

MASSACHUSETTS CONTINGENCY PLAN PHASE II COMPREHENSIVE SITE ASSESSMENT ADDENDUM

FORMER VARIAN FACILITY SITE
150 SOHIER ROAD
BEVERLY, MASSACHUSETTS 01915

MassDEP Site # 3-0485

Submitted by:

APTIM

150 Royall Street

Canton, Massachusetts 02021

Lynn Maybury, P.G.

Geologist

Raymond J. Cadorette, PMP

Project Manager

Project No. 631010754

March 2023

Joanne Perwak Senior Risk Assessor

vanne H Perivale

Brian J. Cote, P.G. Licensed Site Professional

Table of Contents_____

LIS	ΓOF	ACRONY	MS & ABBREVIATIONS	VII
EXE	CUT	IVE SUM	MARY	IX
1.0	INT	RODUCT	ON	1
	1 1	Stateme	nt of Purpose	1
			rganization	
0.0		•		
2.0	GEI		TE INFORMATION	
	2.1		Site Name, Location, and Locus Map [310 CMR 40.0835(4)(a)]	
	2.2	Detailed	Disposal Site Map [310 CMR 40.0835(4)(b)]	
		2.2.1	Facility and Site Vicinity Description	
		2.2.2	Facility Topography and Land Cover	
		2.2.3	Facility and Site Surface Drainage	
		-	Site History [310 CMR 40.0835(4)(c)]	
	2.4		gulatory Status	
		2.4.1	Site Regulatory Status 2000 through Today	5
3.0	PRE	EVIOUS E	NVIRONMENTAL INVESTIGATIONS AND REMEDIAL ACTIVITIES	11
	3.1	Summar	y of Historical Assessment (1995–1999)	11
	3.2	Site Asse	essment and Remediation Activities (2000 through 2021)	16
	3.3	Site Asse	essment Activities	28
		3.3.1	Tozer Road Soil Vapor and Indoor Air Sampling (December 2021 and January 2022	2) 28
		3.3.2	Groundwater Sampling (February and May 2022)	32
		3.3.3	P21 Well Installation and Sampling (April to March 2022)	33
		3.3.4	Building 5 Bedrock Well Installation (March 2022)	35
		3.3.5	OB45-BR Bedrock Logging (March 2022)	36
		3.3.6	Building 3 Indoor air and Soil Vapor Sampling (March and June 2022)	36
		3.3.7	Building 3 Electrical Resistivity Imaging Study (April 2022)	37
		3.3.8	Building 2 Angled Well Installation (July 2022)	40
		3.3.9	Building 2 and 3 Vertical Well Installation (July 2022)	41
		3.3.10	Building 5 Shallow Well Installation (August 2022)	43
		3.3.11	34 Longview Drive Activities (March, April, and July 2022)	44
		3.3.12	Irrigation Well Sampling (July 2022)	46
4.0	SITI	E HYDRO	GEOLOGICAL CHARACTERISTICS [310 CMR 40.0385(4)(D)]	46
	4.1	General	Characterization of Geologic and Hydrogeologic Conditions	46
	4.2		on of Subsurface Geological and Hydrogeological Investigations	
	4.3		Surface Topography	
	4.4		rater Flow	
		4.4.1	Shallow Overburden Aquifer	
		4.4.2	Deep Overburden Aquifer	51

		4.4.3	Bedrock A	Aquifer	51		
		4.4.4	Vertical C	Component of Groundwater Flow	52		
	4.5	Evaluation	on and Des	scription of Potential for Flooding	54		
5.0	EΝ\	ENVIRONMENTAL FATE AND TRANSPORT OF OIL AND/OR HAZARDOUS MATERIALS [310 CMR					
	40.0)835(4)(E)]		54		
	5.1	Contami	nants of Co	oncern	54		
	5.2	Characte	ristics of C	Contaminants of Concern	55		
		5.2.1	Degradati	ion and Natural Attenuation of the Contaminants of Concern	55		
	5.3	Existing	and Potent	tial Migration Pathways including Indoor Air	56		
6.0	NAT	TURE ANI	D EXTENT	OF CONTAMINATION [310 CMR 40.0835(4)(F)]	57		
	6.1	VOCs in	Soil		57		
		6.1.1	Building 3	3 Area Soil Impacts	57		
		6.1.2	Building 5	5 Area Soil Impacts	58		
		6.1.3	PSL-10 A	rea Soil Impacts	59		
	6.2	VOCs in	Groundwa	ıter	59		
		6.2.1	VOCs in S	Shallow Groundwater	59		
		6.2.2	VOCs in [Deep Overburden Groundwater	61		
		6.2.3	VOCs in E	Bedrock Groundwater	62		
	6.3	Potential	DNAPL		62		
		6.3.1	•	3 Area			
		6.3.2	_	5 Area			
	6.4			/ater and Sediment			
		6.4.1		Sediment			
		6.4.2		Surface Water			
	6.5	Concept	ual Site Mo	odel	67		
7.0	EXF	POSURE A	ASSESSM	ENT AND RISK CHARACTERIZATION [310 CMR 40.0825(4)(G) AND H)]	71		
	7.1	Backgrou	und		72		
	7.2	Hazard I	dentificatio	n	73		
		7.2.1	Chemical	s Detected at the Site	73		
			7.2.1.1	Soil	73		
			7.2.1.2	Groundwater	74		
			7.2.1.3	Surface Water and Sediment			
			7.2.1.4	Indoor Air			
		7.2.2		of COCs			
	7.3	Exposure		ent			
		7.3.1		nd Foreseeable Future Use of the Site			
		7.3.2		Identification and Pathways of Exposure			
		7.3.3		Groundwater Categories			
			7.3.3.1	Soil Categories Applicable at the Site			
			7.3.3.2	Groundwater Categories Applicable at the Site			
		734	Exposure	Point Locations and Concentrations	81		

				-	
			7.3.4.1	Soil	
			7.3.4.2	Groundwater	83
			7.3.4.3	Indoor Air	84
		7.3.5	Exposure	Estimation	84
			7.3.5.1	Soil	84
			7.3.5.2	Groundwater	85
			7.3.5.3	Indoor Air	86
	7.4	Dose Re	sponse As	sessment	86
	7.5	Human I	Health Risk	Characterization	87
		7.5.1	Cumulativ	e Non-Cancer Health Risks	87
		7.5.2	Cumulativ	e Cancer Risk	87
		7.5.3	Comparis	on to Applicable or Suitably Analogous Standards	88
	7.6	Risk to S			
	7.7	Risk to F	Public Welfa	are	88
	7.8	Risk to t	he Environr	ment	90
	7.9	Uncertai	nty Analysis	S	90
8.0	COI	NCLUSIO	NS AND FI	NDINGS [310 CMR 40.0835(4)(I)]	91
9.0	REF	FERENCE	ES		97
10 () I IM	ITATION!	S ON WOR	K PRODUCT	100

List of Tables _____

Table 3-1	Monitoring Well Summary, Installed Wells 2000-Present
Table 3-2	Indoor Air Analytical Results, Tozer Road Properties
Table 3-3	Soil Vapor Analytical Results, Tozer Road Properties
Table 3-4	Groundwater and Surface Water Sample Summary, February 2022
Table 3-5	Groundwater and Surface Water Sample Summary, May 2022
Table 3-6	Groundwater Sample Summary, August 2022
Table 3-7	Water Level Monitoring Data
Table 3-8	Water Quality Data - VOC Results, 2020 to Present
Table 3-9	Water Quality Data - Bioremediation Parameters, 2018 to Present, Building 3 Area
Table 3-10	Water Quality Data - Bioremediation Parameters, 2018 to Present, Building 5 Area Wells
Table 3-11	Stream and Surface Water Results, 2020 to Present
Table 3-12	Soil VOC Analytical Results, April, July, August 2022 Well Installation
Table 3-13	Building 3 Area Indoor Air Results
Table 3-14	Soil Vapor Results, Buildings 2 and 3
Table 3-15	Select Residential Indoor Air Results - 34 Longview Drive
Table 3-16	Select Sub-Slab Soil Vapor Results - 34 Longview Drive
Table 4-1	Vertical Hydraulic Gradients between Overburden and Bedrock Wells
Table 6-1	Building 3 Area Soil Sample Results
Table 6-2	Building 5 Area Soil Sample Results
Table 6-3	Soil Analytical Results - PSL 10 Area
Table 6-4	Summary of Sediment Sample Results
Table 7-1	Summary Statistics - Soil
Table 7-2	Summary Statistics - Groundwater
Table 7-3	Summary Statistics - Facility Building Indoor Air
Table 7-4	Summary Statistics - Tozer Road Indoor Air
Table 7-5	Residential Indoor Air Sampling Summary
Table 7-6	Contaminants of Concern
Table 7-7	Exposure Profiles
Table 7-8	Soil Samples Used in Risk Characterization
Table 7-9	Soil Exposure Point Concentrations - 0–6 feet
Table 7-10	Soil Exposure Point Concentrations - 0–15 feet
Table 7-11	Groundwater Sampling Locations Included in Risk Characterization
Table 7-12	Groundwater Summary Statistics - Shallow Excluding Hot Spot
Table 7-13	Groundwater Summary Statistics - Shallow Hot Spot
Table 7-14	Buildings 3 and 5 Indoor Air Exposure Point Concentrations
Table 7-15	Risk Summary
Table 7-16	Soil Upper Concentration Comparison - 0–15 feet

List of Tables (cont.)

Table 7-17	Soil 15 Feet and Greater - Hot Spot 2 - UCL Comparison
Table 7-18	Soil 15 Feet and Greater - Hot Spot 3 - UCL Comparison
Table 7-19	Soil 15 Feet and Greater - No Hot Spots - UCL Comparison
Table 7-20	Shallow Groundwater - Hot Spot - UCL Comparison
Table 7-21	Shallow Groundwater - Excluding Hot Spot - UCL Comparison
Table 7-22	Deep Overburden Groundwater Building 3 Hot Spot - UCL Comparison
Table 7-23	Deep Overburden Groundwater Building 5 Hot Spot - UCL Comparison
Table 7-24	Deep Overburden Groundwater Downgradient Hot Spot - UCL Comparison
Table 7-25	Deep Overburden Groundwater - Non-Hot Spot - UCL Comparison
Table 7-26	Bedrock Groundwater Hot Spot - UCL Comparison
Table 7-27	Bedrock Groundwater Excluding Hot Spot - UCL Comparison
	·

List of Figures _____

Figure 1-1	Site Location Map
Figure 1-2	Expanded Site Plan
Figure 2-1	Potential Source Location Sampling Areas
Figure 3-1	Building 3 Remedial Treatment Area Sample Locations
Figure 3-2	Building 5 Remedial Treatment Area
Figure 3-3	VOC Concentrations in Groundwater - Shallow May/August 2022
Figure 3-4	VOC Concentrations in Groundwater - Deep May/August 2022
Figure 3-5	VOC Concentrations in Groundwater - Bedrock May/August 2022
Figure 3-6	Building 1, 2, 3, 4, & 6 Area
Figure 3-7	Estimated Building 3 Treatment Area
Figure 3-8	34 Longview Drive
Figure 3-9	34 Longview Drive Basement Area
Figure 4-1	Bedrock Surface Elevation Contours
Figure 4-2	Groundwater Contours in Shallow Overburden Aquifer
Figure 4-3	Groundwater Contours in Deep Overburden Aquifer
Figure 4-4	Groundwater Contours in Bedrock Aquifer
Figure 4-5	Groundwater Contour of Shallow Overburden Aquifer for December 6, 1999
Figure 6-1	Summary of Soil Assessment Results, Building 3 West
Figure 6-2	Summary of Soil Assessment Results, Building 3 East
Figure 6-3	Summary of Soil Assessment Results, Building 5
Figure 6-4	Summary of Soil Assessment, Potential Source Location 10

Estimated Trichloroethene Concentrations in Shallow Groundwater

Figure 6-5

List of Figures (cont.)

igure 6-6	Estimated Trichloroethene Concentrations in Deep Overburden Groundwater
igure 6-7	Estimated Trichloroethene Concentrations in Bedrock Groundwater
igure 6-8	Building 3 Wells with Average VOC Concentrations above 1%, 5%, and 10% of Solubility
igure 6-9	Building 5 Wells with Average VOC Concentrations above 1%, 5%, and 10% of Solubility
igure 6-10	Stream Sample Location Map
igure 6-11	Stream Sediment Sample VOC Results (2021)
igure 6-12	Stream Surface Water Sample VOC Results (2021)

List of Appendices_

- Appendix A MassDEP Comprehensive Response Action Transmittal Form (BWSC-108)
- Appendix B Soil Boring/Well Logs (Post 2000)
- Appendix C Plans for Tozer Road Properties
- Appendix D Laboratory Reports 30, 31, 39 Tozer Road Indoor Air and Soil Vapor
- Appendix E Laboratory Reports Groundwater Sampling, February, March, April, May, and August 2022
- Appendix F Laboratory Reports Soil Sampling, March and July 2022
- Appendix G HGI Borehole Geophysical Investigation Report, Building 5
- Appendix H Laboratory Reports Building 3 Indoor Air and Soil Vapor, March and June 2022
- Appendix I Aestus Geotrax Final Report, November 2022
- Appendix J Laboratory Reports Longview Drive Indoor Air and Soil Vapor, March, April, and July 2022
- Appendix K Laboratory Report Shortmeadow Drive Irrigation Well, July 2022
- Appendix L FEMA Flood Maps
- Appendix M Method 3 Risk Assessment Tables

List of Acronyms & Abbreviations_

1,1-DCA
1,1-dichloroethane
1,1-DCE
1,1-dichloroethane
1,1,1-TCA
1,1,1-trichloroethane
µg/L
micrograms per liter

μg/m³ micrograms per cubic meter

ADAF age-dependent adjustment factors

APTIM Aptim Environmental and Infrastructure, LLC

ARA Absolute Resource Associates
AST aboveground storage tank
AUL activity and use limitation

bgs below ground surface
Bomac Bomac Laboratories, Inc.
BWSC Bureau of Waste Site Cleanup

CAM Compendium of Analytical Methods

CDM Camp Dresser & McKee cfm cubic feet per minute

CHES Clean Harbors Environmental Services, Inc.

cis-1,2-DCE *cis*-1,2-dichloroethene

CMR Code of Massachusetts Regulations

COC contaminants of concern

cP centipoise

CPI Communications & Power Industries, Inc.

CPT cone penetrometer test

CSA Comprehensive Site Assessment

CSM conceptual site model

DHC Dehalococcoides

DNAPL dense nonaqueous phase liquid

DO deep overburden

EPA U.S. Environmental Protection Agency

ERI electrical resistivity imaging EPC exposure point concentration

foc fraction of organic carbon

ft/ft feet per foot

g/cm³ grams per cubic centimeter

gpm gallons per minute

HA hand-auger
HI hazard index
HQ hazard quotient

HGI Hager GeoScience, Inc.

HVAC heating, ventilation, and air conditioning

IM Imminent Hazard

IRA Immediate Response Action

IRIS Integrated Risk Information System

List of Acronyms & Abbreviations (cont.)_____

IT IT Corporation, Inc.

LSP Licensed Site Professional

m meter

Massachusetts Department of Environmental Protection

MCP Massachusetts Contingency Plan

MDL method detection limit

mg/kg milligrams per kilogram = ppm mg/L milligrams per liter = ppb

MSL mean sea level

OHM oil or hazardous materials

ohm-m ohm meter

O&M operation and maintenance

PDB passive diffusion bag PCE tetrachloroethene

PEL permissible exposure limits
PID photoionization detector
PPA Potentially Productive Aguifer

ppb parts per billion ppm parts per million

PSL Potential Source Location

PVC polyvinyl chloride

QC quality control

RAP Remedial Action Plan
RfD reference dose values
ROS Remedy Operation Status
ROUX Roux Environmental
RSL regional screening level
RTN Release Tracking Number

Shaw Environmental & Infrastructure, Inc.

SIM Selective Ion Monitoring SVE soil vapor extraction

TCE trichloroethene

TPH total petroleum hydrocarbons trans-1,2-DCE trans-1,2-dichloroethene

TV Threshold Value

UCL Upper Concentration Limit

Varian Medical Systems, Inc.

VC vinyl chloride

VOC volatile organic compound

EXECUTIVE SUMMARY

In 2000, Varian Medical Systems, Inc. (Varian) submitted a Massachusetts Contingency Plan (MCP) Phase II Comprehensive Site Assessment (CSA) for the Former Varian facility located at 150 Sohier Road in Beverly, Massachusetts (IT Corporation, Inc., 2000a). This report documented the data and results of a comprehensive assessment of the site conducted from 1995 to 1999 to define the source, nature, and extent of the oil or hazardous material (OHM) releases at the property, including the investigation of 19 Potential Source Locations (PSLs).

Information about historical industrial processes and subsurface analytical data from PSL investigations indicated that the contaminants of concern (COCs) at the Site are chlorinated volatile organic compounds (VOCs). Trichloroethene (TCE), tetrachloroethene (PCE), and 1,1,1-trichloroethane (1,1,1-TCA) were the three primary chlorinated solvents historically used at Varian's former facility. Eight COCs were identified for the Site including the three parent compounds, TCE, PCE, 1,1,1-TCA, and five common degradation ("daughter") compounds, *cis*-1,2-dichloroethene (*cis*-1,2-DCE), *trans*-1,2-dichloroethene (*trans*-1,2-DCE), 1,1-dichloroethene (1,1-DCE), 1,1-dichloroethane (1,1-DCA), and vinyl chloride (VC).

Releases of VOCs appear to have occurred in PSL-5 (former Building 1 septic tank/leach field), PSL-6 (former septic tank/leach field beneath Building 6), and PSL-11 (Building 3 chemical laboratory). These PSLs are collectively referred to as the Building 3 Source Area. Releases of VOCs appear to have also occurred at PSL-7 (Building 5 chemical laboratory), which is referred to as the Building 5 Source Area. Additionally, VOC releases seem to have occurred at PSL-10 (open field), primarily on the western property line near 32 Tozer Road. This location is referred to as the PSL-10 Source Area.

Based on the 2000 Phase II CSA, a condition of No Significant Risk existed at the Site with the exception of potential future risk associated with hypothetical future use of groundwater as drinking water. Remediation was recommended to address soil and groundwater impacts. Varian submitted a Phase IV Remedy Implementation Plan (Phase IV Plan; IT, 2001) in December 2001. The Phase IV Plan described proposed remedial actions for addressing VOCs in soil and groundwater at the Site. *In situ* oxidation of VOCs in soil and groundwater using permanganate (a common oxidant) was chosen as a suitable remedial alternative for the Site. Initial implementation of the Comprehensive Response Action, including injection of permanganate, began in July 2002.

Response actions at the Site continued under the MCP in Remedy Operations Status (ROS) from 2002 through 2022. Semiannual ROS reports documented the cleanup activities at the Site. Activities included supplementing the cleanup plan with bioremediation, installing multiple injection wells, and further assessment of source areas. Well installation since the completion of the 2000 Phase II CSA has included approximately 54 injection wells and 97 monitoring wells. From 2002 until 2019 over 219,000 gallons of permanganate solution were injected in the Building 3 Source Area, the Building 5 Source Area, the PSL-10 Source Area, and at downgradient locations under the cleanup program. In addition, between 2006 and 2020, over 67,000 gallons of bioremediation additive were injected at the Site to clean up VOCs in groundwater. Estimating treatment mass for *in situ* remediation requires a number of assumptions, which contribute to uncertainty. With that in mind, it is estimated that over 1,400 pounds of VOCs have been treated by permanganate and bioremediation since 2002. In 2012, the Phase III Remedial Action Plan and

Phase IV Plan were modified to include soil vapor extraction (SVE). Two SVE systems were installed and continue to operate at Building 3 and Building 5 to mitigate potential vapor intrusion into the buildings and to extract VOCs from the soil above the water table. More than 2,000 pounds of VOCs have been removed and safely treated by the two SVE systems. Prior to the start of permanganate treatment at the Site, a groundwater pumping system operated from 1992 until 2002. During its operation, the groundwater pump and treat system removed over 5,000 pounds of VOCs in groundwater.

In November 2020, the Massachusetts Department of Environmental Protection (MassDEP) began a comprehensive review of response actions at the Site at the request of Beverly public officials and area residents. In December 2020, MassDEP completed an indoor air sampling program at 41 homes in the area of the Site, which determined that there was no evidence that VOCs from the Varian site were impacting the indoor air of any of the homes that were sampled.

Varian began implementing a MassDEP-approved work plan at the Site in March 2021. That plan included:

- Resampling of indoor air at 21 homes selected by MassDEP
- Additional well installation, surface water sampling, and sediment sampling activities in response to data gaps identified by MassDEP
- Evaluation of potential human health, ecologic, and pet risk posed by VOCs detected in the streams at the Site

A Vapor Intrusion Assessment Report was submitted on April 29, 2021 (Aptim Environmental and Infrastructure, LLC [APTIM], 2021c), which detailed the results of the indoor air sampling. A total of 55 indoor air samples and 33 soil vapor samples were collected at 21 homes in February and March 2021. Additionally, sump water samples were collected at five homes in the study area. Groundwater sample results from 13 shallow groundwater monitoring wells were also considered in the vapor intrusion assessment. Based on a lines-of-evidence evaluation conducted following MassDEP guidelines and using the data collected, a complete vapor intrusion pathway was not identified in any of the homes where testing was conducted.

Results of additional assessment activities outlined in the January 25, 2021, work plan were included in the August 4, 2021, Phase V Remedy Operation Status Inspection and Monitoring Report (APTIM, 2021d). As outlined in the work plan and MassDEP approval letter, this report included an evaluation of potential human health, ecologic, and pet risk posed by VOCs detected in the streams at the Site. This report concluded that:

- The data from vapor intrusion investigations at commercial properties on Tozer Road indicated there
 is No Significant Risk due to potential indoor air exposure related to contributions from the Varian
 Site. At that time, three properties were recommended for additional sampling to exclude
 background sources unrelated to the Site and further assess the vapor intrusion pathway.
- Potential human health exposure for Stream A and the Unnamed Stream posed No Significant Risk to human health.
- Potential risk to the environment did not need to be further evaluated.

The screening for potential risk to pets (dogs) that may drink surface water demonstrated that the
maximum detected concentrations in surface water are well below the screening levels identified for
the protection of pets.

In a letter dated February 18, 2022, MassDEP suspended the ROS for the Site https://eeaonline.eea.state.ma.us/EEA/fileviewer/Default.aspx?formdataid=0&documentid=662281]. The letter also requested the completion of an amended Phase II CSA and an amended Phase III Comprehensive Remedial Action Alternative Report for the Site. The MassDEP letter outlined the following inadequacies with the 2000 Phase II CSA (MassDEP, 2022).

- MassDEP indicated that the 2000 Phase II CSA had not adequately assessed the extent of VOC impacts in the residential areas west of 150 Sohier Road. In response to this concern, which was originally expressed by MassDEP in a report dated January 2021, Varian completed the installation of six shallow groundwater wells in the spring of 2021 in the neighborhoods downgradient of 150 Sohier Road under a MassDEP-approved work scope. As outlined in the January 2022 ROS Report, four rounds of groundwater sampling at these new wells did not indicate the presence of VOCs. This confirmed the 2000 Phase II CSA conclusions that shallow VOC impacts in groundwater did not present a risk in the residential areas west and south of 150 Sohier Road.
- MassDEP indicated that the 2000 Phase II CSA did not adequately assess the seepage of VOC-impacted groundwater at the Site that was first identified in 2021. The 2000 Phase II CSA did not identify an apparent VOC-impacted seep present at the bank of Stream A (west of Longview Terrace). However, evaluation of potential human health risk using stream sample results downstream from the seep was evaluated in the 2000 Phase II CSA. That evaluation showed No Significant Risk. In 2021, additional surface water sampling was conducted. The risk assessment included in the June 2021 ROS Report illustrated again that VOCs detected in the streams at the Site do not pose a Significant Risk to human health or the environment.
- MassDEP indicated that the 2000 Phase II CSA did not adequately assess the extent of sediment impacts to streams in the area of the Site. This concern was originally expressed in a MassDEP report dated January 2021. In response to this concern, Varian implemented additional sediment sampling activities under a MassDEP-approved work scope in the spring of 2021. The risk assessment included in the June 2021 ROS Report illustrated that VOCs detected in the streams at the Site do not pose a Significant Risk to human health or the environment.
- MassDEP indicated that the 2000 Phase II CSA did not adequately assess the extent of dense
 nonaqueous phase liquid (DNAPL) at the Site. The 2000 Phase II CSA did conclude that DNAPL, as
 defined by the regulations at the time¹, was not present. This concern was expressed by MassDEP
 in an Audit of the 2000 Phase II CSA conducted in April 2003. In response to that Audit, Varian
 issued a work scope to install and sample groundwater wells at specified potential source locations

¹ In 2000, the Massachusetts Contingency Plan defined nonaqueous phase liquid as a measurable thickness observed in a monitoring well.

to assess the potential presence of DNAPL. That work scope was approved with minor modifications in a MassDEP letter dated October 20, 2003.

The results of those assessment activities were provided to MassDEP in a Post-Audit Completion Report dated April 14, 2004. The results of that assessment did indicate elevated concentrations of VOCs in groundwater in the Building 3 and Building 5 Source Areas. However, DNAPL was not observed in wells with elevated VOC concentrations. Based upon the assessment results, it was concluded that a revised Phase II and Phase III document was not required. MassDEP did not respond to the Post-Audit Completion Report.

The definition of nonaqueous phase liquid has changed since 2000, and the current MCP no longer defines it as a measurable thickness in a well. As outlined in a report titled Building 3 and 5 Source Area Assessment Summary, dated June 30, 2021, groundwater concentrations were evaluated to assess the potential presence of DNAPL. That evaluation did identify wells in the Building 3 area where DNAPL is likely present in the vicinity of the wells. In addition, the June 2021 report and subsequent sampling of groundwater at the Building 5 area did indicate that there is likely DNAPL in bedrock near one well. Groundwater concentrations and persistent groundwater plumes suggest that DNAPL is or was present and has migrated into the deep overburden and potentially into fractured bedrock. Given the age of the release and absence of DNAPL detection in monitoring wells since 1997, DNAPL in the overburden is likely present residually (e.g., in discontinuous droplets), but is not mobile, while any DNAPL that is present in bedrock is likely present in fractures, many of which are small and poorly connected to other fractures, thereby limiting DNAPL mobility.

To further assess the potential extent of VOC impacts, additional bedrock wells were installed in the Building 5 area in March and April 2022. The results of sampling and monitoring at these new wells and other site wells provide definition of the potential extent of VOC impacts to soil and the extent of VOCs detected in bedrock groundwater that suggest DNAPL presence nearby.

To further assess the potential extent of elevated VOCs beneath and adjacent to the Building 3 complex, an electrical resistivity imaging (ERI) study and confirmation drilling were conducted in the summer of 2022. The results of that assessment work provide a clearer picture of the extent of elevated VOCs in the Building 3 Source Area. The data have been used to estimate the area of elevated VOC impacts that may warrant additional treatment.

Available data previously collected and presented in this Phase II addendum define the nature and extent of VOC impacts from the Former Varian facility at 150 Sohier Road. Existing and potential pathways identified during assessment include groundwater (flow through overburden and bedrock aquifers), surface water (nearby streams), utilities, sediment, soil vapor, and indoor air.

The nature and extent of VOCs in soil at the Site was determined based on the results of field (photoionization detector) screening recorded during drilling activities and laboratory analysis of soil samples collected at the Site. Soil impacts are noted in the three main source areas at 150 Sohier Road. These include the Building 3 Source Area (encompassing Buildings 1, 2, 3, and 6), the Building 5 Area, and the PSL-10 Source Area. VOC soil impacts have not been observed in downgradient areas.

The current nature and extent of the COCs in groundwater in both the overburden and bedrock aquifers were evaluated using data collected from monitoring wells over 2 years of sampling, May 2020 through May 2022. The highest VOC concentrations are detected in groundwater on the Former Varian Facility property. Groundwater sampling results from 2022 indicate the following:

- Concentrations of TCE range from non-detect to 260 milligrams per liter (mg/L), with the greatest concentration located beneath Building 3 (well AP31-DO).
- Concentrations of PCE range from non-detect to 43 mg/L, with the greatest concentration located beneath Building 5 (well OB35-DO).
- Concentrations of *cis*-1,2-DCE range from non-detect to 500 mg/L, with the greatest concentration located just east of Building 3 (well AP33-DO).
- Concentrations of 1,1,1-TCA range from non-detect to 41 mg/L, with the greatest concentration located just east of Building 3 (well AP24-DO).

Groundwater occurs at the Site in two distinct aquifers: the overburden aquifer and the bedrock aquifer. Groundwater in the overburden at the Site generally occurs in and flows under water table conditions through the porous space between the soil grains. The overburden aquifer is recharged directly by infiltration of rainwater and surface runoff through unpaved areas. In the bedrock aquifer, groundwater flows through interconnected fractures and faults within the rock itself. The two aquifers are locally in communication. The majority of Site groundwater in each aquifer generally flows from the facility property to the west/southwest, following the regional groundwater flow pattern, which is south and west toward Shoe Pond and the Bass River. The transmissivity of the bedrock aquifer is substantially lower than the overburden aquifer, meaning that lesser amount of groundwater (and dissolved VOCs, if present) flows through bedrock relative to the overburden.

Where VOCs are present at sufficient concentrations in the shallow groundwater, there is potential for volatilization of VOCs into soil vapor above the groundwater. If this occurs in close proximity to a building, there is a potential that VOCs can pass through cracks and gaps in the foundation or via diffusion through the building slab. Extensive sampling has been conducted to evaluate this potential at the 150 Sohier Road property, at commercial properties on Tozer Road, and in downgradient residential areas. As a result of that sampling, mitigation measures (SVE systems) are present to intercept and remove VOCs in soil vapor at Building 3 and Building 5. Sampling has shown that the two SVE systems have resulted in a condition of No Significant Risk. Additional sampling is planned at one property on Tozer Road and one property on Longview Drive. If warranted, mitigation measures may be implemented at those properties. At other locations where tests have been conducted, the results do not indicate that indoor air is a significant pathway of concern at the Site.

Based on the levels of VOCs present in the Building 3 Source Area and the Building 5 Source Area, additional remediation is warranted to limit the potential downgradient migration of VOCs in groundwater. These two areas will be a focus of additional remediation at the Site. While the levels of VOCs present in the PSL-10 Source Area are much lower than those in the Building 3 and Building 5 Source Areas, remediation may be conducted at PSL-10 to limit potential downgradient migration of VOCs in groundwater.

Remediation activities conducted over the past 20 years are summarized in this report. As documented in trend graphs provided in prior ROS reports, those activities have reduced VOC concentrations in some source areas as well as downgradient areas. This has resulted in a much-reduced VOC plume area in the shallow overburden and bedrock aquifers. Less of a reduction is noted in the deep overburden. Residual VOCs in groundwater in the Building 3 area, and to lesser extent at the Building 5 area, remain. Significant effort has been made to assess areas beneath both the Building 3 complex and Building 5. However, given the limitations in accessing these areas due to the buildings, there remain some uncertainties in the delineation of VOC impacts beneath the buildings. These data limitations and the accessibility of areas beneath the buildings may continue to affect the results of remedial efforts.

As required by the MCP and Site conditions, a Method 3 Risk Assessment was conducted. That assessment evaluated the potential health effect of possible exposure to VOCs associated with the Former Varian Facility Site. Receptors, or people potentially exposed included workers at the 150 Sohier Road facility, workers at properties on Tozer Road, and residents in areas to the west and south of Tozer Road. The result of that assessment indicated there is no current or future Significant Risk to residents, including children playing in the stream. No Significant Risk to workers in off-property commercial/industrial buildings along Tozer Road was identified. No Significant Risk was identified to workers in the 150 Sohier Road buildings with the operation of the existing SVE systems. However, a condition of No Significant Risk of harm has not been demonstrated for future construction workers who could potentially be exposed to groundwater in certain areas at the 150 Sohier Road property. The risk assessment demonstrated that a current condition of No Significant Risk of harm to safety, public welfare and the environment exists at the Site.

1.0 INTRODUCTION

On behalf of Varian Medical Systems, Inc. (Varian), Aptim Environmental and Infrastructure, LLC (APTIM) has prepared this Massachusetts Contingency Plan (MCP; Section 310 CMR 40.0835) Phase II Comprehensive Site Assessment Addendum (Phase II Addendum) for the former Varian facility located at 150 Sohier Road in Beverly, Massachusetts. A Site Location Map illustrating the location of the former Varian facility is attached as **Figure 1-1**, and an Expanded Site Plan is attached as **Figure 1-2**. The Massachusetts Department of Environmental Protection (MassDEP) has assigned Release Tracking Number (RTN) 3-0485 to the Site. As required by the MCP, this document has been submitted electronically to the MassDEP along with a completed Bureau of Waste Site Cleanup (BWSC) Comprehensive Response Action Transmittal Form (BWSC-108) through eDEP. A copy of the BWSC-108 form is provided as **Appendix A**.

1.1 Statement of Purpose

As stated in the MCP, the objective of a Phase II Comprehensive Site Assessment (CSA) is to present the findings and conclusions regarding site conditions, including source, nature, and extent of releases of oil or hazardous materials (OHM), the risk of harm posed by the disposal site, and to support nature of future remedial response actions. This Phase II Addendum has been prepared at the request of MassDEP in a letter dated February 18, 2022. Specifically, MassDEP requested an update to the original Phase II CSA, which was submitted to MassDEP in 2000 (IT Corporation, Inc. [IT], 2000a). The 2000 Phase II CSA was based on assessment investigations conducted between 1995 and 1998. This Phase II Addendum presents a summary of site investigation activities conducted since the 2000 Phase II CSA, with a focus on investigations conducted in 2021 and 2022. This Phase II addendum comprehensively assesses *current site conditions*, including nature and extent of volatile organic compounds (VOCs), which were determined to be the primary OHM released at the Site, and provides an updated evaluation of risk based on these current site conditions. Only portions of the original 2000 Phase II CSA are presented where necessary to provide a cohesive site description and history regarding OHM source and extent. The overall purpose of the Phase II Addendum is to support the decisions for future remedial actions to be conducted at the site.

1.2 Report Organization

The report includes the information set out in the MCP requirements for a Phase II report, as presented in 310 CMR 40.0835(4). The sections of this report are as follows:

- Section 1.0 Introduction
- Section 2.0 General Site Information
- Section 3.0 Previous Environmental Investigations and Remedial Activities
- Section 4.0 Site Hydrogeological Characteristics
- Section 5.0 Environmental Fate and Transport of Oil and/or Hazardous Materials
- Section 6.0 Nature and Extent of Contamination
- Section 7.0 Exposure Assessment and Risk Characterization

- Section 8.0 Conclusions and Findings
- Section 9.0 References
- Section 10.0 Limitations on Work Product

2.0 GENERAL SITE INFORMATION

The following sections present the site location, description, history of use, and regulatory history. This information has been essentially unchanged since the 2000 Phase II CSA.

2.1 Disposal Site Name, Location, and Locus Map [310 CMR 40.0835(4)(a)]

Varian's former facility was located at 150 Sohier Road in Beverly, Essex County, Massachusetts. The property at 150 Sohier Road has the Universal Transverse Mercator coordinates of North 4,715,075 meters and East 345,475 meters, Longitude 70° 52' 57" West: Latitude 42° 34' 28" North. **Figure 1-1**, the Former Varian Facility Location Map, identifies the location of 150 Sohier Road and the surrounding area.

2.2 Detailed Disposal Site Map [310 CMR 40.0835(4)(b)]

An Expanded Site Plan is included as **Figure 1-2** and illustrates the former Varian facility and surrounding area of investigation. Within this report, the "Site" is used in accordance with the MCP, being any place or area where OHM from Varian's former facility have come to be located. The "facility" refers to Varian's former facility property. **Figure 1-2** identifies properties located within the vicinity of the facility; structures; streams and surface water bodies; and the location of monitoring wells and sampling locations.

2.2.1 Facility and Site Vicinity Description

The facility is located on approximately 24 acres of land and contains four large complexes of buildings covering approximately 250,000 square feet. The site's southern portion includes a playing field and a paved parking area. The central portion of the Site includes a building complex (Buildings 5, 5A, and 8). North of this building network is a paved parking area and to the northwest is another building complex (Buildings 1, 2, 3, 4, and 6). Northeast of Buildings 1, 2, 3, 4, and 6 is a wastewater treatment plant in Building 9. West of Buildings 1, 2, 3, 4 and 6 is former Building 7, which is now operated as Kelly Classics and Restoration. Bomac Road (formerly known as Salem Water Works Road) traverses the Site from the southeast to the northwest between former Building 7 and the building complexes located in the central and northeast portions of the Site.

During Varian's operation of the facility, the building at 28 Tozer Road was leased to ST Olecktron, which manufactured radar-based solid-state equivalents. When Communication and Power Industries, LLC (CPI) obtained ownership of the former Varian property, the lease with ST Olecktron continued. Subsequently, ST Olecktron was acquired by Signal Technology. CPI sold the 28 Tozer Road building and property to Signal Technology in 1997.

Presently, CPI maintains the use of Buildings 1 through 6, 8, 9, and 10 and one of the residential structures. The two residential structures on Bomac road are owned by CPI. Neither of the structures has been used for residential purposes in decades. Except for the sale of the property at 28 Tozer Road and former Building 7, the property boundaries at 150 Sohier Road and adjacent parcels of land have not changed since Varian sold the property in 1995.

Sohier Road and undeveloped land abut the Site to the northeast. Across Sohier Road, to the east is a retail shopping plaza and to the southeast is an apartment complex (Northridge Homes). To the south of the facility is Life Storage, a rental storage facility. Southwest of the facility is a medical building (30 Tozer Road) and a biomedical manufacturing facility (32 Tozer Road). Hopeful Journeys Education Center is located to the west of the facility at 28 Tozer Road. Tozer Road is located west of the Facility. Across Tozer Road to the southwest is Danvers Packing and Tobin & Sons Moving and Storage (both at 39 Tozer Road), and west of Tozer Road are the businesses Bass River Tennis Club (31 Tozer Road) and Arro Engineering Corporation (27 Tozer Road). Route 128 traverses the northwest-north property line. Northwest of the facility and across Route 128 is the United States Postal Service facility located at 16 Tozer Road. North of the Site, also across Route 128, is the residential street Mark Road.

2.2.2 Facility Topography and Land Cover

The Site topography gently slopes from the southern portion of 150 Sohier Road at approximately 88 feet above Mean Sea Level (MSL) in elevation to the northern portion of the facility property near Route 128 at approximately 69 feet in elevation. To the east across the Brimbal Avenue exit, the topography is approximately 69 feet and then slopes gently up towards Brimbal Avenue. At the southwest, west, and northwest property lines, a steep embankment of approximately 30 feet slopes from Bomac Road to the abutting properties along Tozer Road.

The facility at 150 Sohier Road is predominantly covered with buildings and paved parking lots. An open grassy field is located on the southeast portion, and small strips of grass and landscaped areas surround some portions of the buildings and parking areas. Small trees and shrubs are located along the property line abutting Sohier Road and the embankment along the southwest, west, and northwest property lines.

2.2.3 Facility and Site Surface Drainage

Surface runoff and roof-top drainage are collected in the facility stormwater drainage system, which directs flow to the main drainage culvert running from east to west across the 150 Sohier Road property.

A 1970 report on the City of Beverly's storm drainage prepared by Camp Dresser & McKee (CDM) states that the facility is located within the North Beverly Brook drainage area. This drainage area, the smallest of five drainage areas located within Beverly, encompasses portions of North Beverly north of Route 128, which drain to the south through culverts beneath Route 128 (CDM, 1970). The main drainage channel enters the 150 Sohier Road property at the northeast comer and directs stormwater runoff from Route 128 and areas north of Route 128 to the south. This open channel/stream is referred to as the Unnamed Stream. This stream enters a buried culvert that runs south and connects to the main east-to-west drainage culvert.

At the northeast corner of the facility property, storm sewers from the abutting roads and from an area across Sohier Road to the east also drain into the Unnamed Stream. Drainage from the east, across Sohier Road, comprises the predominant flow during the summer months when there is little or no flow.

The Unnamed Stream flows from the Site in a southwesterly direction between buildings located on 28 and 30 Tozer Road. From this point, it flows along Tozer Road in a channel with overgrown vegetation along its banks. The stream passes through a culvert below Tozer Road and past a small wetland area. At this point, it joins with another stream flowing in from the northwest. The stream then flows along the back property lines of residential homes located on Tudor Road and Jordan Street and next to the Beverly High School athletic fields (approximately 2,000 feet or 600 meters from the Site). There is a small fence between the high school's stream and athletic fields. After flowing past the high school, the stream flows in drainage pipes under a park and industrial facility before emerging between Shoe Pond and the Bass River (more than a mile from the Site).

2.3 Disposal Site History [310 CMR 40.0835(4)(c)]

Bomac Laboratories, Inc. (Bomac) initially developed the facility property in 1950. Bomac sold the operations to Varian in 1959. Varian continued operations at the facility until the sale of the business in 1995 to the current owner and operator, CPI.

Since the facility's construction and during Varian's occupancy from 1959 to 1995, operations at the facility have consisted of manufacturing electronic equipment and research related to the manufacturing of this equipment. During Varian's ownership, electron tubes were manufactured for radar applications under Standard Industrial Codes 3671 and 3673. The electron tubes were shipped off- site and primarily used by the United States Department of Defense. Manufacturing processes at the facility included electroplating, acid and alkali cleaning, painting, etching, and equipment maintenance.

During Varian's operations, various industrial processes were performed in the production areas of the facility buildings. These areas were locations where contaminants of concern (COCs) were present. Drywells and leaching fields associated with the production areas were reportedly used for waste disposal prior to the installation of the wastewater treatment system in 1972. A 1949 foundation plan (Clean Harbors Environmental Services, Inc. [CHES], 1993) of Building 1 indicated there were two dry wells near the northeast corner of Building 1 and two dry wells near the southeast corner of Building 1. A 1949 plot plan (CHES, 1993) for Building 1 depicts two septic systems: one near the northeast corner and one near the western side of the building. Both septic systems appeared to be connected to bathrooms of this building (CHES, 1993). Building 1 was built in 1950 and the 1949 foundation plan implies that discharges from the production areas in this building were directed to the dry wells/septic systems.

A 1962 blue line drawing showing the layout of Building 5, built in 1957, includes a production area and boiler room. OHM such as solvents, acids or bases were used in the production area. A February 1964 blue line drawing depicts Buildings 1, 2, 3, 4, and 6. Building 2 was built in 1951, Building 3 in 1953, Building 4 in 1955, and Building 6 in 1959. The plan illustrates that a chemical laboratory, machine shop, and chemical cleaning and plating shop were present in this building cluster (CHES, 1993).

The process areas illustrated on the Master Plan dated October 1972 indicated that a machine shop was located in Building 7 and a shipping and receiving area was located at the northeast side of Building 6. This plan also illustrates that a plating operation was located in Building 5. This operation was discontinued in June 1973 when plating operations were consolidated into Building 3 (CHES, 1993).

Operation of the wastewater treatment system at the facility, located in Building 9, was begun by Varian in 1972 to treat industrial wastes prior to discharge to the municipal sewer. The treatment facility consisted of one cyanide destruction tank, one acid neutralization tank, one large settling tank for the collection of metal hydroxide sludge, and one holding tank for storing metal hydroxide sludge prior to the sludge being drummed for off-site transportation and disposal. With the addition of a filter press and a few minor modifications, Varian operated this system until the sale of the operation to CPI. The system effluent was discharged under permit to the Southeast Essex Sewerage District (CHES, 1993).

2.4 MCP Regulatory Status

This regulatory status history of the Site (RTN 3-0485) since the submittal of the 2000 Phase II CSA is summarized below. Other RTNs related to the property that have been closed out under the MCP were described in the 2000 Phase II CSA.

2.4.1 Site Regulatory Status 2000 through Today

As described in the 2000 Phase II CSA, a total of 19 Potential Source Locations (PSLs) were identified at the Site, as summarized below. The general area of these locations is illustrated on **Figure 2-1**. As detailed and documented by data in the 2000 Phase II CSA, several PSLs were determined to be low priority and not found to be areas of primary volatile organic compounds (VOC) releases (see Section 3.1). Other PSLs have been further investigated and/or are currently being remediated. The current status of each of the PSLs is summarized below and described in more detail in Section 3.0.

Original Potential Source		
Locations	Site Location	PSL Status in 2022
PSL-1 Former 500-gallon Aboveground Storage Tank (AST)	North of Building 4	Not a Source Area (low priority)
PSL-2 Potential Former Dry Well	Southeast Corner of Building 9	Not a Source Area (low priority)
PSL-3 Potential Former Dry Well	Southwest Corner of Building 1	Not a Source Area (low priority)
PSL-4 Former Septic System	Building 1	Not a Source Area (low priority)
PSL-5 Former Septic Tank/Leach Field	Northeast corner of Building 1	Likely Source Area - ongoing investigation and remediation as part of the Building 3 Area
PS-6 Former Septic Tank/ Leach Field	Southeast of Building 1 (presently beneath Building 6)	Likely Source Area - ongoing investigation and remediation as part of the Building 3 Area
PSL-7 Chem Laboratory	Building 5, includes former piping beneath the building	Confirmed Source Area - ongoing investigation and

Original Potential Source		
Locations	Site Location	PSL Status in 2022
		remediation as part of the
		Building 5 Source Area
PSL-8 Building 7 Sumps	West Side of Building 7	Not a Source Area (low priority)
	Exterior Wall of Chem Lab in Building 3	While the pit itself was not a
PSL-9 Utility Inspection Pit		Source Area, lines in the
	Building 3	structure are part of PSL-11
		Confirmed Source Area -
PSL-10 Open Field	South of Building 5	ongoing investigation and
		remediation
PSL-11 Laboratory	Northern Portion of Building 3, includes former piping beneath the building and former discharge line to unnamed stream	Confirmed Source Area - ongoing investigation and remediation as part of the Building 3 Source Area
PSL-12 Potential Former Lime Pit	Northeast corner of Building 1	Not a Source Area (low priority)
PSL-13 Former Beverly Landfill	East of Sohier Road and extending onto facility near Building 5	Not a VOC Source Area (low priority)
PSL-14 Concrete-lined	Facility buildings	Not a Source Area (low priority)
Trenches	l acinty buildings	Not a Source Area (low priority)
PSL-15 Sumps	Buildings 2 and 3	Not a Source Area (low priority)
PSL-16 Transformers	Five locations on Site	Not a Source Area (low priority)
PSL-17 Floor Drains	Facility buildings	Not a Source Area (low priority)
PSL-18 Machine Shop Oils	West side of Building 7	Not a Source Area (low priority)
DOL 10. Unnon-ad Character	Northogot Corner of Facility	Not a Source Area but ongoing
PSL-19 Unnamed Stream	Northeast Corner of Facility	investigation and risk evaluation being conducted

It should be noted that additional assessment (i.e., well installation) has been conducted in the area of several PSLs that were determined in the 2000 Phase II CSA to be low priority and not found to be areas of primary VOC releases. For example, wells were installed in the area of PSL-3, -4, and -8. These subsequent assessment activities did not change the conclusions of the 2000 Phase II CSA for these PSLs.

Based on the 2000 Phase II CSA, a condition of No Significant Risk existed at the Site with the exception of potential future significant risk associated with groundwater use in the area identified as a Potentially Productive Aquifer (PPA) north of Route 128. Groundwater concentrations in this PPA area were above applicable Massachusetts Drinking Water Standards. As a result, one of the stated remedial action goals in the December 2001 Phase IV Remedial Implementation Plan (Phase IV Plan) submitted to MassDEP was to achieve Drinking Water Standards in this area of the Site (IT, 2001).

The 2001 Phase IV Plan proposed remedial actions for addressing VOCs in soil and groundwater at the subject Site. In situ oxidation of VOCs in soil and groundwater using permanganate solution was chosen as the best remedial alternative for the Site. The Phase IV Plan proposed treatment in the "source areas" to achieve these objectives. The PSL areas at the former Varian facility identified in the Phase IV Plan as potentially affecting the PPA area are as follows:

- PSL-5 Potential former septic tank near Building 3
- PSL-6 Potential former septic tank/leach field at Building 6
- PSL-9 Utility inspection pit near Building 3
- PSL-11 Chemical laboratory at Building 3

Other PSL areas that do not impact the PPA, and certain other downgradient areas, have been included in the in-situ oxidation program to expedite groundwater cleanup. These areas include PSL-7—Building 5 Chem Lab, PSL-10—open field at south end of 150 Sohier Road, and downgradient treatment areas at 31 Tozer Road and in the Longview/Hill Street area.

Implementation of the Comprehensive Response Actions, including the injection of permanganate solution, began in July 2002, and a Phase IV As-Built Construction and Final Inspection Report (Shaw Environmental & Infrastructure, Inc. [Shaw], 2002a) detailing initial Phase IV activities including permitting, well installation, construction of the remedial treatment system, and initial implementation of remedial actions, was submitted to MassDEP in October 2002. The Phase IV As-Built Construction and Final Inspection Report also provided results of additional soil and groundwater analyses, identified minor modifications to the Phase IV Plan, and documented the final inspection of the remedial system.

In December 2002, Varian submitted an MCP Remedy Operation Status (ROS) Opinion (Shaw, 2002b), which stated that the performance standards for ROS, as specified in 310 CMR 40.0893(2), have been achieved and will be maintained at the Site. The submittal also stated that a Permanent Solution has not yet been achieved at the Site, and the operation and maintenance (O&M) of the remedial action will proceed under ROS.

