

SITEC ENVIRONMENTAL, Inc. 769 Plain Street, Unit C Marshfield, MA 02050 Tel. (781) 319-0100 FAX (781) 834-4783

449 Faunce Corner Road Dartmouth, MA 02747 Tel. (508) 998-2125 FAX (508) 998-7554

IMMEDIATE RESPONSE ACTION (IRA) PLAN

Release Tracking No.: 4-27363

Property Located at:

Residential Lot 85 McCabe Street Dartmouth, Massachusetts

Prepared For:

Terceira Construction 1 Cookie Way Dartmouth, MA 02748

Prepared By: SITEC Environmental, Inc.

769 Plain Street, Unit C Marshfield, MA 02050

SITEC Project Number: SE18-1375

Date: August 30, 2018

Table of Contents

Section	<u>n</u>		<u>Page</u>
1.0	INTRO	DDUCTION	1
	1.1	Limitations	
2.0	PROP	ERTY DESCRIPTION	1
	2.1	Property Location	1
	2.2	Vicinity Characteristics	1
	2.3	Property Uses	
	2.4	Uses of Adjoining Properties	
3.0 4.0		ASE DESCRIPTION	
5.0	IMME	DIATE RESPONSE ACTION (IRA) PLAN	3
	5.1	Assessment and Removal of the Vicious Black Petroleum Based Liquid	
	5.2	Removal and Disposal of the Soil Pile	3
	5.3	Odor Control Plan	
	5.4	Additional Assessment	
	5.5	Implementation Schedule	
	5.6	Federal, State, and Local Permits	
	5.7	PRP Authorization	

TABLES

TABLE 1 - Volatile Organic Compound (VOC) Soil Analysis Summary TABLE 2 - Semi-Volatile Organic Compound (SVOC) and Total Petroleum Hydrocarbon (TPH) Soil Analysis Summary

TABLE 3 - Pesticides, Poly-chlorinated Biphynels (PCB) and Metals Soil Analysis Summary

FIGURE 1 - Locus Map FIGURE 2 - Site Sketch

ATTACHMENTS

ATTACHMENT 1 - Laboratory Analysis ATTACHMENT 2 - PRP Authorization

1.0 INTRODUCTION

This document is an Immediate Response Action (IRA) Plan prepared by SITEC Environmental, Inc. (SITEC) regarding a reported release of oil and/or hazardous materials (OHM) at a vacant residential lot located at 85 McCabe Street in Dartmouth, Massachusetts (the "Site"). This report serves to notify the Massachusetts Department of Environmental Protection (MassDEP) of the results of the completed assessment and planned activities which are performed under authorization from Terceira Construction, the potentially responsible party (PRP) for this release.

The actions were conducted in compliance with Massachusetts General Laws Chapter 21E (MGL Chapter 21E), and the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000. The purpose of this report is to satisfy MCP requirements for IRAs at 310 CMR 40.0424. As per 310 CMR 40.0425, SITEC will prepare and submit an IRA status report within 120 days of submission of this IRA Plan and subsequent status reports every six (6) months thereafter, until an IRA Completion Report is submitted. In addition, due to odor complaints, MassDEP has required the submission of this IRA Plan by September 2, 2018 as an interim deadline.

1.1 Limitations

The conclusions contained in this report are based solely upon and limited to the information described herein. Overall site observations were limited to clearly visible, unobstructed conditions. In completing this IRA Plan, SITEC did not consider whether this property is in compliance with any other statutes, laws, by-laws, regulations or policies unless compliance was directly related to the reported release. A portion of the information provided in this report is based upon personal interviews by the parties involved. SITEC did not attempt to independently verify the completeness, correctness or accuracy of this information. SITEC reserves the right to change its conclusions upon learning that this information was incomplete, incorrect or inaccurate.

2.0 PROPERTY DESCRIPTION

The following information was obtained during SITEC's Property reconnaissance, from local records review, and a review of publicly available maps and plans.

2.1 **Property Location**

The Site is located at 85 McCabe Street, Bristol County, Dartmouth, Massachusetts. According to the Town of Dartmouth Assessors Office, the land on which the Site is located is identified on Map 144, as Lot 64 (the "Property"). The coordinates for the Site is approximately 41° 36' 59" North Latitude and 70° 56' 51" West Longitude. The Property is rectangular and consists of approximately 0.20 acres. A Locus Map is included as Figure 1.

2.2 Vicinity Characteristics

The Property is zoned residential and is located in a residential area in the South Dartmouth. The Property is located approximately 0.3 miles west from the Dartmouth-New Bedford town line. The Property and the vicinity are served by municipal water, gas, and telephone/cable services.

2.3 Property Uses

The Property is currently unoccupied. There was a former single family residence located on the Property (constructed in 1949) which was recently demolished. The construction of a new single family residence began in July 2018. The foundation excavation has been completed and the bottom of the excavation is covered with pea stone. Construction was halted upon discovery of the release.

2.4 Uses of Adjoining Properties

Single family residences abut the Property to the west, north, and east. McCabe Street abuts the Property to the south with single family residences located across McCabe Street from the Property.

3.0 RELEASE DESCRIPTION

On July 30, 2018 MassDEP received verbal notification from Michael O'Reilly, Environmental Affairs Coordinator for the Town of Dartmouth regarding a release of OHM at the Site. Mr. O'Reilly reported that several deteriorated metal drums of various sizes containing a black petroleum-based liquid, as well as rusted metal objects, rubber tires, glass, and other discarded debris, were excavated during foundation demolition at the single family residential lot.

On July 31, 2018, SITEC along with MassDEP visited the Site and observed conditions consistent with the observations of Mr. O'Reilly. Visible on the side wall of the excavation was various debris including rusted metal objects, tires, glass bottles, and a black petroleum based substance in the soil. In addition, two damaged metal containers were observed on the pile of excavated soil which were leaking a viscous black petroleum based liquid.

4.0 INITIAL SOIL SAMPLING AND ANALYSIS

On July 31, 2018, two grab soil samples were collected from the side wall of the excavation by SITEC. Soil sample SS-1 was collected from the western excavation wall at approximately 2 feet below grade where red metal stained soil was observed. Sample SS-2 was collected from the northen wall of the excavation at approximately 2 feet below grade where the black petroleum based substance was observed. Approximate locations of the soil samples are depicted on Figure 2 - Site Sketch.

Both samples were submitted to Alpha Analytical Laboratories for the analysis of semi-volatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH), pesticides, polychlorinated biphynels (PCBs), and MCP Metals. In addition, SITEC submitted the soil sample SS-2 for analysis of Volatile organic Compounds (VOCs). Due to the elevated concentration of total chromium reported in sample SS-1, this sample was also analyzed for Chromium VI.

Table 1 summarizes the VOC analysis and compares the results to the applicable Method 1 Standards. As noted from Table 1 no VOCs were reported above their respective Method 1 Standard. Table 2 summarizes the SVOC and TPH soil analysis and compares the results to the Method 1 Standards. As noted from Table 2, elevated concentrations of several SVOCs and TPH, attributable to the black tar substance, were reported in soil sample SS-2. Table 3 summarizes the pesticides, PCB, and metals soil analysis. As noted from Table 3 there was no instance where a pesticide or PCB was reported exceeding its Method 1 Standard. Elevated concentrations of several metals including lead and chromium were reported in soil sample SS-1 exceeding their Method 1 standards which may be attributable to the oxidized metal in the soil. The laboratory reports are included in Attachment 1.

5.0 IMMEDIATE RESPONSE ACTION (IRA) PLAN

The primary objective of the proposed IRA is to reduce concentrations of OHM and to further evaluate the Property. In order to accomplish this SITEC proposes to conduct an IRA activity that will consist of evaluating, removing, and disposing of the vicious black petroleum based liquid from the excavated drums; disposing/recycling of the excavated soil stockpile; and the advancement of test pits on the Property.

5.1 Assessment and Removal of the Viscous Black Petroleum Based Liquid

On August 28, 2018, Geoffrey Souza, LSP, of SITEC, George Verissomo of Terceira Construction, and Felix Fontanez of New England Disposal Technologies, Inc. (NEDT) an environmental contractor, met at the site to discuss the process of removing the drums and viscous black petroleum based liquid from the soil stockpile. The agreed general procedure is to remove the viscous black petroleum based liquid using hand tools and placing the substance and any contaminated soil/debris into 85-gallon drum overpacks. The overpacks will then be sealed and remain on the Property until such time they can be disposed under a hazardous waste manifest by NEDT. After removal of the surficial viscous tar from the soil pile, the pile will be probed with an excavator to determine if any additional substances have impacted the pile.

As requested by MassDEP, on August 28, 2018, SITEC collected two samples of the viscous black petroleum based liquid leaking out of the drums on the north side of the soil pile. One sample of the black substance was leaking out of a 5 gallon pail and the other sample was collected from the substance leaking out of the 55-gallon drum. The samples were submitted to Alpha Analytical Laboratories for characterization (petroleum hydrocarbon identification) including analysis of PCBs.

5.2 Removal and Disposal of Soil Pile

Once the viscous black petroleum based liquid is removed, the stockpile of excavated soil will be transported to a disposal/recycling facility. On July 31, 2018, a composite soil sample was collected from the soil stockpile for waste characterization purposes (TCLP results remain pending). Elevated concentrations of VOCs, SVOCs, and TPH were reported in the waste characterization sample. PCBs were not detected in the waste characterization sample.

The disposal/recycling facility to which the soil will be transported, will be determined on the basis of results of the soil characterization sample, availability, cost, and distance from the Property. The transportation and disposal of the soil will be managed under the Bill of Lading (BOL) process. Possible disposal/recycling facilities include Aggregate Industries in Stoughton or ESMI in New Hampshire. Massachusetts lined or unlined solid waste landfills are not considered as a disposal/recycling facility; since the total VOC, SVOC, and TPH concentrations exceeded state criteria for disposal of contaminated soil in lined or unlined landfills (MassDEP Policy COMM-97-001).

5.3 Odor Control Plan

Due to recent complaints of odors from the Property, two layers of 6-mil poly-ethylene sheeting will remain covering the soil pile. In addition to daily visual inspections by Terceira Construction, SITEC will inspect the Property at least once per week or after a significant wind event. During the inspection, the poly-ethylene sheeting will be evaluated and secured as necessary. In addition, the ambient air around the stockpile will be screened with a photo-ionization detector (PID) and observed for odors. If there is a response by the PID or odors are otherwise detected, addational plastic sheeting will be added to the soil stockpile. On August 28, 2018, Terceira Construction placed the second layer of poly-ethylene sheeting on the soil stockpile.

5.4 Additional Assessment

After removal of soil stockpile from the Property, a series of test pits will be excavated on the Property to delineate and characterize any buried debris, drums, or contamination on the Property. In addition to the visually characterizing and logging the material in each test pit, soil samples will be collected, field screening and submitted for appropriate laboratory analysis.

5.5 Implementation Schedule

SITEC anticipates this IRA can begin within one week of MassDEP approval (specific or presumptive).

5.6 Federal, State, and Local Permits

There are no additional federal, state, or local permits anticipated for this work.

5.7 PRP Authorization

Authorization for SITEC to file this IRA Plan and status report with MassDEP on behalf of the PRP is included as Attachment 2.

Subject to the limitations previously described and otherwise reference herein, all the available information, research, and Property observations documented to date and contained in this report are, to the best of SITEC's knowledge, true, accurate, and complete.

SITEC ENVIRONMENTAL, INC.

Geoffrey Souza, LSP Project Manager

TABLES

TABLE 1 - VOLATILE ORGANIC COMPOUND (VOC) SOIL ANALYSIS SUMMARY TABLE 2 - SEMI-VOLATILE ORGANIC COMPOUND (SVOC) AND TOTAL PETROLEUM HYDROCARBON (TPH) SOIL ANALYSIS SUMMARY TABLE 3 - PESTICIDES, POLY-CHLORINATED BIPHYNELS (PCB) AND METALS SOIL ANALYSIS SUMMARY

