## **APPENDIX E**

## DATA USABILITY ASSESSMENT

| Data Usability Asses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sment: Spectra Energy Partners, Atlantic Bridge, Weymouth Compressor Station, Weymouth, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1: Discuss<br>appropriateness of<br>selected analytical<br>methods to quantitatively<br>support disposal site's<br><i>Permanent Solution</i><br>Statement. Discuss any<br>impacts to the data used<br>to support the <i>Permanent</i><br><i>Solution</i> Statement if<br>generated with non-CAM<br>methods. Justify that the<br>data used to support the<br><i>Permanent Solution</i><br>Statement is adequate in<br>spite of the use of non-<br>CAM methods.<br>2: Discuss<br>appropriateness of                                                                       | <ul> <li>Appropriateness of Analytical Methods Used</li> <li>The following methods were utilized to respond to all contaminants of concern.</li> <li>*Soil: VPH, EPH, PAHs, herbicides, total metals, synthetic precipitation leaching procedure (SPLP) metals, specific conductance, pH</li> <li>*Groundwater: VPH, EPH, total and dissolved metals</li> <li>Tables DUA-1 and DUA-2 summarize all samples used for the <i>Permanent Solution</i> Statement and included in this data usability assessment.</li> <li>All groundwater sample analyses were performed using the CAM. Select soil sample analyses for VPH, EPH, PAHs, metals, and herbicides were performed using the CAM. Select soil sample analyses were performed using non-CAM methods: pH, specific conductance, and SPLP metals. See Table DUA-1 for the affected samples.</li> <li>Analytical reporting limits, as documented by the laboratory, meet or exceed sensitivity requirements required to assess level of risk and cleanup standards for contaminants of concern previously</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| selected analytical<br>methods' Reporting Limits<br>(RL) to quantitatively<br>support the disposal site's<br><i>Permanent Solution</i><br>Statement.                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li><u>Exception #1:</u> The nondetect results for benzo(a)pyrene and dibenz(a,h)anthracene in samples B105 (14-17'), B-410 (12.5'), and B-415 (11.8'), and acenaphthylene, benzo(a)pyrene, and dibenz(a,h)anthracene in samples B-413 (11') and B-415 (12.2') exhibited reporting limits which were above the MCP S-2/GW-3 standard.</li> <li><u>Justification for Exception #1:</u> There was no adverse effect to the outcome or conclusion of the <i>Permanent Solution</i> Statement due to these sensitivity issues since one or more of the EPH hydrocarbon ranges were above the MCP S-2/GW-3 standard in these samples. In addition, these PAHs are not associated with No. 2 fuel oil releases.</li> <li>Analytical reporting limits, as documented by the laboratory, meet or exceed sensitivity requirements required to assess level of risk and cleanup standards for contaminants of concern previously identified for this response action for all groundwater samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3: Discuss laboratory<br>performance criteria and<br>data quality indicators<br>utilized to assess overall<br><u>Analytical Accuracy</u><br>(continuing calibration,<br>laboratory control spikes,<br>etc.) and <u>Analytical</u><br><u>Precision</u> (laboratory<br>duplicates, laboratory<br>control spike duplicates,<br>etc.)<br><u>CAM Data:</u> Review<br>Certification Form and<br>discuss data quality issues<br>noted in narrative.<br><u>Non-CAM Data:</u> Discuss<br>data quality indicators<br>used to assess data and<br>any data quality issues<br>noted. | <ul> <li>Meets all CAM requirements and performance standards without qualification.</li> <li>Does not meet all CAM requirements and performance standards without qualification. If NO, discuss data usability implications</li> <li>There were no significant issues associated with the groundwater data. Potentially significant issues associated with the soil data are summarized below.</li> <li><u>Issue #1:</u> Potential uncertainty exists for the C9-C18 aliphatics result in soil sample B-410 (12.5') due to LCS/LCS Duplicate variability. The result for C9-C18 aliphatics in sample B-410 (12.5') is slightly above the MCP S-2/GW-3 standard. The decision-making process may be affected by the variability as the actual result may be lower and below the MCP S-2/GW-3 standard.</li> <li><u>Justification for Issue #1:</u> Although this result is uncertain, several other sample results exist for C9-C18 aliphatics in decision-making process. Therefore, the potential uncertainty for C9-C18 aliphatics in this one sample did not significantly affect the outcome or conclusions of this <i>Permanent Solution</i> Statement.</li> <li>Data usability was not adversely affected by the remaining data issues listed below as these issues would not cause a significant bias to the reported values whereby the exceedance of a project action level (i.e., Method 1 standard) would change or the presence or absence of a contaminant would change.</li> <li>Accuracy:</li> <li>High Biases (Soil):     <ul> <li>High recovery of mercury in LCS: TP-1 (5-7') and its field duplicate, TP-1 (7-9'), TP-2 (5-7'), TP-2 (7-9'), TP-3 (5-7'), TP-3 (7-9')</li> <li>High recovery of mercury in LCS and LCS Duplicate: COMP-123 (0-1'), COMP-467 (0-1'), COMP-8910 (0-1')</li> </ul> </li> <li>Low recovery of lead in LCS: COMP-123 (0-1'), COMP-467 (0-1'), COMP-8910 (0-1')</li> </ul> |

| Data Usability Asses                                  | sment: Spectra Energy Partners, Atlantic Bridge, Weymouth Compressor Station, Weymouth, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | Low Biases (Groundwater):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                       | <ul> <li>Low recovery of C9-C18 aliphatics in LCS Duplicate: MW-201 and field duplicate (November 2016)</li> <li>Low recovery of naphthalene (EPH) in LCS Duplicate: MW-201 (January 2017), MW-406 and field duplicate (January 2017), MW-407 (January 2017), MW-410 (January 2017), MW-414 (January 2017), MW-402 (January 2017), MW-404 (January 2017), MW-408 (January 2017), MW-412 and field duplicate (January 2017), MW-413 (January 2017), MW-415 (January 2017)</li> </ul>                                                                                                                                                                                                  |
|                                                       | Precision:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                       | Soil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       | <ul> <li>High variability of C9-C18 aliphatics in LCS/LCS Duplicate: B105 (14-17')</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                       | <ul> <li>High variability of C9-C18 aliphatics, naphthalene (EPH), and dibenz(a,h)anthracene in LCS/LCS Duplicate: B-408 (11'), B-408 (15'), B-409 (11.5'), B-410 (11'), B-410 (14'), B-411 (11.5'), B-411 (16'), B-412 (19'), B-413 (11'), B-413 (23'), B-414 (11'), B-414 (15.5'), B-417 (11')</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          |
|                                                       | • High variability of naphthalene (EPH) and dibenz(a,h)anthracene in LCS/LCS Duplicate: B-410 (12.5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       | <ul> <li>High variability of phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and benzo(ghi)perylene in LCS/LCS Duplicate: B-416 (11'), B-416 (15'), B-417 (15')</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                       | <ul> <li>High variability of C19-C36 aliphatics in LCS/LCS Duplicate: B-403 (12'), B-404 (11.4'), B-404 (16.5'), B-405 (11.5'), B-406 (21'), field duplicate of B-415 (13.4')</li> <li>High variability of diposed in LCS/LCS Duplicate: B-1 (0-1'), B-3 (0-1'), B-4 (0-1')</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                       | B-5 (0-1'), B-6 (0-1'), B-7 (0-1'), B-8 (0-1'), B-9 (0-1'), B-10 (0-1')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                       | <ul> <li>High variability of zinc in laboratory duplicate: B-1 (0-1'), B-2 (0-1'), B-3 (0-1'), B-4 (0-1'), B-5 (0-1'),<br/>B-6 (0-1'), B-7 (0-1'), B-8 (0-1'), B-9 (0-1'), B-10 (0-1'), COMP-123 (0-1'), COMP-467 (0-1'), COMP-<br/>8910 (0-1'), COMP-123-Fill, COMP-123-Native, COMP-467-Fill, COMP-467-Native, COMP-8910-<br/>Native, COMP-910-Fill</li> </ul>                                                                                                                                                                                                                                                                                                                     |
|                                                       | <ul> <li>ph 24 hour hold time exceeded: TP-2 (5-7'), TP-2 (7-9'), TP-3 (5-7'), TP-3 (7-9'), TP-1 (5-7') field<br/>duplicate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                       | Groundwater:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                       | <ul> <li>High variability of C9-C18 aliphatics, C11-C22 aromatics, naphthalene (EPH), 2-methylnaphthalene,<br/>acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene,<br/>benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene,<br/>indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(ghi)perylene in LCS/LCS Duplicate:<br/>MW-201 and field duplicate (November 2016)</li> </ul>                                                                                                                                                                                                                       |
|                                                       | <ul> <li>High variability of dibenz(a,h)anthracene in LCS/LCS Duplicate: MW-202 (November 2016), MW-203 (November 2016), MW-204 (November 2016), MW-205 (November 2016), MW-206 (November 2016)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                       | <ul> <li>High variability of C19-C36 aliphatics in LCS/LCS Duplicate: MW-201 and field duplicate (August 2016), MW-202 (August 2016), MW-203 (August 2016), MW-204 (August 2016), MW-205 (August 2016)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                       | <ul> <li>High variability of C11-C22 aromatics, naphthalene (EPH), 2-methylnaphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(ghi)perylene in LCS/LCS Duplicate: MW-201 (January 2017), MW-406 and field duplicate (January 2017), MW-407 (January 2017), MW-410 (January 2017), MW-414 (January 2017), MW-402 (January 2017), MW-404 (January 2017), MW-408 (January 2017), MW-412 and field duplicate (January 2017), MW-413 (January 2017), MW-415 (January 2017)</li> </ul> |
|                                                       | <ul> <li>High variability of naphthalene (EPH), 2-methylnaphthalene, acenaphthylene, acenaphthene, anthracene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(ghi)perylene in LCS/LCS Duplicate: MW-206 (March 2017), MW-403 (March 2017), MW-409 (March 2017), MW-411 (March 2017), MW-412 (March 2017), MW-413 (March 2017)</li> </ul>                                                                                                                                                                                                                                 |
|                                                       | <ul> <li>High variability of C19-C36 aliphatics in LCS/LCS Duplicate: MW-201 (June 2017), MW-406 and<br/>field duplicate (June 2017), MW-407 (June 2017), MW-410 (June 2017), MW-411 (June 2017), MW-414 (June 2017), MW-416 (June 2017), MW-417 (June 2017)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4: Discuss laboratory                                 | Sample Preservation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| data quality indicators<br>utilized to assess overall | Sample preservation procedures were performed as per required methods for all rounds of soil and groundwater sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (sample preservation                                  | Field QC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| subsampling/compositing,<br>field QC samples, etc.)   | Accuracy: soil and groundwater data assessed using trip blanks for VPH analyses and cooler temperatures for all coolers; soil data also assessed using MS/MSD and/or MS/duplicate analyses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Data Usability Asses                                                                                                 | sment: Spectra Energy Partners, Atlantic Bridge, Weymouth Compressor Station, Weymouth, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                      | Precision: groundwater data assessed using field duplicates; soil data assessed using field duplicates, MS/MSD and/or MS/duplicate analyses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                      | <ul> <li><u>Soil Field Duplicates:</u><br/>B/MW 201 (10-12') (EPH, total metals); B-415 (13.4') (EPH), TP-1 (5-7') (PAHs, metals, pH)</li> <li>Groundwater Field Duplicates:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                      | MW-201 (August 2016) (VPH, EPH, total and dissolved metals); MW-201 (November 2016) (VPH, EPH);<br>MW-205 (June 2017) (VPH, EPH); MW-406 (January 2017) (VPH, EPH); MW-406 (March 2017) (VPH,<br>EPH); MW-406 (June 2017) (VPH, EPH); MW-412 (January 2017) (VPH, EPH); MW-417 (March 2017)<br>(VPH, EPH)                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                      | <ul> <li><u>Soil MS/MSDs or MS/Duplicates:</u><br/>COMP-123 (0-1') (herbicides); B-2 (0-1') (herbicides, metals); B/MW 202 (5-7') (SPLP mercury); field<br/>duplicate of B/MW 201 (10-12') (SPLP metals)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                      | Potentially significant issues associated with the soil data are summarized below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                      | <u>Issue #1:</u> Potential uncertainty exists for C9-C18 aliphatics, C19-C36 aliphatics, and C11-C22 aromatics in sample B-415 (13.4') due to field duplicate variability. In this case, results for C9-C18 aliphatics, C19-C36 aliphatics, and C11-C22 aromatics were significantly higher in the original sample. The results for C9-C18 aliphatics, C19-C36 aliphatics, C19-C36 aliphatics, and C11-C22 aromatics in the original sample should be used for decision-making purposes as these results are significantly higher.                                                                                                             |
|                                                                                                                      | <u>Justification for Issue #1:</u> Since the higher results were used for decision-making purposes at this location including the calculation of the EPC in the risk characterization, this issue has no adverse effect on the outcome or conclusions of this <i>Permanent Solution</i> Statement.                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                      | Potentially significant issues associated with the groundwater data are summarized below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                      | <u>Issue #1:</u> Potential uncertainty exists for dissolved zinc in groundwater sample MW-201 (August 2016) due to field duplicate variability (>130% RPD). In this case, the result for dissolved zinc was significantly higher in the field duplicate sample. The result for dissolved zinc in the field duplicate sample should be used for decision-making purposes as the result was significantly higher. <u>Justification for Issue #1:</u> Since the higher result was used for decision-making purposes at this location, this issue has no adverse effect on the outcome or conclusions of this <i>Permanent Solution</i> Statement. |
|                                                                                                                      | Data usability was not adversely affected by the remaining data issues listed below as these issues would not cause a significant bias to the reported values whereby the exceedance of a project action level (i.e., Method 1 standard) would change or the presence or absence of a contaminant would change.                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                      | Accuracy of Field QC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                      | <ul><li>High Biases (Soil):</li><li>High recoveries of MCPP in MS and MSD: COMP-123 (0-1")</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                      | <ul> <li>Low Biases (Soil):</li> <li>Low recovery of antimony in MS: B-1 (0-1'), B-2 (0-1'), B-3 (0-1'), B-4 (0-1'), B-5 (0-1'), B-6 (0-1'), B-7 (0-1'), B-8 (0-1'), B-9 (0-1'), B-10 (0-1'), COMP-123 (0-1'), COMP-467 (0-1'), COMP-8910 (0-1'), COMP-123-Fill, COMP-123-Native, COMP-467-Fill, COMP-467-Native, COMP-8910-Native, COMP-910-Fill</li> </ul>                                                                                                                                                                                                                                                                                   |
|                                                                                                                      | Precision of Field QC (Field duplicate criteria: RPD ≤30 for aqueous, ≤50 for solids):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                      | Soil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                      | <ul> <li>Field duplicate variability for phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, and benzo(b)fluoranthene: TP-1 (5-7')</li> <li>Field duplicate variability for total zinc, barium, and chromium: B/MW 201 (10-12')</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                      | <ul><li>Groundwater:</li><li>Field duplicate variability for total zinc: MW-201 (August 2016)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                      | <ul> <li><u>Potential uncertainty:</u></li> <li>Dissolved results higher than total results; high percent difference (&gt;20%) between total and dissolved zinc: MW-203 (August 2016), MW-204 (August 2016), MW-205 (August 2016)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5: Analytical<br>Completeness of Data<br>Used to Support the<br><i>Permanent Solution</i><br>Statement : Discuss any | <ul> <li>100% analytical completeness achieved for all site data.</li> <li>No gross failures of quality control in the analytical procedures.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

data rejected pursuant to Appendix II, Rejection Criteria – Analytical Data Usability Assessments

| Completer         | VPU |                | llauk ini da | Total MCP | SPLP MCP       |    | Specific    |
|-------------------|-----|----------------|--------------|-----------|----------------|----|-------------|
| Sample Location   | VPH | EPH            | Herbicides   | 14 Metals | 14 Metals      | рН | conductance |
| June 2015         |     |                | -1           | 1         |                |    |             |
| B-1 (0-1')        |     |                | х            | х         |                |    |             |
| B-2 (0-1')        |     |                | х            | х         |                |    |             |
| B-3 (0-1')        |     |                | х            | х         |                |    |             |
| B-4 (0-1')        |     |                | х            | х         |                |    |             |
| B-5 (0-1')        |     |                | х            | х         |                |    |             |
| B-6 (0-1')        |     |                | Х            | х         |                |    |             |
| B-7 (0-1')        |     |                | х            | х         |                |    |             |
| B-8 (0-1')        |     |                | Х            | х         |                |    |             |
| B-9 (0-1')        |     |                | х            | х         |                |    |             |
| B-10 (0-1')       |     |                | х            | х         |                |    |             |
| COMP-123 (0-1')   |     |                | Х            | х         |                |    |             |
| COMP-467 (0-1')   |     |                | Х            | х         |                |    |             |
| COMP-8910 (0-1')  |     |                | х            | х         |                |    |             |
| COMP-123-Fill     |     | х              |              | х         |                |    |             |
| COMP-123-Native   |     |                |              | x         |                |    | Х           |
| COMP-467-Fill     |     | х              |              | x         |                |    |             |
| COMP-467-Native   |     |                |              | х         |                |    | Х           |
| COMP-8910-Native  |     |                |              | х         |                |    | Х           |
| COMP-910-Fill     |     | х              |              | x         |                |    |             |
| December 2015     |     |                |              |           |                |    |             |
| TP-1 (5-7')       |     | X <sup>1</sup> |              | х         |                | х  |             |
| TP-1 (7-9')       |     | X <sup>1</sup> |              | х         |                | х  |             |
| TP-2 (5-7')       |     | X <sup>1</sup> |              | х         |                | х  |             |
| TP-2 (7-9')       |     | X <sup>1</sup> |              | x         |                | х  |             |
| TP-3 (5-7')       |     |                |              | x         |                | х  |             |
| TP-3 (7-9')       |     | X <sup>1</sup> |              | x         |                | Х  |             |
| April 2016        |     |                |              |           |                |    |             |
| B105 (14-17')     | X   | x              |              |           |                |    |             |
| May 2016          |     |                |              |           |                |    |             |
| B/MW 201 (6-8')   |     | x              |              | x         |                |    |             |
| B/MW 201 (10-12') |     | x              |              | x         | χ <sup>2</sup> |    |             |
| B/M/W/ 202 (5 7') |     | ~              |              | × ×       | × ×            |    |             |

-1

| Summary of Soil Spe | Table DUA-1         Summary of Soil Samples and Parameters Included in Permanent Solution Statement and Data Usability Assessment         Spectra Energy Partners, Atlantic Bridge, Weymouth Compressor Station, Weymouth, MA         Total MCP       Spice MCP |     |            |                        |                       |    |                      |  |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|------------------------|-----------------------|----|----------------------|--|--|--|--|--|--|--|
| Sample Location     | VPH                                                                                                                                                                                                                                                             | EPH | Herbicides | Total MCP<br>14 Metals | SPLP MCP<br>14 Metals | рН | Specific conductance |  |  |  |  |  |  |  |
| B/MW 202 (9-11')    |                                                                                                                                                                                                                                                                 | Х   |            | Х                      | Х                     |    |                      |  |  |  |  |  |  |  |
| B/MW 203 (5-7')     |                                                                                                                                                                                                                                                                 | х   |            | Х                      | Х                     |    |                      |  |  |  |  |  |  |  |
| B/MW 203 (9-11')    |                                                                                                                                                                                                                                                                 | х   |            | Х                      | Х                     |    |                      |  |  |  |  |  |  |  |
| B/MW 204 (6-8')     |                                                                                                                                                                                                                                                                 | х   |            | Х                      |                       |    |                      |  |  |  |  |  |  |  |
| B/MW 204 (8-10')    |                                                                                                                                                                                                                                                                 | х   |            | Х                      |                       |    |                      |  |  |  |  |  |  |  |
| B/MW 205 (6-8')     |                                                                                                                                                                                                                                                                 | х   |            | х                      |                       |    |                      |  |  |  |  |  |  |  |
| B/MW 205 (10-12')   |                                                                                                                                                                                                                                                                 | х   |            | х                      |                       |    |                      |  |  |  |  |  |  |  |
| October 2016        |                                                                                                                                                                                                                                                                 |     |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-308 (12.0')       | х                                                                                                                                                                                                                                                               | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-310 (12.5')       | Х                                                                                                                                                                                                                                                               | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-314 (12.5')       | Х                                                                                                                                                                                                                                                               | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-315 (12.5')       | х                                                                                                                                                                                                                                                               | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-317 (11.5')       | х                                                                                                                                                                                                                                                               | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-317 (13.0')       | Х                                                                                                                                                                                                                                                               | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| December 2016       |                                                                                                                                                                                                                                                                 | 1   |            | 1                      |                       |    |                      |  |  |  |  |  |  |  |
| B-400 (11.4')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-400 (12.4')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-401 (11.5')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-401 (12.2')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-402 (11.6')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-402 (12.2')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-402 (12.8')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-403 (10')         |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-403 (12')         |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-404 (11.4')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-404 (16.5')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-405 (11.5')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-405 (12.5')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-406 (21')         |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    |                      |  |  |  |  |  |  |  |
| B-407 (12.8')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    | 1                    |  |  |  |  |  |  |  |
| B-407 (17.5')       |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    | 1                    |  |  |  |  |  |  |  |
| B-408 (11')         |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    | +                    |  |  |  |  |  |  |  |
| B-408 (15')         |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    | †                    |  |  |  |  |  |  |  |
| B-409 (10')         |                                                                                                                                                                                                                                                                 | х   |            |                        |                       |    | <u> </u>             |  |  |  |  |  |  |  |

| Sample Location | VPH | EPH | Herbicides | Total MCP<br>14 Metals | SPLP MCP<br>14 Metals | рН | Specific conductant |  |
|-----------------|-----|-----|------------|------------------------|-----------------------|----|---------------------|--|
| B-409 (11.5')   |     | x   |            |                        |                       |    |                     |  |
| B-410 (11')     |     | х   |            |                        |                       |    |                     |  |
| B-410 (12.5')   |     | х   |            |                        |                       |    |                     |  |
| B-410 (14')     |     | х   |            |                        |                       |    |                     |  |
| B-411 (11.5')   |     | х   |            |                        |                       |    |                     |  |
| B-411 (16')     |     | х   |            |                        |                       |    |                     |  |
| B-412 (19')     |     | х   |            |                        |                       |    |                     |  |
| B-413 (11')     |     | х   |            |                        |                       |    |                     |  |
| B-413 (23')     |     | х   |            |                        |                       |    |                     |  |
| B-414 (11')     |     | х   |            |                        |                       |    |                     |  |
| B-414 (15.5')   |     | х   |            |                        |                       |    |                     |  |
| B-415 (11.8')   |     | х   |            |                        |                       |    |                     |  |
| B-415 (12.2')   |     | х   |            |                        |                       |    |                     |  |
| B-415 (13.4')   |     | х   |            |                        |                       |    |                     |  |
| B-416 (11')     |     | х   |            |                        |                       |    |                     |  |
| B-416 (15')     |     | х   |            |                        |                       |    |                     |  |
| B-417 (11')     |     | х   |            |                        |                       |    |                     |  |
| B-417 (15')     |     | х   |            |                        |                       |    |                     |  |

| Sample<br>Location | VPH | EPH | Total and Dissolved<br>MCP 14 Metals |
|--------------------|-----|-----|--------------------------------------|
| MW-201             |     |     |                                      |
| August 2016        | Х   | Х   | Х                                    |
| November 2016      | Х   | х   |                                      |
| January 2017       | Х   | Х   |                                      |
| March 2017         | Х   | Х   |                                      |
| June 2017          | Х   | x   |                                      |
| MW-202             |     | ·   |                                      |
| August 2016        | Х   | x   | x                                    |
| November 2016      | Х   | Х   |                                      |
| January 2017       | Х   | Х   |                                      |
| March 2017         | Х   | Х   |                                      |
| June 2017          | Х   | Х   |                                      |
| MW-203             |     |     |                                      |
| August 2016        | Х   | Х   | X                                    |
| November 2016      | Х   | Х   |                                      |
| January 2017       | Х   | Х   |                                      |
| March 2017         | Х   | Х   |                                      |
| June 2017          | Х   | Х   |                                      |
| MW-204             |     |     |                                      |
| August 2016        | Х   | Х   | x                                    |
| November 2016      | Х   | х   |                                      |
| January 2017       | Х   | Х   |                                      |
| March 2017         | Х   | Х   |                                      |
| June 2017          | Х   | Х   |                                      |
| MW-205             |     |     |                                      |
| August 2016        | Х   | Х   | X                                    |
| November 2016      | Х   | х   |                                      |
| January 2017       | Х   | X   |                                      |
| March 2017         | Х   | х   |                                      |
| June 2017          | Х   | x   |                                      |

| Table DUA-2         Summary of Groundwater Samples and Parameters Included in Permanent Solution Statement and<br>Data Usability Assessment         Atlantic Bridge, Weymouth Compressor Station, Weymouth, MA |     |     |                                      |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------------------|--|--|--|--|--|--|--|--|
| Sample<br>Location                                                                                                                                                                                             | VPH | EPH | Total and Dissolved<br>MCP 14 Metals |  |  |  |  |  |  |  |  |
| MW-206                                                                                                                                                                                                         |     |     |                                      |  |  |  |  |  |  |  |  |
| November 2016                                                                                                                                                                                                  | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                     | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                      | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| MW-400                                                                                                                                                                                                         |     |     |                                      |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                     | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                      | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| MW-401                                                                                                                                                                                                         |     |     | 1                                    |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                     | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                      | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| MW-402                                                                                                                                                                                                         |     | I   |                                      |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                     | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                      | Х   | х   |                                      |  |  |  |  |  |  |  |  |
| MW-403                                                                                                                                                                                                         |     |     |                                      |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                     | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                      | Х   | х   |                                      |  |  |  |  |  |  |  |  |
| MW-404                                                                                                                                                                                                         |     |     |                                      |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                     | Х   | х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                      | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| MW-405                                                                                                                                                                                                         |     | I   | 1                                    |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                     | Х   | х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                      | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| MW-406                                                                                                                                                                                                         |     | I   | 1                                    |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                     | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                      | Х   | Х   |                                      |  |  |  |  |  |  |  |  |

| Summary of Groundwater Sam | -Table DUA<br>ples and Parameters Inc<br>Data Usability Asso<br>e, Weymouth Compress | 2<br>cluded in <i>Permanent</i> (<br>essment<br>sor Station, Weymout | So <i>lution</i> Statement and<br>h, MA |
|----------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| Sample<br>Location         | VPH                                                                                  | ЕРН                                                                  | Total and Dissolved<br>MCP 14 Metals    |
| MW-407                     |                                                                                      | L                                                                    |                                         |
| January 2017               | Х                                                                                    | х                                                                    |                                         |
| March 2017                 | Х                                                                                    | х                                                                    |                                         |
| June 2017                  | Х                                                                                    | х                                                                    |                                         |
| MW-408                     |                                                                                      |                                                                      |                                         |
| January 2017               | Х                                                                                    | х                                                                    |                                         |
| March 2017                 | Х                                                                                    | х                                                                    |                                         |
| June 2017                  | Х                                                                                    | х                                                                    |                                         |
| MW-409                     | L                                                                                    |                                                                      | 1                                       |
| January 2017               | Х                                                                                    | х                                                                    |                                         |
| March 2017                 | х                                                                                    | х                                                                    |                                         |
| June 2017                  | х                                                                                    | х                                                                    |                                         |
| MW-410                     |                                                                                      | I                                                                    | 1                                       |
| January 2017               | х                                                                                    | х                                                                    |                                         |
| March 2017                 | х                                                                                    | х                                                                    |                                         |
| June 2017                  | Х                                                                                    | х                                                                    |                                         |
| MW-411                     |                                                                                      |                                                                      |                                         |
| January 2017               | х                                                                                    | х                                                                    |                                         |
| March 2017                 | Х                                                                                    | х                                                                    |                                         |
| June 2017                  | х                                                                                    | х                                                                    |                                         |
| MW-412                     |                                                                                      |                                                                      |                                         |
| January 2017               | х                                                                                    | х                                                                    |                                         |
| March 2017                 | Х                                                                                    | х                                                                    |                                         |
| June 2017                  | Х                                                                                    | х                                                                    |                                         |
| MW-413                     | L                                                                                    |                                                                      | 1                                       |
| January 2017               | Х                                                                                    | Х                                                                    |                                         |
| March 2017                 | Х                                                                                    | Х                                                                    |                                         |
| June 2017                  | Х                                                                                    | Х                                                                    |                                         |
| MW-414                     | I                                                                                    |                                                                      | 1                                       |
| January 2017               | Х                                                                                    | Х                                                                    |                                         |
| March 2017                 | Х                                                                                    | Х                                                                    |                                         |
| June 2017                  | Х                                                                                    | Х                                                                    |                                         |

F

٦

| Table DUA-2           Summary of Groundwater Samples and Parameters Included in Permanent Solution Statement and<br>Data Usability Assessment<br>Atlantic Bridge, Weymouth Compressor Station, Weymouth, MA |     |     |                                      |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------------------|--|--|--|--|--|--|--|--|
| Sample<br>Location                                                                                                                                                                                          | VPH | EPH | Total and Dissolved<br>MCP 14 Metals |  |  |  |  |  |  |  |  |
| MW-415                                                                                                                                                                                                      |     |     | ·                                    |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                  | х   | х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| MW-416                                                                                                                                                                                                      |     |     |                                      |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                | х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                  | х   | Х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                   | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| MW-417                                                                                                                                                                                                      |     |     |                                      |  |  |  |  |  |  |  |  |
| January 2017                                                                                                                                                                                                | Х   | Х   |                                      |  |  |  |  |  |  |  |  |
| March 2017                                                                                                                                                                                                  | x   | Х   |                                      |  |  |  |  |  |  |  |  |
| June 2017                                                                                                                                                                                                   | x   | Х   |                                      |  |  |  |  |  |  |  |  |

