RELEASE ABATEMENT MEASURES STATUS REPORT NO. 23

129 COMMERCIAL STREET MALDEN, MASSACHUSETTS

RELEASE TRACKING NUMBER 3-0362 October 2009

Prepared For:

National Grid 25 Research Drive Westborough, MA 01582

Prepared By:

Innovative Engineering Solutions, Inc. 25 Spring Street Walpole, Massachusetts 02081 (508) 668-0033

RELEASE ABATEMENT MEASURES STATUS REPORT No. 23

129 COMMERCIAL STREET MALDEN, MASSACHUSETTS

RELEASE TRACKING NUMBER 3-0362

October 2009

Prepared for: National Grid

25 Research Drive

Westborough, Massachusetts 01582

Prepared by: Innovative Engineering Solutions, Inc.

25 Spring Street

Walpole, Massachusetts 02081

Michael Lotti, L.S.P.
Project Manager and LSP of Record
License Number 4208

Joseph E. Higgins, P.E., L.S.P.

Project Reviewer

Release Abatement Measures Status Report No. 23

129 Commercial Street Malden, Massachusetts 02148 DEP Release Tracking Number: 3-0362

This Release Abatement Measures (RAM) Status Report has been prepared by Innovative Engineering Solutions, Inc. (IESI) on behalf of Massachusetts Electric Company d/b/a/ National Grid in accordance with the requirements of the Massachusetts Contingency Plan (MCP) (310 CMR 40.0000). This RAM is being conducted at the 129 Commercial Street portion (Parcel B) of the former Malden manufactured gas plant (MGP) site (the "Site") in Malden, Massachusetts. The 129 Commercial Street property is currently occupied by a commercial bakery and is bounded to the north by Charles Street, to the east by Commercial Street, to the south by Adams Street, and to the west by the MBTA Orange Line commuter railway. The Massachusetts Department of Environmental Protection (DEP) assigned Release Tracking Number (RTN) 3-0362 to the Malden MGP Site. Figure 1 depicts the site locus and Figure 2 depicts the location of the property in relation to the disposal site boundary of the former MGP.

This RAM was initiated to address the potential migration of volatile organic compounds (VOCs) to indoor air at 129 Commercial Street. Although VOCs were historically detected in indoor air in the building at 129 Commercial Street, the detected concentrations did not constitute an imminent hazard for workers in the building, and were less than applicable occupational standards set by the US Occupational Safety and Health Administration (OSHA). However, remedial actions were implemented to reduce potential migration of VOCs to indoor air.

As indicated in the RAM Plan that was submitted to the DEP on July 2, 1998, the objective of the RAM was to reduce VOC concentrations in indoor air; this was initially attempted by sealing portions of the floor slab. The sealing of the floor was not completely successful in reducing indoor air concentrations, and the RAM was modified in April 1999 to include the installation of a sub-slab venting system (SSVS). The SSVS was installed in October 1999 and consists of five 2-inch diameter soil vapor extraction points installed horizontally through the foundation wall beneath the floor slab. The vapor extraction points extend approximately 5 feet beneath the building. These points are connected to a regenerative blower that removes vapors from beneath the floor slab and directs them through two granular activated carbon (GAC) drums (capacity of approximately 200 pounds each) for treatment. The blower and carbon drums are stored in a temporary building located east of the building along Commercial Street. Treated vapors are emitted through a 4-inch diameter vent pipe to the atmosphere. Figure 3 presents the locations of the extraction points and the system enclosure.

In order to evaluate the SSVS System's effectiveness as a risk reduction measure, as part of the October 2008 RAM Status report, IESI updated the human health risk characterization for a current worker at 129 Commercial Street using data collected since 2004 including indoor air sampling conducted in April 2008 by IESI. The air samples obtained in April 2008 were analyzed using the Air Petroleum Hydrocarbon method and the results indicate that concentrations were comparable to previous events. The detected carbon range fractions were also included in the updated risk calculations. The updated human health risk characterization indicated that the Estimated Lifetime Cancer Risk (ELCR) for a residential exposure scenario (not an actual exposure, calculated for reference and comparison) was calculated to be 8E-06; the ELCR for the worker scenario was calculated to be 2E-06. These calculated ELCRs are both below the MCP limit of 1E-05. The Hazard Index (HI) for a residential exposure scenario was calculated to be 0.2. Both calculated HI values are below the MCP limit of 1.

The content of this report has been structured to address the specific information requirements set forth in 310 CMR 40.0445 (2)(a) through (e). This report was submitted electronically to the DEP via the eDEP website. In addition, in accordance with DEP requirements, the Remedial Monitoring Report (RMR; forms BWSC-106 A/B)

was submitted electronically via the eDEP website; a copy of the RMR is included in Appendix A. This RAM Status Report details on-going operation and maintenance of the sub-slab venting system, and summarizes monitoring data collected from March 31, 2009 through October 7, 2009.

310 CMR 40.0445 (2)(a) The status of response operations:

The SSVS is monitored monthly as part of an ongoing operation and maintenance (O&M) schedule. Total VOC levels in influent and effluent vapor from the off-gas control device (sub-slab venting treatment unit) are measured during these visits with a photoionization detector (PID) calibrated to a 100 parts per million (ppm) isobutylene standard to respond as benzene. The results are summarized in Table 1 and discussed below.

On May 7, 2009, indoor air samples were collected from six locations (identified as Site 4 through Site 8, and Site 11) inside the 129 Commercial Street building, one location (identified as Site 2) outside the 129 Commercial Street building and from the influent (identified as Sys-Inf) to the SSVS. The sample collected at Site 2 represents background conditions (i.e. outside air). A duplicate sample was collected at Site 7. The sample locations are shown on Figure 3.

The samples were collected in laboratory provided 6 liter summa canisters. Each canister was outfitted with a laboratory calibrated flow control valve to allow an 8-hour sample collection rate. The canisters were placed in the sample locations, the valve opened, and the sample was collected for approximately 6 to 8 hours. Upon completion of the collection period, the canisters were retrieved and submitted under chain of custody to Columbia Analytical Services of Simi Valley, California for analysis of Air Phase Hydrocarbons (APH) via the DEP Method and styrene via EPA Method TO-15. The results are summarized in Table 2 and further discussed below.

310 CMR 40.0445 (2)(b) Any significant new site information or data:

SSVS data

O&M visits have been conducted regularly throughout the reporting period. The monitoring data collected during this period are summarized on Table 1 and discussed below.

Vacuum conditions are monitored with fixed vacuum gauges on the influent piping prior to the blower and on the knockout drum. A portable vacuum gauge is used to periodically measure vacuum at the individual extraction points (EP-1 through EP-5). During this reporting period, vacuum at extraction points EP-1 through EP-5 ranged from 0.1 inch to 1.2 inches of water column; vacuum at the blower ranged from 7.8 inches to 19 inches of water; vacuum at the knockout drum ranged from 4.2 inches and 10.5 inches of water; and discharge pressure ranged from 15.4 inches and 40.2 inches of water during this period. These measurements are generally consistent with other recent vacuum data for this system.

VOC levels are screened with a PID at 3 locations along the vapor stream: Influent (pre-GAC), Effluent-1 (post-GAC vessel 1) and Effluent-2 (post-GAC vessel 2). PID readings at the Influent, Effluent 1, and Effluent 2 were generally consistent with background levels (0.0 ppm) as measured throughout the reporting period. On August 24, 20009 the PID readings a the Influent, Effluent 1, Effluent 2 were measured at 2.6 ppm, 1.5 ppm, and 0.6 ppm, respectively. Note that the ambient air temperature that day was 88 degrees Fahrenheit and the hot and humid weather conditions may have caused the PID to give a false reading. Also note the readings obtained along the vapor stream on September 14, 2009 were 0.0 ppm.

Air flow in and out of the system is measured with an air velocity meter. During this reporting period, the influent air flow rate ranged from 94 cubic feet per minute (cfm, not adjusted for temperature and pressure) to 108 cfm; the

effluent flow rate ranged from 75 cfm to 92 cfm. Note that the air flow rate has nearly doubled since the blower and GAC were replaced in April 2008.

Indoor Air Sampling Data

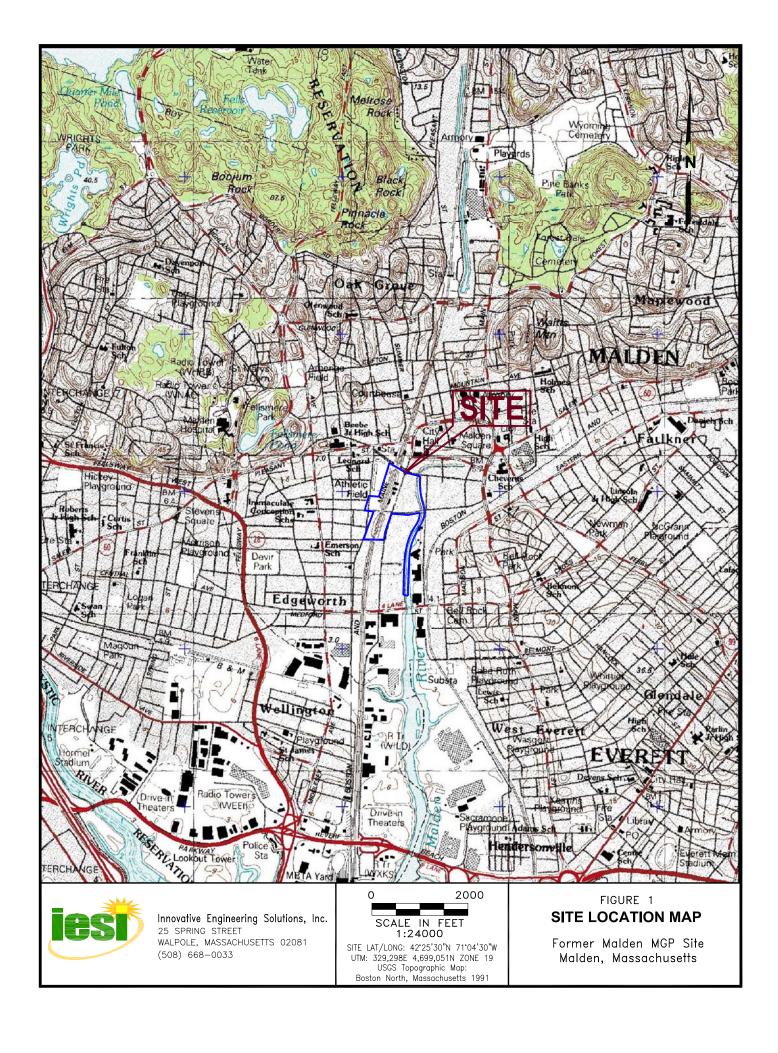
Table 2 presents a summary of the results of laboratory analysis conducted on the air samples collected on May 7, 2009, as well as the results from previous sampling events. The air samples were analyzed for APH by the DEP Method and styrene (by EPA Method TO-15). The complete laboratory data report for the air samples is included as Appendix A.