Table 1 Volatile Organic Compounds (VOCs) Soil Analysis Summary

Residential Lot 85 McCable Street

Dartmouth, Massachusetts

COMPOUND				tandards (mg/			Results
	S-1,GW-2	S-1,GW-3	S-2,GW-2	S-2,GW-3	S-3,GW-2	S-3,GW-3	SS-2
Methylene chloride	4	400	4	700	4	700	0.7 U
1,1-Dichloroethane	9	500	9	1000	9	1000	0.14 U
Chloroform	0.2	500	0.2	1000	0.2	1000	0.21 U
Carbon tetrachloride	5	30 30	5	100	5 0.1	1000	0.14 U 0.14 U
Dibromochloromethane	0.1	20	0.1	100	0.03	1000 500	0.14 U 0.14 U
1.1.2-Trichloroethane	2	20 40	2	200	2	500	0.14 U 0.14 U
Fetrachloroethene	10	30	10	200	10	1000	0.14 U 0.07 U
Chlorobenzene	3	100	3	100	3	1000	0.07 U
Frichlorofluoromethane	NS	NS	NS	NS	NS	NS	0.07 U 0.56 U
1,2-Dichloroethane	0.1	20	0.1	100	0.1	300	0.56 U 0.14 U
1,2-Dichloroethane	500	500	600	100	600	3000	0.14 U 0.07 U
Bromodichloromethane	0.1	300	0.1	1000	0.1	500	0.07 U
rans-1.3-Dichloropropene	0.1	20	0.1	90	0.1	100	0.07 U
cis-1,3-Dichloropropene	0.4	20	0.4	90	0.4	100	0.14 U
1,3-Dichloropropene, Total	0.4	20	0.4	90	0.4	100	0.07 U
1,1-Dichloropropene	NS	NS	NS	NS	NS	NS	0.07 U
Bromoform	1	300	1	800	1	800	0.07 U 0.56 U
1,1,2,2-Tetrachloroethane	0.02	10	0.02	50	0.02	400	0.38 U 0.07 U
Benzene	40	40	200	200	400	1000	0.07 0
Foluene	500	500	1000	1000	2000	3000	0.24
Ethylbenzene	500	500	1000	1000	1000	3000	0.57 0.14 U
Chloromethane	NS	NS	NS	NS	NS	5000 NS	0.14 U 0.56 U
Bromomethane	0.5	30	0.5	30	0.5	30	0.56 U 0.28 U
Vinyl chloride	0.3	30	0.3	30 7	0.3	60	0.28 U 0.14 U
Chloroethane	0.7 NS	NS	0.7 NS	NS	NS	NS	0.14 U 0.28 U
	40	500	40	1000	40	3000	0.28 U 0.14 U
rans-1,2-Dichloroethene	40	500	40	1000	40	3000	0.14 U 0.21 U
Trichloroethene	0.3	30	0.3	60	0.3	60	0.21 U 0.07 U
1.2-Dichlorobenzene	100	300	100	300	100	300	0.07 U 0.28 U
1,3-Dichlorobenzene	100	100	200	500	200	500	0.28 U
1,4-Dichlorobenzene	100	80	1	400	200	2000	0.28 U
Methyl tert butyl ether	100	100	100	500	100	500	0.28 U
	100		100	1000	100	3000	
o/m-Xylene		500	100	1000			0.33
	100	500	100	1000	100 100	3000 3000	0.14 U 0.33
Xylenes, Total	0.1	500 100			0.1		0.33 0.14 U
cis-1,2-Dichloroethene 1,2-Dichloroethene, Total	0.1 NS	NS	0.1 NS	500 NS	0.1 NS	500 NS	0.14 U 0.14 U
Dibromomethane	NS	NS	NS	NS	NS	NS	0.14 U 0.28 U
1,2,3-Trichloropropane	NS	NS	NS	NS	NS	NS	0.28 U
Styrene	4	70	4	300	4	2000	0.28 0
Dichlorodifluoromethane	4 NS	NS	4 NS	NS	4 NS	2000 NS	1.4 U
Acetone	50	400	50	400	50	400	1.4 U
Carbon disulfide	NS	400 NS	NS	400 NS	NS	400 NS	1.4 U
Methyl ethyl ketone	50	400	50	400	50	400	1.4 U
Methyl isobutyl ketone	50	400	50	400	50	400	1.4 U 1.4 U
2-Hexanone	50 NS	400 NS	NS	400 NS	NS	400 NS	1.4 U 1.4 U
2-Hexanone Bromochloromethane	NS	NS	NS	NS	NS	NS	0.28 U
Fetrahydrofuran	NS NS	NS	NS	NS	NS	NS NS	0.28 U 0.56 U
2,2-Dichloropropane	NS NS	NS	NS	NS	NS	NS NS	0.56 U 0.28 U
1,2-Dibromoethane	0.1	1	0.1	5	0.1	40	0.28 U 0.14 U
,	0.1 NS	I NS	0.1 NS	5 NS	0.1 NS	40 NS	0.14 U 0.28 U
1,3-Dichloropropane 1,1,1,2-Tetrachloroethane	0.1	NS 80	0.1	400	0.1	NS 500	0.28 U 0.07 U
Bromobenzene n-Butylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.28 U 0.14 U
n-Butylbenzene sec-Butylbenzene							0.14 U 0.14 U
	NS	NS	NS	NS	NS	NS	
ert-Butylbenzene	NS	NS	NS	NS	NS	NS	0.28 U
o-Chlorotoluene	NS	NS	NS	NS	NS	NS	0.28 U
o-Chlorotoluene	NS	NS	NS	NS	NS	NS	0.28 U
1,2-Dibromo-3-chloropropane Hexachlorobutadiene	NS 20	NS 20	NS 100	NS 100	NS 100	NS 100	0.42 U
	30 NS	30 NE	100 NE	100 NE	100 NS	100 NS	0.56 U
sopropylbenzene p-Isopropyltoluene	NS	NS	NS	NS	NS	NS	0.14 U
	NS 20	NS 500	NS 20	NS 1000	NS 20	NS 2000	0.14 U
Naphthalene	20 NS	500	20 NS	1000 NE	20	3000 NS	1.2
n-Propylbenzene	NS	NS	NS	NS	NS	NS	0.14 U
1,2,3-Trichlorobenzene	NS	NS 700	NS	NS 2000	NS	NS 5000	0.28 U
1,2,4-Trichlorobenzene	6 NC	700	6	3000	6	5000	0.28 U
1,3,5-Trimethylbenzene	NS	NS	NS	NS	NS	NS	0.28 U
	NS	NS	NS	NS	NS	NS	0.28 U
1,2,4-Trimethylbenzene	NG				NS	NS	0.28 U
1,2,4-Trimethylbenzene Diethyl ether	NS	NS	NS	NS			
l,2,4-Trimethylbenzene Diethyl ether Diisopropyl Ether	NS	NS	NS	NS	NS	NS	0.28 U
1,2,4-Trimethylbenzene Diethyl ether							

U = Analyzed but not found; detection limit listed

7390 = Red Text Indicates an exceedances of MCP S-3, GW-1, GW-2 or GW-3 Method 1 Standard

Table 2

Semi-Voialtile Organic Compounds (VOCs) and Total Petroleum Hydrocarbon (TPH) Soil Analysis Summary

Residential Lot 85 McCable Street Dartmouth, Massachusetts

COMPOUND	Method 1 Soil Standards (mg/kg)						Results	(mg/kg)
COMPOUND	S-1,GW-2	S-1,GW-3	S-2,GW-2	S-2,GW-3	S-3,GW-2	S-3,GW-3	SS-1	SS-2
		Semivolatile	Organic Com	pounds (SVO	Cs)			
Acenaphthene	1000	1000	3000	3000	5000	5000	0.74 U	7.7
1,2,4-Trichlorobenzene	6	700	6	3000	6	5000	0.92 U	6 U
Hexachlorobenzene	0.7	0.7	0.8	0.8	0.8	0.8	0.55 U	3.6 U
Bis(2-chloroethyl)ether	0.7	2	0.7	8	0.7	80	0.83 U	5.4 U
2-Chloronaphthalene	NS	NS	NS	NS	NS	NS	0.92 U	6 U
1,2-Dichlorobenzene	100	300	100	300	100	300	0.92 U	6 U
1,3-Dichlorobenzene	100	100	200	500	200	500	0.92 U	6 U
1,4-Dichlorobenzene	1	80	1	400	1	2000	0.92 U	6 U
3,3'-Dichlorobenzidine	3	3	20	20	100	100	0.92 U	6 U
2,4-Dinitrotoluene	2	2	10	10	50	80	0.92 U	6 U
2,6-Dinitrotoluene	NS	NS	NS	NS	NS	NS	0.92 U	6 U
Azobenzene	NS	NS	NS	NS	NS	NS	0.92 U	6 U
Fluoranthene	1000	1000	3000	3000	5000	5000	4	45
4-Bromophenyl phenyl ether	NS	NS	NS	NS	NS	NS	0.92 U	6 U
Bis(2-chloroisopropyl)ether	0.7	30	0.7	100	0.7	1000	1.1 U	7.2 U
Bis(2-chloroethoxy)methane	NS	NS	NS	NS	NS	NS	1 U	6.4 U
Hexachlorobutadiene	30	30	100	100	100	100	0.92 U	6 U
Hexachloroethane	3	50	3	200	3	200	0.74 U	4.8 U
Isophorone	NS	NS	NS	NS	NS	NS	0.83 U	5.4 U
Naphthalene	20	500	20	1000	20	3000	0.92 U	28
Nitrobenzene	NS	NS	NS	NS	NS	NS	0.83 U	5.4 U
Bis(2-ethylhexyl)phthalate	90	90	600	600	2000	2000	0.92 U	6 U
Butyl benzyl phthalate	NS	NS	NS	NS	NS	NS	0.92 U	6 U
Di-n-butylphthalate	NS	NS	NS	NS	NS	NS	0.92 U	6 U
Di-n-octylphthalate	NS	NS	NS	NS	NS	NS	0.92 U	6 U
Diethyl phthalate	200	300	200	300	200	300	0.92 U	6 U
Dimethyl phthalate	50	600	50	600	50	600	0.92 U	6 U
Benzo(a)anthracene	7	7	40	40	300	300	2.8	46
Benzo(a)pyrene	2	2	7	7	30	30	2.3	42
Benzo(b)fluoranthene	7	7	40	40	300	300	2.9	42
Benzo(k)fluoranthene	70	70	400	400	3000	3000	0.73	10
Chrysene	70	70	400	400	3000	3000	3.5	56
Acenaphthylene	600	10	600	10	600	10	2.5	64
Anthracene	1000	1000	3000	3000	5000	5000	1.8	47
Benzo(ghi)perylene	1000	1000	3000	3000	5000	5000	1.5	22
Fluorene	1000	1000	3000	3000	5000	5000	0.92 U	20
Phenanthrene	500	500	1000	1000	3000	3000	3	49
Dibenzo(a,h)anthracene	0.7	0.7	4	4	30	30	0.55 U	8.9
Indeno(1,2,3-cd)pyrene	7	7	40	40	300	300	1.4	21
Pyrene	1000	1000	3000	3000	5000	5000	5.6	89
Aniline	NS	NS	NS	NS	NS	NS	1.1 U	7.2 U
4-Chloroaniline	7	3	40	3	40	3	0.92 U	6 U
Dibenzofuran	NS	NS	NS	NS	NS	NS	0.92 U	6 U
2-Methylnaphthalene	80	300	80	500	80	500	1.1 U	33
Acetophenone	NS	NS	NS	NS	NS	NS	0.92 U	6 U
2,4,6-Trichlorophenol	20	20	20	20	20	20	0.55 U	3.6 U
2-Chlorophenol	100	100	100	300	100	300	0.92 U	6 U
2,4-Dichlorophenol	60	40	60	40	60	40	0.83 U	5.4 U
2,4-Dimethylphenol	100	500	100	1000	100	1000	0.92 U	6 U
2-Nitrophenol	NS	NS	NS	NS	NS	NS	2 U	13 U
4-Nitrophenol	NS	NS	NS	NS	NS	NS	1.3 U	8.4 U
2,4-Dinitrophenol	50	50	50	100	50	100	4.4 U	29 U
Pentachlorophenol	3	3	20	10	70	10	1.8 U	12 U
Phenol	50	20	50	20	50	20	0.92 U	6 U
2-Methylphenol	NS	NS	NS	NS	NS	NS	0.92 U	6 U
3-Methylphenol/4-Methylphenol	NS	NS	NS	NS	NS	NS	1.3 U	8.6 U
2.4.5-Trichlorophenol	1000	600	1000	600	1000	600	0.92 U	6 U
, ,			Hydrocarbon					00
Total Petroleum Hydrocarbons (TPH)	1000	1000	3000	3000	5000	5000	2320	9210
				2000	2000	2.000		

U = Analyzed but not found; detection limit listed

NS = No Standard for Indicated Parameter

NA = Not Analyzed for Indicated Parameter

= Yellow shade Indicates an exceedances of MCP S-1, GW-2 or GW-3 Method 1 Standard

= Blue Hatching Indicates an exceedances of MCP S-2, GW-2 or GW-3 Method 1 Standard 7390

= Red Text Indicates an exceedances of MCP S-3, GW-2 or GW-3 Method 1 Standard

Table 3 Pesticides, Polychlorinated Biphenyls (PCBs) and Metals Soil Analysis Summary

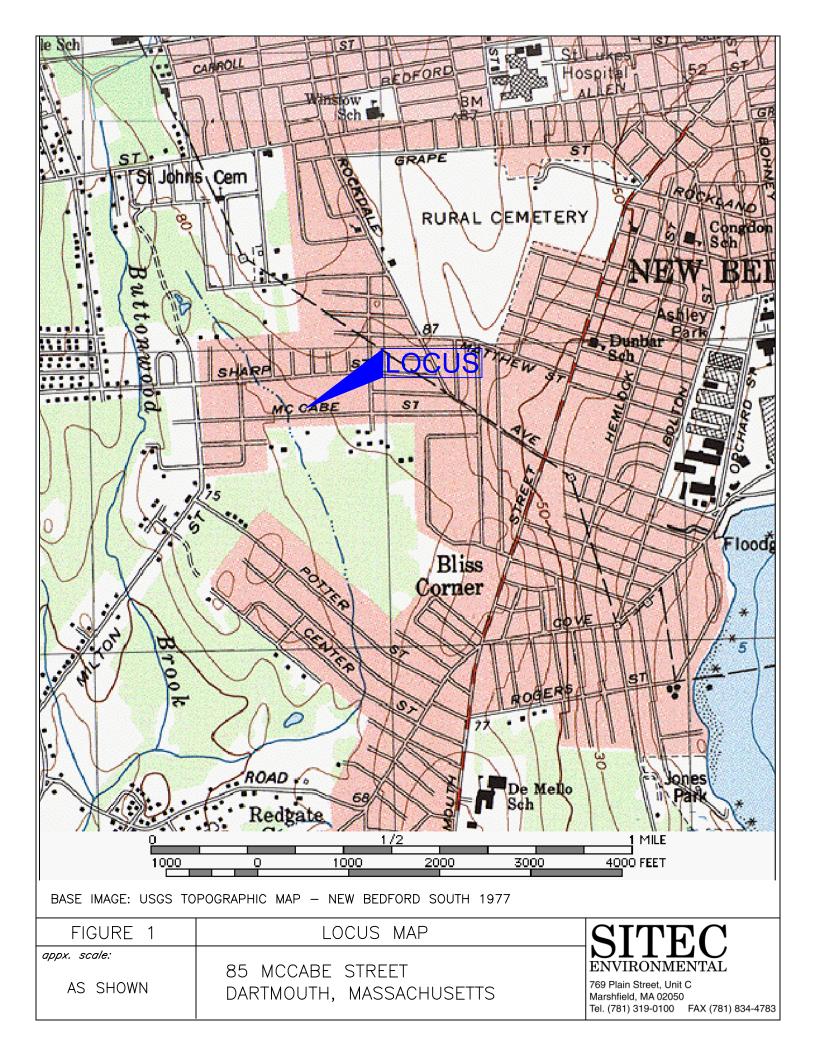
Residential Lot 85 McCable Street Dartmouth, Massachusetts

