID: L1833665-01

Client ID: SP-1 Date Received: 07/31/18
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth: TCLP/SPLP Ext. Date: 08/28/18 05:24

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
TCLP Metals by EP	A 1311 - I	Mansfield L	.ab								
Lead, TCLP	2.30		mg/l	0.500		1	08/30/18 14:4	5 08/30/18 18:58	EPA 3015	1,6010D	AB

Serial_No:08311812:19

Project Name: Lab Number: MCCABE ST. L1833665 Project Number: SE18-1375

Report Date: 08/31/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
TCLP Metals by EPA	1311 - Mansfield Lab	for sample	e(s): 01	Batch:	WG11522	91-1			
Lead, TCLP	ND	mg/l	0.500		1	08/30/18 14:45	08/30/18 18:49	1,6010D	AB

Prep Information

Digestion Method: EPA 3015

TCLP/SPLP Extraction Date: 08/28/18 05:24

Lab Control Sample Analysis Batch Quality Control

MCCABE ST.

Batch Quality Cont

Lab Number: L1833665

Project Number: SE18-1375 Report Date: 08/31/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
TCLP Metals by EPA 1311 - Mansfield Lab Ass	ociated sample(s)	: 01 Ba	atch: WG1152291-2						
Lead, TCLP	87		-		75-125	-		20	

Project Name:

Serial_No:08311812:19

Lab Number: L1833665

Report Date: 08/31/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

MCCABE ST.

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: SE18-1375

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1833665-01A	Glass 250ml/8oz unpreserved	Α	NA		3.2	Υ	Absent		-
L1833665-01X	Plastic 120ml HNO3 preserved Extracts	Α	NA		3.2	Υ	Absent		PB-CI(180)
L1833665-01X9	Tumble Vessel	Α	NA		3.2	Υ	Absent		-

Project Name:MCCABE ST.Lab Number:L1833665Project Number:SE18-1375Report Date:08/31/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Market C. 1. C. 1. A. 1. 11. 11. 1. C.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:MCCABE ST.Lab Number:L1833665Project Number:SE18-1375Report Date:08/31/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:08311812:19

Project Name:MCCABE ST.Lab Number:L1833665Project Number:SE18-1375Report Date:08/31/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08311812:19

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

Page 1 of 1

ID No.:17873

Revision 11

Published Date: 1/8/2018 4:15:49 PM

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, EA 351.1, SM4500P-B, EA 351.1, SM500P-B, EA 351.1, SM500P-B, E SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

L1833665

ALPHA	CHAIN O	F CU	STO	DY ,	nos	OF	- Date F	lec'd ir	Lab (7-	31	-20	18	LPH	A Job	#:	8293	45
8 Walkup Drive	320 Forbes Bwg	Project					of Street, or other Designation of Street, or other Designatio	and the same	matio	The same of	SHUMBSH	verabil		- Alfrida	Inform	Delines A		
Tec 505-558-92	1581 Mansfeld MA 02048 20 Tel: 508-822-9309	Project Na	ame: /	ve Cab	e st	=	to AD	Ex	0	EMAIL		_	0	Sume	as Clier	nt info	PO#:	
Client Information	1	Project Lo										-	ect Info	OWNERS OF TAXABLE PARTY.	THE PERSON NAMED IN	uiremer	150	
Client: SITEC	- Environmental	Project #	SE	18-13 Se H	75				MA MCF Vlatrix St				DG? (F	☐ Ye Required	s D No d for MC	CT RCF P Inorga	Analytical Mi	ithods
Address 769	Dain St, Unite	Project Ma	mager: (Sex H	Sou	29	CJ Yes	O No	GW1 Sta	andards						Targets)		
Marshtie	MA 02050	ALPHA O							/Fed P		1	4	100	F	Criteria	031	ocses /	
Phone: 781-3	19-0100	Turn-Ar	ound Ti	me	NS/N	2,30		7	_		1	17	1	7	17	7	7	
and I demand the Property of the Park of t	esitecenu.com	-		(B)W	-		1	1	/ /.	0 4	8	8	11	/	//	11	1	- 1
Additional Pro	oject Information:	Date Du		J RUSH anny o	milional d ₂ m. _A	era viti	Dezes Den	DABN DPAN	METALS: D.RCP.13 DMCP.14	VPH. CRANGES & Talgets Chall Charge	C PCB C Per	Sort and Other Den	Charge annum	*	Le lead	//	SAMPLE IN Filtration Field Leb to do Preservation Lab to do	
ALPHA Lab ID (Lab Use Only)	Sample ID	į-	Colle	ection Time	Sample Matrix	Sampler Initials	000	METALS	METAL	Hay	0 0	TA E	6	1	7/	Sa	mple Comme	1
2954501	SP-1		7/31	12-30						I		13	3	X				9
33665	-					-	+		+		+		+	H	+	-		-
													-	Н				1
					_				-									+
												\mathbb{H}						-
											1				1			
Container Type	Preservative A= Nome			-	Conta	ner Type	+		+	H	+	+	+	H	+			- -
A= Amber glass V= Vial G= Glass B= Becteria cup	8× HCI C= HNO, D= H,5O _a E= NaOH	Relinquish	ed By			servative /Time		Por	ceived B	br			ate/Tim	0				I
Car Cube Other Fe Pricare D= BOD Bottle Page 13 of 13	F= MeOH G= NiHSO: H = Na,S,O: I* Ascorbic Acid J = NH,C! K= Zn Acetate O= Other		To de	the .	7315	1500	C/A	The state of the s	E	440	7	8-3/18	18/		See rev	erae side	nitted are subject Conditions	ect to