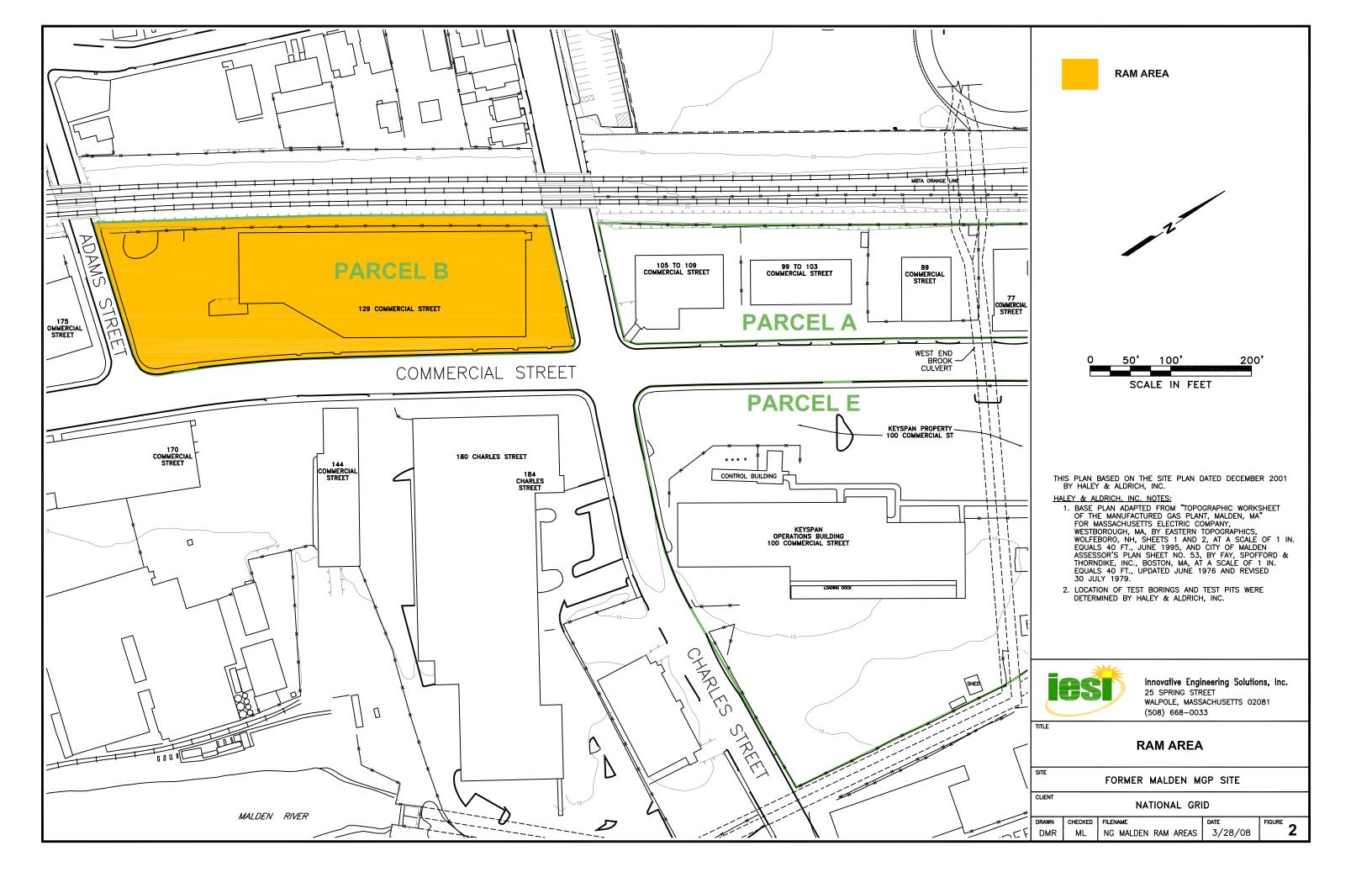
The results of the analysis indicate that the concentrations of the VOCs were comparable to previous events. Of the additional APH analytes, only the fractions C_5 to C_8 aliphatics, C_9 to C_{12} aliphatics were detected at concentrations similar to the April 2008 event. Similar to previous sampling events, the sample collected from Sites 7 and 8 had slightly elevated detection limits which have been attributed to ethanol interference from the fermentation process at the bakery. The elevated detection limits were not observed at Site 6 as they have been in the past.

The total concentration of APH compounds in the Sys-Inf sample (which was collected prior to treatment of the vapors by GAC) was 87 ug/m³.

310 CMR 40.0445 (2)(c) Details of and/or plans for the management of Remediation Waste, Remedial Wastewater, and/or Remedial Additives:

No remediation waste was generated or disposed of during this reporting period. Approximately 7,955 pounds of spent carbon have been removed from the site since start-up of the sub-slab ventilation system in 1999.


310 CMR 40.0445 (2)(d) Any other information that the Department during its review and evaluation of a Status Report determines to be necessary to complete said Status Report, in view of site specific circumstances and conditions; and:


The DEP has not required any additional information

310 CMR 40.0445 (2)(e) An LSP Opinion as to whether the Release Abatement Measure is being conducted in conformance with the RAM Plan and any conditions of approval established by the Department.

Having reviewed the requirements of the RAM Plan and the response actions completed to date, we are of the opinion that the RAM is being conducted in accordance with the RAM Plan and the DEP Conditional Approval letters dated June 19, 1999 and July 27, 1999. DEP approval was necessary because at that time there was an ongoing Immediate Response Action (IRA) at the 100 Commercial Street property which is separate from the 129 Commercial Street property but part of larger Site RTN 3-0362. There are currently no ongoing IRAs at this location.

If you require additional information or have any questions regarding this status report, please contact Michael S. Lotti, LSP of IESI at (508) 668-0033 (x 231).

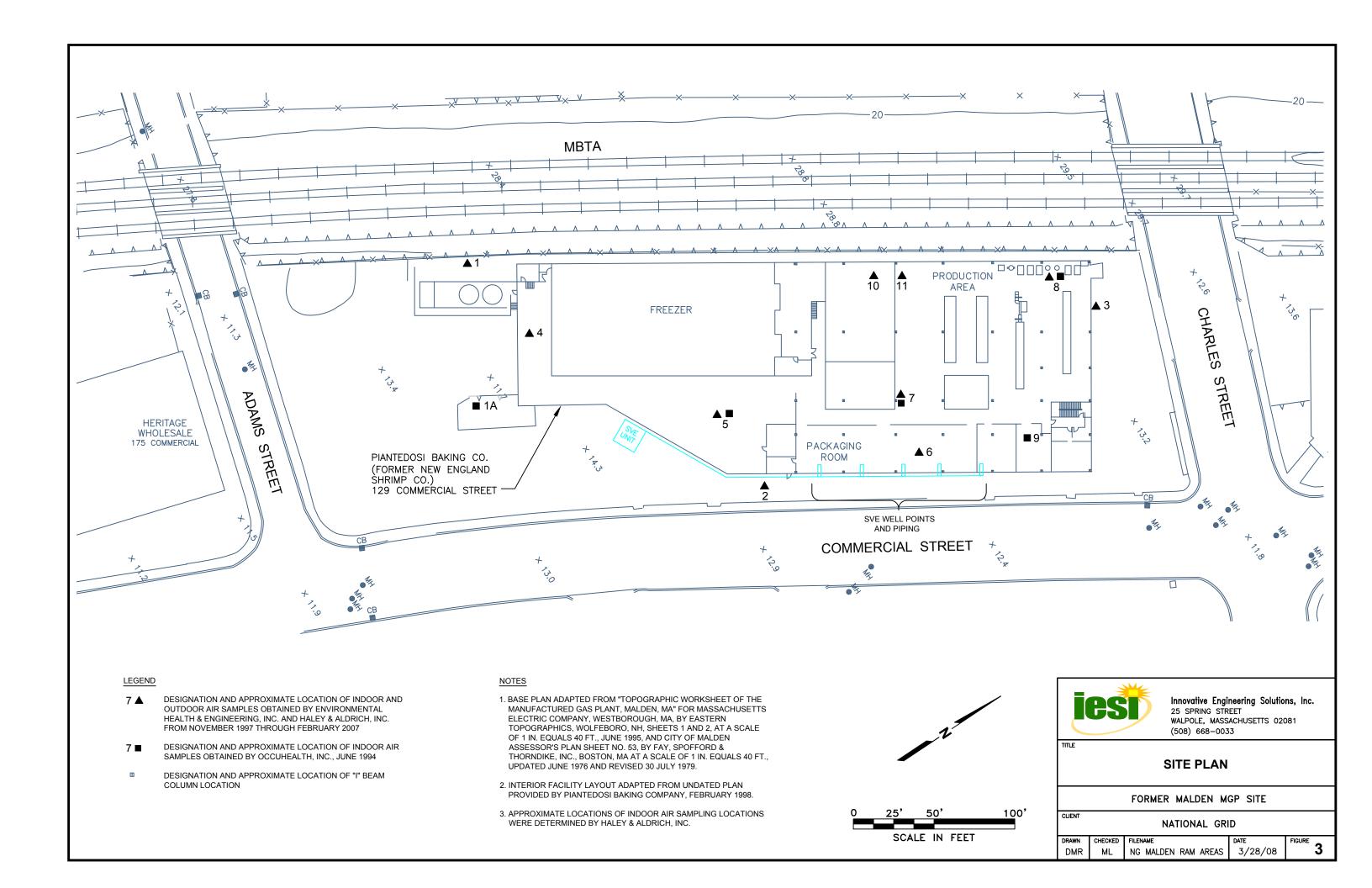


Table 1
Sub-Slab Venting System Monitoring Data
129 Commercial Street
Malden, Massachusetts