## **APPENDIX F**

## RISK CHARACTERIZATION SUPPORTING DOCUMENTATION

**APPENDIX F** 

## **RISK CHARACTERIZATION SUPPORTING DOCUMENTATION**

**APPENDIX F-1** 

SOIL AND GROUNDWATER SAMPLING DATA

| Analysis       | Analyte                        |                     | Sample ID           | : B-1           | B-2              | B-3          | B-4          | B-5            | B-6                  | B-7              | B-8                  | B-9               | B-10              | B105             |                      | B/MW 201              |                       | B/M                   | W 202                 | B/MV                 | N 203                 |
|----------------|--------------------------------|---------------------|---------------------|-----------------|------------------|--------------|--------------|----------------|----------------------|------------------|----------------------|-------------------|-------------------|------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|
|                |                                |                     | Sample Depth (ft.): | : 0-1           | 0-1              | 0-1          | 0-1          | 0-1            | 0-1                  | 0-1              | 0-1                  | 0-1               | 0-1               | 14-17            | 6-8                  | 10-12                 | 10-12                 | 5-7                   | 9-11                  | 5-7                  | 9-11                  |
|                |                                |                     | Sample Date:        | 6/25/2015       | 6/25/2015        | 6/25/2015    | 6/25/2015    | 6/25/2015      | 6/25/2015            | 6/25/2015        | 6/25/2015            | 6/25/2015         | 6/25/2015         | 4/12/2016        | 5/12/2016            | 5/12/2016             | 5/10/2016             | 5/11/2016             | 5/11/2016             | 5/11/2016            | 5/12/2016             |
|                |                                | S-2/GW-3            | UCLs                |                 |                  |              |              |                |                      |                  |                      |                   |                   |                  |                      |                       | Field Dup             |                       |                       |                      |                       |
| VPH            | C0 C10 A                       | 500                 | 5 000               |                 | 27.4             | 27.4         | N7.4         | 274            |                      | N7.4             |                      |                   | N7.4              | 45               |                      |                       | <b>N7.4</b>           |                       |                       |                      | N7.4                  |
| (mg/kg)        | C9-C10 Aromatics               | 500                 | 5,000               | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 45<br>12.5 U     | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | C5-C8 Aliphatics               | 500                 | 5,000               | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 12.5 U           | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | C9-C12 Aliphatics              | 3,000               | 20,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 12.5 U           | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | Benzene                        | 200                 | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 0.502 U          | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | Toluene<br>Educition and a     | 1,000               | 10,000              | NA<br>NA        | NA               | NA           | NA           | NA<br>NA       | NA                   | NA               | INA<br>NA            | INA<br>NA         | INA<br>NA         | 0.502 U          | NA                   | INA<br>NA             | INA<br>NA             | NA<br>NA              | NA                    | NA                   | NA                    |
|                | Etnyibenzene                   | 1,000               | 10,000              | INA<br>NA       | NA<br>NA         | NA           | INA<br>NA    | INA<br>NA      | NA                   | NA               | INA<br>NA            | INA<br>NA         | INA<br>NA         | 0.502 U          | NA<br>NA             | INA<br>NA             | INA<br>NA             | INA<br>NA             | NA<br>NA              | INA<br>NA            | NA                    |
|                | p/m-xylene                     | INS<br>NG           | INS                 | NA<br>NA        | NA               | NA           | NA<br>NA     | NA<br>NA       | NA                   | NA               | INA<br>NA            | INA<br>NA         | INA<br>NA         | 0.502 U          | NA                   | INA                   | INA<br>NA             | INA<br>NA             | NA<br>NA              | NA<br>NA             | NA                    |
|                | o-xylene                       | NS<br>1.000         | 10,000              | INA<br>NA       | NA               | NA           | INA<br>NA    | NA<br>NA       | NA                   | NA               | INA<br>NA            | INA<br>NA         | INA<br>NA         | 0.502 U          | NA                   | INA<br>NA             | INA<br>NA             | INA<br>NA             | NA<br>NA              | NA<br>NA             | NA                    |
|                | Aylenes (total)                | 1,000               | 10,000              | NA<br>NA        | NA               | NA           | NA<br>NA     | NA<br>NA       | NA                   | NA               | INA<br>NA            | INA<br>NA         | INA<br>NA         | 0.502 U          | NA                   | INA<br>NA             | INA<br>NA             | INA<br>NA             | NA<br>NA              | NA<br>NA             | NA                    |
|                | Newhyl tert butyl etner (MTBE) | 500                 | 5,000               | NA<br>NA        | NA               | NA           | NA<br>NA     | NA<br>NA       | NA                   | NA               | INA<br>NA            | INA<br>NA         | INA<br>NA         | 0.251 U          | NA                   | INA<br>NA             | INA<br>NA             | INA<br>NA             | NA<br>NA              | NA<br>NA             | NA                    |
| EDH            | Naphthalene                    | 1,000               | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | INA               | INA               | 1.0 U            | NA                   | INA                   | INA                   | INA                   | NA                    | NA                   | NA                    |
| EPH<br>(mg/kg) | C9-C18 Aliphatics              | 3 000               | 20.000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 4.570            | 11.4                 | 677                   | 818                   | 77 II                 | 7.01 U                | 7.29 II              | 7 72 11               |
| (ing/Kg)       | C19-C36 Aliphatics             | 5,000               | 20,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 9,110            | 73                   | 3,260                 | 4,310                 | 13.3                  | 7.01 U                | 50.1                 | 12.3                  |
|                | C11-C22 Aromatics              | 3,000               | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 9,070            | 32.8                 | 2,330                 | 3,420                 | 25.4                  | 7.01 U                | 27.8                 | 18.2                  |
|                | Naphthalene                    | 1000                | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 0.35 U               | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | 2-Methylnaphthalene            | 500.0               | 5,000               | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 0.35 U               | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | Acenaphthylene                 | 10                  | 10,000              | NA<br>NA        | NA<br>NA         | NA<br>NA     | NA           | NA<br>NA       | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA                | NA<br>NA          | 7.41 U<br>7.41 U | 0.35 U               | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | Fluorene                       | 3,000               | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 0.35 U               | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | Phenanthrene                   | 1000                | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 0.385                | 0.794 U               | 1.22 U                | 0.542                 | 0.35 U                | 0.364 U              | 0.662                 |
|                | Anthracene                     | 3,000               | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 0.592                | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | Fluoranthene                   | 3,000               | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 1.58                 | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | Pyrene<br>Banga (a) anthronoma | 3,000               | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 1.29                 | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.431                 |
|                | Chrysene                       | 40                  | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U<br>7.41 U | 0.40                 | 0.794 U<br>0.794 U    | 1.22 U<br>1.22 U      | 0.385 0               | 0.35 U                | 0.364 U<br>0.364 U   | 0.380 U               |
|                | Benzo(b)fluoranthene           | 400                 | 3,000               | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 0.358                | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | Benzo(k)fluoranthene           | 400                 | 10,000              | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 0.35 U               | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | Benzo(a)pyrene                 | 7                   | 300                 | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 0.35 U               | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | Indeno(1,2,3-cd)pyrene         | 40                  | 3,000               | NA              | NA               | NA           | NA           | NA             | NA                   | NA               | NA                   | NA                | NA                | 7.41 U           | 0.35 U               | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
|                | Dibenz(a,h)anthracene          | 4.0                 | 300                 | NA              | NA<br>NA         | NA           | NA<br>NA     | NA             | NA                   | NA<br>NA         | NA<br>NA             | NA                | NA                | 7.41 U           | 0.35 U               | 0.794 U               | 1.22 U                | 0.385 U               | 0.35 U                | 0.364 U              | 0.386 U               |
| Horbicida      | Belizo(g,ii,i)peryielle        | 3,000               | 10,000              | INA             | INA              | INA          | INA          | INA            | INA                  | NA               | NA                   | INA               | INA               | 7.41 0           | 0.35 0               | 0.794 0               | 1.22 0                | 0.385 0               | 0.35 0                | 0.304 0              | 0.380 0               |
| (mg/kg)        | 2.4-D                          | NS                  | NS                  | 0.028 U         | 0.028 U          | 0.03 U       | 0.029 U      | 0.028 U        | 0.031 U              | 0.029 U          | 0.028 U              | 0.029 U           | 0.029 U           | NA               | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
| (8/8/          | 2,4-DB                         | NS                  | NS                  | 0.028 U         | 0.028 U          | 0.03 U       | 0.029 U      | 0.028 U        | 0.031 U              | 0.029 U          | 0.028 U              | 0.029 U           | 0.029 U           | NA               | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | 2,4,5-TP (Silvex)              | NS                  | NS                  | 0.0028 U        | 0.0028 U         | 0.003 U      | 0.0029 U     | 0.0028 U       | 0.0031 U             | 0.0029 U         | 0.0028 U             | 0.0029 U          | 0.0029 U          | NA               | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | 2,4,5-T                        | NS                  | NS                  | 0.0028 U        | 0.0028 U         | 0.003 U      | 0.0029 U     | 0.0028 U       | 0.0031 U             | 0.0029 U         | 0.0028 U             | 0.0029 U          | 0.0029 U          | NA               | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | Dalapon                        | NS                  | NS                  | 0.069 U         | 0.07 U           | 0.075 U      | 0.073 U      | 0.07 U         | 0.078 U              | 0.072 U          | 0.069 U              | 0.073 U           | 0.073 U           | NA               | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | Dicamba                        | NS<br>NS            | NS                  | 0.0028 U        | 0.0028 U         | 0.003 U      | 0.0029 U     | 0.0028 U       | 0.0031 U             | 0.0029 U         | 0.0028 U             | 0.0029 U          | 0.0029 U          | NA               | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | Dinoseb                        | NS                  | NS                  | 0.014 U         | 0.014 U          | 0.015 U      | 0.015 U      | 0.014 U        | 0.016 U              | 0.014 U          | 0.014 U              | 0.015 U           | 0.015 U           | NA               | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | MCPA                           | NS                  | NS                  | 2.8 U           | 2.8 U            | 3.0 U        | 2.9 U        | 2.8 U          | 3.1 U                | 2.9 U            | 2.8 U                | 2.9 U             | 2.9 U             | NA               | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
|                | MCPP                           | NS                  | NS                  | 2.8 U           | 2.8 U            | 3.0 U        | 2.9 U        | 2.8 U          | 3.1 U                | 2.9 U            | 2.8 U                | 2.9 U             | 2.9 U             | NA               | NA                   | NA                    | NA                    | NA                    | NA                    | NA                   | NA                    |
| Metals, to     | otal                           |                     |                     |                 |                  |              |              |                |                      |                  |                      |                   |                   |                  |                      |                       |                       |                       |                       |                      |                       |
| <u>(mg/kg)</u> | Antimony                       | <u>30</u>           | <u>300</u>          | <u>6.9</u>      | <u>6.6</u>       | <u>8.0</u>   | <u>7.5</u>   | <u>7.3</u>     | <u>8.3</u>           | <u>7.1</u>       | <u>7.4</u>           | <u>6.8</u>        | <u>7.8</u>        | <u>NA</u>        | <u>2.2 U</u>         | <u>2.3</u> <u>U</u>   | <u>2.5</u> <u>U</u>   | <u>2.3</u> <u>U</u>   | <u>2.2</u> <u>U</u>   | <u>2.2 U</u>         | <u>2.3</u> <u>U</u>   |
|                | Arsenic                        | 2 <u>0</u><br>2 000 | <u>500</u>          | $\frac{17}{40}$ | <u>31</u><br>76  | 47           | 48           | <u>30</u>      | <u>90</u>            | <u>34</u><br>70  | <u>36</u>            | 120               | <u>48</u>         | NA<br>NA         | <u>24</u>            | <u>16</u>             | <u>20</u><br>20       | <u>4.4</u><br>20      | <u>2.5</u>            | <u>46</u><br>20      | <u>19</u><br>20       |
|                | Bartuni<br>Beryllium           | <u>3,000</u><br>200 | 2 000               | <u>49</u><br>10 | $\frac{70}{2.0}$ | 25           | 25           | 19             | $\frac{110}{34}$     | $\frac{79}{2.0}$ | 19                   | $\frac{120}{2.7}$ | $\frac{110}{2.5}$ | NA               | 074                  | 0 55                  | 0 78                  | $0\frac{20}{27}$      | 0.23                  | <u>39</u><br>0.6     | 13                    |
|                | Cadmium                        | 100                 | 1.000               | 0.73            | 1.2              | 1.7          | 1.7          | 1.1            | 2.9                  | 1.3              | 1.3                  | 1.8               | 1.7               | NA               | 0.44 U               | 0.47 U                | 0.5 U                 | 0.46 U                | 0.43 U                | 0.44 U               | 0.46 U                |
|                | Chromium                       | 200                 | 2,000               | 12              | 14               | 17           | 17           | 15             | 20                   | 14               | <u>16</u>            | 17                | 17                | NA               | 9.6                  | 3.9                   | 7.1                   | 11                    | 6.8                   | 12                   | 8                     |
|                | Lead                           | <u>600</u>          | <u>6,000</u>        | <u>31</u>       | <u>35</u>        | 37           | <u>32</u>    | 23             | <u>29</u>            | <u>29</u>        | <u>28</u>            | 27                | <u>29</u>         | <u>NA</u>        | 33                   | <u>9.9</u>            | <u>14</u>             | <u>14</u>             | 2.3                   | <u>4.4</u>           | <u>16</u>             |
|                | Mercury                        | <u>30</u>           | <u>300</u>          | <u>0.061</u>    | <u>0.17</u>      | <u>0.17</u>  | <u>0.13</u>  | <u>0.084</u>   | <u>0.14</u>          | <u>0.11</u>      | <u>0.081</u>         | <u>0.10</u>       | <u>0.10</u>       | <u>NA</u>        | <u>0.191</u>         | <u>0.096</u> <u>U</u> | <u>0.103</u> <u>U</u> | <u>0.081</u> <u>U</u> | <u>0.077</u> <u>U</u> | <u>0.252</u>         | <u>0.082</u> <u>U</u> |
|                | Nickel<br>Selector             | <u>1000</u>         | <u>10,000</u>       | <u>11</u>       | <u>20</u>        | <u>23</u>    | <u>24</u>    | $\frac{20}{5}$ | <u>32</u>            | <u>19</u>        | $\frac{20}{5.5}$     | <u>21</u>         | <u>25</u>         | <u>NA</u>        | <u>11</u>            | <u>13</u>             | <u><u>11</u></u>      | <u>9.8</u>            | <u>8.3</u>            | <u>16</u>            | <u>17</u>             |
|                | Silver                         | 200                 | 2,000               | <u>5.5</u> U    | <u>5.6 U</u>     | <u>6.0</u> U | <u>5.8</u> U | <u>5.6</u> U   | $\frac{6.3}{0.63}$ U | <u>5.8 U</u>     | $\frac{5.5}{0.55}$ U | <u>5.8</u> U      | <u>5.8</u> U      | NA<br>NA         | $\frac{2.2}{0.44}$ U | $\frac{2.3}{0.47}$ U  | $\frac{2.5}{0.5}$ U   | $\frac{2.3}{0.46}$ U  | $\frac{2.2}{0.43}$ U  | $\frac{2.2}{0.44}$ U | $\frac{2.3}{0.46}$ U  |
|                | Thallium                       | <u>200</u><br>60    | 800                 | 2.8 U           | 2.8 U            | <u>3.0 U</u> | 2.9 U        | 2.8 U          | <u>3.1 U</u>         | 2.9 U            | 2.8 U                | 2.9 U             | 2.9 U             | NA               | 2.2 U                | 2.3 U                 | 2.5 U                 | 2.3 U                 | 2.2 U                 | 2.2 U                | 2.3 U                 |
|                | Vanadium                       | 700                 | 7,000               | 48              | 100              | 110          | 120          | <u>98</u>      | 86                   | <u>89</u>        | <u>84</u>            | 89                | 99                | NA               | 24                   | 12                    | 16                    | 20                    | 12                    | 24                   | 21                    |
|                | Zinc                           | <u>3,000</u>        | 10,000              | 34              | 43               | 54           | <u>50</u>    | 45             | 35                   | 45               | <u>49</u>            | 47                | <u>51</u>         | NA               | <u>110</u>           | 6.6                   | 15                    | <u>46</u>             | 29                    | 13                   | 15                    |

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm). NA - Sample not analyzed for the listed analyte.

N/A - Not applicable. NS - No MassDEP standards exist for this analyte.

V - Analyte was not detected at specified quantitation limit.
 Values in Bold indicate the analyte was detected.
 Values shown in Bold and shaded type exceed MassDEP Standards.

EPH - Extractable Petroleum Hydrocarbons.

VPH - Volatile Petroleum Hydrocarbons UCLs - Upper concentration limits.

| Analysis   | Analyte                        |                    | Sample ID            | B/MV              | V 204               | B/MV                  | V 205              | B-308            | B-310              | B-314                | B-315      | B-3              | 317              | COMP-123            | COMP-467          | COMP-8910         | Fill              |
|------------|--------------------------------|--------------------|----------------------|-------------------|---------------------|-----------------------|--------------------|------------------|--------------------|----------------------|------------|------------------|------------------|---------------------|-------------------|-------------------|-------------------|
|            |                                | S                  | ample Depth (ft.)    | 6-8               | 8-10                | 6-8                   | 10-12              | 12.0             | 12.5               | 12.5                 | 12.5       | 11.5             | 13.0             | 0-1                 | 0-1               | 0-1               | N/A               |
|            |                                |                    | Sample Date:         | 5/10/2016         | 5/10/2016           | 5/12/2016             | 5/12/2016          | 10/12/2016       | 10/12/2016         | 10/12/2016           | 10/12/2016 | 10/12/2016       | 10/12/2016       | 6/10/2015           | 6/10/2015         | 6/10/2015         | 6/26/2015         |
|            |                                | S-2/GW-3           | UCLs                 |                   |                     |                       |                    |                  |                    |                      |            |                  |                  |                     |                   |                   |                   |
| VPH        |                                |                    |                      |                   |                     |                       |                    |                  |                    |                      |            |                  |                  |                     |                   |                   |                   |
| (mg/kg)    | C9-C10 Aromatics               | 500                | 5,000                | NA                | NA                  | NA                    | NA                 | 3.1 U            | 5.59 U             | 2.54 U               | 5.57 U     | 17 U             | 140              | NA                  | NA                | NA                | NA                |
|            | C5-C8 Aliphatics               | 500                | 5,000                | NA                | NA                  | NA                    | NA                 | 3.1 U            | 5.59 U             | 2.54 U               | 5.57 U     | 17 U             | 12.4 U           | NA                  | NA                | NA                | NA                |
|            | C9-C12 Aliphatics              | 3,000              | 20,000               | NA                | NA                  | NA                    | NA                 | 3.1 U            | 5.59 U             | 2.54 U               | 5.57 U     | 17 U             | 163              | NA                  | NA                | NA                | NA                |
|            | Benzene                        | 200                | 10,000               | NA                | NA                  | NA                    | NA                 | 0.124 U          | 0.224 U            | 0.102 U              | 0.223 U    | 0.679 U          | 0.498 U          | NA                  | NA                | NA                | NA                |
|            | Toluene                        | 1,000              | 10,000               | NA                | NA                  | NA                    | NA                 | 0.124 U          | 0.224 U            | 0.102 U              | 0.223 U    | 0.679 U          | 0.498 U          | NA                  | NA                | NA                | NA                |
|            | Ethylbenzene                   | 1,000              | 10,000               | NA                | NA                  | NA                    | NA                 | 0.124 U          | 0.224 U            | 0.102 U              | 0.223 U    | 0.679 U          | 0.498 U          | NA                  | NA                | NA                | NA                |
|            | p/m-xylene                     | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | 0.124 U          | 0.224 U            | 0.102 U              | 0.223 U    | 0.679 U          | 0.498 U          | NA                  | NA                | NA                | NA                |
|            | o-xylene                       | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | 0.124 U          | 0.224 U            | 0.102 U              | 0.223 U    | 0.679 U          | 0.498 U          | NA                  | NA                | NA                | NA                |
|            | Xylenes (total)                | 1,000              | 10,000               | NA                | NA                  | NA                    | NA                 | 0.124 U          | 0.224 U            | 0.102 U              | 0.223 U    | 0.679 U          | 0.498 U          | NA                  | NA                | NA                | NA                |
|            | Methyl tert butyl ether (MTBE) | 500                | 5,000                | NA                | NA                  | NA                    | NA                 | 0.062 U          | 0.112 U            | 0.051 U              | 0.111 U    | 0.339 U          | 0.249 U          | NA                  | NA                | NA                | NA                |
|            | Naphthalene                    | 1,000              | 10,000               | NA                | NA                  | NA                    | NA                 | 0.248 U          | 0.447 U            | 0.204 U              | 0.446 U    | 1.36 U           | 0.995 U          | NA                  | NA                | NA                | NA                |
| EPH        |                                | 2 000              | 20.000               |                   | 0.1.1 XX            |                       | 0.55 **            | 5.04 Y           |                    | <b>5</b> 01 <b>X</b> | 0.04       |                  | 2 = 40           |                     |                   |                   | 12                |
| (mg/kg)    | C9-C18 Aliphatics              | 3,000              | 20,000               | 7.97              | 9.11 U<br>9.11 U    | 6.5 U<br>8.44         | 9.55 U             | 7.34 U<br>7.34 U | 11.2               | 7.01 U<br>7.01 U     | 9.36 U     | 11 U<br>11 U     | 3,740            | NA<br>NA            | NA<br>NA          | NA<br>NA          | 13<br>12 U        |
|            | C11-C22 Aromatics              | 3,000              | 10.000               | 33.5              | 9.11 U              | 6.5 U                 | 9.55 U             | 7.34 U           | 97                 | 7.01 U               | 9.36 U     | 11 U             | 5.970            | NA                  | NA                | NA                | 26                |
|            | Naphthalene                    | 1000               | 10,000               | 0.362 U           | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.12 U            |
|            | 2-Methylnaphthalene            | 500.0              | 5,000                | 0.362 U           | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.21              |
|            | Acenaphthylene                 | 10                 | 10,000               | 0.362 U           | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.12 U            |
|            | Acenaphthene                   | 3,000              | 10,000               | 0.362 U           | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA<br>NA            | NA<br>NA          | NA<br>NA          | 0.12 U<br>0.12 U  |
|            | Phenanthrene                   | 1000               | 10,000               | 2.03              | 0.456 U             | 0.325 U               | 0.478 U            | 0.307 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.80 U           | NA                  | NA                | NA                | 0.12 0            |
|            | Anthracene                     | 3,000              | 10,000               | 0.362 U           | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.12 U            |
|            | Fluoranthene                   | 3,000              | 10,000               | 2.57              | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.12 U            |
|            | Pyrene                         | 3,000              | 10,000               | 2.89              | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.29              |
|            | Benzo(a)anthracene             | 40                 | 3,000                | 1.34              | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.13              |
|            | Benzo(b)fluoranthene           | 400                | 3 000                | 0.986             | 0.436 U<br>0.456 U  | 0.325 U<br>0.325 U    | 0.478 U<br>0.478 U | 0.367 U          | 0.497 U<br>0.497 U | 0.35 U               | 0.468 U    | 0.551 U          | 3.80 U<br>3.86 U | NA                  | NA                | NA                | 0.28              |
|            | Benzo(k)fluoranthene           | 400                | 10,000               | 0.908             | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.12 U            |
|            | Benzo(a)pyrene                 | 7                  | 300                  | 1.02              | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.12 U            |
|            | Indeno(1,2,3-cd)pyrene         | 40                 | 3,000                | 0.694             | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.12 U            |
|            | Dibenz(a,h)anthracene          | 4.0                | 300                  | 0.362 U           | 0.456 U             | 0.325 U               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.86 U           | NA                  | NA                | NA                | 0.12 U            |
| Hanhiaid   | Benzo(g,n,1)perylene           | 3,000              | 10,000               | 0.71              | 0.456 U             | 0.325 0               | 0.478 U            | 0.367 U          | 0.497 U            | 0.35 U               | 0.468 U    | 0.551 U          | 3.80 U           | NA                  | NA                | NA                | 0.12 U            |
| (mg/kg)    | 2 4-D                          | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | NA               | NA                 | NA                   | NA         | NA               | NA               | 0.026 U             | 0.027 U           | 0.027 U           | NA                |
| (IIIg/Kg)  | 2,4-DB                         | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | NA               | NA                 | NA                   | NA         | NA               | NA               | 0.026 U             | 0.027 U           | 0.027 U           | NA                |
|            | 2,4,5-TP (Silvex)              | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | NA               | NA                 | NA                   | NA         | NA               | NA               | 0.0026 U            | 0.0027 U          | 0.0027 U          | NA                |
|            | 2,4,5-T                        | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | NA               | NA                 | NA                   | NA         | NA               | NA               | 0.0026 U            | 0.0027 U          | 0.0027 U          | NA                |
|            | Dalapon                        | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | NA               | NA                 | NA                   | NA         | NA               | NA               | 0.065 U             | 0.068 U           | 0.066 U           | NA                |
|            | Dicamba                        | NS<br>NS           | NS<br>NS             | NA                | NA<br>NA            | NA<br>NA              | NA                 | NA<br>NA         | NA                 | NA                   | NA         | NA<br>NA         | NA               | 0.0026 U            | 0.0027 U          | 0.0027 U          | NA                |
|            | Dinoseb                        | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | NA               | NA                 | NA                   | NA         | NA               | NA               | 0.020 U             | 0.027 U           | 0.027 U           | NA                |
|            | MCPA                           | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | NA               | NA                 | NA                   | NA         | NA               | NA               | 2.6 U               | 2.7 U             | 2.7 U             | NA                |
|            | MCPP                           | NS                 | NS                   | NA                | NA                  | NA                    | NA                 | NA               | NA                 | NA                   | NA         | NA               | NA               | 2.6 U               | 2.7 U             | 2.7 U             | NA                |
| Metals, to | otal                           |                    |                      |                   |                     |                       |                    |                  |                    |                      |            |                  |                  |                     |                   |                   |                   |
| (mg/kg)    | Antimony                       | <u>30</u><br>20    | <u>300</u><br>500    | <u>2.1</u> U      | <u>3.8</u>          | $\frac{2}{1}$ U       | <u>4.2</u>         | <u>NA</u>        | <u>NA</u>          | <u>NA</u>            | <u>NA</u>  | <u>NA</u>        | <u>NA</u>        | <u>2.6</u> <u>U</u> | <u>2.7 U</u>      | <u>2.6</u> U      | <u>5.5</u>        |
|            | Barium                         | <u>20</u><br>3.000 | <u>500</u><br>10.000 | <u>51</u>         | <u>90</u><br>94     | <u>3.4</u><br>4 5     | <u>130</u><br>81   | <u>NA</u><br>NA  | NA<br>NA           | NA<br>NA             | NA<br>NA   | <u>INA</u><br>NA | <u>INA</u><br>NA | <u>29</u><br>71     | <u>44</u><br>94   | <u>39</u><br>85   | <u>46</u>         |
|            | Bervllium                      | 200                | 2,000                | 0.66              | 2.6                 | 0.2 U                 | 4.2                | NA               | NA                 | NA                   | NA         | NA               | NA               | 1.4                 | 1.9               | 1.8               | 1.2               |
|            | Cadmium                        | 100                | 1,000                | 0.42 U            | 0.55 U              | 0.4 U                 | 0.58 U             | NA               | NA                 | NA                   | NA         | NA               | NA               | 1.0                 | 1.5               | 1.3               | 0.89              |
|            | Chromium                       | <u>200</u>         | <u>2,000</u>         | <u>15</u>         | <u>24</u>           | <u>2.5</u>            | <u>19</u>          | <u>NA</u>        | <u>NA</u>          | <u>NA</u>            | <u>NA</u>  | <u>NA</u>        | <u>NA</u>        | <u>15</u>           | <u>17</u>         | <u>18</u>         | <u>13</u>         |
|            | Lead                           | <u>600</u>         | <u>6,000</u>         | 32                | <u>16</u>           | <u>2.1</u>            | <u>10</u>          | NA               | <u>NA</u>          | NA                   | <u>NA</u>  | NA               | <u>NA</u>        | 23                  | <u>30</u>         | 27                | <u>13</u>         |
|            | Nickel                         | <u>30</u><br>1000  | <u>300</u><br>10.000 | 0.218             | <u>0.142</u><br>15  | <u>0.068</u> <u>U</u> | 0.285              | NA<br>NA         | NA<br>NA           | NA<br>NA             | NA<br>NA   | NA<br>NA         | NA<br>NA         | <u>0.11</u><br>17   | $\frac{0.11}{27}$ | <u>0.16</u><br>25 | 0.052             |
|            | Selenium                       | 700                | 7.000                | <u>19</u><br>21 H | 27 U                | <u>1.4</u><br>2 II    | 29 II              | NA               | NA                 | NA                   | NA<br>NA   | NA               | NA               | <u>1/</u><br>59     | 53 U              | <u>45</u><br>54   | <u>15</u><br>59 U |
|            | Silver                         | 200                | 2,000                | 0.42 U            | 0.55 U              | $0.4 \frac{2}{U}$     | 0.58 U             | NA               | NA                 | NA                   | NA         | NA               | NA               | 0.52 U              | 0.53 U            | 0.52 U            | 0.59 U            |
|            | Thallium                       | <u>60</u>          | 800                  | <u>2.1 U</u>      | <u>2.7</u> <u>U</u> | <u>2</u> <u>U</u>     | <u>2.9</u> U       | NA               | NA                 | NA                   | NA         | NA               | NA               | 3.6                 | 3.6               | 3.3               | <u>2.9</u> U      |
|            | Vanadium                       | <u>700</u>         | <u>7,000</u>         | <u>82</u>         | <u>71</u>           | <u>8</u>              | <u>75</u>          | <u>NA</u>        | <u>NA</u>          | <u>NA</u>            | <u>NA</u>  | <u>NA</u>        | <u>NA</u>        | <u>90</u>           | <u>100</u>        | <u>95</u>         | <u>33</u>         |
|            | Zinc                           | 3,000              | 10,000               | 62                | 17                  | 6.5                   | 19                 | NA               | NA                 | NA                   | NA         | NA               | NA               | 46                  | 49                | 51                | 17                |

#### Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm). NA - Sample not analyzed for the listed analyte. N/A - Not applicable. NS - No MassDEP standards exist for this analyte.

V - Analyte was not detected at specified quantitation limit.
 Values in **Bold** indicate the analyte was detected.
 Values shown in **Bold** and shaded type exceed MassDEP Standards.

EPH - Extractable Petroleum Hydrocarbons.

VPH - Volatile Petroleum Hydrocarbons

UCLs - Upper concentration limits.