The sodium permanganate treatment conducted at the Site since 2002 has produced significant reductions in chlorinated VOC concentrations at multiple depths in groundwater across the Site. These remedial activities were reported to MassDEP in regular semiannual ROS reports. As detailed in the October 2006 status report, bioremediation was proposed as a supplemental remedial approach to address two small VOC-impacted areas in the northeast corner of the Site (Shaw, 2006). The first area included shallow groundwater with residual trichloroethene (TCE) impacts located close to the Unnamed Stream to the northeast of Building 9. Bioremediation was used to address the shallow groundwater near the Unnamed Stream in lieu of permanganate because permanganate treatment may affect the stream. The second bioremediation area was northeast of Building 3 where deep overburden groundwater is impacted with residual 1,1,1-trichloroethane (1,1,1-TCA) and acetone, which are not effectively treated by permanganate.

After the start of Comprehensive Response Actions, the PPA designation for the area to the north of Route 128 was removed by MassDEP and, as a result, Drinking Water Standards no longer apply to this area. Therefore, the Remedial Action Goal specified in the Phase IV Plan to achieve drinking water standards in downgradient wells in the PPA area such as BR-1 is no longer applicable. As presented in the October 2010 ROS Report (Shaw, 2010), the following updated remedial action goals were used for ongoing response actions conducted under Phase V ROS at the Site:

- Maintain compliance with Upper Concentration Limits (UCLs)
- Achieve a condition of No Significant Risk for facility workers in facility buildings by remediating,
 where necessary, elevated VOC concentrations in soil and groundwater beneath buildings
- Limit rebound in VOC source areas such that potential impacts to indoor air in downgradient areas continue to pose No Significant Risk
- Demonstrate that VOC concentrations in groundwater at the Site do not represent an uncontrolled source for impacts to surface water
- Demonstrate that VOC concentrations in soil and groundwater at the Site continue to pose No Significant Risk in accordance with current MassDEP requirements

To achieve these goals, the previously proposed remediation planning criteria continued to be applied to focus remediation activities at the Site. These remediation planning criteria included the decrease of target VOC concentrations in certain source area wells to 50 percent or less of the UCL and the reduction of target VOC concentrations (including breakdown products) in treatment areas by at least 50 percent below pretreatment levels to mitigate potential post-remediation rebound effects. These criteria are no longer being used for future remediation planning.

In December 2012, a modification of the Phase III Remedial Action Plan (RAP) and Phase IV Plan for RTN 3-0485 was submitted (Shaw, 2012a). This modification addressed the Building 5 remedial area, located in the central portion of the former Varian facility (**Figure 1-2**). The Building 5 treatment area was not previously included in the original Phase III RAP and Phase IV Plan submitted to MassDEP in 2001. The Phase III RAP was modified to identify, evaluate, and select remedial action alternatives to reduce the potential risk associated with indoor air exposure in the Building 5 area. Soil vapor extraction (SVE) was selected as the preferred remedial alternative. The goal of the selected remedial action alternative in the Modified Phase III RAP was to control exposures and reduce VOC concentrations remaining in shallow soil that have the potential to migrate into the indoor air of Building 5. The Modified Phase IV Plan provided detailed engineering designs, waste management plans, and initial O&M activities for the selected SVE remedial alternative (Shaw, 2012a). Details regarding the Building 5 SVE installation, including a Final Licensed Site Professional (LSP) Inspection and Phase IV Completion Statement, were included in the October 2013 ROS Report (Shaw, 2013a).

As discussed above, remediation in the Building 3 area, located in the northeast corner of the former Varian facility (**Figure 1-2**), was conducted under ROS (to address groundwater impacts) and as an Immediate Response Action (IRA) under RTN 3-28531 (to address potential vapor intrusion). IRA activities included installation of an SVE system in December 2009. Phase II CSA and Phase III RAP Reports were submitted for RTN 3-28531 in May 2012 (Shaw, 2012b, 2012c). The Phase II and Method 3

Risk Assessment (Shaw, 2012b) concluded that a Condition of No Significant Risk had been achieved with the operation of the existing Building 3 SVE system, which effectively reduced VOC levels in indoor air in the Building 3 area. An IRA Completion Report was submitted for RTN 3-28531 in February 2013 (Shaw, 2013b). The IRA Completion Report concluded that the primary objective of the IRA (to assess and mitigate the potential impacts to indoor air in the Building 3 area and thereby eliminate the potential for an Imminent Hazard) had been met by conducting IRA activities. Response actions for RTN 3-28531 had been effective in decreasing indoor air concentrations to below levels that would constitute an Imminent Hazard. However, continued operation of the SVE system was necessary to maintain a level of No Significant Risk in the Building 3 area. The IRA Completion Report linked RTN 3-28531 to RTN 3-0485 and included a Phase IV Remedy Implementation Plan, Phase IV Completion Report, and Phase V ROS Opinion. The combined report for RTN 3-28531 closed this RTN. It concluded that continued response actions (including the operation of the Building 3 SVE system) would be conducted in conjunction with Comprehensive Response Actions under Phase V ROS for RTN 3-0485. Building 3 remedial activities were therefore included as part of this ROS Report.

As discussed in the June 2020 ROS Report (APTIM, 2020), groundwater results from well AP38-S, located inside Building 5, from the May 2020 sampling round indicated an elevated acetone concentration. Acetone was detected at a concentration of 6.7 milligrams per liter (mg/L) at AP38-S, compared to prior sample results that indicated non-detect levels for acetone. After confirmation sampling of this well in June 2020 indicated the presence of acetone at 200 mg/L, the building owner was notified of a potential release of acetone to the environment. Varian coordinated with the current facility owner to further assess the potential acetone release at Building 5. This included a groundwater sampling event by APTIM in August 2020 and a sampling event by the owner's consultant, Roux Environmental (ROUX), in September 2020. Based on the results of these assessment activities, the current owner, CPI, submitted a notice to the MassDEP of a 120-Day Reportable Condition for the detection of acetone in groundwater at Building 5. In response to this notice, MassDEP issued RTN 30036528 to CPI. On October 11, 2021, ROUX submitted a Permanent Solution Report for this RTN (ROUX, 2021). The document did not definitively identify the source of the acetone release. The concentrations of acetone in groundwater in the release area were reported to have returned to pre-release levels. It was concluded that no migration of acetone from the release area had occurred based on groundwater sampling results. The concentrations of acetone in groundwater at monitoring well AP38-S were well below MCP Method 1 GW-2 and GW-3 standards during sampling events after September 2020. ROUX, therefore, concluded that, with respect to just the acetone released in the spring of 2020 in Building 5, a condition of No Significant Risk has been achieved.

In November 2020, MassDEP began a comprehensive review of response actions at the Site at the request of Beverly public officials and area residents. In December 2020, MassDEP also completed an indoor air sampling program in residential areas downgradient of the Site (MassDEP, 2020). Based on the indoor air data collected in December 2020, MassDEP determined that there was no evidence that contaminants from the Varian Site are impacting the indoor air of any of the homes that were sampled.

APTIM prepared a work plan dated January 25, 2021 (APTIM, 2021a) to confirm the conclusions of the December 2020 MassDEP assessment. The work plan included the methods and procedures for

completing additional vapor intrusion assessment at a group of homes selected by MassDEP, installation of additional wells, and the sampling of groundwater, surface water and stream sediments. The work plan was approved with conditions by MassDEP in a letter dated February 2, 2021, (MassDEP, 2021). A Vapor Intrusion Assessment Report was submitted on April 29, 2021 (APTIM, 2021c), which detailed the results of the assessment. A total of 55 indoor air samples and 33 soil vapor samples were collected at 21 homes in February and March 2021. Additionally, sump water samples were collected at five homes in the study area. Groundwater sample results from 13 shallow groundwater monitoring wells were also considered in the vapor intrusion assessment. Based on a lines-of-evidence evaluation using the data collected, a complete vapor intrusion pathway of concern was not identified in any of the homes where testing was conducted.

Results of additional assessment activities outlined in the January 25, 2021, work plan were included in the August 4, 2021, Phase V Remedy Operation Status Inspection and Monitoring Report (APTIM, 2021d). As outlined in the work plan and MassDEP approval, this report included an evaluation of potential human health, ecologic, and pet risk posed by VOCs detected in the streams at the Site. This report concluded that:

- The data from vapor intrusion investigations at commercial properties at 27, 30, 31, and 39 Tozer Road reflected concentrations of VOCs that were below the MassDEP's commercial/industrial Threshold Values (TVs), with the exception of TCE in one sample. At that one location, a background source of TCE was present. The data demonstrated that there is No Significant Risk from the Varian Site due to potential indoor air exposure. However, due to exceedances of MassDEP's commercial/industrial sub-slab soil gas screening levels for tetrachloroethene (PCE) and/or TCE, three properties (30, 31 and 39 Tozer Road) were recommended for additional sampling to confirm the conclusions. It should be noted that the 30 Tozer Road property has an operating sub-slab depressurization system.
- The risk assessment includes in the August 2021 ROS Report to assess potential human health exposure for Stream A and the Unnamed Stream concluded that a condition of No Significant Risk to human health exists.
- The outcome of a Stage I Environmental Screening for ecological receptors showed that surface water and sediment pose No Significant Risk, and a Stage II Environmental Risk Characterization is not needed to further evaluate this pathway.
- The screening for potential risk to pets (dogs) that may drink surface water demonstrated that the
 maximum detected concentrations in surface water are well below the screening levels identified
 for the protection of pets. Therefore, additional evaluation of this exposure pathway was not
 needed.
- The report did not identify any significant problems affecting the performance of the cleanup during this reporting period. Although the cleanup is not complete, test results contained in the report show progress continued to be made in the treatment of soil and groundwater at the Site. The report also included recommendations for additional assessment activities at the Site.

In a letter dated February 18, 2022, MassDEP suspended the ROS for the Site. The letter also requested completion of an amended Phase II CSA and an amended Phase III Comprehensive Remedial Action

Alternative Report for the Site. In addition, the February 2022 MassDEP letter requested the submittal of a Tier Classification Extension for the Site. A Tier I Extension was submitted to MassDEP on March 24, 2022.

3.0 PREVIOUS ENVIRONMENTAL INVESTIGATIONS AND REMEDIAL ACTIVITIES

Environmental investigation activities and/or remedial activities have been conducted at the Site from 1995 through 2022. The sections below provide a general summary of these activities, including a summary of key conclusions from the investigation activities that were detailed in the 2000 Phase II CSA (Section 3.1) and a summary of subsequent investigation and remedial activities that were reported in various MCP submittals between 2000 and 2021 (Section 3.2).

3.1 Summary of Historical Assessment (1995–1999)

From 1995 to 1999, a comprehensive assessment of the Site was conducted to define the source, nature, and extent of the OHM releases at the property. These activities, which included the investigation of the 19 PSLs, were presented and discussed in detail in the 2000 Phase II report (IT, 2000a). Below is a summary of the key conclusions of these investigation activities as they relate to source, nature, and extent based on the data collected then. It should be noted that these conclusions were based upon MCP definitions and regulations at that time.

- 1. Nineteen PSLs at 150 Sohier Road were identified as part of the Phase II investigation. Initial evaluation of each PSL was conducted in 1995 to determine the target COCs for the Site. Information about historical industrial processes and subsurface analytical data from PSL investigations indicated that the COCs at the Site are chlorinated VOCs. TCE, PCE, and 1,1,1-TCA were the three primary chlorinated solvents historically used at Varian's former facility. Eight COCs were identified for the Site including the three parent compounds, TCE, PCE, 1,1,1-TCA, and five common degradation ("daughter") compounds, cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), 1,1-dichloroethene (1,1-DCE), 1,1-dichloroethane (1,1-DCA), and vinyl chloride (VC).
- Each PSL was investigated for VOCs and specific COCs based on former facility operations (e.g., metals, cyanide, total petroleum hydrocarbons [TPH]). The PSLs investigated are no longer used and were areas where former Varian facility activities may have led to the potential release of the OHM investigated as part of the Phase II. A summary of the investigations of the PSLs where a release of OHM is believed to have occurred is presented below:
 - PSL-5, -9, -11, and -12—Former Septic Tank 1985 Release Notification to MassDEP,
 Former Building 3 Laboratory and Acid/Neutralization Pit
 PSL-5 is a former septic tank and PSL-9 is a release reported in 1985 of an acid rinse water containing cyanide, which was released from a broken wastewater line located in an inspection pit outside of the Chem Lab in Building 3. PSL-11 is associated with potential

discharges of liquid wastes from the former laboratory in Building 3. PSL-12 is associated with a potential former acid neutralization pit located at the northeastern corner of Building 1.

Metals were not detected in any of the samples collected and analyzed in 1995 from PSL-5, -9, -11, and -12 at concentrations above MCP RCS-2 levels for soils. In addition, TPH and total cyanide were not detected above their respective laboratory method detection limits (MDLs). This area did have the highest VOC concentrations detected in soil gas samples collected in 1995, supporting the conclusion that these PSLs are a source area for the VOCs detected in the subsurface at the Site.

PSL-7—Building 5 Laboratory

Building 5 formerly contained a machine shop, a chemical cleaning and plating area, and a laboratory. In addition, a facility plan dated 1962 indicated the presence of floor drains and production lines in the laboratory area of the building. Based on the data collected, it appeared that there are two areas with elevated levels of VOCs in soil vapor. One area is beneath the former Building 5 laboratory and the second area is east of this building beneath the parking lot. Soil sampling detected VOCs in soil in the area under Building 5, confirming PSL-7 as a former source area. However, soil sampling did not detect VOCs in the area to the east of Building 5 under the parking lot. Metals, TPH, and total cyanide were not detected above MDLs at PSL-7.

■ PSL-10—Open Field

The Phase II investigation results identified the open field located at southwest portion of the facility property as a source of VOCs in the subsurface. The results of soil vapor and field screening conducted on soil samples collected from PSL-10 indicated that impacts to this portion of the open field may have occurred at one time, possibly due to the historic disposal of waste liquids containing TCE, PCE, and 1,1,1-TCA. Soil data collected in 1995 did not indicate concentrations of metals or TPH that exceeded MDLs or Reportable S-2 levels. Soil data collected in 1999 indicated low levels of residual VOCs oil. Therefore, PSL-10 is considered a source of VOCs detected in the subsurface of the Site.

PSL-19—The Unnamed Stream

Information gathered during the Phase II indicated that the Unnamed Stream located at the northeast corner of Varian's former property was the portion of the Unnamed Stream that received process wastewater and cooling water discharges from the Building 3 Laboratory prior to installation of the wastewater treatment plant.

Analytical results for the samples collected from the northeast corner of the facility property indicated that VOCs including TCE, PCE, *cis*-1,2-DCE, 2-butanone (also known as methyl ethyl ketone), and acetone were present at trace concentrations in the sediment sample collected from the midstream location. Acetone was the only VOC detected in the upstream sediment sample, and VOCs were not detected above laboratory MDLs in the downstream

sediment sample, or the sediment sample collected north of Route 128. Total cyanide concentrations were detected only in the midstream sediment sample and the sample collected north of Route 128.

While historical discharges from the former Varian facility to the stream likely impacted sediments, the data suggested that VOC impacts to sediment had been limited due to the volatility of the chemicals. Most of the residual VOCs in sediment would have vaporized over the years as they were exposed to variable weather conditions.

Results of the analysis also indicate that chemicals from Route 128 runoff may have impacted the Unnamed Stream, particularly in the northeast corner of the facility property.

In summary, the results of the investigation of PSL-1 through -19 identified both primary and low-priority source areas. At the completion of the investigation of facility trenches, sumps, floor drains, and transformer areas (PSL-14 through -19) in 1995, these locations were no longer considered PSLs and did not warrant further individual assessment.

Several PSLs (PSL-1 through -4) were characterized as low priority former source areas. PSL-1, -2, -3, and -4 do not appear to have been primary release locations for the Site COCs. The area of PSL-5, which includes PSL-5, PSL-9, PSL-11, and PSL-12, appeared to be a primary source area at Varian's former facility property. PSL-6, -7, and -10 were also identified as a primary source area for Site COCs. At PSL-8, although soil vapor survey results indicated VOCs were present in the soil gas, the field screening and laboratory analysis of soil samples collected did not confirm the presence of VOCs. Investigations at PSL-13 were designed to assess the impact of the adjacent former Beverly landfill. Results indicate that this PSL had not impacted the Site.

- 3. The elevated levels of VOCs in the shallow overburden groundwater observed at the 31 Tozer Road property are likely the result of impacts associated with the former location of the Unnamed Stream. This stream was historically located along the current location of Tozer Road, adjacent to 31 Tozer Road. It is likely that shallow overburden impacts in this area were the result of historical discharges to the Unnamed Stream that were transported down the hill from the former Varian facility and settled in this area as the stream flowed through a former highly vegetated area (as observed in historical aerial photographs).
- 4. The results of the field investigations indicated that impacts to soil were predominantly at locations at 150 Sohier Road, Varian's former facility. Beyond Varian's former facility property, VOCs were present in groundwater, soil gas, and surface water samples.
- 5. Site hydrogeology is characterized by the presence of two aquifers. The overburden aquifer is composed of unconsolidated sediments laid in glacial, post-glacial, and coastal depositional environments. The Site is typically underlain by dense till, sand and gravel, and silt and clay deposits. The bedrock aquifer is characterized by fractured granite and gabbro formations. The

depths to bedrock between the overburden and the bedrock are highly variable throughout the Site.

In the shallow overburden aquifer, groundwater flows at variable rates in a general southerly to southwesterly direction toward the Bass River. The overburden aquifer discharges into the two local streams: the Unnamed Stream that transects the facility and Stream A, located further to the west of Varian's former facility. A component of groundwater flow from Varian's former facility is also to the north-northwest.

In the bedrock aquifer, groundwater flows through interconnected fractures and faults in directions generally similar to those of the overburden aquifer. The two aquifers are locally in communication.

- 6. The results of soil gas sampling indicate that higher concentrations of VOCs were detected in the areas at the former Varian facility that were determined to be likely source areas PSL-5, -6, -7, -9, -10, -11, and -12). Lower levels of VOCs were detected in the soil gas, surface water, and groundwater at other areas at the former facility property and at locations hydraulically downgradient of the facility. Extensive soil gas sampling has been conducted at the Site, including a 1999 flux chamber soil gas sampling event. This was conducted to evaluate potential off-gassing from soil gas to the atmosphere and potentially into facility buildings. Low concentrations of VOCs, including TCE and PCE, were detected, and the concentrations potentially entering the buildings were calculated. The sampling results were evaluated by a risk assessor who determined the concentrations did not pose a potential risk to facility workers.
- 7. TCE is the chemical most detected, with elevated concentrations in surface water samples from the Site. While TCE is the most frequently detected VOC in surface water, PCE, *cis*-1,2-DCE, 1,1-DCE, and VC were also detected on occasion depending on location. In surface water samples where TCE and PCE were detected, their concentrations represented more than 70% of the total VOCs detected.

The Site data established the following observations and conclusions regarding surface water impacts. At locations where VOCs were detected in the streams (STRHA points), the same VOCs were detected in nearby hand-auger shallow wells (HA points) located on the banks of the streams. The detection of VOCs at stream points where VOCs are also detected in the adjacent shallow wells confirmed that groundwater containing VOCs was discharging into portions of the streams.

8. General conclusions regarding the extent of the COCs in groundwater based on the Site data suggested that the areal extent of dissolved VOCs in groundwater generally increased with depth. For individual constituents, the plume is generally the smallest in the shallow overburden aquifer and due to the geology increases in size and in concentrations in the deep overburden aquifer and in the bedrock aquifer.

Based on the extensive groundwater sampling data evaluated, the following general observations were made regarding the extent of VOCs at the Site:

- While the concentrations of TCE and PCE detected in the deep overburden wells in the areas of PSL-5, -9, -11, and -12 may have implied the presence of dense nonaqueous-phase liquid (DNAPL) in the vicinity of those wells, it did not appear that DNAPL, as defined by the MCP at that time was present. The historic presence of DNAPL had been observed, and samples were recovered on two occasions, from recovery well RW-2 in 1992 and from RW-4 in 1997. No further detection of DNAPL had been reported in the 2000 Phase II CSA. This indicated that the DNAPL that was released is now adsorbed in the overburden soil matrix and no longer mobile as a DNAPL within the meaning of the MCP at that time. The residual solvent, however, will slowly dissolve into the groundwater and provide a long-term source for groundwater VOC impact.
- Of the three principal COCs (TCE, PCE and 1,1,1-TCA), TCE and PCE are distributed in the longest and widest plume configurations. The TCE plume extent was approximately 3,600 feet long in a north-south direction and 1,500 feet wide at its widest point at the latitude of the 150 Sohier Road property. From Varian's former property the plume had migrated approximately 1,500 feet to the north to the Walden Street area and approximately 2,100 feet to the south, to the confluence area of the Unnamed stream and Stream A.
- The extent of dissolved degradation products in the groundwater (e.g., *cis*-1,2-DCE) was smaller and not always continuous as compared to the extent of the parent products.

The areal distribution of dissolved VOCs in the groundwater showed zones of impacted groundwater that were outside and away from the main plume body or that appeared like attachments to the main plume body. For example, the TCE and PCE plume maps in the shallow aquifer showed such areas to the west by Longview Terrace and Cabot Street and the northwest by Dodge Street. These particular configurations suggested the contribution of other sources different from the historical source areas identified at the 150 Sohier Road property.

- 9. During pumping of the existing recovery wells, a capture zone was created in the overburden that contained source area VOCs, including residual solvent.
- Natural attenuation of the chlorinated solvents is occurring in the groundwater system. Degradation of the PCE and TCE is the source of the cis-1,2-DCE and VC detected at the Site. Degradation of 1,1,1-TCA is the source of the 1,1-DCA and 1,1-DCE detected at the Site. Ethene and ethane were observed in a few of the groundwater samples collected for the natural attenuation analysis, which illustrated that further natural degradation is occurring. The conclusions from the natural attenuation assessment completed for the Site suggested that natural attenuation will play a significant role in the long-term fate and transport of VOCs in groundwater and aid the effectiveness of remedial efforts at the Site.

3.2 Site Assessment and Remediation Activities (2000 through 2021)

The following is a general chronology of the main Site activities conducted following submittal of the Phase II CSA in 2000 to summer 2022. Details and results of these assessment and remediation activities have been documented in MCP reports submitted to MassDEP between 2000 and January 2022 and are not included herein. **Table 3-1** provides a summary of monitoring and remediation wells installed since the completion of the 2000 Phase II CSA. Well locations across the Site are illustrated on **Figure 1-2**. Copies of well logs for subsurface investigation activities conducted post 2000 Phase II are included as **Appendix B**.

2000

 Between November 2000 and February 2001, supplemental field activities proposed by Varian to address the City of Beverly's concerns with the Phase II assessment were completed. These activities included stream sediment sampling, monitoring well installation, groundwater sampling, and additional soil vapor sampling in the residential area to assess potential impacts to indoor air.

2001

- On March 29, 2001, Varian issued a report summarizing the results of the additional assessment
 activities conducted at the request of the City of Beverly. The additional assessment included well
 installation and sampling, soil vapor sampling in the residential area to assess potential indoor air
 exposure, and sediment sampling. The assessment report included an update of the Phase II
 Risk Assessment, which confirmed the Phase II conclusion that impacts from the Site pose No
 Significant Risk to Human Health and the Environment.
- In May 2001, Varian conducted semiannual groundwater sampling.
- In June and July 2001, indoor air samples were collected at 36 homes in the residential area.
- On August 29, 2001, the Final Phase III RAP was issued and outlined the selection of the Comprehensive Response Action (cleanup plan). Chemical oxidation of VOCs using sodium permanganate was the selected remedial alternative.
- On October 5, 2001, Varian issued a report summarizing the results from the summer 2001 sampling of indoor air at residents. Only three of the 36 homes sampled showed results above MassDEP background levels. Those three homes were not located in an area with shallow groundwater impact attributed to the former Varian Site. Household products that contain target VOCs were identified in each of the three homes and represent the likely source of the detected VOCs. Data presented in the report confirmed the conclusion that impacts from the Site pose No Significant Risk to Human Health.
- In November 2001, Varian conducted semiannual groundwater sampling.
- In December 2001, the final Phase IV Implementation Plan was issued.

- In January and February 2002, indoor air samples were collected at 29 homes in the residential area.
- In May 2002, Varian conducted semiannual groundwater sampling.
- On May 3, 2002, Varian issued a report summarizing the results from the winter 2002 sampling of indoor air at residents. Only one of the 29 homes sampled showed results above MassDEP background levels. That home was not located in an area with shallow groundwater impact

- attributed to the former Varian Site. A household product that contains target VOCs was identified in the home and represents the likely source of the detected VOCs. Data presented in the report provided further confirmation that the Site poses No Significant Risk to Human Health.
- In July 2002, Varian started comprehensive response actions at the Site. This included the installation of additional monitoring wells, the installation of oxidant (permanganate) injection wells, and the start of permanganate injections to treat site groundwater.
- In August 2002, Varian issued an MCP Release Abatement Measure Completion Report closing out the O&M of the groundwater pump and treat system and stating that future activities at the Site will be documented in semiannual status reports under Phase V.
- In October 2002, the Phase IV As-built and Final Inspection Report was issued by Varian. The
 report documented the techniques and materials used during construction activities, tests and
 measurements used, presented any significant modifications to the design or implementation of
 the remedial action, and provided as-built drawings. This report also documented the final
 inspection of the remedial actions by the Licensed Site Professional (LSP) of Record and
 included a Phase IV Completion Statement.
- In November 2002, Varian conducted semiannual groundwater sampling.
- During 2002, approximately 77,000 gallons of sodium permanganate solution were injected at 30 locations. This included locations in source areas and downgradient of 150 Sohier Road.
- In December 2002, Varian submitted an ROS Opinion, which stated that the performance standards for ROS have been achieved and will be maintained at the Site and operation and maintenance of the Comprehensive remedial action proceeded under Remedy Operation Status.

- In April 2003, Varian issued a semiannual ROS report and continued to submit ROS status reports every 6-months through January 2022.
- In May 2003, Varian conducted semiannual groundwater sampling.
- On August 29, 2003, Varian issued a Scope of Work in response to MassDEP recommendations as a result of an Audit of the Phase II CSA.
- On October 20, 2003, MassDEP issued a letter approving the August 29, 2003, Audit Work Scope with modifications.
- In November 2003, Varian conducted semiannual groundwater sampling.
- Between December 2003 and February 2004, the Audit Work Scope was implemented. This
 included additional well installations and sampling of groundwater.
- In 2003, approximately 42,000 gallons of sodium permanganate solution were injected at 31 locations. This included locations in source areas and downgradient of 150 Sohier Road.

- On April 14, 2004, a report documenting the results of the Audit Work Scope was issued. The assessment activities included installation and sampling of eight (8) new wells in potential source areas and monitoring for DNAPL at these and existing wells in source areas. DNAPL, as defined by the MCP at that time, was not detected. These observations were consistent with the conclusion in the 2000 Phase II CSA report that DNAPL is not present at the Site. Based on the results of the activities conducted, the report concluded that the submittal of a revised Phase II, Phase III, or Phase IV completion statements was not required for the Site.
- In May and November 2004, Varian conducted semiannual groundwater sampling.

• In 2004, approximately 43,000 gallons of sodium permanganate solution were injected at 33 locations. This included locations in source areas and downgradient of 150 Sohier Road.

2005

- In May and November 2005, Varian conducted semiannual groundwater sampling.
- In 2005, approximately 15,000 gallons of sodium permanganate solution were injected at 14 locations. This included locations in source areas and downgradient of 150 Sohier Road.

2006

- In May 2006, Varian conducted semiannual groundwater sampling.
- In the October 2006 ROS Report, bioremediation was proposed as a supplemental remedial approach to address two VOC-impacted areas in the northeast corner of the Site. Bioremediation was proposed to address the shallow groundwater near the Unnamed Stream in place of permanganate because of potential impacts to the quality of the stream water from permanganate treatment. The second bioremediation area was northeast of Building 3 where deep overburden groundwater is impacted with residual 1,1,1-TCA, which is not effectively treated with permanganate.
- Starting in October 2006 to the present, quarterly sampling of groundwater at select wells in bioremediation areas has been completed to meet the requirements of the MCP.
- From October 2006 to early January 2007, approximately 4,700 gallons of bioremediation solution were applied to six shallow overburden locations near the stream and two deep overburden locations adjacent to Building 3.
- In October 2006, Varian sampled soil vapor at 27, 30, 31, 32, and 39 Tozer Road properties to
 further assess potential impacts to indoor air. A mathematical model was used to estimate the
 potential impacts to indoor air at each property based on detected concentrations in soil vapor.
 The model results demonstrated that the levels of VOCs found in the environment pose No
 Significant Risk to occupants at each facility.
- In November 2006, Varian conducted semiannual groundwater sampling.
- In 2006, approximately 2,000 gallons of sodium permanganate solution were injected at six locations at the former Varian property.

2007

- In May 2007, Varian conducted semiannual groundwater sampling.
- From September to November 2007, approximately 2,900 gallons of bioremediation solution were applied to six shallow overburden locations near the stream and four deep overburden locations adjacent to Building 3.
- In November 2007, Varian conducted semiannual groundwater sampling.
- In 2007, approximately 2,100 gallons of sodium permanganate solution were injected at six locations at the former Varian property.

- In May 2008, Varian conducted semiannual groundwater sampling.
- From August to September 2008, approximately 1,400 gallons of bioremediation solution were applied to five shallow overburden locations near the stream and one deep overburden location adjacent to Building 3. Injections included a buffering solution to keep pH at an optimal range for bioremediation.

- In November 2008, Varian conducted semiannual groundwater sampling.
- In 2008, approximately 1,100 gallons of sodium permanganate solution were injected at five locations at the former Varian property.

- In May 2009, Varian conducted semiannual groundwater sampling.
- In May 2009, a soil vapor survey was completed to assess the needs of additional groundwater remediation in the Building 3 area. A total of 20 soil vapor sampling locations were installed, including two locations installed through the exposed foundation wall and below the Building 3 floor. Soil vapor samples collected from beneath Building 3 illustrated elevated concentrations of VOCs. Starting with the VOC concentrations in soil vapor, modeling was used to estimate potential indoor air concentrations. These estimated indoor air concentrations were compared to Imminent Hazard risk limits provided in the MCP. The conclusions of this evaluation were that an Imminent Hazard could potentially exist in Building 3 and indoor air samples should be collected to evaluate this potential exposure with measured indoor air data. Results of this evaluation were promptly reported to the MassDEP on May 28, 2009.
- On June 1, 2009, Varian undertook indoor air sampling at the facility to assess VOC levels in indoor air. A total of six samples of breathing zone air were collected within Buildings 2 and 3. Analytical results of air samples collected from within Building 3 indicated the presence of elevated levels of VOCs. However, sampling and analysis of indoor air concentrations showed that measured concentrations were much lower than the concentrations estimated by modeling. The risk characterization using the measured indoor air concentrations showed that an Imminent Hazard was not present, although the calculations indicated that the measured air levels present risks close to the Imminent Hazard threshold.
- From July through December 2009, because the levels of VOCs in indoor air were close to the Imminent Hazard threshold, Varian undertook the following Immediate Response Actions with MassDEP approval:
 - Adjusted the existing heating, ventilation, and air-conditioning (HVAC) unit to provide a continual flow (200 to 400 cubic feet per minute (cfm)) of fresh air intake to the building.
 - Sealed potential vapor migration pathways in Building 3. Concrete and expandable foam insulation was used to seal accessible cracks in floor trenches and pipe penetrations, and unused concrete utility trenches in Building 3 were filled with concrete.
 - o Installed and activated two air exchange ventilation units on July 15, 2009, to provide additional fresh air to the Building 3 area, including one unit in the Machine Shop and the other in the Stock Room. Each unit provides about 200 cfm of additional fresh air ventilation. Sampling following the activation of the supplemental air units indicated lower concentrations of VOC in indoor air.
 - Installed two 60-foot-long, horizontal SVE wells beneath Building 3, with drilling conducted by Directional Technologies, Inc. from July 21 to 24, 2009. See Figure 3-1.
 - Conducted an SVE pilot test in August 2009 to support the design of the full-scale SVE system.
 - Installed and activated an SVE system at Building 3 in December 2009. This system continues to operate in Building 3.
 - Sampled indoor air after startup of the SVE system; results indicated No Significant Risk to building occupants.

- From May to June 2009, approximately 920 gallons of bioremediation solution were applied to five shallow overburden locations near the Unnamed Stream.
- In November 2009, Varian conducted semiannual groundwater sampling.
- In 2009, approximately 1,200 gallons of sodium permanganate solution were injected at two locations at the former Varian property.

- In January and February 2010, Varian installed additional deep treatment wells angled beneath the western end of Building 3. See **Figure 3-1**.
- In May 2010, Varian conducted semiannual groundwater sampling.
- In March, June, and December 2010, during three separate events, approximately 1,500 gallons of bioremediation solution were applied to nine shallow overburden locations near the stream and three deep overburden locations adjacent to Building 3.
- In November 2010, Varian conducted semiannual groundwater sampling.
- In 2010, approximately 13,000 gallons of sodium permanganate solution were injected at nine locations at the former Varian property.

- In February 2011, soil vapor samples were collected beneath Buildings 5 and 6 to further assess
 potential indoor air exposure. Modeling using site-specific attenuation factors was conducted to
 estimate indoor levels at both buildings. Estimated indoor air levels did not indicate the potential
 of an Immediate Hazard in either Building 5 or Building 6. In addition, estimated indoor air levels
 indicated a condition of No Significant Risk to occupants in either Building 5 or Building 6.
- In March 2011, two shallow groundwater monitoring wells were installed, one near the northeast corner of the building located at 30 Tozer Road and the second near the northeast corner of the building at 39 Tozer Road. VOC results from the 30 and 39 Tozer Road wells indicated levels above the GW-2 Standards, indicating additional assessment was needed. See below.
- In February and March 2011, a pre-construction assessment was completed by the 32 Tozer Road property owner. The subsurface investigation included soil sampling, monitoring well installation, and groundwater sampling. Results of these activities were generally consistent with assessment activities completed by Varian.
- In March 2011, indoor air samples were collected by the property owner at 32 Tozer Road. The indoor air data was used to evaluate potential indoor air exposures to current workers in this building. This evaluation indicated that conditions at 32 Tozer Road do not pose an Imminent Hazard or Significant Risk to workers in the building. This conclusion was consistent with previous evaluations of this location using historical soil vapor and groundwater data.
- In May 2011, Varian conducted semiannual groundwater sampling.
- In June 2011, soil vapor samples were collected beneath Building 5 and Building 6 to further assess potential indoor air exposure. Analytical results of sample from beneath Building 5 and Building 6 indicated higher levels compared to February 2011 results. Therefore, indoor air samples were collected inside Buildings 5 and 6 in August 2011. Risk evaluation of indoor air samples collected in August 2011 did not indicate the potential of an Immediate Hazard in either Building 5 or Building 6. Estimated exposure in Building 6 did not exceed this risk limit, confirming no Significant Risk. However, the estimated cancer risk for Building 5 did exceed the MCP risk limit, indicating a potential Significant Risk.

- October 2011, a shallow groundwater monitoring well was installed adjacent to the building located at 27 Tozer Road. VOC results from this well indicated levels below the GW-2 Standards, indicating additional assessment of potential indoor air exposure was not needed.
- In late 2011, the property owner conducted additional assessment activities at 32 Tozer Road.
 These included soil sampling during the advancement of soil borings and test pits, installation of
 new monitoring wells, groundwater sampling of onsite monitoring wells and test pits, and concrete
 sampling. Results of these activities were generally consistent with assessment activities
 completed by Varian.
- In 2011, approximately 3,500 gallons of sodium permanganate solution were injected at seven locations at the former Varian property.
- From June to July 2011, approximately 950 gallons of bioremediation solution were applied to five shallow overburden locations near the stream and three deep overburden locations adjacent to Building 3.
- In November 2011, Varian conducted semiannual groundwater sampling.

- In 2012, Varian submitted documents to link the operation of the Building 3 SVE system to the main site number. These documents included an evaluation of exposure to indoor air at Building 3 with the SVE system operating, considering four rounds of indoor air data collected from February 2011 to January 2012. The conclusion of that evaluation was that a Condition of No Significant Risk has been achieved with the operation of the Building 3 SVE system.
- In January 2012, soil vapor sampling was conducted adjacent to the building at 30 Tozer Road to
 further evaluate potential indoor air impacts. Analytical results of the sub-surface vapor sampling
 conducted at 30 Tozer were above the December 2011 commercial/industrial sub-slab soil gas
 screening values from the MassDEP. However, these values are intended for samples collected
 beneath (i.e., within) the building footprint. Additional sampling within the building was conducted
 in May 2012.
- In May 2012, Varian conducted semiannual groundwater sampling.
- In May 2012, soil vapor sampling was conducted beneath the building at 30 Tozer Road to further
 evaluate potential indoor air impacts. Analytical results of the sub-slab vapor sampling conducted
 at 30 Tozer were above the December 2011 Commercial/Industrial sub-slab soil gas screening
 values from the MassDEP. This suggested that additional sampling was warranted (see
 November 2012 and February 2013 below).
- In July 2012, Varian installed three horizontal SVE trench wells beneath Building 5 to evaluate the
 potential use of SVE to remediate VOCs beneath Building 5. See Figure 3-2. On
 September 8, 2012, Varian conducted an SVE pilot test using two of the SVE trench wells. The
 pilot test results indicated that an SVE system would be effective at removing VOCs from beneath
 Building 5 and at limiting potential vapor migration into the building.
- In November 2012, sub-slab soil vapor and indoor air sampling were completed at 30 Tozer Road. See the second round of sampling in February 2013 below.
- In 2012, approximately 2,100 gallons of sodium permanganate solution were injected at seven locations at the former Varian property.
- In July 2012, approximately 3,000 gallons of bioremediation solution were applied to eight shallow overburden locations near the stream. This included the use of emulsified vegetable oil to provide a longer lasting carbon source for bioremediation.
- In November 2012, Varian conducted semiannual groundwater sampling.
- In December 2012, using indoor air sampling results from June 2011, January 2012, and
 October 2012, the potential risk to workers in Buildings 5 and 6 were calculated according to

MassDEP methods. The evaluation of this data concluded that the indoor air sampling results did not indicate the presence of an Imminent Hazard in Building 5 or 6. In addition, indoor air at Building 6 did not indicate a Significant Risk to human health. However, the indoor air sampling data in Building 5 suggested that longer term exposures may result in risk above the MCP limits.

- In January 2013, Varian collected sub-slab soil vapor samples and indoor air samples in the building at 39 Tozer Road. An indoor air risk evaluation was conducted to estimate the potential risk to workers from exposure to VOCs detected at the 39 Tozer Road property. The results of this evaluation demonstrated that there was No Significant Risk associated with VOCs from the former Varian Site at the 39 Tozer Road property.
- In February 2013, a second round of sub-slab soil vapor and indoor air sampling was completed at 30 Tozer Road. An indoor air risk evaluation was conducted to estimate the potential risk to workers from exposure to VOCs detected at the 30 Tozer Road property using procedures provided by MassDEP. This evaluation demonstrated that there was No Significant Risk associated with VOCs from the former Varian Site at the 30 Tozer Road property.
- In March 2013, Varian completed the Installation of an SVE system at Building 5. The system was designed to limit potential vapor migration into the building. The Building 5 SVE system was activated on March 11, 2013. This system continues to operate at Building 5.
- In May 2013, Varian conducted semiannual groundwater sampling.
- In May 2013, soil vapor and indoor air samples were collected at 32 Tozer Road. An indoor air
 risk evaluation was conducted to estimate the potential risk to workers from exposure to VOCs
 detected at the 32 Tozer Road property using procedures recommended by MassDEP. This
 evaluation demonstrated that there was No Significant Risk associated with VOCs from the
 former Varian Site at the 32 Tozer Road property.
- In July 2013, Varian installed additional shallow soil borings inside Building 3 to further assess
 potential source areas. Data from these soil borings indicated areas of shallow VOC impacts
 beneath the east and the western portions of Building 3.
- In July 2013, Varian conducted video inspections of drain lines beneath Building 3, including active roof drains which may discharge to a dry well. The presence of a dry well in the Building 3 area could result in water infiltrating through impacted soil under the western end of Building 3.
- In September 2013, three additional treatment wells were installed on the east side of Building 3 to increase the ability to treat impacted groundwater.
- In October 2013, an additional round of soil vapor and indoor air samples were collected at 32 Tozer Road. See below.
- In October and December 2013, additional video inspections of former and existing drain lines
 were conducted in the Building 3 area. This included drain lines beneath Buildings 3 and 6, a
 drain line associated with Buildings 1 and 2, and several additional lines associated with
 Building 3. Some of the drain lines may have historically received waste. These inspections
 suggested some locations in the Building 3 area where releases may have occurred when liquid
 wastes were discharged to the drain lines. Those locations could therefore require additional
 treatment to remove subsurface VOCs.
- In December 2013, drilling was conducted inside Building 5 to provide an additional evaluation of shallow impacts beneath the building. Soil and groundwater data from well OB44-S (see Figure 3-2) indicated residual VOC impacts and represented a likely source of indoor air impacts observed at Building 5.

- In 2013, approximately 3,500 gallons of sodium permanganate solution were injected at five locations at the former Varian property and one location downgradient on Tozer Road.
- In October 2013, approximately 2,100 gallons of bioremediation solution were applied to three deep overburden wells next to Building 3.
- In November 2013, Varian conducted semiannual groundwater sampling.

- In February 2014, a third round of soil vapor and indoor air samples were collected at 32 Tozer
 Road. The indoor air and soil gas results from the October 2013 and February 2014 sampling
 events are consistent with or slightly lower than the May 2013 results, showing that a condition of
 No Significant Risk continued to exist for site workers at this downgradient property.
- In April 2014, three Building 3 inactive drain lines were reinspected following cleaning to allow
 more thorough inspection of the lines. The results of reinspection indicated that former lines were
 not a continuing source of VOCs. However, the inspections did indicate that areas around the
 lines are potential locations of historic VOC releases to the environment.
- In April 2014, video inspections of existing drain lines at Building 5 were also conducted. These inspections did not indicate potential release areas or sources of VOC impacts.
- In April 2014, a fourth round of soil vapor and indoor air samples were collected at 32 Tozer Road. Varian used the maximum concentration of each VOC detected over the four sampling events (May 2013, October 2013, February 2014, and April 2014) to conservatively estimate risk in accordance with evaluation procedures established by MassDEP. Based on this evaluation, the data demonstrate that a condition of No Significant Risk exists at the 32 Tozer Road property in accordance with MassDEP criteria.
- In May 2014, Varian conducted semiannual groundwater sampling.
- In August 2014, a fourth SVE trench well was installed in the Building 5 area near well OB44-S, where soil and groundwater testing had indicated impacts of VOCs. See Figure 3-2. The Building 5 SVE system was connected to the new SVE trench well on August 11, 2014.
- In September 2014, based on additional data collected in 2014, two new horizontal SVE wells were installed beneath Building 3. See **Figure 3-1**. One well targeted the eastern part of the building while the second targeted the western part of the building. Soil vapor extraction began at these two horizontal SVE wells in September 2014.
- In September 2014, MassDEP completed an Audit of the SVE systems operating at 150 Sohier Road. A Notice of Audit Findings was issued on September 14, 2015, that did not report any violation, documenting the SVE systems were being operated in compliance with the MCP.
- In October 2014, a fifth round of soil vapor and indoor air samples were collected at 32 Tozer Road. The October 2014 soil vapor and indoor air data indicated VOC concentrations lower than the levels assessed in an earlier evaluation. Therefore, a condition of No Significant Risk is still present.
- In 2014, approximately 1,200 gallons of sodium permanganate solution were injected at seven locations at the former Varian property.
- In November 2014, Varian conducted semiannual groundwater sampling.
- From November 2014 to March 2015, approximately 3,500 gallons of bioremediation solution were applied to five deep overburden wells next to Building 3.

- In early 2015, approximately 1,000 gallons of sodium permanganate solution were injected at five locations at the former Varian property. This included shallow injection beneath Building 3 at three horizontal SVE wells.
- In April 2015, Varian installed additional wells outside of Building 5 (OB46-S) to further assess VOC impacts and assess the area for potential bioremediation.
- In April 2015, a sixth round of soil vapor and indoor air samples were collected at 32 Tozer Road. The April 2015 soil vapor and indoor air data indicated VOC concentrations similar to the levels assessed in an earlier evaluation. Therefore, a condition of No Significant Risk is still present.
- In May 2015, Varian conducted semiannual groundwater sampling.
- In May and November 2015, during two separate events, approximately 12,000 gallons of bioremediation solution were applied to two of the trench SVE wells in the Building 5 area.
- In September 2015, the new owner of the 28 Tozer Road property completed assessment activities. This included well installation, groundwater sampling, and indoor air sampling. Indoor air sampling did not indicate the presence of detectable levels of VOC potentially from the former Varian Site. The only VOC detected that could have been attributed to the former Varian Site was determined to be associated with a vapor degreaser located on the second floor of the 28 Tozer Road building. Results of groundwater sampling completed by the 28 Tozer Road owner were generally consistent with data collected during Varian's assessment.
- In November 2015, MassDEP completed an Audit of the SVE systems operating at 150 Sohier Road. A Notice of Audit Findings was issued on November 23, 2015, that did not report any violation, documenting that the SVE systems were being operated in compliance with the MCP.
- In May 2015, Varian conducted semiannual groundwater sampling.
- In late 2015 into early 2016, approximately 1,500 gallons of sodium permanganate solution were injected at seven locations at the former Varian property. This included shallow injections beneath Building 3 at two horizontal SVE wells.
- In December 2015, the consultant for a potential property buyer collected an indoor air sample at
 former Building 7 (aka 148 Sohier Road and 4 Bomac Road). The sample location was based on
 sub-slab soil vapor sampling results, which were reported to indicate the presence of VOCs
 beneath the building floor. It was reported that analytical results of the indoor air sample collected
 inside former Building 7 did not indicate detectable levels of VOCs from the former Varian Site.

- In January 2016, following renovations at the 30 Tozer Road building, indoor air sampling was conducted to confirm a condition of No Significant Risk following the renovations. It should be noted that during building renovations the 30 Tozer Road owner conducted installation of an active soil vapor mitigation system to further mitigate potential vapor migration beyond a condition of No Significant Risk. Using the January 2016 data, Varian estimated risk in accordance with evaluation procedures established by MassDEP. Based on this evaluation, the data demonstrated that a condition of No Significant Risk exists at the 30 Tozer Road property in accordance with MassDEP criteria.
- In May 2016, Varian conducted semiannual groundwater sampling.
- From April into May 2016, Varian completed injections in the deep overburden at Building 3 to adjust the groundwater pH. Previous sampling data suggested that the bioremediation progress was being limited by a low groundwater pH. Groundwater monitoring after these injections indicated pH levels more suitable to bioremediation in groundwater. In September 2016, approximately 4,000 gallons of bioremediation solution were injected at six deep overburden wells in the Building 3 area.

- In December 2016, approximately 4,300 gallons of bioremediation solution were applied to the four trench SVE wells in the Building 5 area.
- In late 2016 into early 2017, approximately 2,000 gallons of sodium permanganate solution were injected at four deep overburden wells at the former Varian property and at two horizontal SVE wells beneath Building 3.
- In November 2016, Varian conducted semiannual groundwater sampling.

- In May 2017, Varian conducted semiannual groundwater sampling.
- From September to October 2017, approximately 2,000 gallons of bioremediation solution were applied to the four trench SVE wells in the Building 5 area.
- From September to December 2017, approximately 1,600 gallons of sodium permanganate solution were injected at six locations at the former Varian property. This included shallow injections beneath Building 3 at two horizontal SVE wells.
- In November 2017, Varian conducted semiannual groundwater sampling.
- From December 2017 to April 2018, approximately 4,700 gallons of bioremediation solution were applied to seven deep wells in the Building 3 area. This included ferrous sulfate heptahydrate to promote abiotic degradation of VOCs in addition to anaerobic degradation.

2018

- In May 2018, MassDEP completed an Audit of the SVE systems operating at 150 Sohier Road. A
 Notice of Audit Findings was issued on May 14, 2018, that did not report any violation,
 documenting the SVE systems were being operated in compliance with the MCP.
- In May 2018, Varian conducted semiannual groundwater sampling.
- In July 2018, Varian completed installation of four new treatment wells inside Building 5 (AP36-S through AP39-S). See Figure 3-2. These wells were designed to provide further treatment of shallow groundwater beneath Building 5.
- In October 2018, approximately 4,200 gallons of bioremediation solution were applied to the four recently installed shallow wells inside Building 5.
- In November 2018, Varian conducted semiannual groundwater sampling.
- In November 2018, a pumping test was conducted to evaluate whether pumping at existing
 recovery well RW-1 (east side of building) would be affective at recirculating remedial additives
 injected along the north side of Building 3 and through impacted areas beneath the building. The
 results of the pumping test did not support the use of a recirculation system using existing wells
 as a remedial treatment option for this area.
- From November into December 2018, a total of approximately 6,900 gallons of bioremediation solution were applied to nine deep wells in the Building 3 area.