Monitoring	Total VOC Concentrations					elocity ft./min)	System	n Vacuum (in	ı. water)	Vacu	um at Ext	raction Po	oints (in. w	ater)	
Date	Influent (ppm)	Effluent - 1 (ppm)	Effluent - 2 (ppm)	Outdoor Ambient Air Temp. (°F)	Outlet Vapor Temp. (°F)	Influent	Effluent	Blower	Knockout Drum	Discharge	EP-1	EP-2	EP-3	EP-4	EP-5
17-Jan-08	0.0	-	0.0	34	84	65	157	10.5	2.8	40	1.7	2.1	0.0	0.0	2.5
18-Feb-08	0.0	_	0.0	64	90	60	140	9	2.7	41	2.1	2.3	0.0	0.0	2.4
28-Mar-08	0.0	_	0.0	37	96	59	145	8.2	1.6	47	0.0	1.5	0.0	0.0	1.6
10-Apr-08	0.0	0.0	0.0	65	88	113	98	8	4.1	18	1.9	1.6	1.6	0.4	1.6
10-May-08	0.0	0.0	0.0	60	80	97	95	9	5.8	17	1.6	1.8	2.0	0.1	1.5
10-Jun-08	0.0	0.0	0.0	95	104	89	93	8.7	5	16.3	1.8	1.8	1.6	0.3	1.8
16-Jun-08	(Reactivate	System after p	ower outage)												
7-Jul-08	0.0	0.0	0.0	88	100	89	88.5	8.7	5	16.2	1.5	1.5	1.5	0.1	1.4
12-Aug-08	0.0	0.0	0.0	85	94	94	91	9.6	5.8	16.2	1.8	1.9	1.4	0.3	1.3
8-Sep-08	0.0	0.0	0.0	80	100	90	86	10	6.5	15	1.2	1.8	1.2	1.2	1.6
23-Oct-08	0.0	0.0	0.0	50	95	108	94	9.1	5.5	17.3	1.2	1.2	0.3	0.3	1.3
7-Nov-08	0.0	0.0	0.0	55	85	96	86	10.2	7	15.6	1.1	1.1	1.4	0.2	1.2
3-Dec-08	0.0	0.0	0.0	45	80	93	96	5.7	3	17	0.9	0.9	1.6	0.2	1.1
6-Jan-09	0.0	0.0	0.0	35	60	70	94	8.5	5	17	1	1	0.7	0.1	1
11-Feb-09	0.0	0.0	0.0	50	80	72	95	11.1	7.6	16	1.2	1.2	1	0.2	1.1
4-Mar-09	0.0	0.0	0.0	32	80	95	88	9	5.7	17	1.3	1.2	1.3	0.9	1
13-Apr-09	0.0	0.0	0.0	50	70	94	75	9	4.6	17	0.7	0.7	0.7	0.1	0.7
13-May-09	0.0	0.0	0.0	55	83	94	75	9	4.2	17.1	1	1	0.9	0.1	0.9
19-Jun-09	0.0	0.0	0.0	45	86	108	88	8.1	4.6	17.1	0.8	1.1	1	0.1	1.2
17-Jul-09	0.0	0.0	0.0	68	104	104	92	19	10.5	40.2	0.7	1	1	0.1	1.1
24-Aug-09	2.6	1.5	0.6	88	100	103	87	7.8	4.6	15.4	0.4	1.2	1.1	0.15	1.5
14-Sep-09	0.0	0.0	0.0	72	94	98	90	10	6	16.5	0.8	0.7	0.4	0.1	0.8

Notes & Abbreviations:

ppm = Parts per million as measured with a PID

°F = Degrees Fahrenheit

cubic ft./min = Cubic feet per Minute (actual in field measurement, not adjusted for temperature and pressure)