| number         Sample         Sample         Intermet         Per         Per     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analasia Analasia              |                     | a . –                  | COMP-125-         | COMP-407-          | COMP-40/-            | COMP-8910-         | COMP-910-         |                     |                         |                     |                     |                    |                     |                   |             | 100        |            |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|------------------------|-------------------|--------------------|----------------------|--------------------|-------------------|---------------------|-------------------------|---------------------|---------------------|--------------------|---------------------|-------------------|-------------|------------|------------|------------------|
| Image Lagen Light (1)/// 1.24         N/A         N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analysis Analyte               |                     | Sample ID:             | Native            | Fill<br>N/A        | Native               | Native             | Fill<br>N/A       | 57                  | TP-1                    | 7.0                 | 5 7                 | -2 7.0             | 5 7                 | 7.0               | 11.4        | 10.4       | 11.5       | 12.2             |
| bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | S                   | Sample Depth (ft.):    | N/A               | IN/A<br>6/26/2015  | IN/A<br>6/26/2015    | IN/A<br>6/26/2015  | IN/A<br>6/26/2015 | 5-/<br>12/22/2015   | 5-/<br>12/22/2015       | 1-9                 | 3-7<br>12/21/2015   | 1-9                | 3-/<br>12/21/2015   | 1-9               | 11.4        | 12.4       | 11.5       | 12.2             |
| VP1         Decomp         Decomp <th></th> <th>\$ 2/GW 3</th> <th>JICL:</th> <th>0/20/2013</th> <th>0/20/2013</th> <th>0/20/2013</th> <th>0/20/2013</th> <th>0/20/2013</th> <th>12/22/2013</th> <th>12/22/2013<br/>Field Dup</th> <th>12/22/2013</th> <th>12/21/2013</th> <th>12/21/2013</th> <th>12/21/2013</th> <th>12/21/2013</th> <th>12/14/2010</th> <th>12/14/2010</th> <th>12/14/2010</th> <th>12/14/2010</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | \$ 2/GW 3           | JICL:                  | 0/20/2013         | 0/20/2013          | 0/20/2013            | 0/20/2013          | 0/20/2013         | 12/22/2013          | 12/22/2013<br>Field Dup | 12/22/2013          | 12/21/2013          | 12/21/2013         | 12/21/2013          | 12/21/2013        | 12/14/2010  | 12/14/2010 | 12/14/2010 | 12/14/2010       |
| Character         500         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VPH                            | 3-2/GW-3            | UCLS                   |                   |                    |                      |                    |                   |                     | Tield Dup               |                     |                     |                    |                     |                   |             |            |            |                  |
| CSCS Alghanics         500         S000         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (mg/kg) C9-C10 Aromatics       | 500                 | 5.000                  | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| CN-C12 Adjunities         3,000         20,000         NA         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C5-C8 Aliphatics               | 500                 | 5,000                  | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Beaucar         200         110000         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C9-C12 Aliphatics              | 3,000               | 20,000                 | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Toluene         1.000         10,000         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzene                        | 200                 | 10,000                 | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Ehglbezzene         1.000         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene                        | 1,000               | 10,000                 | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| pm         sylene         NS         NS         NA         NA <th< td=""><td>Ethylbenzene</td><td>1,000</td><td>10,000</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethylbenzene                   | 1,000               | 10,000                 | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| p-xylene         NS         NA         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p/m-xylene                     | NS                  | NS                     | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Xylenes (total)         1.000         10.000         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o-xylene                       | NS                  | NS                     | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Medpy tert buyl ether (MTBE)         500         5.000         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Xylenes (total)                | 1,000               | 10,000                 | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Nphthalene         1,000         10,000         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methyl tert butyl ether (MTBE) | 500                 | 5,000                  | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| EPH         CS-C18 Aliphatics         3.000         20.000         NA         13         U         NA         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Naphthalene                    | 1,000               | 10,000                 | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| (mgkg)         C9-C18 Alightatics         5,000         NA         I         U         NA         NA         I         U         NA         NA </td <td>ЕРН</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ЕРН                            |                     |                        |                   |                    |                      |                    |                   |                     |                         |                     |                     |                    |                     |                   |             |            |            |                  |
| C19-C36 Alphaltics         5.000         20,000         NA         13         U         NA         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (mg/kg) C9-C18 Aliphatics      | 3,000               | 20,000                 | NA                | 13 U               | NA                   | NA                 | 14 U              | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | 8.1 U       | 9.26 U     | 11.1 U     | 7.76 U           |
| Naphtalene         1000         10000         NA         0.13         U         NA         NA         0.14         U         0.18         U         0.18         U         0.18         U         0.18         U         0.18         U         0.11         U         0.15         U         0.35          2-Methylnaphtalene         500.0         5.000         NA         0.16         NA         NA         0.14         U         0.18         U         0.22         0.23         0.50         NA         0.45         U         0.45         U         0.45         U         0.45         U         0.38           2-Methylnaphtalene         10         10.000         NA         0.13         U         NA         NA         0.14         U         0.18         U         0.18         U         0.18         U         0.18         U         0.19         U         0.20         U         NA         0.43         U         0.388           Accaraphthylene         3.000         10.000         NA         0.34         NA         NA         0.18         U         0.18         U         0.19         U         0.20         U         NA         0.21         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C19-C36 Aliphatics             | 5,000               | 20,000                 | NA<br>NA          | 13 U<br>22         | NA<br>NA             | NA<br>NA           | 14 U<br>14 U      | NA<br>NA            | NA<br>NA                | NA<br>NA            | NA<br>NA            | NA<br>NA           | NA<br>NA            | NA<br>NA          | 8.1 U<br>11 | 9.26 U     | 11.1 U     | 7.76 U<br>7.76 U |
| 2-Methynaphthalene       5000       NA       0.16       NA       0.16       NA       0.14       U       0.18       U       0.22       0.23       0.37       0.50       NA       0.405       U       0.463       U       0.557       U       0.388         Acenaphthene       3.000       10,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.19       U       0.20       U       NA       0.405       U       0.463       U       0.557       U       0.388         Acenaphthene       3.000       10,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.18       U       0.19       U       0.20       U       NA       0.405       U       0.463       U       0.557       U       0.388         Huorantene       3.000       10,000       NA       0.31       U       NA       NA       0.14       U       0.18       U       0.19       U       0.20       U       NA       0.21       U       0.405       U       0.463       U       0.557       U       0.388       0.16       U       0.10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Naphthalene                    | 1000                | 10,000                 | NA                | 0.13 U             | NA                   | NA                 | 0.14 U            | 0.18 U              | 0.18 U                  | 0.18 U              | 0.19 U              | 0.21               | NA                  | 0.21 U            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Acenaphthylene       10       10,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.12       U       0.463       U       0.557       U       0.388         Acenaphthene       3,000       10,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.18       U       0.19       U       0.20       U       NA       0.21       U       0.463       U       0.557       U       0.388         Phenanthrene       1000       10,000       NA       0.34       NA       NA       0.17       1.2       0.91       1.0       1.3       NA       0.69       0.463       U       0.557       U       0.388         Phenanthrene       3,000       10,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.19       U       0.24       NA       0.463       U       0.557       U       0.388         Itoranthene       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Methylnaphthalene            | 500.0               | 5,000                  | NA                | 0.16               | NA                   | NA                 | 0.14 U            | 0.18 U              | 0.22                    | 0.23                | 0.37                | 0.50               | NA                  | 0.28              | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Accmaphthene       3,000       IO,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.19       U       0.20       U       NA       0.21       U       0.405       U       0.057       U       0.388         Fluorene       3,000       10,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.19       U       0.20       U       NA       0.21       U       0.405       U       0.633       U       0.557       U       0.388         Phenanthrene       1000       10,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.18       U       0.19       U       0.20       U       NA       0.463       U       0.557       U       0.388        Anthracene       3,000       10,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.18       U       0.19       U       0.20       U       NA       0.41       0.557       U       0.388        Buranthracene      3,000      10,000       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acenaphthylene                 | 10                  | 10,000                 | NA                | 0.13 U             | NA                   | NA                 | 0.14 U            | 0.18 U              | 0.18 U                  | 0.18 U              | 0.19 U              | 0.20 U             | NA                  | 0.21 U            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Indication       10,000       NA       0.13       0       NA       0.14       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.13       0       0.14       0       0.13       0       0.13       0       0.14       0       0.14       0       0.13       0       0.14       0.14       0.14       0.13       0       0.14       0       0.13       0.14       0       0.13       0.14       0.14       0.13       0       0.14       0       0.14       0       0.14       0       0.13       0.13       0.14       0.14       0.13       0.14       0       0.15       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acenaphthene                   | 3,000               | 10,000                 | NA<br>NA          | 0.13 U<br>0.13 U   | NA<br>NA             | NA<br>NA           | 0.14 U<br>0.14 U  | 0.18 U              | 0.18 U                  | 0.18 U              | 0.19 U              | 0.20 U<br>0.20 U   | NA<br>NA            | 0.21 U            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Anthracene         3,000         10,000         NA         0.13         U         NA         NA         0.14         U         0.18         U         0.18         U         0.19         U         0.20         U         NA         0.465         U         0.577         U         0.388           Fluoranthene         3,000         10,000         NA         0.13         U         NA         NA         0.14         U         0.33         0.90         0.56         0.19         U         0.24         NA         0.405         U         0.463         U         0.577         U         0.388           Pyrene         3,000         10,000         NA         0.13         U         NA         NA         0.14         U         0.50         1.3         0.89         0.59         0.68         NA         0.21         U         0.405         U         0.453         U         0.57         U         0.388           Benzo(a)anthracene         400         10,000         NA         0.13         U         NA         NA         0.14         U         0.21         U         0.405         U         0.463         U         0.57         U         0.388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phenanthrene                   | 1000                | 10,000                 | NA                | 0.13 0             | NA                   | NA                 | 0.14 0            | 0.18 0              | 1.2                     | 0.18 0              | 1.0                 | 1.3                | NA                  | 0.21 0            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Fluoranthene       3,000       10,000       NA       0.13       U       NA       NA       0.14       U       0.33       0.90       0.56       0.19       U       0.24       NA       0.43       U       0.57       U       0.388         Pyrene       3,000       10,000       NA       0.13       U       NA       NA       0.14       U       0.50       1.3       0.89       0.59       0.68       NA       0.24       0.405       U       0.463       U       0.557       U       0.388         Benzo(a)anthracene       40       3,000       NA       0.13       U       NA       NA       0.14       U       0.55       0.46       0.27       0.31       NA       0.405       U       0.463       U       0.57       U       0.388         Benzo(b)fluoranthene       400       10,000       NA       0.13       U       NA       NA       0.14       U       0.31       0.65       0.46       0.27       0.31       NA       0.463       U       0.557       U       0.388         Benzo(b)fluoranthene       400       10,000       NA       0.13       U       NA       0.14       U       0.20<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Anthracene                     | 3,000               | 10,000                 | NA                | 0.13 U             | NA                   | NA                 | 0.14 U            | 0.18 U              | 0.18 U                  | 0.18 U              | 0.19 U              | 0.20 U             | NA                  | 0.21 U            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Pyrne         3,000         10,000         NA         0.13         U         NA         NA         0.14         U         0.50         1.3         0.89         0.69         0.68         NA         0.24         0.405         U         0.463         U         0.57         U         0.388           Benzo(a)anthracene         40         3,000         NA         0.13         U         NA         NA         0.14         U         0.25         0.65         0.46         0.27         0.31         NA         0.405         U         0.463         U         0.557         U         0.388           Chrysene         400         10,000         NA         0.13         U         NA         NA         0.14         U         0.25         0.66         0.47         0.19         U         0.25         NA         0.21         U         0.405         U         0.557         U         0.388           Benzo(b)fluoranthene         400         3,000         NA         0.13         U         NA         NA         0.14         U         0.20         0.18         U         0.19         U         0.20         U         NA         0.463         U         0.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fluoranthene                   | 3,000               | 10,000                 | NA                | 0.13 U             | NA                   | NA                 | 0.14 U            | 0.33                | 0.90                    | 0.56                | 0.19 U              | 0.24               | NA                  | 0.21 U            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Benzolajantinatelle       40       5,000       NA       0.13       U       NA       0.14       U       0.25       0.05       0.40       0.27       0.51       NA       0.21       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.405       0       0.557       0       0.388       0.40       0.14       0       0.20       0.18       0       0.19       0       0.20       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pyrene                         | 3,000               | 10,000                 | NA                | 0.13 U             | NA                   | NA                 | 0.14 U            | 0.50                | 1.3                     | 0.89                | 0.59                | 0.68               | NA                  | 0.24              | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Benzo(b)fluoranthene       40       3,000       NA       0.13 U       NA       NA       0.14 U       0.14 U       0.12 U       0.10 U       0.12 U       0.105 U       0.10 U       0.105 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chrysene                       | 40                  | 10,000                 | NA                | 0.13 U             | NA                   | NA                 | 0.14 U<br>0.14 U  | 0.25                | 0.05                    | 0.40                | 0.27                | 0.31               | NA                  | 0.21 0            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Benzo(k)fluoranthene         400         10,000         NA         0.13 U         NA         NA         0.14 U         0.18 U         0.20         0.18 U         0.20 U         NA         0.21 U         0.405 U         0.405 U         0.463 U         0.557 U         0.388           Benzo(a)pyrene         7         300         NA         0.13 U         NA         NA         0.14 U         0.20         0.46         0.37         0.19 U         0.20 U         NA         0.41 U         0.463 U         0.557 U         0.388           Indeno(1,2,3-cd)pyrene         40         3,000         NA         0.13 U         NA         NA         0.14 U         0.20         0.18 U         0.19 U         0.20 U         NA         0.405 U         0.463 U         0.557 U         0.388           Dibenz(a,h)anthracene         4.0         3,000         NA         0.13 U         NA         NA         0.14 U         0.18 U         0.18 U         0.19 U         0.20 U         NA         0.405 U         0.463 U         0.557 U         0.388           Dibenz(a,h)anthracene         4.0         300         NA         0.13 U         NA         0.14 U         0.18 U         0.18 U         0.19 U         0.20 U         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzo(b)fluoranthene           | 40                  | 3,000                  | NA                | 0.13 U             | NA                   | NA                 | 0.14 U            | 0.24                | 0.61                    | 0.49                | 0.19 U              | 0.25               | NA                  | 0.21 U            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Benzo(a)pyrene       7       300       NA       0.13 U       NA       NA       0.14 U       0.20       0.46       0.37       0.19 U       0.20 U       NA       0.405 U       0.463 U       0.57 U       0.388         Indeno(1,2,3-cd)pyrene       40       3,000       NA       0.13 U       NA       NA       0.14 U       0.18 U       0.20       0.18 U       0.19 U       0.20 U       NA       0.21 U       0.405 U       0.463 U       0.57 U       0.388         Dibenz(a,h)anthracene       4.0       300       NA       0.13 U       NA       NA       0.14 U       0.18 U       0.18 U       0.19 U       0.20 U       NA       0.21 U       0.405 U       0.463 U       0.557 U       0.388         Benzo(g,h,i)perylene       3,000       NA       0.13 U       NA       NA       0.14 U       0.18 U       0.18 U       0.19 U       0.20 U       NA       0.405 U       0.463 U       0.557 U       0.388         Benzo(g,h,i)perylene       3,000       10,000       NA       0.13 U       NA       0.14 U       0.18 U       0.18 U       0.19 U       0.20 U       NA       0.405 U       0.463 U       0.557 U       0.388       0.388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzo(k)fluoranthene           | 400                 | 10,000                 | NA                | 0.13 U             | NA                   | NA                 | 0.14 U            | 0.18 U              | 0.20                    | 0.18 U              | 0.19 U              | 0.20 U             | NA                  | 0.21 U            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Indeno(1,2,3-cd)pyrene       40       3,000       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.19       U       0.20       NA       0.21       U       0.405       U       0.465       U       0.557       U       0.388       Disenz(a,h)anthracene       4.0       300       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.19       U       0.20       U       NA       0.405       U       0.557       U       0.388         Dibenz(a,h)anthracene       4.0       300       NA       0.13       U       NA       NA       0.14       U       0.18       U       0.19       U       0.20       U       NA       0.463       U       0.557       U       0.388         Benzo(g,h,i)perylene       3,000       10,000       NA       0.13       U       NA       0.14       U       0.18       U       0.19       U       0.20       U       NA       0.463       U       0.557       U       0.388       U       0.19       0.19       U       0.20       NA       0.405       U       0.557       U       0.388       U <td>Benzo(a)pyrene</td> <td>7</td> <td>300</td> <td>NA</td> <td>0.13 U</td> <td>NA</td> <td>NA</td> <td>0.14 U</td> <td>0.20</td> <td>0.46</td> <td>0.37</td> <td>0.19 U</td> <td>0.20 U</td> <td>NA</td> <td>0.21 U</td> <td>0.405 U</td> <td>0.463 U</td> <td>0.557 U</td> <td>0.388 U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzo(a)pyrene                 | 7                   | 300                    | NA                | 0.13 U             | NA                   | NA                 | 0.14 U            | 0.20                | 0.46                    | 0.37                | 0.19 U              | 0.20 U             | NA                  | 0.21 U            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Diberz(a b)enthracene          | 40                  | 3,000                  | NA<br>NA          | 0.13 U             | NA<br>NA             | NA<br>NA           | 0.14 U            | 0.18 U              | 0.20                    | 0.18 U              | 0.19 U              | 0.20 U             | NA<br>NA            | 0.21 U            | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Benzo(g,h,i)pervlene           | 3.000               | 10.000                 | NA                | 0.13 U<br>0.13 U   | NA                   | NA                 | 0.14 U<br>0.14 U  | 0.18 U<br>0.18 U    | 0.18 U<br>0.18 U        | 0.18 0              | 0.19 U<br>0.19 U    | 0.20 U             | NA                  | 0.21 U<br>0.21 U  | 0.405 U     | 0.463 U    | 0.557 U    | 0.388 U          |
| Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Herbicides                     | ,                   | ĺ.                     |                   |                    |                      |                    |                   |                     |                         |                     |                     |                    |                     |                   |             |            |            |                  |
| (mg/kg) 2,4-D NS NS NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mg/kg) 2,4-D                  | NS                  | NS                     | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| 2,4-DB NS NS NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,4-DB                         | NS                  | NS                     | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| 24.5-11 (SUIVEX) NS NS NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,4,5-1P (Silvex)<br>2.4.5-T   | NS<br>NS            | NS<br>NS               | NA<br>NA          | NA<br>NA           | NA<br>NA             | NA<br>NA           | NA<br>NA          | NA<br>NA            | NA<br>NA                | NA<br>NA            | NA<br>NA            | NA<br>NA           | NA<br>NA            | NA<br>NA          | NA<br>NA    | NA<br>NA   | NA<br>NA   | NA<br>NA         |
| Dalapon NS NS NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dalapon                        | NS                  | NS                     | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Dicamba NS NS NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dicamba                        | NS                  | NS                     | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Dichloroprop NS NS NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dichloroprop                   | NS                  | NS                     | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Dinoseb NS NS NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dinoseb                        | NS                  | NS                     | NA<br>NA          | NA                 | NA<br>NA             | NA<br>NA           | NA                | NA<br>NA            | NA<br>NA                | NA                  | NA                  | NA<br>NA           | NA<br>NA            | NA<br>NA          | NA          | NA         | NA<br>NA   | NA<br>NA         |
| MCPA NO NO NO NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MCPP                           | NS                  | NS                     | NA                | NA                 | NA                   | NA                 | NA                | NA                  | NA                      | NA                  | NA                  | NA                 | NA                  | NA                | NA          | NA         | NA         | NA               |
| Metals, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metals, total                  |                     |                        |                   |                    |                      |                    |                   |                     |                         |                     |                     |                    |                     |                   |             |            |            |                  |
| (mg/kg)       Antimony       30       300       15       6.2       16       16       7.1       2.7       U       2.8       U       3.0       U       2.5       U       3.1       U       NA       NA       NA       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (mg/kg) Antimony               | <u>30</u>           | <u>300</u>             | <u>15</u>         | <u>6.2</u>         | <u>16</u>            | <u>16</u>          | <u>7.1</u>        | <u>2.7</u> <u>U</u> | <u>2.7</u> <u>U</u>     | <u>2.7</u> <u>U</u> | <u>2.8</u> <u>U</u> | <u>3.0 U</u>       | <u>2.5</u> <u>U</u> | <u>3.1 U</u>      | <u>NA</u>   | <u>NA</u>  | <u>NA</u>  | <u>NA</u>        |
| Arsenic 20 500 13 43 12 13 80 7.7 7.0 2.8 31 54 46 45 NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic                        | <u>20</u>           | <u>500</u>             | <u>13</u>         | <u>43</u>          | $\frac{12}{77}$      | <u>13</u><br>50    | <u>80</u>         | <u>7.7</u>          | <u>7.0</u>              | <u>9.8</u>          | <u>31</u>           | <u>54</u>          | <u>46</u>           | <u>45</u>         | <u>NA</u>   | <u>NA</u>  | <u>NA</u>  | <u>NA</u>        |
| Bervilium 200 2.000 1.1 2.8 1.2 1.3 4.9 0.84 0.73 0.93 1.1 2.7 1.7 2.2 NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bervllium                      | <u>3,000</u><br>200 | 2.000                  | <u>00</u><br>1.1  | <u>48</u><br>2.8   | $\frac{1}{1.2}$      | <u>59</u><br>1.3   | $\frac{130}{4.9}$ | $\frac{23}{0.84}$   | 0.73                    | 0.93                | <u>41</u><br>1.1    | $\frac{15}{2.7}$   | <u>39</u><br>1.7    | $\frac{31}{2.2}$  | NA          | NA         | NA         | NA               |
| Cadmium         100         1,000         0.90         1.5         0.82         0.92         2.6         0.66         0.57         0.72         1.3         1.9         1.6         1.6         NA         NA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cadmium                        | 100                 | 1,000                  | 0.90              | 1.5                | 0.82                 | 0.92               | 2.6               | 0.66                | 0.57                    | 0.72                | 1.3                 | 1.9                | 1.6                 | 1.6               | NA          | NA         | NA         | NA               |
| <u>Chromium</u> <u>200</u> <u>2,000</u> <u>34</u> <u>15</u> <u>34</u> <u>35</u> <u>28</u> <u>12</u> <u>11</u> <u>13</u> <u>14</u> <u>9.6</u> <u>8.9</u> <u>32</u> <u>NA</u> <u>NA</u> <u>NA</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chromium                       | 200                 | 2,000                  | <u>34</u>         | <u>15</u>          | <u>34</u>            | <u>35</u>          | <u>28</u>         | <u>12</u>           | <u>11</u>               | <u>13</u>           | <u>14</u>           | <u>9.6</u>         | <u>8.9</u>          | 32                | NA          | NA         | NA         | NA               |
| Lead 600 6.000 34 12 11 17 23 10 9.6 15 15 34 13 20 NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lead                           | <u>600</u>          | <u>6,000</u>           | <u>34</u>         | 12                 | <u>11</u>            | 17                 | 23                | <u>10</u>           | <u>9.6</u>              | <u>15</u>           | <u>15</u>           | <u>34</u>          | 13                  | 20                | NA          | <u>NA</u>  | <u>NA</u>  | <u>NA</u>        |
| $\frac{\text{Mercury}}{\text{Nickel}} = \frac{30}{1000} = \frac{300}{10000} = \frac{0.16}{24} = \frac{0.047}{38} = \frac{0.034}{24} = \frac{0.095}{27} = \frac{0.031}{12} = \frac{0.033}{14} = \frac{0.033}{14} = \frac{0.049}{15} = \frac{0.14}{16} = \frac{0.14}{21} = \frac{\text{NA}}{\text{NA}} = \frac{\text{NA}}{\text{NA}} = \frac{\text{NA}}{\text{NA}} = \frac{\text{NA}}{\text{NA}} = \frac{1}{12} = \frac{1}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mercury<br>Nickel              | <u>30</u><br>1000   | <u>300</u><br>10.000   | $\frac{0.16}{24}$ | <u>0.047</u><br>38 | $\frac{0.034}{24}$ U | <u>0.047</u><br>25 | 0.095             | <u>0.031</u><br>12  | <u>0.033</u><br>10      | <u>0.033</u><br>14  | $\frac{0.027}{14}$  | <u>0.049</u><br>15 | <u>0.15</u><br>16   | $\frac{0.14}{21}$ | NA<br>NA    | NA<br>NA   | NA<br>NA   | NA<br>NA         |
| $\frac{1000}{\text{Selenium}} \qquad \frac{1000}{700} \qquad \frac{10}{7,000} \qquad \frac{10}{64} \qquad \frac{10}{65} \qquad \frac{10}{65} \qquad \frac{10}{67} \qquad \frac{10}{69} \qquad \frac{10}{53} \qquad \frac{10}{54} \qquad \frac{10}{56} \qquad \frac{10}{60} \qquad \frac{21}{50} \qquad \frac{10}{62} \qquad \frac{11}{10} \qquad \frac{10}{10} \qquad \frac{10}{50} \qquad$ | Selenium                       | 700                 | 7,000                  | 6.4 U             | 6.5 U              | 6.8 U                | 6.7 U              | 6.9 U             | 5.3 U               | 5.4 U                   | 5.4 U               | 5.6 U               | 6.0 U              | 5.0 U               | 6.2 U             | NA          | NA         | NA         | NA               |
| $\frac{1100}{\text{Silver}} \qquad \qquad 200 \qquad 2,000 \qquad 0.64 \ U \qquad 0.65 \ U \qquad 0.68 \ U \qquad 0.67 \ U \qquad 0.69 \ U \qquad 0.53 \ U \qquad 0.54 \ U \qquad 0.54 \ U \qquad 0.54 \ U \qquad 0.56 \ U \qquad 0.50 \ U \qquad 0.50 \ U \qquad 0.60 \ U \qquad 0.60 \ U \qquad 0.62 \ U \qquad NA \qquad NA \qquad NA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Silver                         | 200                 | 2,000                  | <u>0.64</u> U     | <u>0.65</u> U      | <u>0.68</u> U        | <u>0.67</u> U      | <u>0.69</u> U     | <u>0.53</u> U       | <u>0.54</u> U           | <u>0.54</u> U       | <u>0.56</u> U       | <u>0.60</u> U      | <u>0.50</u> U       | <u>0.62</u> U     | NA          | NA         | NA         | NA               |
| Thallium         60         800         3.2         U         3.4         U         3.5         U         2.7         U         2.7         U         2.8         U         3.0         U         2.5         U         3.1         U         NA         NA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>Thallium</u>                | <u>60</u>           | <u>800</u>             | <u>3.2</u> U      | <u>3.2</u> U       | <u>3.4</u> U         | <u>3.4</u> U       | <u>3.5</u> U      | <u>2.7</u> U        | <u>2.7</u> U            | <u>2.7</u> U        | <u>2.8</u> U        | <u>3.0</u> U       | <u>2.5</u> U        | <u>3.1</u> U      | NA          | NA         | NA         | NA               |
| $\frac{Vanadium}{7inc}$ $\frac{700}{3000}$ $\frac{7.000}{10000}$ $\frac{46}{90}$ $\frac{40}{34}$ $\frac{51}{63}$ $\frac{54}{69}$ $\frac{86}{33}$ $\frac{33}{26}$ $\frac{31}{22}$ $\frac{39}{38}$ $\frac{29}{20}$ $\frac{39}{16}$ $\frac{24}{14}$ $\frac{20}{20}$ $\frac{NA}{NA}$ $\frac{NA}{NA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>Vanadium</u><br>Zinc        | <u>700</u><br>3 000 | <u>7,000</u><br>10,000 | <u>46</u>         | $\frac{40}{24}$    | <u>51</u>            | <u>54</u>          | <u>86</u><br>22   | $\frac{33}{36}$     | <u>31</u><br>32         | <u>39</u><br>28     | <u>29</u><br>20     | <u>39</u><br>16    | $\frac{24}{14}$     | $\frac{20}{20}$   | NA<br>NA    | NA<br>NA   | NA<br>NA   | NA<br>NA         |

#### Notes:

NA - Sample not analyzed for the listed analyte. NA - Not applicable. NS - No MassDEP standards exist for this analyte.

U - Analyte was not detected at specified quantitation limit.

Values in **Bold** indicate the analyte was detected. Values shown in **Bold and shaded type exceed MassDEP Standards**.

EPH - Extractable Petroleum Hydrocarbons.

VPH - Volatile Petroleum Hydrocarbons

UCLs - Upper concentration limits.

| Analysis                              | Analyte                        |                   | Sample ID:          |                  | B-402      |                    | B-         | 403                | B-4                | 404            | B-               | 405              | B-406              | B-             | -407             | B-                 | 408                | B-4                | 409                |                  | B-410            |            |
|---------------------------------------|--------------------------------|-------------------|---------------------|------------------|------------|--------------------|------------|--------------------|--------------------|----------------|------------------|------------------|--------------------|----------------|------------------|--------------------|--------------------|--------------------|--------------------|------------------|------------------|------------|
| , , , , , , , , , , , , , , , , , , , | 5                              | S                 | ample Depth (ft.):  | 11.6             | 12.2       | 12.8               | 10         | 12                 | 11.4               | 16.5           | 11.5             | 12.5             | 21                 | 12.8           | 17.5             | 11                 | 15                 | 10                 | 11.5               | 11               | 12.5             | 14         |
|                                       |                                |                   | Sample Date:        | 12/14/2016       | 12/14/2016 | 12/14/2016         | 12/14/2016 | 12/14/2016         | 12/14/2016         | 12/14/2016     | 12/14/2016       | 12/14/2016       | 12/14/2016         | 12/15/2016     | 12/15/2016       | 12/13/2016         | 12/13/2016         | 12/12/2016         | 12/12/2016         | 12/12/2016       | 12/12/2016       | 12/12/2016 |
|                                       |                                | S-2/GW-3          | UCLs                |                  |            |                    |            |                    |                    |                |                  |                  |                    |                |                  |                    |                    |                    |                    |                  |                  |            |
| VPH                                   |                                |                   |                     |                  |            |                    |            |                    |                    |                |                  |                  |                    |                |                  |                    |                    |                    |                    |                  |                  |            |
| (mg/kg)                               | C9-C10 Aromatics               | 500               | 5,000               | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | C5-C8 Aliphatics               | 500               | 5,000               | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | C9-C12 Aliphatics              | 3,000             | 20,000              | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Benzene                        | 200               | 10,000              | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Toluene                        | 1,000             | 10,000              | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Ethylbenzene                   | 1,000             | 10,000              | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | p/m-xylene                     | NS                | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | o-xylene                       | NS                | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Xylenes (total)                | 1,000             | 10,000              | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Methyl tert butyl ether (MTBE) | 500               | 5,000               | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Naphthalene                    | 1,000             | 10,000              | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
| EPH                                   |                                |                   |                     |                  |            |                    |            |                    |                    |                |                  |                  |                    |                |                  |                    |                    |                    |                    |                  |                  | 1          |
| (mg/kg)                               | C9-C18 Aliphatics              | 3,000             | 20,000              | 7.18 U           | 353        | 8.49 U             | 6.92 U     | 7.29 U             | 165                | 7.55 U         | 12.7 U           | 7.65 U           | 7.14 U             | 3,300          | 7.36 U           | 8.16 U             | 6.81 U             | 8.13 U             | 9.05 U             | 697              | 3,690            | 21.5       |
|                                       | C19-C36 Aliphatics             | 5,000             | 20,000              | 7.18 U<br>7.18 U | 693<br>776 | 8.49 U<br>9.61     | 6.92 U     | 7.29 U<br>7.29 U   | 278                | 7.55 U<br>9.87 | 12.7 U<br>49 7   | 7.65 U<br>7.65 U | 7.14 U<br>7.14 U   | 5,650          | 7.36 U<br>7.36 U | 8.22               | 6.81 U             | 8.13 U<br>37 4     | 9.05 U             | 2,740            | 5,810<br>7,170   | 32<br>18 5 |
|                                       | Naphthalene                    | 1000              | 10,000              | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.636 U          | 0.383 U          | 0.357 U            | 11.8           | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | 2-Methylnaphthalene            | 500.0             | 5,000               | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.675            | 0.383 U          | 0.357 U            | 45.2           | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Acenaphthylene                 | 10                | 10,000              | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.636 U          | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Acenaphthene                   | 3,000             | 10,000              | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.636 U          | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.692              | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Fluorene                       | 3,000             | 10,000              | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.636 U          | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Anthracene                     | 1000              | 10,000              | 0.359 U          | 0.708 U    | 0.424 U<br>0.424 U | 0.346 U    | 0.364 U            | 1.01<br>0.404 U    | 0.377 U        | 1.99<br>0.636 U  | 0.383 U          | 0.357 U            | 8.97<br>3.63 U | 0.368 U          | 0.438<br>0.408 U   | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U<br>3.99 U | 8.16 U<br>8.16 U | 0.413 U    |
|                                       | Fluoranthene                   | 3,000             | 10,000              | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 1.13             | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.10 U           | 0.413 U    |
|                                       | Pyrene                         | 3,000             | 10,000              | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 1.08               | 0.377 U        | 1.67             | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Benzo(a)anthracene             | 40                | 3,000               | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.943            | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Chrysene                       | 400               | 10,000              | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 1.19               | 0.377 U        | 1.42             | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Benzo(b)fluoranthene           | 40                | 3,000               | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.655            | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Benzo(k)fluoranthene           | 400               | 10,000              | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.636 U          | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Indeno(1,2,3-cd)pyrene         | 40                | 3,000               | 0.359 U          | 0.708 U    | 0.424 U<br>0.424 U | 0.346 U    | 0.364 U<br>0.364 U | 0.404 U<br>0.404 U | 0.377 U        | 0.799<br>0.636 U | 0.383 U          | 0.337 U<br>0.357 U | 3.63 U         | 0.368 U          | 0.408 U<br>0.408 U | 0.341 U<br>0.341 U | 0.406 U<br>0.406 U | 0.432 U<br>0.452 U | 3.99 U<br>3.99 U | 8.16 U<br>8.16 U | 0.413 U    |
|                                       | Dibenz(a,h)anthracene          | 4.0               | 300                 | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.636 U          | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.742              | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
|                                       | Benzo(g,h,i)perylene           | 3,000             | 10,000              | 0.359 U          | 0.708 U    | 0.424 U            | 0.346 U    | 0.364 U            | 0.404 U            | 0.377 U        | 0.636 U          | 0.383 U          | 0.357 U            | 3.63 U         | 0.368 U          | 0.408 U            | 0.341 U            | 0.406 U            | 0.452 U            | 3.99 U           | 8.16 U           | 0.413 U    |
| Herbicid                              | es                             |                   |                     |                  |            |                    |            |                    |                    |                |                  |                  |                    |                |                  |                    |                    |                    |                    |                  |                  |            |
| (mg/kg)                               | 2,4-D                          | NS                | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | 2,4-DB                         | NS                | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | 2,4,5-TP (Silvex)              | INS<br>NS         | INS<br>NS           | NA<br>NA         | NA<br>NA   | NA<br>NA           | NA<br>NA   | NA<br>NA           | NA<br>NA           | NA             | NA<br>NA         | NA<br>NA         | NA<br>NA           | NA<br>NA       | NA<br>NA         | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA   |
|                                       | Dalapon                        | NS                | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Dicamba                        | NS                | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Dichloroprop                   | NS                | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Dinoseb                        | NS                | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | MCPA                           | NS                | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
| Matala t                              | otal                           | IND               | NS                  | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | INA              | INA              | NA                 | INA            | INA              | NA                 | NA                 | INA                | INA                | NA               | NA               | NA         |
| (mg/kg)                               | Antimony                       | 30                | 300                 | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
| (III <u>g/Rg/</u>                     | Arsenic                        | $\frac{30}{20}$   | 500                 | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Barium                         | 3,000             | 10,000              | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Beryllium                      | <u>200</u>        | <u>2,000</u>        | <u>NA</u>        | <u>NA</u>  | <u>NA</u>          | <u>NA</u>  | <u>NA</u>          | <u>NA</u>          | <u>NA</u>      | <u>NA</u>        | <u>NA</u>        | <u>NA</u>          | <u>NA</u>      | <u>NA</u>        | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>        | <u>NA</u>        | <u>NA</u>  |
|                                       | Cadmium                        | <u>100</u>        | <u>1,000</u>        | <u>NA</u>        | <u>NA</u>  | <u>NA</u>          | <u>NA</u>  | <u>NA</u>          | <u>NA</u>          | <u>NA</u>      | <u>NA</u>        | <u>NA</u>        | <u>NA</u>          | <u>NA</u>      | <u>NA</u>        | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>        | <u>NA</u>        | <u>NA</u>  |
|                                       | <u>Chromium</u>                | <u>200</u>        | <u>2,000</u>        | <u>NA</u>        | <u>NA</u>  | <u>NA</u>          | <u>NA</u>  | <u>NA</u>          | <u>NA</u>          | <u>NA</u>      | <u>NA</u>        | <u>NA</u>        | <u>NA</u>          | <u>NA</u>      | <u>NA</u>        | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>        | NA<br>NA         | <u>NA</u>  |
|                                       | Marcury                        | <u>600</u><br>20  | <u>6,000</u><br>300 | <u>INA</u><br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA   | <u>NA</u><br>NA    | NA<br>NA           | <u>NA</u>      | <u>NA</u><br>NA  | <u>INA</u><br>NA | NA<br>NA           | NA<br>NA       | <u>NA</u><br>NA  | NA<br>NA           | NA<br>NA           | <u>NA</u><br>NA    | <u>INA</u><br>NA   | <u>INA</u><br>NA | NA<br>NA         | NA<br>NA   |
|                                       | Nickel                         | <u>50</u><br>1000 | 10,000              | NA               | NA         | NA<br>NA           | NA<br>NA   | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Selenium                       | 700               | 7,000               | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Silver                         | 200               | 2,000               | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |
|                                       | Thallium                       | <u>60</u>         | 800                 | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | <u>NA</u>  |
|                                       | Vanadium                       | <u>700</u>        | <u>7,000</u>        | <u>NA</u>        | <u>NA</u>  | <u>NA</u>          | <u>NA</u>  | <u>NA</u>          | <u>NA</u>          | <u>NA</u>      | <u>NA</u>        | <u>NA</u>        | <u>NA</u>          | <u>NA</u>      | <u>NA</u>        | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>        | <u>NA</u>        | <u>NA</u>  |
|                                       | Zinc                           | <u>3,000</u>      | 10,000              | NA               | NA         | NA                 | NA         | NA                 | NA                 | NA             | NA               | NA               | NA                 | NA             | NA               | NA                 | NA                 | NA                 | NA                 | NA               | NA               | NA         |

#### Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm). NA - Sample not analyzed for the listed analyte.

N/A - Not applicable. NS - No MassDEP standards exist for this analyte.

U - Analyte was not detected at specified quantitation limit.

Values in **Bold** indicate the analyte was detected. Values shown in **Bold and shaded type exceed MassDEP Standards**.

EPH - Extractable Petroleum Hydrocarbons.

VPH - Volatile Petroleum Hydrocarbons

UCLs - Upper concentration limits.

| Analysis  | Analyte                                     |                   | Sample ID:            | B-               | 411                | B-412              | В-         | 413                | B-4                | 414        |                  | B-         | 415            |                    | B-                 | 416                | B-                 | 417              |
|-----------|---------------------------------------------|-------------------|-----------------------|------------------|--------------------|--------------------|------------|--------------------|--------------------|------------|------------------|------------|----------------|--------------------|--------------------|--------------------|--------------------|------------------|
|           |                                             | S                 | ample Depth (ft.):    | 11.5             | 16                 | 19                 | 11         | 23                 | 11                 | 15.5       | 11.8             | 12.2       | 13.4           | 13.4               | 11                 | 15                 | 11                 | 15               |
|           |                                             |                   | Sample Date:          | 12/12/2016       | 12/12/2016         | 12/12/2016         | 12/12/2016 | 12/12/2016         | 12/13/2016         | 12/13/2016 | 12/14/2016       | 12/14/2016 | 12/14/2016     | 12/14/2016         | 12/13/2016         | 12/13/2016         | 12/13/2016         | 12/13/2016       |
|           |                                             | S-2/GW-3          | UCLs                  |                  |                    |                    |            |                    |                    |            |                  |            |                | Field Dup          |                    |                    |                    |                  |
| VPH       | C0 C10 Aromatics                            | 500               | 5 000                 | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
| (ing/kg)  | C5-C8 Aliphatics                            | 500               | 5,000                 | NA               | NA                 | NA                 | NA         | NA                 | NΔ                 | NA         | NA               | NA         | NA             | NA                 | NΔ                 | NA                 | NΔ                 | NA               |
|           | C9-C12 Aliphatics                           | 3,000             | 20,000                | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Benzene                                     | 200               | 10.000                | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Toluene                                     | 1,000             | 10,000                | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Ethylbenzene                                | 1,000             | 10,000                | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | p/m-xylene                                  | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | o-xylene                                    | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Xylenes (total)                             | 1,000             | 10,000                | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Methyl tert butyl ether (MTBE)              | 500               | 5,000                 | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Naphthalene                                 | 1,000             | 10,000                | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
| EPH       |                                             |                   |                       |                  |                    |                    |            |                    |                    | 100        |                  |            |                |                    |                    |                    |                    |                  |
| (mg/kg)   | C9-C18 Aliphatics                           | 3,000             | 20,000                | 12.6             | 9.43 U<br>9.43 U   | 8.27 U             | 1,780      | 8.22 U             | 52.7<br>256        | 108        | 3,250            | 2,680      | 1,060          | 510<br>712         | 6.96 U<br>95.4     | 8.14 U<br>8.14 U   | 6.94<br>53.8       | 7.31 U<br>7.31 U |
|           | C11-C22 Aromatics                           | 3,000             | 10,000                | 246              | 9.43 U             | 36.5               | 6,610      | 21                 | 192                | 256        | 8,790            | 5,710      | 1,740          | 866                | 114                | 8.14 U             | 90.9               | 7.31 U           |
|           | Naphthalene                                 | 1000              | 10,000                | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.348 U            | 0.407 U            | 0.344 U            | 0.365 U          |
|           | 2-Methylnaphthalene                         | 500.0             | 5,000                 | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.675              | 0.348 U            | 0.407 U            | 0.344 U            | 0.365 U          |
|           | Acenaphthylene                              | 10                | 10,000                | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.348 U            | 0.407 U            | 0.344 U            | 0.365 U          |
|           | Acenaphthene                                | 3,000             | 10,000                | 0.35 U<br>0.35 U | 0.472 U<br>0.472 U | 0.414 U<br>0.414 U | 12.2 U     | 0.411 U<br>0.411 U | 0.367 U<br>0.367 U | 0.379 U    | 8.08 U<br>8.08 U | 13.1 U     | 2.3 U<br>2.3 U | 0.434 U<br>0.434 U | 0.348 U<br>0.348 U | 0.407 U<br>0.407 U | 0.344 U<br>0.344 U | 0.365 U          |
|           | Phenanthrene                                | 1000              | 10,000                | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.348 0            | 0.407 U            | 0.654              | 0.365 U          |
|           | Anthracene                                  | 3,000             | 10,000                | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.348 U            | 0.407 U            | 0.344 U            | 0.365 U          |
|           | Fluoranthene                                | 3,000             | 10,000                | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.454              | 0.407 U            | 0.674              | 0.365 U          |
|           | Pyrene                                      | 3,000             | 10,000                | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.486              | 0.407 U            | 0.763              | 0.365 U          |
|           | Benzo(a)anthracene                          | 40                | 3,000                 | 0.35 U           | 0.472 U<br>0.472 U | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U<br>8.08 U | 13.1 U     | 2.3 U<br>2.3 U | 0.67               | 0.348 U            | 0.407 U            | 0.458              | 0.365 U          |
|           | Benzo(b)fluoranthene                        | 400               | 3.000                 | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.348 U            | 0.407 U            | 0.385              | 0.365 U          |
|           | Benzo(k)fluoranthene                        | 400               | 10,000                | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.348 U            | 0.407 U            | 0.344 U            | 0.365 U          |
|           | Benzo(a)pyrene                              | 7                 | 300                   | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.348 U            | 0.407 U            | 0.39               | 0.365 U          |
|           | Indeno(1,2,3-cd)pyrene                      | 40                | 3,000                 | 0.35 U           | 0.472 U            | 0.414 U            | 12.2 U     | 0.411 U            | 0.367 U            | 0.379 U    | 8.08 U           | 13.1 U     | 2.3 U          | 0.434 U            | 0.348 U            | 0.407 U            | 0.344 U            | 0.365 U          |
|           | Dibenz(a,h)anthracene<br>Benzo(a,h)pervlene | 4.0               | 300                   | 0.35 U           | 0.472 U<br>0.472 U | 0.414 U<br>0.414 U | 12.2 U     | 0.411 U<br>0.411 U | 0.367 U<br>0.367 U | 0.379 U    | 8.08 U<br>8.08 U | 13.1 U     | 2.3 U<br>2.3 U | 0.434 U<br>0.434 U | 0.348 U<br>0.348 U | 0.407 U<br>0.407 U | 0.344 U<br>0.396   | 0.365 U          |
| Herbicide | S                                           | 3,000             | 10,000                | 0.35 0           | 0.472 0            | 0.414 0            | 12.2 0     | 0.411 0            | 0.307 0            | 0.379 0    | 8.08 0           | 15.1 0     | 2.5 0          | 0.434 0            | 0.548 0            | 0.407 0            | 0.370              | 0.305 0          |
| (mg/kg)   | 2,4-D                                       | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | 2,4-DB                                      | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | 2,4,5-TP (Silvex)                           | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | 2,4,5-T                                     | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Dicamba                                     | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Dichloroprop                                | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Dinoseb                                     | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | MCPA                                        | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
| Motola ta | MCPP                                        | NS                | NS                    | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
| (mg/kg)   | Antimony                                    | 30                | 300                   | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
| <u></u>   | Arsenic                                     | $\frac{30}{20}$   | 500                   | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Barium                                      | <u>3,000</u>      | <u>10,000</u>         | NA               | NA                 | NA                 | NA         | NA                 | <u>NA</u>          | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Beryllium                                   | <u>200</u>        | <u>2,000</u>          | <u>NA</u>        | <u>NA</u>          | <u>NA</u>          | <u>NA</u>  | <u>NA</u>          | <u>NA</u>          | <u>NA</u>  | <u>NA</u>        | <u>NA</u>  | <u>NA</u>      | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>        |
|           | <u>Cadmium</u>                              | $\frac{100}{200}$ | <u>1,000</u>          | <u>NA</u>        | <u>NA</u>          | <u>NA</u>          | <u>NA</u>  | NA<br>NA           | NA<br>NA           | <u>NA</u>  | <u>NA</u>        | <u>NA</u>  | <u>NA</u>      | NA<br>NA           | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>        |
|           | Lead                                        | <u>200</u><br>600 | <u>2,000</u><br>6,000 | NA<br>NA         | NA<br>NA           | NA<br>NA           | NA<br>NA   | NA<br>NA           | NA<br>NA           | NA<br>NA   | NA<br>NA         | NA<br>NA   | NA<br>NA       | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA         |
|           | Mercury                                     | 30                | 300                   | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | Nickel                                      | 1000              | 10,000                | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |
|           | <u>Selenium</u>                             | <u>700</u>        | <u>7,000</u>          | NA               | <u>NA</u>          | <u>NA</u>          | <u>NA</u>  | <u>NA</u>          | <u>NA</u>          | <u>NA</u>  | <u>NA</u>        | <u>NA</u>  | <u>NA</u>      | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>        |
|           | Silver                                      | <u>200</u>        | <u>2,000</u>          | <u>NA</u>        | <u>NA</u>          | <u>NA</u>          | <u>NA</u>  | <u>NA</u>          | <u>NA</u>          | <u>NA</u>  | <u>NA</u>        | <u>NA</u>  | <u>NA</u>      | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>          | <u>NA</u>        |
|           | Thallium<br>Vonadium                        | <u>60</u><br>700  | <u>800</u><br>7,000   | <u>NA</u>        | NA<br>NA           | <u>NA</u>          | <u>NA</u>  | NA<br>NA           | <u>NA</u>          | NA<br>NA   | <u>NA</u>        | <u>NA</u>  | NA<br>NA       | <u>NA</u>          | <u>NA</u>          | NA<br>NA           | <u>NA</u>          | <u>NA</u>        |
|           | Zinc                                        | 3,000             | 10,000                | NA               | NA                 | NA                 | NA         | NA                 | NA                 | NA         | NA               | NA         | NA             | NA                 | NA                 | NA                 | NA                 | NA               |

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm). NA - Sample not analyzed for the listed analyte.