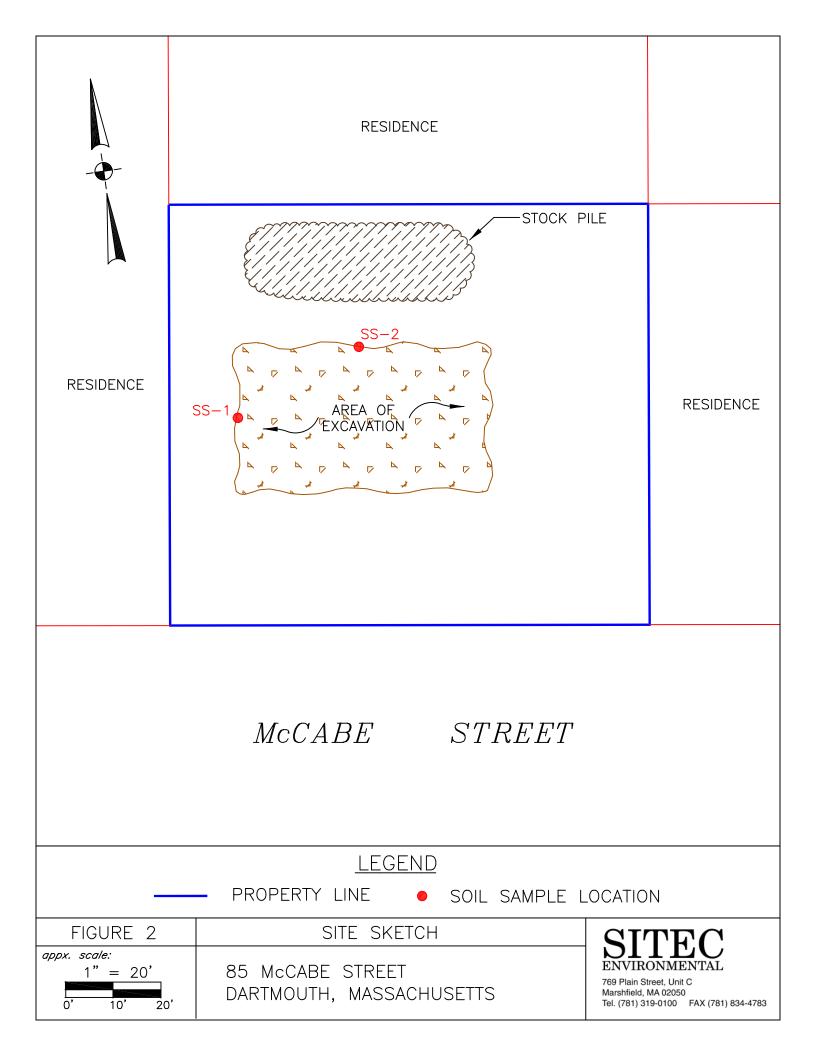
COMPOUND		Method 1 Soil Standards (mg/kg)						
COMPOUND	S-1,GW-2	S-1,GW-3	S-2,GW-2	S-2,GW-3	S-3,GW-2	S-3,GW-3	SS-1	SS-2
			Organoch	lorine Pesticides				
Delta-BHC	NS	NS	NS	NS	NS	NS	0.00176 U	0.00926 U
Lindane	1	0.5	2	0.5	2	0.5	0.000588 U	0.00309 U
Alpha-BHC	NS	NS	NS	NS	NS	NS	0.000736 U	0.00386 U
Beta-BHC	NS	NS	NS	NS	NS	NS	0.00176 U	0.00926 U
Heptachlor	0.3	0.3	2	2	10	10	0.000883 U	0.00463 U
Aldrin	0.08	0.08	0.5	0.5	3	3	0.00176 U	0.00926 U
Heptachlor epoxide	0.1	0.1	0.9	0.9	1	1	0.00331 U	0.0174 U
Endrin	10	10	20	20	20	20	0.000736 U	0.00386 U
Endrin ketone	NS	NS	NS	NS	NS	NS	0.00176 U	0.00926 U
Dieldrin	0.08	0.08	0.5	0.5	3	3	0.0011 U	0.00579 U
4,4'-DDE	6	6	30	30	60	60	0.00252 PI	0.00926 U
4,4'-DDD	8	8	40	40	60	60	0.00541 PI	0.00926 U
4,4'-DDT	6	6	30	30	60	60	0.0402	0.0174 U
Endosulfan I	300	1	500	1	500	1	0.00176 U	0.00926 U
Endosulfan II	300	1	500	1	500	1	0.00546 PI	0.00926 U
Endosulfan sulfate	NS	NS	NS	NS	NS	NS	0.000736 U	0.00386 U
Methoxychlor	200	200	400	400	400	400	0.00331 U	0.0174 U
Chlordane	5	5	30	30	60	60	0.0143 U	0.0752 U
Hexachlorobenzene	0.7	0.7	0.8	0.8	0.8	0.8	0.00176 U	0.00926 U
		•	Polychlorinat	ed Biphenyls (PC	(Bs)	•		
Aroclor 1016	1	1	4	4	4	4	0.0372 U	0.0398 U
Aroclor 1221	1	1	4	4	4	4	0.0372 U	0.0398 U
Aroclor 1232	1	1	4	4	4	4	0.0372 U	0.0398 U
Aroclor 1242	1	1	4	4	4	4	0.0372 U	0.0398 U
Aroclor 1248	1	1	4	4	4	4	0.0372 U	0.0398 U
Aroclor 1254	1	1	4	4	4	4	0.0372 U	0.0398 U
Aroclor 1260	1	1	4	4	4	4	0.0607	0.0398 U
Aroclor 1262	1	1	4	4	4	4	0.0372 U	0.0398 U
Aroclor 1268	1	1	4	4	4	4	0.0372 U	0.0398 U
PCBs, Total	1	1	4	4	4	4	0.0607	0.0398 U
		•	То	tal Metals	•			
Antimony	20	20	30	30	30	30	13.7	9.48
Arsenic	20	20	20	20	50	50	18.4	23.3
Barium	1000	1000	3000	3000	5000	5000	943	339
Beryllium	90	90	200	200	200	200	0.213 U	0.234 U
Cadmium	70	70	100	100	100	100	0.426 U	37.2
Chromium	100	100	200	200	200	200	3200	102
Chromium XI	100	100	200	200	200	200	4.5 U	NA
Lead	200	200	600	600	600	600	4270	1370
Nickel	600	600	1000	1000	1000	1000	145	79.4
Selenium	400	400	700	700	700	700	12.3	2.34 U
Silver	100	100	200	200	200	200	1	1.18
Thallium	8	8	60	60	80	80	2.13 U	2.34 U
Vanadium	400	400	700	700	700	700	854	37.3
Zinc	1000	1000	3000	3000	5000	5000	303	910

U = Analyzed but not found; detection limit listed

NS = No Standard for Indicated Parameter

PI - The RPD between the results for the two columns exceeds method-specified criteria. The lower value for the two columns reported due to obvious interference. NA = Not Analyzed for Indicated Parameter


= Yellow shade Indicates an exceedances of MCP S-1, GW-2 or GW-3 Method 1 Standard


= Blue Hatching Indicates an exceedances of MCP S-2, GW-2 or GW-3 Method 1 Standard

7390 = Red Text Indicates an exceedances of MCP S-3, GW-2 or GW-3 Method 1 Standard

FIGURES

FIGURE 1 - LOCUS MAP FIGURE 2 - SITE SKETCH

ATTACHMENT 1

LABORATORY REPORTS

ANALYTICAL REPORT

Lab Number:	L1829544
Client:	Sitec Environmental, Inc.
	769 Plain Street
	Unit C
	Marshfield, MA 02050
ATTN:	Geoff Souza
Phone:	(781) 319-0100
Project Name:	MCCABE ST.
Project Number:	SE18-1375
Report Date:	08/10/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08101816:03

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1829544

 Report Date:
 08/10/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1829544-01	SS-1	SOIL	Not Specified	07/31/18 11:45	07/31/18
L1829544-02	SS-2	SOIL	Not Specified	07/31/18 12:00	07/31/18

Project Name: MCCABE ST.

Project Number: SE18-1375

Lab Number: L1829544

Report Date: 08/10/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Were results reported for the complete analyte list specified in the selected CAM protocol(s)?

Please note that sample matrix information is located in the Sample Results section of this report.

YES

I

Project Name: MCCABE ST. Project Number: SE18-1375
 Lab Number:
 L1829544

 Report Date:
 08/10/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1829544

 Report Date:
 08/10/18

Case Narrative (continued)

Report Submission

August 10, 2018: This final report includes the results of all requested analyses. August 10, 2018: This is a preliminary report.

MCP Related Narratives

Sample Receipt

In reference to question H:

A Matrix Spike was not submitted for the analysis of Total Metals.

Volatile Organics

In reference to question G:

L1829544-02: One or more of the target analytes did not achieve the requested CAM reporting limits. In reference to question H:

The initial calibration, associated with L1829544-02, did not meet the method required minimum response factor on the lowest calibration standard for trichloroethene (0.1978), 2-butanone (0.0660), 4-methyl-2-pentanone (0.0786), and 1,4-dioxane (0.0012), as well as the average response factor for acetone, 2-butanone, 4-methyl-2-pentanone, and 1,4-dioxane.

The continuing calibration standard, associated with L1829544-02, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

Semivolatile Organics

L1829544-01: The sample has elevated detection limits due to the dilution required by the sample matrix. L1829544-02: The sample has elevated detection limits due to the dilution required by the matrix interferences encountered during the concentration of the sample and the analytical dilution required by the sample matrix. In reference to question G:

L1829544-01 and -02: One or more of the target analytes did not achieve the requested CAM reporting limits. In reference to question H:

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1829544

 Report Date:
 08/10/18

Case Narrative (continued)

L1829544-02: The surrogate recoveries are below the acceptance criteria for 2-fluorophenol (0%), phenol-d6 (0%), nitrobenzene-d5 (0%), 2-fluorobiphenyl (0%), 2,4,6-tribromophenol (0%), and 4-terphenyl-d14 (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

PCBs

In reference to question H:

L1829544-02: The internal standard (IS) response for 1-bromo-2-nitrobenzene was above the acceptance criteria on the b-channel; however, the sample was not re-analyzed due to obvious interferences. Since the IS response was above method criteria, all associated compounds are considered to have a potentially low bias. The surrogate recoveries are outside the method acceptance criteria for 2,4,5,6-tetrachloro-m-xylene (3%) and decachlorobiphenyl (6%) due to interference with the Internal Standard.

Pesticides

L1829544-02: The sample has elevated detection limits due to the dilution required by the sample matrix. In reference to question G:

L1829544-02: One or more of the target analytes did not achieve the requested CAM reporting limits. In reference to question H:

L1829544-01: The surrogate recoveries are outside the acceptance criteria for decachlorobiphenyl (163%/172%); however, the sample was not re-extracted due to coelution with obvious interferences.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

604 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 08/10/18

ORGANICS

VOLATILES

			Serial_N	0:08101816:03
Project Name:	MCCABE ST.		Lab Number:	L1829544
Project Number:	SE18-1375		Report Date:	08/10/18
		SAMPLE RESULTS		
Lab ID:	L1829544-02		Date Collected:	07/31/18 12:00
Client ID:	SS-2		Date Received:	07/31/18
Sample Location:	Not Specified		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	97,8260C			
Analytical Date:	08/08/18 20:57			
Analyst:	MV			
Percent Solids:	83%			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 8260/50	35 - Westborough Lat)			
Methylene chloride	ND	ug/kg	700		1
1,1-Dichloroethane	ND	ug/kg	140		1
Chloroform	ND	ug/kg	210		1
Carbon tetrachloride	ND	ug/kg	140		1
1,2-Dichloropropane	ND	ug/kg	140		1
Dibromochloromethane	ND	ug/kg	140		1
1,1,2-Trichloroethane	ND	ug/kg	140		1
Tetrachloroethene	ND	ug/kg	70		1
Chlorobenzene	ND	ug/kg	70		1
Trichlorofluoromethane	ND	ug/kg	560		1
1,2-Dichloroethane	ND	ug/kg	140		1
1,1,1-Trichloroethane	ND	ug/kg	70		1
Bromodichloromethane	ND	ug/kg	70		1
trans-1,3-Dichloropropene	ND	ug/kg	140		1
cis-1,3-Dichloropropene	ND	ug/kg	70		1
1,3-Dichloropropene, Total	ND	ug/kg	70		1
1,1-Dichloropropene	ND	ug/kg	70		1
Bromoform	ND	ug/kg	560		1
1,1,2,2-Tetrachloroethane	ND	ug/kg	70		1
Benzene	240	ug/kg	70		1
Toluene	570	ug/kg	140		1
Ethylbenzene	ND	ug/kg	140		1
Chloromethane	ND	ug/kg	560		1
Bromomethane	ND	ug/kg	280		1
Vinyl chloride	ND	ug/kg	140		1
Chloroethane	ND	ug/kg	280		1
1,1-Dichloroethene	ND	ug/kg	140		1
trans-1,2-Dichloroethene	ND	ug/kg	210		1

Serial_No:08101816:03 Project Name: Lab Number: MCCABE ST. L1829544 **Project Number:** Report Date: SE18-1375 08/10/18 SAMPLE RESULTS Lab ID: L1829544-02 Date Collected: 07/31/18 12:00 Client ID: SS-2 Date Received: 07/31/18 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Volatile Organics by 8260/50	35 - Westborough La	b			
	-				
Trichloroethene	ND	ug/kg	70		1
1,2-Dichlorobenzene	ND	ug/kg	280		1
1,3-Dichlorobenzene	ND	ug/kg	280		1
1,4-Dichlorobenzene	ND	ug/kg	280		1
Methyl tert butyl ether	ND	ug/kg	280		1
p/m-Xylene	330	ug/kg	280		1
o-Xylene	ND	ug/kg	140		1
Xylenes, Total	330	ug/kg	140		1
cis-1,2-Dichloroethene	ND	ug/kg	140		1
1,2-Dichloroethene, Total	ND	ug/kg	140		1
Dibromomethane	ND	ug/kg	280		1
1,2,3-Trichloropropane	ND	ug/kg	280		1
Styrene	280	ug/kg	140		1
Dichlorodifluoromethane	ND	ug/kg	1400		1
Acetone	ND	ug/kg	1400		1
Carbon disulfide	ND	ug/kg	1400		1
Methyl ethyl ketone	ND	ug/kg	1400		1
Methyl isobutyl ketone	ND	ug/kg	1400		1
2-Hexanone	ND	ug/kg	1400		1
Bromochloromethane	ND	ug/kg	280		1
Tetrahydrofuran	ND	ug/kg	560		1
2,2-Dichloropropane	ND	ug/kg	280		1
1,2-Dibromoethane	ND	ug/kg	140		1
1,3-Dichloropropane	ND	ug/kg	280		1
1,1,1,2-Tetrachloroethane	ND	ug/kg	70		1
Bromobenzene	ND	ug/kg	280		1
n-Butylbenzene	ND	ug/kg	140		1
sec-Butylbenzene	ND	ug/kg	140		1
tert-Butylbenzene	ND	ug/kg	280		1
o-Chlorotoluene	ND	ug/kg	280		1
p-Chlorotoluene	ND	ug/kg	280		1
1,2-Dibromo-3-chloropropane	ND	ug/kg	420		1
Hexachlorobutadiene	ND	ug/kg	560		1
Isopropylbenzene	ND	ug/kg	140		1
p-Isopropyltoluene	ND	ug/kg	140		1
Naphthalene	1200	ug/kg	560		1
n-Propylbenzene	ND	ug/kg	140		1
		ug/ng	110		•

					S	erial_No	p:08101816:03
Project Name:	MCCABE ST.				Lab Nun	nber:	L1829544
Project Number:	SE18-1375				Report D	Date:	08/10/18
		SAMP	LE RESULTS	6			
Lab ID:	L1829544-02				Date Colle	ected:	07/31/18 12:00
Client ID:	SS-2				Date Rece	eived:	07/31/18
Sample Location:	Not Specified				Field Prep	:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor

Farameter	Kesuk	Qualifier Offics		Dilution ractor
MCP Volatile Organics by 8260/503	5 - Westborough Lab			
1,2,3-Trichlorobenzene	ND	ug/kg	280	 1
1,2,4-Trichlorobenzene	ND	ug/kg	280	 1
1,3,5-Trimethylbenzene	ND	ug/kg	280	 1
1,2,4-Trimethylbenzene	ND	ug/kg	280	 1
Diethyl ether	ND	ug/kg	280	 1
Diisopropyl Ether	ND	ug/kg	280	 1
Ethyl-Tert-Butyl-Ether	ND	ug/kg	280	 1
Tertiary-Amyl Methyl Ether	ND	ug/kg	280	 1
1,4-Dioxane	ND	ug/kg	14000	 1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	96	70-130	

L1829544

08/10/18

Lab Number:

Report Date:

Project Name: MCCABE ST.