in. water = Inches of water pressure/vacuum

- = Not Available/Not Measured

ND = Non Detect; method detection limit < 1ug/L

Page 1 of 1 9/23/2009

Table 2 Indoor Air Sample Results 129 Commercial Street Malden, MA

										mple Res											
Date	ANALYTE	Site		Site	4	Site	e 5	Site	6	Site	2 7	Site		Site	e 8	Site	10	Site	11	Sys-I	nf
		Outs Result		Result	DL	Result	DL	Result	DL	Result	DL	Dupli	cate	Result	DL	Result	DL	Result	DL	Result	DL
12-Feb-04	Benzene	20.8	DL	ND	1.7	ND	1.7	ND	8.6	ND	12.8			ND	18.5	ND	20.1	Result	DL	Kesuit	DL
06-May-04	Benzene	ND	1.5	ND	1.9	1.7	1.7	ND	1.9	ND	1.8			ND	2.1	ND	1.9				
06-Aug-04	Benzene	ND	1.8	ND	3.5	ND	3.4	ND	33	ND	34			ND	3.5	ND	35				
26-Oct-04	Benzene	2.2		ND	1.7	ND	1.5	ND	1.8	1.7				ND	1.5			1.9			
13-Jan-05	Benzene	3.8		2.6		2.8		2.8		2.8				3.5				3.4			
27-Apr-05	Benzene	ND	1.5	ND	1.5	ND	2	ND	14	ND	13			ND	31			ND	42		
03-Aug-05	Benzene	ND	1.8	ND	1.4	ND	3.6	ND	10	ND	13							ND	11		
20-Oct-05	Benzene	ND	1.6	ND	1.5	ND	1.6	ND	5.4	ND	5.9			ND	5.9			ND	6		
19-Jan-06	Benzene	ND	1.6	ND	2	ND	1.4	ND	1.5	ND	2.5			ND	1.8			ND	1.7		
19-Apr-06	Benzene	ND	1.5	ND	1	ND	1.2	ND	24	ND	20			ND	1.7				5.2		
28-Feb-07 16-Apr-08	Benzene	2.7	0.87	1.9 1.4	0.61	2.6 1.1	0.82	ND ND	9.1 1.7	ND 1.2	28 0.87	1.3	0.75	ND ND	53 15			ND	53	2.4	0.96
07-May-09	Benzene Benzene	1.4 1.5	0.87	1.4	0.6	1.1	0.82	ND ND	1.7	ND	0.87 4.1	ND	4.4	ND ND	13 4			ND	4	1.2	0.68
12-Feb-04	Ethylbenzene	16.9	0.01	ND	1.6	ND	1.7	ND	8.7	ND	13	ND	4.4	ND	18.7	ND	20	ND		1,2	0.00
06-May-04	Ethylbenzene	ND	1.5	ND	1.9	1.7		ND	1.9	2				ND	2.1	ND	1.9				
06-Aug-04	Ethylbenzene	ND	1.8	ND	3.5	ND	3.4	ND	33	ND	34			ND	3.5	ND	35				
26-Oct-04	Ethylbenzene	ND	1.4	ND	1.7	ND	1.5	ND	1.8	ND	1.6			ND	1.5			ND	1.6		
13-Jan-05	Ethylbenzene	2.8		2.7		3.5		1.5		2.3				2.4				2.6			
27-Apr-05	Ethylbenzene	ND	1.5	ND	1.5	ND	2	ND	14	ND	13			ND	31			ND	42		
03-Aug-05	Ethylbenzene	ND	1.8	1.7		ND	3.6	ND	10	ND	13							ND	11		
20-Oct-05	Ethylbenzene	ND	1.6	ND	1.5	ND	1.6	ND	5.4	ND	5.9			ND	5.9			ND	6		
19-Jan-06	Ethylbenzene	ND	1.6	ND	2	ND	1.4	ND ND	1.5	ND ND	2.5			ND ND	1.8			ND	1.7		
19-Apr-06 28-Feb-07	Ethylbenzene Ethylbenzene	ND ND	1.5 1.7	1.3 1.8		1.5 1.6		ND ND	24 9.1	ND ND	20 28			ND ND	1.7 53			ND	53		
16-Apr-08	Ethylbenzene	ND	0.87	0.82	0.61	ND	0.82	ND	1.7	1.1	0.87	1.2	0.75	ND	15			ND	55	12	0.96
07-May-09	Ethylbenzene	0.97	0.81	1.1	0.6	1.4	0.78	ND	1.5	ND	4.1	ND	4.4	ND	4			ND	4	ND	0.68
12-Feb-04	m-&p-xylenes	52.1		2		3		ND	8.7	ND	13			ND	18.7	ND	20		-		
06-May-04	m-&p-xylenes	2.9		3.5		4.2		4		7.6				5.4		6.4					
06-Aug-04	m-&p-xylenes	2.9		3.5		ND	3.4	ND	33	ND	34			ND	3.5	ND	35				
26-Oct-04	m-&p-xylenes	3.6		3.2		4.4		3.1		4				2.9				3.5			
13-Jan-05	m-&p-xylenes	8.2		8		11		3.6		6				6.4				6.9			
27-Apr-05	m-&p-xylenes	ND	1.5	1.7		ND	2	ND	14	ND	13			ND	31			ND	42		
03-Aug-05	m-&p-xylenes	2.8		5		5.8		ND	10	ND	13			NID	5.0			ND	11		
20-Oct-05 19-Jan-06	m-&p-xylenes m-&p-xylenes	1.6 ND	1.6	1.8 2.6		1.9 2.2		ND 2.8	5.4	ND 3.4	5.9			ND 2.1	5.9			ND 2.7	6		
19-Jan-06 19-Apr-06	m-&p-xylenes	ND	3	3.8		4.1		ND	48	ND	41			ND	3.4			2.7			
28-Feb-07	m-&p-xylenes	3.5	5	6.7		4.6		ND	9.1	ND	28			ND	53			ND	53		
16-Apr-08	m-&p-xylenes	2.0	1.7	2.3	1.2	1.9	1.6	ND	3.3	2.2	1.7	2.4	1.5	ND	29					35	1.9
07-May-09	m-&p-xylenes	2.8	1.6	3.1	1.2	3.4	1.6	ND	3	ND	8.1	ND	8.9	ND	7.9			ND	8	1.7	1.4
12-Feb-04	Naphthalene	2		ND	1.7	ND	1.7	ND	8.9	ND	13.1			ND	18.3	ND	19.9				
06-May-04	Naphthalene	ND	1.5	ND	1.9	ND	1.6	ND	1.9	ND	1.8			ND	2.1	ND	1.9				
06-Aug-04	Naphthalene	ND	1.8	ND	3.5	ND	3.4	ND	33	ND	34			ND	3.5	ND	35				
26-Oct-04	Naphthalene	ND	1.4	ND	1.7	ND	1.5	ND	1.8	ND	1.6			ND	1.5			ND	1.6		
13-Jan-05	Naphthalene	ND	1.4	ND	1.3	ND	1.5	ND	1.2	ND	1.2			ND	1.4			ND	1.8		
27-Apr-05	Naphthalene Naphthalene	ND ND	1.5 1.8	ND ND	1.5 1.4	ND ND	2 3.6	ND ND	14 10	ND ND	13 13			ND	31			ND ND	42 11		
03-Aug-05 20-Oct-05	Naphthalene Naphthalene	ND ND	1.8 1.6	ND ND	1.4 1.5	ND ND	3.6 1.6	ND ND	10 5.4	ND ND	13 5.9			ND	5.9			ND ND	11 6		
19-Jan-06	Naphthalene	ND	1.6 1.6	ND ND	2	ND	1.0 1.4	ND ND	1.5	ND ND	2.5			ND ND	1.8			ND	1.7		
19-Apr-06	Naphthalene	ND	1.5	ND	1	ND	1.2	ND	24	ND	20			ND	1.7						
28-Feb-07	Naphthalene	ND	1.7	ND	1.4	ND	1.2	ND	9.1	ND	28			ND	53			ND	53		
16-Apr-08	Naphthalene	ND	0.87	ND	0.61	ND	0.82	ND	1.7	ND	0.87	ND	0.75	ND	15					1.4	0.96
07-May-09	Naphthalene	ND	0.81	ND	0.6	ND	0.78	ND	1.5	ND	4.1	ND	4.4	ND	4			ND	4	ND	0.68
12-Feb-04	o-xylenes	18.7		ND	1.6	ND	1.7	ND	8.7	ND	13			ND	18.7	ND	20				
06-May-04	o-xylenes	ND	1.5	ND	1.9	1.6		ND	1.9	3				2.2		2.6					
06-Aug-04	o-xylenes	ND	1.8	ND	3.5	ND	3.4	ND	33	ND	34			ND	3.5	ND	35				
26-Oct-04	o-xylenes	ND	1.4	ND	1.7	ND	1.5	ND	1.8	ND	1.6			ND	1.5			ND	1.6		
13-Jan-05	o-xylenes	2.8 ND	1 =	2.2 ND	15	2.6	2	1.3	14	1.7	10			2.1	21			2.1	42		
27-Apr-05 03-Aug-05	o-xylenes o-xylenes	ND ND	1.5 1.8	ND ND	1.5 1.4	ND ND	2 3.6	ND ND	14 10	ND ND	13 13			ND	31			ND ND	42 11		
03-Aug-05 20-Oct-05	o-xylenes o-xylenes	ND ND	1.8 1.6	ND ND	1.4 1.5	ND ND	3.0 1.6	ND ND	5.4	ND ND	5.9			ND	5.9			ND ND	6		
19-Jan-06	o-xylenes	ND	1.6	ND	2	ND	1.4	ND	1.5	ND	2.5			ND	1.8			ND	1.7		
19-Apr-06	o-xylenes	ND	1.5	ND	1	ND	1.2	ND	24	ND	20			ND	1.7				**		
28-Feb-07	o-xylenes	ND	1.7	1.5		1.5		ND	9.1	ND	28			ND	53			ND	53		
16-Apr-08	o-xylenes	ND	0.87	0.87	0.61	ND	0.82	ND	1.7	ND	0.87	0.98	0.75	ND	15					8.6	0.96
07-May-09	o-xylenes	1	0.81	1.1	0.6	1.1	0.78	ND	1.5	ND	4.1	ND	4.4	ND	4			ND	4	ND	0.68

Table 2 Indoor Air Sample Results 129 Commercial Street Malden, MA

Sample Results (Results listed in ug/m³)

				T		ī		T		mple Res								1			
Date	ANALYTE	Site		Site	4	Site	e 5	Site	6	Site	e 7	Site		Site	8	Site	10	Site	11	Sys-I	<u>nf</u>
		Outs										Duplic	ate								
		Result	DL	Result	DL	Result	DL	Result	DL	Result	DL			Result	DL	Result	DL	Result	DL	Result	DL
12-Feb-04	Styrene	2.1		ND	1.7	ND	1.7	ND	8.5	ND	12.8			ND	18.7	ND	20				
06-May-04	Styrene	ND	1.5	ND	1.9	ND	1.6	ND	1.9	ND	1.8			ND	2.1	2.8					
06-Aug-04	Styrene	ND	1.8	ND	3.5	ND	3.4	ND	33	ND	34			ND	3.5	ND	35				
26-Oct-04	Styrene	ND	1.4	ND	1.7	ND	1.5	ND	1.8	ND	1.6			ND	1.5			ND	1.6		
13-Jan-05	Styrene	ND	1.4	ND	1.3	ND	1.5	ND	1.2	ND	1.2			1.5				ND	1.8		
27-Apr-05	Styrene	ND	1.5	ND	1.5	ND	2	ND	14	ND	13			ND	31			ND	42		
03-Aug-05	Styrene	ND	1.8	ND	1.4	ND	3.6	ND	10	ND	13							ND	11		
20-Oct-05	Styrene	ND	1.6	ND	1.5	ND	1.6	ND	5.4	ND	5.9			ND	5.9			ND	6		
19-Jan-06	Styrene	ND	1.6	ND	2	ND	1.4	ND	1.5	ND	2.5			ND	1.8			ND	1.7		
19-Apr-06	Styrene	ND	1.5	ND	1	ND	1.2	ND	24	ND	20			ND	1.7						
28-Feb-07	Styrene	ND	1.7	ND	1.4	ND	1.2	ND	9.1	ND	28			ND	53			ND	53		
16-Apr-08	Styrene	ND	1.7	ND	1.2	ND	1.6	ND	3.3	ND	1.7	ND	1.5	ND	29					13	1.9
07-May-09	Styrene	ND	0.81	ND	0.6	ND	0.78	ND	1.5	ND	4.1	ND	4.4	ND	4			ND	4	ND	0.68
12-Feb-04	Toluene	71.6		4.5		5.3		56.5		ND	12.8			ND	18.5	ND	20				ļ
06-May-04	Toluene	85		33		72		18		13				8.7		11					ļ
06-Aug-04	Toluene	5.1		9		7.5		ND	33	ND	34			3.6		ND	35				
26-Oct-04	Toluene	6.8		6.7		9		13		6.9				5.1				6.6			ļ
13-Jan-05	Toluene	18		16		16		15		10				12				13			ļ
27-Apr-05	Toluene	2.9		4.7		7.6		ND	14	ND	13			ND	31			ND	42		ļ
03-Aug-05	Toluene	4.4		7.8		7.6		11		ND	13							ND	11		ļ
20-Oct-05	Toluene	3.9		3.2		3.6		9		ND	5.9			ND	5.9			ND	6		
19-Jan-06	Toluene	2.4		6.4		4.2		13		5				3.7				4			ļ
19-Apr-06	Toluene	3.8		5.2		4.2		ND	24	ND	20			2.5							
28-Feb-07	Toluene	5.4		4.2		5.7		ND	9.1	ND	28			ND	53			ND	53		ļ
16-Apr-08	Toluene	4.8	0.87	5.8	0.61	4.3	0.82	5.6	1.7	4.3	0.87	14	0.75	ND	15					31	0.96
07-May-09	Toluene	5.2	0.81	5.7	0.6	5.6	0.78	4.2	1.5	5.3	4.1	5.4	4.4	8.1	4			5.3	4	3.3	0.68
16-Apr-08	1,3-Butadiene	ND	0.87	ND	0.61	ND	0.82	ND	1.7	ND	0.87	ND	0.75	ND	15					ND	0.96
07-May-09	1,3-Butadiene	ND	0.81	ND	0.6	ND	0.78	ND	1.5	ND	4.1	ND	4.4	ND	4			ND	4	ND	0.68
16-Apr-08	Methyl tert-Butyl Ether	ND	0.87	ND	0.61	ND	0.82	ND	1.7	ND	0.87	ND	0.75	ND	15					ND	0.96
07-May-09	Methyl tert-Butyl Ether	ND	0.81	ND	0.6	ND	0.78	ND	1.5	ND	4.1	ND	4.4	ND	4			ND	4	ND	0.68
16-Apr-08	2-Methylnaphthalene	ND	0.87	ND	0.61	ND	0.82	ND	1.7	ND	0.87	ND	0.75	ND	15					ND	0.96
07-May-09	2-Methylnaphthalene	2-Methyl	naphthal	lene is no lo	onger a t	arget analy	te for AF	H Analysis	8												ļ
16-Apr-08	C5 - C8 Aliphatic Hydrocarbons	ND	69	70	48	ND	66	ND	130	91	69	110	60	ND	1200					520	77
07-May-09	C5 - C8 Aliphatic Hydrocarbons	39	32	45	24	69	31	ND	61	ND	160	ND	180	ND	160	<u> </u>		220	160	43	27
16-Apr-08	C9 - C12 Aliphatic Hydrocarbons	24	17	18	12	27	16	71	33	33	17	48	15	ND	290					140	19
07-May-09	C9 - C12 Aliphatic Hydrocarbons	17	16	28	12	68	16	80	31	ND	82	ND	89	ND	79			ND	81	38	14
16-Apr-08	C9 - C10 Aromatic Hydrocarbons	ND	17	ND	12	ND	16	ND	33	ND	17	ND	15	ND	290					34	19
07-May-09	C9 - C10 Aromatic Hydrocarbons	ND	8.1	ND	6	ND	7.8	ND	15	ND	41	ND	44	ND	40			ND	40	ND	6.8