N/A - Not applicable. NS - No MassDEP standards exist for this analyte.

V - Analyte was not detected at specified quantitation limit.
 Values in Bold indicate the analyte was detected.
 Values shown in Bold and shaded type exceed MassDEP Standards.

EPH - Extractable Petroleum Hydrocarbons. VPH - Volatile Petroleum Hydrocarbons

UCLs - Upper concentration limits.

#### Table 2. Summary of Analytical Results for Soil Samples -- >3 Foot Depth Interval Spectra - 6 Bridge Street Weymouth, Massachusetts

| Analysis | Analyte              |          |          | Sample ID:          | B105      | B/MW 201  | B-317      | B-402      | B-404      | B-407      |            | B-410      |            | B-411      | B-413      | B-414      |            | B-415      |            | B-416      | B-417      |
|----------|----------------------|----------|----------|---------------------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|          |                      |          | :        | Sample Depth (ft.): | 14-17     | 10-12     | 13.0       | 12.2       | 11.4       | 12.8       | 11         | 12.5       | 14         | 11.5       | 11         | 11         | 11.8       | 12.2       | 13.4       | 11         | 11         |
|          |                      |          |          | Sample Date:        | 4/12/2016 | 5/12/2016 | 10/12/2016 | 12/14/2016 | 12/14/2016 | 12/15/2016 | 12/12/2016 | 12/12/2016 | 12/12/2016 | 12/12/2016 | 12/12/2016 | 12/13/2016 | 12/14/2016 | 12/14/2016 | 12/14/2016 | 12/13/2016 | 12/13/2016 |
|          |                      | S-1/GW-2 | S-1/GW-3 | UCLs                |           | combo     |            |            |            |            |            |            |            |            |            |            |            |            | combo      |            | 1          |
| VPH      |                      |          |          |                     |           |           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| (mg/kg)  | C9-C10 Aromatics     | 100      | 100      | 5,000               | 45        | NA        | 140        | NA         |
|          | C9-C12 Aliphatics    | 1,000    | 1,000    | 20,000              | 12.5 U    | NA        | 163        | NA         |
| EPH      |                      |          |          |                     |           |           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| (mg/kg)  | C9-C18 Aliphatics    | 1,000    | 1,000    | 20,000              | 4,570     | 747.5     | 3,740      | 353        | 165        | 3,300      | 697        | 3,690      | 21.5       | 12.6       | 1,780      | 52.7       | 3,250      | 2,680      | 1,060      | 6.96 U     | 6.94       |
|          | C19-C36 Aliphatics   | 3,000    | 3,000    | 20,000              | 9,110     | 3,785     | 6,140      | 693        | 278        | 5,650      | 2,740      | 5,810      | 32         | 98.4       | 4,590      | 256        | 6,670      | 5,500      | 1,740      | 95.4       | 53.8       |
|          | C11-C22 Aromatics    | 1,000    | 1,000    | 10,000              | 9,070     | 2,875     | 5,970      | 776        | 704        | 6,670      | 7,670      | 7,170      | 18.5       | 246        | 6,610      | 192        | 8,790      | 5,710      | 1,890      | 114        | 90.9       |
|          | Naphthalene          | 20       | 500      | 10,000              | 1.0 U     | 1.007 U   | 0.995 U    | 0.708 U    | 0.404 U    | 11.8       | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 1.367 U    | 0.348 U    | 0.344 U    |
|          | 2-Methylnaphthalene  | 80       | 300      | 5,000               | 7.41 U    | 1.007 U   | 3.86 U     | 0.708 U    | 0.404 U    | 45.2       | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 0.9125 J   | 0.348 U    | 0.344 U    |
|          | Phenanthrene         | 500      | 500      | 10,000              | 7.41 U    | 1.007 U   | 3.86 U     | 0.708 U    | 1.61       | 8.97       | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 1.367 U    | 0.4        | 0.654      |
|          | Fluoranthene         | 1000     | 1000     | 10,000              | 7.41 U    | 1.007 U   | 3.86 U     | 0.708 U    | 0.404 U    | 3.63 U     | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 1.367 U    | 0.454      | 0.674      |
|          | Pyrene               | 1,000    | 1,000    | 10,000              | 7.41 U    | 1.007 U   | 3.86 U     | 0.708 U    | 1.08       | 3.63 U     | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 1.367 U    | 0.486      | 0.763      |
|          | Benzo(a)anthracene   | 7        | 7        | 3,000               | 7.41 U    | 1.007 U   | 3.86 U     | 0.708 U    | 0.404 U    | 3.63 U     | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 0.91 J     | 0.348 U    | 0.458      |
|          | Chrysene             | 70       | 70       | 10,000              | 7.41 U    | 1.007 U   | 3.86 U     | 0.708 U    | 1.19       | 3.63 U     | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 0.9655 J   | 0.409      | 0.627      |
|          | Benzo(b)fluoranthene | 7        | 7        | 3,000               | 7.41 U    | 1.007 U   | 3.86 U     | 0.708 U    | 0.404 U    | 3.63 U     | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 1.367 U    | 0.348 U    | 0.385      |
|          | Benzo(a)pyrene       | 2        | 2        | 300                 | 7.41 U    | 1.007 U   | 3.86 U     | 0.708 U    | 0.404 U    | 3.63 U     | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 1.367 U    | 0.348 U    | 0.39       |
|          | Benzo(g,h,i)perylene | 1,000    | 1,000    | 10,000              | 7.41 U    | 1.007 U   | 3.86 U     | 0.708 U    | 0.404 U    | 3.63 U     | 3.99 U     | 8.16 U     | 0.413 U    | 0.35 U     | 12.2 U     | 0.367 U    | 8.08 U     | 13.1 U     | 1.367 U    | 0.348 U    | 0.396      |

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP standards exist for this analyte. U - Analyte was not detected at specified quantitation limit.

Values in **Bold** indicate the analyte was detected. Values shown in **Bold** and shaded type exceed MassDEP S-1 standards. EPH - Extractable Petroleum Hydrocarbons.

VPH - Volatile Petroleum Hydrocarbons

UCLs - Upper concentration limits.

140143\_Spectra\_Weymouth MA

## Table 3. Summary of Analytical Results for Disposal Site Groundwater Samples Spectra - 6 Bridge Street Weymouth, Massachusetts

| Analysis | Analyte            | Sa     | mple Location: |          | MW-404    |          |          | MW-406    |          |          | MW-407    |          |          | MW-410    |          |          | MW-412    |          |          | MW-414    |          |
|----------|--------------------|--------|----------------|----------|-----------|----------|----------|-----------|----------|----------|-----------|----------|----------|-----------|----------|----------|-----------|----------|----------|-----------|----------|
|          |                    |        | Sample ID:     | MW-404   | MW-404    | MW-404   | MW-406   | MW-406    | MW-406   | MW-407   | MW-407    | MW-407   | MW-410   | MW-410    | MW-410   | MW-412   | MW-412    | MW-412   | MW-414   | MW-414    | MW-414   |
|          |                    |        | Sample Date:   | 1/5/2017 | 3/23/2017 | 6/6/2017 | 1/5/2017 | 3/21/2017 | 6/7/2017 | 1/5/2017 | 3/21/2017 | 6/7/2017 | 1/6/2017 | 3/21/2017 | 6/7/2017 | 1/5/2017 | 3/22/2017 | 6/6/2017 | 1/6/2017 | 3/21/2017 | 6/7/2017 |
|          |                    | GW-2   | GW-3           |          |           |          | combo    | combo     | combo    |          |           |          |          |           |          | combo    |           |          |          |           |          |
| VPH      |                    |        |                |          |           |          |          |           |          |          |           |          |          |           |          |          |           |          |          |           |          |
| (ug/L)   | C9-C10 Aromatics   | 4,000  | 50,000         | 100 U    | 50 U      | 50 U     | 250 U    | 50 U      | 50 U     | 250 U    | 50 U      | 68.3     | 250 U    | 50 U      | 50 U     | 250 U    | 50 U      | 50 U     | 250 U    | 50 U      | 50 U     |
| -        | C9-C12 Aliphatics  | 5,000  | 50,000         | 100 U    | 50 U      | 50 U     | 250 U    | 50 U      | 50 U     | 250 U    | 50 U      | 50 U     | 250 U    | 50 U      | 50 U     | 250 U    | 50 U      | 50 U     | 250 U    | 50 U      | 58.3     |
|          | Ethylbenzene       | 20,000 | 5,000          | 4.0 U    | 2.0 U     | 2.0 U    | 10 U     | 3.22      | 2.0 U    | 10 U     | 2.0 U     | 2.0 U    | 10 U     | 2.0 U     | 2.0 U    | 10 U     | 2.0 U     | 2.0 U    | 10 U     | 2.0 U     | 2.0 U    |
|          | Naphthalene        | 700    | 20,000         | 8.0 U    | 4.0 U     | 4.0 U    | 10 U     | 6.72      | 4.0 U    | 10 U     | 4.0 U     | 7.57     | 10 U     | 4.0 U     | 4.0 U    | 10 U     | 4.0 U     | 4.0 U    | 10 U     | 4.0 U     | 4.0 U    |
| EPH      |                    |        |                |          |           |          |          |           |          |          |           |          |          |           |          |          |           |          |          |           |          |
| (ug/L)   | C19-C36 Aliphatics | NS     | 50,000         | 100 U    | 223       | 100 U    | 100 U    | 100 U     | 100 U    | 100 U    | 100 U     | 100 U    | 100 U    | 100 U     | 100 U    | 100 U    | 100 U     | 100 U    | 100 U    | 100 U     | 100 U    |
|          | C11-C22 Aromatics  | 50,000 | 5,000          | 100 U    | 100 U     | 100 U    | 100 U    | 102       | 100 U    | 100 U    | 100 U     | 178      | 100 U    | 125       | 100 U    | 102      | 100 U     | 100 U    | 188      | 105       | 131      |

Notes:

ug/L - micrograms per liter. NS - No MassDEP standards exist for this analyte.

U - Analyte was not detected at specified quantitation limit.

Values in **bold** indicate the analyte was detected.

VPH - Volatile Petroleum Hydrocarbons.

EPH - Extractable Petroleum Hydrocarbons.

## **APPENDIX F-2**

## PROUCL DOCUMENTATION FOR 95% UPPER CONFIDENCE LIMITS

|    | Α           | В            | С            | D              | E                  | F             | G             | Н             |         |         | J             | K              | L         |
|----|-------------|--------------|--------------|----------------|--------------------|---------------|---------------|---------------|---------|---------|---------------|----------------|-----------|
| 1  |             |              |              |                | UCL Statis         | tics for Data | Sets with No  | on-Detects    |         |         |               |                |           |
| 2  |             |              |              |                |                    |               |               |               |         |         |               |                |           |
| 3  |             | User Sele    | cted Options |                |                    |               |               |               |         |         |               |                |           |
| 4  | Dat         | e/Time of Co | omputation   | ProUCL 5.15    | 5/15/2017 4:       | 18:35 PM      |               |               |         |         |               |                |           |
| 5  |             |              | From File    | ProUCL_Imp     | port.xls           |               |               |               |         |         |               |                |           |
| 6  |             | Ful          | I Precision  | OFF            |                    |               |               |               |         |         |               |                |           |
| 7  |             | Confidence   | Coefficient  | 95%            |                    |               |               |               |         |         |               |                |           |
| 8  | Number o    | of Bootstrap | Operations   | 2000           |                    |               |               |               |         |         |               |                |           |
| 9  |             |              |              |                |                    |               |               |               |         |         |               |                |           |
| 10 | C9-C18 Alip | ohatics      |              |                |                    |               |               |               |         |         |               |                |           |
| 11 |             |              |              |                |                    |               |               |               |         |         |               |                |           |
| 12 |             |              |              |                |                    | General       | Statistics    |               |         |         |               |                |           |
| 13 |             |              | Total        | Number of O    | bservations        | 17            |               |               | Nu      | Imber   | of Distinct   | Observations   | 17        |
| 14 |             |              |              | Numbe          | r of Detects       | 16            |               |               |         |         | Number of     | Non-Detects    | 1         |
| 15 |             |              | N            | umber of Dist  | inct Detects       | 16            |               |               | N       | umbe    | r of Distinct | Non-Detects    | 1         |
| 16 |             |              |              | Minii          | mum Detect         | 6.94          |               |               |         |         | Minimun       | n Non-Detect   | 6.96      |
| 17 |             |              |              | Maxi           | mum Detect         | 4570          |               |               |         |         | Maximur       | n Non-Detect   | 6.96      |
| 18 |             |              |              | Varia          | nce Detects        | 2663605       |               |               |         |         | Percent       | Non-Detects    | 5.882%    |
| 19 |             |              |              | M              | ean Detects        | 1633          |               |               |         |         |               | SD Detects     | 1632      |
| 20 |             |              |              | Mec            | lian Detects       | 903.8         |               |               |         |         |               | CV Detects     | 0.999     |
| 21 |             |              |              | Skewn          | ess Detects        | 0.522         |               |               |         |         | Kur           | tosis Detects  | -1.413    |
| 22 |             |              |              | Mean of Log    | ged Detects        | 6.19          |               |               |         |         | SD of Lo      | gged Detects   | 2.212     |
| 23 |             |              |              |                |                    |               |               |               |         |         |               |                |           |
| 24 |             |              |              |                | Norm               | nal GOF Tes   | t on Detects  | Only          |         |         |               |                |           |
| 25 |             |              | S            | hapiro Wilk T  | est Statistic      | 0.853         |               |               | Shapir  | o Wil   | k GOF Test    |                |           |
| 26 |             |              | 5% SI        | hapiro Wilk C  | ritical Value      | 0.887         | I             | Detected Dat  | a Not N | lorma   | al at 5% Sigi | nificance Leve | el        |
| 27 |             |              |              | Lilliefors T   | est Statistic      | 0.206         |               |               | Lillie  | efors ( | GOF Test      |                |           |
| 28 |             |              | 5            | % Lilliefors C | ritical Value      | 0.213         | De            | etected Data  | appear  | Norn    | nal at 5% Si  | gnificance Le  | vel       |
| 29 |             |              |              | Detected [     | <b>Data appear</b> | Approximate   | Normal at 5   | 5% Significan | ce Lev  | el      |               |                |           |
| 30 |             |              |              |                |                    |               |               |               |         |         |               |                |           |
| 31 |             |              | Kaplan-I     | Meier (KM) S   | tatistics usin     | g Normal Cr   | itical Values | and other No  | onparan | netric  | UCLs          |                |           |
| 32 |             |              |              |                | KM Mean            | 1537          |               |               |         | KN      | 1 Standard I  | Error of Mean  | 395.8     |
| 33 |             |              |              |                | KM SD              | 1580          |               |               |         |         | 95% KN        | M (BCA) UCL    | 2143      |
| 34 |             |              |              | 95%            | KM (t) UCL         | 2228          |               |               | 95% K   | KM (P   | ercentile Bo  | otstrap) UCL   | 2170      |
| 35 |             |              |              | 95%            | KM (z) UCL         | 2188          |               |               |         | ę       | 95% KM Bo     | otstrap t UCL  | 2343      |
| 36 |             |              | ę            | 30% KM Cheł    | oyshev UCL         | 2725          |               |               |         | g       | 5% KM Che     | ebyshev UCL    | 3262      |
| 37 |             |              | 97           | .5% KM Cheł    | oyshev UCL         | 4009          |               |               |         | g       | 9% KM Che     | ebyshev UCL    | 5475      |
| 38 |             |              |              |                |                    |               | ·             |               |         |         |               |                |           |
| 39 |             |              |              | G              | amma GOF           | Tests on De   | tected Obse   | rvations Only | '       |         |               |                |           |
| 40 |             |              |              | A-D T          | est Statistic      | 0.589         |               | Α             | ndersor | n-Dar   | ling GOF Te   | est            |           |
| 41 |             |              |              | 5% A-D C       | ritical Value      | 0.794         | Detecte       | d data appea  | r Gamr  | na Di   | stributed at  | 5% Significar  | ice Level |
| 42 |             |              |              | K-S T          | est Statistic      | 0.174         |               | k             | Colmogo | orov-S  | Smirnov GO    | F              |           |
| 43 |             |              |              | 5% K-S C       | ritical Value      | 0.227         | Detecte       | d data appea  | r Gamr  | na Di   | stributed at  | 5% Significar  | ice Level |
| 44 |             |              |              | Detected       | data appear        | Gamma Dis     | tributed at 5 | % Significan  | ce Leve | el      |               |                |           |
| 45 |             |              |              |                |                    |               |               |               |         |         |               |                |           |
| 46 |             |              |              |                | Gamma              | Statistics on | Detected Da   | ata Only      |         |         |               |                |           |
| 47 |             |              |              |                | k hat (MLE)        | 0.522         |               |               |         | k s     | star (bias co | rrected MLE)   | 0.466     |

|            | А   | В         | С             | D               | Е             | F              | G             | Н             |         |          | J              | K              | L     |
|------------|-----|-----------|---------------|-----------------|---------------|----------------|---------------|---------------|---------|----------|----------------|----------------|-------|
| 48         |     |           |               | Theta           | a hat (MLE)   | 3127           |               |               | 1       | Theta s  | star (bias cor | rected MLE)    | 3504  |
| 10         |     |           |               | ทเ              | u hat (MLE)   | 16.71          |               |               |         |          | nu star (bia   | s corrected)   | 14.91 |
| 49         |     |           |               | Меа             | an (detects)  | 1633           |               |               |         |          |                |                |       |
| 50         |     |           |               |                 | . ,           |                |               |               |         |          |                |                |       |
| 51         |     |           |               | 6               | amma ROS      | Statistics us  | ing Imputed   | Non-Detect    |         |          |                |                |       |
| 52         |     |           | CBOS may      | not be used a   |               | $\frac{1}{2}$  |               | non-Delect    | onvotiv | one of   | multiple DL c  |                |       |
| 53         |     | 0000      |               |                 |               |                |               |               |         |          |                |                |       |
| 54         |     | GRUS may  | / not be used | when kstar o    |               | small such a   | s < 1.0, espe | cially when   | ine san | npie si  | ze is small (e | e.g., <15-20)  |       |
| 55         |     |           | Fo            | r such situatio | ons, GROS     | method may     | yield incorre | ect values of | UCLs    | and B    | IVs            |                |       |
| 56         |     |           |               | Tł              | nis is especi | ally true whe  | n the sample  | e size is sma | all.    |          |                |                |       |
| 57         |     | For gan   | nma distribut | ed detected d   | lata, BTVs a  | and UCLs ma    | ay be compu   | ted using ga  | mma d   | listribu | tion on KM e   | estimates      |       |
| 58         |     |           |               |                 | Minimum       | 6.94           |               |               |         |          |                | Mean           | 1553  |
| 59         |     |           |               |                 | Maximum       | 4570           |               |               |         |          |                | Median         | 747.5 |
| 60         |     |           |               |                 | SD            | 1614           |               |               |         |          |                | CV             | 1.039 |
| 61         |     |           |               | ł               | k hat (MLE)   | 0.529          |               |               |         | k s      | star (bias cor | rected MLE)    | 0.475 |
| 62         |     |           |               | Theta           | a hat (MLE)   | 2937           |               |               | ٦       | Theta s  | star (bias cor | rected MLE)    | 3272  |
| 63         |     |           |               | ทเ              | u hat (MLE)   | 17.98          |               |               |         |          | nu star (bia   | is corrected)  | 16.14 |
| 64         |     |           | Adjusted      | Level of Sign   | ificance (β)  | 0.0346         |               |               |         |          |                |                |       |
| 65         |     | Арр       | proximate Chi | Square Valu     | e (16.14, α)  | 8.062          |               |               | Adjust  | ed Ch    | i Square Valı  | ue (16.14, β)  | 7.469 |
| 00         |     | 95% Gamma | Approximate   | e UCL (use w    | hen n>=50)    | 3110           |               | 95% Ga        | amma    | Adjust   | ed UCL (use    | when n<50)     | 3357  |
| 00         |     |           |               |                 | ,             |                |               |               |         |          |                | ,              |       |
| 67         |     |           |               | Est             | imates of G   | amma Paran     | neters usina  | KM Estimat    | es      |          |                |                |       |
| 68         |     |           |               |                 | Mean (KM)     | 1537           |               |               |         |          |                | SD (KM)        | 1580  |
| 69         |     |           |               | Var             | riance (KM)   | 2496604        |               |               |         |          | SEO            | f Mean (KM)    | 305.8 |
| 70         |     |           |               | vai             |               | 0.047          |               |               |         |          | 52.0           |                | 0.010 |
| 71         |     |           |               |                 |               | 0.947          |               |               |         |          |                |                | 0.019 |
| 72         |     |           |               | ۲<br>۱          |               | 32.18          |               |               |         |          |                |                | 27.84 |
| 73         |     |           |               | the             | ta hat (KM)   | 1624           |               |               |         |          | the            | eta star (KM)  | 18/8  |
| 74         |     |           | 80%           | amma perc       | entile (KM)   | 2509           |               |               |         | 90%      | 6 gamma per    | rcentile (KM)  | 3717  |
| 75         |     |           | 95%           | amma perc       | entile (KM)   | 4945           |               |               |         | 99%      | 6 gamma per    | centile (KM)   | 7841  |
| 76         |     |           |               |                 |               |                |               |               |         |          |                |                |       |
| 77         |     |           |               |                 | Gamm          | a Kaplan-Me    | eier (KM) Sta | atistics      |         |          |                |                |       |
| 78         |     | Арр       | proximate Chi | Square Valu     | e (27.84, α)  | 16.8           |               |               | Adjust  | ed Ch    | i Square Valı  | ue (27.84, β)  | 15.91 |
| 79         | 95% | Gamma App | proximate KN  | /I-UCL (use w   | hen n>=50)    | 2547           |               | 95% Gamm      | na Adju | isted K  | M-UCL (use     | when n<50)     | 2690  |
| 80         |     |           |               |                 |               |                |               |               |         |          |                |                |       |
| 81         |     |           |               | Log             | gnormal GO    | F Test on De   | etected Obse  | ervations On  | ly      |          |                |                |       |
| 82         |     |           | S             | hapiro Wilk Te  | est Statistic | 0.861          |               |               | Shap    | iro Wil  | k GOF Test     |                |       |
| 83         |     |           | 5% Sł         | napiro Wilk Cr  | itical Value  | 0.887          | De            | etected Data  | Not Lo  | ognorr   | nal at 5% Sig  | gnificance Le  | vel   |
| <u>8</u> 4 |     |           |               | Lilliefors Te   | est Statistic | 0.189          |               |               | Lilli   | iefors ( | GOF Test       |                |       |
| 04         |     |           | 5             | % Lilliefors Cr | itical Value  | 0.213          | Det           | ected Data a  | ppear   | Logno    | rmal at 5% S   | Significance L | evel  |
| 00         |     |           |               | Detected Dat    | ta appear A   | pproximate L   | .ognormal at  | t 5% Signific | ance L  | .evel    |                | -              |       |
| 00         |     |           |               |                 |               |                | -             | J             |         | -        |                |                |       |
| 8/         |     |           |               | 1 00            | normal RO     | S Statistics I | lsing Impute  | d Non-Deter   | ts      |          |                |                |       |
| 88         |     |           |               | Mean in Ori     | ninal Scale   | 1537           | abaro         |               |         |          | Mean           | in Log Scale   | 5 951 |
| 89         |     |           |               | SD in Ori       | ainal Scale   | 1629           |               |               |         |          |                |                | 2 358 |
| 90         |     | 050/ +1   | ICI (assume   |                 |               | 222            |               |               |         | QE0/ 1   | Dercentilo Po  |                | 2182  |
| 91         |     | 95 % L C  |               |                 |               | 2221           |               |               |         | 30 /0 1  |                |                | 2100  |
| 92         |     |           | 5             |                 |               | 2200           |               |               |         |          | 90% B00        | istrap t UCL   | 2293  |
| 93         |     |           |               | ิ 9ว% H-UCL     | (LOG RUS)     | 122003         |               |               |         |          |                |                |       |
| 94         |     |           |               |                 |               |                |               |               |         |          |                |                |       |

|     | А          | В           | (       | С         | D         | )        | E             | F               | G             |            | Н       | I             |            | J       | K                | L      |
|-----|------------|-------------|---------|-----------|-----------|----------|---------------|-----------------|---------------|------------|---------|---------------|------------|---------|------------------|--------|
| 95  |            |             |         | Statis    | tics usi  | ing KM   | A estimates   | on Logged D     | ata and As    | suming     | Logno   | rmal Distri   | bution     |         |                  |        |
| 96  |            |             |         |           | k         | KM Me    | ean (logged)  | 5.94            |               |            |         |               |            | K       | M Geo Mean       | 379.9  |
| 97  |            |             |         |           |           | KM       | SD (logged)   | 2.307           |               |            |         | 95%           | 6 Critical | H Val   | ue (KM-Log)      | 4.96   |
| 98  |            |             | KM S    | tandar    | rd Error  | r of Me  | ean (logged   | 0.578           |               |            |         |               | 95%        | H-UC    | CL (KM -Log)     | 94839  |
| 99  |            |             |         |           |           | KM       | SD (logged)   | 2.307           |               |            |         | 95%           | 6 Critical | H Val   | ue (KM-Log)      | 4.96   |
| 100 |            |             | KM S    | tandar    | rd Error  | r of Me  | ean (logged   | 0.578           |               |            |         |               |            |         |                  |        |
| 101 |            |             |         |           |           |          |               |                 |               |            |         |               |            |         |                  |        |
| 102 |            |             |         |           |           |          |               | DL/2 S          | tatistics     |            |         |               |            |         |                  |        |
| 103 |            |             |         | DL/2 N    | Vormal    |          |               |                 |               |            |         | DL/2 Log      | -Transfo   | rmed    |                  |        |
| 104 |            |             |         |           | Mear      | n in Or  | riginal Scale | 1537            |               |            |         |               |            | Mean    | in Log Scale     | 5.899  |
| 105 |            |             |         |           | SD        | D in Or  | riginal Scale | 1629            |               |            |         |               |            | SD      | in Log Scale     | 2.455  |
| 106 |            |             | 9       | 15% t U   | JCL (As   | ssume    | es normality  | 2227            |               |            |         |               |            | 95%     | H-Stat UCL       | 185150 |
| 107 |            |             |         | DL/2 i    | s not a   | recon    | nmended m     | ethod, provid   | ed for com    | parison    | s and I | nistorical re | easons     |         |                  |        |
| 108 |            |             |         |           |           |          |               |                 |               |            |         |               |            |         |                  |        |
| 109 |            |             |         |           |           |          | Nonparam      | etric Distribut | ion Free U    | CL Stati   | stics   |               |            |         |                  |        |
| 110 |            |             |         | Det       | lected [  | Data a   | ppear Appr    | oximate Norr    | nal Distribu  | ited at 5  | % Sigi  | nificance L   | evel       |         |                  |        |
| 111 |            |             |         |           |           |          |               |                 |               |            |         |               |            |         |                  |        |
| 112 |            |             |         |           |           |          |               | Suggested       | UCL to Use    | e          |         |               |            |         |                  |        |
| 113 |            |             |         |           |           | 95%      | KM (t) UCL    | 2228            |               |            |         |               |            |         |                  |        |
| 114 |            |             |         |           |           |          |               |                 |               |            |         |               |            |         |                  |        |
| 115 |            |             | Wh      | ien a d   | lata set  | t follov | vs an appro   | kimate (e.g.,   | normal) dis   | stribution | n pass  | ing one of    | the GOF    | test    |                  |        |
| 116 |            | When app    | licable | , it is s | uggest    | ted to   | use a UCL I   | based upon a    | distributio   | n (e.g.,   | gamma   | a) passing    | both GO    | F test  | s in ProUCL      |        |
| 117 |            |             |         |           |           |          |               |                 |               |            |         |               |            |         |                  |        |
| 118 |            | Note: Sugge | stions  | regard    | ling the  | selec    | tion of a 95  | % UCL are p     | rovided to h  | help the   | user to | o select the  | e most ap  | propr   | iate 95% UC      | .L.    |
| 119 |            | -           |         | н<br>:-   | (ecomn    | nenda    | tions are ba  | sed upon da     | ta size, dat  | a distrib  | ution,  | and skewr     | ness.      |         | (0000)           |        |
| 120 |            | These recor | mmeno   | Jations   | are ba    | ased u   | ipon the res  | ults of the sir | nulation stu  | udies su   | mmari   | zed in Sing   | gn, Maicr  | ile, an | d Lee (2006)     | I-<br> |
| 121 | HC         | wever, simu | lations | result    | s will no | ot cov   | er all Real V | Vorid data se   | ets; for addi | tional in  | sight t | ne user ma    | ay want to | o cons  | sult a statistic | lan.   |
| 122 |            |             |         |           |           |          |               |                 |               |            |         |               |            |         |                  |        |
| 123 | C10 C26 A  | inhotion    |         |           |           |          |               |                 |               |            |         |               |            |         |                  |        |
| 124 | C 19-C30 A | ipnaucs     |         |           |           |          |               |                 |               |            |         |               |            |         |                  |        |
| 125 |            |             |         |           |           |          |               | General         | Statistics    |            |         |               |            |         |                  |        |
| 126 |            |             |         | Total     | Numbe     | er of O  | beenvations   | 17              | Statistics    |            |         | Numh          | oer of Dis | tinct ( | beenvations      | 17     |
| 127 |            |             |         | Total     | Numbe     |          |               |                 |               |            |         | Numh          | or of Mis  |         |                  | 0      |
| 128 |            |             |         |           |           |          | Minimum       | 32              |               |            |         | Nume          |            | Sing c  | Mean             | 3132   |
| 129 |            |             |         |           |           |          | Maximum       | 9110            |               |            |         |               |            |         | Median           | 2740   |
| 130 |            |             |         |           |           |          | SC            | 2968            |               |            |         |               |            | Std F   | rror of Mean     | 719.8  |
| 131 |            |             |         |           | Coef      | ficient  | of Variation  | 0.948           |               |            |         |               |            |         | Skownoss         | 0.428  |
| 132 |            |             |         |           |           | ncient   |               | 0.040           |               |            |         |               |            |         | OKCWIIC33        | 0.420  |
| 133 |            |             |         |           |           |          |               | Normal (        | SOF Test      |            |         |               |            |         |                  |        |
| 134 |            |             |         | S         | haniro '  | Wilk T   | est Statistic | 0.875           |               |            |         | Shaniro V     | Wilk GOE   | Test    |                  |        |
| 135 |            |             |         | 5% Sł     | haniro \  | Wilk C   | citical Value | 0.892           |               | П          | ata No  | t Normal a    | at 5% Sig  | nificar | nce l evel       |        |
| 136 |            |             |         | 0,001     | illie     | efors T  | est Statistic | 0.206           |               |            |         |               | s GOF T    | est     |                  |        |
| 137 |            |             |         | 5         |           | fors C   | ritical Value | 0.207           |               | Dat        | a anne  | ear Norma     | l at 5% S  | ianific | ance Level       |        |
| 138 |            |             |         |           |           | Data     | appear Ann    | roximate No     | mal at 5%     | Signific   | ancel   | evel          |            | .90     |                  |        |
| 139 |            |             |         |           |           |          |               |                 |               | 2.9.110    |         |               |            |         |                  |        |
| 140 |            |             |         |           |           |          | Δ             | sumina Nor      | nal Distrib   | Ition      |         |               |            |         |                  |        |
| 141 |            |             |         |           |           |          | A:            |                 |               |            |         |               |            |         |                  |        |

|     | А | В           | С          | D              | E               | F              | G               | Н           |               | J               | K             | L          |
|-----|---|-------------|------------|----------------|-----------------|----------------|-----------------|-------------|---------------|-----------------|---------------|------------|
| 142 |   |             | 95% No     | rmal UCL       |                 |                |                 | 95%         | UCLs (Adju    | sted for Skev   | vness)        |            |
| 143 |   |             |            | 95% Stu        | dent's-t UCL    | 4389           |                 |             | 95% Adjuste   | ed-CLT UCL      | (Chen-1995)   | 4396       |
| 144 |   |             |            |                |                 |                |                 |             | 95% Modifi    | ed-t UCL (Jo    | hnson-1978)   | 4401       |
| 145 |   |             |            |                |                 | 0              |                 |             |               |                 |               |            |
| 146 |   |             |            |                | Foot Statistic  |                |                 | Ando        | mon Dorling   | Commo CO        | E Toot        |            |
| 147 |   |             |            | A-D            |                 | 0.89           |                 |             | ma Distribu   | tod at 5% Sig   |               | vol        |
| 148 |   |             |            | 5% A-D C       | Fost Statistic  | 0.79           |                 |             |               | v Gamma G       |               |            |
| 149 |   |             |            | 5% K-S (       | Critical Value  | 0.191          | Detecter        | d data anne | ar Gamma D    | istributed at P | 5% Significan | nce l evel |
| 150 | - |             |            | Detected da    | nta follow Apr  | or. Gamma D    | )istribution at | 5% Signific | ance Level    |                 |               |            |
| 151 |   |             |            |                |                 |                |                 |             |               |                 |               |            |
| 152 |   |             |            |                |                 | Gamma          | Statistics      |             |               |                 |               |            |
| 153 |   |             |            |                | k hat (MLE)     | 0.588          |                 |             | k             | star (bias cor  | rected MLE)   | 0.523      |
| 154 |   |             |            | The            | ta hat (MLE)    | 5326           |                 |             | Theta         | star (bias cor  | rected MLE)   | 5983       |
| 155 |   |             |            | r              | nu hat (MLE)    | 19.99          |                 |             |               | nu star (bia    | as corrected) | 17.8       |
| 150 |   |             | ML         | E Mean (bia    | as corrected)   | 3132           |                 |             |               | MLE Sd (bia     | as corrected) | 4329       |
| 157 |   |             |            |                |                 |                |                 |             | Approximate   | e Chi Square    | Value (0.05)  | 9.246      |
| 150 |   |             | Adjus      | ted Level of   | Significance    | 0.0346         |                 |             | A             | djusted Chi S   | quare Value   | 8.605      |
| 160 |   |             |            |                |                 |                |                 |             |               |                 |               |            |
| 161 |   |             |            |                | As              | suming Gam     | ma Distributi   | ion         |               |                 |               |            |
| 162 | 9 | 5% Approxir | nate Gamma | UCL (use w     | /hen n>=50))    | 6029           |                 | 95% Ac      | ljusted Gam   | ma UCL (use     | when n<50)    | 6478       |
| 163 |   |             |            |                |                 |                |                 |             |               |                 |               |            |
| 164 |   |             |            |                |                 | Lognorma       | GOF Test        |             |               |                 |               |            |
| 165 |   |             | SI         | hapiro Wilk 1  | Fest Statistic  | 0.855          |                 | Sha         | oiro Wilk Log | normal GOF      | Test          |            |
| 166 |   |             | 5% Sł      | napiro Wilk C  | Critical Value  | 0.892          |                 | Data Not    | Lognormal a   | t 5% Signific   | ance Level    |            |
| 167 |   |             |            | Lilliefors     | Fest Statistic  | 0.211          |                 | Lil         | liefors Logno | ormal GOF Te    | est           |            |
| 168 |   |             | 59         | % Lilliefors C | Critical Value  | 0.207          |                 | Data Not    | Lognormal a   | t 5% Signific   | ance Level    |            |
| 169 |   |             |            |                | Data Not L      | ognormal at    | 5% Significa    | nce Level   |               |                 |               |            |
| 170 |   |             |            |                |                 |                |                 |             |               |                 |               |            |
| 171 |   |             |            |                |                 | Lognorma       | I Statistics    |             |               |                 |               |            |
| 172 |   |             | Γ          | Vinimum of I   | Logged Data     | 3.466          |                 |             |               | Mean of         | logged Data   | 6.996      |
| 173 |   |             | N          | laximum of I   | _ogged Data     | 9.117          |                 |             |               | SD of           | logged Data   | 1.952      |
| 174 |   |             |            |                |                 |                |                 |             |               |                 |               |            |
| 175 |   |             |            |                | Assu            | uming Logno    | rmal Distribu   | ition       |               |                 |               |            |
| 176 |   |             |            |                | 95% H-UCL       | 59810          |                 |             | 90%           | Chebyshev (     | MVUE) UCL     | 15232      |
| 177 |   |             | 95% (      | Chebyshev (    | MVUE) UCL       | 19562          |                 |             | 97.5%         | Chebyshev (     | MVUE) UCL     | 25573      |
| 178 |   |             | 99% (      | Chebyshev (    | MVUE) UCL       | 37380          |                 |             |               |                 |               |            |
| 179 |   |             |            |                | N               |                |                 | 0           |               |                 |               |            |
| 180 |   |             |            | D-4            | Nonparame       | tric Distribut |                 |             |               |                 |               |            |
| 181 |   |             |            | Data appea     | r to follow a L | Discernidie L  | vistribution at | 5% Signific | ance Level    |                 |               |            |
| 182 |   |             |            |                | Nonne           | ametric Dict   | ribution Erco   |             |               |                 |               |            |
| 183 |   |             |            | 05             |                 |                |                 | UULS        |               | 05% 10          |               | 1380       |
| 184 |   |             | 05%        | Standard Pr    |                 | 4285           |                 |             |               | 90 % Ja         | tetran_t LICL | 4303       |
| 185 |   |             | % CE       |                |                 | 4200           |                 |             | 05%           | 90 /0 D00       |               | 4430       |
| 186 |   |             |            |                |                 | 4331           |                 |             | 30%           |                 | Joisuap UCL   | 4520       |
| 187 |   |             | ۵۵۵/ Ch    |                |                 | 5201           |                 |             |               |                 |               | 6270       |
| 188 |   |             | 90% CN     | enysitev(IVIe  | an, Su) UCL     | 5291           |                 |             | 95% U         | iebysnev(ivie   | an, su) UCL   | 0270       |