- In February 2019, Varian collected sub-slab soil vapor samples from beneath the building at 27 Tozer Road. This sampling was conducted to evaluate potential indoor air impacts following increased levels of VOCs in shallow groundwater at this property. Analytical results of the sub-slab soil vapor samples collected beneath the 27 Tozer Road building indicated no concentrations exceeded the MassDEP commercial and industrial sub-slab soil gas screening levels. Consistent with MassDEP guidance, these results indicated that indoor air sampling was not warranted.
- In February 2019, Varian submitted a request to adjust the reporting schedule for the Site. The MassDEP provided concurrence with the new reporting schedule in an e-mail on

- February 26, 2019. Semiannual status reports will be submitted by January 31 and July 31 each year.
- In March 2019, Varian submitted an LSP Opinion to remove the off-gas treatment from the Building 5 SVE system. Using MassDEP guidance, it was illustrated using analytical data that the discharge from the Building 5 SVE system is currently below the remedial air emissions standards requiring off-gas treatment and that off-gas treatment is not required for the Building 5 SVE system.
- In April 2019, two shallow angled wells were installed beneath the eastern end of Building 3
 (AP40-S and AP41-S, see Figure 3-1). The wells were used to collect additional shallow
 assessment data beneath Building 3. Data collected during installation of AP40-S indicated
 significant VOC impacts starting at approximately ten feet below surface grade at the north wall of
 the building. This is the approximate area of a former drain line that likely received waste.
- In May 2019, Varian conducted semiannual groundwater sampling.
- In September 2019, Varian conducted an SVE pilot test at the shallow horizontal well beneath Building 3 that indicated shallow impacts of VOCs. The result of this pilot test indicated that due to the construction of the well (which was not designed for SVE) and the dense nature of the soil around the well, the horizontal well is not conducive to SVE.
- From September into October 2019, approximately 3,200 gallons of bioremediation solution were applied at shallow angled wells AP40-S and AP41-S beneath Building 3.
- From October to December 2019, approximately 165 gallons of sodium permanganate solution were injected at two locations at the former Varian property.
- In November 2019, Varian conducted semiannual groundwater sampling.
- In December 2019, Varian completed the installation of three vertical wells along the north side of Building 3 (OB49-S through OB51-S, see **Figure 3-1**). These wells were located in the area where soil sampling during installation of the shallow angled wells indicated impacted soils. The wells were installed to further assess the shallow VOC impacts observed adjacent to the building. Data from the three shallow wells confirmed soil and groundwater impacts in this area and provided further characterization of the impacts.

- In March 2020, approximately 3,100 gallons of bioremediation solution were applied at the three shallow wells adjacent to Building 3.
- In May 2020, Varian conducted semiannual groundwater sampling.
- From October to November 2020, approximately 2,100 gallons of bioremediation solution were applied to four deep wells in the Building 3 area, OB49-S through OB51-S.
- In November 2020, Varian conducted semiannual groundwater sampling.
- In December 2020, MassDEP sampled air at 41 residential homes in areas downgradient of the Site. Based on the data collected, MassDEP determined that there was no evidence that contaminants from the former Varian Site are impacting any of the homes that were sampled.

2021

 In January 2021, MassDEP completed an evaluation of investigations, remedial activities, and review of response actions at the Site. MassDEP concluded that some data gaps exist and requested further investigative work

[https://eeaonline.eea.state.ma.us/EEA/fileviewer/Default.aspx?formdataid=0&documentid=58468 2]. In response, Varian issued a work plan dated February 9, 2021, that included additional well installation, surface water sampling, and sediment sampling activities [see second attachment at https://eeaonline.eea.state.ma.us/EEA/fileviewer/Default.aspx?formdataid=0&documentid=59373

- The February 2021 work plan was approved by MassDEP, with conditions, in a letter dated February 26, 2021
 [https://eeaonline.eea.state.ma.us/EEA/fileviewer/Default.aspx?formdataid=0&documentid=593959].
- In February and March 2021, retesting of indoor air using more sensitive methods as required by MassDEP was conducted at 21 residential homes. Where present, water in basement sumps was also sampled. Results of this sampling indicated No Significant Risk at the 21 residential homes. However, additional sampling was recommended at five residential homes due to background sources and inconsistent data. The results of these sampling activities were documented in an April 30, 2021, report titled Vapor Intrusion Assessment Report, Downgradient Residential Areas [https://eeaonline.eea.state.ma.us/EEA/fileviewer/Default.aspx?formdataid=0&documentid=60160 9].
- In March and May 2021, surface water samples were collected at 17 locations and sediment samples were collected at 16 locations in the Unnamed Stream and Stream A.
- In March and April 2021, soil vapor and indoor air samples were collected at commercial/industrial buildings located on 30, 31, and 39 Tozer Road. At the owner's request, only soil vapor sampling was conducted at 27 Tozer Road. The results of this sampling did not indicate a Significant Risk. An additional round of soil vapor and indoor air sampling was recommended at 30, 31, and 39 Tozer Road.
- In April 2021, Varian installed four shallow wells on Sonning Road (P-13R, P-4R, P-30, and OB6-S), one shallow well on Tudor Road (P-31), and one shallow well on Jordan Street (P-4R). Groundwater sampling of these wells indicated non-detect levels of VOCs. See **Figure 1-2**.
- In April and May 2021, Varian installed six new wells at the Site, including bedrock wells at Building 5. These wells included OB38-BR, OB39-BR, OB45-BR, and well triplet OB52-S/DO/BR (see Figure 1-2). Test results in each well, except bedrock well OB45-BR at Building 5, were consistent with existing Site data. At OB45-BR, a higher than expected concentration of VOCs was detected in bedrock. This resulted in additional assessment discussed below.
- In May 2021, a site-wide groundwater sampling event was conducted. In addition, the event included surface water sampling.
- On June 30, 2021, a report titled Building 3 and 5 Source Area Assessment Summary report was submitted to MassDEP.
- On August 4, 2021, a semiannual ROS report was submitted to MassDEP [https://eeaonline.eea.state.ma.us/EEA/fileviewer/Default.aspx?formdataid=0&documentid=61469 1]. This report summarized the results of recent assessment activities, including well installation, soil vapor and indoor air sampling, and sediment, surface water and groundwater sampling. The report also included an evaluation of human health and environmental risk posed by VOCs detected in surface water and sediment at the Site. No Significant Risk to human health was identified. It was also demonstrated that further assessment of environmental risk was not warranted. In addition, the report provided a screening of potential risk to pets that may drink surface water. The maximum levels of VOCs in surface water were below the screening levels used to assess the potential risk to pets.
- In August 2021, select monitoring wells and surface water locations were sampled.
- On September 28, 2021, a report titled Summary of In-situ Chemical Oxidation and Soil Vapor Extraction was submitted to MassDEP [https://eeaonline.eea.state.ma.us/EEA/fileviewer/Default.aspx?formdataid=0&documentid=62292
 11.
- In October 2021, a second round of soil vapor and indoor air sampling was conducted at four residences. Access was not obtained to sample at the fifth location recommended for resampling.
 Based on a lines—of—evidence approach, a complete vapor intrusion pathway likely to be of

concern was not identified at three of the homes sampled. At the fourth home, located on Longview Drive, levels in indoor air were above the MassDEP TVs. The levels detected did not indicate a Significant Risk. It should be noted that the TVs are not exclusively risk-based limits. The TVs are guidance criteria developed by MassDEP to indicate levels in indoor air that are above typical background, which require additional evaluation.

- In November 2021, a site-wide groundwater sampling event was conducted. In addition, the event included surface water sampling.
- In November 2021, soil vapor and indoor air were resampled at a home on Longview Drive.
 Again, the levels detected in indoor air did not indicate a Significant Risk, but they were above the TVs.
- In December 2021, soil vapor and indoor air were resampled at a home located on Longview Terrace. Based on a lines of evidence approach, a complete vapor intrusion pathway likely to be of concern was not identified at the Longview Terrace home.

3.3 Site Assessment Activities

Site assessment activities conducted in 2020 and 2021 have been described in detail in prior MCP submittals including the January 2022 ROS Report. Activities not previously described in these submittals provided to MassDEP are summarized in the following sections of this report.

3.3.1 Tozer Road Soil Vapor and Indoor Air Sampling (December 2021 and January 2022)

MassDEP requested indoor air and soil vapor sampling at commercial properties downgradient of 150 Sohier Road to confirm that current conditions posed No Significant Risk in this area. Those sampling activities were conducted in 2021 and reported in the August 2021 ROS Report. As noted in the text table below, follow-up sampling was recommended at three properties, 30 Tozer Road, 31 Tozer Road, and 39 Tozer Road. The location of each of the properties are illustrated on **Figure 1-2**. Plans for each property are provided in **Appendix C**.

Property	Soil Vapor Results Exceeded Screening Values? (1)	Indoor Air Results Exceeded Threshold Value? (1)	Background Source Identified?	Conclusion & Recommendations
30 Tozer Road	Yes	No	No	No Significant Risk, sample soil vapor and indoor air in winter 2022
31 Tozer Road	Yes	No	No	No Significant Risk, sample soil vapor and indoor air in winter 2022
39 Tozer Road	Yes	Yes	Yes	No Significant risk, remove background source, sample soil vapor and indoor air in winter 2022

Notes: (1) MassDEP, 2016.

Prior to conducting the air sampling, a survey was completed by APTIM with the property owner or the tenant. The survey requested details on the property and activities performed in buildings and included questions about the presence or use of potential background sources of VOCs such as dry cleaning, paint strippers, and solvents. Prior activities at 39 Tozer had identified products containing VOCs that are the same as the target VOCs associated with the Former Varian Facility Site. These included ZEP Power Solv and SOS Metal anti-seize, which both contained TCE, and Brakleen Brake Parts Cleaner and Kwikee Penetrating Oil, which both contained PCE. The previously known background sources had been removed prior to sampling in January 2022.

Indoor air samples were collected at 30 and 31 Tozer Road in December 2021 and at 39 Tozer Road in January 2022. At each building, samples were collected under normal HVAC operating conditions. The same sample locations as the prior events in March and April 2021 were used. A Summa® canister fitted with a regulator calibrated to collect air over an 8-hour period was used to collect each sample. Canisters were placed at an elevated location to sample air at breathing height. Indoor air samples were analyzed for VOCs by U.S. Environmental Protection Agency (EPA) Method TO-15. Laboratory quality control (QC) procedures were conducted as per the MassDEP Compendium of Analytical Methods (CAM) requirements.

Indoor air sample results from 30 Tozer Road are summarized in Table 3-2 and indicated that:

- TCE was detected at concentrations ranging from 0.511 micrograms per cubic meter (μg/m³) to 0.527 μg/m³
- PCE was detected at concentrations ranging from 0.353 μg/m³ to 0.427 μg/m³
- cis-1,2-DCE concentrations ranged from non-detect to 0.079 μg/m³
- 1,1,1-TCA concentrations were non-detect

Indoor air sample results from 31 Tozer Road are summarized in **Table 3-2** and indicated that:

- TCE was detected at concentrations ranging from non-detect to 0.247 µg/m³
- PCE was detected at concentrations ranging from 0.22 μg/m³ to 0.746 μg/m³
- cis-1,2-DCE and 1,1,1-TCA concentrations were non-detect

None of the target VOCs associated with the Former Varian Facility Site were detected in indoor air at 30 or 31 Tozer Road at concentrations that exceeded the MassDEP's commercial/industrial TVs.

Indoor air sample results from 39 Tozer Road are summarized in Table 3-2 and indicated that:

- TCE was detected at concentrations ranging from 1.9 μg/m³ to 3.17 μg/m³
- PCE was detected at concentrations ranging from 0.583 μg/m³ to 2.03 μg/m³
- cis-1,2-DCE was detected at concentrations ranging from 0.262 μg/m³ to 0.92 μg/m³
- 1,1,1-TCA was detected at one location at a concentration of 0.142 μg/m³

Of the target VOCs associated with the Former Varian Facility Site, only TCE was detected in indoor air at 39 Tozer Road at concentrations that exceeded the MassDEP's commercial/industrial TV.

To evaluate a potential vapor migration pathway at the downgradient properties consistent with MassDEP guidance, soil vapor samples were collected beneath each building (sub-slab) at previously installed soil vapor points. After the sampling of indoor air, the soil vapor samples were collected by connecting each sample point to a Summa® canister. Samples were then collected over a two-hour period and submitted for laboratory analysis of VOCs by EPA Method TO-15. Laboratory QC procedures were conducted as per MassDEP CAM requirements.

Soil vapor sample results from 30 Tozer Road are summarized in Table 3-3 and indicated that:

- TCE was detected at concentrations ranging from 0.435 μg/m³ to 2,190 μg/m³
- PCE was detected at concentrations ranging from 0.245 μg/m³ to 76.6 μg/m³
- cis-1,2-DCE concentrations ranged from non-detect to 4.76 μg/m³
- 1,1,1-TCA concentrations were non-detect

Of target VOCs associated with the Former Varian Facility Site, only TCE was detected at a single 30 Tozer Road location in December 2021 above MassDEP's commercial/industrial sub-slab soil gas screening value. This included PCE which decreased from 1,210 μ g/m³ in April 2021 to 76.6 μ g/m³ in December 2021. It should be noted that TCE concentrations at that location, 30 Tozer-SV09, also indicated a decrease between April 2021 and December 2021.

Soil vapor sample results from 31 Tozer Road are summarized in Table 3-3 and indicated that:

- TCE was detected at concentrations of 4.1 μg/m³ and 6.72 μg/m³
- PCE was detected at concentrations of 292 μg/m³ and 166 μg/m³
- cis-1,2-DCE concentrations were non-detect
- 1,1,1-TCA was detected at concentrations of 4.84 μg/m³ and 9.93 μg/m³

Of target VOCs associated with the Former Varian Facility Site, only PCE was detected at a single 31 Tozer Road location above MassDEP's commercial/industrial sub-slab soil gas screening value.

Soil vapor sample results from 39 Tozer Road are summarized in Table 3-3 and indicated that:

- TCE was detected at concentrations ranging from 0.473 μg/m³ to 11.1 μg/m³
- PCE was detected at concentrations ranging from 0.271 μg/m³ to 1.8 μg/m³
- cis-1,2-DCE was detected at concentrations ranging from 0.123 μg/m³ to 2.58 μg/m³
- 1,1,1-TCA concentrations were non-detect

In January 2022, none of the target VOCs associated with the Former Varian Facility Site were detected at 39 Tozer Road locations at concentrations above MassDEP's commercial/industrial sub-slab soil gas screening values. This included location 39 Tozer-SV-02 which did indicate a TCE concentration above the screening value in March 2021.

At 30 Tozer Road and 31 Tozer Road, concentrations of target VOCs associated with the Former Varian Facility Site were detected at one location in each building at a concentration above MassDEP's commercial/industrial sub-slab soil gas screening value. In both cases, concentrations of target VOCs associated with the Former Varian Facility Site in indoor air were below the MassDEP TVs (**Table 3-2**). In the case of 30 Tozer Road, additional rounds of indoor air sampling conducted by MassDEP and the property owner also indicated levels below the TVs.

At 39 Tozer Road, TCE indoor air samples exceeded the TV in both the March 2021 and January 2022 sampling event. However, a background source was identified after the March 2021 event. The levels detected in soil vapor beneath the building in January 2022 were well below the MassDEP soil vapor screening values, indicating that vapor intrusion into the building resulting in concentrations of concern is not likely. However, TCE concentrations in indoor air increased from March 2021 to January 2022. This limited increase occurred despite lower levels of target VOCs beneath the building and the removal of known products in the building that were found to contain target VOCs (see above). This suggests that there could still be unidentified background sources within the building. Additionally, the levels of some VOCs in indoor air during the January 2022 sampling were higher than in soil vapor. It would be expected that if the source of VOCs were from groundwater, then the highest VOC levels would be measured beneath the building rather than in indoor air. Additional evaluation of potential background sources and sampling is warranted at 39 Tozer Road. Varian has attempted to be granted access to the building for that purpose; however, access has not yet been granted.

The following text table summarizes results and conclusions for 30, 31 and 39 Tozer Road. Complete laboratory analytical reports are provided in **Appendix D**.

Property	Soil Vapor Results Exceeded Screening Values? (1)	Indoor Air Results Exceeded Threshold Value? (1)	Background Source Identified?	Conclusion & Recommendations
30 Tozer Road	Yes, TCE during two events	No, during two events (2)	No	Not a significant pathway, monitor groundwater
31 Tozer Road	Yes, PCE during two events	No, during two events	No	Not a significant pathway, monitor groundwater
39 Tozer Road	Yes in the first event, no in the second event	Yes	Yes (3)	No Significant risk, data inconclusive, sample soil vapor and indoor air if access obtained

Notes:

- (1) MassDEP, 2016.
- (2) Below TVs in December 2020 MassDEP sampling (MassDEP, 2020) and owner sampling in March 2021.
- (3) Background source identified in one event.

3.3.2 Groundwater Sampling (February and May 2022)

Two site-wide groundwater sampling events have been conducted at the Site since the last status report. This included sampling rounds conducted in February (winter) and May (spring) 2022. The winter sampling event included quarterly sampling focused on monitoring the reductive dechlorination progress associated with bioremediation activities in the Building 3 and Building 5 areas and at selected downgradient locations to monitor VOC concentration trends. The spring 2022 sampling event was an annual sampling event to monitor VOC trends and groundwater conditions at numerous wells across and downgradient the Site. In August 2022, additional samples were collected from newly installed wells and are included in this discussion. The February and May sampling events also included sampling of select stream surface water locations. Sampling locations are shown on **Figure 1-2**. A summary of samples collected during these monitoring events and the sampling rationale are provided in **Tables 3-4**, **3-5**, and **3-6**.

Groundwater gauging at select wells for depth-to-groundwater and total-well-depth measurements, as well as for the potential presence of DNAPL in wells with historically elevated VOC concentrations, was performed in February and May 2022, prior to the passive diffusion bag (PDB) samplers being deployed or sample collection. The electronic interface probe used during these monitoring activities did not detect DNAPL at monitoring wells gauged during this reporting period. Water level monitoring data are summarized in **Table 3-7**.

Groundwater and surface water samples collected in the winter and spring 2022 events were submitted to Absolute Resource Associates (ARA) located in Portsmouth, New Hampshire. Laboratory analysis of samples included site-specific VOCs by EPA Method 8260 and additional analysis outlined in **Tables 3-4**,

3-5, and **3-6**. Additionally, groundwater samples collected from select bioremediation wells were submitted for analysis of *Dehalococcoides* (DHC) bacteria at Microbial Insights in Knoxville, Tennessee, as noted in **Table 3-6**.

Groundwater VOC sampling of monitoring and application wells during this reporting period utilized PDB samplers, except for the stream monitoring points and certain wells where alternative sampling methods were used, as discussed below. For wells sampled utilizing the PDB method, the sampling apparatus was deployed in each groundwater monitoring well for a minimum 2-week equilibration period, after which the samples were collected. Select wells were sampled using a low flow method either due to their construction (e.g., angled) or because they were screened in the shallow overburden and used to assess potential indoor air vapor intrusion. At each well sampled using the low flow sampling method, dedicated polyethylene tubing was installed in the well for sampling. Each well was pumped with a surface-mounted peristaltic pump, and recovered groundwater was monitored for field parameters using a YSI 6920 multimeter equipped with a flow-through cell. Parameters monitored included temperature, dissolved oxygen, pH, specific conductance, oxidation-reduction potential, and turbidity. A sample was collected once these parameters stabilized. Bedrock zone wells were pumped from the specific screened zone depth using dedicated tubing and a peristaltic pump.

VOC analytical results from the winter and spring 2022 sampling events are summarized in **Table 3-8**. Results of bioremediation parameter analyses (i.e., methane, ethane, ethene, and DHC) are summarized in **Tables 3-9** and **3-10**. Results of surface water samples are included in **Table 3-11**. Results for TCE, PCE, and *cis*-1,2-DCE detected in samples collected in spring 2022 from shallow, deep overburden, and bedrock groundwater wells are illustrated on **Figures 3-3**, **3-4**, and **3-5**, respectively. Complete laboratory analytical reports for samples collected in winter and spring 2022 are provided in **Appendix E**. Results of these sampling events are discussed in the nature and extent section of this report (Section 6.0).

3.3.3 P21 Well Installation and Sampling (April to March 2022)

On February 28 and March 1, 2022, APTIM supervised the installation of a deep overburden well and a bedrock well adjacent to existing well P-21, located at the corner of Longview Drive and Longview Terrace. These two wells were installed to assess potential VOC impacts in the area. Deep overburden well P21-DO was installed to a depth of 17 feet below grade where bedrock was encountered. Well P21-BR was installed to a depth of 66 feet below grade. Both wells were installed by Geosearch Environmental Drilling of Sterling, Massachusetts using a hollow-stem auger drilling technique in the overburden and air rotary drilling in bedrock. The well locations are illustrated on **Figure 1-2**.

During drilling, soil samples were collected at approximately five-foot depth intervals for soil logging purposes and to conduct headspace VOC screening with a photoionization detector (PID). Headspace screening results only indicated low levels of VOCs; the highest concentration detected was 0.2 parts per million (ppm). Based on the low levels during soil screening, no soil samples were submitted for laboratory analysis.

Overburden soils encountered at both well locations consisted of sand with varying amounts of gravel. The deep overburden well P21-DO was constructed of five feet of 2-inch diameter polyvinyl chloride

(PVC) well screen (10-slot) set just above bedrock and an appropriate amount of PVC riser to complete the well just below the ground surface. A one-to-two-foot bentonite seal was set above the sand pack, which was installed in the annular space around the well screen from 10 to 17 feet below grade (2 feet above the screen depth). The remaining annulus was sealed with grout then backfilled with clean, native soil. At bedrock well P21-BR, a 4-inch diameter steel casing was advanced at least ten feet into competent bedrock and grouted in place. An air hammer was then used to install an open borehole well beneath the sealed casing. Once installed, both wells were developed to remove fine-grained sand or silt and improve the hydraulic connection with the surrounding aquifer. Soil descriptions, headspace screening results, and well construction details are summarized in the drilling logs provided in **Appendix B**.

Groundwater samples were collected from shallow well P-21, deep overburden well P21-DO, and bedrock well P21-BR in March and May 2022. On March 7, 2022, groundwater samples were collected from the three wells using a low flow sampling method. In May 2022, samples collected at P-21 were also obtained using the low flow method. Samples collected in May 2022 at wells P21-DO and P21-BR were obtained using PDBs. A PDB was deployed in each groundwater monitoring well for a minimum 2-week equilibration period, after which the samples were collected. Groundwater samples collected were submitted to ARA for laboratory analysis of VOCs by EPA Method 8260.

Prior to sample collection, each well was gauged. Groundwater elevations are provided in **Table 3-7**. Site data from the Former Varian Facility Site indicates groundwater flow in the area of the P-21 triplet is southerly with a very flat gradient. Groundwater elevations in **Table 3-7** indicate that in March 2022, there was a downward vertical gradient from deep overburden into the bedrock (with a hydraulic head difference of 2 feet) in the area of the P-21 well triplet. However, in May 2022, there was a slight upward vertical flow potential between the bedrock and deep overburden in this area (with only 0.3 feet hydraulic head difference)

VOC results of groundwater sampling are summarized in **Table 3-8** and are discussed below.

Results of samples collected in March 2022 indicated the following:

- All target VOC were non-detect at shallow well P-21.
- TCE and cis-1,2-DCE were detected at well P21-DO at concentrations of 0.003 mg/L and 0.002 mg/L, respectively.
- Acetone and cis-1,2-DCE were detected at P21-BR at concentrations of 0.014 mg/L and 0.14 mg/L, respectively.

Results of samples collected in May 2022 indicated the following:

- TCE and cis-1,2-DCE were detected at well P-21 at concentrations of 0.002 mg/L and 0.003 mg/L, respectively.
- TCE and cis-1,2-DCE were detected at well P21-DO, both at a concentration of 0.002 mg/L, respectively.
- cis-1,2-DCE was detected at P21-BR at concentrations of 0.16 mg/L.
- · Acetone was not detected.

Laboratory analytical reports for the March, May, and August 2022 groundwater sampling are provided in **Appendix E**.

3.3.4 Building 5 Bedrock Well Installation (March 2022)

Between March 29 and April 14, 2022, three new bedrock wells were installed in the Building 5 area. These included an angled bedrock well beneath Building 5 (OB53-BR), one bedrock well to the northwest of Building 5 (OB54-BR), and one bedrock well downgradient at 30 Tozer Road (OB42-BR). The wells were installed by Cascade Environmental from Gardner, Massachusetts, under the direct supervision of APTIM. The three wells are illustrated on **Figure 1-2**. Drilling was completed using a mini-sonic drilling rig. During drilling in the overburden, soil samples were collected at approximately five-foot depth intervals for logging purposes and to conduct headspace VOC screening with a PID. Headspace screening results indicated VOC concentrations up to 2,000 ppm at well OB53-BR at approximately 48 feet below the building. Headspace screening results indicated VOC concentrations of up to 44 ppm at OB54-BR at approximately 43 feet below grade and up to 44 ppm at OB42-BR at approximately 17 feet below grade. Soil descriptions and headspace screening results are summarized in the drilling logs provided in **Appendix B**.

Once bedrock was encountered at each well, drilling continued 10 feet into competent bedrock. Then a 7-inch casing was installed over the drive casing into bedrock. A 15-minute falling head test was conducted to confirm the efficacy of the seal between the casing and the bedrock. Drilling then continued into bedrock. At OB53-BR, drilling advanced to a depth of approximately 105 feet below the building. At OB54-BR, drilling advanced to approximately 92 feet below grade and at OB42-BR, drilling advanced to approximately 80 feet below grade. Once the final depth was achieved, a 2-inch diameter PVC well with 15 feet of the screen and a sand pack was installed at each location. A 2-foot bentonite seal was installed from the top of the sand pack, and the remaining annulus was sealed with grout to the surface. Once the bentonite seal was installed, all the casing was extracted. Following installation, the well was developed to remove fine-grained sand and silt from bedrock fractures and improve the hydraulic connection with the surrounding aquifer.

Three soil samples were collected from OB53-BR, one soil sample was obtained from OB54-BR, and two samples were collected from OB42-BR. Samples were submitted for laboratory analysis of VOCs at ARA by EPA Method 8260. Methanol field extraction was used for the preservation of each sample. Analytical results of these soil samples are included in **Table 3-12**. Analytical results of soil samples indicated:

- At OB53-BR, TCE was non-detect at approximately 19 feet below the building, was detected at a
 concentration of 35 milligrams per kilogram (mg/kg) at 42 feet below the building and was
 non-detect at 64 feet below the building. PCE was detected at 11 mg/kg at both 19 feet and
 42 feet below the building but was non-detect at 64 feet below the building. Bedrock was
 encountered approximately 75 feet below the building.
- At OB54-BR, TCE was detected at 0.79 mg/kg and PCE was detected at 0.46 mg/kg at approximately 42 feet below grade.
- All VOCs were non-detect in soil samples collected at approximately 27 and 47 feet below grade at OB42-BR.

Complete laboratory analytical reports are provided in **Appendix F**.

3.3.5 OB45-BR Bedrock Logging (March 2022)

On March 30, 2022, Hager GeoScience, Inc. (HGI) from Woburn, Massachusetts, performed geophysical logging of the open borehole well OB-45-BR, located northwest of Building 5. The objective of the logging was to characterize bedrock fractures and identify potential flow pathways. The borehole was approximately 96 feet deep and 4-inches in diameter. Bedrock was encountered during drilling at approximately 45 feet below ground surface (bgs), for well completion, a 4-inch diameter steel casing was installed to approximately 60 feet bgs with an open bedrock borehole to 96 feet bgs. Details of the data acquisition, logging, and data processing that were completed by HGI are provided in their report in **Appendix G**. The following is a brief summary of their findings.

As expected, based on prior bedrock evaluation at the Site, bedrock at OB-45-BR was composed of medium-grained Cape Ann granite. Observation in the caliper and image logs did not indicate open fractures from 60 feet to 96 feet bgs. However, many tight fractures were identified throughout the borehole. A contact appears at 90.5 feet between a darker rock material above and lighter below; however, it does not appear that there is any significant change in mineral composition.

The predominant dip direction of the identified rock fabric is to the west, with the dip orientations of fractures less uniform. Within the small clusters of varying dip directions, one dominant cluster appears to be dipping to the north.

Ambient flow rates were obtained at ten depth intervals, which were determined based on the field observations of the imaging and caliper logs. The heat pulse flow meter tool was then lowered into the hole for a stress test, which included pumping water out of the well at an average rate of approximately 0.10 gallons per minute (gpm). Stress test data show minimal water level drop and no-flow readings at the same intervals. This indicates that any inflow from the identified fractures is either below the lower limit of the probe (0.01 gpm) or non-existent.

The results of this borehole logging, including ambient flow rates and heat pulse flow meter testing, indicate that there are limited water bearing fractures in bedrock at well OB-45-BR. The logging also did not reveal the presence of sub-horizontal fractures, which have been seen in the granite in other areas of the Site.

HGI attempted to log a second borehole, OB-53-BR, on April 6, 2022. This angled borehole was drilled at a 50° angle, traveling beneath the building. However, silt and drilling mud at the well blocked the probes from properly imaging and reaching the bottom of the well. Since the angled installation of this well necessitated the installation of a PVC well to keep the bedrock bore open, logging was not completed following the installation and development of the well.

3.3.6 Building 3 Indoor air and Soil Vapor Sampling (March and June 2022)

As discussed in the January 2022 ROS Report, Varian deactivated the Building 3 SVE system. Multiple rounds of indoor air sampling indicated TCE indoor air concentrations below not only the MassDEP long-term remediation target but also the commercial/industrial TV. Additionally, the indoor air PCE results were below the commercial/industrial TVs. Based on these results, the Building 3 SVE system was

deactivated on January 13, 2022. Quarterly indoor air sampling was conducted to monitor for a potential rebound in the TCE and PCE levels in indoor air and assess long-term static conditions following treatment beneath the building.

On March 9 and June 7, 2022, indoor air samples were collected from the Building 2 basement and in Building 3. These locations included BLDG2-6 (Building 2 Basement), BLDG3-1 Chem Lab), BDLG3-2 (Bench Testing Room), BLDG3-3 (MID Stock Room), BLDG3-5 (Building 3 Basement Boiler Room) and BLDG6-2 (Building 6). The indoor air samples were collected using evacuated Summa® canisters over an 8-hour sampling interval. During sampling, the supplemental air exchange units installed within Building 3 as part of the IRA remained operational, as did the Building 3 chemical laboratory ventilation system. The indoor air sampling locations are illustrated on Figure 3-1. The indoor air samples collected were submitted to Alpha Laboratory for analysis of select VOCs by EPA Method TO-15. Results of indoor air samples collected in March 2022 continued to show concentrations of TCE and PCE in indoor air below the TVs. However, results of indoor air from June 2022 did indicate concentrations of TCE and PCE at BLDG3-3 that exceeded the TVs. As a result, the Building 3 SVE system was reactivated on June 22, 2022. Analytical results of the indoor air samples are summarized in Table 3-13. As documented in prior reports, both acetone and trans-1,2-DCE are currently used in the manufacturing activities at the facility, and thus, their presence in indoor air is most likely related to contributions from these background sources. Complete copies of the laboratory analytical reports are provided in Appendix H.

Sub-slab soil vapor samples were collected in March and June 2022. Sub-slab soil vapor samples were collected from five vapor points, one in the basement of Building 2 (BLDG2-SV1) and four beneath Building 3 (BLDG3-VP1, BLDG3-VP2, BLDG3-VP3, and BLDG3-VP7). The sub-slab soil vapor sampling points locations are illustrated on **Figure 3-1**. Each sample was collected using evacuated Summa® canisters over a four-hour sampling interval. The soil vapor samples collected were submitted to Alpha Laboratory for analysis of select VOCs by EPA Method TO-15. Following sample collection, the SVE system was reactivated. Analytical results of the sub-slab soil vapor samples are summarized in **Table 3-14**. Complete copies of the laboratory analytical reports are provided in **Appendix H**.

3.3.7 Building 3 Electrical Resistivity Imaging Study (April 2022)

Between April 18 and 26, 2022, an electrical resistivity imaging (ERI) study was conducted in the area of Buildings 1, 2, 3, 4, and 6 (Building 3 Area) at the facility. The study was conducted to assess vertical and horizontal extent and distribution of subsurface VOCs beneath and around the buildings. The study was conducted by Aestus, LLC, from Loveland, Colorado. This assessment method is based on conventional ERI techniques. However, modern data acquisition and processing provide higher data quality and a more robust and accurate subsurface image. A copy of the Aestus, LLC 2022 final report is included as **Appendix I**.

A total of six ERI lines, identified as VAR-01 through VAR-06, were implemented at the Site by installing a series of small diameter probes approximately 12 inches below grade. Probe spacing ranged from approximately 5 to 10 feet. Four lines were run through the building complex and two were run on the outside of the buildings. The location of each line is illustrated on Figure 1 in **Appendix I**. The length of

the lines ranged from 271 feet (VAR-04) to 541 feet (VAR-05 and 06). The depth of imagery is proportional to the length of the lines. In this study, the imagery depth ranged from 54 feet below grade at VAR-04 to 108 feet below grade at VAR-05 and 06.

Data collected during the study was used to generate resistivity cross sections (Figures 2 through 7 in **Appendix I**. Areas with a high resistivity (>1,000 ohm-meter (m)) can indicate locations with potential for high VOC concentrations. However, some subsurface lithology, such as very dense soil, boulders, or bedrock can also result in high resistivity. Areas with low resistivity (i.e., high conductivity) can be observed in subsurface areas where biologic activity is occurring, such as bioremediation. Additionally, areas of permanganate treatment can also result in high conductivity.

The results of the ERI study indicate the following.

- Line VAR-01 was completed running southwest to northeast through Buildings 1 and 3. This line passes through areas beneath Building 3 where prior soil and groundwater sampling indicated locations with elevated VOC impacts. For example, TCE and PCE concentrations of 28 mg/kg and 260 mg/kg, respectively, in soil samples from OB50-S in 2019. OB50-S is located adjacent to the northeast corner of Building 3. The TCE concentration in groundwater at AP31-DO, located beneath the Building 3 chem lab, was 270 mg/L in November 2021. Areas of high resistivity are indicated on Figure 2 of Appendix I, beneath Building 3 that correspond to the known areas of VOC impact. The ERI data indicates that these VOC impacts do not extend into bedrock. In addition, there is an area indicating high conductivity near where Line VAR-03 intersects with VAR-01. That location is an area where bioremediation has been conducted. This area of high conductivity suggests that biological activity associated with the bioremediation program is occurring.
- Line VAR-02 was completed running southwest to northeast through Buildings 2 and 3. This line included areas in the Building 2 and Building 3 basements. High resistivity is observed beneath Building 3 (Figure 3, **Appendix I**). This data indicates that VOC impacts noted in the north and central area of Building 3 extend to the south and partially beneath Building 6. An additional area of high resistivity is observed beneath Building 2. This area does not correspond with a known source area of VOC impacts and requires additional assessment (drilling) to evaluate the potential presence of VOC impacts. That confirmation drilling is discussed in Section 3.3.8.
- Line VAR-03 was completed running northwest to southeast through Buildings 1 and 2. This line runs just to the west of the Building 2 basement and intersects with VAR-01 and VAR-02. High resistivity is observed beneath Building 1 (Figure 4, **Appendix I**). However, the level of resistivity is lower than noted beneath Building 3. While these data suggests that VOC impacts noted beneath Building 3 extend to the west and partially beneath Building 1, the ERI data indicate that level of impact is not as high as beneath Building 3. Like the results from line VAR-02, an area of highly resistive soil was observed beneath Building 2. Further assessment of this area of high resistive soil is discussed in Section 3.3.9. To the south of Building 2, just to the west of Building 4, an area of highly resistive soil was observed from a depth of approximately 10 feet,

- extending to approximately 30 feet below grade. There is no available data in this area, and therefore, additional assessment was required to evaluate the potential presence of VOC impacts. That confirmation drilling is discussed in Section 3.3.9.
- Line VAR-04 was completed running northwest to southeast through Buildings 3 and 6. This line intersects with VAR-01 and VAR-02 and passes through areas beneath Building 3 where prior soil and groundwater sampling indicated locations with elevated VOC impacts. High resistivity is observed beneath Building 3 (Figure 5, Appendix I). This area extends from the north side of Building 3 at the location of a former chem lab discharge line, down and to the south. Soil and groundwater data from the area of the chem lab discharge line has shown elevated levels of VOCs. For example, PCE was detected at up to 44 mg/L at OB50-S near the former discharge line. Deeper beneath Building 3, TCE was detected at up to 230 mg/L at AP43-DO prior to treatment. The ERI data does indicate that the area of the highest resistivity is bounded vertically at the bedrock contact. This also indicates that elevated VOC impacts are bounded at the bedrock contact. An area of conductive soil is observed at the southern end of VAR-04, beneath Building 6. That area corresponds to a location where significate permanganate treatment was conducted at horizontal wells beneath Building 6. The ERI data indicates the widespread distribution of permanganate treatment beneath Building 6.
- Line VAR-05 was completed running northwest to southeast, to the west of Buildings 1 and 2. Line VAR-05 intersects with lines VAR-01 and VAR-02. Line VAR-05 indicated an area with moderate resistivity between approximately 20 and 40 feet below grade west of Building 2 (Figure 6, Appendix I). There are no available data in this area, and therefore required additional assessment to evaluate the potential presence of VOC impacts. That confirmation drilling is discussed in Section 3.3.9. An area of conductive soil is observed at the north end of line VAR-05, which may correspond to natural biologic activity.
- Line VAR-06 was completed running west to east, north of the building complex. This line indicated an area with elevated resistivity between 10 and 30 feet north of Building 3 (Figure 7, Appendix I). This area roughly corresponds to the area of existing monitoring wells OB12-S/DO/BR, which is located closer to Building 3. Data from that well triplet do indicate VOC impact in the deep overburden at OB12-DO (e.g., TCE was 13 mg/L in August 2022). However, groundwater data in bedrock at OB12-BR do not suggest a significant impact of VOCs (e.g., TCE was non-detect in August 2022). The high resistivity returns in bedrock near OB12-BR are likely an indication of dense bedrock and not VOC impact. There is also an area of very conducting returns in both the overburden and bedrock immediately west of the OB12 triplet. This area may indicate active biological activity. Confirmation drilling was conducted in this area to confirm that conclusion. Another area of high resistivity in bedrock was observed in the western end of VAR-06. That area roughly corresponds to the existing well triplet OB11-S/DO/BR. VOC levels at each level in OB11 have consistently been low. For example, TCE was 0.007 mg/L at OB11-BR and 0.07 mg/L at OB11-DO in August 2022.

The results of the ERI study completed in Building 3 Area provide a clearer picture of the extent of elevated VOCs beneath Building 3. The data also did not indicate areas of highly resistive soil in the locations of PSL-3, -4, and -12. This confirms the 2000 Phase II CSA conclusions that these PSLs were not sources of VOC releases to the environment. The results of the confirmation drilling discussed in the following sections provide a further refinement of the ERI study results.

3.3.8 Building 2 Angled Well Installation (July 2022)

Based on the results of the ERI study, one deep angled well was installed in the overburden beneath Building 2. The well was installed to collect assessment data beneath Building 2 and evaluate the potential presence of VOC indicated by an area of elevated resistivity indicated in line VAR-02. Drilling was completed from July 18 through 22, 2022, by Directional Technologies of Wallingford, Connecticut, under the direct supervision of APTIM. Angled well OB57-DO was drilled approximately 143 linear feet from the entry location and was installed with the screened interval roughly 54 to 64 feet below the building floor. The well was installed using a single-entry, mud-rotary directional drilling rig. A copolymer mud specifically designed for directional drilling was used to help stabilize the borehole and aid in well development. The location and the direction of this angled well are shown on **Figure 3-6**.

During soil boring advancement, soil samples were collected for logging purposes and to conduct headspace VOC screening with a PID. Headspace screening results indicated VOC concentrations ranging were non-detect from approximately 34 to 40 feet below the building (see the as-built well diagram in **Appendix B**). Headspace screening indicated detectable levels of VOC from approximately 47 feet beneath the building (roughly 95 linear feet) to a high of 309 ppm at 60 feet below the building (about 130 linear feet). Soil descriptions and headspace screening results are summarized in the drilling logs provided in **Appendix B**. Soil encountered during drilling consisted of dense, silty sand, and gravel (glacial till). A higher percentage of clay was noted in the till just above bedrock.

During drilling, four soil samples were collected from OB57-DO based on elevated soil headspace screening results, observation of soil samples, and the location of resistive soil in the ERI study. These soil samples were submitted to ARA for analysis of VOCs by EPA Method 8260. Methanol field extraction was used for the preservation of each sample. Soil analytical results are summarized in **Table 3-12**, and a complete laboratory analytical report is provided in **Appendix F**.

Soil sampling results from OB57-DO from July 2022 indicated the following:

- TCE was detected at concentrations ranging from 18 mg/kg at 61 feet below the building to 130 mg/kg at 56 feet below the building.
- PCE was detected at concentrations ranging from 2.8 mg/kg at 61 feet below the building to 33 mg/kg at 56 feet below the building.

Following well installation, the well was developed using a pump and surge technique to remove silt and improve the hydraulic connection with the surrounding aquifer.

On August 9, 2022, groundwater samples were collected by low flow method from OB57-DO and submitted for laboratory analysis for VOCs by EPA Method 8260. Analytical results are included in

Table 3-8. A complete laboratory analytical report is provided in **Appendix E**. The August 2022 groundwater sample from OB57-DO indicated a TCE concentration of 0.380 mg/L and a PCE concentration of 0.062 mg/L.

Concentrations of TCE (up to 130 mg/kg) and PCE (up to 33 mg/kg) are present in soil beneath Building 2. However, these concentrations are lower than have been observed in the source area beneath Building 3 where TCE concentrations up to 450 mg/kg and PCE concentrations up to 1,200 mg/kg have been detected. Soil analytical results are summarized in **Table 3-12**. The TCE and PCE concentrations in groundwater beneath Building 2 are significantly lower than what has been recently detected beneath Building 3. For example, TCE over the past few sample rounds has been detected at concentrations up to 4.7 mg/L (AP30R-DO) and 270 mg/L (AP31-DO) in the deep overburden beneath Building 3 compared to 0.38 mg/L at OB57-DO. The TCE level detected at OB57-DO is comparable to the two wells just downgradient of Building 2 in May 2022 (0.24 mg/L at OB19-DO and 0.16 mg/L at OB26-DO), indicating that there likely is no additional source of VOCs beneath Building 2. While there are impacts present, these impacts appear to be related to the migration of VOCs from the upgradient Building 3 area rather than a source at Building 2, given the lower VOC concentrations beneath Building 2 relative to those beneath Building 3. The high soil resistivity in this area may be the result of the combination of dense glacial till with moderate VOC impacts.

3.3.9 Building 2 and 3 Vertical Well Installation (July 2022)

Based on the results of the ERI study, three vertical wells were installed in the area of Buildings 2 and 3 to evaluate the potential presence of VOC indicated by high resistivity reading in soil. Well OB55-BR was installed to the north of Building 3 along Route 128. Well OB58-DO was installed to the southwest of Building 2 and well OB59-DO was installed on the west side of Building 4 near Building 2. The drilling was completed from July 25 through 29, 2022, by Drilex Environmental of Auburn, Massachusetts, under the direct supervision of APTIM. Installation was conducted using hollow-stem auger drilling in the overburden and air rotary drilling in bedrock. The well locations are illustrated on **Figure 1-2**.

During drilling, soil samples were collected at approximately five-foot depth intervals for logging purposes and to conduct headspace VOC screening with a PID. Headspace screening results indicated the following:

- At well OB55-BR, VOC concentrations ranged from non-detect to 12.4 ppm at a depth of approximately 46 feet below grade.
- At well OB58-DO, VOC concentrations ranged from non-detect to 0.6 ppm at depths of approximately 32 and 52 feet below grade.
- At well OB59-DO, VOC concentrations ranged from 0.2 ppm to 1.6 ppm at a depth of approximately 38 feet below grade.

Overburden soils encountered at OB55-BR consisted of dense, silty sand and gravel (glacial till). A layer with primarily clay was noted at between approximately 28 and 34 feet and 48 to 55 feet below grade. Bedrock was encountered at approximately 61 feet below grade at OB55-BR. At OB58-DO, overburden soils consisted of a silty sand and gravel (glacial till). A medium to coarse sand layer was noted at approximately 35 feet below grade. Suspected bedrock was encountered at approximately 56 feet below

grade at OB58-DO. At OB59-DO, overburden soils consisted of dense, silty sand and gravel (glacial till). Suspected bedrock was encountered at approximately 53 feet below grade at OB59-DO. The two deep overburden wells were constructed of 10 feet of two-inch diameter PVC well screen (10-slot) set just above bedrock and an appropriate amount of PVC riser to complete the well just below the ground surface. A one-to-two-foot bentonite seal was set above the sand pack. The remaining annulus was sealed with grout. At bedrock well OB55-BR, an air hammer was used to advance through bedrock to approximately 85 feet below grade. Once the final depth was achieved, a 2-inch diameter PVC well with 10 feet of screen and a sand pack was installed at the bottom of the borehole. A one to two-foot bentonite seal was installed from the top of the sand pack, and the remaining annulus was sealed with grout to the surface. Following installation, each well was developed to remove fine-grained sand or silt and improve the hydraulic connection with the surrounding aquifer. Soil descriptions, headspace screening results, and well construction details are summarized in the drilling logs provided in **Appendix B**.

During drilling, two soil samples were collected from each well, OB55-BR, OB58-DO, and OB59-DO. Sample collection was based on soil headspace screening results, observation of soil samples, and the depth of resistive soil in the ERI study. Soil samples were submitted to ARA for analysis of VOCs by EPA Method 8260. Methanol field extraction was used for the preservation of each sample. Soil analytical results are summarized in **Table 3-12** and a complete laboratory analytical report is provided in **Appendix F**. Soil sampling results indicated the following:

- TCE and PCE were detected at 0.97 mg/kg and 0.43 mg/kg, respectively, in a sample collected at approximately 30 feet below grade at OB55-BR. The soil sample collected at approximately 59 feet at OB55-BR did not indicate VOCs above detection limits.
- The soil samples collected at approximately 35 and 55 feet below grade at OB58-BR did not indicate VOCs above detection limits.
- TCE was detected at 0.36 mg/kg in a sample collected at approximately 24 feet below grade at OB59-DO. The soil sample collected at approximately 51 feet at OB59-DO did not indicate VOCs above detection limits.

On August 9 and 10, 2022, groundwater samples were collected by low flow method from wells OB55-BR, OB58-DO, and OB59-DO. The laboratory analysis included VOCs by EPA Method 8260. Analytical results are included in **Table 3-8**. A complete laboratory analytical report is provided in **Appendix E**. Analytical results of these samples indicate the following:

- TCE, PCE, and cis-1,2-DCE were detected at concentrations of 0.047 mg/L, 0.003 mg/L, and 0.031 mg/L, respectively at OB55-BR.
- All VOCs were non-detect at deep overburden well OB58-DO
- TCE and cis-1,2-DCE were detected at concentrations of 0.005 mg/L and 0.017 mg/L, respectively at OB59-DO.

Well OB55-BR was installed to assess the high conductivity indicated in ERI line VAR-06 area near well triplet OB12. Based on soil and groundwater analytical results, this area does not appear to be significantly impacted by VOCs in the overburden or bedrock. TCE and PCE were present at 30 feet below grade but at concentrations well below what is observed in the Building 3 Source Area. However, VOCs in soil were non-detect just above bedrock. The presence of *cis*-1,2-DCE in bedrock groundwater at OB55-BR indicates biodegradation of VOCs. The relatively low levels of VOCs in this area suggest that

if the area of high conductivity revealed by the ERI study is the result of biologic activity, dechlorination of VOCs is likely not the main biologic activity that is occurring.

Well OB58-DO was installed to assess the high resistivity area indicated in ERI line VAR-05 to the southwest. The depth of the high resistive returns was observed from approximately 10 to 30 feet below grade at the location where OB58-DO was installed. Screening of soil samples at that depth did not indicate VOC impacts. Soil and groundwater samples collected from OB58-DO did not indicate detectable levels of TCE, PCE, *cis*-1,2-DCE, or 1,1,1-TCA. This indicates that the high resistivity in this area is not the result of VOC impacts. The high resistivity reading may be the result of dense glacial till and/or boulders in the area.

Well OB59-DO was installed to assess the high resistivity area indicated in ERI line VAR-03 south of Building 2. The depth of the high resistive returns was approximately 10 to 30 feet below grade at the location where OB59-DO was installed. Screening of soil samples at that depth did not indicate significant VOC impacts. A low level of TCE was detected in a soil sample at this location at the depth where elevated resistivity was observed. However, the concentration detected, 0.36 mg/kg, is well below the levels noted in the Building 3 Source Area. PCE in groundwater at OB59-DO was non-detect, and TCE was only present at 0.005 mg/L. Analytical data from this well indicate that the high resistivity in this area is not the result of VOC impacts. The high resistivity reading may be due to dense glacial till and/or boulders in the area.

Based on the results of the ERI study and the confirmation drilling, an estimated treatment area has been developed using soil resistivity measurements greater than 1,000 ohm-m. The estimated Building 3 treatment area is shown on **Figure 3-7**.