NOTES AND ABBREVIATIONS:

All results n micrograms per cubic meter (ug/m³)

ND: compound not detected above detection limit noted

DL: Detection limit for analyte

Laboratory Data Reports – Indoor Air Sampling May 7, 2009

(805) 526-7270 fax

An Employee - Owned Company

LABORATORY REPORT

May 28, 2009

Michael Lotti Innovative Engineering Solutions, Incorporated 25 Spring Street Walpole, MA 02081

RE: NG Malden 129 / Task 8

Dear Michael:

Enclosed are the results of the samples submitted to our laboratory on May 11, 2009. For your reference, these analyses have been assigned our service request number P0901588.

All analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains **31** pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-08-TX. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

tale Gaile

Kate Aguilera

Project Manager

Page 1 of 37

Client:

Innovative Engineering Solutions, Incorporated

CAS Project No:

P0901588

Project:

NG Malden 129 / Task 8

CASE NARRATIVE

The samples were received intact under chain of custody on May 11, 2009 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for volatile organic compounds and tentatively identified compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

Air-Phase Petroleum Hydrocarbons (APH) Analysis

The samples were also analyzed for selected and total aliphatic and aromatic gasoline range hydrocarbons by gas chromatography/mass spectrometry according to the <u>Method for the Determination of Air-Phase Petroleum Hydrocarbons(APH)</u>, Public Comment Draft 1.0, Massachusetts Department of Environmental Protection, February, 2000.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Client: Innovative Engineering Solutions, Incorporated

Project: NG Malden 129 Task 8

Detailed Sample Information

Folder: P0901588

Miscellaneous Items - received

AVG00662	FC00508	AVG00628	AVG01029	AVG00858	AVG00166	AVG01119	AVG01031

Air - Unain of Custody Record & Analytical Service Request

Page of

Columbia Analytical Services*

2655 Park Center Drive, Suite A

Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270

Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day - Standard

e.g. Actual Preservative or specific instructions Project Requirements (MRLs, QAPP) Comments Analysis Method and/or Analytes 7 or 700 130 -30 200 00 30 SWC Date: 6,70 EDD Units: 630 9275 <u>و</u> و: 633 ; ; 07 CAS Contact da (Method Sample Volume Tier III. (Data Validation Package) 10% Surcharge ABIII # 5651 +242

Tier V. (client specified) Tier V. (client specified) Tier V. 9 Acolsso Fcoosy7 ACO1024 F1068% ACOII 40 1500146 ACOB 15 FROMSBY ACOBBATCOW74 ACOR294 1-100602 ACO1261 |FX 00245 SCOOLL DACOBIC (Bar Code -FC #) ACO 1190 FC 001% No Malden 129 Received by: (Signature) (Bar Code # -AC, SC, etc.) Canister ID P.O. # / Billing Information 18K0 Time: 900 Email Address for Result Reporting

M. lotti @ i & iouline com Mixelotk (Air/Tube/ Solid) 不沃 (1 Project Number 7 Project Name Date: 8.09 Date Time Collected 0260 0417 0422 574 04K 080 04:19 OBS 記 Company Name & Address (Reporting Information) Laboratory ID Number Report Tier Levels - please select Fier 1 - (Results/Default if not specified) 7刊-270-0894 パロー しん Relinquished by: (Signature) Project Manager H Fier II - (Results + QC) Client Sample ID

Cooler / Blank

TOPPETS .

Date: Will Date:

Received by: (Signature

Time:

Date: Date:

Relinquished (Signature)

Relinquished by: (Signature)

Time:

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Innovative E	ngineering Solutions, I	_	e Acceptance	-	Work order:	P0901588			
-	NG Malden									
	s) received or			•	Date opened:		_ by:	SSTAI		
		all samples received by CAS							indicatio	n of
compliance	or nonconformit	y. Thermal preservation and	pH will only be	evaluated either a	t the request of t	he client and/or as rec	quired by the meth	od/SOP. <u>Yes</u>	<u>No</u>	<u>N/A</u>
1	Were sample	e containers properly n	narked with cl	ient sample II) ?			X		
2	Container(s)	supplied by CAS?						X		
3	Did sample	containers arrive in go	od condition?					X		
4	Was a chain	-of-custody provided?						X		
5	Was the char	in-of-custody properly	completed?					X		
6	Did sample	container labels and/or	tags agree wi	th custody par	pers?			X		
7	Was sample	volume received adequ	ate for analys	is?				X		
8	Are samples	within specified holdin	g times?					X		
9	Was proper t	temperature (thermal p	reservation) c	of cooler at rec	eipt adhered	to?				X
		Cooler Temperature		°C Blank	Γemperature		°C			
10	Was a trip b	lank received?					-			X
	Trip blank	supplied by CAS:								
11	Were custod	y seals on outside of co	oler/Box?			-	_		X	
	Location of	f seal(s)?					Sealing Lid?			\boxtimes
	Were signa	ture and date included?					- ,			X
	Were seals									X
	Were custod	y seals on outside of sar	nple containe	r?					X	
	Location of		pro contamic	•			Sealing Lid?			X
		ture and date included?					_ Scaling Liq.			×
	Were seals			,						X
12		s have appropriate pre s	sarvation acc	ording to met	hod/SOP or C	lient enecified in	formation?			\boxtimes
12						ment specified in	ioimation?			
		ent indication that the s	-		reserveu?					X
	· · · · · · · · · · · · · · · · · · ·	vials checked for prese								X
		ent/method/SOP require			ample pH an	d <u>if necessary</u> alt	er it?			X
13	Tubes:	Are the tubes capp		?						X
		Do they contain m	oisture?							X
14	Badges:	Are the badges pr								X
		Are dual bed badg	es separated a	ınd individuall	y capped and	l intact?				X
Lab S	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receip	t / Pres	ervation	1
		Description	pH *	рН	pН	(Presence/Absence)		Commer		
P0901588	3-001.01	6.0 L Ambient Can								
P0901588	3-002.01	6.0 L Ambient Can								
P0901588		6.0 L Ambient Can								
P0901588		6.0 L Ambient Can	www.		-					
P0901588		6.0 L Ambient Can			,				···	
P0901588	-000,01	6.0 L Ambient Can				L	<u> </u>			

Explain any discrepancies: (include lab sample ID numbers):

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client: Innovative Engineering Solutions, Incorporated	Work order:	P0901588		
Project: NG Malden 129 / Task 8				
Sample(s) received on: 5/11/2009	Date opened: 5/11/2009	bv:	SSTAPLES	

Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
P0901588-007.01	6.0 L Ambient Can					
P0901588-008.01	6.0 L Ambient Can					
P0901588-009.01	6.0 L Source Can					
			-			
				<u> </u>	ļ	
						
						
	11	ouvernous musicipalitics and a superson				

				<u> </u>		
WEATHER TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE						
				1		

Explain any discrepancies: (include lab sample ID numbers):

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 5

Client Project ID: NG Malden 129 / Task 8

CAS Project ID: P0901588

CAS Sample ID: P0901588-001

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Elsa Moctezuma

6.0 L Summa Canister

Date Collected: 5/7/09

Date Received: 5/11/09

Analyst: Sampling Media:

Date Analyzed: 5/19/09 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00522

Initial Pressure (psig):

-3.0

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.56

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
106-99-0	1,3-Butadiene	ND	0.78	ND	0.35	
1634-04-4	Methyl tert-Butyl Ether	ND	0.78	ND	0.22	
71-43-2	Benzene	1.3	0.78	0.41	0.24	
108-88-3	Toluene	5.6	0.78	1.5	0.21	
100-41-4	Ethylbenzene	1.4	0.78	0.32	0.18	
179601-23-1	m,p-Xylenes	3.4	1.6	0.79	0.36	
100-42-5	Styrene	ND	0.78	ND	0.18	
95-47-6	o-Xylene	1.1	0.78	0.26	0.18	
91-20-3	Naphthalene	ND	0.78	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

RESULTS OF ANALYSIS Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 5 CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-001

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: 5/7/09
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09
Analyst: Elsa Moctezuma Date Analyzed: 5/19/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00522