|     | А         | В           | С                | D               | E             | F               | G               | Н              |               | J                | K               | L     |
|-----|-----------|-------------|------------------|-----------------|---------------|-----------------|-----------------|----------------|---------------|------------------|-----------------|-------|
| 189 |           |             | 97.5% Ch         | ebyshev(Mea     | an, Sd) UCL   | 7627            |                 |                | 99% C         | hebyshev(Me      | an, Sd) UCL     | 10294 |
| 190 |           |             |                  |                 |               |                 |                 |                |               |                  |                 |       |
| 191 |           |             |                  |                 |               | Suggested       | UCL to Use      |                |               |                  |                 |       |
| 192 |           |             |                  | 95% Stuc        | lent's-t UCL  | 4389            |                 |                |               |                  |                 |       |
| 193 |           |             |                  |                 |               | L               | L               |                |               |                  |                 |       |
| 194 |           |             | When a d         | ata set follow  | s an approx   | timate (e.g., i | normal) distr   | ibution passi  | ing one of th | e GOF test       |                 |       |
| 195 |           | When app    | licable, it is s | uggested to u   | use a UCL b   | ased upon a     | distribution    | (e.g., gamma   | a) passing b  | oth GOF tests    | s in ProUCL     |       |
| 196 |           |             |                  |                 |               |                 |                 |                |               |                  |                 |       |
| 197 |           | Note: Sugge | stions regard    | ing the select  | tion of a 95% | 6 UCL are pr    | ovided to he    | Ip the user to | o select the  | most appropri    | ate 95% UC      | L.    |
| 198 |           |             | R                | ecommenda       | tions are ba  | sed upon dat    | a size, data    | distribution,  | and skewne    | ess.             |                 |       |
| 199 |           | These recor | mmendations      | are based u     | pon the resu  | Its of the sim  | nulation stud   | ies summari    | zed in Singl  | n, Maichle, an   | d Lee (2006)    |       |
| 200 | Ho        | wever, simu | lations result   | s will not cove | er all Real V | /orld data se   | ts; for additio | onal insight t | he user may   | want to cons     | ult a statistic | ian.  |
| 201 |           |             |                  |                 |               |                 |                 |                |               |                  |                 |       |
| 202 |           |             |                  |                 |               |                 |                 |                |               |                  |                 |       |
| 203 | C11-C22 A | romatics    |                  |                 |               |                 |                 |                |               |                  |                 |       |
| 204 |           |             |                  |                 |               |                 |                 |                |               |                  |                 |       |
| 205 |           |             |                  |                 |               | General         | Statistics      |                |               |                  |                 |       |
| 206 |           |             | Total            | Number of O     | bservations   | 17              |                 |                | Numbe         | er of Distinct C | bservations)    | 17    |
| 207 |           |             |                  |                 |               |                 |                 |                | Numbe         | er of Missing C  | bservations)    | 0     |
| 208 |           |             |                  |                 | Minimum       | 18.5            |                 |                |               |                  | Mean            | 3798  |
| 209 |           |             |                  |                 | Maximum       | 9070            |                 |                |               |                  | Median          | 2875  |
| 210 |           |             |                  |                 | SD            | 3482            |                 |                |               | Std. E           | rror of Mean    | 844.6 |
| 211 |           |             |                  | Coefficient     | of Variation  | 0.917           |                 |                |               |                  | Skewness        | 0.199 |
| 212 |           |             |                  |                 |               | <u> </u>        | <u> </u>        |                |               |                  |                 |       |
| 213 |           |             |                  |                 |               | Normal G        | GOF Test        |                |               |                  |                 |       |
| 214 |           |             | SI               | napiro Wilk T   | est Statistic | 0.844           |                 |                | Shapiro W     | ilk GOF Test     |                 |       |
| 215 |           |             | 5% Sh            | apiro Wilk C    | ritical Value | 0.892           |                 | Data No        | t Normal at   | 5% Significar    | ice Level       |       |
| 216 |           |             |                  | Lilliefors T    | est Statistic | 0.219           |                 |                | Lilliefors    | GOF Test         |                 |       |
| 217 |           |             | 59               | % Lilliefors C  | ritical Value | 0.207           |                 | Data No        | ot Normal at  | 5% Significar    | ice Level       |       |
| 218 |           |             |                  |                 | Data Not      | Normal at 5     | % Significan    | ce Level       |               |                  |                 |       |
| 219 |           |             |                  |                 |               |                 |                 |                |               |                  |                 |       |
| 220 |           |             |                  |                 | As            | suming Norn     | nal Distributi  | on             |               |                  |                 |       |
| 221 |           |             | 95% No           | rmal UCL        |               |                 |                 | 95%            | UCLs (Adju    | isted for Skew   | /ness)          |       |
| 222 |           |             |                  | 95% Stuc        | dent's-t UCL  | 5273            |                 |                | 95% Adjust    | ed-CLT UCL (     | (Chen-1995)     | 5231  |
| 223 |           |             |                  |                 |               |                 |                 |                | 95% Modif     | ied-t UCL (Jol   | nnson-1978)     | 5279  |
| 224 |           |             |                  |                 |               | I               | 1               |                |               |                  |                 |       |
| 225 |           |             |                  |                 |               | Gamma (         | GOF Test        |                |               |                  |                 |       |
| 226 |           |             |                  | A-D T           | est Statistic | 0.915           |                 | Ander          | son-Darling   | Gamma GOF        | Test            |       |
| 227 |           |             |                  | 5% A-D C        | ritical Value | 0.789           | D               | ata Not Gam    | ıma Distribu  | ted at 5% Sig    | nificance Lev   | vel   |
| 228 |           |             |                  | K-S T           | est Statistic | 0.247           |                 | Kolmog         | orov-Smirne   | ov Gamma GO      | OF Test         |       |
| 229 |           |             |                  | 5% K-S C        | ritical Value | 0.219           | D               | ata Not Gam    | ıma Distribu  | ted at 5% Sig    | nificance Lev   | vel   |
| 230 |           |             |                  | Dat             | ta Not Gamr   | na Distribute   | d at 5% Sigr    | nificance Lev  | el            |                  |                 |       |
| 231 |           |             |                  |                 |               |                 |                 |                |               |                  |                 |       |
| 232 |           |             |                  |                 |               | Gamma           | Statistics      |                |               |                  |                 |       |
| 233 |           |             |                  |                 | k hat (MLE)   | 0.6             |                 |                | k             | star (bias cor   | rected MLE)     | 0.533 |
| 234 |           |             |                  | Thet            | a hat (MLE)   | 6331            |                 |                | Theta         | star (bias cor   | rected MLE)     | 7122  |
| 235 |           |             |                  | n               | u hat (MLE)   | 20.4            |                 |                |               | nu star (bia     | s corrected)    | 18.13 |
| I   |           |             |                  |                 |               |                 |                 |                |               |                  |                 | ,     |

|     | А  | В            | С              | D               | E             | F               | G               | Н              |           |              | J             | K               | L     |
|-----|----|--------------|----------------|-----------------|---------------|-----------------|-----------------|----------------|-----------|--------------|---------------|-----------------|-------|
| 236 |    |              | Μ              | LE Mean (bia    | s corrected)  | 3798            |                 |                |           |              | MLE Sd (bia   | as corrected)   | 5201  |
| 237 |    |              |                |                 |               |                 |                 |                | Approx    | imate        | Chi Square    | Value (0.05)    | 9.486 |
| 238 |    |              | Adjus          | sted Level of   | Significance  | 0.0346          |                 |                |           | Ac           | ljusted Chi S | quare Value     | 8.835 |
| 239 |    |              |                |                 |               |                 |                 |                |           |              |               |                 |       |
| 240 |    |              |                |                 | As            | suming Gam      | ma Distributi   | ion            |           |              |               |                 |       |
| 241 | ç  | 95% Approxir | mate Gamma     | a UCL (use w    | hen n>=50))   | 7260            |                 | 95% Ad         | djusted   | Gamr         | na UCL (use   | when n<50)      | 7794  |
| 242 |    |              |                |                 |               |                 |                 |                |           |              |               |                 |       |
| 243 |    |              | -              |                 | -             | Lognormal       | GOF Test        | -              |           |              |               |                 |       |
| 244 |    |              | S              | hapiro Wilk T   | est Statistic | 0.857           |                 | Sha            | piro Will | k Log        | normal GOF    | Test            |       |
| 245 |    |              | 5% S           | hapiro Wilk C   | ritical Value | 0.892           |                 | Data Not       | Lognor    | mal a        | t 5% Signific | ance Level      |       |
| 246 |    |              | -              |                 | est Statistic | 0.238           |                 |                | liefors L | _ogno        | TIMAL GOF TO  | est             |       |
| 247 |    |              | 5              | % Lilliefors C  | ritical Value | 0.207           | F0( 0)          | Data Not       | Lognor    | mal a        | t 5% Signific | ance Level      |       |
| 248 |    |              |                |                 | Data Not L    | .ognormal at    | 5% Significa    | ince Level     |           |              |               |                 |       |
| 249 |    |              |                |                 |               | Lognormo        | Ctatiatica      |                |           |              |               |                 |       |
| 250 |    |              |                | Minimum of L    | agged Data    |                 | I Statistics    |                |           |              | Moon of       | logged Data     | 7 010 |
| 251 |    |              | Ν              |                 |               | 0.112           |                 |                |           |              |               | logged Data     | 1.072 |
| 252 |    |              | I              |                 | .oggeu Dala   | 9.115           |                 |                |           |              | 30 01         | logged Data     | 1.972 |
| 253 |    |              |                |                 | Δεει          | umina Loano     | rmal Distribu   | ition          |           |              |               |                 |       |
| 254 |    |              |                |                 |               |                 |                 |                |           | ۵۵%          | Chebyshey (   |                 | 19640 |
| 255 |    |              | 95%            | Chebyshev (I    |               | 25245           |                 |                | 97        | 90 %<br>7 5% | Chebyshev (   |                 | 33025 |
| 256 |    |              | 99%            | Chebyshev (I    |               | 48307           |                 |                |           | 7.070        | Chebyshev (   |                 | 55025 |
| 257 |    |              | 5570           | Chebyshev (i    | WV0L) 00L     | 40007           |                 |                |           |              |               |                 | ι     |
| 258 |    |              |                |                 | Nonparame     | etric Distribut | ion Free UCI    | Statistics     |           |              |               |                 |       |
| 259 |    |              |                |                 | Data do not f | ollow a Disce   | ernible Distril | oution (0.05)  | )         |              |               |                 |       |
| 200 |    |              |                |                 |               |                 |                 |                |           |              |               |                 |       |
| 201 |    |              |                |                 | Nonpa         | rametric Dist   | ribution Free   | UCLs           |           |              |               |                 |       |
| 263 |    |              |                | 95              | % CLT UCL     | 5187            |                 |                |           |              | 95% Ja        | ckknife UCL     | 5273  |
| 264 |    |              | 95%            | Standard Bo     | otstrap UCL   | 5184            |                 |                |           |              | 95% Boo       | otstrap-t UCL   | 5319  |
| 265 |    |              | g              | 5% Hall's Bo    | otstrap UCL   | 5088            |                 |                | 9         | 95% I        | Percentile Bo | ootstrap UCL    | 5145  |
| 266 |    |              |                | 95% BCA Bo      | otstrap UCL   | 5130            |                 |                |           |              |               |                 |       |
| 267 |    |              | 90% Cł         | ebyshev(Me      | an, Sd) UCL   | 6332            |                 |                | 95        | 5% Ch        | ebyshev(Me    | an, Sd) UCL     | 7479  |
| 268 |    |              | 97.5% Cł       | ebyshev(Me      | an, Sd) UCL   | 9072            |                 |                | 99        | % Ch         | ebyshev(Me    | an, Sd) UCL     | 12202 |
| 269 |    |              |                |                 |               | 1               | 1               |                |           |              |               |                 |       |
| 270 |    |              |                |                 |               | Suggested       | UCL to Use      |                |           |              |               |                 |       |
| 271 |    |              | 99% Ch         | ebyshev (Mea    | an, Sd) UCL   | 12202           |                 |                |           |              |               |                 |       |
| 272 |    |              |                |                 |               |                 |                 |                |           |              |               |                 |       |
| 273 |    |              |                | Rec             | commended     | UCL exceed      | s the maxim     | um observat    | tion      |              |               |                 |       |
| 274 |    |              |                |                 |               |                 |                 |                |           |              |               |                 |       |
| 275 |    | Note: Sugge  | stions regard  | ling the selec  | tion of a 95% | % UCL are pr    | ovided to he    | lp the user t  | o select  | t the r      | nost appropr  | iate 95% UC     | L     |
| 276 |    |              | F              | Recommenda      | tions are ba  | sed upon dat    | ta size, data   | distribution,  | and ske   | ewnes        | SS.           |                 |       |
| 277 |    | These recor  | mmendation     | s are based u   | pon the resi  | ults of the sin | nulation stud   | ies summari    | ized in S | Singh        | , Maichle, an | d Lee (2006)    |       |
| 278 | Ho | wever, simu  | lations result | ts will not cov | er all Real V | Vorld data se   | ts; for additio | onal insight t | he user   | r may        | want to cons  | ult a statistic | ian.  |
| 279 |    |              |                |                 |               |                 |                 |                |           |              |               |                 |       |

**APPENDIX F-3** 

TRENCH AIR MODELING

|                        |          |                    |                    | Henry's Law             | Henry's Law     | Normal   | Enthalpy of       |          |          | Enthalpy of       |                | Henry's Law             |                           |                                                 |
|------------------------|----------|--------------------|--------------------|-------------------------|-----------------|----------|-------------------|----------|----------|-------------------|----------------|-------------------------|---------------------------|-------------------------------------------------|
|                        |          | Soil               | Soil               | Constant                | Reference       | Boiling  | vaporization      | Critical |          | vaporization      | Gas            | Constant                | Gas                       | Henry's Law                                     |
|                        | Soil EPC | Temp.              | Temp.              | at ref. temp.           | Temp.           | Point    | at T <sub>S</sub> | Temp.    | constant | at T <sub>S</sub> | Constant       | at T <sub>S</sub>       | Constant                  | Constant                                        |
|                        | $C_R$    | Ts                 | T's                | H <sub>R</sub>          | $T_R$           | $T_B$    | $\Delta H_{v,B}$  | $T_{C}$  | n        | $\Delta H_{v,TS}$ | R <sub>c</sub> | H <sub>TS</sub>         | R                         | H' <sub>TS</sub>                                |
| Units:                 | µg/kg    | °C                 | Κ                  | atm-m <sup>3</sup> /mol | K               | Κ        | cal/mol           | Κ        | unitless | cal/mol           | cal/mol-K      | atm-m <sup>3</sup> /mol | m <sup>3</sup> -atm/mol-K | unitless                                        |
| Formula:               | Input    | (10 for screening) | $(T_{s} + 273.15)$ | lookup                  | (lookup+273.15) | lookup   | lookup            | lookup   | (Note 7) | (Note 8)          |                | (Note 9)                |                           | $\mathrm{H_{TS}}/(\mathrm{R}\ast\mathrm{T'_S})$ |
| Analyte                |          |                    |                    |                         |                 |          |                   |          |          |                   |                |                         |                           |                                                 |
| On-Property Soil (0-15 | ' bgs)   |                    |                    |                         |                 |          |                   |          |          |                   |                |                         |                           |                                                 |
| C9-C10 Aromatics       | 1.40E+05 | 1.00E+01           | 2.83E+02           | 7.92E-03                | 2.98E+02        | NA       | NA                | NA       | NA       | NA                | 1.99E+00       | 7.92E-03                | 8.21E-05                  | 3.41E-01                                        |
| C9-C12 Aliphatics      | 1.63E+05 | 1.00E+01           | 2.83E+02           | 1.56E+00                | 2.98E+02        | NA       | NA                | NA       | NA       | NA                | 1.99E+00       | 1.56E+00                | 8.21E-05                  | 6.71E+01                                        |
| C9-C18 Aliphatics      | 4.57E+06 | 1.00E+01           | 2.83E+02           | 1.66E+00                | 2.98E+02        | NA       | NA                | NA       | NA       | NA                | 1.99E+00       | 1.66E+00                | 8.21E-05                  | 7.13E+01                                        |
| C11-C22 Aromatics      | 9.07E+06 | 1.00E+01           | 2.83E+02           | 7.20E-04                | 2.98E+02        | NA       | NA                | NA       | NA       | NA                | 1.99E+00       | 7.20E-04                | 8.21E-05                  | 3.10E-02                                        |
| Naphthalene            | 1.18E+04 | 1.00E+01           | 2.83E+02           | 4.83E-04                | 2.98E+02        | 4.91E+02 | 1.04E+04          | 7.48E+02 | 3.70E-01 | 1.29E+04          | 1.99E+00       | 1.52E-04                | 8.21E-05                  | 6.55E-03                                        |
| 2-Methylnaphthalene    | 4.52E+04 | 1.00E+01           | 2.83E+02           | 4.99E-04                | 2.98E+02        | 5.14E+02 | 1.08E+04          | 7.61E+02 | 3.84E-01 | 1.40E+04          | 1.99E+00       | 1.43E-04                | 8.21E-05                  | 6.17E-03                                        |
| Phenanthrene           | 8.97E+03 | 1.00E+01           | 2.83E+02           | 3.93E-05                | 2.98E+02        | 6.13E+02 | 1.31E+04          | 8.69E+02 | 4.06E-01 | 1.84E+04          | 1.99E+00       | 7.58E-06                | 8.21E-05                  | 3.26E-04                                        |
|                        |          |                    |                    |                         |                 |          |                   |          |          |                   |                |                         |                           |                                                 |

|                        | Conversion          | SCS soil type | Vadose zone soil  | Vadose zone                      | Organic carbon     | Vadose zone           | Soil-water         | Vadose zone                      | Vadose zone                      | e Conversion            |                     |
|------------------------|---------------------|---------------|-------------------|----------------------------------|--------------------|-----------------------|--------------------|----------------------------------|----------------------------------|-------------------------|---------------------|
|                        | Factor              | in            | dry bulk          | soil water-filled                | partition          | organic carbon        | partition          | soil total                       | soil air-filled                  | l Factor                | Source              |
|                        | $\mu g/kg$ to $g/g$ | vadose zone   | density           | porosity                         | coefficient        | fraction              | coefficient        | porosity                         | porosity                         | $g/cm^3$ to $\mu g/m^3$ | Vapor Conc.         |
|                        | Conv01              | $ST_v$        | $\rho_b$          | $\theta_{w,v}$                   | K <sub>oc</sub>    | $f_{oc,v}$            | K <sub>d</sub>     | n <sub>v</sub>                   | $\theta_{a,v}$                   | Conv03                  | C <sub>source</sub> |
| Units:                 | µg/kg / g/g         | unitless      | g/cm <sup>3</sup> | cm <sup>3</sup> /cm <sup>3</sup> | cm <sup>3</sup> /g | unitless              | cm <sup>3</sup> /g | cm <sup>3</sup> /cm <sup>3</sup> | cm <sup>3</sup> /cm <sup>3</sup> | $g/cm^3$ / $\mu g/m^3$  | $\mu g/m^3$         |
| Formula                |                     | (Note 11)     | lookup            | lookup                           | lookup             | (0.002 for screening) | $K_{oc} * f_{oc}$  | lookup                           | $n_v - \theta_{w,v}$             |                         | (Note 21)           |
|                        |                     |               |                   |                                  |                    |                       |                    |                                  |                                  |                         |                     |
| On-Property Soil (0-15 | bgs)                |               |                   |                                  |                    |                       |                    |                                  |                                  |                         |                     |
| C9-C10 Aromatics       | 1.00E-09            | SCL           | 1.63E+00          | 1.46E-01                         | 1.78E+03           | 2.00E-03              | 3.56E+00           | 3.84E-01                         | 2.38E-01                         | 1.00E+12                | 1.29E+07            |
| C9-C12 Aliphatics      | 1.00E-09            | SCL           | 1.63E+00          | 1.46E-01                         | 1.50E+05           | 2.00E-03              | 3.00E+02           | 3.84E-01                         | 2.38E-01                         | 1.00E+12                | 3.53E+07            |
| C9-C18 Aliphatics      | 1.00E-09            | SCL           | 1.63E+00          | 1.46E-01                         | 6.80E+05           | 2.00E-03              | 1.36E+03           | 3.84E-01                         | 2.38E-01                         | 1.00E+12                | 2.38E+08            |
| C11-C22 Aromatics      | 1.00E-09            | SCL           | 1.63E+00          | 1.46E-01                         | 5.01E+03           | 2.00E-03              | 1.00E+01           | 3.84E-01                         | 2.38E-01                         | 1.00E+12                | 2.78E+07            |
| Naphthalene            | 1.00E-09            | SCL           | 1.63E+00          | 1.46E-01                         | 1.19E+03           | 2.00E-03              | 2.38E+00           | 3.84E-01                         | 2.38E-01                         | 1.00E+12                | 3.13E+04            |
| 2-Methylnaphthalene    | 1.00E-09            | SCL           | 1.63E+00          | 1.46E-01                         | 2.50E+03           | 2.00E-03              | 5.00E+00           | 3.84E-01                         | 2.38E-01                         | 1.00E+12                | 5.48E+04            |
| Phenanthrene           | 1.00E-09            | SCL           | 1.63E+00          | 1.46E-01                         | 1.40E+04           | 2.00E-03              | 2.80E+01           | 3.84E-01                         | 2.38E-01                         | 1.00E+12                | 1.04E+02            |
|                        |                     |               |                   |                                  |                    |                       |                    |                                  |                                  |                         |                     |

|                           | Depth below              | Depth below         | Source                          |                    |                    | Vadose zone           | Total Overall        | Area of         | Trench              | Pressure Diff.      | Vadose zone soil    | Conversion |
|---------------------------|--------------------------|---------------------|---------------------------------|--------------------|--------------------|-----------------------|----------------------|-----------------|---------------------|---------------------|---------------------|------------|
|                           | grade to bottom          | grade to            | Trench                          | Diffusivity        | Diffusivity        | Effective             | Effective            | Trench          | Ventilation         | between soil &      | saturated hydraulic | Factor     |
|                           | of trench                | contamination       | Separation                      | in air             | in water           | Diffusion Coeff.      | Diffusion Coeff.     | Below Grade     | Rate                | enclosed space      | conductivity        | hr to s    |
|                           | $L_{\rm F}$              | $L_t$               | L <sub>T</sub>                  | $D_a$              | $D_w$              | ${\rm D_v}^{\rm eff}$ | $D_{T}^{\text{eff}}$ | A <sub>B</sub>  | Q <sub>trench</sub> | $\Delta P$          | K <sub>s,v</sub>    | Conv02     |
| Units:                    | cm                       | cm                  | cm                              | cm <sup>2</sup> /s | cm <sup>2</sup> /s | cm <sup>2</sup> /s    | cm <sup>2</sup> /s   | cm <sup>2</sup> | cm <sup>3</sup> /s  | g/cm-s <sup>2</sup> | cm/hr               | s/hr       |
| Formula:                  | (120 (4') for screening) | (400 for screening) | L <sub>t</sub> - L <sub>F</sub> | lookup             | lookup             | (Note 13)             | (Note 4)             | (Note 2)        | (Note 22)           | (40 for screening)  | lookup              |            |
|                           |                          |                     |                                 |                    |                    |                       |                      |                 |                     |                     |                     |            |
| On-Property Soil (0-15' h | ogs)                     |                     |                                 |                    |                    |                       |                      |                 |                     |                     |                     |            |
| C9-C10 Aromatics          | 1.20E+02                 | 4.00E+02            | 2.80E+02                        | 7.00E-02           | 5.00E-06           | 3.99E-03              | 3.99E-03             | 3.29E+05        | 1.70E+05            | 4.00E+01            | 5.50E-01            | 3.60E+03   |
| C9-C12 Aliphatics         | 1.20E+02                 | 4.00E+02            | 2.80E+02                        | 7.00E-02           | 5.00E-06           | 3.99E-03              | 3.99E-03             | 3.29E+05        | 1.70E+05            | 4.00E+01            | 5.50E-01            | 3.60E+03   |
| C9-C18 Aliphatics         | 1.20E+02                 | 4.00E+02            | 2.80E+02                        | 7.00E-02           | 5.00E-06           | 3.99E-03              | 3.99E-03             | 3.29E+05        | 1.70E+05            | 4.00E+01            | 5.50E-01            | 3.60E+03   |
| C11-C22 Aromatics         | 1.20E+02                 | 4.00E+02            | 2.80E+02                        | 6.00E-02           | 5.00E-06           | 3.42E-03              | 3.42E-03             | 3.29E+05        | 1.70E+05            | 4.00E+01            | 5.50E-01            | 3.60E+03   |
| Naphthalene               | 1.20E+02                 | 4.00E+02            | 2.80E+02                        | 5.90E-02           | 7.50E-06           | 3.37E-03              | 3.37E-03             | 3.29E+05        | 1.70E+05            | 4.00E+01            | 5.50E-01            | 3.60E+03   |
| 2-Methylnaphthalene       | 1.20E+02                 | 4.00E+02            | 2.80E+02                        | 6.29E-02           | 7.20E-06           | 3.59E-03              | 3.59E-03             | 3.29E+05        | 1.70E+05            | 4.00E+01            | 5.50E-01            | 3.60E+03   |
| Phenanthrene              | 1.20E+02                 | 4.00E+02            | 2.80E+02                        | 3.33E-02           | 7.47E-06           | 2.15E-03              | 2.15E-03             | 3.29E+05        | 1.70E+05            | 4.00E+01            | 5.50E-01            | 3.60E+03   |
|                           |                          |                     |                                 |                    |                    |                       |                      |                 |                     |                     |                     |            |

|                        | Viscosity of  | Viscosity of  |                       | Acceleration      | n Vadose zone soil | Vadose zone                      | Vadose zone       | Vadose zone     | Vadose zone soil           | Vadose zone soil | Thickness of      |
|------------------------|---------------|---------------|-----------------------|-------------------|--------------------|----------------------------------|-------------------|-----------------|----------------------------|------------------|-------------------|
|                        | water at      | water at      | Density               | due to            | intrinsic          | residual soil                    | effective total   | van Genuchten   | relative air               | effective vapor  | soil between      |
|                        | $10^{\circ}C$ | system temp.  | of water              | gravity           | permeability       | water content                    | fluid saturation  | shape parameter | permeability               | permeability     | soilgas & trench  |
|                        | $\mu_{w-10}$  | $\mu_{\rm w}$ | $ ho_{w}$             | g                 | k <sub>i,v</sub>   | $\theta_{r,\nu}$                 | $\mathbf{S}_{te}$ | $M_{\rm v}$     | $\mathbf{k}_{\mathrm{rg}}$ | k <sub>v</sub>   | L <sub>soil</sub> |
| Units:                 | g/cm-s        | g/cm-s        | g/cm <sup>3</sup>     | cm/s <sup>2</sup> | cm <sup>2</sup>    | cm <sup>3</sup> /cm <sup>3</sup> | unitless          | unitless        | unitless                   | $cm^2$           | cm                |
| Formula:               |               | (Note 16)     | (0.999 for screening) |                   | (Note 17)          | lookup                           | (Note 18)         | lookup          | (Note 19)                  | (Note 20)        | (1 for screening) |
|                        |               |               |                       |                   |                    |                                  |                   |                 |                            |                  |                   |
| On-Property Soil (0-15 | bgs)          |               |                       |                   |                    |                                  |                   |                 |                            |                  |                   |
| C9-C10 Aromatics       | 1.31E-02      | 1.31E-02      | 9.99E-01              | 9.81E+02          | 2.04E-09           | 6.30E-02                         | 2.59E-01          | 2.48E-01        | 8.59E-01                   | 1.75E-09         | 1.00E+00          |
| C9-C12 Aliphatics      | 1.31E-02      | 1.31E-02      | 9.99E-01              | 9.81E+02          | 2.04E-09           | 6.30E-02                         | 2.59E-01          | 2.48E-01        | 8.59E-01                   | 1.75E-09         | 1.00E+00          |
| C9-C18 Aliphatics      | 1.31E-02      | 1.31E-02      | 9.99E-01              | 9.81E+02          | 2.04E-09           | 6.30E-02                         | 2.59E-01          | 2.48E-01        | 8.59E-01                   | 1.75E-09         | 1.00E+00          |
| C11-C22 Aromatics      | 1.31E-02      | 1.31E-02      | 9.99E-01              | 9.81E+02          | 2.04E-09           | 6.30E-02                         | 2.59E-01          | 2.48E-01        | 8.59E-01                   | 1.75E-09         | 1.00E+00          |
| Naphthalene            | 1.31E-02      | 1.31E-02      | 9.99E-01              | 9.81E+02          | 2.04E-09           | 6.30E-02                         | 2.59E-01          | 2.48E-01        | 8.59E-01                   | 1.75E-09         | 1.00E+00          |
| 2-Methylnaphthalene    | 1.31E-02      | 1.31E-02      | 9.99E-01              | 9.81E+02          | 2.04E-09           | 6.30E-02                         | 2.59E-01          | 2.48E-01        | 8.59E-01                   | 1.75E-09         | 1.00E+00          |
| Phenanthrene           | 1.31E-02      | 1.31E-02      | 9.99E-01              | 9.81E+02          | 2.04E-09           | 6.30E-02                         | 2.59E-01          | 2.48E-01        | 8.59E-01                   | 1.75E-09         | 1.00E+00          |
|                        |               |               |                       |                   |                    |                                  |                   |                 |                            |                  |                   |

|                         | Vapor                    | Avg. Vapor         |                    | Infinite              |
|-------------------------|--------------------------|--------------------|--------------------|-----------------------|
|                         | viscosity at             | Flow Rate          | Infinite Source    | Source                |
|                         | avg. soil temp.          | Into trench        | Attenuation Coeff. | Trench Conc.          |
|                         | $\mu_{TS}$               | Q <sub>soil</sub>  | α                  | C <sub>trench</sub>   |
| Units:                  | g/cm-s                   | cm <sup>3</sup> /s | unitless           | $\mu g/m^3$           |
| Formula:                | 0.00018*(T's/298.15)^0.5 | (Note 5)           | (Note 6)           | $C_{source} * \alpha$ |
|                         |                          |                    |                    |                       |
| On-Property Soil (0-15' | bgs)                     |                    |                    |                       |
| C9-C10 Aromatics        | 1.75E-04                 | 3.99E-04           | 2.35E-09           | 3.04E-02              |
| C9-C12 Aliphatics       | 1.75E-04                 | 3.99E-04           | 2.35E-09           | 8.30E-02              |
| C9-C18 Aliphatics       | 1.75E-04                 | 3.99E-04           | 2.35E-09           | 5.59E-01              |
| C11-C22 Aromatics       | 1.75E-04                 | 3.99E-04           | 2.35E-09           | 6.53E-02              |
| Naphthalene             | 1.75E-04                 | 3.99E-04           | 2.35E-09           | 7.36E-05              |
| 2-Methylnaphthalene     | 1.75E-04                 | 3.99E-04           | 2.35E-09           | 1.29E-04              |
| Phenanthrene            | 1.75E-04                 | 3.99E-04           | 2.35E-09           | 2.45E-07              |
|                         |                          |                    |                    |                       |

#### Notes:

- Reference: User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings, USEPA, June 19, 2003.
- (1) Purposely left blank
- (2) For screening, assume a trench 4 ft deep, 3 ft wide, and 30 ft long.
- (3) Purposely left blank

(4)  $D_T^{eff} = L_T / (L_T / D_v^{eff})$ 

(7) A function of the ratio  $T_{\rm B}/T_{\rm C}$ :

(5)  $Q_{soil} = \Delta P^* k_v * L_{soil}) / \mu_{TS}$ ; not from above reference

(6)  $\alpha = [D_T^{\text{eff}} A_B / (Q_{\text{trench}} * L_T)] / [(D_T^{\text{eff}} A_B / (Q_{\text{soil}} * L_T)) + 1]; \text{ assumes no resistance (Peclet number is infinite)}$ 

| $T_{\rm B}/T_{\rm C}$ | <u>n</u>              |
|-----------------------|-----------------------|
| < 0.57                | 0.30                  |
| 0.57-0.71             | $0.74(T_B/T_C)-0.116$ |
| >0.71                 | 0.41                  |

If values are not available for calculation, result is NA.

(8)  $\Delta H_{v,TS} = \Delta H_{v,PS} * [(1-T_S/T_C)/(1-T_B/T_C)]^n$ ; if values are not available for calculation, result is NA.

(9)  $H_{TS} = EXP[-\Delta H_{v_{vTS}}/R_c^*(1/T_S-1/T_R)]^*H_R$ ; if values are not available for calculation, result assumed to be  $H_R$ 

(10) Purposely left blank

(11) Refer to 12 SCS soil types - if no site-specific information is available, use SCL for screening.

(12) Purposely left blank

(13)  $D_v^{eff} = D_a^*(\theta_{a,v}^{3.33}/n_v^2) + (D_w/H'_{TS})(\theta_{w,v}^{3.33}/n_v^2)$ 

(14) Purposely left blank

(15) Purposely left blank

- (16)  $\mu_{\rm w} = \mu_{\rm w-10} * (T'_{\rm S} / 283.15)^{0.5}$
- (17)  $k_{i,v} = K_{s,v} * 1/Conv02 * \mu_w / (\rho_w * g)$

(18)  $S_{te} = (\theta_{w,v} - \theta_{r,v}) / (n_v - \theta_{r,v})$ 

(19)  $k_{rg} = (1 - S_{te})^{0.5} * (1 - S_{te}^{1/Mv})^{2Mv}$ 

(20)  $k_v = k_{i,v} * k_{rg}$ ; note that the model is very sensitive to this parameter and if site-specific values are available, they should be used.