ANALYTICAL REPORT

Lab Number: L1837354

Client: Sitec Environmental, Inc.

769 Plain Street

Unit C

Marshfield, MA 02050

ATTN: Geoff Souza
Phone: (781) 319-0100
Project Name: MCCABE ST

Project Number: SE18-1375
Report Date: 09/21/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MCCABE ST Project Number: SE18-1375

Lab Number: Report Date:

Collection

L1837354 09/21/18

Receive Date

Alpha Sample ID Sample Location Date/Time Client ID Matrix SP-2 SOIL Not Specified 09/19/18 07:30 09/19/18 L1837354-01

Project Name:MCCABE STLab Number:L1837354Project Number:SE18-1375Report Date:09/21/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:MCCABE STLab Number:L1837354Project Number:SE18-1375Report Date:09/21/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name:MCCABE STLab Number:L1837354Project Number:SE18-1375Report Date:09/21/18

Case Narrative (continued)

MCP Related Narratives

Report Submission

All MCP required questions were answered with affirmative responses; therefore, there are no relevant protocol-specific QC and/or performance standard non-conformances to report.

Non-MCP Related Narratives

Petroleum Hydrocarbon Quantitation

L1837354-01: The surrogate recovery is below the acceptance criteria for o-terphenyl (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/21/18

Melissa Cripps Melissa Cripps

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: MCCABE ST Lab Number: L1837354

Project Number: SE18-1375 Report Date: 09/21/18

SAMPLE RESULTS

Lab ID: L1837354-01 D Date Collected: 09/19/18 07:30

Client ID: SP-2 Date Received: 09/19/18

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8015D(M) Extraction Date: 09/20/18 05:15
Analytical Date: 09/21/18 01:11

Analyst: SC
Percent Solids: 83%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quan	titation - Westborough Lab					
ТРН	12500000		ug/kg	3890000		100
Surrogate			% Recovery	Qualifier		eptance riteria
o-Terphenyl			0	Q		40-140

Project Name: Lab Number: MCCABE ST L1837354

Project Number: SE18-1375 Report Date: 09/21/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015D(M) Analytical Date: 09/20/18 09:02

Analyst: SC Extraction Method: EPA 3546 Extraction Date:

09/20/18 00:43

Parameter	Result	Qualifier	Units	RL		MDL	
Petroleum Hydrocarbon Quantitation	n - Westbor	ough Lab fo	or sample(s)	: 01	Batch:	WG1158740-1	
TPH	ND		ug/kg	32600			

		Acceptance		
Surrogate	%Recovery Qua	lifier Criteria		
o-Terphenyl	72	40-140		

L1837354

Lab Control Sample Analysis Batch Quality Control

Project Name: MCCABE ST
Project Number: SE18-1375

Lab Number:

Report Date: 09/21/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Petroleum Hydrocarbon Quantitation - V	Westborough Lab Associ	ciated sample	e(s): 01 Batch:	WG115	8740-2				
ТРН	100		-		40-140	-		40	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery G	Qual Criteria
o-Terphenyl	84		40-140