Initial Pressure (psig): -3.0 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.56

Compound	Result	MRL	Data
	$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	Qualifier
C ₅ - C ₈ Aliphatic Hydrocarbons ^{1,2}	69	31	
¹ C ₉ - C ₁₂ Aliphatic Hydrocarbons ^{1,3}	68	16	
C ₉ - C ₁₀ Aromatic Hydrocarbons	ND	7.8	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 5/27/04

¹Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 4

Client Project ID: NG Malden 129 / Task 8

6.0 L Summa Canister

CAS Project ID: P0901588

CAS Sample ID: P0901588-002

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 5/7/09

Date Received: 5/11/09

Instrument ID: Analyst:

Elsa Moctezuma

Date Analyzed: 5/18/09 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

Sampling Media:

AC01027

Initial Pressure (psig):

0.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.20

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	\mathbf{ppbV}	ppbV	Qualifier
106-99-0	1,3-Butadiene	ND	0.60	ND	0.27	
1634-04-4	Methyl tert-Butyl Ether	ND	0.60	ND	0.17	
71-43-2	Benzene	1.4	0.60	0.44	0.19	
108-88-3	Toluene	5.7	0.60	1.5	0.16	
100-41-4	Ethylbenzene	1.1	0.60	0.26	0.14	
179601-23-1	m,p-Xylenes	3.1	1.2	0.72	0.28	
100-42-5	Styrene	ND	0.60	ND	0.14	
95-47-6	o-Xylene	1.1	0.60	0.24	0.14	
91-20-3	Naphthalene	ND	0.60	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:____ Date: TO15scan.xls - NL - PageNo.:

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 4 CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-002

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: 5/7/09

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09
Analyst: Elsa Moctezuma Date Analyzed: 5/18/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01027

Initial Pressure (psig): 0.5 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.20

Compound	Result	MRL	Data
	$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	Qualifier
C_5 - C_8 Aliphatic Hydrocarbons ^{1,2}	45	24	
${}^{\ell}C_9$ - C_{12} Aliphatic Hydrocarbons l,3	28	12	
$C_9 - C_{10}$ Aromatic Hydrocarbons	ND	6.0	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

Verified By: Date: 5/27/04 16

^{&#}x27;Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

CAS Project ID: P0901588 Client Sample ID: Site 6

CAS Sample ID: P0901588-003 Client Project ID: NG Malden 129 / Task 8

Test Code: EPA TO-15

Date Collected: 5/7/09 Date Received: 5/11/09 Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Elsa Moctezuma Date Analyzed: 5/18/09 Analyst:

0.2

Volume(s) Analyzed: 0.40 Liter(s) 6.0 L Summa Canister Sampling Media:

Test Notes:

Instrument ID:

Container ID: AC01395 Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.22

CAS#	Compound	Result	MRL	Resu	ılt	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppb	V	ppbV	Qualifier
106-99-0	1,3-Butadiene	ND	1.5		ND	0.69	
1634-04-4	Methyl tert-Butyl Ether	ND	1.5		ND	0.42	
71-43-2	Benzene	ND	1.5		ND	0.48	
108-88-3	Toluene	4.2	1.5	1.1		0.40	
100-41-4	Ethylbenzene	ND	1.5		ND	0.35	
179601-23-1	m,p-Xylenes	ND	3.1		ND	0.70	
100-42-5	Styrene	ND	1.5		ND	0.36	
95-47-6	o-Xylene	ND	1.5		ND	0.35	
91-20-3	Naphthalene	ND	1.5		ND	0.29	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Ls

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 6 CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-003

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: 5/7/09
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09

Analyst: Elsa Moctezuma Date Analyzed: 5/18/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.40 Liter(s)

Test Notes:
Container ID: AC01395

Initial Pressure (psig): 0.2 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.22

Compound	Result	MRL	Data
	$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	Qualifier
C ₅ - C ₈ Aliphatic Hydrocarbons ^{1,2}	ND	61	
C ₉ - C ₁₂ Aliphatic Hydrocarbons ^{1,3}	80	31	
C_9 - C_{10} Aromatic Hydrocarbons	ND	15	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: S/11/b4 APH.XLT - Page No.:

¹Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 2 Client Project ID: NG Malden 129 / Task 8

CAS Project ID: P0901588

CAS Sample ID: P0901588-004

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 5/7/09

Date Received: 5/11/09

Instrument ID: Analyst:

Elsa Moctezuma

Date Analyzed: 5/18/09

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Container ID:

AC01190

Initial Pressure (psig):

-3.4

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.61

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
106-99-0	1,3-Butadiene	ND	0.81	ND	0.36	
1634-04-4	Methyl tert-Butyl Ether	ND	0.81	ND	0.22	
71-43-2	Benzene	1.5	0.81	0.48	0.25	
108-88-3	Toluene	5.2	0.81	1.4	0.21	
100-41-4	Ethylbenzene	0.97	0.81	0.22	0.19	
179601-23-1	m,p-Xylenes	2.8	1.6	0.64	0.37	
100-42-5	Styrene	ND	0.81	ND	0.19	
95-47-6	o-Xylene	1.0	0.81	0.23	0.19	
91-20-3	Naphthalene	ND	0.81	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: ____

RESULTS OF ANALYSIS Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 2 CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-004

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: 5/7/09
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09

Analyst: Elsa Moctezuma Date Analyzed: 5/18/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01190

Initial Pressure (psig): -3.4 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.61

Compound	Result	MRL	Data
	$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	Qualifier
C_5 - C_8 Aliphatic Hydrocarbons ^{1,2}	39	32	
C_9 - C_{12} Aliphatic Hydrocarbons ^{1,3}	17	16	
C ₉ - C ₁₀ Aromatic Hydrocarbons	ND	8.1	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 5/24/09 14

^{&#}x27;Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

CAS Project ID: P0901588 Client Sample ID: Site 7

CAS Sample ID: P0901588-005 Client Project ID: NG Malden 129 / Task 8

Date Collected: 5/7/09 Test Code: EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09 Instrument ID: Elsa Moctezuma Date Analyzed: 5/18/09 Analyst:

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.20 Liter(s)

Test Notes:

Container ID: AC01580

Final Pressure (psig): Initial Pressure (psig): -3.6 3.5

Canister Dilution Factor: 1.64

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
106-99-0	1,3-Butadiene	ND	4.1	ND	1.9	
1634-04-4	Methyl tert-Butyl Ether	ND	4.1	ND	1.1	
71-43-2	Benzene	ND	4.1	ND	1.3	
108-88-3	Toluene	5.3	4.1	1.4	1.1	
100-41-4	Ethylbenzene	ND	4.1	ND	0.94	
179601-23-1	m,p-Xylenes	ND	8.2	ND	1.9	
100-42-5	Styrene	ND	4.1	ND	0.96	
95-47-6	o-Xylene	ND	4.1	ND	0.94	
91-20-3	Naphthalene	ND	4.1	ND	0.78	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: 6

RESULTS OF ANALYSIS

Page 1 of 1

Client: **Innovative Engineering Solutions, Incorporated**

Client Sample ID: Site 7

CAS Project ID: P0901588 Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-005

Massachusetts APH, Revision 0, December 2008 Date Collected: 5/7/09

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09 Instrument ID: Date Analyzed: 5/18/09 Analyst: Elsa Moctezuma

Volume(s) Analyzed: Sampling Media: 6.0 L Summa Canister 0.20 Liter(s)

Test Notes:

Test Code:

Container ID: AC01580 Final Pressure (psig): 3.5 Initial Pressure (psig): -3.6

Canister Dilution Factor: 1.64

Compound	Result	MRL	Data
	$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	Qualifier
C ₅ - C ₈ Aliphatic Hydrocarbons ^{1,2}	ND	160	
${}^{\ell}C_9$ - C_{12} Aliphatic Hydrocarbons ^{1,3}	ND	82	
C ₉ - C ₁₀ Aromatic Hydrocarbons	ND	41	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

Date: 5/21/09

APH.XLT - Page No.: Verified By:

¹Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

CAS Project ID: P0901588 Client Sample ID: Site -10/11

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-006

Date Collected: 5/7/09 EPA TO-15 Test Code:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09 Instrument ID: Date Analyzed: 5/18/09 Analyst: Elsa Moctezuma

6.0 L Summa Canister Volume(s) Analyzed: 0.20 Liter(s) Sampling Media:

Test Notes:

AC01261 Container ID:

-3.4 Initial Pressure (psig): Final Pressure (psig): 3.5

Canister Dilution Factor: 1.61

CAS#	Compound	Result μg/m³	MRL $\mu g/m^3$	Result ppbV	MRL ppbV	Data Qualifier
106-99-0	1,3-Butadiene	ND	4.0	ND	1.8	
1634-04-4	Methyl tert-Butyl Ether	ND	4.0	ND	1.1	
71-43-2	Benzene	ND	4.0	ND	1.3	
108-88-3	Toluene	5.1	4.0	1.4	1.1	
100-41-4	Ethylbenzene	ND	4.0	ND	0.93	
179601-23-1	m,p-Xylenes	ND	8.1	ND	1.9	
100-42-5	Styrene	ND	4.0	ND	0.95	
95-47-6	o-Xylene	ND	4.0	ND	0.93	
91-20-3	Naphthalene	ND	4.0	ND	0.77	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: 5/17/04 17

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Site -10/11 CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-006

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: 5/7/09

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09
Analyst: Elsa Moctezuma Date Analyzed: 5/18/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.20 Liter(s)

Test Notes:

Container ID: AC01261

Initial Pressure (psig): -3.4 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.61

Compound	Result	MRL	Data
	$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	Qualifier
C ₅ - C ₈ Aliphatic Hydrocarbons ^{1,2}	220	160	
C_9 - C_{12} Aliphatic Hydrocarbons ^{1,3}	ND	81	
© - C ₁₀ Aromatic Hydrocarbons	ND	40	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