Project Number: SE18-1375

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:08/08/18 20:30Analyst:AD

arameter	Result	Qualifier	Units	RL	MDL
ICP Volatile Organics by 826	0/5035 - Westbo	orough Lab	for sample(s):	02	Batch: WG1144620-5
Methylene chloride	ND		ug/kg	250	
1,1-Dichloroethane	ND		ug/kg	50	
Chloroform	ND		ug/kg	75	
Carbon tetrachloride	ND		ug/kg	50	
1,2-Dichloropropane	ND		ug/kg	50	
Dibromochloromethane	ND		ug/kg	50	
1,1,2-Trichloroethane	ND		ug/kg	50	
Tetrachloroethene	ND		ug/kg	25	
Chlorobenzene	ND		ug/kg	25	
Trichlorofluoromethane	ND		ug/kg	200	
1,2-Dichloroethane	ND		ug/kg	50	
1,1,1-Trichloroethane	ND		ug/kg	25	
Bromodichloromethane	ND		ug/kg	25	
trans-1,3-Dichloropropene	ND		ug/kg	50	
cis-1,3-Dichloropropene	ND		ug/kg	25	
1,3-Dichloropropene, Total	ND		ug/kg	25	
1,1-Dichloropropene	ND		ug/kg	25	
Bromoform	ND		ug/kg	200	
1,1,2,2-Tetrachloroethane	ND		ug/kg	25	
Benzene	ND		ug/kg	25	
Toluene	ND		ug/kg	50	
Ethylbenzene	ND		ug/kg	50	
Chloromethane	ND		ug/kg	200	
Bromomethane	ND		ug/kg	100	
Vinyl chloride	ND		ug/kg	50	
Chloroethane	ND		ug/kg	100	
1,1-Dichloroethene	ND		ug/kg	50	
trans-1,2-Dichloroethene	ND		ug/kg	75	
Trichloroethene	ND		ug/kg	25	

L1829544

08/10/18

Lab Number:

Report Date:

Project Name: MCCABE ST.

Project Number: SE18-1375

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:08/08/18 20:30Analyst:AD

arameter	Result	Qualifier	Units	RL	MDL
ICP Volatile Organics by 826	0/5035 - Westbo	rough Lab f	or sample(s):	02	Batch: WG1144620-5
1,2-Dichlorobenzene	ND		ug/kg	100	
1,3-Dichlorobenzene	ND		ug/kg	100	
1,4-Dichlorobenzene	ND		ug/kg	100	
Methyl tert butyl ether	ND		ug/kg	100	
p/m-Xylene	ND		ug/kg	100	
o-Xylene	ND		ug/kg	50	
Xylenes, Total	ND		ug/kg	50	
cis-1,2-Dichloroethene	ND		ug/kg	50	
1,2-Dichloroethene, Total	ND		ug/kg	50	
Dibromomethane	ND		ug/kg	100	
1,2,3-Trichloropropane	ND		ug/kg	100	
Styrene	ND		ug/kg	50	
Dichlorodifluoromethane	ND		ug/kg	500	
Acetone	ND		ug/kg	500	
Carbon disulfide	ND		ug/kg	500	
Methyl ethyl ketone	ND		ug/kg	500	
Methyl isobutyl ketone	ND		ug/kg	500	
2-Hexanone	ND		ug/kg	500	
Bromochloromethane	ND		ug/kg	100	
Tetrahydrofuran	ND		ug/kg	200	
2,2-Dichloropropane	ND		ug/kg	100	
1,2-Dibromoethane	ND		ug/kg	50	
1,3-Dichloropropane	ND		ug/kg	100	
1,1,1,2-Tetrachloroethane	ND		ug/kg	25	
Bromobenzene	ND		ug/kg	100	
n-Butylbenzene	ND		ug/kg	50	
sec-Butylbenzene	ND		ug/kg	50	
tert-Butylbenzene	ND		ug/kg	100	
o-Chlorotoluene	ND		ug/kg	100	

L1829544

08/10/18

Lab Number:

Report Date:

Project Name: MCCABE ST.

Project Number: SE18-1375

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:08/08/18 20:30Analyst:AD

arameter	Result	Qualifier	Units	RL	MDL
ICP Volatile Organics by 8260	/5035 - Westbo	rough Lab f	or sample(s):	02	Batch: WG1144620-5
p-Chlorotoluene	ND		ug/kg	100	
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	
Hexachlorobutadiene	ND		ug/kg	200	
Isopropylbenzene	ND		ug/kg	50	
p-Isopropyltoluene	ND		ug/kg	50	
Naphthalene	ND		ug/kg	200	
n-Propylbenzene	ND		ug/kg	50	
1,2,3-Trichlorobenzene	ND		ug/kg	100	
1,2,4-Trichlorobenzene	ND		ug/kg	100	
1,3,5-Trimethylbenzene	ND		ug/kg	100	
1,2,4-Trimethylbenzene	ND		ug/kg	100	
Diethyl ether	ND		ug/kg	100	
Diisopropyl Ether	ND		ug/kg	100	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	100	
Tertiary-Amyl Methyl Ether	ND		ug/kg	100	
1,4-Dioxane	ND		ug/kg	5000	

		Acceptance
Surrogate	%Recovery Qualif	ier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	100	70-130
Dibromofluoromethane	97	70-130

Project Name: MCCABE ST. Project Number: SE18-1375

Lab Number: L1829544 Report Date: 08/10/18

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits			
CP Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 02 Batch: WG1144620-3 WG1144620-4								
Methylene chloride	86	82	70-130	5	20			
1,1-Dichloroethane	96	92	70-130	4	20			
Chloroform	100	95	70-130	5	20			
Carbon tetrachloride	100	94	70-130	6	20			
1,2-Dichloropropane	100	98	70-130	2	20			
Dibromochloromethane	98	96	70-130	2	20			
1,1,2-Trichloroethane	105	101	70-130	4	20			
Tetrachloroethene	98	95	70-130	3	20			
Chlorobenzene	95	93	70-130	2	20			
Trichlorofluoromethane	104	98	70-130	6	20			
1,2-Dichloroethane	103	100	70-130	3	20			
1,1,1-Trichloroethane	99	95	70-130	4	20			
Bromodichloromethane	102	98	70-130	4	20			
trans-1,3-Dichloropropene	93	90	70-130	3	20			
cis-1,3-Dichloropropene	103	99	70-130	4	20			
1,1-Dichloropropene	104	98	70-130	6	20			
Bromoform	98	94	70-130	4	20			
1,1,2,2-Tetrachloroethane	106	104	70-130	2	20			
Benzene	97	93	70-130	4	20			
Toluene	94	92	70-130	2	20			
Ethylbenzene	97	93	70-130	4	20			
Chloromethane	88	84	70-130	5	20			
Bromomethane	87	83	70-130	5	20			

Project Name: MCCABE ST. Project Number: SE18-1375

Lab Number: L1829544 Report Date: 08/10/18

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits			
CP Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 02 Batch: WG1144620-3 WG1144620-4								
Vinyl chloride	97	91	70-130	6	20			
Chloroethane	101	94	70-130	7	20			
1,1-Dichloroethene	93	88	70-130	6	20			
trans-1,2-Dichloroethene	92	88	70-130	4	20			
Trichloroethene	99	96	70-130	3	20			
1,2-Dichlorobenzene	98	95	70-130	3	20			
1,3-Dichlorobenzene	99	94	70-130	5	20			
1,4-Dichlorobenzene	99	94	70-130	5	20			
Methyl tert butyl ether	96	93	70-130	3	20			
p/m-Xylene	98	94	70-130	4	20			
o-Xylene	98	96	70-130	2	20			
cis-1,2-Dichloroethene	95	92	70-130	3	20			
Dibromomethane	103	99	70-130	4	20			
1,2,3-Trichloropropane	108	104	70-130	4	20			
Styrene	100	98	70-130	2	20			
Dichlorodifluoromethane	85	80	70-130	6	20			
Acetone	108	97	70-130	11	20			
Carbon disulfide	87	83	70-130	5	20			
Methyl ethyl ketone	119	115	70-130	3	20			
Methyl isobutyl ketone	100	93	70-130	7	20			
2-Hexanone	96	96	70-130	0	20			
Bromochloromethane	98	95	70-130	3	20			
Tetrahydrofuran	104	117	70-130	12	20			

Project Name: MCCABE ST. Project Number: SE18-1375

Lab Number: L1829544 Report Date: 08/10/18

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Y Qual Limits	RPD	RPD Qual Limits			
CP Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 02 Batch: WG1144620-3 WG1144620-4								
2,2-Dichloropropane	102	96	70-130	6	20			
1,2-Dibromoethane	102	99	70-130	3	20			
1,3-Dichloropropane	102	100	70-130	2	20			
1,1,1,2-Tetrachloroethane	100	97	70-130	3	20			
Bromobenzene	99	93	70-130	6	20			
n-Butylbenzene	105	99	70-130	6	20			
sec-Butylbenzene	102	97	70-130	5	20			
tert-Butylbenzene	100	95	70-130	5	20			
o-Chlorotoluene	107	95	70-130	12	20			
p-Chlorotoluene	102	94	70-130	8	20			
1,2-Dibromo-3-chloropropane	92	91	70-130	1	20			
Hexachlorobutadiene	95	93	70-130	2	20			
Isopropylbenzene	100	95	70-130	5	20			
p-Isopropyltoluene	100	96	70-130	4	20			
Naphthalene	96	93	70-130	3	20			
n-Propylbenzene	102	97	70-130	5	20			
1,2,3-Trichlorobenzene	96	93	70-130	3	20			
1,2,4-Trichlorobenzene	98	95	70-130	3	20			
1,3,5-Trimethylbenzene	99	94	70-130	5	20			
1,2,4-Trimethylbenzene	98	94	70-130	4	20			
Diethyl ether	94	89	70-130	5	20			
Diisopropyl Ether	98	94	70-130	4	20			
Ethyl-Tert-Butyl-Ether	98	94	70-130	4	20			

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1829544

 Report Date:
 08/10/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
MCP Volatile Organics by 8260/5035 - We	stborough Lab Ass	ociated samp	le(s): 02 Batcl	h: WG1144	620-3 WG11446	20-4		
Tertiary-Amyl Methyl Ether	99		96		70-130	3		20
1,4-Dioxane	125		117		70-130	7		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery G	Qual %Recovery	Qual Criteria
1,2-Dichloroethane-d4	104	102	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	102	100	70-130
Dibromofluoromethane	100	99	70-130

SEMIVOLATILES

			Serial_	No:08101816:03
Project Name:	MCCABE ST.		Lab Number:	L1829544
Project Number:	SE18-1375		Report Date:	08/10/18
			SAMPLE RESULTS	
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1829544-01 SS-1 Not Specified Soil 97,8270D 08/09/18 18:41 EK 89%	D	Date Collected: Date Received: Field Prep: Extraction Meth Extraction Date	07/31/18 Not Specified od: EPA 3546

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor				
MCP Semivolatile Organics - Westborough Lab									
Acenaphthene	ND	ug/kg	740		5				
1,2,4-Trichlorobenzene	ND	ug/kg	920		5				
Hexachlorobenzene	ND	ug/kg	550		5				
Bis(2-chloroethyl)ether	ND	ug/kg	830		5				
2-Chloronaphthalene	ND	ug/kg	920		5				
1,2-Dichlorobenzene	ND	ug/kg	920		5				
1,3-Dichlorobenzene	ND	ug/kg	920		5				
1,4-Dichlorobenzene	ND	ug/kg	920		5				
3,3'-Dichlorobenzidine	ND	ug/kg	920		5				
2,4-Dinitrotoluene	ND	ug/kg	920		5				
2,6-Dinitrotoluene	ND	ug/kg	920		5				
Azobenzene	ND	ug/kg	920		5				
Fluoranthene	4000	ug/kg	550		5				
4-Bromophenyl phenyl ether	ND	ug/kg	920		5				
Bis(2-chloroisopropyl)ether	ND	ug/kg	1100		5				
Bis(2-chloroethoxy)methane	ND	ug/kg	1000		5				
Hexachlorobutadiene	ND	ug/kg	920		5				
Hexachloroethane	ND	ug/kg	740		5				
Isophorone	ND	ug/kg	830		5				
Naphthalene	ND	ug/kg	920		5				
Nitrobenzene	ND	ug/kg	830		5				
Bis(2-ethylhexyl)phthalate	ND	ug/kg	920		5				
Butyl benzyl phthalate	ND	ug/kg	920		5				
Di-n-butylphthalate	ND	ug/kg	920		5				
Di-n-octylphthalate	ND	ug/kg	920		5				
Diethyl phthalate	ND	ug/kg	920		5				
Dimethyl phthalate	ND	ug/kg	920		5				
Benzo(a)anthracene	2800	ug/kg	550		5				

					Serial_No:08101816:03			
Project Name:	MCCABE ST.				Lab Nu	ımber:	L1829544	
Project Number:	SE18-1375				Report	Date:	08/10/18	
•		S	•	-				
Lab ID:	L1829544-01	D			Date Col	llected:	07/31/18 11:45	
Client ID:	SS-1	2			Date Re		07/31/18	
Sample Location:	Not Specified				Field Pre		Not Specified	
	-					-		
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Semivolatile	Organics - Westbord	ough Lab						
Benzo(a)pyrene		2300		ug/kg	740		5	
Benzo(b)fluoranthene		2900		ug/kg	550		5	
Benzo(k)fluoranthene		730		ug/kg	550		5	
Chrysene		3500		ug/kg	550		5	
Acenaphthylene		2500		ug/kg	740		5	
Anthracene		1800		ug/kg	550		5	
Benzo(ghi)perylene		1500		ug/kg	740		5	
Fluorene		ND		ug/kg	920		5	
Phenanthrene		3000		ug/kg	550		5	
Dibenzo(a,h)anthracene		ND		ug/kg	550		5	
Indeno(1,2,3-cd)pyrene		1400		ug/kg	740		5	
Pyrene		5600		ug/kg	550		5	
Aniline		ND		ug/kg	1100		5	
4-Chloroaniline		ND		ug/kg	920		5	
Dibenzofuran		ND		ug/kg	920		5	
2-Methylnaphthalene		ND		ug/kg	1100		5	
Acetophenone		ND		ug/kg	920		5	
2,4,6-Trichlorophenol		ND		ug/kg	550		5	
2-Chlorophenol		ND		ug/kg	920		5	
2,4-Dichlorophenol		ND		ug/kg	830		5	
2,4-Dimethylphenol		ND		ug/kg	920		5	
2-Nitrophenol		ND		ug/kg	2000		5	
4-Nitrophenol		ND		ug/kg	1300		5	
2,4-Dinitrophenol		ND		ug/kg	4400		5	
Pentachlorophenol		ND		ug/kg	1800		5	
Phenol		ND		ug/kg	920		5	
2-Methylphenol		ND		ug/kg	920		5	
3-Methylphenol/4-Methyl	phenol	ND		ug/kg	1300		5	
2,4,5-Trichlorophenol		ND		ug/kg	920		5	

Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor	
Sample Depth:							
Sample Location:	Not Specified				Field Prep:	Not Specified	
Client ID:	SS-1				Date Received:	07/31/18	
Lab ID:	L1829544-01	D			Date Collected:	07/31/18 11:45	
		SAMP	LE RESULT	5			
Project Number:	SE18-1375			_	Report Date:	08/10/18	
Project Name:	MCCABE ST.				Lab Number:	L1829544	
					—	0:08101816:03	

MCP Semivolatile Organics - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	67	30-130
Phenol-d6	73	30-130
Nitrobenzene-d5	75	30-130
2-Fluorobiphenyl	79	30-130
2,4,6-Tribromophenol	86	30-130
4-Terphenyl-d14	80	30-130

				Serial_No	:08101816:03
Project Name:	MCCABE ST.			Lab Number:	L1829544
Project Number:	SE18-1375			Report Date:	08/10/18
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1829544-02 SS-2 Not Specified	D		Date Collected: Date Received: Field Prep:	07/31/18 12:00 07/31/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 97,8270D 08/10/18 04:23 ALS 83%			Extraction Method Extraction Date:	EPA 3546 08/08/18 08:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Wes	stborough Lab					
Acenaphthene	7700		ug/kg	4800		30
1,2,4-Trichlorobenzene	ND		ug/kg	6000		30
Hexachlorobenzene	ND		ug/kg	3600		30
Bis(2-chloroethyl)ether	ND		ug/kg	5400		30
2-Chloronaphthalene	ND		ug/kg	6000		30
1,2-Dichlorobenzene	ND		ug/kg	6000		30
1,3-Dichlorobenzene	ND		ug/kg	6000		30
1,4-Dichlorobenzene	ND		ug/kg	6000		30
3,3'-Dichlorobenzidine	ND		ug/kg	6000		30
2,4-Dinitrotoluene	ND		ug/kg	6000		30
2,6-Dinitrotoluene	ND		ug/kg	6000		30
Azobenzene	ND		ug/kg	6000		30
Fluoranthene	45000		ug/kg	3600		30
4-Bromophenyl phenyl ether	ND		ug/kg	6000		30
Bis(2-chloroisopropyl)ether	ND		ug/kg	7200		30
Bis(2-chloroethoxy)methane	ND		ug/kg	6400		30
Hexachlorobutadiene	ND		ug/kg	6000		30
Hexachloroethane	ND		ug/kg	4800		30
Isophorone	ND		ug/kg	5400		30
Naphthalene	28000		ug/kg	6000		30
Nitrobenzene	ND		ug/kg	5400		30
Bis(2-ethylhexyl)phthalate	ND		ug/kg	6000		30
Butyl benzyl phthalate	ND		ug/kg	6000		30
Di-n-butylphthalate	ND		ug/kg	6000		30
Di-n-octylphthalate	ND		ug/kg	6000		30
Diethyl phthalate	ND		ug/kg	6000		30
Dimethyl phthalate	ND		ug/kg	6000		30
Benzo(a)anthracene	46000		ug/kg	3600		30

					ç	Serial_No	p:08101816:03
Project Name:	MCCABE ST.				Lab Nu	mber:	L1829544
Project Number:	SE18-1375				Report	Date:	08/10/18
•		SAMP		S		-	
Lab ID: Client ID: Sample Location:	L1829544-02 SS-2 Not Specified	D			Date Col Date Rec Field Pre	ceived:	07/31/18 12:00 07/31/18 Not Specified
-						· F ·	
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westbord	ough Lab					
Benzo(a)pyrene		42000		ug/kg	4800		30
Benzo(b)fluoranthene		42000		ug/kg	3600		30
Benzo(k)fluoranthene		10000		ug/kg	3600		30
Chrysene		56000		ug/kg	3600		30
Acenaphthylene		64000		ug/kg	4800		30
Anthracene		47000		ug/kg	3600		30
Benzo(ghi)perylene		22000		ug/kg	4800		30
Fluorene		20000		ug/kg	6000		30
Phenanthrene		49000		ug/kg	3600		30
Dibenzo(a,h)anthracene		8900		ug/kg	3600		30
Indeno(1,2,3-cd)pyrene		21000		ug/kg	4800		30
Pyrene		89000		ug/kg	3600		30
Aniline		ND		ug/kg	7200		30
4-Chloroaniline		ND		ug/kg	6000		30
Dibenzofuran		ND		ug/kg	6000		30
2-Methylnaphthalene		33000		ug/kg	7200		30
Acetophenone		ND		ug/kg	6000		30
2,4,6-Trichlorophenol		ND		ug/kg	3600		30
2-Chlorophenol		ND		ug/kg	6000		30
2,4-Dichlorophenol		ND		ug/kg	5400		30
2,4-Dimethylphenol		ND		ug/kg	6000		30
2-Nitrophenol		ND		ug/kg	13000		30
4-Nitrophenol		ND		ug/kg	8400		30
2,4-Dinitrophenol		ND		ug/kg	29000		30
Pentachlorophenol		ND		ug/kg	12000		30
Phenol		ND		ug/kg	6000		30
2-Methylphenol		ND		ug/kg	6000		30
3-Methylphenol/4-Methyl	phenol	ND		ug/kg	8600		30
2,4,5-Trichlorophenol		ND		ug/kg	6000		30

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Sample Depth:								
Sample Location:	Not Specified				Field Prep:		Not Specified	
Client ID:	SS-2				Date Receiv	ed:	07/31/18	
Lab ID:	L1829544-02	D			Date Collect	ed:	07/31/18 12:00	
		SAMP		5				
Project Number:	SE18-1375				Report Dat	te:	08/10/18	
Project Name:	MCCABE ST.				Lab Numb	er:	L1829544	
					Seri	al_No	:08101816:03	

MCP Semivolatile (Organics - Westborough Lab	
--------------------	----------------------------	--

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	0	Q	30-130
Phenol-d6	0	Q	30-130
Nitrobenzene-d5	0	Q	30-130
2-Fluorobiphenyl	0	Q	30-130
2,4,6-Tribromophenol	0	Q	30-130
4-Terphenyl-d14	0	Q	30-130

 Project Name:
 MCCABE ST.
 Lab Number:
 L1829544

 Project Number:
 SE18-1375
 Report Date:
 08/10/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

97,8270D 08/09/18 14:29 EK Extraction Method: EPA 3546 Extraction Date: 08/08/18 05:26

arameter	Result	Qualifier	Units	RL	MDL
ICP Semivolatile Organics - W	estborough Lat	o for sample	e(s): 01-02	Batch:	WG1143977-1
Acenaphthene	ND		ug/kg	130	
1,2,4-Trichlorobenzene	ND		ug/kg	160	
Hexachlorobenzene	ND		ug/kg	99	
Bis(2-chloroethyl)ether	ND		ug/kg	150	
2-Chloronaphthalene	ND		ug/kg	160	
1,2-Dichlorobenzene	ND		ug/kg	160	
1,3-Dichlorobenzene	ND		ug/kg	160	
1,4-Dichlorobenzene	ND		ug/kg	160	
3,3'-Dichlorobenzidine	ND		ug/kg	160	
2,4-Dinitrotoluene	ND		ug/kg	160	
2,6-Dinitrotoluene	ND		ug/kg	160	
Azobenzene	ND		ug/kg	160	
Fluoranthene	ND		ug/kg	99	
4-Bromophenyl phenyl ether	ND		ug/kg	160	
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	
Bis(2-chloroethoxy)methane	ND		ug/kg	180	
Hexachlorobutadiene	ND		ug/kg	160	
Hexachloroethane	ND		ug/kg	130	
Isophorone	ND		ug/kg	150	
Naphthalene	ND		ug/kg	160	
Nitrobenzene	ND		ug/kg	150	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160	
Butyl benzyl phthalate	ND		ug/kg	160	
Di-n-butylphthalate	ND		ug/kg	160	
Di-n-octylphthalate	ND		ug/kg	160	
Diethyl phthalate	ND		ug/kg	160	
Dimethyl phthalate	ND		ug/kg	160	
Benzo(a)anthracene	ND		ug/kg	99	
Benzo(a)pyrene	ND		ug/kg	130	

 Project Name:
 MCCABE ST.
 Lab Number:
 L1829544

 Project Number:
 SE18-1375
 Report Date:
 08/10/18

Method Blank Analysis Batch Quality Control

Analytical Method:9Analytical Date:0Analyst:E

97,8270D 08/09/18 14:29 EK Extraction Method: EPA 3546 Extraction Date: 08/08/18 05:26

arameter	Result	Qualifier	Units	RL	MDL
CP Semivolatile Organics - We	estborough Lat	o for sample	e(s): 01-02	Batch:	WG1143977-1
Benzo(b)fluoranthene	ND		ug/kg	99	
Benzo(k)fluoranthene	ND		ug/kg	99	
Chrysene	ND		ug/kg	99	
Acenaphthylene	ND		ug/kg	130	
Anthracene	ND		ug/kg	99	
Benzo(ghi)perylene	ND		ug/kg	130	
Fluorene	ND		ug/kg	160	
Phenanthrene	ND		ug/kg	99	
Dibenzo(a,h)anthracene	ND		ug/kg	99	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	
Pyrene	ND		ug/kg	99	
Aniline	ND		ug/kg	200	
4-Chloroaniline	ND		ug/kg	160	
Dibenzofuran	ND		ug/kg	160	
2-Methylnaphthalene	ND		ug/kg	200	
Acetophenone	ND		ug/kg	160	
2,4,6-Trichlorophenol	ND		ug/kg	99	
2-Chlorophenol	ND		ug/kg	160	
2,4-Dichlorophenol	ND		ug/kg	150	
2,4-Dimethylphenol	ND		ug/kg	160	
2-Nitrophenol	ND		ug/kg	360	
4-Nitrophenol	ND		ug/kg	230	
2,4-Dinitrophenol	ND		ug/kg	790	
Pentachlorophenol	ND		ug/kg	330	
Phenol	ND		ug/kg	160	
2-Methylphenol	ND		ug/kg	160	
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	
2,4,5-Trichlorophenol	ND		ug/kg	160	

Project Name: Project Number:	MCCABE ST. SE18-1375		Lab Number: Report Date:	L1829544 08/10/18
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	97,8270D 08/09/18 14:29 EK		Extraction Method Extraction Date:	: EPA 3546 08/08/18 05:26

Parameter	Result	Qualifier U	nits	RL	MDL	
MCP Semivolatile Organics - W	estborough La	b for sample(s)	: 01-02	Batch:	WG1143977-1	
Tentatively Identified Compounds						
No Tentatively Identified Compounds	ND		ug/kg			

Sumonoto	9/ Deceiver	Acceptance Qualifier Criteria
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	80	30-130
Phenol-d6	85	30-130
Nitrobenzene-d5	81	30-130
2-Fluorobiphenyl	90	30-130
2,4,6-Tribromophenol	85	30-130
4-Terphenyl-d14	107	30-130

Project Name: MCCABE ST. Project Number: SE18-1375

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ICP Semivolatile Organics - Westborough	Lab Associated	sample(s): 01	-02 Batch: W	/G1143977-2	WG1143977-3			
Acenaphthene	129		95		40-140	30		30
1,2,4-Trichlorobenzene	126		96		40-140	27		30
Hexachlorobenzene	137		104		40-140	27		30
Bis(2-chloroethyl)ether	120		92		40-140	26		30
2-Chloronaphthalene	126		93		40-140	30		30
1,2-Dichlorobenzene	126		94		40-140	29		30
1,3-Dichlorobenzene	120		90		40-140	29		30
1,4-Dichlorobenzene	123		92		40-140	29		30
3,3'-Dichlorobenzidine	100		77		40-140	26		30
2,4-Dinitrotoluene	135		100		40-140	30		30
2,6-Dinitrotoluene	131		98		40-140	29		30
Azobenzene	134		100		40-140	29		30
Fluoranthene	133		99		40-140	29		30
4-Bromophenyl phenyl ether	134		103		40-140	26		30
Bis(2-chloroisopropyl)ether	121		93		40-140	26		30
Bis(2-chloroethoxy)methane	122		92		40-140	28		30
Hexachlorobutadiene	129		95		40-140	30		30
Hexachloroethane	124		93		40-140	29		30
Isophorone	120		92		40-140	26		30
Naphthalene	125		93		40-140	29		30
Nitrobenzene	126		94		40-140	29		30
Bis(2-ethylhexyl)phthalate	124		92		40-140	30		30
Butyl benzyl phthalate	132		100		40-140	28		30

Project Name: MCCABE ST. Project Number: SE18-1375

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Semivolatile Organics - Westborough L	ab Associated	sample(s): (01-02 Batch: \	NG1143977-2	WG1143977-3				
Di-n-butylphthalate	127		95		40-140	29		30	
Di-n-octylphthalate	126		93		40-140	30		30	
Diethyl phthalate	128		97		40-140	28		30	
Dimethyl phthalate	127		95		40-140	29		30	
Benzo(a)anthracene	128		95		40-140	30		30	
Benzo(a)pyrene	130		95		40-140	31	Q	30	
Benzo(b)fluoranthene	133		97		40-140	31	Q	30	
Benzo(k)fluoranthene	125		91		40-140	31	Q	30	
Chrysene	124		93		40-140	29		30	
Acenaphthylene	131		98		40-140	29		30	
Anthracene	129		96		40-140	29		30	
Benzo(ghi)perylene	131		97		40-140	30		30	
Fluorene	130		96		40-140	30		30	
Phenanthrene	128		95		40-140	30		30	
Dibenzo(a,h)anthracene	130		96		40-140	30		30	
Indeno(1,2,3-cd)pyrene	136		100		40-140	31	Q	30	
Pyrene	135		99		40-140	31	Q	30	
Aniline	92		73		40-140	23		30	
4-Chloroaniline	122		94		40-140	26		30	
Dibenzofuran	129		96		40-140	29		30	
2-Methylnaphthalene	134		99		40-140	30		30	
Acetophenone	127		97		40-140	27		30	
2,4,6-Trichlorophenol	129		96		30-130	29		30	

Project Name: MCCABE ST. Project Number: SE18-1375

Parameter	LCS %Recovery	Qual	%	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Semivolatile Organics - Westborough La	b Associated	sample(s):	01-02	Batch:	WG1143977-2	WG1143977-3			
2-Chlorophenol	124			94		30-130	28		30
2,4-Dichlorophenol	129			97		30-130	28		30
2,4-Dimethylphenol	126			96		30-130	27		30
2-Nitrophenol	124			93		30-130	29		30
4-Nitrophenol	108			77		30-130	34	Q	30
2,4-Dinitrophenol	71			59		30-130	18		30
Pentachlorophenol	100			76		30-130	27		30
Phenol	115			85		30-130	30		30
2-Methylphenol	128			96		30-130	29		30
3-Methylphenol/4-Methylphenol	133	Q		102		30-130	26		30
2,4,5-Trichlorophenol	119			97		30-130	20		30