3.3.10 Building 5 Shallow Well Installation (August 2022)

As discussed in the January 2022 ROS Report, results of soil vapor sampling inside of Building 5 indicated shallow VOC impacts near soil vapor points BLDG5-SV8 and BLDG5-SV9 (**Figure 3-2**). This area is located upgradient of the shallow bioremediation area beneath Building 5 and is likely contributing to potential VOC migration into indoor air at Building 5. To further assess this area, shallow monitoring well OB60-S was installed inside Building 5 on August 13, 2022. The drilling was completed by Geosearch Environmental Drilling of Sterling, Massachusetts, under the direct supervision of APTIM. Installation was conducted using a low-profile, skid-mounted, hollow-stem auger drilling rig. The well location is illustrated on **Figure 3-2**.

During drilling, soil samples were collected at approximate five-foot depth intervals for logging purposes and to conduct headspace VOC screening with a PID. Headspace screening results indicated VOC concentrations ranging from 29 ppm at seven feet below the floor to 261 ppm at a depth of 17 feet below the building floor. Auger refusal was encountered at 17 feet.

Overburden soils encountered at OB60-S consisted of dense, silty sand and gravel (glacial till). The till material from 12 feet to the bottom of exploration had a higher silt content. The well was constructed of 10 feet of two-inch diameter PVC well screen (10-slot) set at 17 feet and an appropriate amount of PVC riser

to complete the well just below the ground surface. A one-to-two-foot bentonite seal was set above the sand pack and the remaining annulus was backfilled with clean native soil. Following installation, the well was developed to remove fine-grained sand or silt and improve the hydraulic connection with the surrounding aquifer. Soil descriptions, headspace screening results, and well construction details are summarized on the drilling log provided in **Appendix B**.

During drilling, two soil samples were collected from OB60-S based on soil headspace screening results. Soil samples were submitted to ARA for analysis of VOCs by EPA Method 8260. Methanol field extraction was used for the preservation of each sample. Soil analytical results are summarized in **Table 3-12**, and a complete laboratory analytical report is provided in **Appendix F**. Soil sampling results indicated the following:

- PCE and cis-1,2-DCE were detected at concentrations of 0.58 mg/kg and 0.091 mg/kg, respectively in a sample collected at approximately 7 feet below the building.
- TCE, PCE, and cis-1,2-DCE were detected at concentrations of 1.4 mg/kg, 13 mg/kg, and
 0.13 mg/kg, respectively, in the sample collected at approximately 16 feet below the building.

On August 16, 2022, a groundwater sample was collected by the low flow method from well OB60-S. Laboratory analysis included VOCs by EPA Method 8260. Analytical results are included in **Table 3-8**. A complete laboratory analytical report is provided in **Appendix E**. Analytical results of the groundwater sample from OB60-S indicate the following:

- TCE and PCE were detected at concentrations of 20 mg/L and 47 mg/L, respectively.
- Cis-1,2-DCE, VC, and 1,1-DCE were detected at concentrations of 23 mg/L, 1.0 mg/L, and 0.4 mg/L, respectively.

Results of the groundwater sample from well OB60-S indicate an area of VOC impact that warrants additional treatment to mitigate the potential impact to indoor air.

3.3.11 34 Longview Drive Activities (March, April, and July 2022)

APTIM conducted indoor air sampling at 34 Longview Drive in April and July 2022. In April 2022, samples were collected in the basement and first floor. In July 2022, samples were collected in the basement, on the first floor, and the unoccupied second floor. Samples were collected under normal living conditions at the same locations as previous sampling events. A Summa® canister fitted with a regulator calibrated to collect air over a 24-hour period was used to collect each sample. Canisters were placed at an elevated location to sample air at breathing height. Indoor air samples were analyzed for VOCs at Alpha Analytical by EPA Method TO-15 Selective Ion Monitoring (SIM). Laboratory quality control procedures were conducted in accordance with MassDEP CAM requirements.

Results of indoor air samples collected on April 22, 2022, at 34 Longview Drive indicated that TCE was detected at $0.779 \,\mu\text{g/m}^3$ in the basement sample and $0.344 \,\mu\text{g/m}^3$ in the first-floor sample. In April 2022, PCE was detected at $1.2 \,\mu\text{g/m}^3$ in the basement sample and $0.509 \,\mu\text{g/m}^3$ in the first-floor sample. Results of indoor air samples collected on July 14, 2022, at 34 Longview Drive indicated that TCE was detected at $0.801 \,\mu\text{g/m}^3$ in the basement sample. The TCE level was non-detect in both the first-floor and

second-floor samples. In July 2022, PCE was detected at 3.55 µg/m³ in the basement sample, 0.556 µg/m³ in the first-floor sample, and was non-detect in the second-floor sample. Indoor air results for VOCs associated with the Former Varian Facility Site from 34 Longview Drive are summarized in **Table 3-15**. As indicated in **Table 3-15**, the concentrations of TCE and PCE in the basement exceeded the Residential TVs during this monitoring period. It should be noted that the TVs are not exclusively risk-based limits. The TVs are guidance criteria developed by MassDEP to indicate levels in indoor air that may be above typical background, and which require additional evaluation. None of the additional VOCs potentially associated with the Varian Site were detected above their TVs in April and July 2022. The complete laboratory analytical reports from the April and July 2022 indoor air sampling are provided in **Appendix J**.

To evaluate a potential vapor migration pathway at 34 Longview Drive (**Figure 3-8**) consistent with MassDEP guidance, soil vapor samples were collected beneath the home (sub-slab) and tested. The approximate locations of soil vapor points, which were previously installed, and the basement indoor air sampling location at 34 Longview Drive are shown on **Figure 3-9**.

On April 22 and July 14, 2022, after sampling indoor air, soil vapor samples were collected beneath the 34 Longview Drive home. Each soil vapor sample point was connected to a Summa[®] canister, and a sample was collected over a two-hour period. Each sample was analyzed for VOCs by Alpha Analytical by EPA Method TO-15 SIM. Laboratory quality control procedures were conducted as detailed in the MassDEP CAM requirements.

Results of soil vapor samples collected on April 22, 2022, at 34 Longview Drive indicate TCE was detected at concentrations of 48.3 μ g/m³ and 4.37 μ g/m³. PCE was detected at concentrations of 4.46 μ g/m³ and 1.49 μ g/m³. The results of soil samples collected on July 14, 2022, at 34 Longview Drive indicate TCE concentrations were 68.3 μ g/m³ and 24.3 μ g/m³. PCE was detected at concentrations of 11 μ g/m³ and 16.6 μ g/m³. Select sub-slab soil vapor results are compared with MassDEP Residential Sub-Slab Soil Gas Screening Levels in **Table 3-16**. The TCE concentrations detected at location 34-LON-SV01 during both events exceeded the residential sub-slab soil gas screening level of 28 μ g/m³. All other results for VOCs associated with the Former Varian Facility Site were below the sub-slab screening values. It should be noted that the sub-slab screening levels are guidance criteria developed by MassDEP to be used in a lines of evidence evaluation and to indicate if additional assessment may be warranted. They are based on the TVs and a generic sub-slab soil gas to indoor air attenuation factor. Complete laboratory analytical reports are provided in **Appendix J**.

To assess potential preferential pathways for sub-slab vapor migration into the basement, soil vapor samples were collected at three locations on March 9, 2022. These included inside two sub-slab vaults that each contained sewer cleanouts and inside the basement sump. Both sewer cleanouts were capped during sampling. It should be noted that water has not been noted in the basement sump at this home during any of the sampling events completed. These grab vapor samples were collected over a 15-minute period using a Summa® canister. Each sample was submitted for laboratory analysis of VOCs at Alpha Analytical by EPA Method TO-15 SIM. Laboratory quality control procedures were conducted as detailed in the MassDEP CAM requirements.

Results of the soil vapor samples collected on March 22, 2022, are summarized in **Table 3-16** The data indicate:

- TCE was detected at concentrations ranging from 0.586 μg/m³ to 67.2 μg/m³ at the eastern sewer cleanout vault.
- PCE was detected at concentrations ranging from 1.48 μg/m³ to 14 μg/m³ at the eastern sewer cleanout vault.
- Cis-1,2-DCE was detected at concentrations ranging from 0.103 μg/m³ to 9.44 μg/m³ at the
 eastern sewer cleanout vault.

A vapor mitigation system will be installed in this home.

3.3.12 Irrigation Well Sampling (July 2022)

On July 14, 2022, a groundwater sample was collected from a shallow irrigation well located at 21 Shortmeadow Road. This property is located near the existing well triplet CL8-S/DO/BR. Groundwater sampling conducted at these wells since the 1990s has not indicated the presence of VOCs. Based upon discussion with the property owner, the shallow well is a well point that was installed to approximately 15 feet below grade and is only used for irrigation. A sample was collected from the shallow well using a low flow sampling method. The laboratory analysis included VOCs by EPA Method 8260. All VOCs were non-detect in the sample collected from the 21 Shortmeadow Road shallow irrigation well. A complete laboratory analytical report is provided in **Appendix K**.

4.0 SITE HYDROGEOLOGICAL CHARACTERISTICS [310 CMR 40.0385(4)(d)]

This section provides a description of the hydrogeological conditions of the Site. A summary of recent geologic investigation work conducted in 2022 is presented in Section 3.3.

4.1 General Characterization of Geologic and Hydrogeologic Conditions

The principal geological and hydrogeological characteristics of the Site were identified based upon the analysis and interpretation of the drilling, geophysical, and hydrogeological data generated throughout the 2000 Phase II investigations. Additional investigation activities conducted since 2000 have provided more details in some areas of the Site. However, those data have not substantially changed the Site geologic and hydrogeologic characteristics and geologic interpretations as described in the 2000 Phase II CSA. Those interpretations are generally described below.

The Site hydrogeology is characterized by the presence of two aquifers, the overburden and bedrock aquifers. The thickness of the overburden aquifer ranges from approximately 20 to 100 feet. The Site is typically underlain by till, sand and gravel, and silt and clay deposits. These soils generally increase in thickness from south to north and are characterized by six major lithological units: 1) till, 2) gravel, 3) medium to coarse sand, 4) fine sand, 5) silty sand/sandy silt, and 6) clay. The thickness, continuity, geographical distribution, and stratigraphic relations of these six lithological units are highly variable

throughout the Site since they were put in place in rapidly changing glacial, postglacial, and coastal depositional environments.

The depth to bedrock is highly variable throughout the Site as a result of the erosion and sedimentation episodes caused by a series of glacial advances and retreats over the last three million years as shown on a bedrock surface contour map (**Figure 4-1**). The bedrock topography map has been updated to reflect the results of the assessment completed since the completion of the 2000 Phase II CSA. The Site is underlain by two major rock units: a gabbro in the western half of the Site and a granite in the eastern half (U.S. Geological Survey [USGS], 1964). Groundwater flow in both bedrock units occurs almost exclusively through the secondary porosity represented by networks of joints, fractures, faults, and geologic contacts. Observations on the bedrock fracturing indicate that the sub-horizontal sheeting fractures in the granite represent the major groundwater flow pathway coupled with three groups of sub-vertical fractures trending N-S, ENE-WSW, and NNW-SSE and coincident with lineaments transecting the Site in like directions.

The groundwater from the upper and lower parts of the overburden aquifer and from the bedrock flows with the same general pattern: 1) westerly flow from the former Varian facility property, 2) northwesterly flow from the north side of Route 128, and 3) southerly flow along the valley of the Unnamed Stream and Stream A west of Tozer Road. An approximately east-west groundwater divide, located to the north of and parallel with Route 128, diverts the westerly flow into a northwesterly flow component toward the drainage basin of Wenham Lake and into a southerly flow component toward the drainage basin of the Bass River. Groundwater contour maps of the shallow overburden, deep overburden and bedrock aquifers are provided as **Figures 4-2**, **4-3**, and **4-4**.

In the bedrock aquifer, groundwater flows through interconnected fractures and faults in directions generally like those of the overburden aquifer. The overburden and bedrock aquifers are locally in communication. As a result, in addition to horizontal flow, which occurs primarily at the top of the overburden aquifer, a component of the groundwater flow at the base of the overburden aquifer and in the bedrock aquifer is vertical. It is generally downward from the overburden to the bedrock at the facility and to the north but is also upward from the bedrock to the overburden in the vicinity of the streams to the west and to the south of the facility. This is observed at BR-6 on Hill Street and at BR-7 located at 39 Tozer Road (see Section 4.4.4).

The local influence on the water table configuration of Stream A and the Unnamed Stream crossing the area is evident on the groundwater contour maps included in the 2000 Phase II report and on figures generated with data from May 2022 (**Figures 4-2**, **4-3**, and **4-4**). Data presented in the 2000 Phase II CSA show that the streams appear to be generally in a gaining mode (i.e., the shallow groundwater discharges to the streams). An evaluation of the water elevations in the streams and in the nearby shallow hand-auger wells and an evaluation of the stream flow measurements, reveal that certain sections of the Unnamed Stream, including the culvert sections, are gaining water from the shallow overburden aquifer while other sections are marginally losing water. Stream A appears to be in a gaining mode both upstream and downstream of its confluence with the Unnamed Stream. Those gains or losses are a function of the local topographical configuration, seasonal fluctuations, and important storm events.

4.2 Description of Subsurface Geological and Hydrogeological Investigations

As presented in the 2000 Phase II CSA, single-well constant-rate pumping, and recovery tests were performed on five overburden wells in 1996 and one bedrock well in 1997. Between 1996 and 1998, slug tests were performed on 32 overburden wells and 14 bedrock wells. These tests were conducted to calculate the hydraulic conductivity (K) and transmissivity (T) of shallow and deeper sections of the overburden and bedrock aquifers. For the bedrock aquifer, the hydraulic conductivity of 31 fracture zones isolated with a double packer and five open-hole bedrock wells were tested in the granite. In the gabbro, 16 double packer slug tests and one slug test in a screened bedrock well were performed. The fracture zones selected from caliper logs, video logs, and drilling logs were essentially sub-horizontal fractures. Therefore, the tests essentially measured the ability of the sub-horizontal fractures to transmit water.

Based on these aquifer tests, for the overburden aquifer the fine to coarse sand of the shallow overburden can be characterized by medium-high hydraulic conductivity in the 30 to 50 feet per day range. The fine to coarse sand, silty sand, and silt layers characteristic of the deep overburden aquifer exhibit low to medium-high hydraulic conductivity in a wider range of 0.6 to 30 feet per day. For the bedrock aquifer, the average hydraulic conductivity values for the granite and the gabbro can be from approximately 4 to 10 times less permeable than the overlying deep overburden. In summary, the fractured granite exhibits low to medium hydraulic conductivity in the 4 to 12 feet per day range. The gabbro, less fractured, can be characterized by low K values ranging between 1 and 6 feet per day.

Additional aquifer pumping tests in the bedrock and overburden aquifers were conducted in 2000, as reported in the Phase III RAP (IT, 2000b). This was conducted to evaluate the aquifer characteristics in the area of 28 Tozer Road for use in a groundwater containment system. The results of the bedrock aquifer testing indicated that the transmissivity of the bedrock aquifer is approximately 26 square feet per day (over the depth of recovery wells RW-19 and RW-21) with a leakance coefficient of 0.75 feet per day per foot. The estimated transmissivity corresponds to an average hydraulic conductivity of 0.35 feet per day. These values were found to be within the range of expected values for fractured bedrock with a hydraulic connection to a transmissive overburden. For the overburden testing, due to the lack of stabilization of drawdown during the testing, the analytical methods used only provided rough estimates, rather than reliable calculations, of transmissivity and specific yield based on the pumping test results. The estimated transmissivity was 9,945 square feet per day and a specific yield of 0.3. Based on the results of this testing, groundwater pumping was not selected as a remedial measure for this area of the Site. This high transmissivity is consistent with the sand and gravel overburden aquifer observed along Tozer Road. The transmissivity in the bedrock aquifer is substantially lower than the overburden aquifer, meaning that most of the groundwater flow occurs in the overburden.

4.3 Bedrock Surface Topography

Using depth to bedrock measurements collected during additional subsurface investigations conducted since 2000, a bedrock surface topographic map has been prepared for the Site to include the new data. As shown on **Figure 4-1**, the bedrock surface topography beneath the Site area is quite variable but is consistent with the general morphology of the area, which consists of elongated NW-SE hills, ridges, and

valleys. Two of the highest bedrock elevations (elevation of 60 to 90 feet MSL) are found at the small granite cliffs located to the north of the high school at 100 Sohier Road and under the open field at the southern end of the former Varian facility. The lowest bedrock elevations (-165 feet and -96 feet) occur, respectively, at the easternmost area of the Site (well CL1-BR) and the southernmost end of the Site (cone penetrometer test location CPT-31 on Herrick Street). The deep bedrock depression, along with the very steep bedrock slope east of the Site to CL1-BR, likely reflects the presence of an NW-SE fault zone revealed by the lineament and fracture analysis (IT, 2000a).

Starting from one of the highest bedrock elevations, 70 to 80 feet to the south of the former Varian facility property, the bedrock surface slopes to the north-northwest and forms a gentle ridge. The north-northwest ridge continues to the northwest across Route 128 toward Commons Drive (CL9-BR) and Arlington Avenue (BR-4), where the bedrock surface is found at -30 feet in elevation. Overall, this bedrock ridge exhibits a 2 to 2.5 percent gentle slope which is consistent with the slope of the elongated axis of the northwest-southeast topographic hills characteristic of the region.

Along the ridge, a slight bedrock depression is noted beneath Building 5. The bedrock elevations around Building 5 are between 30 and 20 feet. However, a bedrock elevation of 8 feet is observed at well OB53-BR. Continuing along the ridge in the Building 3 area, the ridge is transected by a shallow, east-west trending depression that gently dips to the west to Building 7. As described above, there is a steep bedrock slope along the east side of Building 3 with bedrock depths adjacent to the building of –22 to -28 feet in elevation. Bedrock elevations beneath the north end of the building and just west of this steep slope range from 9 to 14 feet elevation with a low of 4 feet along the west side of Building 3. Bedrock then slightly rises a few feet west of Building 7.

The west side of the north-northwest and northwest gentle slope is flanked by a valley that was carved in the bedrock. This valley starts fairly wide along a northwest-southeast direction from Conant Street (Well CL7-BR) to CL3-BR on Tozer Road just west of Building 7. This valley holds a gentle depression just to the west of Tozer Road, extending from Sonning Road (CPT-3) to Tozer Road (CL3-BR). From the area of CL3-BR on Tozer Road, the bedrock valley becomes narrower and turns to and slopes toward a south-southeast direction. Based on the data available, this northwest valley turns to the south-southeast marks, and was carved at, the granite and gabbro contact. This contact was a major weak discontinuity in the bedrock that was susceptible to glacial erosion. The inferred granite and gabbro contact based on the USGS mapping of the area (1964) is shown on **Figure 4-1**.

This main and long bedrock valley is, in turn, flanked on its west side by a northwest-southeast bedrock ridge, which is at its highest in the area of P-21 (29 feet) and BR-6 (30 feet). The ridge extends from about CL8-BR on Short Meadow Road to CPT-13 at 39 Tozer Road, where the bedrock culminates at -25 feet in elevation. Continuing west, a second deep west-northwest-southeast depression is found where the bedrock is as deep at -72 feet in elevation at CPT-20 on Lexington Drive and -70 feet at CPT-11 on Gray Road. To the west the bedrock surface rises again and forms a north-northwest ridge, culminating at 11 feet in elevation at CPT-29 on Columbia Road. To the southeast and south, the bedrock valley deepens to -80 feet at BR-8 near Russel Street and then to -96 feet at CPT-31 at Herrick Street. Bedrock (gabbro) outcrops to the west of these deep valleys have estimated elevations of 60 to 90 feet.

4.4 Groundwater Flow

Groundwater occurs at the Site in two distinct aquifers: the overburden aquifer and the bedrock aquifer. These two aquifers are fundamentally distinguished by different characteristics of groundwater occurrence, flow, recharge, and discharge. These characteristics are presented and compared when relevant, in this and subsequent sections. Analysis of groundwater level data supporting the discussions below is included in **Table 3-7**.

Many years of groundwater elevation data are available for the Site. A historical shallow groundwater contour map that provides data across all points at the time is provided as **Figure 4-5**. Groundwater contour maps generated from this data have been consistent in illustrating flow direction. Depth to groundwater measurements collected during the May 2022 sampling event (**Table 3-7**) were used to develop groundwater elevation contour maps for the shallow overburden, deep overburden, and bedrock aquifers in the Site vicinity (**Figures 4-2**, **4-3**, and **4-4**, respectively). These figures show groundwater flow northwesterly across the facility. The majority of Site groundwater in each aquifer generally flows from the facility property to the west/southwest, following the regional groundwater flow pattern, which is south and west toward Shoe Pond and the Bass River. The gradient in each aquifer is moderate to steep east of Tozer Road and very flat to the west of Tozer Road. In the shallow and deep overburden, there are indications of limited northerly and easterly groundwater flow in the contours at the northern end of the Site. Overall, the groundwater gradients shown on **Figures 4-2**, **4-3**, and **4-4** are consistent with historical data from the Site.

Groundwater occurrence and flow in the overburden and bedrock aquifers are discussed below and are consistent with historic groundwater flow maps. The gradients and area-wide groundwater flow regimes beyond the immediate Site area, as discussed below, are from the 2000 Phase II CSA. As with the groundwater flow direction, there is no reason to believe that the horizontal or vertical gradients or general regional flow patterns have changed.

4.4.1 Shallow Overburden Aquifer

Groundwater in the shallow overburden at the Site generally occurs in and flows under water table conditions through the porous space between the grains and particles of the glacial and marine deposits. Although thick deposits of marine clay were encountered to the south, localized confined groundwater conditions exist in more permeable layers of soil beneath the clay deposits. The overburden aquifer is recharged directly by infiltration of rainwater and surface runoff through unpaved areas. It typically discharges at depth to the bedrock aquifer and to the surface in portions of the local streams. The groundwater flow conditions for the shallow water table in the Site area are shown on **Figure 4-2**.

Groundwater occurs at its highest elevation at the southerly end of 150 Sohier Road and flows northwesterly across the facility. The general flow direction changes to a westerly direction following the steeper westerly topographic slope that starts at Bomac (Salem Water Works) Road and subsequently follows the drainage and discharge pattern induced by the Unnamed Stream. This stream transects the Site in an east-west direction from Sohier Road to Tozer Road.

From Tozer Road, at the base of the steep westerly topographic slope, the groundwater flows in a general southerly direction following the courses of the Unnamed Stream and Stream A, which are the major surface water drainage features at the Site.

From the northern end of the facility property and continuing north of Route 128, the groundwater flow direction gradually changes from westerly to northwesterly in a general direction toward Wenham Lake, part of a different drainage basin than the Bass River basin. This divide is most evident in the deep overburden and bedrock groundwater contour maps.

4.4.2 Deep Overburden Aquifer

As in the shallow overburden, groundwater in the deep overburden occurs at its highest elevation at the southerly end of 150 Sohier Road and flows northwesterly across the facility (**Figure 4-3**). From the former Varian facility property to Tozer Road, groundwater flows in the deep overburden aquifer to the west with fairly low and regular horizontal hydraulic gradient components between 0.02 and 0.03 feet per foot (ft/ft).

To the north of the facility and north of Route 128, the westerly groundwater flow gradually changes to a northwesterly direction toward wells CL7-DO to the northwest and well MW-35 to the north. Horizontal hydraulic gradient components are lower (in the 0.007 to 0.01 ft/ft range).

A groundwater divide oriented approximately east-west originates near Commons Drive to the north of Route 128 and extends west toward Interchange 20 (Dodge Street) of Route 128. This divide diverts part of the westerly flows from the north of the former Varian facility gradually to the northwest and to the south.

To the west of Tozer Road and moving to the south, groundwater flow changes from a westerly direction with fairly low horizontal gradients (0.02 to 0.03 ft/ft) to a southerly flow with very low horizontal gradients (0.003 to 0.007 ft/ft), consistent with the regional southerly flow.

4.4.3 Bedrock Aquifer

Given the very low permeability of the gabbro and granite matrix, zones of fracturing serve as the primary groundwater flow pathways in the bedrock. Depending on the complexity of the fractures' network, groundwater in the bedrock may flow locally in slightly different directions and at different rates than groundwater in the overlying overburden. On an area-wide or regional scale, groundwater flow directions in the bedrock are the same as in the overburden aquifer. The contours shown on **Figure 4-4** therefore only show the potential for groundwater flow in the bedrock aquifer.

The groundwater flow pattern in the bedrock aquifer follows closely that of the deep section of the overburden aquifer (**Figure 4-4**). Groundwater flows in the bedrock in a westerly direction from the former Varian facility property to Tozer Road with low and regular hydraulic gradients ranging from 0.01 to 0.015 ft/ft. North of the former Varian facility and of Route 128, the westerly groundwater flow gradually changes to a northwesterly direction toward wells CL7-BR, BR-4, and BR-3. Hydraulic gradients decrease to a 0.007 to 0.009 ft/ft range.

A similar east-west groundwater divide, roughly parallel with Route 128, exists in the bedrock aquifer. As with the overburden aquifer, this divide diverts the westerly flows from the north of the former Varian facility gradually to the northwest and to the south.

West of Tozer Road and to the south, groundwater flow changes from a westerly direction to a southerly flow with a very low hydraulic gradient (0.002 ft/ft). However, further south, the hydraulic gradient in the bedrock seems to increase toward the southernmost bedrock well BR-8 (from 0.004 to 0.007 ft/ft).

4.4.4 Vertical Component of Groundwater Flow

In addition to flow in horizontal directions, a component of the groundwater system can flow in a vertical direction either downward from the overburden to the bedrock or upward from the bedrock to the overburden. The direction of vertical flow is a function of the relative head difference between two aquifers or portions of aquifers. For the 2000 Phase II CSA, measurements of groundwater levels at clusters of 10 wells were conducted on several occasions at the Site. Hydraulic vertical gradients were determined as follows: when the hydraulic head at a particular well or intake zone of a multi-level bedrock well is greater than the head at its associated deeper well or intake zone, the head is positive (+). In such cases, there is a tendency for a downward groundwater flow and the vertical hydraulic gradient is determined to be downward. When the hydraulic head difference between a shallower and deeper well or intake zone, the head is negative (-). In such cases, there is a tendency for an upward groundwater flow, and the vertical hydraulic gradient is deemed to be upward. A compilation of vertical hydraulic gradients is found in **Table 4-1**. These conclusions were supported by a series of hydrographs from 10 well clusters included in the 2000 Phase III CSA.

In the three central and western clusters of wells including CL1 (east of 150 Sohier Road), CL3/BR-5 (28 Tozer Road), and CL8 (Shortmeadow Road), the hydraulic vertical gradient between the upper part of the overburden aquifer (i.e., in the shallow "S" wells) and the bottom of the overburden (i.e., in the deep "DO" wells) is negative (i.e., upward). For example, it is characterized by a very weak to negligible vertical upward gradient of -0.0007 ft/ft at cluster CL8-S/DO (or only a head difference of 0.03 feet, which is within the range of field measurements' imprecision and instruments' inaccuracy). At CL3-S/DO, the gradient in the overburden is also weak but consistently upward. At the pair CL1-S/DO, the gradient is very weak upward, but is inconsistent since it is downward on some events. An overall weak upward gradient is also noted at clusters CL3 and CL8 within the bedrock and from the bedrock to the overburden. As explained in **Table 4-1**, the bedrock/overburden gradient cannot be established at CL1- DO/BR.

In the four northern clusters, CL2 (16 Tozer Road), CL6 (Walden Street), CL7 (Conant Street), and CL9 (Commons Drive), the hydraulic head differences between the shallow wells and the deep overburden wells are the highest, between 1 and 3 feet. This results in a strong, consistent downward gradient. The calculated vertical downward hydraulic gradients are weak from +0.01 ft/ft in cluster CL9-S/DO to fairly strong +0.05 ft/ft in cluster MW-2R/CL2-DO. The vertical gradients between the overburden and the bedrock are, however, irregular. They are slightly upward to negligible in CL2, CL6, and CL7 well clusters (< 0.1 feet of head difference) to strongly upward at cluster CL9 (1.6 feet). At BR3, the northernmost bedrock well, the gradient between the overburden and the bedrock is also downward at +0.02 ft/ft, or a head difference of 3 feet. Prominent upward gradients within the bedrock are observed at wells BR-3 and

CL9-BR (- 0.03 to - 0.15 ft/ft), with head differences of as much as almost 4 feet between the two deepest bedrock zones at BR-3. On the other hand, very weak, inconsistent, and negligible gradients exist in the bedrock at wells BR-1 (Walden Street), BR-2 16 Tozer Road) and BR-4 (Arlington Avenue), with either positive or negative head differences of only 0.02 to 0.06 feet between bedrock zones (**Table 4-1**).

At the southern cluster CL-4 (30 Tozer Road) and the two southernmost bedrock wells, BR-7 (39 Tozer Road) and BR-8 (Russell Street), the vertical gradients are overall very weak downward from the deep overburden to the bedrock and within the bedrock unit, with head differences of only 0.1 to 0.2 feet, which can be considered negligible (Table 4-1). However upward gradients between the upper bedrock and/or deep overburden and the shallow overburden are noted at BR-6 (28 Hill Street) and BR-7. At BR-6, which is located on a bedrock knoll where the bedrock was encountered at less than 10 feet below grade, there is a strong upward gradient from the upper bedrock to the shallow overburden. A negative head difference of almost 3.5 feet exists between the first bedrock zone at BR-6 and nearby piezometer P-9. This results in the highest upward vertical hydraulic gradient of -0.1 ft/ft measured in the area (Table 4-1). Further south, where wells BR-7 and BR-8 were drilled, the thickest central section of the overburden consists almost entirely of marine clay deposits. The clay acts as an aquitard. Consequently, the groundwater at the base of the overburden aquifer and in the bedrock is under confined conditions. This was observed during drilling when artesian conditions were found in the bedrock well BR-7, located at 39 Tozer Road. The data show that the groundwater elevations in the deep overburden (MW-34) and bedrock aguifers (BR-7) are consistently 7 to 9 feet higher than those in the shallow aguifer (P-17). This results in a strong consistent upward gradient from the bedrock and deep overburden to the shallow overburden aquifer in this area.

Results of monitoring well gauging conducted in 2020 to 2022 are summarized in **Table 3-7**. These wells include well clusters OB-12 S/DO/BR, AP-13 S/DO and RW-3 (BR), OB-19 S/DO/BR, and AP-12 S/DO/BR located in the Building 3 Source Area and OB-45 S/DO/BR and AP-36-S, OB-38 DO/BR located in the Building 5 Source Area. Data from these source area wells reveal a moderate downward flow vertical gradient in both source areas between the overburden and bedrock aquifers. Hydraulic head differences in the Building 3 area range from 1 to 7 feet in the overburden and 2 to 6 feet between the deep overburden and bedrock. In the Building 5 area the hydraulic head differences range from 2.5 to 4 feet in the overburden to 4 to 11 feet between the deep overburden and bedrock.

The vertical hydraulic gradients within and between the aguifers can be summarized as follows:

- Central and Western Wells: Weak, inconsistent upward gradients within the overburden (up to 0.1 feet of head difference) accompanied by weak, inconsistent upward gradients from the bedrock to the overburden and within the bedrock.
- Northern Wells: Consistent downward gradients in the overburden, sometimes strong, with up to 3 feet of head difference. The gradients between the bedrock and the overburden and within the bedrock do not exhibit a common pattern. Very strong upward (up to 4 feet of head difference) or very weak and inconsistently upward or downward (with 0.1 to 0.2 feet of head difference) vertical gradients have been observed.

- Southern Wells: Overall weak and somewhat inconsistent downward gradients from the deep overburden to the bedrock and within the bedrock (0.1 to 0.2 feet of head difference). The exception to this is seen at BR-6 where there is a thin overburden and a strong upward gradient from the upper bedrock to the shallow overburden, and at BR-7 where there is a thick marine clay deposit and a strong upward gradient from the deep overburden to the shallow overburden.
- Source Area Wells: Consistent downward gradients from the overburden to the bedrock (with 2 to 11 feet of head difference).

4.5 Evaluation and Description of Potential for Flooding

To determine the potential for flooding in the Site area, the Federal Emergency Management Agency (FEMA) flood map for the Site area was viewed on FEMA's on-line Flood Map Service Center. As determined, the majority of the former Varian facility at 150 Sohier Road is located in an area designated as an area of minimal flood hazard (no shading). A small, paved area along the east side of Buildings 3 and 4 is designated as a moderate flood hazard area (between the limits of the 100-year and the 500-year flood). In the Site area, portions of the neighborhood to the west of the facility, including Sonning Road and Stream A to the south of 39 Tozer Road, are also mapped as areas of minimal flood hazard. The Unnamed Stream after the confluence with Stream A to the south of the facility is identified as a high risk of flooding or Special Flood Hazard Area (mapped as Zone AE or within the 100-year flood zone). Copies of FIRMette Maps for the Site area are included in **Appendix L**.

5.0 ENVIRONMENTAL FATE AND TRANSPORT OF OIL AND/OR HAZARDOUS MATERIALS [310 CMR 40.0835(4)(e)]

Significant discussion regarding the environmental fate and transport of COCs for the Site was provided in the 2000 Phase II report including the transport and attenuation factors that have resulted in the observed chemical distribution at the Site. Many factors contribute to where and how chlorinated solvents migrate in the vicinity of the Site. The dominant factors discussed in 2000 were dispersion, molecular diffusion, adsorption, chemical transformation, variable permeability of the overburden and bedrock zones, and the hydraulic gradients in the aquifer and stream transport systems.

Subsequent Site investigation over the past two decades has not revealed new COCs for the Site or new migration pathways. However, there have been COCs detected along the migration pathways that have enhanced our understanding of the fate and transport of COCs in downgradient areas of the Site. The following sections generally describe the COCs, the general physical characteristics, and the migration pathways at the Site.

5.1 Contaminants of Concern

Information regarding historical industrial processes at the former Varian facility and subsurface investigations conducted have confirmed that the COCs at the Site are chlorinated VOCs. TCE, PCE and 1,1,1-TCA were the three primary chlorinated solvents historically used at Varian's former facility. In

addition to the primary VOCs, five other chlorinated VOCs are frequently found in groundwater including: two isomers *cis*-1,2-DCE and *trans*-1,2-DCE, and 1,1-DCE, 1,1-DCA, and VC. The presence of these five compounds is the result of degradation of the parent compounds TCE, PCE, and 1,1,1-TCA. These three chemicals and their degradation products have been identified in the subsurface at different areas of the 150 Sohier Road facility by historical investigations.

As discussed in the 2000 Phase II CSA, samples of DNAPL were obtained from recovery well RW-2 and RW-4 in 1993 and in 1997, respectively. An analysis revealed the DNAPL to be composed of TCE and PCE in equal proportion. No further measurement of DNAPL has been reported since 1997. This has included at least semiannual gauging of Site wells in the source areas with an interphase probe to the present time. This suggests that the DNAPL that was released is no longer mobile as a DNAPL. The residual solvent, however, will slowly dissolve into the groundwater and provide a long-term source for VOCs in groundwater. This slow release from the soil is likely a key reason for the long treatment time that has been observed during the implementation of Comprehensive Response Actions.

5.2 Characteristics of Contaminants of Concern

The chemical and physical properties of the eight COCs were discussed in the 2000 Phase II CSA. The main characteristics of these chlorinated VOCs are:

- Liquid as pure phase products at ambient temperature. (Except VC, which is a gas)
- Denser than water as pure phase products [ranging from 1.17 grams per cubic centimeter (g/cm3) to 1.63 g/cm3 compared to the density of water = 1 g/cm3]
- Less viscous than water [0.36 centipoise (cP) < viscosity of the compound < 0.9 cP; viscosity of water = 1 cP]
- Relatively soluble in water (200 mg/L to 6,300 mg/L)
- Relatively mobile in groundwater as indicated by low retardation coefficients (1 to 1.63, but 2.8 for PCE).

A retardation coefficient or retardation factor is the ratio of the velocity of the groundwater to the velocity of the VOC plume in groundwater. The retardation coefficient varies with aquifer characteristics, particularly the fraction of organic carbon (*foc*). The apparent velocity of a dissolved compound is often slower than the groundwater velocity. This is caused by the adsorption of some fraction of the dissolved compound to the solid geologic material. Sample retardation coefficients for the Site COCs in overburden, with an assumed *foc* of 0.0007, and range from 1.01 for VC to 2.81 for PCE. Actual retardation values at the Site will vary due to differences in *foc*, soil density, and porosity.

5.2.1 Degradation and Natural Attenuation of the Contaminants of Concern

In evaluating the presence and distribution of the eight individual COCs, the three parent compounds, PCE, TCE, and 1,1,1-TCA, are degrading into their daughter compounds. Natural attenuation means the processes that act on a compound to reduce its concentration in the environment through naturally existing mechanisms. Natural attenuation is the combined effect of dilution, volatilization, sorption, and biotic and abiotic degradation of dissolved compounds in groundwater. The combined effect of these

processes can result in a concentration reduction in some compounds (the parent compounds) with a corresponding increase in the degradation compounds (the daughter compounds). Intrinsic biodegradation is the subset of these processes induced by naturally occurring microorganisms in the soil and groundwater.

Under anaerobic conditions, PCE is reductively dehalogenated, yielding in succession TCE and both *cis*-1,2-DCE and *trans*-1,2-DCE (with a very high ratio of the *cis*-isomer to the *trans*-isomer). That natural attenuation is occurring at the Site is confirmed by the frequency of detection of these two compounds in groundwater. The final steps of the reductive dehalogenation are the degradation of the 1,2-DCE isomers into VC, and further the degradation of VC into ethene. Under the same processes, 1,1,1-TCA degrades primarily to 1,1-DCA and chloroethane, and finally ethane and, to a lesser extent, 1,1-DCE, VC, and ethene. The rates of degradation may vary considerably from compound to compound in different areas of an aquifer.

As detailed in the 2000 Phase II CSA, evaluation of natural attenuation of dissolved PCE, TCE, 1,1,1-TCA and their related daughter compounds in groundwater has been conducted at the Site by comparing the mole ratios of parent and daughter compounds along the plume migration pathway and evaluating water quality parameters that are indicative of natural attenuation. The results of the evaluation support the conclusion that natural attenuation is occurring at the Site for the chemicals PCE, TCE, and 1,1,1-TCA. Anaerobic conditions in the aquifer and the presence of daughter products and natural attenuation by-products confirm that natural biological activity is occurring that is effecting changes in the groundwater chemistry. The conclusions from the natural attenuation assessment suggest that natural attenuation will play a role in the long-term fate and transport of VOCs in groundwater and aid the effectiveness of remedial efforts at the Site.

As noted above, a significant amount of bioremediation has been conducted at the Site in source areas. That treatment technology uses additives to enhance the microorganism's ability to degrade the VOC in groundwater. Bioremediation at the Site has had success in a shallow groundwater area near Building and adjacent to the Unnamed Stream and in shallow groundwater beneath Building 5. Monitoring in those areas has shown the complete degradation of VOCs to ethene and ethane. Bioremediation in the deep overburden near Building 3 has had mixed success. While Site data have shown that active reductive dechlorination is occurring, elevated levels of TCE and *cis*-1,2-DCE remain in some wells.

5.3 Existing and Potential Migration Pathways including Indoor Air

Based on extensive assessment of the Site, the existing and potential migration pathways have been well documented and include groundwater (flow through overburden and bedrock aquifers), surface water (nearby streams), utilities, sediment, soil vapor, and indoor air. Evaluation of the groundwater pathway has been ongoing through continual groundwater monitoring and additional well installation activities after the 2000 Phase II CSA. Since the 2000 Phase 2, the potential indoor air pathway has become a more significant focus for investigation. This has included evaluations of potential migration into indoor air in residential areas, at commercial properties, and on-site facility buildings, as previously reported. In

addition, surface water and sediment sampling of the Unnamed Stream and Stream A was conducted in 2021, to further evaluate that potential migration pathway.

6.0 NATURE AND EXTENT OF CONTAMINATION [310 CMR 40.0835(4)(f)]

The nature and current extent of VOCs in soil, groundwater, surface water, and sediment are discussed in this section. The discussion is based on Site data collected during investigations and sampling events conducted over recent years (soil) and over the past two years (groundwater, surface water, and sediment).

6.1 VOCs in Soil

The nature and extent of VOCs in soil at the Site was determined based on the results of PID field screening recorded during drilling activities and laboratory analysis of soil samples collected at the Site.

Soil impacts are noted in the three main source areas at 150 Sohier Road. These include the Building 3 Area (encompassing Buildings 1, 2, 3, and 6), the Building 5 Area, and PSL-10. VOC soil impacts have not been observed in downgradient areas. The following sections provide a summary of the extent of soil impacts in each area. **Table 6-1** summarizes soil data (1995-2019) for the Building 3 area, **Table 6-2** summarizes soil data (1995-2022) for the Building 5 area, and **Table 6-3** summarizes soil data (1999-2011) for the PSL-10 area.

6.1.1 Building 3 Area Soil Impacts

Soil Impacts in the Building 3 Area are characterized by concentrations of TCE and PCE at their highest beneath or adjacent to the building.

Shallow Overburden

In the shallow overburden the highest VOC levels since 2012 are noted at the following locations:

- In the western part of Building 3, PCE was detected at 22 mg/kg at 11 feet below the floor in 2013 (Figure 6-1).
- In the eastern part of Building 3, the TCE concentration was 28 mg/kg at 18 feet below grade in 2019 at OB-50S, located just outside of the building (Figure 6-2). PCE concentrations in this area were detected at concentrations ranging from 110 mg/kg (10 feet at OB51-S) to 320 mg/kg (16 feet at OB49-S). These wells are in the northeast corner of Building 3 near a former drain line from the Building 3 Lab.

Historically (prior to 2012), the highest PCE concentration at Building 3 was detected in 1995 in the western part of the building near the exterior inspection sump (PSL-9), associated with the former Building 3 Lab waste lines (PCE at 1,200 mg/kg). However, significant treatment has been conducted in that area after the sample was collected, and as a result, the 1995 concentration is not indicative of

current Site conditions. Treatment has also been conducted since soil samples were collected in the eastern part of Building 3 in the area of OB49-S through OB51-S, so the concentrations detected in 2019 at these locations are also not likely indicative of current conditions. At the western edge of Building 3 concentrations of TCE and PCE in shallow soils were low (<0.03 mg/kg) in 2012 and 2013, indicating the extent on shallow impacts.

Deep Overburden

The highest concentrations of VOCs at depth are at well AP35-DO, which is located at the northeast corner of Building 3. TCE and PCE were detected at 450 mg/kg and 740 mg/kg, respectively in 2013 at approximately 34 feet below grade. A TCE concentration of 110 mg/kg was detected in a sample from 41 feet below the eastern part of Building 3 at well OB43-DO. Based on soil headspace screening results (e.g., >1,000 ppm), elevated soil concentrations have also been present beneath the easter part of Building 3 at wells AP30R-DO, AP31-DO, and AP32-DO. Treatment has also been conducted at depth in both these areas, therefore, these VOC concentrations are also not likely indicative of current conditions.

At depth, soil impacts in the Building 3 area extends to the west and southwest towards Buildings 1 and 2 with the major groundwater flow pathway. Results of the ERI study discussed in Section 3.3.7 suggest that VOC impacts in soil do extend to the top of bedrock directly beneath Building 3. Beneath Building 2 soil impacts were detected at 56 feet below the building (TCE 130 mg/kg at angled well OB57-DO). However, based on soil screening results at this location, soil impacts are non-detect shallower than 40 feet below Building 2. To the west, soil impacts are defined by low PID and analytical results in the overburden wells OB52-S and OB45-DO. To the south, soil impacts are defined by low PID and analytical results in the overburden wells OB58-DO and OB59-DO.

6.1.2 Building 5 Area Soil Impacts

Overall soil impacts in the Building 5 Area are an order of magnitude lower than seen in the Building 3 Area. Soil Impacts in the Building 5 Area are characterized by concentrations of TCE and PCE at their highest beneath Building 5 itself.

Shallow Overburden

In the shallow overburden the highest VOC concentrations are noted at the following locations.

- At well OB44-S, PCE was detected at 10 mg/kg and 14 mg/kg at 9.5 and 17.5 feet below the floor, respectively in 2013. See **Figure 6-3**. TCE was detected at 0.27 mg/kg and 6.2 mg/kg at 9.5 and 17.5 feet below the floor, respectively in 2013.
- At well AP39-S, TCE and PCE were detected at 2.5 mg/kg and 13 mg/kg, respectively at 16.5 feet below the floor in 2018.
- At well OB60-S, TCE and PCE were detected at 1.4 mg/kg and 13 mg/kg, respectively at 16 feet below the floor in 2022.

Significant treatment has been conducted in Building 5 after soil sampling at both OB44-S and AP39-S. Therefore, the result of soil samples from these locations are not likely indicative of current conditions. The downgradient extent of soil impacts in the shallow overburden in the Building 5 source area are defined by PID soil screening results from wells OB45-S and OB39-BR. The extent of soil impacts to the north in this area are defined by PID screening results and laboratory data collected at BLDG-SV-4. The extent of soil impacts to the south are defined by low soil vapor concentrations noted at BLDG5-SV12 and BLDG5-SV13.

Deep Overburden

The highest concentrations of VOCs at depth are noted at well OB53-BR, an angled well installed beneath the building. TCE and PCE were detected at 35 mg/kg and 11 mg/kg, respectively, in 2022 at approximately 42 feet below grade but decreased to non-detect at approximately 64 feet below grade and west of the previous sample. Downgradient to the northwest, the extents of soil impacts are defined by low soil screening or analytical results from wells OB45-S/DO, OB45-BR, and OB39-DO.

6.1.3 PSL-10 Area Soil Impacts

Soil Impacts in the PSL-10 Area are characterized by concentrations of PCE between 1 and 2 mg/kg in a limited area at the west side of the 150 Sohier Road property and east edge of the 32 Tozer Road property. Impacts are limited to shallow soils with the highest PCE concentration 1.8 mg/kg at soil boring 150 SOH-02 at a sample depth of 2 feet bgs (see **Figure 6-4**). Downgradient to the west, soil impacts are defined by low soil screening or analytical results in the overburden at wells MW1-32 Tozer, MW4-32 Tozer, and B2-32 Tozer.

6.2 VOCs in Groundwater

The current nature and extent of the COCs in groundwater in both the overburden and bedrock aquifers was evaluated using data collected from monitoring wells over two years of sampling, May 2020 through May 2022, as presented in **Table 3-8**. As shown, the primary COCs in groundwater are TCE, PCE, and *cis*-1,2 DCE. Results for TCE, PCE and *cis*-1,2-DCE from samples collected in May and August 2022 are summarized on **Figures 3-3**, **3-4**, and **3-5**. Each of the COCs has a similar distribution, with *cis*-1,2-DCE indicating a more variable distribution, which may be indicative of its higher mobility in groundwater compared to TCE and PCE.

To illustrate the current Site conditions for VOCs, recent concentrations (May 2021 and early 2022 for new wells) were used to construct isoconcentration maps (**Figures 6-5** and **6-6**) and a data posting map (**Figure 6-7**) that show the current configuration of the dissolved-phase TCE in the shallow overburden, deep overburden, and bedrock aquifers, respectively. The following sections discuss the current nature and extent of TCE at the Site and within each aquifer.

6.2.1 VOCs in Shallow Groundwater

The current detection of dissolved TCE in the shallow overburden aquifer, as defined by as the top 10 to 15 feet of the water table, is shown on **Figure 6-5**. The distribution of TCE is currently characterized by

several non-continuous plumes. The non-continuous nature of the shallow plume is likely the result of treatment over the years and, as discussed below, vertical gradients or releases not associated with 150 Sohier Road.

The shallow plume from the Building 3 Source Area follows the shallow groundwater flow direction to the southwest to just beyond Tozer Road to the 27 Tozer Road property. The highest concentrations (3.5 and 4 mg/L) occur in two areas of this plume including the northeast area of Building 3 (AP-12-S) and along the north side of the 30 Tozer Road building and just south of the Unnamed Stream (OB-42-S). Beyond this plume are several isolated, smaller areas of lower dissolved TCE detections (ranging from 0.008 to 0.2 mg/L), located to the southwest and south of the main plume but also to the north across Route 128 and to the east of Building 3.

A much smaller area of shallow TCE impact is found beneath Building 5. This area is characterized by a TCE concentration of 20 mg/L at well OB60-S. However, due to active treatment that area, shallow impacts decrease in a short distance to 0.2 mg/L at monitoring well OB-44-S.

At PSL-10, the TCE levels are low, and plume area is small. It is characterized by detection of 0.015 mg/L at CL10-S located at 32 Tozer Road. Wells downgradient of CL10-S exhibit non-detect concentrations of TCE.

The current northern extent of the plume extends from the former Varian facility to an isolated location at MW-005R (0.008 mg/L), located at 16 Tozer Road property. However, the plume does not appear to be continuous to this northern extent since non-impacted well MW-002R exists between well OB-51-S and the other impacted shallow wells in the Building 3 Source Area.

To the west, the extent of the TCE plume in the shallow overburden is defined by non-detect results at multiple wells on Sonning Road.

A zone of shallow TCE impact is found at 39 Tozer Road on the west side of the Unnamed Stream. There, TCE was found at 0.029 mg/L at well OB-41S and 0.021 mg/L at OB-08-S. At the couplet OB8-S and OB8-DO, a strong upward vertical flow is noted. For example, an upward flow gradient with a 5-foot hydraulic head difference was indicated in April 2021 and May 2022 water level elevations (**Table 3-7**). As discussed above, a strong upward vertical gradient is noted to the south on 39 Tozer near wells MW-34 and BR7. The TCE concentration at OB8-DO was 2.2 mg/L in May 2022. The higher VOC levels noted in the deep overburden and the strong upward vertical gradient indicate the shallow TCE impacts at OB8-S and OB41-S are the result of vertical migration from the deep overburden.