(21)  $C_{source} = H'_{TS} * C_R * Conv01 * \rho_b / (\theta_{w,v} + K_d * \rho_b + H'_{TS} * \theta_{a,v}) * Conv02$ 

(22) For screening, assume a trench 4 ft deep, 3 ft wide, 30 ft long and an air exchange rate of 60/hr. The air exchange rate is based on the assumption that the wind speed in the trench is a small fraction of the ground wind speed and that it could take up to 1 minute for a contaminant to be cleared from the trench air space.
| Table 2         Exposure-point concentrations         (inhalation) for construction/utility workers         in a trench:         Groundwater less than 15 feet deep         Spectra - 6 Bridge Street         Weymouth, Massachusetts | CAS No.  | Molecular<br>Weight<br>MWi<br>g/mol | Henry's Law<br>Constant<br>Hi<br>atm-m3/mol | Gas-Phase<br>Mass Transfer<br>Coefficient<br>KiG<br>cm/s | Liquid-Phase<br>Mass Transfer<br>Coefficient<br>KiL<br>cm/s | Overall<br>Mass Transfer<br>Coefficient<br>Ki<br>cm/s | Concentration<br>of Contaminant<br>in Groundwater<br>Cgw<br>ug/L | Volatilization<br>Factor<br>VF<br>L/m3 | Concentration<br>of Contaminant<br>in Trench<br>Ctrench<br>ug/m3 | Concentration<br>of Contaminant<br>in Trench<br>Ctrench<br>mg/m3 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|---------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Ethylbenzene                                                                                                                                                                                                                          | 100-41-4 | 106.17                              | 7.88E-03                                    | 4.38E-01                                                 | 1.05E-03                                                    | 1.04E-03                                              | 3.22E+00                                                         | 4.26E-02                               | 1.37E-02                                                         | 1.37E-05                                                         |
| Naphthalene                                                                                                                                                                                                                           | 91-20-3  | 128.17                              | 4.83E-04                                    | 4.11E-01                                                 | 9.52E-04                                                    | 8.57E-04                                              | 7.57E+00                                                         | 3.51E-02                               | 2.66E-01                                                         | 2.66E-04                                                         |
| C9-C12 Aliphatics                                                                                                                                                                                                                     |          | 149                                 | 1.56                                        | 3.91E-01                                                 | 8.83E-04                                                    | 8.83E-04                                              | 5.83E+01                                                         | 3.62E-02                               | 2.11E-01                                                         | 2.11E-04                                                         |
| C9-C10 Aromatics                                                                                                                                                                                                                      |          | 120                                 | 0.00792                                     | 4.20E-01                                                 | 9.84E-04                                                    | 9.78E-04                                              | 6.83E+01                                                         | 4.01E-02                               | 2.74E-01                                                         | 2.74E-04                                                         |
| C11-C22 Aromatics                                                                                                                                                                                                                     |          | 150                                 | 0.00072                                     | 3.90E-01                                                 | 8.80E-04                                                    | 8.20E-04                                              | 1.88E+02                                                         | 3.36E-02                               | 6.33E-01                                                         | 6.33E-04                                                         |

| Kg,H2O | 0.833 cm/s            | CF1 | 1.00E-03 | L/cm3  | Length      | 31.5 ft |
|--------|-----------------------|-----|----------|--------|-------------|---------|
| MWH2O  | 18                    | CF2 | 1.00E+04 | cm2/m2 |             | 9.60 m  |
| Kg,O2  | 0.002 cm/s            | CF3 | 3600     | s/hr   | Width       | 31.5 ft |
| MWO2   | 32                    | F   | 1        |        |             | 9.60 m  |
| т      | 51.6 F                | ACH | 360      | hr-1   | Depth       | 8 ft    |
| т      | 284 K                 |     |          |        |             | 2.44 m  |
| R      | 8.20E-05 atm-m3/mol-K |     |          |        | Width/Depth | 3.94    |

**APPENDIX F-4** 

**RISK AND HAZARD CALCULATIONS FOR SOIL** 

### Table 1 Adult Commercial Worker - >3' Interval Incidential Ingestion of Soil Spectra - 6 Bridge Street Weymouth, Massachusetts

|         |                     | EPC           |           | Exposure  | Estimates |           | Toxicit       | y Values    | Risk E | stimates |
|---------|---------------------|---------------|-----------|-----------|-----------|-----------|---------------|-------------|--------|----------|
|         |                     |               |           |           |           |           | -             | Chronic     |        |          |
|         |                     |               | RAF       |           | RAF       |           | Cancer        | Noncancer   |        |          |
|         |                     | Soil          | Ingestion | LADD      | Ingestion | ADD       | Slope         | Reference   | Cancer | Hazard   |
|         |                     | Concentration | Cancer    | Cancer    | Noncancer | Noncancer | Factor (Oral) | Dose (Oral) | Risk   | Quotient |
|         | Constituent         | (mg/kg)       | ()        | (mg/kg-d) | ()        | (mg/kg-d) | (mg/kg-d)-1   | (mg/kg-d)   | ()     | ()       |
| VPH     |                     |               |           |           |           |           |               |             |        |          |
| C9-C10  | C9-C10 Aromatics    | 1.4E+02       | NC        | NA        | 1         | 4.7E-05   | NA            | 3.0E-02     | NA     | 1.6E-03  |
| C9-C12  | C9-C12 Aliphatics   | 1.6E+02       | NC        | NA        | 1         | 5.5E-05   | NA            | 1.0E-01     | NA     | 5.5E-04  |
| EPH     |                     |               |           |           |           |           |               |             |        |          |
| C9-C18  | C9-C18 Aliphatics   | 2.2E+03       | NC        | NA        | 1         | 7.5E-04   | NA            | 1.0E-01     | NA     | 7.5E-03  |
| C19-C36 | C19-C36 Aliphatics  | 4.4E+03       | NC        | NA        | 1         | 1.5E-03   | NA            | 2.0E+00     | NA     | 7.4E-04  |
| C11-C22 | C11-C22 Aromatics   | 9.1E+03       | NC        | NA        | 0.3       | 9.2E-04   | NA            | 3.0E-02     | NA     | 3.1E-02  |
| 91-20-3 | Naphthalene         | 2.2E+00       | NC        | NA        | 0.3       | 2.3E-07   | NA            | 2.0E-02     | NA     | 1.1E-05  |
| 91-57-6 | 2-Methylnaphthalene | 4.5E+00       | NC        | NA        | 0.3       | 4.5E-07   | NA            | 4.0E-03     | NA     | 1.1E-04  |
| 85-01-8 | Phenznthrene        | 2.5E+00       | NC        | NA        | 0.3       | 2.5E-07   | NA            | 3.0E-02     | NA     | 8.3E-06  |
|         |                     |               |           |           |           |           |               |             |        |          |

NA = Not Applicable NC = Not carcinogenic

Where:

LADDcancer = [Soil Concentration x UC x RAF x IR x EF x ED x EP] / [BW x APcancer] ADDnon-cancer = [Soil Concentration x UC x RAF x IR x EF x ED x EP] / [BW x APnon-cancer] Cancer Risk = LADDcancer x Slope Factor Hazard Quotient = ADDnon-cancer / Reference Dose

Unit Conversion (CF) = Relative Absorption Factor (RAF) = Ingestion Rate (IR) = Exposure Duration (ED) = Exposure Prequency (EF) = Exposure Prequency (EF) = Body Weight (BW) = Averaging Period Cancer (AP<sub>enneer</sub>) = Averaging Period Noncancer (AP<sub>noncennee</sub>) =

 1.0E-06
 kg/mg

 CS
 (unitless) [1]

 50
 mg/d [1]

 1
 day/event [1]

 0.411
 events/days (5 days per week for 30 weeks) [2]

 27
 year [1]

 61.1
 kg [1]

 70
 years [1]

 27
 years [1]

MassDEP, 2014
 Best professional judgement

Cancer Hazard Risk Index TOTAL: 0E+00 4E-02

Bold = Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00

# Table 2 Adult Commercial Worker - >3' Interval Dermal Contact with Soil Spectra - 6 Bridge Street Weymouth, Massachusetts

|             | Constituent       | Soil<br>Concentration | RAF<br>Dermal<br>Cancer | LADD      | RAF<br>Dermal | ADD       | Cancer        | Chronic<br>Noncancer | q      |          |
|-------------|-------------------|-----------------------|-------------------------|-----------|---------------|-----------|---------------|----------------------|--------|----------|
|             | Constituent       | Soil<br>Concentration | RAF<br>Dermal<br>Cancer | LADD      | RAF<br>Dermal | ADD       | Cancer        | Noncancer            | G      |          |
|             | Constituent       | Soil<br>Concentration | Dermal<br>Cancer        | LADD      | Dermal        | ADD       | Slope         | Deference            | 0      |          |
|             | Constituent       | Concentration         | Cancer                  | Cancer    |               |           | biope         | Reference            | Cancer | Hazard   |
|             | Constituent       |                       |                         | Cuncer    | Noncancer     | Noncancer | Factor (Oral) | Dose (Oral)          | Risk   | Quotient |
|             |                   | (mg/kg)               | ()                      | (mg/kg-d) | ()            | (mg/kg-d) | (mg/kg-d)-1   | (mg/kg-d)            | ()     | ()       |
| VPH         |                   |                       |                         |           |               |           |               |                      |        |          |
| C9-C10 C9-  | -C10 Aromatics    | 1.4E+02               | NA                      | NA        | 0.2           | 2.0E-05   | NA            | 3.0E-02              | NA     | 6.5E-04  |
| C9-C12 C9-  | -C12 Aliphatics   | 1.6E+02               | NA                      | NA        | 0.2           | 2.3E-05   | NA            | 1.0E-01              | NA     | 2.3E-04  |
| C9-C18 C9-  | -C18 Aliphatics   | 2.2E+03               | NA                      | NA        | 0.2           | 3.1E-04   | NA            | 1.0E-01              | NA     | 3.1E-03  |
| C19-C36 C19 | 9-C36 Aliphatics  | 4.4E+03               | NA                      | NA        | 0.2           | 6.2E-04   | NA            | 2.0E+00              | NA     | 3.1E-04  |
| C11-C22 C1  | 1-C22 Aromatics   | 9.1E+03               | NA                      | NA        | 0.1           | 6.4E-04   | NA            | 3.0E-02              | NA     | 2.1E-02  |
| 91-20-3 Naj | phthalene         | 2.2E+00               | NA                      | NA        | 0.1           | 1.6E-07   | NA            | 2.0E-02              | NA     | 7.9E-06  |
| 91-57-6 2-N | Methylnaphthalene | 4.5E+00               | NA                      | NA        | 0.1           | 3.2E-07   | NA            | 4.0E-03              | NA     | 7.9E-05  |
| 85-01-8 Phe | enznthrene        | 2.5E+00               | NA                      | NA        | 0.1           | 1.7E-07   | NA            | 3.0E-02              | NA     | 5.8E-06  |

NA = Not Applicable NC = Not carcinogenic Where: LADDcancer = Soil Concentration x UC x SA x SAF x RAF x EF x ED x EP / (BW x APcancer) ADDnon-cancer = Soil Concentration x UC x SA x SAF x RAF x EF x ED x EP / (BW x APnon-cancer) Cancer Risk = LADDcancer x Slope Factor Hazard Quotient = ADDnon-cancer / Reference Dose Unit Conversion (UC1) = 1E-06 kg/mg Skin Surface Area (SA) = 3473 cm<sup>2</sup>/d [1] 0.03 CS 1

70

27

Soil Adherence Factor (SAF) = Relative Absorption Factor (RAF) = Exposure Duration (ED) = Exposure Frequency (EF) = Exposure Period (EP) = Body Weight (BW) = Averaging Period Cancer (AP<sub>cancer</sub>) = Averaging Period Noncancer (APnoncancer) =

mg/cm2 [1] (unitless) [1] day/event [1] 0.411 27 events/days (5 days per week for 30 weeks) [2] yrs [1] 61.1 kg [1] years [1] yrs [1]

MassDEP, 2014
 Best professional judgement

Cancer Hazard Risk TOTAL: 0E+00 Index 3E-02

Bold

= Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00

### Table 3 Adult Commercial Worker - >3' Interval Inhalation of Fugitive Dusts - Exposure Via the Lungs Spectra - 6 Bridge Street Weymouth, Massachusetts

|         |                     |               | Exposure             | Estimates            | Toxicity                           | Values               | Risk   | Estimates |
|---------|---------------------|---------------|----------------------|----------------------|------------------------------------|----------------------|--------|-----------|
|         |                     |               |                      |                      |                                    | Chronic              |        |           |
|         |                     |               |                      |                      | Unit                               | Noncancer            |        |           |
|         |                     | Soil          | LADEnh               | ADE <sub>Inh</sub>   | Risk                               | Reference            | Cancer | Hazard    |
|         |                     | Concentration | Cancer               | Noncancer            | Factor (Inh)                       | Conc. (Inh)          | Risk   | Quotient  |
|         | Constituent         | (mg/kg)       | (ug/m <sup>3</sup> ) | (ug/m <sup>3</sup> ) | (ug/m <sup>3</sup> ) <sup>-1</sup> | (ug/m <sup>3</sup> ) | ()     | ()        |
| VPH     |                     |               |                      |                      |                                    |                      |        |           |
| C9-C10  | C9-C10 Aromatics    | 1.4E+02       | 1.6E-04              | 4.1E-04              | NA                                 | 5.0E+01              | NA     | 8.1E-06   |
| C9-C12  | C9-C12 Aliphatics   | 1.6E+02       | 1.8E-04              | 4.7E-04              | NA                                 | 2.0E+02              | NA     | 2.4E-06   |
| EPH     |                     |               |                      |                      |                                    |                      |        |           |
| C9-C18  | C9-C18 Aliphatics   | 2.2E+03       | 2.5E-03              | 6.5E-03              | NA                                 | 2.0E+02              | NA     | 3.2E-05   |
| C19-C36 | C19-C36 Aliphatics  | 4.4E+03       | 4.9E-03              | 1.3E-02              | NA                                 | NA                   | NA     | NA        |
| C11-C22 | C11-C22 Aromatics   | 9.1E+03       | 1.0E-02              | 2.6E-02              | NA                                 | 5.0E+01              | NA     | 5.3E-04   |
| 91-20-3 | Naphthalene         | 2.2E+00       | 2.5E-06              | 6.5E-06              | NA                                 | 3.0E+00              | NA     | 2.2E-06   |
| 91-57-6 | 2-Methylnaphthalene | 4.5E+00       | 5.0E-06              | 1.3E-05              | NA                                 | 5.0E+01              | NA     | 2.6E-07   |
| 85-01-8 | Phenznthrene        | 2.5E+00       | 2.8E-06              | 7.2E-06              | NA                                 | 5.0E+01              | NA     | 1.4E-07   |
|         |                     |               |                      |                      |                                    |                      |        |           |

NC = Not carcinogenic NA = Not Applicable

Where:

LADEcancer = (OHM x 0.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / (APcancer x BW)) x (BW assumed/IR assumed) ADEnon-cancer = (OHM x 0.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / APnon-cancer x BW) x (BW assumed/IR assumed) Cancer Risk = LADEcancer x Cancer Slope Factor Hazard Quotient = ADEnon-cancer / Reference Dose Risk IndexTOTAL: 0E+00 6E-04 Bold = Cancer Risk > 1.0E-05 or

Cancer

Hazard

Bold = Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00

$$\begin{split} \text{Respirable Dust} & (\text{PM}_{10}) = \\ \text{Relative Absorption Factor} & (\text{RAF}) = \\ \text{Inhalation Rate} & (\text{IR}) = \\ \text{Exposure Prequency} & (\text{EF}) = \\ \text{Exposure Period} & (\text{EP}) = \\ \text{Body Weight} & (\text{BW}) = \\ \text{Averaging Period Cancer} & (\text{AP}_{\text{cancer}}) = \\ \text{Averaging Period Noncancer} & (\text{AP}_{\text{monencer}}) = \\ \text{Inhalation Rate assumed} & (\text{IR assumed}) = \\ \text{Unit Conversion} & (\text{UC}) = \\ \end{split}$$

60 ug/m3 [1] 1 unitless l/min [1] events/days (5 days per week for 30 weeks) [2] 60 0.411 4 9855 hours/event [2] days [1] 61.1 kg [1] 25550 days [1] 9855 days [1] m3/day [1] (60 min/hour; 1x 10-9 kg/ug; 0.001 m3/l) 20 6.00E-11

MassDEP, 2014
 Best professional judgement

TRC Environmental Corporation

### Table 4 Adult Commercial Worker - >3' Interval Inhalation of Fugitive Dusts - Exposure Via the GI Tract Spectra - 6 Bridge Street Weymouth, Massachusetts

|         |                     |               |        | E                      | xposure Estima | tes                   | Toxicit       | y Values    | Risk   | Estimates |
|---------|---------------------|---------------|--------|------------------------|----------------|-----------------------|---------------|-------------|--------|-----------|
|         |                     |               |        |                        |                |                       |               | Chronic     |        |           |
|         |                     |               | RAF    |                        | RAF            |                       | Cancer        | Noncancer   |        |           |
|         |                     | Soil          | Cancer | LADD <sub>GI-Inh</sub> | Noncancer      | ADD <sub>GI-Inh</sub> | Slope         | Reference   | Cancer | Hazard    |
|         |                     | Concentration | Ing    | Cancer                 | Ing            | Noncancer             | Factor (Oral) | Dose (Oral) | Risk   | Quotient  |
|         | Constituent         | (mg/kg)       | ()     | (mg/kg-day)            | ()             | (mg/kg-day)           | (mg/kg-day)-1 | (mg/kg-day) | ()     | ()        |
| VPH     |                     |               |        |                        |                |                       |               |             |        |           |
| C9-C10  | C9-C10 Aromatics    | 1.4E+02       | NC     | NA                     | 1.00E+00       | 1.22E-06              | NA            | 3.0E-02     | NA     | 4.1E-05   |
| C9-C12  | C9-C12 Aliphatics   | 1.6E+02       | NC     | NA                     | 1.00E+00       | 1.42E-06              | NA            | 1.0E-01     | NA     | 1.4E-05   |
| EPH     |                     |               |        |                        |                |                       |               |             |        |           |
| C9-C18  | C9-C18 Aliphatics   | 2.2E+03       | NC     | NA                     | 1.00E+00       | 1.94E-05              | NA            | 1.0E-01     | NA     | 1.9E-04   |
| C19-C36 | C19-C36 Aliphatics  | 4.4E+03       | NC     | NA                     | 1.00E+00       | 3.83E-05              | NA            | 2.0E+00     | NA     | 1.9E-05   |
| C11-C22 | C11-C22 Aromatics   | 9.1E+03       | NC     | NA                     | 3.00E-01       | 2.37E-05              | NA            | 3.0E-02     | NA     | 7.9E-04   |
| 91-20-3 | Naphthalene         | 2.2E+00       | NC     | NA                     | 3.00E-01       | 5.88E-09              | NA            | 2.0E-02     | NA     | 2.9E-07   |
| 91-57-6 | 2-Methylnaphthalene | 4.5E+00       | NC     | NA                     | 3.00E-01       | 1.18E-08              | NA            | 4.0E-03     | NA     | 2.9E-06   |
| 85-01-8 | Phenznthrene        | 2.5E+00       | NC     | NA                     | 3.00E-01       | 6.48E-09              | NA            | 3.0E-02     | NA     | 2.2E-07   |
|         |                     | 1             |        | 1                      |                |                       | 1             |             |        |           |

NC = Not carcinogenic NA = Not Applicable

Where:

LADDcancer = (OHM x 1.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / (APcancer x BW)) ADDEnon-cancer = (OHM x 1.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / APnon-cancer x BW) Cancer Risk = LADEcancer x Cancer Slope Factor Hazard Quotient = ADEnon-cancer / Reference Dose

Respirable Dust (PM10) = 60 ug/m3 [1] Inhalation Rate (IR) = Exposure Frequency (EF) = Exposure Duration (ED) = 60 l/min [1] 0.411 events/days (5 days per week for 30 weeks) [2] hours/event [2] 4 9855 Exposure Period (EP) = days [1] Body Weight (BW) = 61.1 kg [1] Averaging Period Cancer (AP<sub>cancer</sub>) = days [1] 25550 9855 days [1] Averaging Period Noncancer (AP<sub>noncancer</sub>) = Unit Conversion (UC1)= 6.00E-11 (60 min/hour; 1x 10-9 kg/ug; 0.001 m3/l)

Cancer Hazard Risk Index TOTAL: 0E+00 1E-03

Bold = Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00

MassDEP, 2014
 Best professional judgement

# Construction Worker - Soil: Table CW-1 (10-17' bgs) Exposure Point Concentration (EPC) and Risk Based on Construction Worker 18-25 years of age

ShortForm Version 10-12 Vlookup Version v0315

ELCR (all chemicals) =

HI (all chemicals) = 9.4E-02

# \*\*Do not insert or delete any rows\*\*

Click on empty cell below and select OHM using arrow.

| ener en empty e |             | eleet et int deling allem. |           |        |               |            |                   |                   |                    |                      |                   |                     |
|-----------------|-------------|----------------------------|-----------|--------|---------------|------------|-------------------|-------------------|--------------------|----------------------|-------------------|---------------------|
| Oil or Hazardou | JS          | EPC                        | ELCR      | ELCR   | ELCR          | ELCR       |                   |                   | Subchronic         | •                    |                   |                     |
|                 |             |                            |           |        |               | inhalation |                   |                   |                    |                      |                   |                     |
| Material (OHM)  | )           | (mg/kg)                    | ingestion | dermal | inhalation GI | pulmonary  | <b>ELCR</b> total | HQ <sub>ing</sub> | HQ <sub>derm</sub> | HQ <sub>inh-GI</sub> | HQ <sub>inh</sub> | HQ <sub>total</sub> |
| AROMATICS       | C9 to C10   | 1.4E+02                    |           |        |               |            |                   | 5.7E-04           | 1.2E-03            | 1.5E-05              | 1.0E-05           | 1.8E-03             |
| ALIPHATICS      | C9 to C12   | 1.6E+02                    |           |        |               |            |                   | 2.0E-04           | 4.0E-04            | 5.2E-06              | 1.0E-05           | 6.2E-04             |
| ALIPHATICS      | C9 to C18   | 4.6E+03                    |           |        |               |            |                   | 5.6E-03           | 1.1E-02            | 1.5E-04              | 2.8E-04           | 1.7E-02             |
| ALIPHATICS      | C19 to C36  | 9.1E+03                    |           |        |               |            |                   | 1.9E-03           | 3.8E-03            | 4.8E-05              |                   | 5.7E-03             |
| AROMATICS       | C11 to C22  | 9.1E+03                    |           |        |               |            |                   | 1.1E-02           | 3.8E-02            | 2.9E-04              | 6.8E-04           | 5.0E-02             |
| NAPHTHALENE     |             | 1.2E+01                    |           |        |               |            |                   | 2.2E-05           | 7.3E-05            | 5.7E-07              | 1.5E-04           | 2.4E-04             |
| METHYLNAPH1     | THALENE, 2- | 4.5E+01                    |           |        |               |            |                   | 4.2E-03           | 1.4E-02            | 1.1E-04              | 3.4E-06           | 1.8E-02             |
| PHENANTHRE      | NE          | 9.0E+00                    |           |        |               |            |                   | 1.1E-05           | 3.7E-05            | 2.9E-07              | 6.7E-07           | 4.9E-05             |

# Construction Worker - Soil: Table CW-2 Equations to Calculate Cancer Risk for Construction Worker

| Cancer Risk from Ingestion                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |
| ELCR <sub>ing</sub> = LADD <sub>ing</sub> * CSF <sub>oral</sub>                                                                                                   |
|                                                                                                                                                                   |
| FPC * IR * RAFaina * FF * FDina * FP * C1                                                                                                                         |
| $LADD_{ing} = \frac{PW + AB}{PW + AB}$                                                                                                                            |
| DVV Ar lifetime                                                                                                                                                   |
|                                                                                                                                                                   |
| Cancer Risk from Dermal Absorption                                                                                                                                |
|                                                                                                                                                                   |
| ELCR <sub>derm</sub> = LADD <sub>derm</sub> * CSF <sub>oral</sub>                                                                                                 |
|                                                                                                                                                                   |
|                                                                                                                                                                   |
| LADD <sub>dorm</sub> =                                                                                                                                            |
| BW * AP <sub>lifetime</sub>                                                                                                                                       |
|                                                                                                                                                                   |
| Cancer Risk from Particulate Inhalation - Gastrointestinal Absorption                                                                                             |
|                                                                                                                                                                   |
| FLCR: h ci = LADD: h ci * CSF oral                                                                                                                                |
|                                                                                                                                                                   |
|                                                                                                                                                                   |
| LADD <sub>inh-GI</sub> = EPC * RCAF <sub>inh-gi</sub> * PM <sub>10</sub> * VR <sub>work</sub> * RAF <sub>c-ing</sub> * EF * ED <sub>inh</sub> * EP * C2 * C3 * C4 |
| BW * AP <sub>lifetime</sub>                                                                                                                                       |
|                                                                                                                                                                   |
| Cancer Risk from Particulate Inhalation - Pulmonary Absorption                                                                                                    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                             |
|                                                                                                                                                                   |
| $ELOR_{inh} = 2.000 \text{ Inhalation}$                                                                                                                           |
|                                                                                                                                                                   |
|                                                                                                                                                                   |
| EPC * RCAF <sub>inh</sub> * PM <sub>10</sub> * VR <sub>work</sub> * RAF <sub>c-inh</sub> * EF * ED <sub>inh</sub> * EP * C2 * C3 * C4                             |

BW \* AP<sub>lifetime</sub>

MassDEP ORS Contact: Lydia Thompson Lydia.Thompson@state.ma.us 617-556-1165

LADD = -

Vlookup Version v0315

| Parameter                    | Value            | Units                     |
|------------------------------|------------------|---------------------------|
| CSF                          | OHM-specific     | (mg/kg-day) <sup>-1</sup> |
| LADD                         | age/OHM-specific | mg/kg-day                 |
| EPC                          | OHM-specific     | mg/kg                     |
| IR                           | 100              | mg/day                    |
| $RAF_{c-ing}$                | OHM-specific     | dimensionless             |
| $RAF_{c\text{-derm}}$        | OHM-specific     | dimensionless             |
| $RAF_{c-inh}$                | OHM-specific     | dimensionless             |
| EF                           | 0.714            | event/day                 |
| ED <sub>ing &amp; derm</sub> | 1                | day/event                 |
| $ED_inh$                     | 0.333            | day/event                 |
| EP                           | 182              | days                      |
| C1                           | 1.0E-06          | kg/mg                     |
| C2                           | 1.0E-09          | kg/µg                     |
| C3                           | 1440             | min/days                  |
| C4                           | 1.0E-03          | m <sup>3</sup> /L         |
| BW                           | 58.0             | kg                        |
| AP <sub>(lifetime)</sub>     | 25,550           | days                      |
| VR <sub>work</sub>           | 60               | L/min                     |
| AF                           | 0.29             | mg/cm <sup>∠</sup>        |
| SA                           | 3473             | cm²/day                   |
| RCAF <sub>inh-gi</sub>       | 1.5              | dimensionless             |
| RCAFinh                      | 0.5              | dimensionless             |
| PM <sub>10</sub>             | 60               | µg/m°                     |

# Construction Worker - Soil: Table CW-3 Equations to Calculate Noncancer Risk for Construction Worker

Vlookup Version v0315



| Parameter                    | Value        | Units              |
|------------------------------|--------------|--------------------|
| RfD                          | OHM-specific | mg/kg-day          |
| ADD                          | OHM-specific | mg/kg-day          |
| EPC                          | OHM-specific | mg/kg              |
| IR                           | 100          | mg/day             |
| RAF <sub>nc-ing</sub>        | OHM-specific | dimensionless      |
| RAF <sub>nc-derm</sub>       | OHM-specific | dimensionless      |
| RAF <sub>nc-inh</sub>        | OHM-specific | dimensionless      |
| EF                           | 0.714        | event/day          |
|                              |              |                    |
| ED <sub>ing &amp; derm</sub> | 1            | day/event          |
| ED <sub>inh</sub>            | 0.333        | day/event          |
| EP                           | 182          | days               |
|                              |              |                    |
| C1                           | 1.0E-06      | kg/mg              |
| C2                           | 1.0E-09      | kg/µg              |
| C3                           | 1440         | min/days           |
| C4                           | 1.0E-03      | m <sup>3</sup> /L  |
| BW                           | 58.0         | kg                 |
| AP <sub>noncancer</sub>      | 182          | days               |
|                              |              |                    |
| VR <sub>work</sub>           | 60           | L/min              |
| AF                           | 0.29         | mg/cm <sup>2</sup> |
| SA                           | 3473         | cm²/day            |
| RCAF <sub>inh-gi</sub>       | 1.5          | dimensionless      |
| RCAFinh                      | 0.5          | dimensionless      |
| PM10                         | 60           | µg/m <sup>3</sup>  |

MassDEP ORS Contact: Lydia Thompson Lydia.Thompson@state.ma.us 617-556-1165

# Construction Worker - Soil: Table CW-4 Definitions and Exposure Factors

| Parameter                                                                       | Value             | Units                     | Notes                                                                                                                        |
|---------------------------------------------------------------------------------|-------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------|
| ELCR - Excess Lifetime Cancer Risk                                              | chemical specific | dimensionless             | Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)                                                               |
| HI - Hazard Index                                                               | chemical specific | dimensionless             | Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)                                                               |
| CSF - Cancer Slope Factor                                                       | chemical specific | (mg/kg-day) <sup>-1</sup> | see Table CW-5.                                                                                                              |
| RfD - Reference Dose                                                            | chemical specific | mg/kg-day                 | see Table CW-5.                                                                                                              |
| LADD - Lifetime Average Daily Dose                                              | chemical specific | mg/kg-day                 | Pathway specific. See Table CW-2.                                                                                            |
| ADD - Average Daily Dose                                                        | chemical specific | mg/kg-day                 | Pathway specific. See Table CW-3.                                                                                            |
| EPC - Exposure Point Concentration                                              | chemical specific | mg/kg                     | see Table CW-1.                                                                                                              |
| IR - Soil Ingestion Rate                                                        | 100               | mg/day                    | MADEP. 2002. Technical Update: Calculation of an Enhanced Soil<br>Ingestion Rate. (http://www.mass.gov/dep/ors/orspubs.htm). |
| RAF <sub>c</sub> - Relative Absorption Factor for Cancer Effects                | chemical specific | dimensionless             | Pathway specific - see Table CW-5.                                                                                           |
| RAF <sub>nc</sub> - Relative Absorption Factor for Noncancer Effects            | chemical specific | dimensionless             | Pathway specific - see Table CW-5.                                                                                           |
| EF - Exposure Frequency                                                         | 0.714             | event/day                 | 5 events (days) / 7 events (days) in a week; MADEP 1995 Guidance for<br>Disposal Site Risk Characterization pg B-38.         |
| ED <sub>ing,derm</sub> - Exposure Duration for ingestion or dermal exposure     | 1                 | day/event                 |                                                                                                                              |
| ED <sub>inh</sub> - Exposure Duration for inhalation exposure                   | 0.333             | day/event                 | Represents 8 hours / event.                                                                                                  |
| EP - Exposure Period                                                            | 182               | days                      | 6 months; MADEP 1995 Guidance for Disposal Site Risk Characterization.                                                       |
| BW - Body Weight                                                                | 58.0              | kg                        | U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7,<br>Females, ages 18 - 25.                                              |
| AP <sub>(lifetime)</sub> - Averaging Period for lifetime                        | 25,550            | days                      | Represents 70 years                                                                                                          |
| AP <sub>(noncancer)</sub> - Averaging Period for noncancer                      | 182               | days                      | 6 months; MADEP 1995 Guidance for Disposal Site Risk Characterization.                                                       |
| AF - Adherence Factor                                                           | 0.29              | mg/cm <sup>2</sup>        | MA DEP. 2002 Technical Update: Weighted Skin-Soil Adherence Factors.<br>(http://www.mass.gov/dep/ors/orspubs.htm)            |
| VR <sub>work</sub> - Ventilation Rate during work (heavy exertion)              | 60                | L/min                     | Table B-4 MADEP 1995 Guidance for Disposal Site Risk Characterization.                                                       |
| SA - Surface Area                                                               | 3473              | cm²/day                   | MADEP. 1995. Guidance for Disposal Site Risk Characterization.<br>50th percentile for females. Appendix Table B-2.           |
| IFAF <sub>inh-gi</sub> - Ingestion Fraction Adjustment Factor, gastrointestinal | 1.5               | dimensionless             | MADEP 2007. Characterization of Risks Due to Inhalation of Particulates<br>by Construction Workers                           |
| IFAF <sub>inh</sub> - Inhalation Fraction Adjustment Factor, inhalation         | 0.5               | dimensionless             | MADEP 2002. Characterization of Risks Due to Inhalation of Particulates<br>by Construction Workers                           |
| PM10 - Concentration of PM <sub>10</sub>                                        | 60                | μg/m <sup>3</sup>         | MADEP 1995 Guidance for Disposal Site Risk Characterization pg B-11                                                          |

MassDEP ORS Contact: Lydia Thompson Lydia.Thompson@state.ma.us 617-556-1165

# Construction Worker - Soil: Table CW-5 Chemical-Specific Data

Vlookup Version v0315

| Oil or<br>Hazardous Material | Oral<br>CSF<br>(mg/kg-day) <sup>-1</sup> | RAF <sub>c-ing</sub> | RAF <sub>c-derm</sub> | RAF <sub>c-inh</sub> | Inhalation<br>CSF<br>(mg/kg-day) <sup>-1</sup> | Subchronic<br>Oral RfD<br>mg/kg-day | Subchronic<br>RAF <sub>nc-ing</sub> | Subchronic<br>RAF <sub>nc-derm</sub> | Subchronic<br>RAF <sub>nc-inh</sub> | Subchronic<br>Inhalation RfD |
|------------------------------|------------------------------------------|----------------------|-----------------------|----------------------|------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|------------------------------|
| AROMATICS C9 to C10          |                                          |                      |                       |                      |                                                | 3.0E-01                             | 1                                   | 0.2                                  | 1                                   | 1.4E-01                      |
| ALIPHATICS C9 to C12         |                                          |                      |                       |                      |                                                | 1.0E+00                             | 1                                   | 0.2                                  | 1                                   | 1.7E-01                      |
| ALIPHATICS C9 to C18         |                                          |                      |                       |                      |                                                | 1.0E+00                             | 1                                   | 0.2                                  | 1                                   | 1.7E-01                      |
| ALIPHATICS C19 to C36        |                                          |                      |                       |                      |                                                | 6.0E+00                             | 1                                   | 0.2                                  |                                     |                              |
| AROMATICS C11 to C22         |                                          |                      |                       |                      |                                                | 3.0E-01                             | 0.3                                 | 0.1                                  | 1                                   | 1.4E-01                      |
| NAPHTHALENE                  |                                          |                      |                       |                      |                                                | 2.0E-01                             | 0.3                                 | 0.1                                  | 1                                   | 8.6E-04                      |
| METHYLNAPHTHALENE, 2-        |                                          |                      |                       |                      |                                                | 4.0E-03                             | 0.3                                 | 0.1                                  | 1                                   | 1.4E-01                      |
| PHENANTHRENE                 |                                          |                      |                       |                      |                                                | 3.0E-01                             | 0.3                                 | 0.1                                  | 1                                   | 1.4E-01                      |

# Construction Worker - Soil: Table CW-6 Cyanide Calculations

The soil cyanide concentration limit set to protect a construction worker against an acute, potentially lethal one-time dose of cyanide from incidental ingestion of contaminated soil is 12,000 mg/kg<sub>soil</sub>. This is the concentration of available cyanide in soil below which acute human health effects would not be expected following a one-time exposure. This soil concentration is calculated using the equation below with a one-time soil ingestion estimate of 50 mg<sub>soil</sub> and an available cyanide dose limit of 0.01 mg/kg<sub>body weight</sub>.

MassDEP's guidance on evaluating the risk from a one-time cyanide dose considers cyanide's potentially lethal effects as well as information on cyanide metabolism:

Cyanides are detoxified rapidly by the body, and a large acute dose which overwhelms the detoxification mechanism is potentially more toxic than the same dose distributed over a period of hours. (MassDEP *Background Documentation for the Development of an Available Cyanide Benchmark Concentration,* originally dated October 1992, Modified August 1998)

Assessment of a potential one-time dose requires an estimate of the maximum soil concentration the trespasser could contact at any one time. The average soil concentration within a typical exposure area will underestimate the potential one-time dose. Therefore, to assess the acute risk of a one-time potentially lethal dose, the EPC for cyanide should be a conservative estimate of the maximum concentration.