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
			-			
2-Fluorophenol	112		84		30-130	
Phenol-d6	113		86		30-130	
Nitrobenzene-d5	115		88		30-130	
2-Fluorobiphenyl	120		87		30-130	
2,4,6-Tribromophenol	128		94		30-130	
4-Terphenyl-d14	132	Q	98		30-130	

PETROLEUM HYDROCARBONS

			Serial_No:	08101816:03
MCCABE ST.			Lab Number:	L1829544
SE18-1375			Report Date:	08/10/18
		SAMPLE RESULTS		
L1829544-01	D		Date Collected:	07/31/18 11:45
SS-1			Date Received:	07/31/18
Not Specified			Field Prep:	Not Specified
Soil			Extraction Method:	EPA 3546
			Extraction Date:	08/06/18 19:01
08/08/18 17:15				
MEO				
89%				
	SE18-1375 L1829544-01 SS-1 Not Specified Soil 1,8015D(M) 08/08/18 17:15 MEO	SE18-1375 L1829544-01 D SS-1 Not Specified Soil 1,8015D(M) 08/08/18 17:15 MEO	SE18-1375 SAMPLE RESULTS L1829544-01 D SS-1 Not Specified Soil 1,8015D(M) 08/08/18 17:15 MEO	MCCABE ST. SE18-1375 L1829544-01 D SS-1 Not Specified Soil 1,8015D(M) 08/08/18 17:15 MEO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation	n - Westborough Lab					
ГРН	2320000		ug/kg	372000		10
Surrogate			% Recovery	Qualifier		eptance riteria
o-Terphenyl			80			40-140

				Serial_No	:08101816:03
Project Name:	MCCABE ST.			Lab Number:	L1829544
Project Number:	SE18-1375			Report Date:	08/10/18
			SAMPLE RESULTS		
Lab ID:	L1829544-02	D		Date Collected:	07/31/18 12:00
Client ID:	SS-2			Date Received:	07/31/18
Sample Location:	Not Specified			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method	: EPA 3546
Analytical Method:	1,8015D(M)			Extraction Date:	08/06/18 19:01
Analytical Date:	08/08/18 17:48				
Analyst:	MEO				
Percent Solids:	83%				

Parameter	Result C	Qualifier Un	its	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitat	ion - Westborough Lab					
ТРН	9210000	ug/	kg	754000		20
Surrogate		% R	ecovery	Qualifier		ptance iteria
o-Terphenyl			87		4	0-140

Project Name: Project Number:	MCCABE ST. SE18-1375		Lab Number: Report Date:	L1829544 08/10/18
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8015D(M) 08/06/18 15:41 DG		Extraction Method Extraction Date:	EPA 3546 08/06/18 01:20

Parameter	Result	Qualifier	Units	RL	MDL
Petroleum Hydrocarbon Quantitation	- Westbord	ough Lab fo	or sample(s):	01-02	Batch: WG1143153-1
ТРН	ND		ug/kg	31600	

Surrogate	%Recovery	Acceptance Qualifier Criteria
o-Terphenyl	77	40-140

Lab Control Sample Analysis

Project Name:	MCCABE ST.	Batch Quality Control	Lab Number:	L1829544
Project Number:	SE18-1375		Report Date:	08/10/18

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Petroleum Hydrocarbon Quantitation - We	stborough Lab Associ	iated sample(s): 01-02	Batch: WG1143153-2			
ТРН	81	-	40-140	-	40	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
o-Terphenyl	79				40-140

PCBS

			Serial_No	0:08101816:03
Project Name:	MCCABE ST.		Lab Number:	L1829544
Project Number:	SE18-1375		Report Date:	08/10/18
		SAMPLE RESULTS		
Lab ID:	L1829544-01		Date Collected:	07/31/18 11:45
Client ID:	SS-1		Date Received:	07/31/18
Sample Location:	Not Specified		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	d: EPA 3546
Analytical Method:	97,8082A		Extraction Date:	08/08/18 08:05
Analytical Date:	08/09/18 22:51		Cleanup Method:	EPA 3665A
Analyst:	KB		Cleanup Date:	08/09/18
Percent Solids:	89%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - V	Vestborough Lab						
Aroclor 1016	ND		ug/kg	37.2		1	А
Aroclor 1221	ND		ug/kg	37.2		1	A
Aroclor 1232	ND		ug/kg	37.2		1	A
Aroclor 1242	ND		ug/kg	37.2		1	A
Aroclor 1248	ND		ug/kg	37.2		1	А
Aroclor 1254	ND		ug/kg	37.2		1	А
Aroclor 1260	60.7		ug/kg	37.2		1	А
Aroclor 1262	ND		ug/kg	37.2		1	А
Aroclor 1268	ND		ug/kg	37.2		1	В
PCBs, Total	60.7		ug/kg	37.2		1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	А
Decachlorobiphenyl	69		30-150	А
2,4,5,6-Tetrachloro-m-xylene	58		30-150	В
Decachlorobiphenyl	82		30-150	В

			Serial_No	0:08101816:03
Project Name:	MCCABE ST.		Lab Number:	L1829544
Project Number:	SE18-1375		Report Date:	08/10/18
		SAMPLE RESULTS		
Lab ID:	L1829544-02		Date Collected:	07/31/18 12:00
Client ID:	SS-2		Date Received:	07/31/18
Sample Location:	Not Specified		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	1: EPA 3546
Analytical Method:	97,8082A		Extraction Date:	08/08/18 08:05
Analytical Date:	08/10/18 12:37		Cleanup Method:	EPA 3665A
Analyst:	KB		Cleanup Date:	08/09/18
Percent Solids:	83%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - We	estborough Lab						
Aroclor 1016	ND		ug/kg	39.8		1	А
Aroclor 1221	ND		ug/kg	39.8		1	A
Aroclor 1232	ND		ug/kg	39.8		1	А
Aroclor 1242	ND		ug/kg	39.8		1	А
Aroclor 1248	ND		ug/kg	39.8		1	А
Aroclor 1254	ND		ug/kg	39.8		1	А
Aroclor 1260	ND		ug/kg	39.8		1	А
Aroclor 1262	ND		ug/kg	39.8		1	А
Aroclor 1268	ND		ug/kg	39.8		1	А
PCBs, Total	ND		ug/kg	39.8		1	А

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	А
Decachlorobiphenyl	101		30-150	А
2,4,5,6-Tetrachloro-m-xylene	3	Q	30-150	В
Decachlorobiphenyl	6	Q	30-150	В

 Lab Number:
 L1829544

 Report Date:
 08/10/18

MCCABE ST.

Project Number: SE18-1375

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

Project Name:

97,8082A 08/08/18 21:06 HT Extraction Method:EPA 3546Extraction Date:08/08/18 08:05Cleanup Method:EPA 3665ACleanup Date:08/08/18Cleanup Method:EPA 3660BCleanup Date:08/08/18

Parameter	Result	Qualifier	Units	RI	-	MDL	Column
MCP Polychlorinated Biphenyls -	- Westborough	Lab for sa	mple(s):	01-02	Batch:	WG1144	043-1
Aroclor 1016	ND		ug/kg	32.	3		А
Aroclor 1221	ND		ug/kg	32.	3		А
Aroclor 1232	ND		ug/kg	32.	3		А
Aroclor 1242	ND		ug/kg	32.	3		А
Aroclor 1248	ND		ug/kg	32.	3		А
Aroclor 1254	ND		ug/kg	32.	3		А
Aroclor 1260	ND		ug/kg	32.	3		А
Aroclor 1262	ND		ug/kg	32.	3		А
Aroclor 1268	ND		ug/kg	32.	3		А
PCBs, Total	ND		ug/kg	32.	3		А

		Acceptar	nce
Surrogate	%Recovery Qua	alifier Criteria	a Column
2,4,5,6-Tetrachloro-m-xylene	79	30-150	А
Decachlorobiphenyl	74	30-150	А
2,4,5,6-Tetrachloro-m-xylene	76	30-150	В
Decachlorobiphenyl	75	30-150	В

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1829544

 Report Date:
 08/10/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recover	y Qual	Limits	RPD	Qual	Limits	Column
MCP Polychlorinated Biphenyls - Westbor	ough Lab Associat	ed sample(s):	01-02 Bat	tch: WG1144	043-2 WG1144043	3-3			
Aroclor 1016	72		76		40-140	5		30	А
Aroclor 1260	63		67		40-140	6		30	А

	LCS	LCSD	Accept	ance
Surrogate	%Recovery	Qual %Recovery	Qual Criter	ria Column
2,4,5,6-Tetrachloro-m-xylene	82	84	30-15	60 A
Decachlorobiphenyl	61	64	30-15	60 A
2,4,5,6-Tetrachloro-m-xylene	80	84	30-15	60 B
Decachlorobiphenyl	69	84	30-15	60 B

PESTICIDES

			Serial_No	0:08101816:03
Project Name:	MCCABE ST.		Lab Number:	L1829544
Project Number:	SE18-1375		Report Date:	08/10/18
		SAMPLE RESULTS		
Lab ID:	L1829544-01		Date Collected:	07/31/18 11:45
Client ID:	SS-1		Date Received:	07/31/18
Sample Location:	Not Specified		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	J: EPA 3546
Analytical Method:	97,8081B		Extraction Date:	08/08/18 08:31
Analytical Date:	08/09/18 11:16		Cleanup Method:	EPA 3620B
•	KEG		Cleanup Date:	08/09/18
Percent Solids:	89%			
Analyst:	KEG		•	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Organochlorine Pesticides	s - Westborough Lab						
Delta-BHC	ND		ug/kg	1.76		1	А
Lindane	ND		ug/kg	0.588		1	А
Alpha-BHC	ND		ug/kg	0.736		1	А
Beta-BHC	ND		ug/kg	1.76		1	А
Heptachlor	ND		ug/kg	0.883		1	А
Aldrin	ND		ug/kg	1.76		1	А
Heptachlor epoxide	ND		ug/kg	3.31		1	А
Endrin	ND		ug/kg	0.736		1	А
Endrin ketone	ND		ug/kg	1.76		1	А
Dieldrin	ND		ug/kg	1.10		1	А
4,4'-DDE	2.52	PI	ug/kg	1.76		1	В
4,4'-DDD	5.41	PI	ug/kg	1.76		1	В
4,4'-DDT	40.2		ug/kg	3.31		1	А
Endosulfan I	ND		ug/kg	1.76		1	А
Endosulfan II	5.46	PI	ug/kg	1.76		1	А
Endosulfan sulfate	ND		ug/kg	0.736		1	А
Methoxychlor	ND		ug/kg	3.31		1	А
Chlordane	ND		ug/kg	14.3		1	А
Hexachlorobenzene	ND		ug/kg	1.76		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	83		30-150	В
Decachlorobiphenyl	172	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	119		30-150	А
Decachlorobiphenyl	163	Q	30-150	А

				Serial_No:	08101816:03
Project Name:	MCCABE ST.			Lab Number:	L1829544
Project Number:	SE18-1375			Report Date:	08/10/18
			SAMPLE RESULTS		
Lab ID:	L1829544-02	D		Date Collected:	07/31/18 12:00
Client ID:	SS-2			Date Received:	07/31/18
Sample Location:	Not Specified			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method:	EPA 3546
Analytical Method:	97,8081B			Extraction Date:	08/08/18 08:31
Analytical Date:	08/09/18 11:28			Cleanup Method:	EPA 3620B
Analyst:	KEG			Cleanup Date:	08/09/18
Percent Solids:	83%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
MCP Organochlorine Pesticides - Westborough Lab										
Delta-BHC	ND		ug/kg	9.26		5	А			
Lindane	ND		ug/kg	3.09		5	А			
Alpha-BHC	ND		ug/kg	3.86		5	А			
Beta-BHC	ND		ug/kg	9.26		5	А			
Heptachlor	ND		ug/kg	4.63		5	А			
Aldrin	ND		ug/kg	9.26		5	А			
Heptachlor epoxide	ND		ug/kg	17.4		5	А			
Endrin	ND		ug/kg	3.86		5	А			
Endrin ketone	ND		ug/kg	9.26		5	А			
Dieldrin	ND		ug/kg	5.79		5	А			
4,4'-DDE	ND		ug/kg	9.26		5	А			
4,4'-DDD	ND		ug/kg	9.26		5	А			
4,4'-DDT	ND		ug/kg	17.4		5	А			
Endosulfan I	ND		ug/kg	9.26		5	А			
Endosulfan II	ND		ug/kg	9.26		5	А			
Endosulfan sulfate	ND		ug/kg	3.86		5	А			
Methoxychlor	ND		ug/kg	17.4		5	А			
Chlordane	ND		ug/kg	75.2		5	А			
Hexachlorobenzene	ND		ug/kg	9.26		5	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	40		30-150	В
Decachlorobiphenyl	531	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	114		30-150	А
Decachlorobiphenyl	484	Q	30-150	А

Project Name: MCCABE ST. Project Number: SE18-1375

 Lab Number:
 L1829544

 Report Date:
 08/10/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 97,8081B 08/09/18 10:38 KEG Extraction Method:EPA 3546Extraction Date:08/08/18 08:31Cleanup Method:EPA 3620BCleanup Date:08/09/18

arameter	Result	Qualifier	Units	RL		MDL	Columr
ICP Organochlorine Pesticide	es - Westborough	h Lab for sa	ample(s):	01-02	Batch:	WG1144	4053-1
Delta-BHC	ND		ug/kg	1.54	Ļ		А
Lindane	ND		ug/kg	0.51	2		А
Alpha-BHC	ND		ug/kg	0.64	0		А
Beta-BHC	ND		ug/kg	1.54	ŀ		А
Heptachlor	ND		ug/kg	0.76	8		А
Aldrin	ND		ug/kg	1.54	ŀ		А
Heptachlor epoxide	ND		ug/kg	2.88	3		А
Endrin	ND		ug/kg	0.64	0		А
Endrin ketone	ND		ug/kg	1.54	Ļ		А
Dieldrin	ND		ug/kg	0.96	0		А
4,4'-DDE	ND		ug/kg	1.54	Ļ		А
4,4'-DDD	ND		ug/kg	1.54	Ļ		А
4,4'-DDT	ND		ug/kg	2.88	3		А
Endosulfan I	ND		ug/kg	1.54	Ļ		А
Endosulfan II	ND		ug/kg	1.54	ŀ		А
Endosulfan sulfate	ND		ug/kg	0.64	0		А
Methoxychlor	ND		ug/kg	2.88	3		А
Chlordane	ND		ug/kg	12.5	5		А
Hexachlorobenzene	ND		ug/kg	1.54	ŀ		А