An isolated detection (0.014 mg/L at P-19A) is found to the west of Stream A on Hill Street. TCE has ranged between non-detect and 0.014 mg/L since 2016. *Cis*-1,2-DCE is generally detected at P-19A at a concentration ranging from 0.002 mg/L to 0.089 mg/L over this period. In this area, the shallow groundwater flow direction is to the south-southeast, a direction parallel with Stream A. As discussed above, a very strong upward vertical gradient is noted between the bedrock and the thin overburden in

the area of wells P-9R and BR-6 on Hill Street. Over a decade of monitoring at the shallowest interval at BR-6 has not indicated detectable levels of TCE. Since 2016, the concentration of *cis*-1,2-DCE at the shallowest interval at BR-6 has ranged from non-detect to 0.12 mg/L. At shallow well P-9R, located next to BR-6, TCE has also been non-detect for over a decade except for May 2022 when it was detected at a concentration of 0.004 mg/L.

To the south the extent of VOC impact in the shallow overburden is defined by non-detect results at wells P-23 Lexington Drive), P-31 (Tudor Road), P-5R (Windsor Road), and P-4R (Jordan Street).

6.2.2 VOCs in Deep Overburden Groundwater

The current detection of dissolved TCE in the deep overburden, as defined by the bottom 10 to 15 feet of the overburden aquifer, is shown on **Figure 6-6**. The presence of TCE is currently characterized by a main plume extending from the Building 3 Source Area to the west to Tozer Road and then to the south along the approximate path of the Massachusetts Bay Transportation Authority tracks and west of Tozer Road. Unlike the shallow aquifer, the distribution of TCE is generally continuous. The plume follows the deep overburden flow of groundwater and reflects the slope of the bedrock surface and bedrock valley. The highest TCE concentrations in the deep overburden aquifer are found in four areas, including 1) the northeast area of Building 3, 2) beneath Building 5, 3) the north-south area west of Building 7 along Tozer Road, and 4) a northwest to southeast area north of the 39 Tozer Road property. The first two of these areas are associated with source areas at Building 3 and Building 5. The last two of these areas coincide with bedrock depressions.

In the Building 3 Source Area, the highest VOCs in the overburden aquifer are detected, including 210 mg/L (AP-13-DO), 190 mg/L (AP-31-DO), and 99 mg/L (AP-43-DO) located in the northeastern area of Building 3. These concentrations imply the presence of DNAPL in the vicinity of those wells. The historical presence of DNAPL has been observed and samples were recovered on two occasions, from recovery well RW-2 in 1992 and RW-4 in 1997. No further measurement of DNAPL has been reported in regular monitoring since 1997. Additional discussion of potential DNAPL is discussed in Section 6.3. TCE concentrations in the Building 3 area are detected immediately downgradient of these source detections, including 21 mg/L (OB-37-DO) to the south and 13 mg/L (OB-25-DO) to the west. To the east of Building 3, only low concentrations of VOCs are present in the deep overburden (RW-3 and OB-09-DO), even though there is a major bedrock depression to the east of the facility (near CL-1 cluster).

West of the Building 3 area, elevated TCE concentrations are present in the Building 7 area. The plume then migrates to the west of Building 7 to Tozer Road. West of Tozer Road in the deep bedrock valley, TCE concentrations are low to moderate, with the higher concentrations of 0.59 mg/L detected in OB-05-DO and 2 mg/L at OB-08-DO located at 39 Tozer Road. These TCE levels west of Building 7 define the central north-south axis of the deep overburden plume, which is aligned along the main north-south trough observed on top of the bedrock at the zone of contact between the granite and the gabbro (Section 4.3). This bedrock feature appears to have been filled with relatively more permeable sand and gravel sediments. This represents a southerly pathway of preferential migration for dissolved VOCs in the deep overburden aquifer. The southern limit of the TCE plume in the deep overburden was

determined to be in the area of the stream confluence (0.05 mg/L at MW-034). The results of groundwater samples from cone penetrometer sampling detailed in the 2000 Phase II indicated non-detect TCE levels in the deep overburden on Windsor Road and Jordan Street. Since the VOC levels at MW-34 have decreased since the 2000 Phase II CSA, is expected that VOCs in the deep overburden on Windsor Road and Jordan Street would still be non-detect.

There are isolated detections of TCE in the deep overburden aquifer the Building 5 area (8.3 mg/L in OB-35-DO) and east of the 32 Tozer Road building in the PSL-10 area (0.083 mg/L in CL10-DO). A low concentration of TCE is also detected north of the main plume (0.006 mg/L at OB17-DO).

6.2.3 VOCs in Bedrock Groundwater

The current detection of dissolved TCE in the bedrock aquifer is shown on **Figure 6-7**. Unlike in the deep overburden, the highest concentrations currently in bedrock at 150 Sohier Road are observed between the Building 3 and Building 5 areas at wells OB54-BR and OB45-BR. The highest TCE levels are seen around and beneath Building 3 in the deep overburden at 150 Sohier Road.

Historically, higher concentrations of TCE were observed in bedrock at RW-3, located east side of Building 3, where TCE was detected at up to 61 mg/L before permanganate treatment was conducted (with last treatment completed in 2002). VOC levels in bedrock at RW-3 have declined significantly and have remained low as a result of treatment conducted in the area of this well, with TCE at RW-3 detected at a concentration of 0.002 mg/L in May 2021.

Like the deep overburden, TCE in the bedrock aquifer is present to the west in the bedrock valley along Tozer Road. Overall, the northern, southern, eastern, and western extents of the plume in bedrock are comparable to what is seen in the deep overburden. There are two areas of moderate to low TCE concentrations along Tozer Road, one of which is located on the north side of Route 128, which is not observed in the deep overburden aquifer plume map. TCE is present at CL9 at a concentration of 0.17 mg/L. The second area to the south exhibits a lower TCE level bedrock at OB21-BR (0.01 mg/L), located near the railroad west of Tozer Road.

The western extent of TCE in the bedrock aquifer is defined by non-detect results at OB20-BR and P21-BR. The southern extent of TCE impact is characterized by non-detect concentrations at BR7 located on 39 Tozer Road.

6.3 Potential DNAPL

Site wells, including those with the highest VOC concentrations, have been monitored for DNAPL with an interphase probe at least twice yearly since the start of the comprehensive response action. This monitoring has not detected DNAPL in Site wells since 1997. Groundwater concentrations and persistent groundwater plumes suggest that DNAPL is or was present and has migrated into the deep overburden and potentially into fractured bedrock. Given the age of the DNAPL and lack of DNAPL presence in monitoring wells since 1997, DNAPL in the overburden is likely present residually in discontinuous ganglia or globules and not mobile, while any DNAPL that is present in bedrock is likely present in

fractures, many of which are small and poorly connected to other fractures, thereby limiting DNAPL mobility.

6.3.1 Building 3 Area

A further evaluation of the potential presence of DNAPL in the Building 3 Area was conducted by a review of current groundwater concentrations, generally from February 2020 to May 2022, as well as data collected from new wells installed in August 2022. While dated guidance from EPA in the 1990s indicates a rule of thumb that concentrations of individual solvents in excess of 1% of the solubility limit indicate DNAPL is present, current industry practice and thinking in the research community is that comparison to the 1% solubility limit is a tool to suggests that DNAPL may be present upgradient of a well and that additional assessment should be considered. The 1% rule of thumb should not be used in isolation to establish the presence of DNAPL. The EPA guidance (EPA, 1993) that discusses the 1% rule of thumb also indicates that groundwater concentrations of 1 to 3% of solubility only suggest a "medium" degree of likelihood that DNAPL is present. Regardless, a comparison was made to average groundwater concentrations at wells in the Building 3 Area to 1%, 5 %, and 10% of the solubility limit for TCE, PCE, and 1,1,1-TCA to assess areas where DNAPL may be present. The results of this evaluation are presented on **Figure 6-8** and are consistent with those presented in a report dated June 30, 2021. This recent evaluation included wells located beneath and near Buildings 3 and 6 and indicated the following:

- A deep overburden area next to the northeast corner of Building 3 where DNAPL is likely present (i.e., well AP13-DO)
- A deep overburden area beneath the west end of Building 3 where DNAPL is likely present (i.e., wells AP31-DO and AP32-DO)
- A deep overburden area beneath the northeast corner of Building 3 where DNAPL may be potentially present (i.e., AP43-DO)

Based on the most recent data, the conclusions from the June 2021 report are still relevant, except for well OB50-S. Bioremediation has reduced VOCs in the shallow overburden in this area such that the concentrations of PCE at OB49-S, OB50-S, and OB51-S are now below 1% of solubility.

The results of the ERI study conducted in April 2022 provided an estimate of the potential extent of the elevated levels of VOCs beneath Building 3 based on a resistivity of >1,000 ohm-m (**Figure 3-7**). This does not correspond to an area of DNAPL. Areas with a resistivity >10,000 ohm-m are more likely to suggest the presence of DNAPL. However, that is not always the case based on analytical results from the confirmation sampling. For example, the April 2022 ERI study indicated an area of resistivity >10,000 ohm-m beneath Building 2. While soil impacts were noted in this area, the detected concentrations of TCE and PCE in groundwater from the area of resistivity >10,000 ohm-m was well below the 1 percent solubility (0.380 mg/L of TCE detected in groundwater compared to an 1% solubility of approximately 11 mg/L). The treatment area identified on **Figure 3-7** does encompass areas where both the ERI study and analytical test results suggest DNAPL may be present.

6.3.2 Building 5 Area

An evaluation of the potential presence of DNAPL in the Building 5 Area was conducted by a review of current groundwater concentrations, generally using data collected from February 2020 to May 2022, as well as data collected from new wells installed in August 2022. The results of the evaluation are presented on **Figure 6-9**. This evaluation included wells located beneath and near Building 5 and indicated the following:

- A shallow overburden area beneath the north end of Building 5 where DNAPL may be potentially present (i.e., OB60-S).
- A deep overburden area just north of OB60-S beneath Building 5 and a bedrock zone downgradient side of Building 5 where DNAPL may be potentially present (i.e., wells OB35-DO and OB45-BR).

Well OB60-S was installed in August 2022. Concentrations of TCE and PCE in groundwater at this well in the first sampling event were 20 mg/L and 47 mg/L, respectively, in August 2022. These levels in groundwater indicate that DNAPL is potentially present. This well was sampled most recently in December 2022, with TCE and PCE detected at lower levels (6.8 mg/L and 5.8 mg/L, respectively). Both sets of results have been incorporated into the solubility calculations. However, this well has only been sampled twice, with results that varied by almost an order of magnitude. Therefore, conclusions regarding conditions in the overburden in this area are limited and require additional monitoring.

In bedrock on the western side of Building 5, sampling data from bedrock wells OB-45-BR and OB-54-BR suggest the potential for DNAPL to be present in fractures. The results of bedrock assessment of well OB-45-BR indicates that there are only limited water bearing fractures present in bedrock at this location, suggesting limited potential for migration.

To the north of OB45-BR, at recently installed well OB54-BR and as shown on **Figure 6-8**, groundwater data indicated a TCE level that also suggests that DNAPL is potentially present in the fractures at this well. However, this well has only been sampled twice. Therefore, conclusions regarding conditions in bedrock groundwater at OB54-BR are limited and require further evaluation.

Except for well OB45-BR and OB54-BR, groundwater data from overburden and bedrock wells on the downgradient side of Building 5 do not indicate elevated levels of VOCs. This indicates that, if DNAPL is present, its extent is limited. Additional assessment will be conducted prior to remediation of this area to determine if the elevated VOC concentrations in OB54-BR are connected to OB45-BR.

6.4 VOCs in Surface Water and Sediment

The Unnamed Stream flows through Varian's former facility property, and Stream A flows on the western side of the Site area. Both streams generally flow from north to south. The two streams converge at the southern part of the Site at 39 Tozer Road. On the northern side of the Site, both streams have little (less than 50 gpm) flow. Moving downstream, both streams increase in base flow (i.e., stream flow not directly associated with precipitation events). This increase in baseflow is attributed to groundwater discharge into

both streams directly, or indirectly via building footing drains and a stormwater line originating from the Brimbal Avenue area, Tozer Road, and various properties. The current nature and extent of VOCs in surface water and sediment was evaluated using surface water and sediment samples collected from Stream A and the Unnamed Stream in March, May, September, and/or November 2021 and as previously reported. The sampling locations are listed below and include three locations (GDS-01, GDS-02, and GDS-03) where groundwater appears to be discharging to Stream A. Sample locations are listed below and depicted on **Figure 6-10**.

SURFACE WATER AND SEDIMENT SAMPLES 2021				
SAMPLE ID	MEDIA SAMPLED	SAMPLE LOCATION		
GDS-01	GW	Stream A, Sonning Road		
GDS-02	GW	Stream A, Sonning Road		
GDS-03	GW	Stream A, Patton Park Field		
STR-1	SED	Unnamed Stream, 150 Sohier Road		
STR-2	SW	Unnamed Stream, 30 Tozer Road		
STR-3	SW	Unnamed Stream, 150 Sohier Road		
STR-5	SW	Unnamed Stream, 30 Tozer Road		
STR-11	SW/SED	Stream A, Hill Street		
STR-14	SW	Stream A, Lexington Drive		
STR-17	SW	Stream A, 39 Tozer Road		
STR-18	SW/SED	Stream A, Hill Street		
STR-19	SW/SED	Stream A, Patton Park Field		
STR-20	SW/SED	Stream A, Sonning Road		
STR-21	SW/SED	Stream A, Sonning Road		
STR-22	SED	Unnamed Stream, 16 Tozer Road		
STR-24	SED	Unnamed Stream, Containment Pond		
STR-26	SED	Unnamed Stream, 32 Tozer Road		
STR-27	SED	Unnamed Stream, 39 Tozer Road		
STR-28	SW/SED	Unnamed Stream, Kittredge Street		
STRHA-02	SW	Unnamed Stream, 30 Tozer Road		
STRHA-04	SW	Unnamed Stream, 32 Tozer Road		
STRHA-07A	SW	Stream A, 39 Tozer Road		
STRHA-07B	SW	Unnamed Stream, 39 Tozer Road		
STRHA-08	SW/SED	Unnamed Stream, Russell Street		
STRMH-02	SW	Unnamed Stream, 30 Tozer Road		
STRM-A-SCDS	SW/SED	Stream A, Patton Park Field		
UNNAMED STREAM	SW	Unnamed Stream, 150 Sohier Road		
UPSTREAM-SED	SED	Unnamed Stream, 150 Sohier Road		
DOWNSTREAM-SED	SED	Unnamed Stream, 150 Sohier Road		
MIDSTREAM-SED	SED	Unnamed Stream, 150 Sohier Road		
CULVERT OUTFALL	SW	Stream A, 39 Tozer Road		

Notes: GW = groundwater sampled; SW = surface water sampled; SED = sediment sampled

Samples collected in March, May, September, and/or November 2021

6.4.1 VOCs in Sediment

The nature and current extent of VOCs in sediment was evaluated using sediment samples collected in 2021 from 16 locations, including ten from the Unnamed Stream and six from Stream A. Analytical results for these samples are presented on **Figure 6-11**. Results of these samples are summarized in **Table 6-4**.

Analytical results for the sediment samples collected from the Unnamed Stream indicate VOCs were only detected in three locations, including two in the northeast corner of the facility property. VOCs including TCE, PCE, and *cis*-1,2-DCE, were present in samples collected at UPSTREAM_SED and MIDSTREAM_SED sampling locations at total VOC concentrations of 11.23 mg/kg and 12 mg/kg, respectively. No VOCs were detected in samples collected immediately downstream of these locations (DOWNSTREAM_SED). No VOCs were detected upstream of these locations including a sample collected north of Route 128 (STR-22) and a sample collected from a retention pond across Sohier Road (STR-24). A low concentration (1.1 mg/kg) was detected in a sediment sample (STR-26) located adjacent to Tozer Road south of the 32 Tozer Road property. Based on these results, the VOC extent in the Unnamed Stream is characterized by limited impacts to sediment in the northeast corner of the facility where historical discharges from the facility to the stream likely impacted the sediments the greatest. However, the majority of the residual VOCs in sediment in this area would have vaporized over the years as they were exposed to variable weather conditions. The downstream extent of VOC impacts to sediment in the Unnamed Stream is defined by non-detect results at STR-27.

Analytical results for sediment samples collected from Stream A indicate that VOCs were only detected at low concentrations in two samples (STR-19 and STR-11) at total VOC concentrations of 0.17 mg/kg and 0.48 mg/kg, respectively. Both locations where VOCs were detected are located near the Patton Park Field and directly downstream of a potential groundwater discharge point (GDS-03). VOCs detected in water samples from that potential discharge are likely the source of the trace VOCs in sediment in this isolated area of Stream A.

6.4.2 VOCs in Surface Water

The nature and extent of VOCs in surface water was evaluated using samples collected from 23 locations along Stream A and Unnamed Stream in March, May, September, and November 2021, with some locations sampled during multiple events. The VOC analytical results are summarized in **Table 3-11**. The primary VOCs detected in surface water include the COCs, TCE, PCE, and *cis*-1,2-DCE. The results for these compounds are posted on **Figure 6-12**, the most recent results posted for those locations sampled more than once in 2021.

As shown on **Figure 6-12**, analytical results for the samples collected from the Unnamed Stream indicate that only trace *cis*-1,2-DCE was detected in one surface water sample (STR-3) collected in the northeast corner of the facility property. At the six downstream locations, from the 30 Tozer Road property to the confluence with Stream A, TCE, PCE, and *Cis*-1,2-DCE were detected at low concentrations (ranging from 0.003 mg/L to 0.028 mg/L). The highest concentration (0.028 mg/L TCE) was detected at the confluence with Stream A (STRHA-7B). The two surface water samples (STRHA-8A and STR-28)

collected downgradient of the confluence of the Unnamed Stream and Stream A indicated low concentrations of TCE, PCE, and *Cis*-1,2-DCE, ranging from 0.002 mg/L to 0.01 mg/L. The downstream extent of VOCs is defined by historic sampling at STRHA-9 where VOCs were below or just at the analytical detection limit.

Analytical results for surface water samples collected from Stream A, indicate that none of the COCs were detected at the four samples collected from the upper portion of the stream in the Sonning Road area (**Figure 6-12**), including two locations where groundwater appears to be discharging to the stream (GDS-01 and GDS-02). The eight surface water sample locations at and downstream of Patton Park exhibited low concentrations of TCE, PCE, and *Cis*-1,2-DCE ranging from 0.002 mg/L to 0.019 mg/L. The highest concentration (0.019 mg/L *cis*-1,2-DCE) was detected at STR-18, a location at Hill Street, downstream from the potential groundwater discharge GDS-03. The water sample at GDS-03, which is located on the west bank of Stream A (opposite the Site) indicated concentrations of 0.061 mg/L for TCE, 0.003 mg/L for PCE, and 0.02 mg/L for *cis*-1,2-DCE, but that shallow well P-20R, also located west of Stream A, was non-detect for TCE (**Figure 3-3**), not the 0.061 mg/L in the seep. The TCE concentration in Stream A is relatively consistent flowing down stream to the confluence with the Unnamed Stream (ranging from 0.006 mg/L at four sample points to 0.013 mg/L at STRHA-7A). PCE is detected at similar low concentrations (0.002 to 0.003 mg/L) along the stream flow and *cis*-1,2-DCE exhibited higher concentrations along the mid-stream (0.011 to 0.02 mg/L) and decreased downstream (0.004 and 0.005 mg/L).

6.5 Conceptual Site Model

This section presents the current conceptual site model (CSM) based on historical and recent investigations, remedial efforts, and analytical data collected for the Site. The predominant groundwater transport mechanisms at Varian's former facility involve the transfer of VOCs in the soil to the groundwater as dissolved compounds. The dissolved chlorinated solvents (PCE, TCE, and 1,1,1-TCA) then begin to migrate by advection and dispersion. Along their migration pathways they undergo chemical degradation to DCE, DCA, VC, ethane, and ethene. In addition, remedial activities have reduced concentrations along the flow paths. These migration pathways and degradation processes are critical in the development of a CSM around which risk assessments and remediation approaches can be developed. The CSM addresses both surface and subsurface conditions that control the movement and occurrence of the COCs.

The essential elements of the Site conceptual model are as follows:

• The VOCs at 150 Sohier Road are the result of the historical use of chlorinated solvents at Varian's former facility. The primary compounds released at the facility are PCE and TCE, with a lesser amount of 1,1,1-TCA. These VOC releases resulted from historical manufacturing operations and former waste disposal practices. Daughter products from the breakdown of the VOCs released are also present at the Site. VOC releases appear to have occurred in PSL-5, PSL-6, and PSL-11. These PSLs are included in the Building 3 Source Area. Releases of VOCs appear to have occurred at PSL-7, which is referred to as the Building 5 Source Area.

Additionally, releases of VOCs appear to have occurred at PSL-10, primarily on the western property line near 32 Tozer Road. This location is referred to as the PSL-10 Source Area.

- Site wells, including those with the highest VOC concentrations, have been monitored for DNAPL with an interphase probe at least twice per year since the start of the comprehensive response action. This monitoring has not detected DNAPL in Site wells since 1997. Some wells in the Building 3 area exhibit concentrations of TCE or PCE exceeding 5% or 10% of solubility limits, suggesting that DNAPL may be present 40 to 60 feet below the building. Groundwater concentrations and persistent groundwater plumes suggest that DNAPL is or was present and has migrated into the deep overburden and potentially into fractured bedrock. Given the age of the DNAPL and lack of DNAPL presence in monitoring wells since 1997, DNAPL in the overburden is likely present residually in discontinuous ganglia or globules and not mobile, while any DNAPL that is present in bedrock is likely present in fractures, many of which are small and poorly connected to other fractures, thereby limiting DNAPL mobility. This residual solvent will slowly dissolve into the groundwater and provide a long-term source for VOCs in groundwater. This slow release from the soil is demonstrated in the slow decline in VOC concentrations in the source area following multiple rounds of treatment. As a result, these areas, including the area of Building 3, are identified as areas for future source treatment. One well bedrock well (OB45-BR) in the Building 5 area exhibits concentrations of TCE exceeding 5% of solubility limit, suggesting that DNAPL may be present 60 to 95 feet below grade. Geophysical data from OB45-BR indicates very little fracturing and low water flow from this area. This suggests that migration of VOCs from this area would be limited. TCE was also detected in well OB54-BR at concentrations up to 53 mg/L. Additional assessment will be conducted prior to the remediation of this area to determine if the elevated concentrations of TCE in OB54-BR are connected to OB45-BR.
- Based on the levels of VOCs present in the Building 3 Source Area and the Building 5 Source
 Area, additional remediation is warranted to limit potential downgradient migration of VOCs in
 groundwater. These two areas will be a focus of additional remediation at the Site. While the
 levels of VOCs present at PSL-10 are much lower than both Building 3 and 5, remediation may
 be conducted in that area to limit potential downgradient migration of VOCs in groundwater.
- The former Varian facility at 150 Sohier Road is located on a topographically elevated area. As a result, the dissolved plume is observed to migrate from the Building 3 Source Area with the predominant groundwater flow direction to the west, with some limited migration to the north. From the Building 5 Source Area, the predominant flow is to the northwest, then towards the west. The groundwater flow directions in both the shallow and deep overburden aquifers at the Site generally follow the topography. The groundwater flows in both the shallow and deep overburden aquifers downgradient of Varian's former facility and has horizontal components to the west and then to the south. A downward vertical flow gradient in both the Building 3 and Building 5 areas is also observed. At the eastern end of Hill Street and 39 Tozer Road, an upward vertical gradient is observed.

- The main physical properties of the chlorinated VOCs at the Site that affect their distribution and migration are density, solubility, and mobility. These compounds are denser than water and tend to sink in an aquifer. The compounds are relatively soluble and therefore are present in a dissolved-phase and are transported by groundwater. The potential mobility of these chemicals as reflected by their retardation coefficients indicates that in the overburden aquifer acts to limit migration. As a result, the VOCs migrate at a velocity slower than the groundwater flow.
- VOC migration is controlled by the permeability of the various hydrogeologic units at the Site. In the release areas, little horizontal spreading occurred through the overburden (till), as evidenced by the relatively small area of elevated groundwater concentrations in the shallow aquifer. The downward vertical gradient in both the Building 3 and Building 5 area likely also contributed to the relatively limited horizontal spread in the source areas. From the source area, VOCs migrated primarily to the west following the steep change in topography and the groundwater flow towards former Building 7 and Tozer Road. The transmissivity of the overburden hydrogeological unit is orders of magnitude higher than that of the bedrock unit, indicating that most groundwater flow, and thus VOC migration, occurs in the overburden aquifer. Some limited VOC migration occurred to the north, following the lesser groundwater flow component. An even more limited VOC transport also occurred just to the east of Building 3, even though there is a major bedrock depression to the east of the facility (near CL-1 cluster).
- Upon reaching Tozer Road, VOC transport continued to follow the regional groundwater flow direction, which in this area changes to become predominantly to the south. VOC migration in the Tozer Road area also shows the effect of the sand and gravel unit that runs approximately north/south in this area. This is particularly observed in the deep overburden isoconcentration map for TCE (Figure 6-6). This figure shows that VOCs migrated along this north-south axis along a sand and gravel deposit. This sand and gravel unit, coupled with the presence of the nearby groundwater divide, appears to have resulted in some VOC migration to the north in the area of OB-17-DO.
- In the source areas (areas of Buildings 3, 5, and PSL-10) and along the overburden flow path, some of the VOCs continued to migrate vertically downward through the fractures in the bedrock. Transport in the bedrock aquifer occurs through fractures. Observations made on the bedrock fracturing at the Site indicate that the sub-horizontal sheeting fractures in the granite represent the primary groundwater flow pathway in bedrock coupled with three groups of sub- vertical fractures trending N-S, ENE-WSW, and NNW-SSE and coincident with lineaments transecting the Site in like directions. The low transmissivity of the bedrock unit indicates that less contaminant migration occurs in this unit than in the overburden. While some bedrock at the Site indicates fracturing with water-bearing fractures, a few locations have limited observed fracturing and with little water present. Well OB45-BR is one location which indicates little fracturing and water flow. That location indicates some of the higher VOC concentrations in bedrock. However, the VOCs present in that area are likely trapped and have limited ability to migrate to downgradient areas. The potentiometric head in the bedrock aquifer generally follows flow directions seen in the overburden. However, because flow in the bedrock aquifer occurs along

fractures, the actual pathway that the groundwater travels cannot be determined on a microscale. The contours shown on **Figure 4-4**, therefore, only show the potential for groundwater flow in the bedrock aquifer.

- At Varian's former facility, residual VOCs in the vadose zone and dissolved phase VOCs in the groundwater beneath facility buildings in the Building 3 and Building 5 areas are likely the source of the TCE and PCE vapors detected in soil gas beneath the buildings. These vapors may have resulted in impacted indoor air in these buildings. However, the operation of the two SVE systems at the Site have provided treatment to the vadose zone and mitigated potential migration through the indoor air pathway.
- In downgradient areas on Tozer Road and the residential areas further to the west and south, results of indoor air testing have either not identified a Significant Risk or have shown that indoor air is not a significant pathway of concern. At the one location on Longview Drive where test results cannot rule out indoor air as a significant pathway of concern, additional assessment is planned, which will be used to implement potential mitigation measures. Shallow groundwater monitoring will continue in downgradient areas.
- A portion of the Unnamed Stream located at the northeast corner of Varian's former facility
 received wastewater discharges containing VOCs from the former Building 3 laboratory. While
 historical discharges to the stream likely impacted sediments, current data suggests that only
 limited VOC impacts remain due to the volatility of the chemicals. The majority of any residual
 VOCs in sediment would have volatilized over the years as they were exposed to variable
 weather conditions.
- There are two small streams within the Site area: the Unnamed Stream and Stream A. Both streams generally flow from north to south and, moving downstream, both streams increase in base flow (i.e., stream flow not directly associated with precipitation events). This increase is attributed to groundwater discharge into both streams directly, or indirectly via building footing drains and stormwater lines originating from Brimbal Avenue to the east and Tozer Road.
- Several VOCs have been detected in surface water samples, with PCE and TCE being the two
 chemicals most commonly detected. As discussed in the January 2022 ROS Report, VOC
 concentrations in surface water samples collected in 2021 remained relatively consistent or
 decreased, when compared with historical results. A likely source of the VOCs identified in both
 streams is the discharge of groundwater containing VOCs either from 150 Sohier Road or a
 non-Varian source.
- The 2000 Phase II CSA concluded that shallow groundwater VOC contamination that was detected at the 31 Tozer Road Properties was likely the result of impacts associated with the former location of the Unnamed Stream. This stream was historically located along the current location of Tozer Road, adjacent to 31 Tozer Road. Shallow overburden impacts in this area could be the result of historical discharges to the Unnamed Stream that were transported down

the hill from the former Varian facility, dissolved in stream water, and settled in this area as the stream flowed through a former highly vegetated area (as observed in historical aerial photographs). These VOC impacts have been remediated, and only low levels of VOCs are detected in isolated regions of this downgradient location. However, subsequent data indicates that a component of the shallow impacts at 31 Tozer Road may also be the result of the upward vertical gradient noted at 31 Tozer Road and 39 Tozer Road. That said, shallow treatment conducted at 31 Tozer Road in 2002 and 2003 reduced VOC concentrations in the shallow overburden groundwater in this area. VOC concentrations at 31 Tozer Road in 2022 remain well below pretreatment levels (e.g.,>85% reduction in TCE at shallow well AP15-S). It should be noted that permanganate treatment was not conducted at well AP15-S, indicating upgradient treatment at 31 Tozer Road has resulted in the decreased concentrations of VOCs.

• Remediation activities conducted over the past 20 years are summarized in Sections 3.1 and 3.2. As documented in trend graphs provided in prior ROS reports, those activities have reduced VOC concentrations in some source areas as well as downgradient areas. This has resulted in a much-reduced VOC plume extent in the shallow overburden and bedrock aquifers. Less of a reduction is noted in the deep overburden. Residual VOCs in groundwater in the Building 3 area and to a lesser extent at Building 5 area remain. Significant effort has been made to assess areas beneath both the Building 3 complex and Building 5. However, the building structures limit access and create uncertainty regarding the delineation and extent of VOC impacts.

7.0 EXPOSURE ASSESSMENT AND RISK CHARACTERIZATION [310 CMR 40.0825(4)(g) and h)]

A characterization of the risk of harm to human health, safety, public welfare, and the environment is required as part of a Phase II CSA under the MCP. This risk characterization has been conducted for the former Varian site, as described in previous sections, in accordance with 310 CMR 40.0900, and associated MassDEP guidance.

This risk assessment was conducted using a Method 3 approach, as specified in 310 CMR 40.0942(3). The MCP allows for Method 3 to be conducted at any site. This Method uses existing standards, Upper Concentrations Limits in soil and groundwater, quantitative estimates of cancer and non-cancer risks to human health, and quantitative or qualitative evaluations of risk to public welfare, safety, and the environment.

The human health risk assessment includes the following components:

- Identification of the contaminants present at the site and COCs (Hazard Identification)
- Identification of current and foreseeable use of the site, identification of receptors who may
 be exposed currently or in the future, identification of exposure pathways, identification of soil
 and groundwater categories, identification of locations or areas where exposure may occur
 (exposure points), and identification of exposure point concentrations (Exposure

Assessment)

- Identification of toxicity values to be used in the risk characterization (Dose Response Evaluation)
- Development of exposure and cumulative risk/hazard estimates for each receptor and comparison to MCP Risk Limits, and comparison of site concentrations to applicable or suitably analogous standards (Risk Characterization)

In order to evaluate the risk of harm to public welfare and the environment, a Method 3 risk characterization combines site-specific information on contaminant distribution, contaminant toxicity, and receptor exposure in a site-specific assessment of the risk of harm to both public welfare and the environment (habitats and biota) from the OHM at this site, and compares the concentrations in the environmental media to the applicable or suitably analogous standards and to the Upper Concentration Limits (UCLs) specified in the MCP. For evaluations of the risk of harm to public welfare, the Method 3 evaluation considers the potential for nuisance conditions (310 CMR 40.0994(4)(a)) or adverse impacts to the community (310 CMR 40.0994(2)) to exist currently or in the future. A level of No Significant Risk of harm to public welfare exists or has been achieved if no nuisance conditions exist or will result from the release or threat of release of OHM, and soil and groundwater concentrations and LNAPL thicknesses are less than the UCLs. In addition to the comparison of soil and groundwater concentrations to UCLs, a Stage I Environmental Screening is conducted as part of a Method 3 environmental risk assessment in order to determine whether or not the site poses a significant risk to the environment, or whether a Stage II environmental risk assessment is necessary. The risk of harm to safety is characterized by comparing current and reasonably foreseeable conditions at the disposal site and in the surrounding environment to MCP criteria and applicable or suitably analogous safety standards. A level of No Significant Risk to safety exists or has been achieved if the conditions at the site, which are related to a release of OHM, do not currently and will not in the foreseeable future pose a threat of physical harm or bodily injury to people.

A discussion of the uncertainty associated with the evaluation of the risk to health, safety, public welfare, and the environment (uncertainty analysis), and a discussion of the conclusions are also presented.

7.1 Background

This Phase II Addendum has been prepared to provide an update to the original Phase II CSA submitted to the MassDEP in 2000 (IT, 2000a). The 2000 Phase II CSA was based on assessment investigations conducted between 1995 and 1998 and included a Method 3 risk characterization based on the understanding of the site at that time. This Phase II Addendum presents a characterization of *current site conditions*, including the nature and extent of VOCs, which were determined to be the primary OHM released at the Site, and provides an updated evaluation of risk based on the current site conditions.

The former Varian facility is described in Section 2.2.1 in terms of the locations and uses of various buildings. In addition, areas affected or potentially affected through groundwater or surface water migration include downgradient commercial buildings on Tozer Road and nearby residential areas

(Sonning Road, Jordan Road, Longview Drive, Longview Terrace, Hill Street, and Lexington Drive (see **Figure 1-2**).

7.2 Hazard Identification

Analytical laboratory and field data collected at the site and representative of current site conditions have been presented and discussed in detail in previous sections of this report, and include groundwater, soil, surface water, sediment, and indoor air. Extensive sampling of soil vapor was also conducted under site buildings, as well as downgradient commercial and residential buildings. Since indoor air data is available for almost all buildings evaluated, the soil vapor data is not discussed in this section as it is not an exposure medium except to evaluate whether indoor air concentrations could potentially result from vapor intrusion. This section identifies the constituents that were detected in the relevant media at the site. Multiple figures discussed in prior sections of this Phase II Addendum present the sampling locations for the site in soil, groundwater, surface water and sediment, and indoor air.

7.2.1 Chemicals Detected at the Site

7.2.1.1 Soil

Soil analytical data were collected from across the site in areas of potential concern from 1995 to the present. Table 7-1 provides summary statistics of the soil data collected at this site from 1995 to 2022. While some of this data represents older samples from areas where remedial actions have been conducted, and may not be indicative of current conditions, these data have been included as more recent data from these locations has not yet been collected. This table includes samples collected from all depths and locations that were not identified as upgradient or offsite. Most of these samples were collected from the former Varian facility, as this was the original source area. Some of these samples were collected from below the water table and are affected by dissolved VOCs in groundwaters. The table presents each constituent detected, the frequency of detection, the maximum concentration, the minimum concentration, and the average concentration. Where MassDEP (2002) has established a natural background concentration, this value is also shown in Table 7-1. Concentrations and frequency of detection of chemicals in soil were considered in identifying COCs in accordance with risk assessment guidance (MassDEP, 1995). Most of the VOCs were detected infrequently, with the exception of PCE, TCE, and cis-1,2-DCE, which were detected in 62, 39, and 13% of the samples, respectively. The 2000 Phase 2 CSA noted that the maximum concentration of PCE (1200 mg/kg) was detected in one sample collected from PSL-5 (B2-PSL5, 10-12 feet bgs) outside of Building 3 during the 1995 sampling. This sample was not, however, considered a discrete area of contamination because the results of an additional sample (B3-PSL5, 10-11 feet bgs) collected at the same depth in the same vicinity in 1999 did not verify the existence of a discrete area. The concentration detected in 1999 was significantly less (39 mg/kg). All detected VOCs in soil are identified as COCs except 1,1,1-TCA, which was only detected in 3 samples; 2-butanone, which was only detected in one sample; and bromomethane, which was only detected in one sample. The maximum concentrations of chemicals eliminated as COCs based on the low frequency of detection were well below the MCP S-1 direct contact standard, as shown in **Table 7-1**.

A number of metals were also detected, as shown in **Table 7-1**. Maximum concentrations of arsenic, cadmium, chromium, lead, mercury, and selenium were equal to or less than the natural background and

are not considered COCs for Varian. In addition, the maximum concentration for beryllium (detected in one sample), and nickel were slightly greater than the background concentration. As a result, neither are identified as contaminants of potential concern for the site. Average concentrations of both metals are well below established background concentrations. The maximum and average site concentrations of copper are both greater than the established background; however, copper is not identified as a COC. MassDEP has not established Method 1 Standards for this metal, and the Regional Screening Level established for copper by EPA (2022) is 310 mg/kg, three times the maximum detected concentration.

Table 7-1 does not include soil sample results collected from 32 Tozer Road/PSL10. These data are presented in **Table 6-3** and discussed in Section 6.1. This area will be considered as a potential exposure point in the risk characterization.

7.2.1.2 Groundwater

Groundwater samples have been collected from site monitoring wells since at least 1988. In order to provide a representation of current site groundwater conditions, this evaluation includes data collected from July 2020 to the present. There are varying numbers of rounds included for each sampling location. The most recent sampling was conducted in August 2022, which included a few newly installed wells, with the most recent comprehensive sampling completed in May 2022.

Table 7-2 provides a summary of statistics for groundwater data collected at the former Varian facility as well as downgradient areas from all depth intervals. It also includes shallow groundwater samples collected as grab samples at surface water discharge locations (GDS-01, 02, and 03). These statistics do not include upgradient locations or other locations determined not to be impacted by releases from Varian. Concentrations and frequency of detection of chemicals in groundwater were considered in identifying COCs in groundwater in accordance with risk assessment guidance (MassDEP, 1995). Chemicals with a low frequency of detection (less than three samples) were eliminated as COCs. In addition, chemicals with a low frequency of detection (< 10%) were eliminated as COCs if their maximum concentrations were low. Low concentrations were identified as being less than 10 times the Method 1 GW-1 standards, even though GW-1 standards are not applicable at this Site. This summary shows that cis-1,2-DCE, TCE, PCE, and vinyl chloride were the most frequently detected VOCs in groundwater at the site. Metals were infrequently sampled, and the three samples analyzed for arsenic, iron, and manganese were the groundwater discharge samples (GDS-01, 02, and 03), which are not representative of groundwater in general. Most other metals detected are considered essential nutrients (calcium, magnesium, potassium, sodium, and iron). Chloroform, benzene, and toluene were also eliminated as COCs in groundwater based on the lack of a historical source of this chemical, and the potential that other sources could be present.

7.2.1.3 Surface Water and Sediment

Surface water and sediment have been collected historically in the area of the Varian Site; however, a comprehensive sampling program was undertaken in 2021, and sampling continued in 2022 in both Stream A and the Unnamed Stream. This investigation and results of the risk characterization for human health and the environment are presented in **Appendix F** of the January to June 2021 ROS Status Report (APTIM, 2021d). As a result, this information will only be discussed as a summary in this report.

The sampling locations are shown in **Figures 6-11** and **6-12**. No additional sediment data have been collected since this time. Surface water in Stream A and the Unnamed Stream was subsequently sampled in September and November 2021 as well as May 2022. These data are presented in **Table 3-11** and discussed in Section 6.4.2. Since the more recent data on surface water collected is similar to the March and May 2021 data used in the risk assessment included in the ROS report, this evaluation will not be updated in this report.

7.2.1.4 Indoor Air

Indoor air data has been collected from numerous buildings on the former Varian property, downgradient commercial buildings on Tozer Road, as well as in residential buildings. These data have been evaluated in detail with consideration of associated soil vapor data, as well as nearby shallow groundwater data, to determine if the vapor intrusion exposure pathways are complete. Discussion of these results for three areas are provided: former Varian facility buildings, Tozer Road commercial buildings, and downgradient residential buildings.

Former Varian Facility Buildings

Complete pathways have been identified in Building 3 and Building 5 that have resulted in the implementation of remedial measures in these areas, as described in Section 3.3. Indoor air data from recent sampling for Building 3 is provided in Table 3-13 and soil vapor data is provided in Table 3-14. Indoor air data for Building 5 has been reported in ROS Status reports, with the most recent data being October 2021 (APTIM, 2022a). The data used in this evaluation for Building 3 are the samples collected in March, June, September, and December 2021. While indoor air samples were collected during 2022, these results were not used in the risk characterization because they were collected during an approximate six-month shutdown, after which the system was turned on due to increasing concentrations in indoor air. As a result, the 2022 indoor air samples are not representative of site conditions over time. The most recent Building 5 indoor air samples were collected in August 2019, April 2020, July 2020, and October 2021. Sampling conducted during the Building 3 and Building 5 events occurred during a twoweek shutdown of the site systems, which were otherwise operating. The summary statistics for indoor air at these former Varian facility buildings is provided in Table 7-3. In order to identify COCs for former facility buildings, soil vapor results were considered, and the table either indicates that the VOC was not detected in soil vapor or shows the maximum detected concentration in soil vapor over the time frame evaluated for indoor air. Indoor air COCs for former Varian Buildings are identified if there are concentrations in indoor air similar to or less than those detected in soil vapor. TCE, PCE, and cis-1,2-DCE were identified as COCs in the indoor air of the former facility buildings.

Tozer Road Commercial Buildings

Indoor air has been sampled at the following locations, with the data included as shown:

- 28 Tozer Road (sampled only in December 2020 by MassDEP)
- 30 Tozer Road (samples included are MassDEP in December 2020, and sampling conducted in April 2021 and December 2021)
- 31 Tozer Road (all samples available are included March 2021 and December 2021)

- 32 Tozer Road (most recent samples included October 2014 and April 2015)
- 39 Tozer Road (all samples available are included March 2021 and January 2022).

The results from the December 2021 indoor air sampling of 30 Tozer Road and 31 Tozer Road and the results from the January 2022 of 39 Tozer Road are shown in **Table 3-2.** The summary statistics for all Tozer Road samples described above is provided in **Table 7-4.** Of the chemicals that are also associated with the Varian site groundwater, PCE, TCE, and cis-1,2-DCE are the most frequently detected. Each of the above buildings are discussed below:

27 Tozer Road – Soil vapor samples were collected at this property in February 2019 and May 2021. The most recent samples were reported in the January – June 2021 ROS Status Report (APTIM, 2021d). Permission to sample indoor air was not provided by the owner. No soil vapor results exceeded screening values, and it was concluded that vapor intrusion was not a significant pathway at this location.

28 Tozer Road – Indoor air samples were collected by MassDEP at this location in December 2020. PCE was the only VOC detected, at a maximum concentration of 0.81 μg/m³. MassDEP concluded, based on a comparison to the Residential TV of 1.4 μg/m³, that a vapor intrusion pathway of concern was unlikely to be present. These results were reported in Appendix G of the July – December 2020 ROS Status report (APTIM, 2021b).

30 Tozer Road – One indoor air sample was collected by MassDEP in December 2020, and three samples in both April and December 2021. These results were reported in Appendix G of the July – December 2020 ROS Status report (APTIM, 2021b) and the August 2021 ROS report (APTIM, 2021d). The December 2021 results are reported in **Table 3-2** of this report. The compounds 1,3,5-trimethylbenzene, 2-butanone, acetone, benzene, carbon tetrachloride, ethylbenzene, xylenes, styrene, and toluene were detected but are likely to be attributable to indoor air sources. In addition, VOCs that are also associated with the Varian site groundwater were detected, as shown below, compared to commercial/industrial (C/I) TVs.

Chemicals Detected – 30 Tozer Road	Maximum Detected Concentration (μg/m³)	C/I TV (μg/m³)
cis-1,2-DCE	0.079	5.3
PCE	0.98	4.1
trans-1,2-DCE	0.484	53
TCE	1.1	1.8

MassDEP concluded that a vapor intrusion pathway was identified in this building, but indoor air does not pose a significant risk to health. Subsequent sampling showed lower concentrations than those detected in the December 2020 sampling, so their conclusion is still valid. It should be noted that a sub-slab depressurization system is operated at this location.

31 Tozer Road – Indoor air samples were collected in March and December 2021 at four locations. The March 2021 results were reported in the August 2021 ROS Report (APTIM, 2021a). The December 2021

results are reported in **Table 3-2** of this report. As reported for 30 Tozer Road, a number of chemicals were detected in indoor air that were not likely attributable to Varian releases (acetone, benzene, carbon tetrachloride, chlorobenzene, ethylbenzene, styrene, xylenes, and toluene). VOCs that are also associated with the Varian site groundwater are shown below compared to C/I TVs.

Chemicals Detected –	Maximum Detected	C/I TV (µg/m³)
31 Tozer Road	Concentration (µg/m³)	
cis-1,2-DCE	0.081	5.3
PCE	0.814	4.1
TCE	0.656	1.8

While cis-1,2-DCE was not detected in sub-slab vapor in either round, PCE and TCE were, suggesting that a vapor intrusion pathway may be complete. However, the above comparison shows that indoor air does not pose a significant risk to health.

32 Tozer Road – Indoor air samples were collected at 32 Tozer Road at three locations in various rounds from 2013 to 2015. An evaluation of four rounds of data was completed and presented in the April to September ROS Report (CB&I, 2014). This evaluation concluded that a condition of No Significant risk existed at this property and also noted that the TCE concentrations in indoor air at 32 Tozer Road have consistently been less than 8 μg/m³, which MassDEP has specified as the long-term remediation target for situations where workplace indoor air has been impacted by vapor intrusion to be protective of developmental toxicity as well as other potential effects. In the two most recent rounds (October 2014 and April 2015), cis-1,2-DCE was detected at similar concentrations to the earlier rounds. However, PCE was detected at lower concentrations, and TCE was not detected. Therefore, the conclusions regarding 32 Tozer Road from the earlier sampling are still valid,

39 Tozer Road - Indoor air samples were collected at 39 Tozer Road at three locations in March 2021 and January 2022. The March 2021 results were reported in the August 2021 ROS Report (APTIM, 2021a). In the first round, TCE was detected at low concentrations in all indoor air samples collected. In one sample, 39-TOZ-01, TCE was detected at 1.96 μg/m³, which is above MassDEP's C/I TV of 1.8 µg/m³. However, a review of chemicals in that part of the building indicated the presence of a background source of TCE (ZEP Power Solv), which contains this compound. Additionally, the concentration of TCE detected in soil vapor beneath this portion of the building was much less than the MassDEP soil vapor screening value, indicating that vapor intrusion into the building is not likely, although soil vapor concentrations in one of the other sub-slab locations was greater than the sub-slab screening level (486 μg/m³ at 39-TOZ-SV02). Concentrations of cis-1,2-DCE and PCE were also greater than other rounds in this sampling event and location, but did not exceed the C/I TV. PCE concentrations for all the indoor air samples were below MassDEP's C/I TV for indoor workplaces of 4.1 µg/m³. Other VOCs detected were 2butanone, acetone, benzene, carbon tetrachloride, chloroform, ethylbenzene, naphthalene, styrene, toluene, trans-1,2-DCE, and xylenes were not identified as COCs because other sources were identified, the VOC was not a COC in groundwater or indoor air of former Varian buildings, or because all concentrations were less than the C/I TV. The recommendation from this round was to remove the background source of TCE and resample. The next sampling round was conducted in January 2022 (see

results in **Tables 3-2** and **3-3**). Sub-slab vapor concentrations were all well below C/I sub-slab screening levels, including PCE and TCE. In particular, the TCE concentration at 39-TOZ-SV02 was $0.473~\mu g/m^3$, substantially lower than that reported in March 2021. However, indoor air concentrations of TCE were all greater than the C/I TV of $1.8~\mu g/m^3$, ranging from $1.9~to~3.17~\mu g/m^3$. No explanation has been identified for the higher sub-slab vapor concentration of TCE in March 2021 compared to January 2022 at 39-TOZ-SV02. The indoor air concentrations are more similar at the different locations and rounds, although concentrations appear to be higher in the January 2022 rounds, however, this is not associated with a corresponding increase in the sub-slab vapor concentrations. Varian is currently coordinating access to this building to collect a third round of soil vapor and indoor air samples.

Based on the above discussions regarding Tozer Road Buildings, no further evaluation of indoor air for these buildings is included in this risk characterization. Sampling and evaluations for most of these buildings has shown that either a vapor intrusion pathway is not complete, or it is potentially complete but does not pose an unacceptable health risk. Additional sampling at 39 Tozer Road is planned to resolve discrepancies in previous sampling results (indoor source, and conflicting sub-slab vapor and indoor air results).

Residential Buildings

Indoor air in a number of residential buildings has been sampled in recent years, starting in 2020. During the week of December 7, 2020, MassDEP collected indoor air grab samples at 47 residential homes. These included homes on Sonning Road, Longview Drive, Longview Terrace, Lexington Drive, Jordan Street, Tudor Road, Windsor Road, and Wendgail Court. The sampling was completed in order to supplement and update previous information and data on indoor air quality, and in response to concerns expressed by neighborhood residents and city officials. Based on the data collected, MassDEP determined that there is no evidence that contaminants from the Varian site are impacting any of the 47 homes that were sampled (MassDEP, 2020). However, 24-hour testing was conducted at a subset of the homes to provide further assurance that there are no impacts to homes from the Site. Subsequent sampling was conducted at some locations by APTIM. **Table 7-5** summarizes the results of these investigations and provides the references for the data.