The construction worker soil concentration limit to protect against adverse effects from an acute (one-time) exposure to cyanide is 12,000 mg/kg.

| Acute Concentra                              | tion Calculation for Cyanide               |  | Parameter                  | Value   | Units               |
|----------------------------------------------|--------------------------------------------|--|----------------------------|---------|---------------------|
|                                              |                                            |  | HQ (Hazard Quotient)       | 1       | (unitless)          |
| Ormerstanting                                | Concentration = HQ x Acute Dose Limit x BW |  | Acute Dose Limit           | 0.01    | mg avail. CN/ kg BW |
| Concentration = IR x RAF x Conversion Factor |                                            |  | BW (Body Weight) 11-12     | 58      | kg                  |
|                                              |                                            |  | IR (1-time reasonable max) | 50      | mg                  |
|                                              |                                            |  | Conversion Factor          | 1.0E-06 | kg soil / mg soil   |
|                                              |                                            |  | RAF                        | 1       | (unitless)          |

The toxicological basis for estimating an allowable one-time dose is documented in MassDEP's 1992 Background Documentation for the Development of an "Available Cyanide" Benchmark Concentration, which is published at: http://www.mass.gov/eea/docs/dep/toxics/stypes/dscyanide.pdf **APPENDIX F-5** 

# **RISK AND HAZARD CALCULATIONS FOR GROUNDWATER**

### Table 1 Construction Worker Dermal Contact with Groundwater Spectra - 6 Bridge Street Weymouth, Massachusetts

|          |                    |               |         |        |           |           |           | Toxic        | ity Values     | Risk   | Estimates  |
|----------|--------------------|---------------|---------|--------|-----------|-----------|-----------|--------------|----------------|--------|------------|
|          |                    |               |         | RAF    |           | RAF       |           | <u>10xic</u> | Subchronic     | Risk   | Non-Cancer |
|          |                    | Ground Water  |         | Dermal | LADD      | Dermal    | ADD       | Cancer       | Non-Cancer     | Cancer | Hazard     |
|          |                    | Concentration | Kp      | Cancer | Cancer    | Noncancer | Noncancer | Slope Factor | Reference Dose | Risk   | Quotient   |
|          | Constituent        | (mg/l)        | cm/hr   | ()     | (mg/kg-d) | ()        | (mg/kg-d) | (mg/kg-d)-1  | (mg/kg-d)      | ()     | ()         |
| VPH      |                    |               |         |        |           |           |           |              |                |        |            |
| C9-C10   | C9-C10 Aromatics   | 6.8E-02       | 1.3E-01 | NC     | NA        | 1.00      | 1.5E-03   | NA           | 3.0E-01        | NA     | 5.2E-03    |
| C9-C12   | C9-C12 Aliphatics  | 5.8E-02       | 1.0E+00 | NC     | NA        | 1.00      | 1.0E-02   | NA           | 1.0E+00        | NA     | 1.0E-02    |
| 100-41-4 | Ethylbenzene       | 3.2E-03       | 4.8E-02 | NC     | NA        | 1.00      | 2.7E-05   | NA           | 5.0E-02        | NA     | 5.3E-04    |
| 91-20-3  | Naphthalene        | 7.6E-03       | 4.6E-02 | NC     | NA        | 1.00      | 5.9E-05   | NA           | 2.0E-01        | NA     | 3.0E-04    |
| EPH      |                    |               |         |        |           |           |           |              |                |        |            |
| C19-C36  | C19-C36 Aliphatics | 2.2E-01       | NA      | NC     | NA        | 1.00      | NA        | NA           | 6.0E+00        | NA     | NA         |
| C11-C22  | C11-C22 Aromatics  | 1.9E-01       | 5.2E-01 | NC     | NA        | 1.00      | 1.7E-02   | NA           | 3.0E-01        | NA     | 5.6E-02    |
|          |                    |               |         |        |           |           |           |              |                |        |            |

NA = Not Applicable NC = No Criteria

LADD = Lifetime Average Daily Dose RAF = Relative Absorption Coefficient ADD = Average Daily Dose

## Where:

LADD = (EPC x SA x Kp x RAF x ED x EF x EP x UC)/(BW x APcancer) ADD = (EPC x SA x Kp x RAF x ED x EF x EP x UC)/(BW x APnoncancer)

Constituent Specific (CS) Exposure Point Concentration (EPC): Skin surface area (SA): Permeability constant (Kp): Exposure Duration (ED): Exposure Period (EP): Units Conversion (UC): Body Weight (BW): Averaging Period (APcancer): Averaging Period (APnoncancer):

CS mg/l 3477 cm2 [1] CS cm/h 8 hours/event [2] 0.36 events/d [2] 182 days [1] 0.001 1/cm3 58 kg [1] 25550 days [1] 182 days [1]

[1] MassDEP, 2014

[2] Best Professional Judgement

## Cancer Hazard Risk Index TOTAL: 0E+00 7E-02

Bold = Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00

Г

# **APPENDIX F-6**

# **RISK AND HAZARD CALCULATIONS FOR TRENCH AIR**

### Table 1 Construction Worker - Soil Inhalation of Trench Air Exposure Pathway Spectra - 6 Bridge Street Weymouth, Massachusetts

|         |                     | EPC           | EPC Estimated Dose |               | Toxic | ity Values    | Risk E | estimates |
|---------|---------------------|---------------|--------------------|---------------|-------|---------------|--------|-----------|
|         |                     |               |                    |               |       | Subchronic    |        |           |
|         |                     | Trench        |                    |               |       | Noncancer     |        |           |
|         |                     | Air           | ADEcancer          | ADEnon-cancer | Unit  | Reference     | Cancer | Hazard    |
|         |                     | Concentration | (Cancer)           | (Non-cancer)  | Risk  | Concentration | Risk   | Quotient  |
|         | Constituent         | µg/m3         | µg/m3              | µg/m3         | µg/m3 | µg/m3         | ()     | ()        |
| VPH     |                     |               |                    |               |       |               |        |           |
| C9-C10  | C9-C10 Aromatics    | 3.0E-02       | 2.6E-05            | 3.6E-03       | NA    | 5.0E+02       | NA     | 7.E-06    |
| C9-C12  | C9-C12 Aliphatics   | 8.3E-02       | 7.1E-05            | 1.0E-02       | NA    | 6.0E+02       | NA     | 2.E-05    |
| EPH     |                     |               |                    |               |       |               |        | I         |
| C9-C18  | C9-C18 Aliphatics   | 5.6E-01       | 4.8E-04            | 6.7E-02       | NA    | 6.0E+02       | NA     | 1.E-04    |
| C11-C22 | C11-C22 Aromatics   | 6.5E-02       | 5.6E-05            | 7.8E-03       | NA    | 5.0E+02       | NA     | 2.E-05    |
| 91-20-3 | Naphthalene         | 7.4E-05       | 6.3E-08            | 8.8E-06       | NA    | 3.0E+00       | NA     | 3.E-06    |
| 91-57-6 | 2-Methylnaphthalene | 1.29E-04      | 1.1E-07            | 1.5E-05       | NA    | 5.0E+02       | NA     | 3.E-08    |
| 85-01-8 | Phenanthrene        | 2.5E-07       | 2.1E-10            | 2.9E-08       | NA    | 5.0E+02       | NA     | 6.E-11    |
|         |                     |               |                    |               |       |               |        |           |

Where:

LADEcancer = IAC x EFx ED x EP/APcancer ADEnon-cancer = IAC x EF x ED x EP / APnon-cancer Cancer Risk = LADEcancer x UR Hazard Quotient = ADEnon-cancer / Inhalation Reference Concentration

|        | Cancer | Hazard |
|--------|--------|--------|
|        | Risk   | Index  |
| TOTAL: | 0E+00  | 2E-04  |
|        |        |        |

Bold = Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00

$$\begin{split} LADE = Life \mbox{ Time Average Daily Exposure} \\ ADE = Average Daily Exposure \\ EPC = Exposure Point Concentration \\ \mu g/m^3 = micrograms per cubic meter \end{split}$$

And where:

| Exposure Frequency (EF) =         | 130   | days/year (5 days a week for 26 weeks of exposure) |
|-----------------------------------|-------|----------------------------------------------------|
| Exposure Duration (ED) =          | 8     | hrs/day [1]                                        |
| Exposure Period (EP) =            | 0.5   | yr [1]                                             |
| Unit Conversion (UC) =            | 0.042 | days/hr                                            |
| Averaging Period (APcancer) =     | 25550 | days [1]                                           |
| Averaging Period (APnon-cancer) = | 182   | days [1]                                           |

[1] MassDEP, 2014

### Table 2 Construction Worker - Groundwater Inhalation of Trench Air Exposure Pathway Spectra - 6 Bridge Street Weymouth, Massachusetts

|          |                   | EPC Estimated Dose |           | Toxicity Values |       | Risk Estimates |        |          |
|----------|-------------------|--------------------|-----------|-----------------|-------|----------------|--------|----------|
|          |                   |                    |           |                 |       | Subchronic     |        |          |
|          |                   | Trench             |           |                 |       | Noncancer      |        |          |
|          |                   | Air                | ADEcancer | ADEnon-cancer   | Unit  | Reference      | Cancer | Hazard   |
|          |                   | Concentration      | (Cancer)  | (Non-cancer)    | Risk  | Concentration  | Risk   | Quotient |
|          | Constituent       | µg/m3              | µg/m3     | µg/m3           | µg/m3 | µg/m3          | ()     | ()       |
| VPH      |                   |                    |           |                 |       |                |        |          |
| C9-C10   | C9-C10 Aromatics  | 2.7E-01            | 2.3E-04   | 3.3E-02         | NA    | 5.0E+02        | NA     | 7.E-05   |
| C9-C12   | C9-C12 Aromatics  | 2.1E-01            | 1.8E-04   | 2.5E-02         | NA    | 6.0E+02        | NA     | 4.E-05   |
| 100-41-4 | Ethylbenzene      | 1.4E-02            | 1.2E-05   | 1.6E-03         | NA    | 9.0E+03        | NA     | 2.E-07   |
| 91-20-3  | Naphthalene       | 2.7E-01            | 2.3E-04   | 3.2E-02         | NA    | 3.0E+00        | NA     | 1.E-02   |
| EPH      |                   |                    |           |                 |       |                |        |          |
| C11-C22  | C11-C22 Aromatics | 6.3E-01            | 5.4E-04   | 7.6E-02         | NA    | 5.0E+02        | NA     | 2.E-04   |
|          |                   |                    |           |                 |       |                |        |          |

Where:

LADEcancer = IAC x EFx ED x EP/APcancer ADEnon-cancer = IAC x EF x ED x EP / APnon-cancer Cancer Risk = LADEcancer x UR Hazard Quotient = ADEnon-cancer / Inhalation Reference Concentration Cancer Hazard Risk Index TOTAL: 0E+00 1E-02

Bold = Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00

$$\begin{split} LADE = Life \mbox{ Time Average Daily Exposure} \\ ADE = Average Daily Exposure \\ EPC = Exposure Point Concentration \\ \mu g/m^3 = micrograms per cubic meter \end{split}$$

And where:

| Exposure Frequency (EF) =         | 130   | days/year (5 days a week for 26 weeks of exposure) |
|-----------------------------------|-------|----------------------------------------------------|
| Exposure Duration (ED) =          | 8     | hrs/day [1]                                        |
| Exposure Period (EP) =            | 0.5   | yr [1]                                             |
| Unit Conversion (UC) =            | 0.042 | days/hr                                            |
| Averaging Period (APcancer) =     | 25550 | days [1]                                           |
| Averaging Period (APnon-cancer) = | 182   | days [1]                                           |

[1] MassDEP, 2014

# **APPENDIX G**

# FEASIBILITY EVALUATION CALCULATIONS

# Table G-1LNAPL Containing Soil Volume and LNAPL Mass Volume EstimatesAlgonquinAtlantic Bridge ProjectWeymouth Compressor Station6 and 50 Bridge StreetWeymouth, Massachusetts

| Estimate of LNAPL Containing Soil | Source of Data |                 |          |
|-----------------------------------|----------------|-----------------|----------|
| Disposal Site Area                | 31,823         | ft <sup>2</sup> | Figure 2 |
|                                   | 0.73           | acres           | Figure 2 |
| Average Vertical LNAPL Thickness  | 3.4            | ft              | Table 1  |
| Volume of LNAPL Containing Soil   | 108,199        | ft <sup>3</sup> | -        |
| Average NAPL in Soil              | 0.101          | fraction        | Table 3  |
| NAPL Volume                       | 10,928         | ft <sup>3</sup> | _        |
|                                   | 81,742         | gal             | -        |

# Table G-2Soil Excavation and Dewatering EstimatesAlgonquinAtlantic Bridge ProjectWeymouth Compressor Station6 and 50 Bridge StreetWeymouth, Massachusetts

| Soil Excavation Estimates: Overburde | Source of Data:        |         |                                                                                |  |
|--------------------------------------|------------------------|---------|--------------------------------------------------------------------------------|--|
| Disposal Sita Area                   | 31,823 ft <sup>2</sup> |         | Eiguno 2                                                                       |  |
| Disposai Site Al ca                  | 0.73                   | acres   | rigui e 2                                                                      |  |
| Average Vertical LNAPL Thickness     | 3.4                    | ft      | Table 1                                                                        |  |
| LNAPL Containing Soil                | 4,007                  | yds     | Table E-1                                                                      |  |
|                                      | 6011                   | tons    | -                                                                              |  |
| Overburden Volume <sup>(1)(2)</sup>  | 11,786                 | yds     | Assume 10 ft average                                                           |  |
|                                      | 17,680                 | tons    | thickness                                                                      |  |
| Dewatering Volume <sup>(3)</sup>     | 598,400                | gallons | Assume 25% specific<br>yield of one pore volume<br>required for<br>dewatering. |  |

# Notes:

1) Assumes no side slopes in excavation.

2) Assumes excavation will be surrounded by sheet pile.

3) Assumes insignificant leakage through sheet pile joints and underlying fine sand, silt, clay materials.

# Table G-3 Cost Estimate: Soil Excavation and Off-Site Recycling - 4,000 tons Atlantic Bridge Project Weymouth Compressor Station 6 and 50 Bridge Street Weymouth, Massachusetts

| Description                                           | Quantity                        | Units       | Unit Cost    | Cost        | Data source                             |
|-------------------------------------------------------|---------------------------------|-------------|--------------|-------------|-----------------------------------------|
| TRC Consulting & Field Work                           |                                 |             |              |             |                                         |
| Soil & GW precharacterization for disposal (TRC)      | 0                               | Day         | \$2,000      | \$0         | Assume existing data adequate           |
| RGP Application / SWPPP NOI & NOT                     | 1                               | LS          | \$15,000     | \$15,000    | JPS Estimate                            |
| Well abandonment oversight                            | 3                               | Day         | \$2,000      | \$6,000     | JPS Estimate; increased.                |
| Remediation Plans & Specifications / Bid Support      | 1                               | LS          | \$50,000     | \$50,000    | JPS Estimate                            |
| Project and Construction Management/Meetings          | 1                               | LS          | \$200,000    | \$200,000   | JPS Estimate                            |
| Excavation Oversight (labor/PID/1 dust meter)         | 51                              | Days        | \$2,000      | \$102,000   | JPS Estimate, reduced to 36%            |
| IRACS/RAM Plan & RAM Completion Reports               | 0                               | LS          | \$25,000     | \$0         | JPS Estimate, assume not relevant       |
| PSS with AUL (assumes survey needed)                  | 0                               | LS          | \$30,000     | \$0         | JPS Estimate                            |
| CWA compliance (ConCom/ACE/MassDEP)                   | 1                               | LS          | \$40,000     | \$40,000    | Placeholder guess                       |
|                                                       | Sı                              | ibtotal Con | sulting Work | \$413,000   |                                         |
| TRC Subcontractors                                    |                                 |             |              |             |                                         |
| Soil precharacterization for disposal (lab)           | 0                               | ea          | \$1,000      | \$0         | Assume existing data adequate           |
| Soil precharacterization for disposal (driller)       | 0                               | day         | \$2,000      | \$0         | Assume existing data adequate           |
| Well abandonment (13 wells)(driller)                  | 0                               | LS          | \$3,000      | \$0         | Assume existing data adequate           |
| RGP Compliance Sampling (lab)                         | 1                               | LS          | \$17,000     | \$17,000    | JPS Estimate                            |
| Post-Excavation Soil Testing (lab)                    | 1                               | LS          | \$10,000     | \$10,000    | JPS Estimate                            |
|                                                       |                                 |             |              |             |                                         |
|                                                       | Subtotal TRC Subcontractors Wor |             |              | \$27,000    |                                         |
| Contractor Site Prep, Earthwork, Dewatering           |                                 |             |              |             |                                         |
| Mobilization and Contractor Work Plans                | 1                               | LS          | \$25,000     | \$25,000    | JPS Estimate                            |
| Mow grass                                             | 1                               | LS          | \$1,500      | \$1,500     | Placeholder guess                       |
| Temporary fence adjacent to pavement                  | 400                             | LF          | \$7          | \$2,800     | Approximation from past projects        |
|                                                       |                                 |             |              | · · · · ·   |                                         |
| Erosion controls (installed)                          | 1000                            | LF          | \$15         | \$15,000    | Scaled from Figure 2.                   |
|                                                       |                                 |             |              |             |                                         |
| Excavator/operator/1 laborer (prevailing wage)        | 44                              | Day         | \$3,000      | \$132,000   | NRC (formerly Enpro); reduced by 15%    |
| 2nd laborer (prevailing wage)                         | 44                              | Day         | \$1,000      | \$44,000    | NRC (formerly Enpro); reduced by 15%    |
| Front Loader and Operator (prevailing wage)           | 43                              | Day         | \$2,200      | \$94,600    | NRC (formerly Enpro); reduced by 15%    |
| Roller and Operator (prevailing wage)                 | 43                              | Day         | \$2,200      | \$94,600    | JPS Estimate, reduced by 15%.           |
| Dozer and Operator (prevailing wage)                  | 43                              | Day         | \$2,200      | \$94,600    | JPS Estimate, reduced by 15%.           |
| Dump truck and driver (prevailing wage)               | 76                              | Day         | \$1,600      | \$121,600   | NRC (formerly Enpro)                    |
| Contaminated soil removal (Trans & disposal)          | 4000                            | Ton         | \$100        | \$400,000   | Table E-2 estimate                      |
| Backfill material (cert clean natural crushed gravel) | 4000                            | Ton         | \$20         | \$80,000    | Table E-2 estimate                      |
| Geotextile fabric                                     | 40000                           | Sq ft       | \$1          | \$40,000    | Includes 25% overlap                    |
| Polysheeting                                          | 50                              | Rolls       | \$200        | \$10,000    | JPS Estimate                            |
| Temporarily remove and replace fence                  | 1                               | LS          | \$10,000     | \$10,000    | Placeholder guess                       |
| Odor control allowance (mob/demob/1 month)            | 1                               | LS          | \$18,000     | \$18,000    | Approximation from past projects        |
| Shoring along road (install and removal)              | 25,000                          | Sq ft       | \$50         | \$1,250,000 | 1000 LF x 25 ft deep                    |
| Seismic monitoring during sheet piling                | 10                              | Day         | \$1,000      | \$10,000    | Approximation from past projects        |
| Water treatment system (mob/demob/disposal)           | 1                               | LS          | \$15,000     | \$15,000    | JPS Estimate                            |
| Water treatment system operation (Grade 2I)           | 750,000                         | Gal         | \$1          | \$750,000   | Table E-2 plus 25% for leakage, runoff. |
| Fractionation tank rental (2) (mob/demob/1 month)     | 1                               | LS          | \$6,000      | \$6,000     | JPS Estimate                            |
| Frac tank cleaning (2) (prevailing wage)              | 1                               | LS          | \$8,000      | \$8,000     | NRC (formerly Enpro)                    |
| Frac tank residuals disposal (non-haz)                | 40                              | Drum        | \$250        | \$10,000    | CDR-increased based on Table E-2        |
| Oil absorbents and disposal of spent in drums         | 1                               | LS          | \$10,000     | \$10,000    | Placeholder guess                       |
| Police Details                                        | 16                              | Day         | \$450        | \$7,200     | JPS Estimate                            |
|                                                       |                                 |             |              |             |                                         |
|                                                       | 0                               | htered Co   | × × × × × ×  | 02 240 000  |                                         |
|                                                       | Su                              | idtotal Con | ractor Work  | \$3,249,900 |                                         |
| Contingency                                           | 15                              | Percent     | Subtotal     | \$553,485   |                                         |
| Total                                                 |                                 |             |              | \$4,243,385 |                                         |
|                                                       |                                 |             |              |             |                                         |

## Table G-4 Cost Estimate: In-Situ Bioremediation Atlantic Bridge Project Weymouth Compressor Station 6 and 50 Bridge Street Weymouth, Massachusetts

| Description                                           | Quantity   | Units       | Unit Cost        | Cost        | Data source                                     |
|-------------------------------------------------------|------------|-------------|------------------|-------------|-------------------------------------------------|
| TRC Consulting & Field Work                           |            |             |                  |             |                                                 |
| Soil Bioremediation Pilot & Full Scale Management     | 1          | LS          | \$300.000        | \$300.000   | CDR Estimate                                    |
| RGP Application / SWPPP NOI & NOT                     | 1          | LS          | \$15,000         | \$15,000    | JPS Estimate                                    |
| Well abandonment oversight                            | 0          | Dav         | \$2.000          | \$0         | JPS Estimate: increased.                        |
| Remediation Plans & Specifications / Bid Support      | 1          | LS          | \$50.000         | \$50.000    | JPS Estimate                                    |
| Project and Construction Management/Meetings          | 1          | LS          | \$100,000        | \$100,000   | CDR Estimate                                    |
| Excavation Oversight (labor/PID/1 dust meter)         | 0          | Davs        | \$2.000          | \$0         | JPS Estimate, reduced to 36%                    |
| IRACS/RAM Plan & RAM Completion Reports               | 0          | LS          | \$25.000         | \$0         | JPS Estimate, assume not relevant               |
| PSS with AUL (assumes survey needed)                  | 0          | LS          | \$30.000         | \$0         | JPS Estimate                                    |
| CWA compliance (ConCom/ACE/MassDEP)                   | 1          | LS          | \$40.000         | \$40.000    | Placeholder guess                               |
|                                                       | S          | ubtotal Cor | sulting Work     | \$505,000   | 6                                               |
| TRC Subcontractors                                    |            |             |                  |             |                                                 |
| Soil precharacterization for bioremediation (lab)     | 1          | ea          | \$20.000         | \$20.000    | CDR Estimate                                    |
| Soil Pilot Study (excavator)                          | 5          | dav         | \$3,000          | \$15,000    | Assume 5 days                                   |
| Soil Sampling- Pre- & Post Pilot and Full Scale (lab) | 40         | ea          | \$300            | \$12.000    | Assume existing data adequate                   |
| Soil Tilling                                          | 10         | LS          | \$3,000          | \$30,000    | Assume 1 day/event                              |
| RGP Compliance Sampling (lab)                         | 1          | LS          | \$17,000         | \$17,000    | JPS Estimate                                    |
|                                                       | Subtotal T | RC Subcont  | ractors Work     | \$94,000    |                                                 |
|                                                       |            |             |                  |             |                                                 |
| Contractor Site Prep, Earthwork, Dewatering           | 1          | T.C.        | # <b>2</b> 5,000 | ¢25.000     |                                                 |
| Mobilization and Contractor Work Plans                | 1          | LS          | \$25,000         | \$25,000    | JPS Estimate                                    |
| Mow grass                                             | 1          | LS          | \$1,500          | \$1,500     | Placeholder guess                               |
| Temporary rence adjacent to pavement                  | 400        | LF          | \$7              | \$2,800     | Approximation from past projects                |
| Erosion controls (installed)                          | 1000       | LF          | \$15             | \$15,000    | Scaled from Figure 2.                           |
| Excavator/operator/1 laborer (prevailing wage)        | 44         | Day         | \$3,000          | \$132,000   | NRC (formerly Enpro); reduced by 15%            |
| 2nd laborer (prevailing wage)                         | 44         | Day         | \$1,000          | \$44,000    | NRC (formerly Enpro); reduced by 15%            |
| Front Loader and Operator (prevailing wage)           | 43         | Day         | \$2,200          | \$94,600    | NRC (formerly Enpro); reduced by 15%            |
| Roller and Operator (prevailing wage)                 | 43         | Day         | \$2,200          | \$94,600    | JPS Estimate, reduced by 15%.                   |
| Dozer and Operator (prevailing wage)                  | 43         | Day         | \$2,200          | \$94,600    | JPS Estimate, reduced by 15%.                   |
| Dump truck and driver (prevailing wage)               | 76         | Day         | \$1,600          | \$121,600   | NRC (formerly Enpro)                            |
| Contaminated soil removal (Trans & disposal)          | 1000       | Ton         | \$100            | \$100,000   | Assume 1000 cy soil cannot be used as backfill. |
| Backfill material (cert clean natural crushed gravel) | 3000       | Ton         | \$20             | \$60,000    | Assume 1000 cy soil cannot be used as backfill. |
| Geotextile fabric                                     | 40000      | Sq ft       | \$1              | \$40,000    | Includes 25% overlap                            |
| Polysheeting                                          | 50         | Rolls       | \$200            | \$10,000    | JPS Estimate                                    |
| Temporarily remove and replace fence                  | 1          | LS          | \$10,000         | \$10,000    | Placeholder guess                               |
| Odor control allowance (mob/demob/1 month)            | 1          | LS          | \$18,000         | \$18,000    | Approximation from past projects                |
| Shoring along road (install and removal)              | 25,000     | Sq ft       | \$50             | \$1,250,000 | 1000 LF x 25 ft deep                            |
| Seismic monitoring during sheet piling                | 10         | Day         | \$1,000          | \$10,000    | Approximation from past projects                |
| Water treatment system (mob/demob/disposal)           | 1          | LS          | \$15,000         | \$15,000    | JPS Estimate                                    |
| Water treatment system operation (Grade 2I)           | 750,000    | Gal         | \$1              | \$750,000   | Table E-2 plus 25% for leakage, runoff.         |
| Fractionation tank rental (2) (mob/demob/1 month)     | 1          | LS          | \$6,000          | \$6,000     | JPS Estimate                                    |
| Frac tank cleaning (2) (prevailing wage)              | 1          | LS          | \$8,000          | \$8,000     | NRC (formerly Enpro)                            |
| Frac tank residuals disposal (non-haz)                | 40         | Drum        | \$250            | \$10,000    | CDR-increased based on Table E-2                |
| Oil absorbents and disposal of spent in drums         | 1          | LS          | \$10,000         | \$10,000    | Placeholder guess                               |
| Police Details                                        | 16         | Day         | \$450            | \$7,200     | JPS Estimate                                    |
|                                                       |            |             |                  |             |                                                 |
|                                                       |            |             | L                |             |                                                 |
|                                                       | S          | ubtotal Con | tractor Work     | \$2,929,900 |                                                 |
| Contingency                                           | 15         | Percent     | Subtotal         | \$529,335   |                                                 |
| Total                                                 |            |             |                  | \$4,058,235 |                                                 |
|                                                       |            |             |                  |             |                                                 |

# **APPENDIX H**

# **ACTIVITY AND USE LIMITATION**

# Form 1075

<u>Note</u>: Pursuant to 310 CMR 40.1074(5), upon transfer of any interest in or a right to use the property or a portion thereof that is subject to this Notice of Activity and Use Limitation, the Notice of Activity and Use Limitation shall be incorporated either in full or by reference into all future deeds, easements, mortgages, leases, licenses, occupancy agreements or any other instrument of transfer. Within 30 days of so incorporating the Notice of Activity and Use Limitation in a deed that is recorded or registered, a copy of such deed shall be submitted to the Department of Environmental Protection.

# NOTICE OF ACTIVITY AND USE LIMITATION M.G.L. c. 21E, § 6 and 310 CMR 40.0000

Disposal Site Name: <u>Calpine Fore River – 6 & 50 Bridge Street</u>, Weymouth, Massachusetts DEP Release Tracking No.(s): 4-26230, 4-26243

This Notice of Activity and Use Limitation ("Notice") is made as of this \_\_day of \_\_\_\_\_, 2018, by <u>Algonquin Gas Transmission, LLC, 890 Winter Street, Suite 300, Waltham, Massachusetts 02451</u>, together with his/her/its/their successors and assigns (collectively "Owner").

# WITNESSETH:

WHEREAS, Algonquin Gas Transmission, LLC is the owner(s) in fee simple of that certain parcel(s) of land located in Weymouth, Norfolk County, Massachusetts, with the buildings and improvements thereon, pursuant to a deed recorded with the Norfolk Registry of Deeds in Book <u>34726</u>, Page <u>482</u>;

WHEREAS, said parcel(s) of land, which is more particularly bounded and described in Exhibit A, attached hereto and made a part hereof ("Property") is subject to this Notice of Activity and Use Limitation. The Property is shown on a plan recorded with the Norfolk Registry of Deeds in Book [to be determined], Page [to be determined];

WHEREAS, a portion of the Property ("Portion of the Property") is subject to this Notice of Activity and Use Limitation. The Portion of the Property is more particularly bounded and described in Exhibit A-1, attached hereto and made a part hereof. The Portion of the Property is shown on a plan recorded with the Norfolk Registry of Deeds in Plan Book [to be determined], Page [to be determined];

WHEREAS, the Portion of the Property comprises all of a Disposal Site as the result of a release of oil and/or hazardous material. Exhibit B is a sketch plan showing the relationship of the Portion of the Property subject to this Notice of Activity and Use Limitation to the boundaries of said disposal site existing within the limits of the Property and to the extent such boundaries have been established. Exhibit B is attached hereto and made a part hereof; and

WHEREAS, one or more response actions have been selected for the Disposal Site in accordance with M.G.L. c. 21E ("Chapter 21E") and the Massachusetts Contingency Plan, 310 CMR 40.0000 ("MCP"). Said response actions are based upon (a) the restriction of human access to and contact with oil and/or hazardous material in soil and/or (b) the restriction of certain activities occurring in, on, though, over or under the Portion of the Property. A description of the basis for such restrictions, and the oil and/or hazardous material release event(s) or site history that resulted in the contaminated media subject to the Notice of Activity and Use

# Limitation is attached hereto as Exhibit C and made a part hereof;

# Form 1075: continued

NOW, THEREFORE, notice is hereby given that the activity and use limitations set forth in this Notice of Activity and Use Limitation are as follows:

1. <u>Activities and Uses Consistent with Maintaining No Significant Risk Conditions</u>. The following Activities and Uses are consistent with maintaining a Permanent Solution and a condition of No Significant Risk and, as such, may occur on the Portion of the Property pursuant to 310 CMR 40.0000:

- Use for commercial and/or industrial uses, including but not limited to: banking and retail; business, professional, or governmental offices; manufacturing, automotive, or industrial uses; restaurants; municipal government facilities; public utilities facilities; and pedestrian and/or vehicle traffic and vehicle parking;;
- (ii) Construction of occupied buildings, if such are completed in accordance with the Obligations and Conditions set forth in Paragraph 3 of this Notice of Activity and Use Limitation;
- (iii) Gardening of agricultural crops for human consumption only using raised beds with imported clean soil;
- (iv) Activities associated with emergency utility repair of existing utilities;
- Activities associated with construction/excavation, if such activities are conducted in accordance with the Obligations and Conditions set forth in Paragraph 3 of this Notice of Activity and Use Limitation;
- (vi) Such other activities or uses which, in the Opinion of a Licensed Site Professional, shall present no greater risk of harm to health, safety, public welfare or the environment than the activities and uses set forth in this Paragraph; and
- (vii) Such other activities and uses not identified in Paragraph 2 as being Activities and Uses Inconsistent with maintaining No Significant Risk Conditions.

2. <u>Activities and Uses Inconsistent with Maintaining No Significant Risk</u> <u>Conditions</u>. The following Activities and Uses are inconsistent with maintaining a Permanent Solution and a condition of No Significant Risk pursuant to 310 CMR 40.0000, and, as such, may not occur on the Portion of the Property:

(i) Residential use;

- Uses where children may be present with high frequency and/or may engage in activities associated with high intensity soil exposure including, but not limited to, recreational (park, playground, athletic field), school, and daycare; and
- (iii) Any activity including, but not limited to, excavation, which is likely to disturb light non-aqueous phase liquid (LNAPL) in the smear zone greater than 10 feet below existing grade, unless such activities are conducted in accordance with the Obligations and Conditions in Paragraph 3 of this Notice of Activity and Use Limitation.

3. <u>Obligations and Conditions</u>. The following obligations and/or conditions are necessary and shall be undertaken and/or maintained at the Portion of the Property to maintain a Permanent Solution and a condition of No Significant Risk:

- (i) A minimum depth of ten (10) feet to LNAPL beneath the Portion of the Property must be maintained;
- Prior to construction of occupied buildings, the potential for vapor intrusion associated with LNAPL must be evaluated by a Licensed Site Professional and/or mitigated (as appropriate) through the use of engineering controls;
- (iii) New utilities installed within the Portion of the Property where LNAPL is present should be placed in vapor-tight utility vaults for the protection of emergency utility workers;
- (iv) A Soil/LNAPL Management Plan must be prepared by a Licensed Site Professional and implemented prior to the commencement of any planned (non-emergency) intrusive construction activity within the Portion of the Property for the potential to encounter LNAPL. The Soil/LNAPL Management Plan shall describe soil excavation, handling, storage, transport, and disposal procedures and include a description of the engineering controls and air monitoring procedures to be implemented so that workers and receptors in the vicinity are not impacted by fugitive vapors. The Soil/LNAPL Management Plan must identify provisions to contain, collect, recover, store, and remove LNAPL if it is encountered. On-site workers must be informed of the requirements of the Soil/LNAPL Management Plan, and it must be available on-site throughout the course of the construction project;
- (v) A Health and Safety Plan must be prepared by a Certified Industrial Hygienist or other qualified individual and implemented prior to the commencement of any planned (non-emergency) intrusive construction activity within the Portion of the Property. The Health and Safety Plan shall specify the type of personal protective equipment, engineering

controls, and environmental monitoring necessary to prevent worker exposures to LNAPL through dermal contact, ingestion, and/or inhalation. Workers must be informed of the requirements of the Health and Safety Plan, and it must be available on-site throughout the course of the construction project; and

(vi) Soils within the Portion of the Property may not be relocated or removed from the Portion of the Property, unless such activity is first evaluated by a Licensed Site Professional who renders an Opinion that states that such relocation is consistent with maintaining a condition of No Significant Risk.

4. <u>Proposed Changes in Activities and Uses</u>. Any proposed changes in activities and uses at the Portion of the Property which may result in higher levels of exposure to oil and/or hazardous material than currently exist shall be evaluated by a Licensed Site Professional who shall render an Opinion, in accordance with 310 CMR 40.1080, as to whether the proposed changes are inconsistent with maintaining a Permanent Solution and a condition of No Significant Risk. Any and all requirements set forth in the Opinion to meet the objective of this Notice shall be satisfied before any such activity or use is commenced.

5. <u>Violation of a Permanent or Temporary Solution</u>. The activities, uses and/or exposures upon which this Notice is based shall not change at any time to cause a significant risk of harm to health, safety, public welfare, or the environment or to create substantial hazards due to exposure to oil and/or hazardous material without the prior evaluation by a Licensed Site Professional in accordance with 310 CMR 40.1080, and without additional response actions, if necessary, to maintain a condition of No Significant Risk.

If the activities, uses, and/or exposures upon which this Notice is based change without the prior evaluation and additional response actions determined to be necessary by a Licensed Site Professional in accordance with 310 CMR 40.1080, the owner or operator of the Portion of the Property subject to this Notice at the time that the activities, uses and/or exposures change, shall comply with the requirements set forth in 310 CMR 40.0020.

6. <u>Incorporation Into Deeds</u>, <u>Mortgages</u>, <u>Leases</u>, <u>and Instruments of Transfer</u>. This Notice shall be incorporated either in full or by reference into all future deeds, easements, mortgages, leases, licenses, occupancy agreements or any other instrument of transfer, whereby an interest in and/or a right to use the Property or a portion thereof is conveyed in accordance with 310 CMR 40.1074(5).

Owner hereby authorizes and consents to the filing and recordation and/or registration of this Notice, said Notice to become effective when executed under seal by the undersigned Licensed Site Professional, and recorded and/or registered with the appropriate Registry(ies) of Deeds and/or Land Registration Office(s).

WITNESS the execution hereof under seal this \_\_\_\_\_ day of \_\_\_\_\_, 2018.