		Acceptanc	e	
Surrogate	%Recovery	Qualifier	Criteria	Column
				_
2,4,5,6-Tetrachloro-m-xylene	80		30-150	В
Decachlorobiphenyl	92		30-150	В
2,4,5,6-Tetrachloro-m-xylene	90		30-150	А
Decachlorobiphenyl	85		30-150	А

	LCS		LCSD		Recovery			RPD	_
arameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
ICP Organochlorine Pesticides - Westborou	gh Lab Associa	ited sample(s):	01-02 Batch:	WG1144053-2	WG114405	3-3			
Delta-BHC	97		102		40-140	5		30	А
Lindane	89		94		40-140	5		30	А
Alpha-BHC	91		96		40-140	5		30	А
Beta-BHC	80		83		40-140	4		30	А
Heptachlor	73		76		40-140	4		30	А
Aldrin	80		85		40-140	6		30	А
Heptachlor epoxide	76		81		40-140	6		30	А
Endrin	88		91		40-140	3		30	А
Endrin ketone	74		72		40-140	3		30	А
Dieldrin	90		93		40-140	3		30	А
4,4'-DDE	82		86		40-140	5		30	А
4,4'-DDD	86		90		40-140	5		30	А
4,4'-DDT	87		91		40-140	4		30	А
Endosulfan I	81		85		40-140	5		30	А
Endosulfan II	86		89		40-140	3		30	А
Endosulfan sulfate	58		56		40-140	4		30	А
Methoxychlor	78		80		40-140	3		30	А
Hexachlorobenzene	75		79		40-140	5		30	А

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1829544

 Report Date:
 08/10/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
MCP Organochlorine Pesticides - Westborg	ough Lab Associat	ted sample(s):	01-02 Batch:	WG11440	53-2 WG114405	53-3			

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria Column
2,4,5,6-Tetrachloro-m-xylene	76	78	30-150 B
Decachlorobiphenyl	93	92	30-150 B
2,4,5,6-Tetrachloro-m-xylene	86	89	30-150 A
Decachlorobiphenyl	88	83	30-150 A

METALS

Serial	No:081	01816:03	3

08/09/18 08:30 08/09/18 11:15 EPA 3050B

08/09/18 08:30 08/09/18 11:15 EPA 3050B

08/09/18 08:30 08/09/18 11:15 EPA 3050B

Project Name:	MCCA	BE ST.					Lab Nur	nber:	L18295	44	
Project Number:	SE18-	1375					Report I	Date:	08/10/1	8	
Lab ID: Client ID: Sample Location:	SS-1	544-01 becified		SAMPL	E RES	ULTS	Date Col Date Ree Field Pre	ceived:	07/31/18 07/31/18 Not Spec	-	
Sample Depth: Matrix: Percent Solids: Parameter	Soil 89% Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals - I	Mansfield	d Lab									
Antimony, Total	13.7		mg/kg	2.13		1	08/09/18 08:30	08/09/18 11:15	EPA 3050B	97,6010D	LC
Arsenic, Total	18.4		mg/kg	0.426		1	08/09/18 08:30	08/09/18 11:15	EPA 3050B	97,6010D	LC
Barium, Total	943		mg/kg	4.26		10	08/09/18 08:30	08/09/18 14:55	EPA 3050B	97,6010D	LC
Beryllium, Total	ND		mg/kg	0.213		1	08/09/18 08:30	08/09/18 11:15	EPA 3050B	97,6010D	LC
Cadmium, Total	ND		mg/kg	0.426		1	08/09/18 08:30	08/09/18 11:15	EPA 3050B	97,6010D	LC
Chromium, Total	3200		mg/kg	4.26		10	08/09/18 08:30	08/09/18 14:55	EPA 3050B	97,6010D	LC
Lead, Total	4270		mg/kg	21.3		10	08/09/18 08:30	08/09/18 14:55	EPA 3050B	97,6010D	LC
Nickel, Total	145		mg/kg	1.06		1	08/09/18 08:30	08/09/18 11:15	EPA 3050B	97,6010D	LC
Selenium, Total										_	
Coloniani, Total	12.3		mg/kg	2.13		1	08/09/18 08:30	08/09/18 11:15	EPA 3050B	97,6010D	LC

1

1

1

97,6010D

97,6010D

97,6010D

LC

LC

LC

Thallium, Total

Vanadium, Total

Zinc, Total

ND

854

303

mg/kg

mg/kg

mg/kg

2.13

0.426

2.13

Serial No:0810181	16:03
-------------------	-------

Project Name:	MCCA	ABE ST.					Lab Nur	nber:	L182954	44	
Project Number:	SE18-	1375					Report I	Date:	08/10/18	3	
				SAMPL	E RES	ULTS					
Lab ID:	L1829	544-02					Date Co	llected:	07/31/18	12:00	
Client ID:	SS-2						Date Re	ceived:	07/31/18		
Sample Location:	Not Sp	pecified					Field Pre	ep:	Not Spec	ified	
Sample Depth:											
Matrix:	Soil										
Percent Solids:	83%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals -	Mansfield	delt									
Antimony, Total	9.48		mg/kg	2.34		1	08/09/18 08:30	08/09/18 11:20	EPA 3050B	97,6010D	LC
Arsenic, Total	23.3		mg/kg	0.469		1		08/09/18 11:20		97,6010D	LC
Barium, Total	339		mg/kg	0.469		1		08/09/18 11:20		97,6010D	LC
Beryllium, Total	ND									07 00400	
	ND		mg/kg	0.234		1	08/09/18 08:30	08/09/18 11:20	EPA 3050B	97,6010D	LC
Cadmium, Total	37.2		mg/kg mg/kg	0.234 0.469		1		08/09/18 11:20 08/09/18 11:20		97,6010D 97,6010D	LC
Cadmium, Total Chromium, Total							08/09/18 08:30		EPA 3050B	,	
	37.2		mg/kg	0.469		1	08/09/18 08:30 08/09/18 08:30	08/09/18 11:20	EPA 3050B EPA 3050B	97,6010D	LC
Chromium, Total	37.2 102		mg/kg mg/kg	0.469 0.469		1	08/09/18 08:30 08/09/18 08:30 08/09/18 08:30	08/09/18 11:20 08/09/18 11:20	EPA 3050B EPA 3050B EPA 3050B	97,6010D 97,6010D	LC LC

97,6010D

97,6010D

97,6010D

97,6010D

LC

LC

LC

LC

Silver, Total

Zinc, Total

Thallium, Total

Vanadium, Total

1.18

ND

37.3

910

mg/kg

mg/kg

mg/kg

mg/kg

0.469

2.34

0.469

2.34

--

1

1

1

1

08/09/18 08:30 08/09/18 11:20 EPA 3050B

 Lab Number:
 L1829544

 Report Date:
 08/10/18

Project Name:MCCABE ST.Project Number:SE18-1375

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - Ma	nsfield Lab for sampl	e(s): 01-0	02 Batc	h: WG	144477-1				
Antimony, Total	ND	mg/kg	2.00		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Arsenic, Total	ND	mg/kg	0.400		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Barium, Total	ND	mg/kg	0.400		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Beryllium, Total	ND	mg/kg	0.200		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Cadmium, Total	ND	mg/kg	0.400		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Chromium, Total	ND	mg/kg	0.400		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Lead, Total	ND	mg/kg	2.00		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Nickel, Total	ND	mg/kg	1.00		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Selenium, Total	ND	mg/kg	2.00		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Silver, Total	ND	mg/kg	0.400		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Thallium, Total	ND	mg/kg	2.00		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Vanadium, Total	ND	mg/kg	0.400		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC
Zinc, Total	ND	mg/kg	2.00		1	08/09/18 08:30	08/09/18 10:34	97,6010D	LC

Prep Information

Digestion Method: EPA 3050B

Project Name: MCCABE ST. Project Number: SE18-1375

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
CP Total Metals - Mansfield Lab Associated	sample(s): 01-02	Batch: W	G1144477-2 V	VG1144477-3	SRM Lot Number:	D098-540		
Antimony, Total	150		157		6-194	5		30
Arsenic, Total	94		93		83-117	1		30
Barium, Total	92		93		82-118	1		30
Beryllium, Total	87		88		83-117	1		30
Cadmium, Total	91		88		82-117	3		30
Chromium, Total	89		89		83-119	0		30
Lead, Total	86		87		82-117	1		30
Nickel, Total	90		89		82-117	1		30
Selenium, Total	95		93		78-121	2		30
Silver, Total	96		97		80-120	1		30
Thallium, Total	92		88		80-119	4		30
Vanadium, Total	88		90		79-121	2		30
Zinc, Total	88		88		81-119	0		30

INORGANICS & MISCELLANEOUS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Sample Depth: Matrix:	Soil									
Lab ID: Client ID: Sample Location:	L1829544-0 SS-1 Not Specifie	-						Collected: Received: Prep:	07/31/18 11:45 07/31/18 Not Specified	
				SAMPLE	RESUL	ſS				
Project Number:	SE18-1375						Repor	t Date:	08/10/18	
Project Name:	MCCABE S	Г.					Lab N	umber:	L1829544	
								Serial_No:08	8101816:03	

NA

1

-

08/07/18 08:54

121,2540G

RI

Solids, Total

88.8

%

0.100

			Serial_No:08	3101816:03
Project Name:	MCCABE ST.	Lat	b Number:	L1829544
Project Number:	SE18-1375	Rej	port Date:	08/10/18
		SAMPLE RESULTS		
Lah ID:	1 1829544-02	Dat	te Collected:	07/31/18 12:00

Lab ID:	L1829544-0	2					Date	Collected: (07/31/18 12:00)
Client ID:	SS-2						Date	Received: (07/31/18	
Sample Location:	Not Specifie	d					Field	Prep: I	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total	83.3		%	0.100	NA	1	-	08/07/18 08:54	121,2540G	RI

Project Name:MCCABE ST.Project Number:SE18-1375

Serial_No:08101816:03 *Lab Number:* L1829544 *Report Date:* 08/10/18

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
Α	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1829544-01A	Glass 60ml unpreserved split	A	NA		3.2	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T- 10(180),MCP-CD-6010T-10(180),MCP-TL- 6010T-10(180),MCP-AG-6010T-10(180),MCP- SB-6010T-10(180),MCP-ZN-6010T- 10(180),MCP-BE-6010T-10(180),MCP-SE- 6010T-10(180),MCP-NI-6010T- 10(180),MCP-PB-6010T-10(180)
L1829544-01B	Glass 250ml/8oz unpreserved	А	NA		3.2	Y	Absent		MCP-8082-10(365),MCP-8081-10(14),MCP- 8270-10(14),TS(7),TPH-DRO-D(14)
L1829544-02A	Vial MeOH preserved	А	NA		3.2	Y	Absent		MCP-8260HLW-10(14)
L1829544-02B	Vial water preserved	А	NA		3.2	Υ	Absent	01-AUG-18 02:39	MCP-8260HLW-10(14)
L1829544-02C	Vial water preserved	А	NA		3.2	Y	Absent	01-AUG-18 02:39	MCP-8260HLW-10(14)
L1829544-02D	Plastic 2oz unpreserved for TS	A	NA		3.2	Y	Absent		MCP-CR-6010T-10(180),MCP-AS-6010T- 10(180),MCP-CD-6010T-10(180),MCP-TL- 6010T-10(180),MCP-AG-6010T-10(180),MCP- SB-6010T-10(180),MCP-ZN-6010T- 10(180),MCP-BE-6010T-10(180),MCP-SE- 6010T-10(180),MCP-NI-6010T- 10(180),MCP-PB-6010T-10(180)
L1829544-02E	Glass 250ml/8oz unpreserved	А	NA		3.2	Y	Absent		MCP-8082-10(365),MCP-8081-10(14),MCP- 8270-10(14),TS(7),TPH-DRO-D(14)

Serial_No:08101816:03

Project Name: MCCABE ST.

Project Number: SE18-1375

Lab Number: L1829544

Report Date: 08/10/18

GLOSSARY

Acronyms

-	
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	 Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- Footnotes
- 1 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name: MCCABE ST.

Project Number: SE18-1375

 Lab Number:
 L1829544

 Report Date:
 08/10/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1829544

 Report Date:
 08/10/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate EPA 9010: <u>NPW</u> and SCM: Amenable Cyanide Distillation SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. **Mansfield Facility**

SM 2540D: TSS EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: AI, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:08101816:03

Дерна	CHAIN OI	- CUS	TOD	РА РА	ge	OF	Dat	te Rec	'd in l	Lab: c	70	- 5	31-	201	ALPI	IA Jo	b #:	L189	295)	tH
Address: 769 Marsht Phone: 781- Email: 950020	20 Tel: 508-822-9300	Project In Project Nan Project Loca Project #: Project Man ALPHA Qu Turn-Aro Ostandare Date Due	ne: M ation: SIEI8 nager: (note #: nund Tim	Cab 2-13 Fett	75	- 25	Re CONTRACTOR	ADEX gulat (es (es (es (es)) (ther S	Infor No M No M No G No N State /	Requi IA MC latrix S W1 St IPDES Fed F	D EMA Iremen P Analy pike R landard RGP Program	ta De L Its { Itical M equired s (Info	iiver 3 P iethoo J on ti Requ	roject I s his SDG? ired for N	Billin D San nforma	ig Info tion Ro Yes D N red for N EPH wit	irmat lient in equir No C MCP I ith Tar	ion fo PO #: ements T RCP Analy norganics) rgets) SAM Filtre D Li	rtical Metho	ds T Q
ALPHA Lab ID (Lab Use Only)	Sample ID 55-1 55-2		Collec Date 7/3/ 7/3/	ction Time 1145 1200	Sample Matrix	Sampler Initials C-S	× 1001	X X 3400. M.	X X METALS	METALS:	EPH: Class	X X KAR	X X	\$ 				/ .	ab to do Comments	1 4
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 61 of 65	Preservative A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₂ H = Na ₂ S ₂ O ₃ I = Ascorbic Acid J = NH ₄ CI K = Zn Acetate O = Other	Relinquish	ed By:	e AAL 7	Pre	iner Type servative /Time / 15 2 //73	V F Car	GA	G A Re	ceived	By:	G- A	G A 7/	Date 7-31-1 11/18	Time \$ 152] (q 15	Alph See	ha's Te	es submitted erms and Co 'se side. In-01 (rev. 12-Ma	nditions.	t to

Method Blank Summary Form 4 VOLATILES

Client Project Name Lab Sample ID Instrument ID	: Sitec Environmental, Inc. : MCCABE ST. : WG1144620-5 : VOA100	Lab Number Project Number Lab File ID	: L1829544 : SE18-1375 : V00180808N05	
Matrix	: SOIL	Analysis Date	: 08/08/18 20:30	
Client Sam	ple No.	Lab Sample ID	Analysis Date	
WG1144620-	3LCS	WG1144620-3	08/08/18 18:44	
WG1144620-	4LCSD	WG1144620-4	08/08/18 19:10	
SS-2		L1829544-02	08/08/18 20:57	