Of all the residential homes tested, the only one in which a potentially complete vapor intrusion pathway was identified was 34 Longview Drive. As discussed in Section, 3.3.1, an IRA has been initiated at this property to confirm whether indoor air conditions are a result of a complete vapor intrusion pathway, and if so, to determine the degree of hazard associated with this condition, as described in the IRA Plan (APTIM, 2022b). Three rounds of data were collected at the time of the IRA Plan. Those data were used to complete an Imminent Hazard Evaluation included in the IRA Plan, in accordance with 310 CMR40.0950. The cumulative risk (using maximum detected concentrations and an exposure period of 5 years to evaluate an imminent hazard) is 6.2E-07, less than 10% of the imminent hazard criterion for cancer risk of 1E-05. The estimated Hazard Index is 0.53, primarily due to the presence of TCE, which is less than the Imminent Hazard limit of 1 for chemicals, such as TCE, with the potential to cause serious effects following short-term exposures. In addition, MassDEP (2014) has established in IH Level for TCE in residential settings of 6 µg/m³ and all detected concentrations of TCE in indoor air are less than this level. As a result, the conditions at 34 Longview Drive do not pose an IH in accordance with the criteria

described in 310 CMR40.0955(1) through (3). The IRA Plan included the collection of sub-slab vapor and indoor air samples at 34 Longview Drive on a quarterly basis, including the sampling of sump water if present. The indoor air and sub-slab vapor results from this location are provided in **Tables 3-15** and **3-16**, respectively. Based on the last four rounds of data (November 2021 to July 2022), a complete vapor intrusion pathway cannot be ruled out, and this location will be included in the risk characterization. Concentrations of both PCE and TCE exceeded their residential TVs in one or more samples and are considered COCs. As discussed in section 6.2.1, the TCE source in the Longview Drive area is not certain. The compound cis-1,2-DCE was detected, but concentrations were well below the TVs, and sub-slab vapor results were well below screening values. Therefore, this compound is not considered a COC for indoor air at this location. A complete vapor intrusion pathway was not identified for any of the other VOCs detected in indoor air.

7.2.2 Selection of COCs

The MCP requires that all chemicals detected at a site be considered as COCs unless there is a specific, justifiable rationale for eliminating them from the risk characterization. The rationale for exclusion may include such considerations as laboratory contamination, low frequency of detection, and site-specific background concentrations (MADEP, 1995). **Table 7-6** provides a summary of the COCs identified. Previous sections provide the basis for inclusion/exclusion.

7.3 Exposure Assessment

Under the MCP (310 CMR 40.0920), exposure assessment is the process of identifying potential human and environmental receptors at the site based on site activities and uses and characterizing the nature of their contact with OHM detected on site. The MCP requires the identification of receptors, site activities and uses, exposure points, and exposure point concentrations.

7.3.1 Current and Foreseeable Future Use of the Site

As discussed in *Section 2.2.1*, the Site currently has a wide variety of uses, including industrial/ commercial use in the area of the former Varian Facility and nearby Tozer Road locations. In addition, the site includes areas used for recreational, educational, and residential use.

In terms of the current use of groundwater, the site and surrounding properties are supplied by municipal water. Based on all information available, there are no private drinking water wells known to exist within 500 feet of the disposal site. According to an online review of the MassDEP GIS mapping system, there are no areas of critical environmental concern, sole source aquifers, potentially productive aquifers, or Zone II or interim wellhead protection areas within 500 feet of the disposal Site. Therefore, there is no current or foreseeable future use of groundwater for drinking water purposes at the site or in the immediate area.

7.3.2 Receptor Identification and Pathways of Exposure

A receptor is a group of persons, habitats, or biota that may potentially be exposed to contaminants at or from the site. Current receptors in the industrial/commercial areas of the site are site workers and utility workers. Trespassers are also possible receptors in these areas; however, their exposure is likely to be

less than full-time workers and will not be evaluated. Future receptors in these areas could include residents. Potential exposure to soil by future residents will be evaluated, but exposures to indoor air in future residential buildings cannot be evaluated based on the current data in industrial/commercial areas, as they are not representative of such future conditions. Current and future receptors in educational areas (28 Tozer) are teachers and students, as well as other staff, and current and future receptors in residential areas are residents. Current and future receptors in the PSL10 area are nearby residents and workers.

The exposure profiles developed for this site are summarized in **Table 7-7**, including the receptors, the medium, the exposure point, as well as the exposure route.

7.3.3 Soil and Groundwater Categories

7.3.3.1 Soil Categories Applicable at the Site

The soil at a site can be classified as S-1, S-2, or S-3 based upon the potential for human exposure to the soil (310 CMR 40.0933). Category S-1 soil represents the highest potential for exposure because it assumes the unrestricted use of the site (i.e., residential). Category S-3 soil represents the lowest potential for exposure. Specific criteria - frequency of use, intensity of use, and accessibility of the soil - have been established for each category (310 CMR 40.0933(4)). These criteria must be evaluated under both current and reasonably foreseeable future site activities and uses.

Soil impacts are identified in two areas of the Varian site:

- The former Varian facility. Impacts in these areas are located within soil located at the surface and to depths greater than 50 feet below grade. The surface of the former Varian facility is generally paved, covered by buildings, and unpaved areas are limited. Soil down to 15 feet deep under the pavement is considered potentially accessible. Soil down to 3 feet deep in the unpaved areas is considered accessible, and soil from 3 to 15 feet deep is considered potentially accessible. Soil deeper than 15 feet at the site or under the building is considered isolated. Children are unlikely to be present at the former Varian facility, and the frequency of use for adults is considered to be low. For facility workers, the intensity is considered to also be low; however, for landscapers, it could be high. As a result, accessible soil (unpaved 0-3 feet below grade) is categorized as S-2, and potentially accessible and isolated soil is categorized as S-3.
- The PSL10 As described in the Phase II CSA (IT, 2000a), the PSL10 is an area south of the Varian facility and the easter edge of the 32 Tozer Road property where waste liquids were reported to have been historically disposed of. This area was investigated as described in both the 2000 Phase II CSA and in this Phase II addendum (Section 6.1.3). Soil samples taken in PSL10 were relatively shallow. This area includes a grass field as well as paved and landscaped areas. This area could be used by children and could be at a high frequency and intensity at least during the summer months. As a result, soil from 0-3 feet in this area is considered S-1, and 3-15 feet is considered S-2.

The MCP (310 CMR 40.1012) requires that all soil to a depth of fifteen feet below grade at a site be evaluated as S-1 for unrestricted use unless an Activity and Use Limitation (AUL) is placed on the property. An AUL is a deed restriction that sets forth allowable uses for the site and restricts specific site uses. Since there is not an AUL in place, the soil between grade and 15 feet below grade is also classified as S-1 to address potential future changes in land use that could result in an increased frequency and intensity of use.

7.3.3.2 Groundwater Categories Applicable at the Site

Under the MCP (310 CMR 40.0932), there are three categories for groundwater (GW-1, GW-2, and GW-3), which can apply to a specified volume of groundwater or to an aquifer taken as a whole. These categories are based on current or potential exposure conditions as described below:

GW-1 applies to groundwater that is a current or potential source of drinking water.

GW-2 applies to groundwater considered to be a potential source of vapors that could migrate through the soil into the indoor air of buildings. This applies to groundwater that is less than 15 feet below grade and within 30 feet of an existing or planned building that is or will be occupied.

GW-3 applies to groundwater that is assumed to discharge to surface water. All groundwater in Massachusetts is classified as GW-3.

As discussed in Section 7.2.1, groundwater beneath the site does not meet the GW-1 criteria.

Groundwater at the Site is less than 15 feet below grade at most locations around Site buildings (the 150 Sohier Road facility and downgradient areas). As a result, groundwater in proximity to site buildings is considered GW-2.

Since all groundwater in the Commonwealth of Massachusetts is assumed to ultimately discharge to surface water, all groundwater at the site is classified as GW-3. Therefore, groundwater is classified as GW-2 (in a portion of the site) and GW-3 for the entire Site.

7.3.4 Exposure Point Locations and Concentrations

An exposure point is a location of potential contact between a receptor and COC identified at the site. Site-specific exposure points were identified to conservatively estimate the potential for receptors to contact OHM present in soil and groundwater.

For each chemical, the Exposure Point Concentration (EPC) is the concentration of hazardous material in a single medium with which a receptor may come into contact at that exposure point location. Hot spots are also considered for both soil and groundwater. Hot spots are defined as areas with average concentrations greater than 10 and less than 100 times the area around them unless the potential exposures are similar in both areas. In all cases, exposures are similar in potential hot spots as compared to the surrounding areas. As a result, for this evaluation, hot spots are defined as areas with concentrations more than 100 times those in the surrounding areas.

Hot spots were identified at the former Varian Facility for both soil and groundwater. The hot spots were identified by concentrations of TCE and PCE since they were the predominant compound with elevated concentrations. In soil, three hot spots were identified, Hotspot 1 is the Building 3 chemistry lab area, Hotspot 2 is the northeast corner of Building 3, and Hotspot 3 is the Building 5 area.

7.3.4.1 Soil

As discussed previously, soil contamination is largely confined to the former Varian facility and PSL10, which includes a portion of the 32 Tozer Road area. As a result, exposure points are defined for these two areas. In soil, three hot spots were identified, Hotspot 1 is the Building 3 chemistry lab area, Hotspot 2 is the northeast corner of Building 3, and Hotspot 3 is the Building 5 area. **Table 7-8** shows the samples included in the various soil hot spots, based on VOC concentrations greater than 100 mg/kg for Building 3, and 10 mg/kg for Building 5.

For current exposures, the exposure point is unpaved soils to a depth of three feet. This area is represented by the following three samples: AP-26-DO, B1-PSL5. B2-PSL5. Of these, the only detection was 1,1,1-trichlorethane at 0.065 mg/kg. This concentration is much lower than the Method 2 S-1 standard for this compound of 500 mg/kg. Due to the limited unpaved area and the unlikelihood that VOC concentrations would persist at this depth, as verified by the limited results, current risks to site workers associated with exposure to surface soils are not estimated but are assumed to be insignificant.

For the current soil exposure point for utility workers (0-6 feet below grade in the former Varian facility), the arithmetic mean soil concentration of each COC was used to represent the EPC (Table 7-9). In accordance with 310 CMR 40.0926(3), arithmetic means used as exposure point concentrations must be a conservative estimate of the average concentrations likely to be contacted by site receptors. Table 7-9 shows that the detection frequency for VOCs was low. Since a value of one-half the reporting limit is used in calculating the arithmetic mean concentration, the resultant mean is likely to be biased high. In addition, for these substances, the average concentration is no more than ten times less than the maximum concentration, indicating that the range of concentrations is relatively small. Based on these data characteristics, it is concluded that using the arithmetic mean for the current soil exposure point concentrations is a conservative estimate of the average exposure concentration. As shown in **Table 7-9**, the estimated EPCs for utility workers are less than 1 mg/kg for each COC. As a point of comparison, the Method 2 S-1 standards are included in Table 7-9, and the estimated EPCs are much lower than these standards, which are based on chronic exposure. The exposure frequency for this receptor is expected to be a matter of days and is unlikely to be repeated by the same receptor. This is considered an acute exposure. The Agency for Toxic Substances and Disease Registry (ATSDR, 2022) establishes Minimal Risk Levels for many chemicals. These levels are intended to provide an estimate of the amount of a chemical that a person can eat, drink, or breath each day without a detectable risk to health. They consider health effects other than cancer for acute exposures (about 1-14 days), intermediate exposures (from 15 to 364 days), and chronic exposure (greater than 364 days). For the COCs shown in Table 7-9, the acute minimum risk levels, when established, are not greater than those based on intermediate or chronic exposure. Therefore, the comparison of the EPCs to the Method 2 S-1 standard should provide a conservative evaluation of the acute exposures expected for utility workers. Based on this comparison, the exposures and risks to utility workers are not estimated but are assumed to be insignificant.

The current exposure point for PSL-10 is surface soil (0-3 feet). The 1995 and 1999 samples taken from this area were evaluated in 2000 CSA and risk characterization. It was concluded that COCs were not present in surface soils, and only very low concentrations of TCE, cis-1,2-DCE, and PCE were detected in the soil samples. As a result, this area was not considered an exposure point or evaluated in the 2000 risk characterization. However, additional sampling in this area was conducted in 2011, as discussed in Section 3.1, and shown in **Table 3-6**. This area is considered an exposure point, and will be evaluated in this risk characterization. Due to the small number of samples available, the maximum detected concentration of the COCs from **Table 3-6** is used as the exposure point concentration.

For future residents, site workers, and construction workers, the soil exposure point is defined as soil from the surface to 15 feet below grade, as there is no AUL currently in effect. This includes all samples shown in **Table 7-8** with depths of 15 feet or less. Since this is a future exposure and the site is assumed to be disturbed and redeveloped (since soil is now assumed to be accessible), the samples identified as hot spots are assumed to no longer be discrete areas. The arithmetic mean (**Table 7-10**) is used as the exposure point concentration for this exposure point, and these receptors will be evaluated in the risk characterization. These concentrations are considered representative of average exposures for the same reasons identified above for shallow soils. It should be noted that the maximum detected concentration of PCE of 1200 mg/kg is included in the EPC derivation even though this concentration was not verified by subsequent sampling, as discussed in Section 7.1.1.1. Additionally, significant remediation was conducted in the area of this sample after collection.

7.3.4.2 Groundwater

As discussed in Section 7.2.1, there is no direct exposure of human receptors to groundwater evaluated in this risk assessment. Future construction workers could be exposed to groundwater in areas where groundwater is at a depth of fewer than 15 feet. This would be dermal exposure (through the skin), which would be limited by clothing. Shallow groundwater samples are generally from 15 feet or less in depth and are used to evaluate this receptor. Groundwater Hot Spots have been identified in shallow overburden, deep overburden, and bedrock groundwater, based on current concentrations of TCE of approximately 0.1 mg/L or greater (see Figures 6-5, 6-6, and 6-7), respectively. Locations included in the groundwater evaluation for groundwater and hot spots in the three depth intervals are identified in Table 7-11. Samples identified as upgradient or offsite (not impacted by Varian releases) are not included in the site exposure point concentrations. Exposure point concentrations for shallow groundwater and the shallow groundwater hot spot are provided in Tables 7-12 and 7-13, respectively. For shallow groundwater, the area included is relatively small, and while it is not shown on Figure 6-5 to be completely contiguous, the areas with higher concentrations are in close proximity and were evaluated as a single hot spot. Average concentrations are used as the EPCs in both cases, calculated as described above for soil. In the case of groundwater, multiple samples were collected in most locations, with more sampling rounds conducted in areas where remedial systems are in place. Since these areas are likely to have higher concentrations, especially the earlier rounds, the inclusion of varying rounds in the averages biases the results high and results in a conservative estimate of potential exposure.

7.3.4.3 Indoor Air

Current and future users of the site buildings are potentially exposed to site contaminants via vapor intrusion and inhalation. Measured indoor air concentrations are used in all cases to evaluate current exposures. They are also used to evaluate future exposures in cases where the future use remains the same as the current use. However, future residential use in buildings that are now commercial or industrial cannot be evaluated with indoor air sampling results from the existing buildings. As discussed in Section 7.1.1.4, indoor air at the former Varian buildings and the residential location 34 Longview Drive are evaluated. Vapor intrusion at the Tozer Road commercial buildings has either been shown not to be a complete pathway, or has been demonstrated to pose no unacceptable risk to human health, with the exception of 39 Tozer Road. Additional sampling at this location is planned at this location to provide a better understanding of the vapor intrusion pathway. Of all the residential homes tested, the only one in which a potentially complete vapor intrusion pathway was identified was 34 Longview Drive, as discussed in Section 7.1.1.4. This location will be evaluated, and the EPCs will be based on the four most recent rounds of data collected. The EPCs are shown in **Table 7-14**.

In the case of Building 3 sample locations, each one is representative of a separate room. Site workers generally are assigned to specific duties such that they work in a particular room. As a result, EPCs for this building have been developed for each room separately using the rounds identified in Section 7.1.1.4. Bld 2-6 and Bld 3-3 are the locations sampled over the four rounds evaluated. These EPCs are provided in **Table 7-14**. The Building 5 EPCs include all locations, as the workers are not confined to any of these rooms. Locations 5-1 and 5-2 were sampled over the last four rounds in this building. The EPCs are based on all data for the different rooms conducted during the period identified in Section 7.1.1.4. These EPCs are also shown on **Table 7-14**. Since the remedial systems were operating at the time of sampling (except for the two-week period of sampling), the use of the EPCs based on this data for future conditions assumes that the systems will continue to operate.

7.3.5 Exposure Estimation

For this risk characterization, exposure and risk estimates were derived using available spreadsheets from MassDEP (short forms) and EPA (Regional Screening Level [RSL] Calculator to the extent possible. In general, information/assumptions included in these spreadsheets was retained unless it was clearly not applicable. The spreadsheets are provided in **Appendix M** and document the assumptions used. The equations used are provided at: https://www.epa.gov/risk/regional-screening-levels-rsls-equations in the case of the RSL Calculator, and in the short form documentation for each exposure point within the results provided in **Appendix M**. The assumptions used are provided in each spreadsheet in **Appendix M**.

7.3.5.1 Soil

Current soil exposures at the former Varian facility to site workers or utility workers were not estimated and are assumed to be insignificant based on limited area of exposure (for site workers) and low concentrations detected in soil that would be contacted by utility workers.

The only current soil exposure pathway evaluated is visitors exposed to soil at PSL10, including the grass field. The recreator is assumed to be a receptor that visits this area on a regular basis and has contact

with soil. Dermal contact and Ingestion exposures are assumed. The receptor was evaluated using the EPA RSL Calculator (Recreator) and is assumed to be exposed for 90 days per year (3 days per week for 30 weeks), similar to the MassDEP park visitor short form. Exposure is assumed to occur for 26 years from ages 2 to 28; exposure is not expected to occur for the 0-2-year-old in this setting. Other assumptions are provided in **Table M-1**. The Recreator Calculator also includes the evaluation of inhalation exposure; however, this pathway was not evaluated as it was assumed to be minimal for this exposure point. The exposure estimates are not shown specifically in the RSL spreadsheets, only the resultant cancer risks and non-cancer hazards (**Table M-2**), which will be discussed in Section 4.5.

Future soil exposures at the former Varian facility were evaluated for future residents and construction workers. Soil exposures to future site workers was not evaluated as they are assumed to be less than future residents. These exposures and risks were also developed using the EPA RSL Calculator for Residents and Construction Workers, respectively. Exposure for future residents is assumed to occur for 350 days per year for 16 years. Ingestion and dermal exposures are estimated, and other assumptions are provided in **Table M-3**. The Residential Soil Calculator also includes inhalation exposures, however the methods used are theoretical requiring numerous assumptions, and have not been included. This represents an uncertainty to the results for this receptor and pathway. The results are provided in **Table M-4**.

The future construction worker exposures to soil at the former Varian facility were also evaluated using the EPA RSL Calculator. Exposures for future construction workers were evaluated using the MassDEP Construction Worker ShortForm, including ingestion, dermal, and inhalation exposures. The Short Form was used rather than the RSL Calculator, as the method for estimating air concentrations in the short Form is based on assumptions described in MassDEP (2008), which describes methods for estimating exposure to soil particulates based on assumed particulate levels in air during construction activities. The EPA RSL Calculator estimates air concentrations based either on assumed traffic patterns at the construction site, or the derivation of particulate emission factors based on soil properties and the size of the source area. Given that the exposures are expected to occur in the future, there is little basis for any of these assumptions. As a result, the methods used by MassDEP are expected to be more realistic, and are used for evaluating this pathway. The construction worker exposure is assumed to occur over a six month period (182 days) for 5 days per week and 8 hours per day. Other assumptions are provided in **Tables M-5** though **M-9**.

7.3.5.2 Groundwater

As discussed in Section 7.2.4.2, construction workers are the only receptors with potential exposure to groundwater. The exposure points evaluated are the Groundwater Hot Spot area and the Groundwater Non-Hot Spot Area, for groundwater depths of 15 feet or less. Neither the MassDEP ShortForm nor the EPA RSL Calculator spreadsheets consider this type of groundwater exposure. Therefore, a site-specific spreadsheet was developed for this pathway, which includes the estimation of dermal and inhalation exposure. The methods used and associated spreadsheets are provided in Appendix M (**Tables M-10** to **M-13**. It should be noted that the methods used do not estimate inhalation exposures during construction activities that may result from volatilization from groundwater. This represents an uncertainty to the risk estimates developed.

7.3.5.3 Indoor Air

Indoor air exposures were estimated using the RSL Calculator for Current Workers in Buildings 3 and 5, as well as residents of 34 Longview Drive. The exposure points evaluated, and concentrations are discussed in Section 7.2.4.3. Site workers are assumed to be exposed for 25 years, 250 days per year, for 8 hours per day. Results for Bld 3-6, Bld 3-3, and Bld 5 are provided in **Tables M-14** through **M-17**.

Indoor Air exposures for 34 Longview Drive were also estimated using the RSL Calculator. They are assumed to be exposed for a total of 26 years, 350 days per year for 24 hours per day. Results for this Building are provided in **Tables M-18** and **M-19**.

7.4 Dose Response Assessment

The dose response assessment is a representation of the relationship between the dose of a constituent and the occurrence of adverse effects in the exposed populations. Carcinogenic effects (cancer-causing effects) are evaluated separately from non-carcinogenic effects. Carcinogenic effects are assumed to have no threshold (i.e., any level of exposure has an associated risk). However, adverse effects other than cancer are assumed to have a threshold (i.e., a level below which toxic effects are not expected to occur). For exposures via the ingestion and dermal exposure pathways, slope factors for carcinogens, and reference dose values (RfD) for toxic effects other than cancer (noncarcinogenic effects) are used. Toxicity values were obtained from the Integrated Risk Information system (IRIS – EPA 2022), MassDEP (2019). Toxicity values used for each pathway and receptor are provided in **Appendix M**.

Some cancer-causing chemicals operate by a mutagenic mode of action for carcinogenesis. Chemicals with a mutagenic mode of action would be expected to cause irreversible changes to DNA. As a result, these chemicals would likely exhibit a greater effect in early-life versus later-life exposure. EPA (2005) evaluated this issue and recommended adjustments reflecting the potential that early life exposures make a greater contribution to cancers appearing later in life.

The only COC which has been identified for early-life exposure (younger than 16 years) is TCE in soil for current receptors at PSL 10 and future residential receptors at the former Varian facility. When there is sufficient weight of evidence to conclude that a carcinogen operates through a mutagenic mode of action, and in absence of chemical-specific data on age-specific susceptibility, EPA (2005) advises that increased early-life susceptibility be assumed and recommends that default age-dependent adjustment factors (ADAF) be applied to adjust for this potential increased susceptibility from early-life exposure. In accordance with EPA (2005) guidance, the following ADAFs are recommended: 10 for ages 0 to 2 years, 3 for ages 2 to 16 years, and 1 (i.e., no adjustment) for 16 years and older. In the case of TCE, the inhalation unit risk and oral slope factor estimates are based on the lifetime risk of cancer at multiple sites, however, a mutagenic mode of action has only been established for one of these sites, the kidney (EPA, 2011). As a result, the results provided in **Appendix M** for soil exposure at PSL 10 and for future residential receptors at the former Varian facility reflect the addition of exposure adjusted by these ADAFs for which risk is evaluated using the cancer risk values based on the kidney endpoint.

7.5 Human Health Risk Characterization

This section presents estimates of risk for the relevant pathways and receptors at this site, as described in previous sections. Risks associated with exposures to chemicals associated with both non-cancer and cancer health effects are estimated.

7.5.1 Cumulative Non-Cancer Health Risks

In order to assess the potential for non-carcinogenic health effects (such as developmental, reproductive, neurobehavioral, and other physiological functions) to each receptor identified at this site, the estimated average daily dose (or exposure) received by such receptors and acceptable daily dose or exposure concentration for each chemical (the toxicity value; RfD) are compared. For each chemical, the ratio of the estimated exposure to the acceptable daily dose or exposure is defined as the Hazard Quotient (HQ). In order to account for exposures that a receptor may receive from multiple chemicals and exposure routes, the cumulative non-cancer risk estimate, known as the Hazard Index (HI), is calculated as the sum of the chemical-specific HQs for all exposure routes. As shown in the following two equations, the cumulative HI is calculated by summing the chemical-specific HQs for each route of exposure (Equation 1a); and then by summing the route-specific HIs (Equation 1b).

Equation 1a: Total $_{\text{HIroute-specific}} = \sum \text{HQ}_{\text{chemical-specific}}$ Equation 1b: Cumulative $\text{HI} = \sum \text{Total HI}_{\text{route-specific}}$

The cumulative HI is then compared with cumulative receptor non-cancer risk limit of 1 (310 CMR 40.0993(6)). If the HI is less than or equal to 1, a condition of no significant risk of harm to human health exists for the site (310 CMR 40.0993(7)). All risk and hazard estimates are provided in Appendix M, and a summary is provided in **Table 7-15**.

The total estimated non-cancer risks shown in these tables assume no difference in the toxic mechanisms of action between the constituents. While this is not the case, it was assumed in order to determine if additional refinement of the HI was necessary (i.e., separation of constituents by their toxic endpoint). The only receptor for which the MCP non-cancer limit is exceeded is future construction workers exposed to groundwater in the identified Hot Spot. As shown in **Table M-12**, this HI is primarily due to TCE. Therefore, a condition of No Significant Risk of harm has been demonstrated for current and most future site receptors site based on non-cancer health effects. However, a condition of No Significant Risk of harm has not been demonstrated for future construction workers exposure to groundwater in the Hot Spot locations.

7.5.2 Cumulative Cancer Risk

Some of the chemicals detected at this site are considered to be probable or known carcinogens by the oral or inhalation routes of exposure. For the ingestion and dermal pathways, the carcinogenic risk posed by these chemicals was estimated by multiplying the estimated daily intake for a given chemical and exposure route over a lifetime by the oral potency value for the chemical. A summary of cancer risk estimates is provided in **Table 7-15**.

The MCP (310 CMR 40.0993) requires that at multi-media disposal sites, the cumulative cancer risk be used to evaluate carcinogenic health risks. In determining whether a condition of No Significant Risk exists, the total Estimated Cancer Risk is compared to the Cumulative Cancer Risk Limit, which is an excess lifetime cancer risk of one-in-one hundred thousand (1 x 10⁻⁵, also expressed as 1E-05). The cumulative cancer risk estimates are summarized by receptor in **Table 7-15**, which are all less than the Cumulative Cancer Risk Limit. Therefore, a condition of No Significant Risk of harm to current and future site receptors exists at this site based on cancer health effects.

7.5.3 Comparison to Applicable or Suitably Analogous Standards

A Method 3 Risk Characterization requires the comparison of site concentrations to applicable or suitably analogous standards. The only applicable or suitably analogous standards for this site are OSHA Permissible Exposure Limits (PELs) for workers in the building. These values are shown in **Table 7-16**. No estimated indoor air concentrations exceed these standards.

7.6 Risk to Safety

The MCP requires that the risk of harm to safety be characterized based on information collected during the site investigations and the exposure information identified in this report. The MCP states the risk of harm to safety shall compare current and future foreseeable site conditions to applicable or suitably analogous health standards, if available. However, for this site, no applicable or suitable analogous safety standards were identified.

In 310 CMR 40.0960, the MCP has identified several additional criteria that need to be considered in the evaluation of safety, including:

- The presence of rusted or corroded drums or containers, open pits, lagoons, or other dangerous structures (310 CMR 40.0960(3)(a))
- The threat of fire or explosion (310 CMR 40.0960(3)(b))
- Uncontained material that exhibits the characteristics of corrosivity, reactivity, or flammability, as described in 310 CMR 40.0347

These materials and/or conditions were not observed during visits to the Varian site. Based upon the above evaluation, a condition of No Significant Risk of harm to safety exists at the site, because no threat of physical harm or bodily injury to people was observed at the site or within the surrounding area (310 CMR 40.0960).

7.7 Risk to Public Welfare

The characterization of the risk of harm to public welfare for current and foreseeable future site activities is presented in this section. The purpose of the characterization of risk to public welfare is to identify and evaluate nuisance conditions, which may be localized, and to identify and evaluate significant community effects. This is done by considering such factors as nuisance conditions, loss of active or passive property use, and non-pecuniary effects that may result from the degradation of public or private resources that are directly attributable to releases of OHM at this site (310 CMR 40.0094(2). In addition,

the risk of harm to public welfare is evaluated by comparing site concentrations of OHM to UCLs in soil and groundwater (310 CMR 40.0996). During numerous site visits, no odors or other nuisance conditions have been identified at the site. In addition, no other public welfare impacts on the surrounding community related to releases at the site have been identified in accordance with the criteria specified at 310 CMR 40.0994(4).

The soil and groundwater concentrations were compared to the appropriate UCLs in **Tables 7-16** to **7-25**. Hot spots were identified for evaluation of shallow, overburden, and bedrock areas of the site. For shallow groundwater, as discussed in Section 7.2.4, one hot spot was identified. For overburden, hot spots were identified for Building 3, Building 5, and downgradient areas, based on distributions of TCE concentrations shown in **Figure 6-6**, For bedrock, based on the distribution of TCE concentrations shown in **Figure 6-7**, one hot spot was identified. These tables present the following:

- **Table 7-16** presents the UCL evaluation for Varian Facility soils from 0-15 feet (including Hot Spot 1)
- Table 7-17 presents the UCL evaluation for Varian Facility soils in Hot Spot 2 greater than 15 feet
- Table 7-18 presents the UCL evaluation for Varian Facility soils in Hot Spot 3 greater than 15 feet
- Table 7-19 presents the UCL evaluation for Varian Facility soils greater than 15 feet (excluding Hot Spots).
- Table 7-20 presents the UCL evaluation for Varian Site shallow groundwater hot spot
- Table 7-21 presents the UCL evaluation for Varian Site shallow groundwater (excluding shallow hot spot)
- Table 7-22 presents the UCL evaluation for Building 3 deep overburden groundwater hot spot
- Table 7-23 presents the UCL evaluation for Building 5 deep overburden groundwater hot spot
- Table 7-24 presents the UCL evaluation for downgradient deep overburden groundwater hot spot
- Table 7-25 presents the UCL evaluation for Varian Site deep overburden groundwater (excluding deep overburden hot spots)
- Table 7-26 presents the UCL evaluation for Varian Site bedrock groundwater hotspot
- **Table 7-27** presents the UCL evaluation for Varian Site bedrock groundwater (excluding bedrock hot spot)

These tables show that no average or maximum concentration soil for hot spot or non-hot spot areas exceeded a UCL. No average or maximum concentration in shallow groundwater hot spot or non-spot areas exceeded a UCL. The maximum concentrations in the Building 3 deep overburden groundwater hot spot were greater than the UCLs for TCE and cis-1,2-DCE. In addition, maximum concentrations of vinyl chloride and cis-1,2-DCE were greater than the UCLs in the deep overburden non-hot spot area. The maximum concentration of TCE in the bedrock groundwater hot spot was greater than the UCL, as was the maximum concentration of TCE in the bedrock non hot spot area. However, no average concentrations in the deep overburden and bedrock hot spots and non-hot spots exceeded a UCL.

Based on the above evaluation, it can be concluded that a level of No Significant Risk of harm to public welfare and the environment has been achieved based on the consideration of UCLs.

7.8 Risk to the Environment

A comprehensive sampling program was undertaken in 2021, and sampling continued in 2022 in both Stream A and the Unnamed Stream. This investigation and results of the risk characterization for the environment are presented in **Appendix F** of the January to June 2021 ROS Status Report (APTIM, 2021d). This Stage I Screening of Stream A and the Unnamed Stream concluded that the potential pathways of exposure of environmental receptors to surface water and sediment do not pose a significant risk associated with releases from the former Varian Facility Site, and a Stage II Environmental Risk Characterization is not needed to further evaluate this pathway.

7.9 Uncertainty Analysis

The general approach used in this risk assessment has been to use conservative assumptions regarding exposure, so that potential risks will not be underestimated. Exposure point concentrations using arithmetic mean concentrations incorporate values of one-half the reporting limit for the majority of the values used in estimating mean concentrations. This could result in the overestimation of exposure point concentrations.

It is assumed that the concentrations in the site media are not changing over time. This is a conservative assumption as remedial activities have been conducted, and concentrations will likely continue to decrease. This conservative approach may result in an overestimation of the risk for the future receptors considered in this assessment, given that some of the chemicals detected may attenuate (e.g., dilution, biodegradation).

For the most part, arithmetic mean concentrations are used as exposure point concentrations. These are likely to overestimate exposure since sampling has focused on areas with higher concentrations. In addition, groundwater exposure point concentrations were determined by the inclusion of all sampling rounds during a given period. However, some locations have more sampling rounds than others within the period included, likely locations with higher concentrations. As a result, the groundwater exposure point concentrations may be biased high.

This risk characterization includes exposure pathways that are more difficult to estimate than others. Specifically, dermal contact with groundwater and soil pathways relies on assumptions about the extent and frequency of contact and the extent of transfer from the medium onto the skin and absorbed into the body. The assumptions regarding the extent and frequency of contact are likely to be overestimated, however, the extent of transfer and absorption may be over- or under-estimated. In addition, construction worker exposure to soil and groundwater could include inhalation exposures were the VOCs in these media to volatize during construction activity. These exposures are not estimated in this risk characterization due to the high uncertainty in the assumptions necessary. However, construction activities are assumed for depths up to 15 feet, and the highest concentrations in soil are typically found at greater depths.

Uncertainty exists in the toxicity values for each substance (EPA, 1989). Dose response relationships for most OHM are derived from animal studies using high doses. Exposure to humans occurs at low dose levels. The use of conservative high to low-dose extrapolation models as well as the assumption of linearity at low doses, may result in an overestimation of risk. In addition, extrapolating results of toxicity studies from animals to humans may introduce error and uncertainty, and may involve inadequate consideration of differences in absorption, pharmacokinetics, target organ systems, and variability in population sensitivity. Toxicity values are subject to change as new evidence becomes available, which may result in over- or underestimation of risk. The use of these values could over- or under-estimate risk.

8.0 CONCLUSIONS AND FINDINGS [310 CMR 40.0835(4)(I)]

- In 2000, Varian submitted an MCP Phase II CSA for the Former Varian facility located at 150 Sohier Road in Beverly, Massachusetts (IT, 2000a). This report documented the data and results of a comprehensive assessment of the site conducted from 1995 to 1999 to define the source, nature, and extent of the OHM releases at the property, including the investigation of 19 PSLs. Based on the 2000 Phase II CSA, remediation was recommended to address soil and groundwater impacts. Varian submitted a Phase IV Remedy Implementation Plan (Phase IV Plan; IT, 2001) in December 2001. Initial implementation of the Comprehensive Response Action, including injection of permanganate (a common oxidant), began in July 2002. Response actions at the Site continued under the MCP in ROS from 2002 through 2022. Semiannual ROS reports documented the cleanup activities at the Site. Activities included supplementing the cleanup plan with bioremediation and SVE, installation of multiple injection wells, and further assessment of source areas.
- In a letter dated February 18, 2022, MassDEP requested the completion of an amended Phase II CSA. MassDEP indicated that the 2000 Phase II CSA had not adequately assessed the extent of VOC impacts associated with the Site. These concerns were originally outlined in a January 2021 MassDEP report summarizing their evaluation of investigations, remedial activities, and response actions at the Site. In that January 2021 report, MassDEP concluded that some data gaps exist and requested further investigative work. In response, Varian issued a work plan dated February 9, 2021, that included additional well installation, surface water sampling, and sediment sampling activities. The February 2021 work plan was approved by MassDEP, with conditions, in a letter dated February 26, 2021. The results of those assessment activities and other information requested by MassDEP were presented in reports titled Vapor Intrusion Assessment Report dated April 29, 2021, Phase V ROS Report dated August 4, 2021, Building 3 and 5 Source Area Assessment Summary, dated June 30, 2021, and Summary of In-situ Chemical Oxidation and Soil vapor Extraction dated September 28, 2021. Subsequent sampling data were presented in the report titled Phase V Remedy Operation Status report, dated January 31, 2022. Information in those reports largely addressed MassDEP's concerns prior to the February 2022 letter.
- Information about historical industrial processes and subsurface analytical data from PSL investigations indicated that the COCs at the Site are chlorinated VOCs. TCE, PCE, and 1,1,1-TCA were the three primary chlorinated solvents historically used at Varian's former facility.

Eight COCs were identified for the Site, including the three parent compounds, TCE, PCE, 1,1,1-TCA, and five common degradation ("daughter") compounds, *cis*-1,2-DCE, *trans*-1,2-DCE, 1,1-DCA, and VC. Results of assessment activities conducted since the 2000 Phase II CSA have not identified additional COCs.

- Releases of VOCs appear to have occurred in PSL-5 (former Building 1 septic tank/leach field), PSL-6 (former septic tank/leach field beneath Building 6), and PSL-11 (Building 3 chemical laboratory). These PSLs are collectively referred to as the Building 3 Source Area. Releases of VOCs appear to have also occurred at PSL-7 (Building 5 chemical laboratory), which is referred to as the Building 5 Source Area. Additionally, releases of VOCs appear to have occurred at PSL-10 (open field), primarily on the western property line near 32 Tozer Road. This location is referred to as the PSL-10 Source Area. While assessment activities conducted since the 2000 Phase II CSA provide a better understanding of the release areas, no new release areas have been identified.
- Based on the levels of VOCs present in the Building 3 Source Area and the Building 5 Source
 Area, additional remediation is warranted to limit potential downgradient migration of VOCs in
 groundwater. These two areas will be a focus of additional remediation at the Site. While the
 levels of VOCs present at PSL-10 are much lower than both Building 3 and 5, remediation may
 be conducted in that area to limit potential downgradient migration of VOCs in groundwater.
- The results of the field investigations indicated that impacts to soil were predominantly at
 locations at 150 Sohier Road, Varian's former facility. Beyond Varian's former facility property,
 VOCs were present in groundwater, soil gas, and surface water samples. Results of assessment
 activities since the 2000 Phase II CSA continue to support those conclusions.
- A significant amount of additional investigation has been conducted since the 2000 Phase II CSA.
 Although this has developed more information about specific areas at the Site, none of the major conclusions regarding site geology and hydrogeology have changed since the 2000 Phase II CSA.

Site hydrogeology is characterized by the presence of two aquifers. The overburden aquifer is composed of unconsolidated sediments laid in glacial, post-glacial, and coastal depositional environments. The Site is typically underlain by dense till, sand and gravel, and silt and clay deposits. The bedrock aquifer is characterized by fractured granite and gabbro formations. The depths to bedrock between the overburden and the bedrock are highly variable throughout the Site.

In the shallow overburden aquifer, groundwater flows at variable rates in a general southerly to southwesterly direction toward the Bass River. The overburden aquifer discharges into the two local streams: the Unnamed Stream that transects the facility and Stream A, located further to the west of Varian's former facility. A component of groundwater flow from Varian's former facility is also to the north-northwest.

In the bedrock aquifer, groundwater flows through interconnected fractures and faults in directions generally similar to those of the overburden aquifer. The two aquifers are locally in communication. Transmissivity of the bedrock aquifer is orders of magnitude lower than the overburden aquifer, indicating most groundwater flow is in the overburden aquifer.

- The vertical hydraulic gradients within and between the aquifers can be summarized as follows.
 - Source Area Wells: Consistent downward gradients from the overburden to the bedrock (with 2 to 11 feet of head difference).
 - Central and Western Wells: Weak, inconsistent upward gradients within the overburden (up to 0.1 feet of head difference) accompanied by weak, inconsistent upward gradients from the bedrock to the overburden and within the bedrock.
 - Northern Wells: Consistent downward gradients in the overburden, sometimes strong, with up to 3 feet of head difference. The gradients between the bedrock and the overburden and within the bedrock do not exhibit a common pattern. Very strong upward (up to 4 feet of head difference) or very weak and inconsistently upward or downward (with 0.1 to 0.2 feet of head difference) vertical gradients have been observed.
 - Southern Wells: Overall weak and somewhat inconsistent downward gradients from the deep overburden to the bedrock and within the bedrock (0.1 to 0.2 feet of head difference). The exception to this is seen at BR-6 and BR-7 where there is a strong upward gradient from the upper bedrock to the overburden.
- Extensive sampling has been conducted to evaluate potential vapor infiltration into buildings at the 150 Sohier Road property, at commercial properties on Tozer Road, and in downgradient residential areas. At Varian's former facility, residual VOCs in the vadose zone and/or dissolved-phase VOCs in the groundwater beneath facility buildings in the Building 3 and Building 5 areas are likely the source of the TCE and PCE vapors detected in soil gas beneath the buildings. These vapors may have resulted in impacted indoor air in these buildings. However, the operation of the two SVE systems at the Site have provided treatment to the vadose zone and mitigated potential migration through the indoor air pathway. In downgradient areas on Tozer Road and the residential areas further to the west and south, results of extensive indoor air sampling have either not identified a Significant Risk or have shown that indoor air is not a significant pathway of concern. At the one location on Longview Drive and one location on Tozer Road where sampling results cannot rule out indoor air as a significant pathway of concern, additional sampling is planned. Mitigation measures are planned at the Longview Drive property. If warranted, mitigation measures may also be implemented at the Tozer Road property. Shallow groundwater monitoring will continue in downgradient areas.
- The 2000 Phase II CSA concluded that shallow groundwater VOC contamination detected at the 31 Tozer Road Properties was likely the result of impacts associated with the former location of the Unnamed Stream. However, subsequent data indicate that a component of the shallow impacts at 31 Tozer Road may also be the result of the upward vertical gradient noted at

- 31 Tozer Road and 39 Tozer Road. That said, shallow treatment conducted at 31 Tozer Road in 2002 and 2003 reduced VOC concentrations in the shallow overburden groundwater in this area. VOC concentrations at 31 Tozer Road in 2022 remain well below pretreatment levels (e.g., >85% reduction in TCE at shallow well AP15-S). It should be noted that permanganate injections were not conducted at well AP15-S, indicating upgradient treatment at 31 Tozer Road has resulted in the decreased concentrations of VOCs.
- The 2000 Phase II CSA concluded that DNAPL, as defined by the regulations at the time, was not present. The definition of nonaqueous phase liquid has changed since 2000 and the current MCP no longer defines it as a measurable thickness in a well. As outlined in a report titled Building 3 and 5 Source Area Assessment Summary, dated June 30, 2021, groundwater concentrations were evaluated to assess the potential presence of DNAPL. That evaluation did identify wells in the Building 3 area where DNAPL is likely present in the vicinity of the wells. In addition, the June 2021 report and subsequent sampling of groundwater at the Building 5 area did indicate that there is likely DNAPL in bedrock near one well. Groundwater concentrations and persistent groundwater plumes at the Site suggest that DNAPL is or was present and has migrated into the deep overburden and potentially into fractured bedrock. Given the age of the release and absence of DNAPL detection in monitoring wells since 1997, DNAPL in the overburden is likely present residually (e.g., in discontinuous droplets) but is not mobile, while any DNAPL that is present in bedrock is likely present in fractures, many of which are small and poorly connected to other fractures, thereby limiting DNAPL mobility. This is particularly noted at well OB45-BR, where geophysical data indicates very little fracturing and low water flow from this area. TCE was also detected in well OB54-BR at concentrations up to 53 mg/L. Additional assessment will be conducted prior to remediation of this area to assess if the elevated concentrations of TCE in OB54-BR are connected to OB45-BR.
- To further assess the potential extent of VOC impacts, additional bedrock wells were installed in the Building 5 area in March and April 2022. The results of sampling and monitoring at these new wells and other site wells provide definition of the potential extent of VOC impacts to soil and the extent of VOCs detected in bedrock groundwater that suggest DNAPL presence nearby.
- To further assess the potential extent of elevated VOCs beneath and adjacent to the Building 3 complex, an electrical resistivity imaging (ERI) study and confirmation drilling were conducted in summer 2022. The results of that assessment work provide a clearer picture of the extent of elevated VOCs in the Building 3 Source Area. The data have been used to estimate the area of elevated VOC impacts that may warrant additional treatment.
- The current nature and extent of the COCs in groundwater in both the overburden and bedrock aquifers was evaluated using data collected from monitoring wells over 2 years of sampling, May 2020 through May 2022. The highest VOC concentrations are detected in groundwater on the former Varian facility property. Groundwater sampling results from 2022 indicate:

- Concentrations of TCE range from non-detect to 260 mg/L, with the greatest concentration located beneath Building 3 (well AP31-DO).
- Concentrations of PCE range from non-detect to 43 mg/L, with the greatest concentration located beneath Building 5 (well OB35-DO).
- Concentrations of cis-1,2-DCE range from non-detect to 500 mg/L, with the greatest concentration located just east of Building 3 (well AP33-DO).
- Concentrations of 1,1,1-TCA range from non-detect to 41 mg/L, with the greatest concentration located just east of Building 3 (well AP24-DO).
- Several VOCs have been detected in surface water samples, with PCE and TCE being the two
 chemicals most commonly detected. As discussed in the January 2022 ROS Report, VOC
 concentrations in surface water samples collected in 2021 remained relatively consistent or
 decreased, when compared with historical results. A likely source of the VOCs identified in both
 streams is from the discharge of groundwater containing VOCs either from 150 Sohier Road or
 different non-Varian source.
- The August 4, 2021, semiannual ROS report included an evaluation of human health and environmental risk posed by VOCs detected in surface water and sediment at the Site. Based on data collected in 2021, No Significant Risk to human health was identified. It was also demonstrated that further assessment of environmental risk was not warranted. In addition, the report provided a screening of potential risk to pets that may drink surface water. The maximum levels of VOCs in surface water were below the screening levels used to assess potential risk to pets.
- Remediation activities conducted over the past 20 years are summarized in this report. As documented in trend graphs provided in prior ROS reports, those activities have reduced VOC concentrations in some source areas as well as downgradient areas. This has resulted in a much-reduced VOC plume extent in the shallow overburden and bedrock aquifers. Less of a reduction is noted in the deep overburden. Residual VOCs in groundwater beneath the Building 3 area and to a lesser extent at the Building 5 area remain. Significant effort has been made to assess areas beneath both the Building 3 complex and Building 5. However, the building structures limit access and create uncertainty regarding the delineation and extent of VOC impacts.
- As required by the MCP and Site conditions, a Method 3 Risk Assessment was conducted. That assessment evaluated the potential health effect of possible exposure to VOCs associated with the former Varian facility Site. Receptors, or people potentially exposed included workers at the 150 Sohier Road facility, workers in off-property commercial/industrial buildings along Tozer Road, and residents in areas to the west and south of Tozer Road. The result of that assessment indicated there is no current or future Significant Risk to residents, including children playing in the stream. No Significant Risk to workers on Tozer Road was identified. No Significant Risk was identified to workers in the 150 Sohier Road buildings with the operation of the existing SVE systems. However, a condition of No Significant Risk of harm has not been demonstrated for

future construction workers who could potentially be exposed to groundwater in certain areas at the 150 Sohier Road property. The risk assessment demonstrated that a current condition of No Significant Risk of harm to safety, public welfare and the environment exists at the Site.

Based on the conclusions and findings of this Phase II CSA Addendum, Comprehensive Remedial Actions are necessary at the Site to achieve a Permanent or Temporary Solution, therefore a Phase III evaluation will be conducted in accordance with the MCP, 310 CMR 40.0850, to evaluate the remedial options for the Site. Results of this evaluation including the selection of the recommended remedial action alternative, will be presented in a Phase III RAP report.

9.0 REFERENCES

- Aestus, LLC, 2022. Aestus Geotrax CSM+™ Ultra-High Resolution Remedial Design Characterization and Conceptual Site Model Update Process Final Report, Former Varian Facility, Beverly, Massachusetts, USA. November 11, 2022.
- Agency for Toxic Substances and Disease Registry (ATSDR), 2022, Minimal Risk Levels (MRLs), https://www.atsdr.cdc.gov/minimalrisklevels/index.html
- Aptim Environmental & Infrastructure, LLC (APTIM), 2020. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. June 30, 2020.
- APTIM, 2021a. Indoor Air Sampling Work Plan, Downgradient Residential Areas, Former Varian Facility Site. January 25, 2021.
- APTIM, 2021b. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. February 24, 2021.
- APTIM, 2021c. Vapor Intrusion Assessment Report, Downgradient Residential Areas. Former Varian Facility Site Beverly, Massachusetts, RTN 3-0485. April 29, 2021.
- APTIM, 2021d. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. August 4, 2021.
- Camp Dresser & McKee, 1970, "City of Beverly, Massachusetts Report on Storm Drainage," December 1970.
- Clean Harbors Environmental Services, Inc., 1993. Phase IIA Comprehensive Site Assessment Proposed Scope of Work, December 10, 1993.
- Environmental Protection Agency (EPA), 1989, Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), Interim Final, Office of Emergency and Remedial Response, Washington, D.C., EPA/540/1-89/002.
- EPA, 1993. Evaluation of the Likelihood of DNAPL Presence at NPL Sites, United States Environmental Protection Agency, EPA 540R-93-073. September 1993.
- EPA, 2005, Agency (EPA), 2005, Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. Risk Assessment Forum, EPA/630/R-03/003F, March.
- EPA, 2011, IRIS Toxicological Review of Trichloroethylene (Interagency Science Discussion Draft). U.S. Environmental Protection Agency, Washington, DC, EPA/635/R-09/011D.
- EPA, 2022, Regional Screening Levels (RSLs) Generic Tables, May. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
- Environmental Reclamation, LLC, 2022. Remedy Operation Status Inspection & Monitoring Report, 33-71 Dodge Street, Beverly, Massachusetts, RTN 3-3981. July 2022.
- IT Corporation, Inc. (IT), 2000a. Phase II Comprehensive Site Assessment, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. June 2000.