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: MCCABE ST L1837354 **Project Number:** SE18-1375

Report Date: 09/21/18

SAMPLE RESULTS

Lab ID: Date Collected: L1837354-01 09/19/18 07:30

Client ID: SP-2 Date Received: 09/19/18

Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	83.2		%	0.100	NA	1	-	09/20/18 03:50	121,2540G	FN

Lab Number: L1837354

Report Date: 09/21/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

MCCABE ST

YES

Cooler Information

Project Name:

Custody Seal Cooler

Absent Α

Project Number: SE18-1375

Container Information			Initial	Initial Final				Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1837354-01A	Glass 250ml/8oz unpreserved	Α	NA		5.1	Υ	Absent		TS(7).TPH-DRO-D(14)	

Project Name: Lab Number: MCCABE ST L1837354 **Project Number:** SE18-1375 **Report Date:** 09/21/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:MCCABE STLab Number:L1837354Project Number:SE18-1375Report Date:09/21/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:MCCABE STLab Number:L1837354Project Number:SE18-1375Report Date:09/21/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Дігна	CHAIN O	F CUSTODY	PAGEOF	Date Rec'd in Lab: 04/19/18 ALPHA Job #: 18373	54
A MALTY 10 AL	220 Festion Rhyd	Project Information		Report Information - Data Deliverables Billing Information	
8 Walkup Drive Westboro, MA 01 Tel: 508-898-922		Project Name: MC Co	the St	ADEx DEMAIL Dame as Client info PO#:	
Client Information		Project Location:		Regulatory Requirements & Project Information Requirements	
Client: SITEC	Environmenlal	Project#: 5E18-	1375	∀Yes □ No MA MCP Analytical Methods □ Yes □ No CT RCP Analytical Methods □ Yes □ No Matrix Spike Required on this SDG? (Required for MCP Inorganics)	lethods
	Plainst, UnitC	Project Manager: 6-80	ff Souza	☐ Yes ☐ No GW1 Standards (Info Required for Metals & EPH with Targets)	
Maushfie	10, MA 02050	ALPHA Quote #:		☐ Yes ☐ No NPDES RGP ☐ Other State /Fed Program Criteria	2
	319-0100	Turn-Around Time	UNIO SILVE		
Email: 950020	@sitecenu.com			ANALYSIS SVOC. D8260 D624 D524.2 METALS: DMCP 13 DMCP 14 DRCP 15 VPH: DRanges & Targets D Ranges Only TPH: XQuant Only DFingerprint Samble Comu	
		1 Date Service County	only confirmed if pre-approved!)	SISS	Ţ
Additional Pr	oject Information:	Date Due:		ANALYSIS 624 D 524.2 D PAH 3 D MCP 14 D 1 S D RCRAG D Ranges argeis D Ranges D Fingerprint	INFO A
01.	Λ .			Filtration Gried	-
1)160	isp Rush yo	8 hr 147		Lab to	
		1.77		ANALYSIS December 15: December 16: December	
ALPHA Lab ID	Comple ID	Collection	Sample Sampler	ANALYSIS SVOC: D8260 D624 D524,2 SVOC: D8260 D624 D524,2 METALS: DMCP14 METALS: DMCP14 METALS: DMCP14 LEPH: DRanges & Targets D Range D PCB TPH: Anges & Targets D Range D PCB TPH: Anges & Targets D Range D PCB TPH: Anges & Targets D Range Samble Comm	i i
(Lab Use Only)	Sample ID	Date Tim		Sample Comm	nents 5
37354-01	311-2	9/19 73	0 5 05		
The Part of the State of the St					
-National Control					
Container Type P= Plastic A= Amber glass	Preservative A= None B= HCt		Container Type	6	
V= Viel G= Glass	C= HNO ₃ D= H ₂ SO ₄		Preservative		
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relinquished By-	Date/Time	Beceived By: Date/Time All samples submitted are	subject to
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI	Come	9/19/18	Alpha's Terms and Condition See reverse side.	ins.
10 (10	K= Zn Acetate O= Other	23	9-18-18-223	Munet a light 2739 FORM NO: 01-01 (rev. 12-Mar-201))