Continuing Calibration Form 7

Client	: Sitec Environmental, Inc.	Lab Number	: L1829544	
Project Name	: MCCABE ST.	Project Number	: SE18-1375	
Instrument ID	: VOA100	Calibration Date	: 08/08/18 18	3:44
Lab File ID	: V00180808N01	Init. Calib. Date(s)	: 08/02/18	08/02/18
Sample No	: WG1144620-2	Init. Calib. Times	: 20:03	23:32
Channel	:			

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	61	0
Dichlorodifluoromethane	0.229	0.195	-	14.8	20	54	0
Chloromethane	0.295	0.261	-	11.5	20	56	0
Vinyl chloride	0.284	0.274	-	3.5	20	58	0
Bromomethane	0.175	0.152	-	13.1	20	60	0
Chloroethane	0.172	0.174	-	-1.2	20	61	0
Trichlorofluoromethane	0.294	0.306	-	-4.1	20	61	0
Ethyl ether	0.125	0.118	-	5.6	20	59	0
1,1-Dichloroethene	0.202	0.187	-	7.4	20	56	0
Carbon disulfide	0.71	0.62	-	12.7	20	56	0
Methylene chloride	0.266	0.229	-	13.9	20	57	0
Acetone	20	21.544	-	-7.7	20	70	0
trans-1,2-Dichloroethene	0.233	0.216	-	7.3	20	56	0
Methyl tert-butyl ether	0.567	0.544	-	4.1	20	60	0
Diisopropyl ether	0.809	0.79	-	2.3	20	60	0
1,1-Dichloroethane	0.447	0.431	-	3.6	20	59	0
Ethyl tert-butyl ether	0.686	0.673	-	1.9	20	61	0
cis-1,2-Dichloroethene	0.248	0.236	-	4.8	20	58	0
2,2-Dichloropropane	0.329	0.334	-	-1.5	20	62	0
Bromochloromethane	0.099	0.097	-	2	20	57	0
Chloroform	0.416	0.414	-	0.5	20	60	0
Carbon tetrachloride	0.276	0.276	-	0	20	59	0
Tetrahydrofuran	20	20.796	-	-4	20	65	0
Dibromofluoromethane	0.235	0.236	-	-0.4	20	62	0
1,1,1-Trichloroethane	0.324	0.321	-	0.9	20	57	0
2-Butanone	0.077	0.092*	-	-19.5	20	68	0
1,1-Dichloropropene	0.303	0.313	-	-3.3	20	59	0
Benzene	0.948	0.921	-	2.8	20	59	0
tert-Amyl methyl ether	0.575	0.569	-	1	20	61	0
1,2-Dichloroethane-d4	0.24	0.248	-	-3.3	20	65	0
1,2-Dichloroethane	0.269	0.277	-	-3	20	63	0
Trichloroethene	0.225	0.223	-	0.9	20	58	0
Dibromomethane	0.113	0.116	-	-2.7	20	61	0
1,2-Dichloropropane	0.236	0.236	-	0	20	60	0
Bromodichloromethane	0.281	0.287	-	-2.1	20	61	0
1,4-Dioxane	0.00166	0.00207*	-	-24.7*	20	72	0
cis-1,3-Dichloropropene	0.343	0.353	-	-2.9	20	60	0
Chlorobenzene-d5	1	1	-	0	20	63	0
Toluene-d8	1.421	1.408	-	0.9	20	62	0
Toluene	0.843	0.796	-	5.6	20	59	0
4-Methyl-2-pentanone	0.094	0.094*	-	0	20	64	0
Tetrachloroethene	0.32	0.313	-	2.2	20	57	0
trans-1,3-Dichloropropene	20	18.609	-	7	20	61	0
1,1,2-Trichloroethane	0.206	0.215	-	-4.4	20	63	0
Chlorodibromomethane	0.274	0.269	-	1.8	20	61	0

* Value outside of QC limits.

Continuing Calibration Form 7

Client	: Sitec Environmental, Inc.	Lab Number	: L1829544	
Project Name	: MCCABE ST.	Project Number	: SE18-1375	
Instrument ID	: VOA100	Calibration Date	: 08/08/18 18	3:44
Lab File ID	: V00180808N01	Init. Calib. Date(s)	: 08/02/18	08/02/18
Sample No	: WG1144620-2	Init. Calib. Times	: 20:03	23:32
Channel	:			

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
1,3-Dichloropropane	0.437	0.446	-	-2.1	20	62	0
1,2-Dibromoethane	0.221	0.224	-	-1.4	20	61	0
2-Hexanone	0.16	0.154	-	3.8	20	58	0
Chlorobenzene	0.885	0.845	-	4.5	20	60	0
Ethylbenzene	1.575	1.526	-	3.1	20	60	0
1,1,1,2-Tetrachloroethane	0.286	0.286	-	0	20	60	0
p/m Xylene	0.588	0.573	-	2.6	20	59	0
o Xylene	0.572	0.561	-	1.9	20	60	0
Styrene	0.938	0.942	-	-0.4	20	61	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	62	0
Bromoform	0.337	0.331	-	1.8	20	62	0
Isopropylbenzene	3.02	3.013	-	0.2	20	60	0
4-Bromofluorobenzene	1.036	1.057	-	-2	20	64	0
Bromobenzene	0.705	0.695	-	1.4	20	60	0
n-Propylbenzene	3.699	3.789	-	-2.4	20	62	0
1,1,2,2-Tetrachloroethane	0.612	0.653	-	-6.7	20	64	0
2-Chlorotoluene	2.221	2.37	-	-6.7	20	66	0
1,3,5-Trimethylbenzene	2.558	2.529	-	1.1	20	60	0
1,2,3-Trichloropropane	0.484	0.522	-	-7.9	20	65	0
4-Chlorotoluene	2.225	2.264	-	-1.8	20	63	0
tert-Butylbenzene	2.1	2.09	-	0.5	20	60	0
1,2,4-Trimethylbenzene	2.539	2.495	-	1.7	20	60	0
sec-Butylbenzene	3.195	3.255	-	-1.9	20	61	0
p-Isopropyltoluene	2.685	2.683	-	0.1	20	60	0
1,3-Dichlorobenzene	1.348	1.337	-	0.8	20	60	0
1,4-Dichlorobenzene	1.37	1.352	-	1.3	20	61	0
n-Butylbenzene	2.585	2.71	-	-4.8	20	63	0
1,2-Dichlorobenzene	1.219	1.193	-	2.1	20	60	0
1,2-Dibromo-3-chloropropan	20	18.372	-	8.1	20	59	0
Hexachlorobutadiene	0.477	0.454	-	4.8	20	56	0
1,2,4-Trichlorobenzene	0.868	0.854	-	1.6	20	59	0
Naphthalene	1.798	1.733	-	3.6	20	58	0
1,2,3-Trichlorobenzene	0.778	0.75	-	3.6	20	59	0

* Value outside of QC limits.

Performance Evaluation Mixture Report Form 15

Client Project Name Instrument ID PEM Standard	: Sitec Environmental, Inc. : MCCABE ST. : PEST10 : R1099666-1	Lab Number Project Number Analysis Date	: L1829544 : SE18-1375 : 08/09/18 06:11
Column 1	: RTX-5	Column 2	: RTX-CLPPesticides2
Parameter		Signal 1	Signal 2
4,4'-DDE		806168.76614	805515.8269
Endrin		181495479.54231	144349233.51288
4,4'-DDD		373538.61895	409528.53278
4,4'-DDT		316298829.43274	258810007.18806
Endrin Aldehy	de	222039.81572	1119858.69569
Endrin Ketone		1231457.00729	1088239.34456
Parameter		%Breakdown 1	%Breakdown 2
Endrin		0.794	1.51
DDT		0.372	0.467

ANALYTICAL REPORT

Lab Number:	L1832073
Client:	Sitec Environmental, Inc.
	769 Plain Street
	Unit C
	Marshfield, MA 02050
ATTN:	Geoff Souza
Phone:	(781) 319-0100
Project Name:	MCCABE ST.
Project Number:	SE18-1375
Report Date:	08/21/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial	No:08211811:41
--------	----------------

Lab Number:	L1832073
Report Date:	08/21/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1832073-01	SS-1	SOIL	Not Specified	07/31/18 11:45	07/31/18

Project Name:

Project Number: SE18-1375

MCCABE ST.

Project Name: MCCABE ST.

Project Number: SE18-1375

Lab Number: L1832073

Report Date: 08/21/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	NO
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	NO
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: MCCABE ST. Project Number: SE18-1375
 Lab Number:
 L1832073

 Report Date:
 08/21/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1832073

 Report Date:
 08/21/18

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

In reference to question A:

The analysis of Hexavalent Chromium was not performed from a separate container that remained unopened until the alkaline digestion commenced.

In reference to question H:

A Matrix Spike was not submitted for the analysis of Hexavalent Chromium.

Hexavalent Chromium

LCS/LCSD SRM Lot#: ERA D096-921

In reference to question B:

At the client's request, the analytical method specified in the CAM protocol was not followed; pH and ORP were not performed.

In reference to question G:

L1832073-01: The sample has an elevated detection limit due to the dilution required by the sample matrix.

The target analyte did not achieve the requested CAM reporting limit.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Monig Michelle M. Morris

Title: Technical Director/Representative

Date: 08/21/18

INORGANICS & MISCELLANEOUS

							S	Serial_No:08	211811:41	
Project Name: Project Number:	MCCABE S SE18-1375	Т.							L1832073 08/21/18	
				SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location:	L1832073-0 SS-1 Not Specifie							Received:	07/31/18 11:45 07/31/18 Not Specified	5
Sample Depth: Matrix: Parameter	Soil Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemistry	- Westboroug	gh Lab								
Chromium, Hexavalent	ND		mg/kg	4.50		5	08/17/18 13:41	08/20/18 10:1	1 97,7196A	NH
General Chemistry - We	stborough Lat)								
Solids, Total	88.8		%	0.100	NA	1	-	08/07/18 08:5	4 121,2540G	RI

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1832073

 Report Date:
 08/21/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemistr	ry - Westborough Lab fo	or sample(s):	01	Batch:	WG1147847	' -1			
Chromium, Hexavalent	ND	mg/kg	0.800		1	08/17/18 13:41	08/20/18 10:11	97,7196A	NH

Lab Control Sample Analysis Batch Quality Control

Project Name:MCCABE ST.Project Number:SE18-1375

 Lab Number:
 L1832073

 Report Date:
 08/21/18

Parameter	LCS %Recovery Qual	LCSD %Recovery Qua	%Recovery I Limits	RPD	Qual RPD Limits
MCP General Chemistry - Westborough Lab	Associated sample(s):	D1 Batch: WG1147847-	2 WG1147847-3		
Chromium, Hexavalent	78	92	70-129	16	20

Project Name: MCCABE ST. Project Number: SE18-1375

Serial_No:08211811:41 Lab Number: L1832073 Report Date: 08/21/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation	l Cooler		nitial Final Tem				Frozen			
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L1832073-01A	Glass 250ml/8oz unpreserved	А	NA		3.2	Y	Absent		MCP-HEXCR7196-10(30)		

YES

Serial_No:08211811:41

Project Name: MCCABE ST.

Project Number: SE18-1375

Lab Number: L1832073

Report Date: 08/21/18

GLOSSARY

Acronyms

-	
EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	 Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- 1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Usability Report Report Format:

Project Name: MCCABE ST.

Project Number: SE18-1375

 Lab Number:
 L1832073

 Report Date:
 08/21/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: MCCABE ST. Project Number: SE18-1375

 Lab Number:
 L1832073

 Report Date:
 08/21/18

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: <u>DW</u>: Bromide
EPA 6860: <u>SCM</u>: Perchlorate
EPA 9010: <u>NPW</u>: Amenable Cyanide Distillation
SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Дерна	CHAIN (and the second s	-	PAGE	or 1	Dat	e Rec'd in	Lab O'	7-	L183	ALPH	8/16/1	al_No:08211811: いしをうみに # -1-182-1	73
8 Walkup Dr. Westboip, M	A 01581 Alametoid Ltd 020an	Project Hills		-	and in a					Deliverables	successive division in which the real of the local division in which the local division is not the local division of the local division in the local division of the local divis	g Infor		Concerne and
Client Informat	1-9220 Tel: 508-622-9300	Project Name	Mic Ca	bes	t	Ð	NOEX	D E	MAIL		🗆 Sam	e as Clie	nt info PO #	and the second se
		Project Locatio				Re	gulatory	Requiren	nents	& Projec	t Informat	ion Red	urements	14 Mar
5//E	E Envirancely1	Project #: 5	E18-1	375	-	QY QY	es 🛛 No N	A MCP A	nelytice	Methods	DY C2 (Percei	es 🗆 No	CT RCP Analytical N P Inorganics)	lethods
Address: 764	Plain Sty Unit	Project Manage		+ sei	129	LU TI	IS LI NO C	www.stand	iards (in	fo Required to	r Metals & E	EPH with	Targets)	
	field, mA once	ALPHA Quote	¢;				ter State			M4	MCP	Criteria	5-1	
none: -181-	319-0100	Turn-Aroun	d Time				/	1 2	1.1	11	111	11	777	-
	Project Information:	Øİştandard Date Due:		i		ANALYSIC		No.	Dire d Targade LI Ranges C	D.P.	HexCr		SAMPLE II Filtration	-
ALPHA Leb ID (Lab Use Only)	Sample ID	Date	Collection	Sample Matrix	Sampler	1 in	FE	14/8	18	TF1	//	11	Preservation	7 0
2073-01	55-1	7/	31 1145	- C	Ce	11	V Del		5 4	A	11	4	/ Sample Comme	nts 5
	55-2	71	31 1200	2	60	1.		++	1	K ×		-		1
-			1 100	5	03	1	a R		K	R		_	VOC LOW	4
	• • • •						++	1.1	-					
10000			-		_				-					
	• • • • • •													
			-											
												-		+ 1
									T			1		+
								11						
nitainer Type Phasso	Preservative .		Г	Container Type		VG	1		C	G				
Amber glass Val Slass	6+ NCr C= HNO ₂ D= H,SO,			Preservative			4		-			++		
Bacterna eup Guber Obher	E= NaOH F= MeOH	Belinquished By:				1.1.1	Remi	red By:	1	A Date/	Time			
Page 15 of 15	On Narison H = Nar,GJOs J = Nar,GJOs J = Nar,GI K = Zri Acetase On Other	Tog.	EAAL .	7/31	1520	A	Ula	tif	AL.	13118	15:0	All sample Alpha's Ti See rever	ss submitted are subjections and Conditions	at to

ATTACHMENT 2

PRP AUTHORIZATION

August 28, 2018

Massachusetts Department of Environmental Protection 20 Riverside Drive Lakeville, MA 02347

RE: 85 McCabe Street Dartmouth, Massachusetts Release Tracking No.: 4-27363

To Whom It May Concern:

In accordance 310 CMR 40.0009(2), I am authorizing SITEC Environmental, Inc. to act as my agent in electronically filing any required Massachusetts Contingency Plan documents for the above referenced release.

Sincerely,

Vunno

George Verissimo Terceira Construction