- IT, 2000b. Phase III Remedial Action Plan, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. September 2000
- IT, 2001. Phase IV Remedy Implementation Plan, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. December 2001.
- Massachusetts Department of Environmental Protection (MassDEP), 1995, Guidance for Disposal Site Risk Characterization in Support of the Massachusetts Contingency Plan, Interim Final Policy #WSC/ORS-95-141, July.
- MassDEP, 2002, Technical Update, Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil, Update to Section 2.3 Guidance for Disposal Site Risk Characterization In support of the Massachusetts Contingency Plan, May.
- MassDEP, 2004. Conducting Feasibility Evaluations under the Massachusetts Contingency Plan (MCP), Policy WSC-04-160. July 16, 2004.
- MassDEP, 2008. Technical Update, Characterization of Risks Due to Inhalation of Particulates by Construction Workers, Update to: Section 7.3 and Appendix B of the MA DEP Guidance for Disposal Site Risk Characterization In Support of the Massachusetts Contingency Plan, July.
- MassDEP, 2014. US EPA Trichloroethylene Toxicity Values and Office of Research and Standards Recommendations Regarding Remediation Targets and Timeframes to Address Potential Developmental Risks, August 15.
- MassDEP, 2016. Vapor Intrusion Guidance: Site Assessment, Mitigation and Closure, Policy WSC-16-435. October 14, 2016.
- MassDEP, 2020. MassDEP FAST Indoor Air Sampling Effort Neighborhoods Surrounding Former Varian Facility Site Report. December 2020.
- MassDEP, 2021. Massachusetts Department of Environmental Protection Letter, Re Former Varian Site. February 2, 2021.
- MassDEP, 2022. Termination of Remedy Operation Status / Notice of Non-Compliance Letter to Varian Medical Systems, Inc., Regarding Beverly, MA, 150 Sohier Road, RTN 3-0000485. February 18, 2022.
- Roux Environmental (ROUX), 2021. Permanent Solution Report, Communications & Power Industries LLC, 150 Sohier Road, Beverly, Massachusetts, RTN 3-36528. October 2021.
- Shaw Environmental & Infrastructure, LLC (Shaw), 2002a. Phase IV As-Built Construction and Final Inspection Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. October 2002.
- Shaw, 2002b. Remedy Operation Status Opinion, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. December 16, 2002.
- Shaw, 2006. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. October 4, 2006.
- Shaw, 2010. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. October 30, 2010.

- Shaw, 2012a. Modification of the Phase III Remedial Action Plan (RAP) and Phase IV Remedy Implementation Plan (Phase IV Plan) to address the Building 5 Area, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. December 17, 2012.
- Shaw, 2012b. Massachusetts Contingency Plan, Phase II Comprehensive Site Assessment, Building 3 Site, a Portion of the Former Varian Facility Site, 150 Sohier Road, Beverly, MA, RTN 3-28531. May 29, 2012.
- Shaw, 2012c. Massachusetts Contingency Plan, Phase III Remedial Action Plan, Building 3 Site, a Portion of the Former Varian Facility Site, 150 Sohier Road, Beverly, MA, RTN 3-28531. May 31, 2012.
- Shaw, 2013a. Phase V Remedy Operation Status Inspection and Monitoring Report, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-0485. October 31, 2013.
- Shaw, 2013b. Immediate Response Action Completion Report, Phase IV Remedy Implementation Plan, Phase IV Completion Statement, and Phase V Remedy Operation Status Opinion, Building 3, Former Varian Facility Site, 150 Sohier Road, Beverly, Massachusetts, RTN 3-28531. February 28, 2013.
- U.S. Geological Survey (USGS), 1964. Bulletin 1163-A, Bedrock Geology of the Salem Quadrangle and Vicinity, Massachusetts (Plate 1), 1964.

10.0 LIMITATIONS ON WORK PRODUCT

The information contained in this report, including its conclusions, is based upon the information that was made available to Aptim Environmental and Infrastructure, LLC (APTIM) during the investigation and obtained from the services described, which were performed within time and budgetary restraints.

APTIM makes no representation concerning the legal significance of its findings or of the value of the property investigated. APTIM has no contractual liability to any third parties for the information or opinions contained in this report.

Unless and until the parties agree otherwise in writing, the use of this report or any information contained therein by any third party shall be at such third party's sole risk. Such use shall constitute an agreement to release, defend and indemnify Varian Medical Systems, Inc. and APTIM from and against any and all liability in connection therewith.

			1
	Date Of	Screen Interval	Total Well Depth
Well ID	Install	(ft bgs)	(ft bgs)
Shallow Overb			(8-1
AP-01	1/18/2000	7.3-17.3	17.25
AP-12-S	1/7/2002	10-30	30
AP-13-S	4/9/2002	5-18	18
AP-14-S	12/28/2001	15-35	35.5
AP-15-S	8/26/2002	5-15	15
AP-17-S	8/26/2002	2-12	12
AP-36-S	7/26/2018	10-18	18
AP-37-S	7/26/2018	10-18	18
AP-38-S	7/25/2018	10-18	18
AP-39-S	7/23/2018	10-18	18
BW-01	7/9/2003	5-15	15
BW-02	7/9/2003	5-15	15
BW-03	7/9/2003	6-16	16
BW-04	7/9/2003	4-14	14
BW-05	7/9/2003	6-16	16
BW-06	7/9/2003	5-15	15
BW-07	7/9/2003	5-15	15
BW-08	7/10/2003	5-15 5-15	15
BW-09	7/10/2003	3-13	13.5
BW-03	7/10/2003	5-15	15
CL12-S1	4/4/2000	5.0-25	25
CL12-S1	4/4/2000	10.0-30	30
CL12-32	12/29/2000	5.5-20.5	20.5
OB-04-S	5/8/2002	5-25	25
OB-04-3 OB-06-S	4/19/2021	4-14	14
OB-05-S	3/12/2002	10-30	30
OB-08-S	8/6/2002	2-15	15
OB-09-S	4/4/2002	10-30	32
OB-03-0	1/2/2002	10-30	30
OB-10-8	1/15/2002	10-30	30
OB-11-8	1/18/2002	10-30	30
OB-12-3 OB-15-S	4/3/2002	10-20	20
OB-15-3 OB-16-S	1/24/2002	7.5-17.5	17.5
OB-18-S	8/5/2002	2-15	15
OB-10-3 OB-19-S	4/17/2002	15-35	35
OB-19-3 OB-20-S	8/30/2004	3-13	13
OB-24-S	5/2/2002	0-3	3
OB-24-3 OB-41-S	3/15/2011	3-15	15
OB-41-3 OB-42-S	3/15/2011	3-15	15
OB-42-3 OB-43-S	10/3/2011	5-15 5-17	15
OB-43-S OB-44-S	12/30/2013	4-19	19
OB-44-3 OB-45-S	4/14/2014	5-15	15
OB-45-S	3/13/2015	5-15 5-15	15
OB-40-S OB-47-S	3/14/2015	10 - 25	25
OB-47-S OB-48-S	3/13/2015	5 - 20	20
OB-40-S OB-49-S	12/17/2019	9 - 19	19
UD-49-5	12/1//2019	9 - 19	19

	Date Of	Screen Interval	Total Well Depth
Well ID	Install	(ft bgs)	(ft bgs)
OB-50-S	12/18/2019	9 - 19	19
OB-51-S	12/28/2019	9 - 19	19
OB-52-S	5/17/2021	5-15	15.5
OB-60-S	8/13/2022	5-15	17
P-4R	4/20/2021	1.5-11.5	11.5
P-5R	4/20/2021	5-15	15
P-9R	7/20/2005	2-5.5	5.5
P-11R	10/23/2008	2-10	10
P-13R	4/19/2021	4-14	14
P-14R	4/19/2021	4-14	14
P-19A	1/9/2002	3.5-10.5	11
P-20R	7/20/2005	2-12	12
P-30	4/19/2021	4-14	14
P-31	4/20/2021	1.5-11.5	11.5
Deep Overburg	len Monitoring	Wells	
AP-02	7/12/2000	35.5-55.5	55.5
AP-03-DO	8/11/2004	25-45	45
AP-04-DO	8/11/2004	25-45	45
AP-06-DO	3/13/2002	24-44	48.5
AP-08-DO	8/7/2003	25-40	40
AP-09-DO	8/7/2003	25-40	40
AP-12-DO	1/7/2002	38-58	58
AP-13-DO	4/8/2002	41-61	61
AP-19	5/13/2002	25-30	30
AP-20	5/14/2002	15-20	20
AP-21	5/14/2002	25-30	30
AP-22	5/14/2002	15-20	20
AP-23-DO	9/21/2004	32-52	52
AP-24-DO	8/2/2004	32.5-52.5	52.5
AP-25-DO	9/22/2004	32-52	52
AP-26-DO	7/19/2004	45-65	65
AP-27-DO	7/16/2004	42-62	62
AP-28-DO	8/13/2004	20-45	45
AP-29-DO	9/13/2004	20-45	45
AP-33-DO	9/10/2013	20-40	40
AP-34-DO	9/11/2013	19.5-39.5	39.5
AP-35-DO	9/12/2013	20-40	50
CL12-DO	4/4/2000	70.5-75.5	75.5
CL13-DO	12/28/2000	45-55	55
OB-04-DO	5/8/2002	50-70	70
OB-05-DO	3/21/2002	66-86	86
OB-06-DO	4/11/2002	56-76	77
OB-07-DO	8/5/2002	30-40	40
OB-08-DO	8/6/2002	70-80	80
OB-09-DO	4/3/2002	76-96	97
OB-10-DO	12/27/2001	29.5-49.5	49.5
OB-11-DO	1/15/2002	42-62	62
OB-12-DO	1/18/2002	40-60	60

	1		
	Date Of	Screen Interval	Total Well Depth
Well ID	Install	(ft bgs)	(ft bgs)
OB-14-DO	1/3/2002	39.5-59.5	59.5
OB-17-DO	3/14/2002	23-43	43
OB-18-DO	8/5/2002	20-30	30
OB-19-DO	3/5/2002	45-65	65
OB-20-DO	8/24/2004	58-78	78
OB-21-DO	8/17/2004	66.5-86.5	86.5
OB-22-DO	1/28/2002	39-59	59
OB-25-DO	6/12/2003	60-70	70
OB-26-DO	6/26/2003	46-66	66
OB-27-DO	6/19/2003	43-63	63
OB-28-DO	6/26/2003	45-65	65
OB-29-DO	8/7/2003	25-40	40
OB-30-DO	12/9/2003	59-69	69
OB-31-DO	12/11/2003	54-64	64
OB-32-DO	12/17/2003	51-61	61
OB-33-DO	1/5/2004	46-56	56
OB-34-DO	1/7/2004	54-64	64
OB-35-DO	12/29/2003	53-63	63
OB-36-DO	12/26/2003	52-62	62
0B-37-DO	11/27/2003	52-62	62
OB-38-DO	7/9/2004	35-55	55
OB-39-DO	7/8/2004	35-55	55
OB-40-DO	7/6/2004	49-69	69
OB-45-DO	4/15/2014	34-49	49
OB-52-DO	5/17/2021	40-50	50
OB-58-DO	7/28/2022	45-55	55
OB-59-DO	7/26/2022	43-53	53
P-21-DO	3/1/2022	12-17	17
Bedrock Monito	oring Wells		
APBIO-1	7/25/2005	69-79	79
AP-03-BR	7/29/2005	88-108	108
AP-04-BR	7/18/2005	100.5-120.5	120.5
AP-06-BR	3/25/2002	47-98.5	98.5
AP-12-BR	1/3/2002	62-82	83
OB-04-BR	5/6/2002	75-90	90
OB-05-BR	3/12/2002	90-110	110
OB-06-BR	4/10/2002	91-102	102
OB-09-BR	4/30/2002	102-122	122
OB-10-BR	12/21/2001	56 -76	76
OB-11-BR	1/9/2002	65.5-85.5	87
OB-12-BR	1/16/2002	68-88	88
OB-16-BR	1/23/2002	23-33	33
OB-17-BR	3/28/2002	48-98	98
OB-19-BR	3/5/2002	72-92	92
OB-20-BR	9/1/2004	80-101	101
OB-21-BR	8/18/2004	94-104	104
OB-22-BR	1/25/2002	36-43 (uncased)	43
OB-23-BR	4/1/2002	42.5-98	98

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

	Date Of	Screen Interval	Total Well Depth				
Well ID	Install	(ft bgs)	(ft bgs)				
OB-25-BR	6/3/2003	80-100.5(uncased)	100.5				
OB-26-BR	6/4/2003	76-96 (uncased)	96				
OB-27-BR	6/6/2003	67-87	87				
OB-28-BR	6/11/2003	74-94 (uncased)	94				
OB-38-BR	5/13/2021	60-75 (uncased)	75				
OB-39-BR	5/13/2021	68-83 (uncased)	83				
OB-42-BR	4/7/2022	65-80	80				
OB-45-BR	5/13/2021	60-96 (uncased)	96				
OB-52-BR	5/17/2021	69-86 (uncased)	86				
OB-54-BR	4/5/2022	65-95	95				
OB-55-BR	7/25/2022	75-85	85				
P-21-BR	2/28/2022	30-66 (uncased)	66				
Angled Wells		Screen Interval (Linear	Drill Length and Angle (Total well depth in ft bgs)				
AP-30R-DO	10/7/2010	40-90	90 linear ft at a 40 degree angle (58ft)				
AP-31-DO	1/28/2010	40-90	90 linear ft at a 40 degree angle (58ft)				
AP-32-DO	2/4/2010	40-90	90 linear ft at a 40 degree angle (58ft)				
AP-40-S	5/1/2019	42-72	72 linear ft (21.8ft below slab)				
AP-41-S	5/3/2019	55-85	85 linear ft (25.9ft below slab)				
AP-42-DO	9/18/2020	65-105	105 linear ft at a 40 to 67 degree angle (65 ft below slab)				
AP-43-DO	9/18/2020	50-95	95 linear ft at a 42 to 48 degree angle (45ft below slab)				
OB-53-BR	3/30/2022	115-130	130 linear ft at a 50 degree angle (100ft)				
OB-57-DO	7/18/2022	123-142	142 linear ft at a 30 to 50 degree angle (65ft)				

Notes:

ft bgs = feet below ground surface

linear ft = total distance drilled in ft at specified angle(s)

Table 3-2 Indoor Air Analytical Results Tozer Road Properties Former Varian Facility Site

150 Sohier Road Beverly, Massachusetts

		Location Code	30-T	OZ-04	30-T	OZ-06	30-T	OZ-07	31-T	OZ-01	31-T(OZ-02	31-T	OZ-03	31-T	OZ-04	39-T0	OZ-01	39-T	OZ-02	39-T0	OZ-03
		Sample ID	30-TOZ-04-	30TOZER-4-	30-TOZ-06-	30TOZER-6-	30-TOZ-07-	30TOZER-7-	31-TOZ01-	31 TOZER	31-TOZ02-	31 TOZER	31-TOZ03-	31 TOZER	31-TOZ04-	31 TOZER	39-TOZ-01-	39-TOZ-01-	39-TOZ-02-	39-TOZ-02-	39-TOZ-03-	39-TOZ-03-
			20210408	20211229	20210408	20211229	20210408	20211229	20210330	01-20211220	20210330	02-20211220	20210330	03-20211220	20210330	04-20211220	20210318	20220106	20210319	20220106	20210319	20220106
		Sample Date	4/8/2021	12/29/2021	4/8/2021	12/29/2021	4/8/2021	12/29/2021	3/30/2021	12/20/2021	3/30/2021	12/20/2021	3/30/2021	12/20/2021	3/30/2021	12/20/2021	3/18/2021	1/6/2022	3/19/2021	1/6/2022	3/19/2021	1/6/2022
Parameter	Units	TV-C/I	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES																						
1,1,1-Trichloroethane	ug/m3	4400	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	0.142	< 0.109	< 0.109
1,1,2,2-Tetrachloroethane	ug/m3	0.2	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137
1,1,2-Trichloroethane	ug/m3	0.72	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109
1,1-Dichloroethane	ug/m3	710	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081
1,1-Dichloroethene	ug/m3	180	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079
1,2,4-Trichlorobenzene	ug/m3	3.4	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371	< 0.371
1,2-Dibromoethane (EDB)	ug/m3	0.038	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154	< 0.154
1,2-Dichlorobenzene	ug/m3	710	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	0.15	< 0.12	< 0.12
1,2-Dichloroethane	ug/m3	0.44	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	0.081	< 0.081	< 0.081	< 0.081	0.081	< 0.081	< 0.081	< 0.081	0.085	< 0.081	0.198	< 0.081	0.316	0.13
1,2-Dichloroethene (total)	ug/m3	NV								< 0.079		< 0.079		< 0.079		< 0.079						
1,2-Dichloropropane	ug/m3	0.6	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092
1,3-Dichlorobenzene	ug/m3	710	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12
1,4-Dichlorobenzene	ug/m3	1.7	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	0.126	< 0.12	0.301	< 0.12	< 0.12
1,4-Dioxane	ug/m3	2.8	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
2-Butanone	ug/m3	4400	2.69	< 1.47	2.46	< 1.47	2.24	< 1.47	< 1.47	< 1.47	< 1.47	< 1.47	< 1.47	< 1.47	< 1.47	< 1.47	4.13	6.69	3.07	5.87	< 1.47	1.73
4-Methyl-2-pentanone	ug/m3	2700	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05
Acetone	ug/m3	710	27.6	37.1	25.9	34	23.5	33	10.4	8.86	7.32	3.59	15.3	5.13	12.1	11.4	50.8	144	273	227	45.4	21.6
Benzene	ug/m3	11	< 0.319	0.549	< 0.319	0.508	< 0.319	0.505	0.348	0.39	< 0.319	0.348	0.323	0.364	0.348	0.399	0.875	0.815	0.508	1.24	0.39	0.626
Bromodichloromethane	ug/m3	0.65	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134
Bromoform	ug/m3	10	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207
Bromomethane	ug/m3	4.4	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078
Carbontetrachloride	ug/m3	1.9	0.352	0.377	0.421	0.371	0.371	0.421	0.415	0.409	0.44	0.421	0.415	0.428	0.421	0.415	0.415	0.497	< 0.126	0.623	0.365	0.51
Chlorobenzene	ug/m3	44	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461
Chloroform	ug/m3	3	1.84	0.327	1.35	0.381	1.56	0.42	0.127	0.176	< 0.098	0.098	< 0.098	< 0.098	0.273	0.547	0.366	0.342	0.107	0.288	< 0.098	0.166
cis-1,2-Dichloroethene	ug/m3	5.3	< 0.079	0.079	< 0.079	0.079	< 0.079	< 0.079	0.151	< 0.079	0.111	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	0.567	0.92	0.159	0.69	0.099	0.262
cis-1,3-Dichloropropene	ug/m3	NV	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091
Dibromochloromethane	ug/m3	0.48	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17
Dichloromethane	ug/m3	530	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	4.93	< 1.74	< 1.74	1.9	< 1.74	< 1.74
Ethylbenzene	ug/m3	880	0.274	0.217	0.248	0.204	0.239	0.191	0.113	0.096	< 0.087	< 0.087	0.1	0.148	0.139	0.104	1.11	12.7	2.55	65.2	0.843	16.3
Hexachlorobutadiene	ug/m3	4.6	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533	< 0.533
m,p-xylene	ug/m3	NV	1	0.691	0.873	0.604	0.843	0.582	0.291	0.23	0.226	< 0.174	0.23	0.482	0.417	0.295	1.91	48.6	9.12	283	2.94	69.9
Methyltert-butylether	ug/m3	2700	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721	< 0.721
Naphthalene	ug/m3	2.7	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	< 0.262	0.273	0.299	2.22	0.519	< 0.262	0.278
o-Xylene	ug/m3	NV	0.43	0.269	0.395	0.256	0.369	0.261	0.117	0.096	0.087	< 0.087	0.1	0.182	0.169	0.13	0.751	16.5	2.44	101	0.834	24.3
Styrene	ug/m3	20	0.294	0.153	0.2	0.136	0.226	0.136	< 0.085	< 0.085	< 0.085	< 0.085	< 0.085	< 0.085	< 0.085	0.128	10.6	14.6	0.724	2.59	0.264	0.545
Tetrachloroethene	ug/m3	4.1	0.298	0.366	0.319	0.427	0.319	0.353	0.814	0.746	0.441	0.393	0.339	0.264	0.285	0.217	1.63	1.66	1.21	2.03	0.448	0.583
Toluene	ug/m3	4400	5.01	1.58	4.48	1.43	4.3	1.36	0.479	0.396	0.373	< 0.377	0.403	0.381	0.614	0.505	8.22	9.46	3.3	9.04	1.93	2.26
trans-1,2-Dichloroethene	ug/m3	53	0.476	0.107	0.484	0.087	0.468	0.091	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	0.119	0.301	0.278	0.079	0.095
Trans-1,3-Dichloropropene	ug/m3	NV	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091
Trichloroethene	ug/m3	1.8	0.801	0.516	0.822	0.527	0.656	0.511	0.656	0.247	0.586	0.183	0.306	< 0.107	0.285	< 0.107	1.96	3.17	0.618	2.27	0.392	1.9
Vinyl chloride	ug/m3	1.3	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	0.064	< 0.051	< 0.051	< 0.051	< 0.051
Xylene (total)	ug/m3	88	1.43	0.96	1.27	0.86	1.21	0.843	0.408	0.326	0.313	< 0.087	0.33	0.665	0.586	0.426	2.66		11.6		3.77	
	~g/1110			L														l	1		1	

Notes:

Samples collected from 30 Tozer Road, 31 Tozer Road, 39 Tozer Road.

ug/m3 = microgram per cubic meter

< indicates chemical not detected, and concentration is less than reporting limit (value shown).

TV-C/I = MassDEP Threshold Values for Industrial Commercial Indoor Air

--- = Parameter not sampled for.

BOLD = result is above Threshold Value

Table 3-3 Soil Vapor Analytical Results Tozer Road Properties Former Varian Facility Site

150 Sohier Road Beverly, Massachusetts

		Location Code	30-TO	Z-SV07	30-TO	Z-SV08	30-TO	Z-SV09	31-TO	Z-SV01	31-TO	Z-SV02	39-TO	Z-SV01	39-TO	Z-SV02	39-TC	DZ-SV03
		Sample ID	30-TOZ-SV07	SV7-	30-TOZ-SV08	SV8-	30-TOZ-SV09	SV9-	31-TOZ-SV01	31 TOZ-SV01	31-TOZ-SV02	-31 TOZ-SV02	39-TOZ-SV01	- 39-TOZ-SV-	39-TOZ-SV02	39-TOZ-SV-	39-TOZ-SV03	3- 39-TOZ-SV-
		•	20210409	30TOZER-	20210409	30TOZER-	20210409	30TOZER-	20210331	20211221	20210331	20211221	20210325	01-20220107	20210325	02-20220107	20210325	03-20220107
				20211229		20211229		20211229										
		Sample Date	4/9/2021	12/29/2021	4/9/2021	12/29/2021	4/9/2021	12/29/2021	3/31/2021	12/21/2021	3/31/2021	12/21/2021	3/25/2021	1/7/2022	3/25/2021	1/7/2022	3/25/2021	1/7/2022
Parameter	Units	I/C SS Screening	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES		Coronning																
1.1.1-Trichloroethane	ug/m3	310000	< 0.109	< 0.188	0.125	< 0.165	< 7.97	< 0.78	3.86	4.84	1.43	9.93	< 1.71	< 0.109	< 0.303	< 0.109	< 0.109	< 0.109
1,1,2,2-Tetrachloroethane	ug/m3	14	< 0.137	< 0.237	< 0.137	< 0.208	< 10	< 0.982	< 0.528	< 0.137	< 0.343	< 0.137	< 2.16	< 0.137	< 0.382	< 0.137	< 0.137	< 0.137
1,1,2-Trichloroethane	ug/m3	50	< 0.109	< 0.188	< 0.109	< 0.165	< 7.97	< 0.78	< 0.42	< 0.109	< 0.273	< 0.109	< 1.71	< 0.109	0.303	< 0.109	< 0.109	< 0.109
1,1-Dichloroethane	ug/m3	50000	< 0.081	< 0.14	< 0.081	< 0.123	< 5.91	< 0.579	< 0.311	< 0.081	< 0.202	< 0.081	< 1.27	< 0.081	1	< 0.081	0.858	0.247
1,1-Dichloroethene	ug/m3	12000	< 0.079	< 0.137	< 0.079	< 0.12	< 5.79	< 0.567	< 0.305	< 0.079	< 0.198	< 0.079	< 1.24	< 0.079	< 0.22	< 0.079	< 0.079	< 0.079
1,2,4-Trichlorobenzene	ug/m3	240	< 0.371	< 0.64	< 0.371	< 0.563	< 27	< 2.65	< 1.43	< 0.371	< 0.928	< 0.371	< 5.83	< 0.371	< 1.03	< 0.371	< 0.371	< 0.371
1,2-Dibromoethane (EDB)	ug/m3	2.7	< 0.154	< 0.265	< 0.154	< 0.233	< 11.2	< 1.1	< 0.591	< 0.154	< 0.384	< 0.154	< 2.41	< 0.154	< 0.427	< 0.154	< 0.154	< 0.154
1,2-Dichlorobenzene	ug/m3	50000	< 0.12	< 0.207	< 0.12	< 0.182	< 8.78	< 0.86	< 0.462	< 0.12	< 0.301	< 0.12	< 1.89	< 0.12	< 0.334	< 0.12	< 0.12	< 0.12
1,2-Dichloroethane	ug/m3	31	< 0.081	< 0.14	< 0.081	< 0.123	< 5.91	< 0.579	< 0.311	< 0.081	< 0.202	< 0.081	< 1.27	< 0.081	< 0.225	< 0.081	< 0.081	< 0.081
1,2-Dichloroethene (total)	ug/m3	NV								< 0.079		< 0.079						
1,2-Dichloropropane	ug/m3	42	< 0.092	< 0.159	0.18	< 0.14	< 6.75	< 0.661	< 0.355	< 0.092	< 0.231	< 0.092	< 1.45	< 0.092	< 0.257	< 0.092	< 0.092	< 0.092
1,3-Dichlorobenzene	ug/m3	50000	< 0.12	< 0.207	< 0.12	< 0.182	< 8.78	< 0.86	< 0.462	0.77	0.872	1.02	< 1.89	0.559	< 0.334	0.421	< 0.12	0.758
1,4-Dichlorobenzene	ug/m3	120	< 0.12	< 0.207	< 0.12	< 0.182	< 8.78	< 0.86	< 0.462	< 0.12	< 0.301	< 0.12	< 1.89	< 0.12	< 0.334	< 0.12	< 0.12	< 0.12
1,4-Dioxane	ug/m3	200	< 0.36	< 0.62	< 0.36	< 0.548	< 26.3	< 2.57	< 1.39	< 0.36	< 0.901	< 0.36	22.2	< 0.36	< 1	< 0.36	< 0.36	< 0.36
2-Butanone	ug/m3	310000	4.54	13.3	4.54	23.9	< 107	20.8	11	1.52	6.19	2.09	31.3	5.04	24.1	2.21	7.49	2.12
4-Methyl-2-pentanone	ug/m3	190000	< 2.05	< 3.53	< 2.05	< 3.11	< 149	< 14.6	29.6	< 2.05	< 5.12	< 2.05	< 32.2	4.39	< 5.7	2.83	< 2.05	3.77
Acetone	ug/m3	50000	39.2	62.9	15.8	88.1	466	63.4	149	10.9	105	11.9	442	60.8	69.8	35.2	23.8	19.8
Benzene	ug/m3	800	0.476	0.706	1.35	0.652	< 23.3	< 2.28	< 1.23	0.677	1.06	0.965	< 5.02	1.32	2.39	1.59	< 0.319	0.783
Bromodichloromethane	ug/m3	45	< 0.134	< 0.231	< 0.134	< 0.203	< 9.78	< 0.958	< 0.515	< 0.134	< 0.335	< 0.134	< 2.1	< 0.134	< 0.372	< 0.134	< 0.134	< 0.134
Bromoform	ug/m3	730	< 0.207	< 0.357	< 0.207	< 0.313	< 15.1	< 1.48	< 0.795	< 0.207	< 0.517	< 0.207	< 3.25	< 0.207	< 0.575	< 0.207	< 0.207	< 0.207
Bromomethane	ug/m3	310	< 0.078	< 0.134	< 0.078	< 0.118	< 5.67	< 0.555	< 0.299	< 0.078	< 0.194	< 0.078	< 1.22	< 0.078	< 0.216	< 0.078	< 0.078	< 0.078
Carbontetrachloride	ug/m3	130	0.359	0.412	0.22	0.438	< 9.18	< 0.9	< 0.484	0.264	0.409	0.352	< 1.98	0.629	0.437	0.547	0.359	0.616
Chlorobenzene	ug/m3	3100	< 0.461	< 0.792	< 0.461	< 0.7	< 33.6	< 3.29	< 1.77	< 0.461	< 1.15	< 0.461	< 7.23	< 0.461	< 1.28	< 0.461	< 0.461	< 0.461
Chloroform	ug/m3	210	1.21	0.193	0.645	0.207	12.8	3.8	0.938	1.57	0.586	1.49	< 1.53	0.225	0.434	0.127	0.22	0.269
cis-1,2-Dichloroethene	ug/m3	370	0.662	< 0.137	0.079	0.138	103	4.76	< 0.305	< 0.079	< 0.198	< 0.079	< 1.24	0.282	40.8	0.123	10.6	2.58
cis-1,3-Dichloropropene	ug/m3	NV	< 0.091	< 0.157	< 0.091	< 0.138	< 6.63	< 0.649	< 0.349	< 0.091	< 0.227	< 0.091	< 1.43	< 0.091	< 0.252	< 0.091	< 0.091	< 0.091
Dibromochloromethane	ug/m3	33	< 0.17	< 0.294	< 0.17	< 0.258	< 12.4	< 1.22	< 0.655	< 0.17	< 0.426	< 0.17	< 2.68	< 0.17	< 0.474	< 0.17	< 0.17	< 0.17
Dichloromethane	ug/m3	37000	< 1.74	< 2.99	< 1.74	< 2.63	< 126	< 12.4	< 6.67	< 1.74	< 4.34	< 1.74	< 27.3	< 1.74	< 4.83	< 1.74	< 1.74	< 1.74
Ethylbenzene	ug/m3	62000	0.213	0.582	0.447	0.973	< 6.34	0.743	5.91	0.534	10.8	0.486	8.38	1.46	1.88	1.32	0.391	0.721
Hexachlorobutadiene	ug/m3	320	< 0.533	< 0.919	< 0.533	< 0.809	< 38.8	< 3.81	< 2.05	< 0.533	< 1.33	< 0.533	< 8.37	< 0.533	< 1.48	< 0.533	< 0.533	< 0.533
m,p-xylene	ug/m3	NV	0.673	1.86	1.69	3.27	< 12.7	2.48	6.69	1.49	12.6	1.42	27.7	4.91	2.85	4.91	1.35	2.18
Methyltert-butylether	ug/m3	190000	< 0.721	< 1.24	< 0.721	< 1.09	< 52.6	< 5.16	< 2.77	< 0.721	< 1.8	< 0.721	< 11.3	< 0.721	< 2	< 0.721	< 0.721	< 0.721
Naphthalene	ug/m3	190	< 0.262	< 0.452	< 0.262	< 0.397	< 19.1	< 1.87	< 1.01	< 0.262	< 0.655	< 0.262	< 4.12	< 0.262	< 0.729	< 0.262	< 0.262	< 0.262
o-Xylene	ug/m3	NV	0.308	0.547	1.52	0.995	< 6.34	0.808	3.06	0.808	5.91	0.738	4.02	1.51	0.99	1.26	0.517	0.712
Styrene	ug/m3	1400	0.128	0.161	3.56	0.336	< 6.22	< 0.609	< 0.327	0.149	0.426	0.141	2.01	1.87	< 0.237	0.179	0.132	0.136
Tetrachloroethene	ug/m3	290	0.732	0.245	7.8	0.841	1210	76.6	787	292	28.1	166	5.53	0.78	105	0.271	24.6	1.8
Toluene	ug/m3	310000	1.91	1.32	1.37	2.08	< 13.7	< 2.69	3.6	2.2	6.75	2.22	105	< 0.377	3.77	3.47	0.705	2.44
trans-1,2-Dichloroethene	ug/m3	3700	0.666	0.28	0.226	0.252	35.8	8.37	< 0.305	< 0.079	< 0.198	< 0.079	< 1.24	< 0.079	3.61	0.111	1.51	0.385
Trans-1,3-Dichloropropene	ug/m3	NV	< 0.091	< 0.157	< 0.091	< 0.138	< 6.63	< 0.649	< 0.349	< 0.091	< 0.227	< 0.091	< 1.43	< 0.091	< 0.252	< 0.091	< 0.091	< 0.091
Trichloroethene	ug/m3	120	4.57	0.435	0.559	0.645	13900	2190	7.09	4.1	2.3	6.72	2.78	0.742	486	0.473	65	11.1
Vinyl chloride	ug/m3	91	< 0.051	< 0.088	< 0.051	< 0.078	< 3.73	< 0.366	< 0.197	< 0.051	0.192	< 0.051	< 0.803	< 0.051	< 0.142	< 0.051	< 0.051	< 0.051
Xylene (total)	ug/m3	6200	0.982	2.41	3.21	4.27	< 6.34	3.29	9.77	2.29	18.5	2.16	31.7		3.84		1.86	
-		*																

Notes:

Samples collected from 30 Tozer Road, 31 Tozer Road, 39 Tozer Road. ug/m3 = microgram per cubic meter

< indicates chemical not detected, and concentration is less than reporting limit (value shown).

I/C SS Screening = MassDEP industrial/commercial sub-slab soil gas screening value

BOLD =Result exceeds I/C SS --- = Parameter not sampled for.

Table 3-4 Groundwater and Surface Water Sample Summary February 2022

Sample Location	Location	Rationale for Sampling	Analysis Performed		
STRHA-07A	29 Tozer Road	Monitor VOC trends, also Con Comm request	VOCs		
STRHA-07B	29 Tozer Road	Monitor VOC trends, also Con Comm request	VOCs		
AP-13-DO	East Building 3	Monitor remediation and VOC trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-23-DO	East Building 3	Monitor remediation and VOC trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-24-DO	East Building 3	Monitor remediation and VOC trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-25-DO	East Building 3	Monitor remediation and VOC trends	Methane, Ethane, Ethene, VOCs		
AP-30R-DO	Beneath Building 3	Monitor VOC/confirm no adverse downgradient impact	Methane, Ethane, Ethene, VOCs, TOC		
AP-31-DO	Beneath Building 3	Monitor remediation and VOC trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-32-DO	Beneath Building 3	Monitor remediation and VOC trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-33-DO	East Building 3	Monitor remediation and VOC trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-34-DO	East Building 3	Monitor remediation and VOC trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-35-DO	East Building 3	Monitor remediation and VOC trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-36-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-37-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-38-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs, TOC		
AP-39-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs, TOC		
BW-05	By Unnamed Stream	Monitor shallow VOC trends	VOCs		
BW-08	By Unnamed Stream	Monitor shallow VOC trends	VOCs		
OB-49-S	Building 3, North Side	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs, TOC		
OB-50-S	Building 3, North Side	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs, TOC		
OB-51-S	Building 3, North Side	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs, TOC		
OB-52-BR	South Building 7	Quarterly Bio Per MassDEP Approved Plan	Methane, Ethane, Ethene, VOCs		
OB-52-DO	South Building 7	Quarterly Bio Per MassDEP Approved Plan	Methane, Ethane, Ethene, VOCs		
OB-52-S	South Building 7	Quarterly Bio Per MassDEP Approved Plan	Methane, Ethane, Ethene, VOCs		
OB-35-DO	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs, TOC		
OB-38-BR	East Building 5	Per MassDEP Approved Plan	VOCs		
OB-39-BR	West Building 5	Quarterly Bio Per MassDEP Approved Plan	VOCs		
OB-44-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs, TOC		
OB-45-BR	West Building 5	Quarterly Bio Per MassDEP Approved Plan	VOCs		
GDS-03	Unnamed Stream	Monitor VOC Trends	VOCs		
STR-02	Unnamed Stream	Per MassDEP Approved Plan	VOCs		

Table 3-4 Groundwater and Surface Water Sample Summary February 2022

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Sample Location	Location	Rationale for Sampling	Analysis Performed	
STR-05	Unnamed Stream	Per MassDEP Approved Plan	VOCs	
STR-14	Stream A	Per MassDEP Approved Plan	VOCs	
STR-18	Stream A	Per MassDEP Approved Plan	VOCs	
STR-19	Stream A	Per MassDEP Approved Plan	VOCs	
STR-20	Stream A	Per MassDEP Approved Plan	VOCs	
STR-28	Unnamed Stream	Per MassDEP Approved Plan	VOCs	
STRHA-04	Unnamed Stream	Per MassDEP Approved Plan	VOCs	
STRHA-08	Unnamed Stream	Per MassDEP Approved Plan	VOCs	
STRMH-02	Unnamed Stream	Per MassDEP Approved Plan	VOCs	
P-13R	Sonning Road Monitor VOC Trends		VOCs	
P-30	Sonning Road	Monitor VOC Trends	VOCs	
P-31	Tudor Road	Monitor VOC Trends	VOCs	
STRM-A-SCDS	East of Longview Terrace	Monitor VOC trends, also Con Comm request	VOCs	
OB-06-S	Sonning Road	Monitor Site conditions	VOCs	
P-04R	Jordan Street	Monitor VOC Trends	VOCs	
P-05R	Windsor Street	Monitor VOC Trends	VOCs	
P-14R	Sonning Road	Monitor VOC Trends	VOCs	

Notes:

TOC = Total Organic Carbon, analysis by EPA Method 5310C

VOC = Volatile Organic Compounds, analysis by EPA Method 8260D

Methane, ethane, ethene analysis by Method 8015B Modified

Table 3-5 Groundwater and Surface Water Sample Summary May 2022

Sample Location	Location	Rationale for Sampling	Analysis Performed		
AP-15-S	31 Tozer Road	Monitor Site conditions	VOCs		
BR-7_ZONE1	39 Tozer Road	Sentry Wells	VOCs		
BR-7_ZONE2	39 Tozer Road	Sentry Wells	VOCs		
BR-7_ZONE3	39 Tozer Road	Sentry Wells	VOCs		
CULVERT_OUTFALL	39 Tozer Road	Sentry Wells	VOCs		
GZ-4	31 Tozer Road	Monitor Site conditions	VOCs		
MW-034	39 Tozer Road	Monitor Site conditions	VOCs		
OB-08-DO	39 Tozer Road	Monitor Site conditions	VOCs		
OB-18-DO	31 Tozer Road	Monitor Site conditions	VOCs		
OB-18-S	31 Tozer Road	Monitor Site conditions	VOCs		
OB-41-S	39 Tozer Road	Monitor VOC Trends	VOCs		
STRHA-07A	29 Tozer Road	Monitor VOC trends, also Con Comm request	VOCs		
STRHA-07B	29 Tozer Road	Monitor VOC trends, also Con Comm request	VOCs		
AP-12-BR	East Building 6	Monitor injection & Site conditions	VOCs		
AP-12-DO	East Building 6	Monitor injection & Site conditions	VOCs		
AP-12-S	East Building 6	Monitor injection & Site conditions	VOCs		
AP-13-DO	East Building 3	Monitor remediation and VOC trends	VOCs		
AP-23-DO	East Building 3	Monitor remediation and VOC trends	VOCs		
AP-24-DO	East Building 3	Monitor remediation and VOC trends	VOCs		
AP-26-DO	West Building 1 and 2	Monitor remediation and VOC trends	VOCs		
AP-30R-DO	Beneath Building 3	Monitor VOC/confirm no adverse downgradient impact	VOCs		
AP-31-DO	Beneath Building 3	Monitor remediation and VOC trends	VOCs		
AP-32-DO	Beneath Building 3	Monitor remediation and VOC trends	VOCs		
AP-36-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs		
AP-37-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs		
AP-38-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs		
AP-39-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs		
AP-42-DO	Building 3, North Side	Monitor remediation and VOC trends	VOCs		
AP-43-DO	Building 3, North Side	Monitor remediation and VOC trends	VOCs		
CL11-DO	Southwest Building 7	Monitor injection & Site conditions	VOCs		
MW-009	Near Bldg. 9 and Unnamed Stream	Monitor VOC Trends	VOCs		
MW-013	North Building 3 by Rte. 128	Monitor injection & Site conditions	VOCs		
MW-014A	North Building 1	Monitor injection & Site conditions	VOCs		
MW-016	South Building 4	Monitor VOC Trends	VOCs		
OB-09-BR	By Unnamed Stream	Monitor VOC Trends	VOCs		
OB-09-DO	By Unnamed Stream	Monitor VOC Trends	VOCs		
OB-09-S	By Unnamed Stream	Monitor VOC Trends	VOCs		
OB-10-BR	East Building 4	Monitor VOC Trends	VOCs		
OB-10-S	East Building 4	Monitor VOC Trends	VOCs		
OB-12-DO	North Building 3 by Rte. 128	Monitor injection & Site conditions	VOCs		

Table 3-5 Groundwater and Surface Water Sample Summary May 2022

Sample Location	Location	Rationale for Sampling	Analysis Performed		
OB-14-DO	North Building 1	Monitor injection & Site conditions	VOCs		
OB-15-S	Near Bldg. 9 and Unnamed Stream	Monitor VOC trends in shallow bioremediation area	VOCs		
OB-19-BR	West Building 1 and 2	Monitor remediation	VOCs		
OB-19-DO	West Building 1 and 2	Monitor remediation	VOCs		
OB-25-BR	West Building 1 and 2	Monitor remediation and VOC trends	VOCs		
OB-25-DO	West Building 1 and 2	Monitor remediation and VOC trends	VOCs		
OB-26-BR	West Building 1 and 2	Monitor remediation and VOC trends	VOCs		
OB-26-DO	West Building 1 and 2	Monitor remediation and VOC trends	VOCs		
OB-27-BR	West Building 7	Monitor remediation and VOC trends	VOCs		
OB-28-BR	West Building 1 and 2	Monitor remediation and VOC trends	VOCs		
OB-28-DO	West Building 1 and 2	Monitor remediation and VOC trends	VOCs		
OB-32-DO	North Building 3	Monitor VOC Trends	VOCs		
OB-34-DO	North Building 3	Monitor VOC Trends	VOCs		
OB-36-DO	Inside Building 6	Monitor VOC Trends	VOCs		
OB-37-DO	Inside Building 6	Monitor VOC Trends	VOCs		
OB-50-S	Building 3, North Side	Monitor VOC Trends	VOCs		
OB-51-S	Building 3, North Side	Monitor VOC Trends	VOCs		
STR-03	Unnamed Stream	Monitor VOC trends, also Con Comm request	VOCs		
UNNAMED_STREAM	Unnamed stream	Monitor VOC trends, also Con Comm request	VOCs		
AP-27-DO	East Building 5	Monitor remediation and VOC trends	VOCs		
OB-35-DO	Inside Building 5	Monitor VOC Trends	VOCs		
OB-38-BR	East Building 5	Per MassDEP Approved Plan	VOCs		
OB-38-DO	East Building 5	Monitor VOC Trends	VOCs		
OB-39-BR	West Building 5	Quarterly Bio Per MassDEP Approved Plan	VOCs		
OB-44-S	Inside Building 5	Monitor VOC Trends	Methane, Ethane, Ethene, VOCs		
OB-45-BR	West Building 5	Quarterly Bio Per MassDEP Approved Plan	VOCs		
OB-53-BR	Under Building 5	Monitor VOC Trends	VOCs		
OB-54-BR	Under Building 5	Monitor VOC Trends	VOCs		
GDS-03	Unnamed Stream	Monitor VOC Trends	VOCs		
STR-14	Stream A	Per MassDEP Approved Plan	VOCs		
STR-19	Stream A	Per MassDEP Approved Plan	VOCs		
STRMH-02	Unnamed Stream	Per MassDEP Approved Plan	VOCs		
P-09	Hill Street	Monitor VOC Trends	VOCs		
P-20	SCDS Field	Monitor VOC Trends	VOCs		
BR-6_ZONE3	Hill Street	Monitor VOC Trends	VOCs		
OB-20-BR	East of Longview Terrace	Monitor remediation	VOCs		
OB-20-DO	East of Longview Terrace	Monitor remediation	VOCs		
P-19A	Hill Street	Monitor VOC Trends	VOCs		
P-21	Hill Street	Monitor VOC Trends	VOCs		
P-21-BR	Longview Drive	Per MassDEP Approved Plan	VOCs		
P-21-DO	Longview Drive	Per MassDEP Approved Plan	VOCs		

Table 3-5 Groundwater and Surface Water Sample Summary May 2022

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Sample Location	Location	Rationale for Sampling	Analysis Performed
STRM-A-SCDS	East of Longview Terrace	Monitor VOC trends, also Con Comm request	VOCs
AP-19	PSL 10	Monitor residual permanganate and VOC trends	VOCs
AP-20 PSL 10		Monitor residual permanganate and VOC trends	VOCs
AP-21	PSL 10	Monitor residual permanganate and VOC trends	VOCs
AP-22	PSL 10	Monitor residual permanganate and VOC trends	VOCs
CL04-BR	30 Tozer Road	Monitor VOC Trends	VOCs
CL04-DO	30 Tozer Road	Monitor VOC Trends	VOCs
CL10-BR	32 Tozer Road	Monitor VOC Trends	VOCs
CL10-DO	32 Tozer Road	Monitor VOC Trends	VOCs
CL10-S	32 Tozer Road	Monitor VOC Trends	VOCs
MW-2_32-TOZER	32 Tozer Road	Monitor VOC Trends	VOCs
BR-1_ZONE3	Walden Street	Monitor Site conditions	VOCs
CL02-BR	16 Tozer Road	Monitor injection & Site conditions	VOCs
CL06-BR	Walden Street	Monitor Site conditions	VOCs
CL06-DO	Walden Street	Monitor Site conditions	VOCs
CL09-BR_ZONE3	Commons Drive	Monitor VOC Trends	VOCs
MW-003R	16 Tozer Road	Monitor Site conditions	VOCs
MW-005R	16 Tozer Road	Monitor Site conditions	VOCs
OB-17-BR	Commons Drive	Monitor Site conditions	VOCs
OB-17-DO	Commons Drive	Monitor Site conditions	VOCs
OB-23-BR	16 Tozer Road	Monitor Site conditions	VOCs
BR-5 ZONE3	28 Tozer Road	Monitor VOC Trends	VOCs
CL03-DO	28 Tozer Road	Monitor VOC Trends	VOCs
CL08-BR_ZONE3	Longmeadow Road	Sentry Wells	VOCs
CL08-DO	Longmeadow Road	Monitor VOC Trends	VOCs
GFS-03	28 Tozer Road	Monitor VOC Trends	VOCs
OB-04-DO	28 Tozer Road	Monitor Site conditions	VOCs
OB-05-BR	27 Tozer Road	Monitor Site conditions	VOCs
OB-05-DO	27 Tozer Road	Monitor Site conditions	VOCs
OB-06-BR	Sonning Road	Monitor Site conditions	VOCs
OB-06-DO	Sonning Road	Monitor Site conditions	VOCs
OB-42-BR	30 Tozer Road	Monitor VOC Trends	VOCs
OB-42-S	30 Tozer Road	Monitor VOC Trends	VOCs
OB-43-S	30 Tozer Road	Monitor VOC Trends	VOCs

Notes:

 ${\tt VOC = Volatile\ Organic\ Compounds,\ analysis\ by\ EPA\ Method\ 8260D}$

Methane, ethane, ethene analysis by Method 8015B Modified

Table 3-6 Groundwater Sample Summary August 2022

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Sample Location	Location	Rationale for Sampling	Analysis Performed
RW-22	North Building 1	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-57-DO	Under Building 2	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-58-DO	West of Building 2/4	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-59-DO	West of Building 2/5	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-11-BR	North Building 3 by Rte. 128	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-11-DO	North Building 3 by Rte. 128	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-11-S	North Building 3 by Rte. 128	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-12-BR	North Building 3 by Rte. 128	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-12-DO	North Building 3 by Rte. 128	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-12-S	North Building 3 by Rte. 128	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-14-DO	North Building 1	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-55-BR	North Building 3 by Rte. 128	Monitor Site conditions	Calcium, Magnesium, Potassium, Sodium, Methane, Ethane, Ethene, VOCs, DHC,Chloride, Nitrate as N, Sulfate, Alkalinity, Ammonia
OB-60-S	Inside Building 5	Monitor Site conditions	VOCs
OB-60-S	Inside Building 5	Monitor Site conditions	VOCs

Notes:

Alkalinity analysis by SM2320B

Ammonia analysis by SM4500NH3-D

Calcium, Magnesium, Potassium, Sodium analysis by 6020

Chloride, Nitrate as N and Sulfate analysis by 300.0A

VOC = Volatile Organic Compounds, analysis by EPA Method 8260D

Methane, ethane, ethene analysis by Method 8015B Modified

DHC = Dehalococcoides sp. analysis by polymerase chain reaction (PCR)

		Deference	Donth to	Croundwater	
		Reference Elevation	Depth to Water	Groundwater Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
AP-12-BR	4/22/2020	71.32	17.50	53.82	DTB = 74.10 FT
AP-12-BR	5/6/2020	71.32	17.34	53.98	
AP-12-BR	11/9/2020	71.32	18.95	52.37	DTB = 74.10 FT
AP-12-BR	11/25/2020	71.32	19.08	52.24	
AP-12-BR	4/28/2021	71.32	11.28	60.04	DTB = 48.65 FT
AP-12-BR	5/12/2021	71.32	17.90	53.42	
AP-12-BR	10/28/2021	71.32	17.51	53.81	DTB = 49.40 FT
AP-12-BR	11/11/2021	71.32	17.62	53.70	
AP-12-BR	4/25/2022	71.32	18.20	53.12	DTB = 75.08 FT
AP-12-BR	5/9/2022	71.32	18.68	52.64	
AP-12-DO	4/22/2020	71.30	11.05	60.25	DTB = 48.25 FT
AP-12-DO	5/6/2020	71.30	11.02	60.28	
AP-12-DO	11/9/2020	71.30	12.25	59.05	DTB = 48.30 FT
AP-12-DO	11/25/2020	71.30	11.87	59.43	
AP-12-DO	4/28/2021	71.30	18.28	53.02	DTB = 78.43 FT
AP-12-DO	5/12/2021	71.30	11.02	60.28	
AP-12-DO	10/28/2021	71.30	10.60	60.70	DTB = 48.37 FT
AP-12-DO	11/11/2021	71.30	11.45	59.85	
AP-12-DO	4/25/2022	71.30	11.95	59.35	DTB = 48.35 FT
AP-12-DO	5/9/2022	71.30	12.35	58.95	
AP-12-S	4/22/2020	71.44	8.41	63.03	DTB = 27.30 FT
AP-12-S	5/6/2020	71.44	8.34	63.10	
AP-12-S	11/9/2020	71.44	9.08	62.36	DTB = 27.30 FT
AP-12-S	11/25/2020	71.44	9.18	62.26	
AP-12-S	4/28/2021	71.44	8.80	62.64	DTB = 27.38 FT
AP-12-S	5/12/2021	71.44	8.09	63.35	
AP-12-S	10/28/2021	71.44	7.36	64.08	DTB = 27.26 FT
AP-12-S	11/11/2021	71.44	8.31	63.13	
AP-12-S	4/25/2022	71.44	9.18	62.26	DTB = 27.33 FT
AP-12-S	5/9/2022	71.44	9.96	61.48	
AP-13-DO	1/30/2020	68.85	12.40	56.45	DTB = 43.61 FT
AP-13-DO	2/14/2020	68.85	14.52	54.33	DTB = 43.61 FT
AP-13-DO	4/21/2020	68.85	11.82	57.03	DTB = 43.85 FT
AP-13-DO	5/5/2020	68.85	11.57	57.28	
AP-13-DO	8/6/2020	68.85	14.10	54.75	DTB = 43.95 FT
AP-13-DO	8/20/2020	68.85	14.30	54.55	
AP-13-DO	2/4/2021	68.85	11.94	56.91	
AP-13-DO	4/27/2021	68.85	11.88	56.97	
AP-13-DO	5/20/2021	68.85	12.30	56.55	
AP-13-DO	8/23/2021	68.85	9.12	59.73	DTB = 44.00 FT
AP-13-DO	9/9/2021	68.85	11.87	56.98	
AP-13-DO	10/25/2021	68.85	12.88	55.97	DTB = 43.50 FT
AP-13-DO	11/9/2021	68.85	9.03	59.82	DTB = 44.05 FT
AP-13-DO	1/26/2022	68.85	11.02	57.83	
AP-13-DO	2/15/2022	68.85	12.24	56.61	DTB = 44.24 FT
AP-13-DO	4/25/2022	68.85	12.04	56.81	DTB = 43.87 FT
AP-13-DO	5/12/2022	68.85	13.16	55.69	
AP-13-S	1/15/2020	68.98	9.97	59.01	DTB = 13.86 FT
AP-13-S	3/16/2020	68.98	11.22	57.76	
AP-13-S	3/20/2020	68.98	11.22	57.76	
AP-13-S	3/25/2020	68.98	11.04	57.94	
AP-13-S	4/21/2020	68.98	9.55	59.43	DTB = 13.85 FT
AP-13-S	5/5/2020	68.98	9.40	59.58	
AP-13-S	8/6/2020	68.98	12.05	56.93	DTB = 13.90 FT
AP-13-S	8/20/2020	68.98	12.56	56.42	
AP-13-S	11/9/2020	68.98	10.50	58.48	
AP-13-S	11/24/2020	68.98	9.78	59.20	
AP-13-S	2/4/2021	68.98	9.40	59.58	
AP-13-S	4/27/2021	68.98	9.95	59.03	
l .				L .	l .