ALGONQUIN GAS TRANSMISSION, LLC By Its Operator

# SPECTRA ALGONQUIN MANAGEMENT, LLC,

By: \_\_\_\_\_

, ss

Name:

Title:

# COMMONWEALTH OF MASSACHUSETTS

\_\_\_\_\_, 2018

On this \_\_\_\_\_ day of \_\_\_\_\_\_, 2018, before me, the undersigned notary public, personally appeared \_\_\_\_\_\_\_ (name of document signer), proved to me through satisfactory evidence of identification, which were \_\_\_\_\_\_, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that (he) (she) signed it voluntarily for its stated purpose.

| (as | partner for          | <u>, a partnership)</u> |   |
|-----|----------------------|-------------------------|---|
| (as | for                  | , a corporation)        |   |
| (as | attorney in fact for | , the principal)        |   |
| (as | for                  | , (a) (the)             | ) |

\_\_\_\_\_ (official signature and seal of notary)

The undersigned Licensed Site Professional hereby certifies that in her Opinion this

Notice of Activity and Use Limitation is consistent with a Permanent Solution and maintaining a condition of No Significant Risk

Date: \_\_\_\_\_

Kelley Race, PG, LSP Licensed Site Professional SEAL

# COMMONWEALTH OF MASSACHUSETTS

\_\_\_\_, ss

\_\_\_\_\_, 2018

On this \_\_\_\_\_ day of \_\_\_\_\_\_, 2018, before me, the undersigned notary public, personally appeared Kelley Race, proved to me through satisfactory evidence of identification, which were \_\_\_\_\_\_, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that she signed it voluntarily for its stated purpose.

as Licensed Site Professional for Algonquin Gas Transmission LLC,

\_\_\_\_ (official signature and seal of notary)

Upon recording, return to:

Algonquin Gas Transmission, LLC 890 Winter Street, Suite 300 Waltham, Massachusetts 02451 EXHIBIT A

LEGAL DESCRIPTION

A CERTAIN PARCEL OF LAND SITUATED IN THE CITY OF WEYMOUTH, IN THE COUNTY OF NORFOLK AND THE COMMONWEALTH OF MASSACHUSETTS BOUNDED AND DESCRIBED AS FOLLOWS:

COMENCING AT A POINT BEING AT STA:7+22.05 ON THE MASS DOT BASELINE FOR ROUTE 3A, LAYOUT 8237 OF 2012; THENCE N 23°56'48" E A DISTANCE OF FIFTY SIX AND NINETY ONE HENDREDTHS FEET (56.91') TO THE POINT OF BEGINNING; THENCE

N 68°41'20" W A DISTANCE OF ONE HUNDRED SIXTY AND TWENTY SIX HUNDREDTHS FEET (160.26') TO A POINT; THENCE

N 70°58'50" W A DISTANCE OF TWO HUNDRED AND ZERO HUNDREDTHS FEET (200.00') TO A POINT; THENCE

N 74°29'20" W A DISTANCE OF TWO HUNDRED THIRTY SEVEN AND NINETY FOUR HUNDREDTHS FEET (237.94') TO A POINT; THENCE

N 15°30'40" E A DISTANCE OF EIGHTEEN AND FORTY HUNDREDTHS FEET (18.40') TO A POINT; THENCE

N 74°29'20" W A DISTANCE OF SIXTY SEVEN AND ZERO HUNDREDTHS FEET (67.00') TO A POINT; THENCE

ALONG THE EXTREME LOW WATER AS SHOWN ON LAND COURT PLAN 7785C APPROXIMATELY ONE THOUSAND FOUR HUNDRED AND SIXTY SEVEN FEET (1,467') TO A POINT; THENCE

S 20°34'21" E A DISTANCE OF SEVENTY EIGHT AND EIGHTY FOUR HUNDREDTHS FEET (78.84') TO A POINT; THENCE

S 66°42'19" E A DISTANCE OF FIFTY ONE AND SIXTY HUNDREDTHS FEET (51.60') TO A POINT; THENCE

N 55°48'02" E A DISTANCE OF TWENTY FOUR AND EIGHTY FOUR HUNDREDTHS FEET (24.84') TO A POINT; THENCE

N 81°57'10" E A DISTANCE OF FORTY EIGHT AND EIGHTY FOUR HUNDREDTHS FEET (48.84') TO A POINT; THENCE

S 06°06'06" W A DISTANCE OF FIVE HUNDRED FORTY TWO AND TWO HUNDREDTHS FEET (542.02') TO A POINT; THENCE

S 76°07'04" W A DISTANCE OF SEVENTY FIVE AND SEVENTY TWO HUNDREDTHS FEET (75.72') TO A POINT; THENCE

SOUTHERLY AND CURVING TO THE RIGHT ALONG THE ARC OF A NON TANGENT CURVE HAVING A RADIUS OF ONE HUNDRED FIFTEEN AND FOURTEEN HUNDREDTHS FEET (115.14'), A LENGTH OF ONE HUNDRED FIFTY EIGHT AND FORTY SEVEN HUNDREDTHS FEET (158.47') AND A CHORD LENGTH OF ONE HUNDRED FORTY SIX AND TWENTY SIX HUNDREDTHS FEET (146.26') WITH A CHORD BEARING OF S 09°32'02" E TO A POINT; THENCE

S 60°02'12" E A DISTANCE OF ELEVEN AND FORTY NINE HUNDREDTHS FEET (11.49') TO A POINT; THENCE

S 15°49'16" E A DISTANCE OF THIRTY SEVEN AND SIXTY TWO HUNDREDTHS FEET (37.62') TO A POINT; THENCE

S 29°32'46" W A DISTANCE OF TEN AND THIRTY EIGHT HUNDREDTHS FEET (10.38') TO A POINT; THENCE

N 60°30'49" W A DISTANCE OF NINETY THREE AND SIXTY HUNDREDTHS FEET (93.60') TO A POINT; THENCE

N 29°29'10" E A DISTANCE OF FIVE AND ZERO HUNDREDTHS FEET (5.00') TO A POINT; THENCE

N 60°30'50" W A DISTANCE OF FOUR HUNDRED FIFTY THREE AND FIVE HUNDREDTHS FEET (453.05') TO THE POINT OF BEGINNING. SAID PARCEL CONTAINING 658,363SQUARE FEET OR 15.114 ACRES MORE OR LESS AS SHOWN ON A PLAN TITLED "SUBDIVISION PLAN OF LAND IN WEYMOUTH MASSACHUSETTS" PREPARED BY VHB, INC. DATED FEBRUARY 1, 2017. **EXHIBIT A-1** 

LEGAL DESCRIPTION

A CERTAIN PARCEL OF LAND SITUATED IN THE CITY OF WEYMOUTH, IN THE COUNTY OF NORFOLK AND THE COMMONWEALTH OF MASSACHUSETTS BOUNDED AND DESCRIBED AS FOLLOWS:

COMENCING AT A POINT BEING AT STA:7+22.05 ON THE MASS DOT BASELINE FOR ROUTE 3A, LAYOUT 8237 OF 2012; THENCE N 23°56'48" E A DISTANCE OF FIFTY SIX AND NINETY ONE HENDREDTHS FEET (56.91'); THENCE N 6°54'26" E A DISTANCE OF SIXTY TWO AND NO HUNDRETHS (62.00 TO THE POINT OF BEGINNING; THENCE

N 08°39'23" E A DISTANCE OF SEVENTY TWO AND FIVE HUNDREDTHS FEET (72.05') TO A POINT; THENCE

N 24°50'01" E A DISTANCE OF SIXTEEN AND NINE HUNDREDTHS FEET (16.09') TO A POINT; THENCE

N 55°22'31" E A DISTANCE OF EIGHTY TWO AND FORTY SIX HUNDREDTHS FEET (82.46') TO A POINT; THENCE

N 57°19'11" E A DISTANCE OF FORTY NINE AND FORTY TWO HUNDREDTHS FEET (49.42') TO A POINT; THENCE

S 80°33'39" E A DISTANCE OF ONE HUNDRED NINETEEN AND THIRTY SEVEN HUNDREDTHS FEET (119.37') TO A POINT; THENCE

S 05°30'42" W A DISTANCE OF ONE HUNDRED SIXTY EIGHT AND NINETY THREE HUNDREDTHS FEET (168.93') TO A POINT; THENCE

S 07°53'51" W A DISTANCE OF SEVENTY TWO AND ELEVEN HUNDREDTHS FEET (72.11') TO A POINT; THENCE

S 70°21'21" W A DISTANCE OF EIGHT AND NINETEEN HUNDREDTHS FEET (8.19') TO A POINT; THENCE

NORTHWESTERLY AND CURVING TO THE RIGHT ALONG THE ARC OF A CURVE HAVING A RADIUS OF SIX HUNDRED THIRTY SEVEN AND THIRTY TWO HUNDREDTHS FEET (637.32'), A LENGTH OF ONE HUNDRED NINETY FIVE AND FOURTEEN HUNDREDTHS FEET (195.14') AND A CHORD LENGTH OF 194.38 FEET (194.38') WITH A CHORD BEARING OF N 66°01'33" W TO A POINT; THENCE

N 54°45'49" W A DISTANCE OF FORTY AND EIGHTY THREE HUNDREDTHS FEET (40.83') TO THE POINT OF BEGINNING.

SAID PARCEL CONTAINING 45084.75 SQUARE FEET OR 1.035 ACRES MORE OR LESS AS SHOWN ON A PLAN TITLED "ACTIVITY USE LIMITATION PLAN OF LAND IN WEYMOUTH MASSACHUSETTS" PREPARED BY VHB, INC. DATED SEPTEMBER 27, 2017.
EXHIBIT B



EXHIBIT C

#### Activity and Use Limitation Opinion 6 & 50 Bridge Street Algonquin Gas Transmission, LLC Weymouth, Massachusetts

#### Introduction

In accordance with the requirements of 310 CMR 40.1074, this Activity and Use Limitation (AUL) Opinion has been prepared to maintain a condition of No Significant Risk for the Massachusetts Department of Environmental Protection (MassDEP) Disposal Site that is tracked under Release Tracking Numbers (RTNs) 4-26230 and 4-26243. The Disposal Site is identified as an approximate one-acre portion within the four-acre North Parcel of the approximately 12.3-acre Atlantic Bridge Project Weymouth Compressor Station (ABPWCS) Property (the Property), a triangular peninsula lying northeast of Route 3A (Bridge Street), at 6 & 50 Bridge Street, Norfolk County, Weymouth, Massachusetts.

The area subject to this AUL is shown on Exhibit B and is roughly coincident with the boundaries of the Disposal Site for RTNs 4-26230 and 4-26243. The Property is currently owned by Algonquin Gas Transmission, LLC (Algonquin) and is a combination of vegetated land, asphalt paved and unpaved access roads, storage areas, and an existing Algonquin metering and regulating station on the southwest portion. A Massachusetts Water Resources Authority (MWRA) pumping station abuts the Property on the northeast. There is an existing public walkway located directly east of the Property along King's Cove.

On July 29, 2016, RTN 4-26230 was issued in response to Reportable Concentrations (RCs) of petroleum-related compounds detected in soil above applicable RCs for category S-1 soil (RCS-1). The same day RTN 4-26243 was issued in response to a 72-hour reporting condition pursuant to 310 CMR 40.0314 that was triggered when greater than 0.5 inch of oil (referred to as light non-aqueous phase liquid or LNAPL) was observed in a monitoring well (MW-201) on the Property.

The AUL area and the larger 6 & 50 Bridge Street Property are shown on "Activity and Use Limitation Plan of Land in Weymouth, MA, Prepared for Spectra Energy Partners, LLC, Prepared by Vanasse Hangen Brustlin, Inc., Dated September 27, 2017", which is included by reference in the Notice of AUL for which this opinion has been prepared.

#### Reason for Activity and Use Limitation (310 CMR 40.1074(2)(e)

Based on the persistent presence of LNAPL in the subsurface at depths greater than 10 feet below existing grade, an AUL is required for the Disposal Site to prevent direct contact with LNAPL. In addition, the AUL requires restriction on future use of the Disposal Site and further investigation of the potential vapor intrusion pathway and/or engineering controls installed to mitigate the vapor intrusion pathway if building construction occurs within the Disposal Site boundary where LNAPL is present.

# Site History, Summary of Release and Response Actions Taken to Address the Release (310 CMR 40.1074(2)(f)

Review of available historical maps indicate that the Property within which the Disposal Site is situated historically consisted of significantly less upland area and was undeveloped. Following tideland filling activities in approximately the late 1910s/early 1920s, the areal footprint of the Property as depicted in the historic record remains largely unchanged. The source(s) of the material used to fill the Property is unknown; however, an off-site and off-property source(s) of material would have been required given that much of the current footprint of the Property was tidal until at least 1917. Ancillary filling during operation of Boston Edison's Edgar Station south of the Property would also have originated off-property. Consistent with the timeframe for development of the Edgar Station, the Sanborn<sup>®</sup> Fire Insurance Map from 1927 indicates significant filling has occurred between the Weymouth Fore River and King's Cove and the Illuminating Company of Boston is depicted as occupying and staging coal at the Property. Although the eastern portion of the Property remains undeveloped, the Illuminating Company of Boston remains present through at least 1962 and coal storage occurs until at least 1969 within the western portion of the Property.

Two above ground storage tanks (ASTs), a No. 2 Fuel Oil tank with a capacity of 11,256,000 gallons and a Fuel Additive tank with a 6,000-gallon capacity, were present on the Property. The larger Fuel Oil AST was installed in the late 1970s and the historic photographic record indicates that the Fuel Oil AST was removed sometime between January 2004 and April 2005. The smaller Fuel Additive AST was installed in 1990 and removed from the property in 1997.

Summarized below are the previous investigations conducted at the Property and Disposal Site that are regarded to be representative of current Site conditions or have triggered RTNs in the past.

Investigations on the Property lead to ABB Environmental Services (ABB) completing a partial Response Action Outcome (RAO) Statement for RTN 4-3002387 (previously identified as RTN 3-2387 before the Town of Weymouth was moved from MassDEP Region 3 to Region 4). In the July 1997 Class B-1 RAO, ABB identified contaminant concentrations in soil that exceeded applicable cleanup criteria (e.g., arsenic concentrations of up to 228 mg/kg). However, ABB attributed those concentrations to the presence of coal ash, which was observed during boring advancement and test pitting. ABB inferred contaminant concentrations identified were not reportable to MassDEP due to a Massachusetts Contingency Plan (MCP, 310 CMR 40.0000) reporting exemption for coal/coal ash.

TRC observed geotechnical soil investigations completed by others in June 2015, December 2015, and April 2016. Geotechnical investigations included the completion of soil borings (June 2015 and April 2016) and test pits (December 2015) and identified the presence of anthropogenic materials in soil beneath the Property up to 22 feet below grade. TRC collected soil samples for laboratory analysis during geotechnical investigation activities.

Soil analytical results indicated the presence of metals (particularly arsenic) at concentrations consistent with those identified by ABB. During installation of geotechnical soil boring B-105 in April 2016, TRC observed soils containing viscous petroleum from approximately 14 to 17 feet below grade. Laboratory analysis for volatile and extractable petroleum hydrocarbons of soil

collected at B-105 between 14 -17' identified extractable petroleum hydrocarbons in excess of MCP RCS-1 Standards. This reporting condition resulted in MassDEP assigning RTN 4-26230.

In May 2016, TRC oversaw the installation of five soil borings and monitoring wells (B/MW-201 through 205) to evaluate the extent of the petroleum identified at boring B-105. Petroleum staining consistent with that observed at B-105 was identified at B/MW-201 from approximately 12 to 18 feet below grade. No visual or olfactory indicators of petroleum contamination were observed at borings B/MW-202 through B/MW-205.

On July 29, 2016, during gauging of monitoring wells on the Disposal Site, TRC identified greater than 0.5 inch of LNAPL in monitoring well MW-201, triggering a 72-hour reporting condition, pursuant to 310 CMR 40.0313(1). This reporting condition resulted in MassDEP assignment of RTN 4-26243.

TRC conducted Immediate Response Actions (IRA) from August 2016 to November 2017 (date of IRA Status Report #3) to address RTN 4-26243. Measures taken under the IRA included:

- Gauging of monitoring wells to evaluate the thickness of LNAPL present, at frequencies up to weekly;
- Characterization of the LNAPL via petroleum fingerprint analysis;
- Installation of 37additional soil borings to evaluate the extent of LNAPL;
- Collection of soil samples from soil borings to evaluate soil contaminant concentrations;
- Installation of 18 additional groundwater monitoring wells;
- Completion of 4 seasonal rounds of groundwater sample collection from all wells on the Property for laboratory analysis of volatile and/or extractable petroleum hydrocarbons;
- Deployment/removal/disposal of oil-absorbent socks on a weekly or biweekly basis in wells with persistent LNAPL;
- Completion of a skim test to evaluate LNAPL recoverability; and,
- Collection of soil cores for specialty laboratory analysis to evaluate LNAPL saturation levels in soils, fluid properties of the LNAPL, and fluid transport properties of the soil.

Based on the actions completed under the IRA, TRC concluded the following:

- The LNAPL was identified as weathered No. 2 Fuel Oil;
- LNAPL was observed in several of the borings and in monitoring wells proximate to the footprint of the former 11,256,000-gallon No. 2 Fuel Oil AST;
- The depth to product ranges from approximately 10 feet below existing grade to 12.6 feet below grade.
- Volatile and extractable petroleum hydrocarbon concentrations in groundwater did not exceed MCP Method 1 GW-2 and GW-3 criteria in any of the sampling events (August 2016, November 2016, January 2017, March 2017, and June 2017), which indicates a

lack of a significant dissolved phase plume. The lack of elevated soil jar headspace readings supports the lack of a significant soil vapor plume in the vadose zone. A limited potential may exist for volatile components of the LNAPL to partition into soil and soil vapor and impact air in future buildings and underground utilities

- LNAPL occurs mostly in Historic Fill at a depth ranging between approximately 10 and 18 feet below existing grade. Petroleum-containing soil ranged from 0.2 to 6 feet in thickness, averaging 3.3 feet. LNAPL and petroleum-containing soil decreases abruptly in all direction supporting that capillary forces have stabilized the release. LNAPL is not observed in the outer perimeter of monitoring wells. Thus, gauging data supports it is not migrating.
- LNAPL thickness was gauged weekly or biweekly in Disposal Site monitoring wells between August 29, 2016 and June 19, 2017. The LNAPL is observed to be a black, viscous, sticky liquid that tends to make LNAPL thickness measurements difficult and biased high. The LNAPL transmissivity (Tn) ranged from 0.537 ft<sup>2</sup>/d to 0.0027 ft<sup>2</sup>/day, which are below the ASTM 2856 criterion of 0.8 ft<sup>2</sup>/day, and supports it is infeasible to initiate LNAPL removal operations.
- Chemical analysis of the LNAPL indicates it consists primarily of long chain C11-C22 aromatic and C9-C36 aliphatic petroleum hydrocarbon compounds. The dynamic viscosity of the LNAPL was determined to be 43,641 cP at 50°F (similar to groundwater temperature), and is 4 orders of magnitude higher than a cutoff point of 2-3 cSt for significant migration<sup>1</sup>. A comparison of Disposal Site conditions to those in MassDEP's Policy #WSC-16-450 indicates "hydraulic/vacuum recovery technologies are deemed to be infeasible."
- An Imminent Hazard (IH) is not presented by the impacts that have come to be located at this Disposal Site. This determination is based on a review of criteria for conditions "deemed to pose" an IH under 310 CMR 40.0321(1) and the criteria for conditions that "could pose" an IH under 310 CMR 40.0321(2).
- The extent of LNAPL is bounded by wells located on the Disposal Site and Property at greater distances from the former Fuel Oil AST boundary, including wells MW-416 and MW-417 located beyond the fence line.

Additional information on the response actions that have been conducted at the Disposal Site is summarized in the following reports, as well as the forthcoming PSCS:

- IRA Plan, dated September 15, 2016
- IRA Status Report #1, dated November 22, 2016
- IRA Status Report #2, dated May 11, 2017
- Phase I Initial Site Investigation Report and Tier Classification, dated July 28, 2017
- IRA Status Report #3, dated November 16, 2017

<sup>&</sup>lt;sup>1</sup> Assessment and Remediation of Petroleum Contaminated Sites. G. Mattney Cole, CRC Press, Inc. 1994.

• IRA Completion Report, dated [Insert date]

#### Agreement to Reference Notice of AUL

In accordance with 310 CMR 40.1074(2)(h), Algonquin Gas Transmission LLC and its successors and assigns agree to reference the AUL in all deeds, easements, mortgages, leases, licenses, occupancy agreements, or any other agreements which convey an interest in and/or a right to use the portion of the Property subject to the AUL.

#### **Procedures for Changing Permitted Site Activities and Uses**

In accordance with 310 CMR 40.1074(2)(i), a description of the procedures to be followed to ensure that changes in permitted activities and/or uses meet the objectives of the AUL is provided below:

Any proposed changes in activities and/or uses within the AUL boundaries which may result in higher levels of exposure to oil and/or hazardous material than currently exist will be evaluated by an LSP. The LSP will render an Opinion, consistent with 310 CMR 40.1080, as to whether the proposed changes will result in a significant risk of harm to human health, safety, public welfare, or the environment. Any and all requirements set forth above to meet the objective of the AUL will be satisfied before any proposed changes in activity and/or use are initiated.

*Prepared for:* Algonquin Gas Transmission LLC 890 Winter Street, Suite 300, Waltham, Massachusetts 02451

Prepared by: **TRC Environmental Corporation** 650 Suffolk Street Lowell, Massachusetts 01854

Kelley Race, PG, LSP Licensed Site Professional No. 3180

LSP Seal:

Date:

EXHIBIT D

### **EXHIBIT D**

## **DOCUMENTATION OF SIGNATORY AUTHORITY**

I, \_\_\_\_\_, do hereby certify that I am the \_\_\_\_\_, having a principal office at \_\_\_\_\_\_, and that pursuant to a vote of the \_\_\_\_\_\_ on \_\_\_\_\_, \_\_\_\_, I am duly authorized to execute the forgoing document on behalf of the \_\_\_\_\_\_.

In Witness Whereof, I have hereunto set my hand on this \_\_\_\_day of\_\_\_\_\_, 2018.

Name,

as \_\_\_\_\_

#### THE COMMONWEALTH OF MASSACHUSETTS

On this \_\_\_\_\_ day of \_\_\_\_\_\_ 2018, before me, the undersigned notary public, personally appeared \_\_\_\_\_\_\_, proved to me though satisfactory evidence of identification, which was photographic identification with a signature issued by a federal or state governmental agency, oath or affirmation of a credible witness, personal knowledge of the undersigned, to be the person whose name is signed on the preceding or attached documents in my presence.

(Official seal)

\_\_\_\_\_, Notary Public

My Commission Expires:

# **APPENDIX I**

## **PUBLIC INVOLVEMENT NOTICES**



2 Liberty Square 6th Floor Boston, MA 02109 617.350.3444 PHONE 617.350.3443 FAX

www.trcsolutions.com

#### XXXX \_\_, 2018

Daniel McCormack, R.S., C.H.O. Director Weymouth Health Department 75 Middle Street Weymouth, MA 02189

#### Re: Atlantic Bridge Project Weymouth Compressor Station 6 & 50 Bridge Street, Weymouth, Massachusetts RTNs 4-26243 and 4-26230

To Whom It May Concern:

TRC Environmental Corporation (TRC) is providing this notification letter on behalf of Algonquin Gas Transmission, LLC (Algonquin) to inform you of the availability of a Immediate Response Action Report and Permanent Solution with Conditions Statement including an Activity and Use Limitation for the above-referenced release in Weymouth, Massachusetts. A notice of Activity and Use Limitation statement will be published in the Boston Globe, Weymouth News, and Patriot Ledger newspapers the week of \_\_\_\_\_\_, 2018. A copy of that notice and the Activity and Use Limitation is attached to this letter.

The Permanent Solution with Conditions Statement including the Activity and Use Limitation has been provided to your office as part of the information repository established under the Public Involvement Plan site designation. In addition, the documents can viewed on the Massachusetts Department of Environmental Protection (MassDEP release lookup website (<u>http://public.dep.state.ma/SearchableSites/Search.aspx</u>) or at the MassDEP Southeast Regional Office, location at 20 Riverside Drive, Lakeville, MA 02347. The public may request an appointment by calling (508) 946-2700.

If you have any questions concerning this notification, please contact us at (617) 385-6033.

Sincerely, TRC ENVIRONMENTAL CORPORATION

#### DRAFT

Kelley C. Race, P.G., LSP Program Manager DRAFT

Ryan Niles, P.G. Project Manager

cc Gary Davis, Gus Lachlan- Algonquin



2 Liberty Square 6th Floor Boston, MA 02109 617.350.3444 PHONE 617.350.3443 FAX

#### www.trcsolutions.com

#### XXXX <u>,</u> 2018

Town of Weymouth Mayor's Office 75 Middle Street Weymouth, Massachusetts 02189

#### Re: Atlantic Bridge Project Weymouth Compressor Station 6 & 50 Bridge Street, Weymouth, Massachusetts RTNs 4-26243 and 4-26230

To Whom It May Concern:

TRC Environmental Corporation (TRC) is providing this notification letter on behalf of Algonquin Gas Transmission, LLC (Algonquin) to inform you of the availability of an Immediate Response Action Report and Permanent Solution with Conditions Statement including an Activity and Use Limitation for the above-referenced release in Weymouth, Massachusetts. A notice of Activity and Use Limitation statement will be published in the Boston Globe, Weymouth News, and Patriot Ledger newspapers the week of \_\_\_\_\_\_, 2018. A copy of that notice and the Activity and Use Limitation is attached to this letter.

The Permanent Solution with Conditions Statement including the Activity and Use Limitation has been provided to the Health Department as part of the information repository established under the Public Involvement Plan site designation. A copy of the Activity and Use Limitation is attached for your files. In addition, the documents can viewed on the Massachusetts Department of Environmental Protection (MassDEP release lookup website (http://public.dep.state.ma/SearchableSites/Search.aspx) or at the MassDEP Southeast Regional Office, location at 20 Riverside Drive, Lakeville, MA 02347. The public may request an appointment by calling (508) 946-2700.

If you have any questions concerning this notification, please contact us at (617) 385-6033.

Sincerely, TRC ENVIRONMENTAL CORPORATION

#### DRAFT

Kelley C. Race, P.G., LSP Program Manager DRAFT

Ryan Niles, P.G. Project Manager

cc Gary Davis, Gus Lachlan- Algonquin

## **APPENDIX J**

## BEST MANAGEMENT PRACTICES FOR NON-COMMERCIAL GARDENING AT DISPOSAL SITES



Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

DEVAL L. PATRICK Governor MAEVE VALLELY BARTLETT Secretary

> DAVID W. CASH Commissioner

## BEST MANAGEMENT PRACTICES ("BMPS") FOR NON-COMMERCIAL GARDENING

## **AT DISPOSAL SITES**

WSC # 14-910

This document provides guidance on the use of Best Management Practices or "BMPs" for gardening at locations within the boundary of a disposal site cleaned up pursuant to the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000.

This document is intended solely as guidance. It is not a regulation, rule or requirement, and should not be construed as mandatory. It does not create any substantive or procedural rights, and is not enforceable by any party in any administrative proceeding with the Commonwealth. This document provides guidance on approaches the Massachusetts Department of Environmental Protection (MassDEP) considers acceptable for meeting requirements set forth in the MCP. Parties using this guidance should be aware that other acceptable alternatives may be available for achieving and documenting compliance with the applicable regulatory requirements and performance standards of the MCP.

Benjamin J. Ericson Assistant Commissioner

12/31/14

This information is available in alternate format. Call Michelle Waters-Ekanem, Diversity Director, at 617-292-5751. TDD# 1-866-539-7622 or 1-617-574-6868 MassDEP Website: www.mass.gov/dep Printed on Recycled Paper

### 1.0 Introduction: Why Should Gardening Best Management Practices Be Used?

It is not uncommon for properties in Massachusetts to have measurable levels – usually low levels – of contaminants such as lead or petroleum hydrocarbons in soil. These contaminants may be present from natural sources or as a result of human activities on or around the property. Some contamination may require cleanup based on the standards published by the Massachusetts Department of Environmental Protection (MassDEP) in 310 CMR 40.0000, the Massachusetts Contingency Plan (MCP), although even properties that have been cleaned up under the MCP will likely have measurable residual levels of some contaminants remaining in the soil. Such residual levels are safe and protective when they meet the cleanup requirements.

MassDEP recognizes that in a residential setting, yards and gardens are areas where people are most likely to have increased direct and indirect contact with soils, and that many gardeners may wish to further reduce their exposure to even residual contaminants in soil. Therefore MassDEP has developed recommendations for practical techniques, or Best Management Practices ("BMPs"), for non-commercial gardening in areas that may still contain residual levels of contaminants. These BMPs are consistent with national guidance on urban gardening and reflect a consensus among gardening experts on measures that effectively reduce exposure to common contaminants that may occur through non-commercial gardening. They work by isolating the garden from any contamination remaining in the soil below through the use of impermeable barriers and/or raised garden beds, and other relatively simple, common sense measures.

In all cases, the <u>use</u> of the recommended BMPs is optional. The <u>inclusion</u> of BMPs and a recommendation for their use in an MCP Permanent Solution Statement that documents the disposal site assessment and cleanup is required in specific circumstances, however, to inform current and future occupants of a property of practical methods to further reduce exposure to residual soil contaminants during gardening.

### 2.0 Purpose

The purpose of this guidance is to support Potentially Responsible Parties and Licensed Site Professionals in preparing those Permanent Solution Statements that, pursuant to 310 CMR 1056(2)(j)1 and based on a Method 3 risk characterization, require inclusion of "the recommendation and description of Best Management Practices for Non-commercial Gardening in a residential setting to minimize and control potential risk qualitatively evaluated pursuant to 310 CMR 40.0923(3)(c)." More generally, beyond the

required recommendation for BMPs under the MCP, MassDEP encourages the optional use these gardening BMPs or similar measures by gardeners in residential settings who wish to reduce their potential exposure to soil contaminants.

## 3.0 Scope and Applicability

The following provisions are relevant to including the recommendation of gardening BMPs in a Permanent Solution Statement as part of a Permanent Solution with Conditions:

- 310 CMR 40.0006(12) (definition of Best Management Practices for Noncommercial Gardening)
- 310 CMR 40.1056(2)(j)1 (Content of Permanent Solution Statements);
- 310 CMR 40.1041(2)(c)2 (Categories of Permanent Solutions);
- 310 CMR 40.40.1013 (Limitations, Assumptions and Conditions on Site Activities and Uses That Do Not Require an AUL); and
- 310 CMR 40.0923(3)(c) (Identification of Site Activity and Uses).

The MCP defines gardening BMPs as follows:

Best Management Practices for Non-commercial Gardening means current practices generally accepted by practitioners of safe gardening methods that limit potential human exposure to OHM during gardening activities and as the result of consumption of fruits and vegetables grown in a non-commercial garden. Such practices include, but are not limited to: locating garden beds outside of areas affected by releases of OHM; gardening in raised beds above a barrier layer; use of soil and soil amendments unaffected by releases of OHM in garden beds; and covering adjacent areas to limit the transfer of OHM from windborne material into garden beds.

As required at 310 CMR 40.1056(2)(j)1, where applicable to disposal sites evaluated using a Method 3 Risk Characterization, "the recommendation and description of Best Management Practices for Non-commercial Gardening in a residential setting to minimize and control potential risk qualitatively evaluated pursuant to 310 CMR 40.0923(3)(c)" must be included in the disposal site Permanent Solution Statement. The gardening BMPs requirement applies to disposal sites that are demonstrated to pose No Significant Risk of Harm to Health using a Method 3 Risk Characterization that includes:

(a) the assumption of unrestricted use (including residential use) of the property;

(b) a quantitative assessment of direct contact exposures (ingestion, dermal contact and inhalation) to soil; and

(c) a *qualitative* assessment of incremental exposures associated with gardening activities.

In those cases where a *quantitative* assessment of exposures associated with gardening is conducted and the disposal site is shown to meet risk limits for gardening, then inclusion of gardening BMPs descriptions and a recommendation for their use in the Permanent Solution Statement is *not* required. Figure 1 below illustrates when inclusion of gardening BMPs descriptions and a recommendation for their use is required as part of a Permanent Solution with Conditions.

## Figure 1



#### 4.0 Best Management Practices for Non-Commercial Gardening

The attachment below, "Best Management Practices for Non-commercial Gardening at Disposal Sites," is appropriate for use to meet the requirement at 310 CMR 40.1056(2)(j)1 to include in the Permanent Solution Statement a "recommendation and description of Best Management Practices for Non-commercial Gardening in a residential setting to minimize and control potential risk qualitatively evaluated pursuant to 310 CMR 40.0923(3)(c)."

To highlight and assist readers in locating this information in the Permanent Solution Statement, these BMPs should appear under a distinct heading in the Permanent Solution Statement and be identified as a distinct item in the Table of Contents of the Permanent Solution Statement. The narrative of the Permanent Solution Statement should provide some context for the BMPs, including a reference to recommended use of the BMPs as a condition of the Permanent Solution with Conditions. Attachment Best Management Practices for Non-commercial Gardening at Disposal Sites

## Best Management Practices for Non-commercial Gardening at Disposal Sites

This property is part of a disposal site that has been assessed and determined to meet the requirements of a Permanent Solution with Conditions under the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000, where the Conditions include the recommendation of Best Management Practices ("BMPs") for gardening to reduce the potential risks from exposure to contaminated soil that remains on the site.

While the property has been determined to be safe for unrestricted use, including residential use, there are residual levels of contaminants remaining in the soil. Gardeners should consider implementing BMPs to further reduce potential exposure to material in the soil, regardless of the contaminant levels remaining. Implementing BMPs such as those suggested below will allow safer gardening in a wider range of site conditions. Not every BMP is necessary for every single site, but a combination of BMPs appropriate for your particular site will help reduce the potential for additional exposure.

### **Construct Physical Controls and Improve Soil Conditions**

Actions to minimize contact (covering the soil) and reduce contaminant levels (such as amending the soil) will further reduce potential risks. Many good gardening practices, like adding compost and soil amendments, improve the soil while reducing the amount of contaminants and exposure to them. Recommendations include:

- Build your garden away from areas known or suspected to be contaminated. In addition to areas where residual contamination may be present, as identified by the disposal site assessment, other sources of contamination can include painted structures (particularly older buildings that may have been painted with lead paint), roads and rail lines.
- Build a hedge or fence to reduce windblown contamination from mobile sources and busy streets.
- Cover existing soil and walkways with mulch, landscape fabric, stones, or bricks.
- Use mulch in your garden beds to reduce dust and soil splash back, reduce weed establishment, regulate soil temperature and moisture, and add organic matter.
- Use soil amendments (such as lime and compost) to maintain neutral pH and add organic matter to improve soil structure.
  - Not all amendments are the same; be sure to choose the right amendments for your soil - amendments that improve conditions at one garden may not work well in others.
  - Keep in mind that each amendment type will have different application amounts and techniques (e.g., rototilling), and may need to be maintained and reapplied (e.g., annually).

- Be sure to work with your local or state regulatory agency, and ask if your municipality provides free compost or mulch. Obtain compost only from a reputable source that can provide information regarding the quality and type of feedstock used to generate the compost.
- Add topsoil or clean fill from a reputable source that can provide information regarding the quality of the topsoil or fill to ensure the soil is safe for handling by children or gardeners of all ages and for food production.
- Build raised beds or container gardens.
  - Raised beds can be made by simply mounding soil into windrows or by building containers.
  - Raised beds help improve water drainage in heavy clay soils or low-lying areas. They also create accessible gardening locations for many users and allow for more precise soil management.
  - Foot traffic should not be necessary in the bed, so the soil does not become compacted and soil preparation in the coming years is minimized.
  - Place a water permeable fabric cover or geotextile as the bottom layer of your raised bed to further reduce exposure to soils of concern.
  - Sided beds can be made from wood, synthetic wood, stone, concrete block, brick or naturally rot-resistant woods such as cedar and redwood. Avoid using chemical-treated lumber for the raised bed because chemicals used in the treated wood could make their way into the soils and plants.

## Minimize Ongoing Contact with or Ingestion of Soil

Actions to further reduce contact with soil during and after gardening activities can also minimize potential risks from any contaminants remaining in the soil.

- Do not use plants grown in contaminated soil for compost.
- Work in the garden when soil is moist or damp to minimize creation of dust.
- Avoid "double-digging" to decrease likelihood of moving deep soils to the surface.
- Wear gloves, long sleeves and pants while gardening to prevent skin exposure;
- Remove gardening shoes and garments before entering the home, and wash gardening clothes separately from other clothing.
- Wash hands after gardening.
- Wash all vegetables thoroughly.

### For More Information

These recommended BMPs are consistent with federal, state and local guidance on urban gardening in general. MassDEP has additional information available online at: http://www.Mass.Gov/eea/agencies/massdep/cleanup/regulations/gardening-best-management-practices-at-disposal-sites.html