Verified By: Date: 5 13 104 18

^{&#}x27;Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 8 CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-007

Test Code: EPA TO-15 Date Collected: 5/7/09

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09
Analyst: Elsa Moctezuma Date Analyzed: 5/18/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.20 Liter(s)

Test Notes:
Container ID: AC01384

Initial Pressure (psig): -3.2 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.58

CAS #	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
106-99-0	1,3-Butadiene	ND	4.0	ND	1.8	
1634-04-4	Methyl tert-Butyl Ether	ND	4.0	ND	1.1	
71-43-2	Benzene	ND	4.0	ND	1.2	
108-88-3	Toluene	8.1	4.0	2.1	1.0	
100-41-4	Ethylbenzene	ND	4.0	ND	0.91	
179601-23-1	m,p-Xylenes	ND	7.9	ND	1.8	
100-42-5	Styrene	ND	4.0	ND	0.93	
95-47-6	o-Xylene	ND	4.0	ND	0.91	
91-20-3	Naphthalene	ND	4.0	ND	0.75	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 5/23/109

RESULTS OF ANALYSIS

Page 1 of 1

Innovative Engineering Solutions, Incorporated Client:

Client Sample ID: Site 8 CAS Project ID: P0901588

CAS Sample ID: P0901588-007 Client Project ID: NG Malden 129 / Task 8

Massachusetts APH, Revision 0, December 2008 Date Collected: 5/7/09 Test Code:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09 Instrument ID: Date Analyzed: 5/18/09 Analyst: Elsa Moctezuma

Volume(s) Analyzed: 6.0 L Summa Canister 0.20 Liter(s) Sampling Media:

-3.2

Test Notes:

Container ID: AC01384 Final Pressure (psig): 3.5

Initial Pressure (psig):

Canister Dilution Factor: 1.58

Compound	Result	MRL	Data
	$\mu g/m^3$	$\mu g/m^3$	Qualifier
C ₅ - C ₈ Aliphatic Hydrocarbons ^{1,2}	ND	160	
C_9 - C_{12} Aliphatic Hydrocarbons ^{1,3}	ND	79	
C ₉ - C ₁₀ Aromatic Hydrocarbons	ND	40	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

Verified By: Date:

¹Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₉ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

CAS Project ID: P0901588 Client Sample ID: Duplicate

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-008

Date Collected: 5/7/09 Test Code: EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09 Instrument ID: Date Analyzed: 5/18/09 Analyst: Elsa Moctezuma

-4.4

6.0 L Summa Canister Volume(s) Analyzed: 0.20 Liter(s) Sampling Media:

Test Notes: AC00294 Container ID:

Final Pressure (psig): Initial Pressure (psig):

Canister Dilution Factor: 1.77

3.5

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu \mathrm{g}/\mathrm{m}^3$	μg/m³	ppbV	ppbV	Qualifier
106-99-0	1,3-Butadiene	ND	4.4	ND	2.0	
1634-04-4	Methyl tert-Butyl Ether	ND	4.4	ND	1.2	
71-43-2	Benzene	ND	4.4	ND	1.4	
108-88-3	Toluene	5.4	4.4	1.4	1.2	
100-41-4	Ethylbenzene	ND	4.4	ND	1.0	
179601-23-1	m,p-Xylenes	ND	8.9	ND	2.0	
100-42-5	Styrene	ND	4.4	ND	1.0	
95-47-6	o-Xylene	ND	4.4	ND	1.0	
91-20-3	Naphthalene	ND	4.4	ND	0.84	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: LA Date: 5/17/109 TO15scan.xls - NL - PageNo.:

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

CAS Project ID: P0901588 Client Sample ID: Duplicate

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-008

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: 5/7/09

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09 Elsa Moctezuma Date Analyzed: 5/18/09 Analyst:

Volume(s) Analyzed: 0.20 Liter(s)

Sampling Media: 6.0 L Summa Canister Test Notes:

AC00294 Container ID: Final Pressure (psig): 3.5 Initial Pressure (psig): -4.4

Canister Dilution Factor: 1.77

Compound	Result	MRL	Data
7	$\mu g/m^3$	$\mu g/m^3$	Qualifier
C ₅ - C ₈ Aliphatic Hydrocarbons ^{1,2}	ND	180	
C_9 - C_{12} Aliphatic Hydrocarbons ^{1,3}	ND	89	
C ₉ - C ₁₀ Aromatic Hydrocarbons	ND	44	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

¹Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₀-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₀-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

SC00212

Container ID:

Client Sample ID: Sys-INF CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-009

Test Code: EPA TO-15 Date Collected: 5/7/09

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09
Analyst: Elsa Moctezuma Date Analyzed: 5/19/09

-1.2

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Initial Pressure (psig):

Canister Dilution Factor: 1.35

3.5

Final Pressure (psig):

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
106-99-0	1,3-Butadiene	ND	0.68	ND	0.31	
1634-04-4	Methyl tert-Butyl Ether	ND	0.68	ND	0.19	
71-43-2	Benzene	1.2	0.68	0.36	0.21	
108-88-3	Toluene	3.3	0.68	0.88	0.18	
100-41-4	Ethylbenzene	ND	0.68	ND	0.16	
179601-23-1	m,p-Xylenes	1.7	1.4	0.39	0.31	
100-42-5	Styrene	ND	0.68	ND	0.16	
95-47-6	o-Xylene	ND	0.68	ND	0.16	
91-20-3	Naphthalene	ND	0.68	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 5/27/09
TO15scan.xls - NL - PageNo.: 2

RESULTS OF ANALYSIS Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Sys-INF CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-009

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: 5/7/09

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 5/11/09
Analyst: Elsa Moctezuma Date Analyzed: 5/19/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: SC00212

Initial Pressure (psig): -1.2 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.35

Compound	Result	MRL	Data
	$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	Qualifier
C ₅ - C ₈ Aliphatic Hydrocarbons ^{1,2}	43	27	
C_9 - C_{12} Aliphatic Hydrocarbons ^{1,3}	38	14	
C ₉ - C ₁₀ Aromatic Hydrocarbons	ND	6.8	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{&#}x27;Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

Client Sample ID: Method Blank

Client Project ID: NG Malden 129 / Task 8

CAS Project ID: P0901588

Date Collected: NA

Date Received: NA

CAS Sample ID: P090518-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Elsa Moctezuma

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 5/18/09 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result μg/m³	$\begin{array}{c} MRL \\ \mu g/m^3 \end{array}$	Result ppbV	MRL ppbV	Data Qualifier
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
C71-43-2	Benzene	ND	0.50	ND	0.16	
108-88-3	Toluene	ND	0.50	ND	0.13	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
100-42-5	Styrene	ND	0.50	ND	0.12	
695-47-6	o-Xylene	ND	0.50	ND	0.12	
91-20-3	Naphthalene	ND	0.50	ND	0.095	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

RESULTS OF ANALYSIS Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Method Blank CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8

CAS Sample ID: P090518-MB

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA

Analyst: Elsa Moctezuma Date Analyzed: 5/18/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Compound	Result	MRL	Data
	$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	Qualifier
C_5 - C_8 Aliphatic Hydrocarbons ^{1,2}	ND	20	
$C_9 - C_{12}$ Aliphatic Hydrocarbons ^{1,3}	ND	10	
C ₉ - C ₁₀ Aromatic Hydrocarbons	ND	5.0	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

Verified By: La Date: 5/17/04

Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

Client Sample ID: Method Blank

Client Project ID: NG Malden 129 / Task 8

CAS Project ID: P0901588

CAS Sample ID: P090519-MB

Test Code:

EPA TO-15

Date Collected: NA

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Received: NA

Analyst:

Elsa Moctezuma

Date Analyzed: 5/19/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result μg/m³	$MRL \ \mu g/m^3$	Result ppbV	MRL ppbV	Data Qualifier
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
71-43-2	Benzene	ND	0.50	ND	0.16	
108-88-3	Toluene	ND	0.50	ND	0.13	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
91-20-3	Naphthalene	ND	0.50	ND	0.095	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: _____

RESULTS OF ANALYSIS

Page 1 of 1

Innovative Engineering Solutions, Incorporated Client:

Client Sample ID: Method Blank CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P090519-MB

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: NA Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA

Elsa Moctezuma Date Analyzed: 5/19/09 Analyst:

Volume(s) Analyzed: Sampling Media: 6.0 L Summa Canister 1.00 Liter(s)

Test Notes:

Compound	Result	MRL	Data
	$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	Qualifier
C ₅ - C ₈ Aliphatic Hydrocarbons ^{1,2}	ND	20	
C_9 - C_{12} Aliphatic Hydrocarbons ^{1,3}	ND	10	
C_9 - C_{10} Aromatic Hydrocarbons	ND	5.0	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

Verified By:

^{&#}x27;Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

 $^{^{1}}$ C₀-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₀-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

SURROGATE SPIKE RECOVERY RESULTS Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

Client Project ID: NG Malden 129 / Task 8

CAS Project ID: P0901588

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Elsa Moctezuma

Date(s) Collected: 5/7/09 Date(s) Received: 5/11/09

Sampling Media:

6.0 L Summa Canister(s)

Date(s) Analyzed: 5/18 - 5/19/09

Test Notes:

		1,2-Dichloroethane-d4		Toluene-d8		Bromofluorobenzene		
Client Sample ID	CAS Sample ID	%	Acceptance	%	Acceptance	%	Acceptance	Data
-		Recovered	Limits	Recovered	Limits	Recovered	Limits	Qualifier
Method Blank	P090518-MB	98	70-130	99	70-130	102	70-130	
Method Blank	P090519-MB	107	70-130	102	70-130	94	70-130	
Lab Control Sample	P090518-LCS	97	70-130	98	70-130	101	70-130	
Lab Control Sample	P090519-LCS	105	70-130	101	70-130	95	70-130	
Site 5	P0901588-001	111	70-130	100	70-130	92	70-130	and the second s
Site 4	P0901588-002	98	70-130	99	70-130	101	70-130	
Site 4	P0901588-002DUP	98	70-130	98	70-130	100	70-130	
Site 6	P0901588-003	97	70-130	99	70-130	102	70-130	
Site 2	P0901588-004	99	70-130	98	70-130	100	70-130	
Site 7	P0901588-005	99	70-130	99	70-130	100	70-130	
Site -10/11	P0901588-006	100	70-130	98	70-130	100	70-130	
Site 8	P0901588-007	100	70-130	98	70-130	100	70-130	
Duplicate	P0901588-008	100	70-130	98	70-130	99	70-130	
Sys-INF	P0901588-009	102	70-130	98	70-130	97	70-130	

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

Client Sample ID: Lab Control Sample

Client Project ID: NG Malden 129 / Task 8

CAS Project ID: P0901588

CAS Sample ID: P090518-LCS

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Elsa Moctezuma

6.0 L Summa Canister

Sampling Media:

Test Notes:

Date Collected: NA

Date Received: NA Date Analyzed: 5/18/09

Volume(s) Analyzed:

NA Liter(s)

					CAS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
106-99-0	1,3-Butadiene	30.0	32.9	110	66-161	
1634-04-4	Methyl tert-Butyl Ether	27.5	28.9	105	72-132	
* 71-43-2	Benzene	26.8	23.1	86	68-122	
108-88-3	Toluene	27.0	24.4	90	74-119	
100-41-4	Ethylbenzene	26.5	25.1	95	76-120	
179601-23-1	m,p-Xylenes	52.5	50.0	95	75-120	
100-42-5	Styrene	27.0	29.3	109	78-124	
95-47-6	o-Xylene	26.5	25.2	95	76-121	
91-20-3	Naphthalene	25.8	29.7	115	69-141	and the second s

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Lab Control Sample CAS Project ID: P0901588
Client Project ID: NG Malden 129 / Task 8
CAS Sample ID: P090518-LCS

CAS Sample ID: P090518-LCS

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA
Analyst: Elsa Moctezuma Date Analyzed: 5/18/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA Liter(s)

Test Notes:

				CAS	
Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	ng	ng		Limits	Qualifier
C5 - C8 Aliphatic Hydrocarbons	24.8	23.4	94	70-130	
© - C12 Aliphatic Hydrocarbons	25.0	25.6	102	70-130	
C9 - C10 Aromatic Hydrocarbons	49.8	50.0	100	70-130	

Verified By: Date: 5/27/09

APH.XLT - Page No.: 31

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Lab Control Sample
Client Project ID: NG Malden 129 / Task 8

CAS Project ID: P0901588
CAS Sample ID: P090519-LCS

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Elsa Moctezuma

Sampling Media:

6.0 L Summa Canister

Test Notes:

Date Collected: NA
Date Received: NA
Date Analyzed: 5/19/09

Volume(s) Analyzed:

NA Liter(s)

					CAS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
106-99-0	1,3-Butadiene	30.0	34.9	116	66-161	
1634-04-4	Methyl tert-Butyl Ether	27.5	30.4	111	72-132	
71-43-2	Benzene	26.8	22.2	83	68-122	
108-88-3	Toluene	27.0	24.9	92	74-119	
100-41-4	Ethylbenzene	26.5	25.5	96	76-120	
179601-23-1	m,p-Xylenes	52.5	51.1	97	75-120	
100-42-5	Styrene	27.0	29.8	110	78-124	
95-47-6	o-Xylene	26.5	25.8	97	76-121	
91-20-3	Naphthalene	25.8	30.5	118	69-141	

Verified By: Date: 5/17/09
TO15scan.xls - NL - PageNo.:

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Lab Control Sample CAS Project ID: P0901588
Client Project ID: NG Malden 129 / Task 8
CAS Sample ID: P090519-LCS

Test Code: Massachusetts APH, Revision 0, December 2008 Date Collected: NA

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA
Analyst: Elsa Moctezuma Date Analyzed: 5/19/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA Liter(s)

Test Notes:

				CAS	
Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	ng	ng		Limits	Qualifier
C5 - C8 Aliphatic Hydrocarbons	24.8	22.8	92	70-130	
C9 - C12 Aliphatic Hydrocarbons	25.0	26.7	107	70-130	
C9 - C10 Aromatic Hydrocarbons	49.8	51.1	103	70-130	

Verified By: Date: 5/27/04 APH.XLT - Page No.:

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 4

CAS Project ID: P0901588

CAS Sample ID: P0901588-002DUP

Client Project ID: NG Malden 129 / Task 8

Test Code: Instrument ID: EPA TO-15

Date Collected: 5/7/09

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

6.0 L Summa Canister

Date Received: 5/11/09 Date Analyzed: 5/18/09

Analyst: Sampling Media: Elsa Moctezuma

Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID:

AC01027

Initial Pressure (psig):

0.5

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.20

		Duplicate							
Compound	Sample	Sample Result		Sample Result		% RPD	RPD	Data	
	$\mu g/m^3$	ppbV	$\mu g/m^3$	ppbV	$\mu g/m^3$		Limit	Qualifier	
1,3-Butadiene	ND	ND	ND	ND	-	-	25		
Methyl tert-Butyl Ether	ND	ND	ND	ND	-	-	25		
Benzene	1.41	0.443	1.39	0.435	1.4	1	25		
Toluene	5.67	1.51	5.47	1.45	5.57	4	25		
Ethylbenzene	1.11	0.256	1.08	0.249	1.095	3	25		
m,p-Xylenes	3.15	0.724	3.02	0.696	3.085	4	25		
Styrene	ND	ND	ND	ND	-	-	25		
o-Xylene	1.05	0.242	1.01	0.233	1.03	4	25		
Naphthalene	ND	ND	ND	ND		-	25		

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client: Innovative Engineering Solutions, Incorporated

Client Sample ID: Site 4 CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8 CAS Sample ID: P0901588-002DUP

Test Code: Massachusetts APH, Revision 0, December 2008

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Received: 5/11/09

Analyst: Elsa Moctezuma Date Analyzed: 5/18/09
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:

Container ID: AC01027

Initial Pressure (psig): 0.5 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.20

Date Collected: 5/7/09

		Duplicate				
Compound	Sample Result	Sample Result	Average	% RPD	RPD	Data
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		Limit	Qualifier
C ₅ - C ₈ Aliphatic Hydrocarbons ^{1,2}	44.9	43.3	44.1	4	25	
⁽ C ₉ - C ₁₂ Aliphatic Hydrocarbons ^{1,3}	27.7	26.1	26.9	6	25	
⁴ C ₉ - C ₁₀ Aromatic Hydrocarbons	ND	ND	-		25	

Significant non-petroleum related peaks (i.e. halogenated, oxygenated, terpenes, etc.) are subtracted from the hydrocarbon range areas when present.

^{&#}x27;Hydrocarbon Range data from total ion chromatogram excluding any internal/tuning standards eluting in that range.

²C_s-C₈ Aliphatic Hydrocarbons exclude the concentration of Target APH analytes eluting in that range.

³C₉-C₁₂ Aliphatic Hydrocarbons exclude concentration of Target APH Analytes eluting in that range and concentration of C₉-C₁₀ Aromatic Hydrocarbons.

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8

Internal Standard Area and RT Summary

IS1 (BCM)

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

IS2 (DFB)

Lab File ID: 05180903.D

Analyst:

Elsa Moctezuma

Date Analyzed:

5/18/09

IS3 (CBZ)

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 09:41

Test Notes:

		122 (2012)				1	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	419388	12.83	1953089	15.77	936466	21.57
	Upper Limit	587143	13.16	2734325	16.10 1311052		21.90
	Lower Limit	251633	12.50	1171853	15.44	561880	21.24
	Client Sample ID						
01	Method Blank	433073	12.80	2015607	15.75	946945	21.56
02	Site 4	386945	12.81	1800943	15.75	846019	21.57
03	Site 4 (Lab Duplicate)	391603	12.81	1818587	15.75	865698	21.57
04	Lab Control Sample	401105	12.83	1853214	15.77	887830	21.57
05	Site 6	440969	12.81	2026789	15.75	959808	21.57
06	Site 2	424197	12.80	1980788	15.75	951987	21.56
07	Site 7	384833	12.81	1791347	15.75	852236	21.57
08	Site -10/11	397868	12.80	1847086	15.75	887721	21.57
09	Site 8	392943	12.80	1823055	15.75	880997	21.57
10	Duplicate	370198	12.81	1719867	15.75	833474	21.57
11	Sys-INF	402973	12.80	1891520	15.75	899995	21.56
12	•						
13							
14							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits.

Verified By:____

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Innovative Engineering Solutions, Incorporated

CAS Project ID: P0901588

Client Project ID: NG Malden 129 / Task 8

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Lab File ID: 05190901.D

Analyst:

Elsa Moctezuma

Date Analyzed:

5/19/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 10:10

Test Notes:

		IS1 (BCM)	IS2 (DFB) IS3 (CBZ)				
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	402840	12.83	2037430	15.77	923094	21.57
	Upper Limit	563976	13.16	2852402	16.10	1292332	21.90
	Lower Limit	241704	12.50	1222458	15.44	553856	21.24
	Client Sample ID						
01	Method Blank	398376	12.81	2041397	15.75	921818	21.57
02	Lab Control Sample	367782	12.83	1845942	15.77	836388	21.57
03	Site 5	331089	12.81	1681447	15.75	784432	21.57
04							
05	* 1 T						
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

20

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits.

Verified By: ____