		D-f	D41- 4-	0	
		Reference Elevation	Depth to Water	Groundwater Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
AP-13-S	5/12/2021	68.98	9.62	59.36	Note
AP-14-S	5/7/2020	74.97	10.85	64.12	
AP-15-S	4/22/2020	45.88	4.70	41.18	DTB = 13.32 FT
AP-15-S	5/6/2020	45.88	4.71	41.17	B1B = 10.02 11
AP-15-S	4/30/2021	45.88	4.70	41.18	DTB = 13.26 FT
AP-15-S	5/18/2021	45.88	5.20	40.68	D1D = 10.20 11
AP-15-S	4/27/2022	45.88	4.96	40.92	DTB = 13.26 FT
AP-15-S	5/11/2022	45.88	5.12	40.76	D1B = 13.20 11
AP-19	4/20/2020	81.30	11.52	69.78	DTB = 25.04 FT
AP-19	5/4/2020	81.30	11.03	70.27	DTB = 23.04 FT
AP-19 AP-19	11/9/2020		13.50	67.80	DTB = 25.00 FT
AP-19 AP-19		81.30 81.30	13.53	67.77	DTB - 25.00 FT
	11/25/2020				DTD = 25.00 ET
AP-19	4/29/2021	81.30	11.86	69.44	DTB = 25.09 FT
AP-19	5/17/2021	81.30	11.80	69.50	DTD 00.00 FT
AP-19	10/26/2021	81.30	12.53	68.77	DTB = 29.22 FT
AP-19	11/10/2021	81.30	12.21	69.09	DTD 05.00.5T
AP-19	4/25/2022	81.30	11.62	69.68	DTB = 25.00 FT
AP-19	5/9/2022	81.30	11.86	69.44	
AP-20	4/20/2020	81.43	10.21	71.22	DTB = 15.04 FT
AP-20	5/4/2020	81.43	9.56	71.87	
AP-20	11/9/2020	81.43	13.80	67.63	DTB = 15.60 FT
AP-20	11/25/2020	81.43	13.50	67.93	
AP-20	4/29/2021	81.43	10.68	70.75	DTB = 15.48 FT
AP-20	5/17/2021	81.43	10.65	70.78	
AP-20	10/26/2021	81.43	12.55	68.88	DTB = 15.72 FT
AP-20	11/10/2021	81.43	11.18	70.25	
AP-20	4/25/2022	81.43	10.53	70.90	DTB = 15.20 FT
AP-20	5/9/2022	81.43	11.21	70.22	
AP-21	4/20/2020	81.50	11.96	69.54	DTB = 23.18 FT
AP-21	5/4/2020	81.50	11.25	70.25	
AP-21	11/9/2020	81.50	15.30	66.20	DTB = 23.35 FT
AP-21	11/25/2020	81.50	14.83	66.67	
AP-21	4/29/2021	81.50	11.51	69.99	DTB = 23.25 FT
AP-21	5/17/2021	81.50	11.52	69.98	
AP-21	10/26/2021	81.50	13.78	67.72	DTB = 23.28 FT
AP-21	11/10/2021	81.50	11.62	69.88	
AP-21	4/25/2022	81.50	11.37	70.13	DTB = 23.30 FT
AP-21	5/9/2022	81.50	12.24	69.26	
AP-22	4/20/2020	81.96	13.38	68.58	DTB = 21.84 FT
AP-22	5/4/2020	81.96	12.55	69.41	
AP-22	11/9/2020	81.96	17.95	64.01	DTB = 21.80 FT
AP-22	11/25/2020	81.96	17.46	64.50	
AP-22	4/29/2021	81.96	12.44	69.52	DTB = 21.77 FT
AP-22	5/17/2021	81.96	13.85	68.11	
AP-22	10/26/2021	81.96	16.23	65.73	DTB = 29.87 FT
AP-22	11/10/2021	81.96	11.82	70.14	
AP-22	4/25/2022	81.96	12.80	69.16	DTB = 21.80 FT
AP-22	5/9/2022	81.96	14.05	67.91	
AP-23-DO	1/30/2020	69.46	11.97	57.49	DTB = 47.93 FT
AP-23-DO	2/14/2020	69.46	11.84	57.62	DTB = 47.93 FT
AP-23-DO	3/16/2020	69.46	12.55	56.91	
AP-23-DO	3/20/2020	69.46	12.18	57.28	
AP-23-DO	3/25/2020	69.46	11.60	57.86	
AP-23-DO	4/21/2020	69.46	11.70	57.76	DTB = 47.60 FT
AP-23-DO AP-23-DO	5/5/2020	69.46	11.47	57.79	515 - 47.00 11
AP-23-DO AP-23-DO	8/6/2020	69.46	14.30	55.16	DTB = 47.65 FT
AP-23-DO AP-23-DO	8/20/2020	69.46	14.66	54.80	D1D - 47.00 1 1
AP-23-DO AP-23-DO	11/9/2020	69.46	13.03	56.43 57.31	
MC-20-DO	11/24/2020	69.46	12.15	57.31	

		Reference	Depth to	Groundwater	
		Elevation	Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
AP-23-DO	2/4/2021	69.46	12.38	57.08	
AP-23-DO	4/27/2021	69.46	12.02	57.44	
AP-23-DO	8/23/2021	69.46	11.40	58.06	DTB = 47.25 FT
AP-23-DO	9/9/2021	69.46	13.96	55.50	
AP-23-DO	10/25/2021	69.46	12.85	56.61	DTB = 47.49 FT
AP-23-DO	11/9/2021	69.46	12.75	56.71	DTB = 47.75 FT
AP-23-DO	1/26/2022	69.46	12.50	56.96	DTB = 47.55 FT
AP-23-DO	2/15/2022	69.46	12.36	57.10	DTB = 47.69 FT
AP-23-DO	4/25/2022	69.46	12.15	57.31	DTB = 47.40 FT
AP-23-DO	5/12/2022	69.46	13.06	56.40	
AP-24-DO	1/30/2020	69.56	10.92	58.64	DTB = 45.61 FT
AP-24-DO	2/14/2020	69.56	10.90	58.66	DTB = 45.61 FT
AP-24-DO	4/21/2020	69.56	10.36	59.20	DTB = 45.80 FT
AP-24-DO	5/5/2020	69.56	10.15	59.41	
AP-24-DO	8/6/2020	69.56	12.70	56.86	DTB = 45.85 FT
AP-24-DO	8/20/2020	69.56	12.92	56.64	
AP-24-DO	11/9/2020	69.56	11.49	58.07	
AP-24-DO	11/24/2020	69.56	11.82	57.74	
AP-24-DO	2/4/2021	69.56	11.39	58.17	
AP-24-DO	4/27/2021	69.56	10.68	58.88	
AP-24-DO	5/20/2021	69.56	10.42	59.14	
AP-24-DO	8/23/2021	69.56	10.84	58.72	DTB = 46.02 FT
AP-24-DO	9/10/2021	69.56	10.49	59.07	
AP-24-DO	10/25/2021	69.56	11.16	58.40	DTB = 46.18 FT
AP-24-DO	11/9/2021	69.56	10.07	59.49	DTB = 47.77 FT
AP-24-DO	1/26/2022	69.56	11.02	58.54	DTB = 43.85 FT
AP-24-DO	2/15/2022	69.56	13.62	55.94	DTB = 44.51 FT
AP-24-DO	4/25/2022	69.56	9.93	59.63	DTB = 45.60 FT
AP-24-DO	5/12/2022	69.56	10.51	59.05	
AP-25-DO	1/30/2020	65.58	6.03	59.55	DTB = 47.71 FT
AP-25-DO	2/14/2020	65.58	5.70	59.88	DTB = 47.71 FT
AP-25-DO	4/21/2020	65.58	5.55	60.03	DTB = 47.50 FT
AP-25-DO	5/5/2020	65.58	5.45	60.13	
AP-25-DO	8/6/2020	65.58	8.20	57.38	DTB = 47.60 FT
AP-25-DO	8/20/2020	65.58	8.55	57.03	
AP-25-DO	11/9/2020	65.58	7.05	58.53	
AP-25-DO	11/24/2020	65.58	6.78	58.80	
AP-25-DO	2/4/2021	65.58	5.54	60.04	
AP-25-DO	4/27/2021	65.58	5.98	59.60	
AP-25-DO	5/12/2021	65.58	6.05	59.53	DTD 47.54.5T
AP-25-DO	8/23/2021	65.58	5.23	60.35	DTB = 47.54 FT
AP-25-DO	9/10/2021	65.58	4.40	61.18	DTD = 47.50 FT
AP-25-DO	10/25/2021	65.58	1.18	64.40	DTB = 47.50 FT
AP-25-DO AP-25-DO	11/8/2021 1/26/2022	65.58	6.25	59.33	DTB = 47.44 FT
		65.58	6.62	58.96	DTB = 47.53 FT
AP-25-DO	2/15/2022	65.58	5.49	60.09	DTB = 47.52 FT
AP-25-DO	5/13/2022 4/22/2020	65.58	10.58	55.00	DTP - 60 50 ET
AP-26-DO		73.99	12.85	61.14	DTB = 60.50 FT
AP-26-DO	5/8/2020	73.99	13.00	60.99	
AP-26-DO AP-26-DO	5/14/2020	73.99	13.09	60.90	DTP - 60 50 ET
	11/9/2020	73.99	15.50	58.49	DTB = 60.50 FT
AP-26-DO	11/25/2020	73.99	15.57	58.42	DTD - 64 60 ET
AP-26-DO AP-26-DO	4/29/2021	73.99	13.48	60.51	DTB = 64.60 FT DTB = 60.60 FT
AP-26-DO AP-26-DO	10/28/2021 11/11/2021	73.99	13.05	60.94 60.94	DID - 00.00 FI
AP-26-DO AP-26-DO	4/25/2022	73.99 73.99	13.05		DTB = 63.70 FT
AP-26-DO AP-27-DO	4/25/2022	73.99	13.36 13.62	60.63 63.72	DTB = 63.70 FT
AP-27-DO AP-27-DO	5/6/2020	77.34	13.62	63.58	DID - 31.33 I I
AP-27-DO AP-27-DO		1			DTB = 57.40 FT
Λι ⁻ -21-DU	11/9/2020	77.34	18.55	58.79	טוט – טוא - טוט – טוט

		Reference	Depth to	Groundwater	
		Elevation	Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
AP-27-DO	11/25/2020	77.34	18.46	58.88	
AP-27-DO	4/30/2021	77.34	12.80	64.54	DTB = 45.30 FT
AP-27-DO	5/14/2021	77.34	14.55	62.79	
AP-27-DO	10/26/2021	77.34	15.79	61.55	DTB = 57.00 FT
AP-27-DO	11/10/2021	77.34	15.05	62.29	
AP-27-DO	4/25/2022	77.34	15.17	62.17	DTB = 58.00 FT
AP-27-DO	5/11/2022	77.34	15.89	61.45	
AP-30R-DO	5/12/2022	74.83	5.09	69.74	
AP-31-DO	5/9/2022	75.13	0.99	74.14	
AP-32-DO	5/9/2022	75.65	18.25	57.40	
AP-33-DO	1/30/2020	66.49	7.74	58.75	DTB = 36.40 FT
AP-33-DO	2/14/2020	66.49	7.51	58.98	DTB = 36.40 FT
AP-33-DO	4/21/2020	66.49	7.36	59.13	DTB = 35.50 FT
AP-33-DO	5/5/2020	66.49	7.20	59.29	
AP-33-DO	8/6/2020	66.49	9.69	56.80	DTB = 35.50 FT
AP-33-DO	8/20/2020	66.49	9.97	56.52	
AP-33-DO	11/9/2020	66.49	8.53	57.96	
AP-33-DO	11/23/2020	66.49	8.21	58.28	
AP-33-DO	2/4/2021	66.49	7.31	59.18	
AP-33-DO	4/27/2021	66.49	7.63	58.86	
AP-33-DO	5/13/2021	66.49	7.79	58.70	
AP-33-DO	8/23/2021	66.49	9.33	57.16	DTB = 38.50 FT
AP-33-DO	9/9/2021	66.49	8.11	58.38	
AP-33-DO	10/25/2021	66.49	8.42	58.07	DTB = 35.65 FT
AP-33-DO	11/9/2021	66.49	8.09	58.40	DTB = 37.75 FT
AP-33-DO	1/26/2022	66.49	8.18	58.31	DTB = 35.65 FT
AP-33-DO	5/13/2022	66.49	8.27	58.22	DTB = 35.51 FT
AP-34-DO	1/30/2020	68.33	9.49	58.84	DTB = 36.76 FT
AP-34-DO	2/14/2020	68.33	9.40	58.93	DTB = 36.76 FT
AP-34-DO	4/21/2020	68.33	9.21	59.12	DTB = 37.03 FT
AP-34-DO	5/5/2020	68.33	9.05	59.28	
AP-34-DO	8/6/2020	68.33	11.54	56.79	DTB = 37.08 FT
AP-34-DO	8/20/2020	68.33	11.89	56.44	
AP-34-DO	11/9/2020	68.33	10.43	57.90	
AP-34-DO	11/24/2020	68.33	11.85	56.48	
AP-34-DO	2/4/2021	68.33	9.25	59.08	
AP-34-DO	4/27/2021	68.33	9.55	58.78	
AP-34-DO	5/13/2021	68.33	9.66	58.67	
AP-34-DO	8/23/2021	68.33	9.18	59.15	DTB = 37.06 FT
AP-34-DO	9/9/2021	68.33	9.95	58.38	
AP-34-DO	10/25/2021	68.33	10.35	57.98	DTB = 36.30 FT
AP-34-DO	11/9/2021	68.33	9.88	58.45	DTB = 37.15 FT
AP-34-DO	1/26/2022	68.33	9.90	58.43	DTB = 37.00 FT
AP-34-DO	5/13/2022	68.33	10.17	58.16	DTB = 37.09 FT
AP-35-DO	1/30/2020	68.92	10.07	58.85	DTB = 33.52 FT
AP-35-DO	2/14/2020	68.92	10.02	58.90	DTB = 33.52 FT
AP-35-DO	3/16/2020	68.92	10.62	58.30	
AP-35-DO	3/20/2020	68.92	10.19	58.73	
AP-35-DO	3/25/2020	68.92	9.74	59.18	
AP-35-DO	4/21/2020	68.92	9.85	59.07	DTB = 33.95 FT
AP-35-DO	5/5/2020	68.92	9.65	59.27	
AP-35-DO	8/6/2020	68.92	12.05	56.87	DTB = 33.90 FT
AP-35-DO	8/20/2020	68.92	12.49	56.43	
AP-35-DO	11/9/2020	68.92	11.05	57.87	
AP-35-DO	11/24/2020	68.92	10.22	58.70	
AP-35-DO	2/4/2021	68.92	10.34	58.58	
AP-35-DO	4/27/2021	68.92	10.16	58.76	
AP-35-DO	5/13/2021	68.92	10.25	58.67	
AP-35-DO	8/23/2021	68.92	9.21	59.71	DTB = 32.67 FT
1		· · · · · · · · · · · · · · · · · · ·			ļ

Location	Date	Reference Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)	Note
AP-35-DO	9/9/2021	68.92	13.95	54.97	Note
AP-35-DO	10/25/2021	68.92	10.88	58.04	DTB = 34.00 FT
AP-35-DO	11/9/2021	68.92	10.47	58.45	DTB = 33.82 FT
AP-35-DO	1/26/2022	68.92	10.61	58.31	
AP-35-DO	2/15/2022	68.92	10.05	58.87	DTB = 35.09 FT
AP-35-DO	5/13/2022	68.92	10.74	58.18	DTB = 33.89 FT
AP-36-S	1/30/2020	81.50	5.90	75.60	DTB = 16.63 FT
AP-36-S	2/13/2020	81.50	5.77	75.73	DTB = 16.63 FT
AP-36-S	4/22/2020	81.50	5.38	76.12	DTB = 17.05 FT
AP-36-S	5/5/2020	81.50	5.19	76.31	
AP-36-S	8/7/2020	81.50	8.10	73.40	DTB = 17.50 FT
AP-36-S	8/21/2020	81.50	7.70	73.80	
AP-36-S	11/10/2020	81.50	6.79	74.71	
AP-36-S	11/23/2020	81.50	6.78	74.72	
AP-36-S	2/4/2021	81.50	6.13	75.37	
AP-36-S	2/22/2021	81.50	5.93	75.57	
AP-36-S	4/28/2021	81.50	5.78	75.72	
AP-36-S	5/13/2021	81.50	6.15	75.35	
AP-36-S	8/23/2021	81.40	5.55	75.85	Resurveyed June 2021, DTB = 16.73 FT
AP-36-S	9/10/2021	81.40	5.42	75.98	1000110704 04110 2021, 212 10.10 11
AP-36-S	10/25/2021	81.40	6.21	75.19	DTB = 17.02 FT
AP-36-S	11/9/2021	81.40	5.68	75.72	515 11.02 11
AP-36-S	1/26/2022	81.40	6.08	75.32	DTB = 17.15 FT
AP-36-S	2/10/2022	81.40	6.30	75.10	DTB = 16.93 FT
AP-36-S	4/26/2022	81.40	5.77	75.63	DTB = 16.80 FT
AP-36-S	5/12/2022	81.40	6.44	74.96	B1B = 10.00 11
AP-37-S	1/30/2020	81.58	4.64	76.94	DTB = 17.22 FT
AP-37-S	2/13/2020	81.58	4.58	77.00	DTB = 17.22 FT
AP-37-S	4/22/2020	81.58	4.42	77.16	DTB = 17.70 FT
AP-37-S	5/5/2020	81.58	4.35	77.23	D1B - 17.70 1 1
AP-37-S	8/7/2020	81.58	5.72	75.86	DTB = 17.60 FT
AP-37-S	8/21/2020	81.58	6.02	75.56	DTB = 17.00 TT
AP-37-S	11/10/2020	81.58	5.28	76.30	
AP-37-S	11/23/2020	81.58	5.28	76.30	
AP-37-S	2/4/2021	81.58	4.90	76.68	
AP-37-S	2/22/2021	81.58	4.58	77.00	
AP-37-S	4/28/2021	81.58	4.70	76.88	
AP-37-S	5/13/2021	81.58	5.10	76.48	
AP-37-S	8/23/2021	81.52	4.72	76.80	Resurveyed June 2021, DTB = 17.39 FT
AP-37-S	9/10/2021	81.52	4.72	76.69	Nesdiveyed 3dile 2021, DTB = 17:39 11
AP-37-S	10/25/2021	81.52	4.03	76.60	DTB = 17.83 FT
AP-37-S	11/9/2021	81.52	4.67	76.85	DTB = 17.03 TT
AP-37-S	1/26/2022	81.52	4.74	76.78	DTB = 17.62 FT
AP-37-S	2/10/2022	81.52	4.74	76.94	DTB = 17.68 FT
AP-37-S	2/22/2022	81.52	4.39	77.13	DTB = 17.52 FT
AP-37-S AP-37-S	4/26/2022	81.52	4.39	76.65	DTB = 17.50 FT
AP-37-S	5/12/2022	81.52	5.41	76.11	DTB = 17.50 TT
AP-38-S	1/30/2020	81.48	6.18	75.30	DTB = 17.16 FT
AP-38-S				75.43	DTB = 17.16 FT
AP-38-S	2/13/2020 4/22/2020	81.48 81.48	6.05 5.83	75.43 75.65	DTB = 17.16 FT
AP-38-S AP-38-S	5/5/2020	81.48	5.64	75.84	DID - 17.00 FI
AP-38-S	6/1/2020		10.10	71.38	DTB = 18.00 FT
AP-38-S AP-38-S		81.48			
AP-38-S AP-38-S	8/7/2020	81.48 81.48	7.44	74.04	DTB = 16.97 FT
AP-38-S	8/21/2020 11/10/2020	81.48	8.09 7.73	73.39 73.75	
AP-38-S AP-38-S	11/10/2020		7.73	73.75	
AP-38-S AP-38-S	2/4/2021	81.48	7.28	74.20	
		81.48			
AP-38-S	2/22/2021	81.48	6.69	74.79	
AP-38-S	4/28/2021	81.48	7.20	74.28	

		Reference Elevation	Depth to Water	Groundwater Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
AP-38-S	8/23/2021	81.47	6.05	75.42	Resurveyed June 2021, DTB = 17.30 FT
AP-38-S	9/10/2021	81.47	5.98	75.49	DTD 47.00 FT
AP-38-S	10/25/2021	81.47	6.44	75.03	DTB = 17.62 FT
AP-38-S	11/9/2021	81.47	6.11	75.36	
AP-38-S	1/26/2022	81.47	6.57	74.90	DTD 17-50-57
AP-38-S	2/10/2022	81.47	6.25	75.22	DTB = 17.56 FT
AP-38-S	4/26/2022	81.47	6.19	75.28	DTB = 17.34 FT
AP-38-S	5/12/2022	81.47	6.86	74.61	
AP-39-S	1/30/2020	81.48	4.60	76.88	DTB = 17.41 FT
AP-39-S	2/13/2020	81.48	4.22	77.26	DTB = 17.41 FT
AP-39-S	4/22/2020	81.48	4.19	77.29	DTB = 17.42 FT
AP-39-S	5/5/2020	81.48	4.13	77.35	
AP-39-S	8/7/2020	81.48	5.58	75.90	DTB = 17.30 FT
AP-39-S	8/21/2020	81.48	5.91	75.57	
AP-39-S	11/10/2020	81.48	5.62	75.86	
AP-39-S	11/23/2020	81.48	5.30	76.18	
AP-39-S	2/4/2021	81.48	4.44	77.04	
AP-39-S	2/22/2021	81.48	4.38	77.10	
AP-39-S	4/28/2021	81.48	4.35	77.13	
AP-39-S	5/13/2021	81.48	4.45	77.03	
AP-39-S	8/23/2021	81.32	4.40	76.92	Resurveyed June 2021, DTB = 16.99 FT
AP-39-S	9/10/2021	81.32	4.33	76.99	
AP-39-S	10/25/2021	81.32	4.71	76.61	DTB = 17.02 FT
AP-39-S	11/9/2021	81.32	4.25	77.07	
AP-39-S	1/26/2022	81.32	4.42	76.90	
AP-39-S	2/10/2022	81.32	4.50	76.82	DTB = 17.23 FT
AP-39-S	4/26/2022	81.32	4.36	76.96	DTB = 17.00 FT
AP-39-S	5/12/2022	81.32	4.82	76.50	
AP-41-S	8/20/2020	72.80	0.00	0.00	Dry
AP-42-DO	5/9/2022	71.80	31.03	40.77	
AP-43-DO	5/9/2022	70.75			Could not determine DTW
B-2	5/13/2022	80.30	2.83	77.47	DTB = 12.37 FT
B-3	1/15/2020	66.23	7.52	58.71	DTB = 13.45 FT
B-3	5/7/2020	66.23	7.20	59.03	
B-3	10/26/2021	66.23	7.23	59.00	DTB = 13.44 FT
B-3	11/16/2021	66.23	7.38	58.85	DTB = 13.53 FT
BR-1_ZONE3	5/13/2022	58.60	9.45	49.15	
BR-3_ZONE1	5/7/2020	62.36	9.36	53.00	
BR-3_ZONE2	5/7/2020	62.36	12.05	50.31	
BR-3_ZONE3	5/7/2020	62.36	15.66	46.70	
BR-6_ZONE3	5/4/2020	38.33	0.00	38.33	
BR-6_ZONE3	11/25/2020	38.33	0.11	38.22	
BW-05	4/22/2020	65.17	10.30	54.87	DTB = 16.60 FT
BW-05	5/6/2020	65.17	6.26	58.91	
BW-05	8/6/2020	65.17	8.20	56.97	DTB = 10.33 FT
BW-05	8/20/2020	65.17	8.50	56.67	
BW-05	11/10/2020	65.17	7.46	57.71	
BW-05	11/24/2020	65.17	6.77	58.40	
BW-05	2/4/2021	65.17	6.65	58.52	
BW-05	4/28/2021	65.17	6.64	58.53	
BW-05	5/12/2021	65.17	6.59	58.58	
BW-05	8/23/2021	65.17	6.78	58.39	DTB = 10.37 FT
BW-05	9/10/2021	65.17	7.14	58.03	
BW-05	10/25/2021	65.17	6.93	58.24	DTB = 10.40 FT
BW-05	11/8/2021	65.17	6.69	58.48	DTB = 10.21 FT
BW-05	1/26/2022	65.17	7.02	58.15	
		ļ		57.35	DTB = 12.95 FT
BW-05	2/11/2022	65.17	7.82	37.33	DIB = 12.95 FI
BW-05 BW-05	5/13/2022	65.17	7.82	58.01	DTB = 10.10 FT

		Reference	Depth to	Groundwater	
		Elevation	Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
BW-08	5/6/2020	65.44	6.95	58.49	
BW-08	8/6/2020	65.44	8.10	57.34	DTB = 14.75 FT
BW-08	8/20/2020	65.44	8.87	56.57	
BW-08	11/10/2020	65.44	7.95	57.49	
BW-08	11/25/2020	65.44	7.35	58.09	
BW-08	2/4/2021	65.44	7.22	58.22	
BW-08	4/28/2021	65.44	7.15	58.29	
BW-08	5/12/2021	65.44	7.09	58.35	
BW-08	8/23/2021	65.44	7.13	58.31	DTB = 14.50 FT
BW-08	9/10/2021	65.44	7.12	58.32	
BW-08	10/25/2021	65.44	7.30	58.14	DTB = 14.48 FT
BW-08	11/8/2021	65.44	7.23	58.21	DTB = 14.51 FT
BW-08	1/26/2022	65.44	7.58	57.86	
BW-08	2/11/2022	65.44	8.10	57.34	DTB = 14.41 FT
BW-08	5/13/2022	65.44	7.64	57.80	DTB = 14.51 FT
CL02-BR	4/22/2020	62.79	5.82	56.97	DTB = 79.00 FT
CL02-BR	5/7/2020	62.79	5.95	56.84	DTD 00.05 ET
CL02-BR	4/30/2021	62.79	5.77	57.02	DTB = 60.85 FT
CL02-BR	5/14/2021	62.79	6.30	56.49	
CL02-BR	4/26/2022	62.79	6.40	56.39	DTB = 79.80 FT
CL02-BR	5/11/2022	62.79	6.95	55.84	
CL03-DO	4/20/2020	50.40	8.85	41.55	DTB = 77.00 FT
CL03-DO	5/4/2020	50.40	8.66	41.74	
CL03-DO	4/30/2021	50.40	8.16	42.24	DTB = 76.22 FT
CL03-DO	5/19/2021	50.40	9.12	41.28	
CL03-DO	4/25/2022	50.40	9.07	41.33	DTB = 75.85 FT
CL03-DO	5/11/2022	50.40	9.41	40.99	
CL04-BR	4/20/2020	47.78	5.52	42.26	DTB = 59.22 FT
CL04-BR	5/4/2020	47.78	4.79	42.99	
CL04-BR	4/29/2021	47.78	5.86	41.92	DTB = 52.27 FT
CL04-BR	5/17/2021	47.78	5.70	42.08	
CL04-BR	4/25/2022	47.78	5.75	42.03	DTB = 56.20 FT
CL04-BR	5/10/2022	47.78	5.93	41.85	DTB = 54.60 FT
CL04-DO	4/20/2020	47.42	4.96	42.46	DTB = 28.90 FT
CL04-DO	5/4/2020	47.42	5.29	42.13	
CL04-DO	4/29/2021	47.42	5.31	42.11	DTB = 28.61 FT
CL04-DO	5/17/2021	47.42	5.22	42.20	DTD 00 T0 FT
CL04-DO	4/25/2022	47.42	5.05	42.37	DTB = 28.70 FT
CL04-DO	5/10/2022	47.42	5.40	42.02	DTB = 28.50 FT
CL06-BR	4/20/2020	58.41	9.07	49.34	DTB = 71.23 FT
CL06-BR	5/6/2020	58.41	8.79	49.62	DTD 00.04 FT
CL06-BR	4/29/2021	58.41	9.23	49.18	DTB = 69.94 FT
CL06-BR	5/14/2021	58.41	8.84	49.57	DTD 70.00 FT
CL06-BR	4/26/2022	58.41	9.43	48.98	DTB = 70.20 FT
CL06-BR	5/10/2022	58.41	9.55	48.86	DTB = 67.30 FT
CL06-DO	4/20/2020	58.75	8.53	50.22	DTB = 41.51 FT
CL06-DO	5/6/2020	58.75	8.38	50.37	DTD 44.70 FT
CL06-DO	4/29/2021	58.75	9.38	49.37	DTB = 41.72 FT
CL06-DO	5/14/2021	58.75	8.44	50.31	DTD 44.00 FT
CL06-DO	4/26/2022	58.75	8.98	49.77	DTB = 41.80 FT
CL06-DO	5/10/2022	58.75	9.30	49.45	DTB = 41.40 FT
CL06-S	4/29/2021	58.62	9.02	49.60	DTB = 15.96 FT
CL06-S	5/17/2021	58.62	8.40	50.22	272 47.00 57
CL06-S	5/10/2022	58.62	9.90	48.72	DTB = 15.60 FT
CL08-BR_ZONE1	5/7/2020	48.28	6.86	41.42	
CL08-BR_ZONE1	5/12/2022	48.28	5.80	42.48	Obstruction
CL08-BR_ZONE2	5/7/2020	48.28	5.32	42.96	
CL08-BR_ZONE2	5/12/2022	48.28	5.80	42.48	Obstruction
CL08-BR_ZONE3	5/7/2020	48.28	5.05	43.23	

		Deference	Donth to	Croundwater	
		Reference Elevation	Depth to Water	Groundwater Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
CL08-BR ZONE3	5/12/2022	48.28	5.80	42.48	Obstruction
CL08-DO	4/20/2020	47.85	5.45	42.40	DTB = 53.20 FT
CL08-DO	5/7/2020	47.85	5.47	42.38	2.2 30.20
CL08-DO	4/30/2021	47.85	5.41	42.44	DTB = 52.81 FT
CL08-DO	5/18/2021	47.85	5.78	42.07	3.2 32.3
CL08-DO	4/25/2022	47.85	5.85	42.00	DTB = 52.68 FT
CL08-DO	5/10/2022	47.85	6.20	41.65	DTB = 52.70 FT
CL08-S	4/30/2021	47.62	4.79	42.83	DTB = 13.10 FT
CL08-S	5/18/2021	47.62	5.50	42.12	D1B = 10.10 11
CL08-S	5/10/2022	47.62	5.95	41.67	DTB = 13.05 FT
CL09-BR ZONE3	5/7/2020	47.65	0.83	46.82	B1B = 10.00 11
CL09-DIC_ZONE3	5/13/2022	47.43	5.60	41.83	DTB = 33.87 FT
CL09-BC	4/30/2021	47.43	2.72	44.36	DTB = 13.41 FT
CL09-S					DIB - 13.41 FI
	5/17/2021	47.08	4.20	42.88	DTR = 12 20 FT
CL09-S	5/13/2022	47.08	4.85	42.23	DTB = 13.20 FT
CL10-BR	4/20/2020	72.28	0.92	71.36	DTB = 46.00 FT
CL10-BR	5/4/2020	72.28	0.45	71.83	DTD 40.04 FT
CL10-BR	4/29/2021	72.28	1.83	70.45	DTB = 46.31 FT
CL10-BR	5/17/2021	72.28	2.00	70.28	272 45 00 57
CL10-BR	4/26/2022	72.28	3.40	68.88	DTB = 45.68 FT
CL10-BR	5/10/2022	72.28	4.01	68.27	
CL10-DO	4/20/2020	72.54	4.24	68.30	DTB = 31.48 FT
CL10-DO	5/4/2020	72.54	3.78	68.76	
CL10-DO	11/9/2020	72.54	6.60	65.94	DTB = 31.45 FT
CL10-DO	11/25/2020	72.54	6.33	66.21	
CL10-DO	4/29/2021	72.54	4.45	68.09	DTB = 31.56 FT
CL10-DO	5/17/2021	72.54	4.47	68.07	
CL10-DO	10/26/2021	72.54	5.78	66.76	DTB = 31.55 FT
CL10-DO	11/10/2021	72.54	5.29	67.25	
CL10-DO	4/26/2022	72.54	4.75	67.79	DTB = 31.45 FT
CL10-DO	5/10/2022	72.54	4.81	67.73	
CL10-S	4/20/2020	72.54	4.14	68.40	DTB = 13.48 FT
CL10-S	5/4/2020	72.54	5.75	66.79	
CL10-S	11/9/2020	72.54	5.55	66.99	DTB = 13.23 FT
CL10-S	11/25/2020	72.54	5.34	67.20	
CL10-S	4/29/2021	72.54	4.30	68.24	DTB = 13.27 FT
CL10-S	5/17/2021	72.54	2.05	70.49	
CL10-S	10/26/2021	72.54	5.03	67.51	DTB = 13.22 FT
CL10-S	11/10/2021	72.54	4.55	67.99	
CL10-S	4/26/2022	72.54	4.07	68.47	DTB = 13.20 FT
CL10-S	5/10/2022	72.54	4.52	68.02	
CL11-DO	4/20/2020	68.72	18.60	50.12	DTB = 50.50 FT
CL11-DO	5/8/2020	68.72	18.63	50.09	
CL11-DO	5/17/2020	68.72	18.85	49.87	
CL11-DO	4/29/2021	68.72	19.31	49.41	DTB = 50.82 FT
CL11-DO	4/25/2022	68.72	19.17	49.55	DTB = 50.40 FT
GFS-03	4/20/2020	NM	9.37	NA	DTB = 17.01 FT
GFS-03	5/4/2020	NM	9.19	NA	
GFS-03	4/30/2021	NM	9.62	NA	DTB = 17.06 FT
GFS-03	5/19/2021	NM	9.42	NA	
GFS-03	10/28/2021	NM	8.80	NA	DTB = 17.00 FT
GFS-03	11/8/2021	NM	9.27	NA	DTB = 16.95 FT
GFS-03	4/25/2022	NM	9.62	NA NA	DTB = 16.97 FT
GFS-03	5/9/2022	NM	9.80	NA NA	DTB = 16.70 FT
GZ-4	4/20/2020	45.13	4.65	40.48	DTB = 11.30 FT
GZ-4	5/6/2020	45.13	4.56	40.57	2.2 11.55 11
GZ-4	4/30/2021	45.13	3.13	42.00	DTB = 11.24 FT
GZ-4	5/18/2021	45.13	4.95	40.18	71.27 11
GZ-4	4/25/2022	45.13	4.92	40.18	DTB = 11.28 FT
O2-4	412312022	40.10	4.32	40.∠1	וו 11.20 – טוט – וו

		Reference	Depth to	Groundwater	
		Elevation	Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
GZ-4	5/10/2022	45.13	5.50	39.63	272 2442 57
MW-002	4/30/2021	80.08	10.65	69.43	DTB = 34.18 FT
MW-002	5/14/2021	80.08	12.40	67.68	
MW-002R	5/13/2022	62.59	NM	NA Ta aa	Could not locate
MW-003R	4/20/2020	61.28	2.22	59.06	DTB = 30.70 FT
MW-003R	5/4/2020	61.28	3.12	58.16	
MW-003R	4/30/2021	61.28	1.47	59.81	DTB = 30.60 FT
MW-003R	5/14/2021	61.28	2.29	58.99	
MW-003R	4/25/2022	61.28	0.88	60.40	DTB = 9.28 FT
MW-003R	5/11/2022	61.28	1.11	60.17	
MW-005R	4/20/2020	62.96	3.64	59.32	DTB = 12.71 FT
MW-005R	5/4/2020	62.96	3.40	59.56	
MW-005R	4/30/2021	62.96	3.03	59.93	DTB = 17.65 FT
MW-005R	5/14/2021	62.96	3.69	59.27	
MW-005R	4/25/2022	62.96	4.06	58.90	DTB = 17.61 FT
MW-005R	5/11/2022	62.96	4.78	58.18	
MW-009	4/22/2020	63.48	4.50	58.98	DTB = 20.75 FT
MW-009	5/6/2020	63.48	4.51	58.97	
MW-009	11/9/2020	63.48	5.55	57.93	DTB = 21.25 FT
MW-009	11/25/2020	63.48	4.45	59.03	
MW-009	4/28/2021	63.48	4.46	59.02	DTB = 21.30 FT
MW-009	5/12/2021	63.48	4.43	59.05	
MW-009	4/25/2022	63.48	4.84	58.64	DTB = 20.78
MW-009	5/9/2022	63.48	5.17	58.31	
MW-013	4/22/2020	69.11	4.77	64.34	DTB = 42.10 FT
MW-013	5/8/2020	69.11	9.90	59.21	
MW-013	4/29/2021	69.11	10.21	58.90	DTB = 42.17 FT
MW-013	5/17/2021	69.11	10.12	58.99	
MW-013	10/28/2021	69.11	9.63	59.48	DTB = 42.11 FT
MW-013	11/11/2021	69.11	10.35	58.76	
MW-013	4/25/2022	69.11	10.09	59.02	DTB = 41.85 FT
MW-013	5/9/2022	69.11	10.78	58.33	
MW-014A	4/22/2020	69.11	14.42	54.69	DTB = 59.70 FT
MW-014A	5/7/2020	69.11	14.25	54.86	
MW-014A	4/29/2021	69.11	15.50	53.61	DTB - 59.63 FT
MW-014A	5/17/2021	69.11	14.77	54.34	
MW-014A	4/25/2022	69.11	15.59	53.52	DTB = 59.60 FT
MW-014A	5/9/2022	69.11	16.12	52.99	
MW-016	4/25/2022	66.82	14.04	52.78	DTB = 35.85 FT
MW-016	5/9/2022	66.82	14.25	52.57	
MW-030	4/30/2021	79.87	6.91	72.96	DTB = 20.08 FT
MW-030	5/14/2021	79.87	7.45	72.42	
MW-030	5/13/2022	79.85	10.33	69.52	DTB = 19.87 FT
MW-034	4/20/2020	35.30	0.00	35.30	DTB = 64.50 FT
MW-034	5/7/2020	35.30	0.00	35.30	
MW-034	4/30/2021	35.30	0.00	35.30	DTB = 66.68 FT
MW-034	5/14/2021	35.30	60.78	(25.48)	
MW-034	4/26/2022	35.30	0.00	35.30	Artesian, DTB = 64,58 FT
MW-034	5/10/2022	35.30	(0.50)	35.80	1
MW-036	4/20/2020	52.64	0.00	52.64	DTB = 9.23 FT
MW-036	4/30/2021	52.64	10.68	41.96	Obstruction at 10.96 FT
MW-036	4/25/2022	52.64	NM	NA	Obstructed, DTB = 11.03 FT
MW-036	5/11/2022	52.64	NM	NA NA	Obstructed, DTB = 11.06 FT
MW-2 32-TOZER	4/20/2020	70.83	4.92	65.91	DTB = 15.27 FT
MW-2 32-TOZER	5/4/2020	70.83	3.65	67.18	
MW-2_32-TOZER	11/9/2020	70.83	7.70	63.13	DTB = 15.10 FT
MW-2_32-TOZER	11/25/2020	70.83	7.70	63.35	0.10 11
MW-2 32-TOZER	4/29/2021	70.83	5.38	65.45	DTB = 15.27 FT
MW-2 32-TOZER	5/17/2021	70.83	5.20	65.63	010 - 10.27 11
INIAA-5-107EV	3/11/2021	10.00	J.ZU	00.00	

		Reference	Depth to	Groundwater	
Location	Date	Elevation (Feet)	Water (Feet)	Elevation (Feet)	Note
MW-2 32-TOZER	10/26/2021	70.83	6.48	64.35	DTB = 15.13 FT
MW-2_32-TOZER	11/10/2021	70.83	5.25	65.58	D1B = 13.13 1 1
MW-2_32-TOZER	4/26/2022	70.83	5.19	65.64	DTB = 15.22 FT
MW-2_32-TOZER	5/10/2022	70.83	5.64	65.19	D1B = 13.22 1 1
OB-04-DO	4/20/2020	54.35	12.50	41.85	DTB = 68.45 FT
OB-04-DO	5/4/2020	54.35	11.99	42.36	D1D = 00.43 11
OB-04-DO	11/9/2020	54.35	13.15	41.20	DTB = 67.70 FT
OB-04-DO	11/25/2020	54.35	12.78	41.57	DIB - 07.70 F1
OB-04-DO	4/30/2021	54.35	11.67	42.68	DTB = 68.34 FT
OB-04-DO	5/19/2021	54.35	12.31	42.04	DIB - 00.34 FI
OB-04-DO	10/26/2021	54.35	12.73	41.62	DTB = 68.63 FT
OB-04-DO	11/10/2021	54.35	12.73	41.95	DIB - 00.03 FI
					DTD - 67.07 FT
OB-04-DO	4/25/2022	54.35	12.55	41.80	DTB = 67.97 FT
OB-04-DO	5/11/2022	54.35	12.92	41.43	DTD 04 00 FT
OB-05-BR	4/20/2020	49.01	7.57	41.44	DTB = 91.60 FT
OB-05-BR	5/6/2020	49.01	7.42	41.59	DTD 00.40 FT
OB-05-BR	4/30/2021	49.01	7.52	41.49	DTB = 96.40 FT
OB-05-BR	5/18/2021	49.01	7.72	41.29	272 25 25 25
OB-05-BR	4/25/2022	49.01	7.76	41.25	DTB = 95.38 FT
OB-05-BR	5/10/2022	49.01	7.98	41.03	
OB-05-DO	4/20/2020	49.06	7.80	41.26	DTB = 82.62 FT
OB-05-DO	5/6/2020	49.06	7.70	41.36	
OB-05-DO	11/9/2020	49.06	8.33	40.73	DTB = 82.05 FT
OB-05-DO	11/25/2020	49.06	8.08	40.98	
OB-05-DO	4/30/2021	49.06	7.08	41.98	DTB = 82.08 FT
OB-05-DO	5/18/2021	49.06	7.97	41.09	
OB-05-DO	10/26/2021	49.06	8.02	41.04	DTB = 83.04 FT
OB-05-DO	11/10/2021	49.06	8.19	40.87	
OB-05-DO	4/25/2022	49.06	7.93	41.13	DTB = 82.35 FT
OB-05-DO	5/10/2022	49.06	8.28	40.78	
OB-05-S	4/30/2021	49.34	7.35	41.99	DTB = 26.10 FT
OB-05-S	5/18/2021	49.34	8.25	41.09	
OB-06-BR	4/20/2020	48.70	7.48	41.22	DTB = 95.30 FT
OB-06-BR	5/4/2020	48.70	6.84	41.86	
OB-06-BR	4/29/2021	48.70	7.53	41.17	DTB = 91.93 FT
OB-06-BR	5/18/2021	48.70	7.32	41.38	
OB-06-BR	4/25/2022	48.70	7.38	41.32	DTB = 91.83 FT
OB-06-BR	5/9/2022	48.70	7.60	41.10	
OB-06-DO	4/20/2020	49.21	7.64	41.57	DTB = 67.40 FT
OB-06-DO	5/4/2020	49.21	7.41	41.80	
OB-06-DO	4/29/2021	49.21	7.41	41.80	DTB = 74.45 FT
OB-06-DO	5/18/2021	49.21	21.62	27.59	
OB-06-DO	4/25/2022	49.21	7.90	41.31	DTB = 66.56 FT
OB-06-DO	5/9/2022	49.21	8.15	41.06	
OB-06-S	4/29/2021	49.39	7.48	41.91	DTB = 13.57 FT
OB-06-S	5/18/2021	49.39	7.61	41.78	
OB-06-S	10/28/2021	49.39	7.10	42.29	DTB = 13.90 FT
OB-06-S	11/8/2021	49.39	7.55	41.84	DTB = 13.81 FT
OB-06-S	1/26/2022	49.39	8.17	41.22	DTB = 13.88 FT
OB-06-S	2/10/2022	49.39	7.48	41.91	DTB = 13.90 FT
OB-06-S	5/9/2022	49.39	8.18	41.21	DTB = 13.55 FT
OB-08-DO	4/20/2020	38.29	0.00	38.29	DTB = 79.93 FT
OB-08-DO	5/6/2020	38.29	0.00	38.29	
OB-08-DO	4/30/2021	38.29	0.00	38.29	DTB = 79.88 FT
OB-08-DO	4/27/2022	38.29	0.00	38.29	DTB = 78.90 FT
OB-08-DO	5/11/2022	38.29	0.00	38.29	
OB-08-S	4/30/2021	38.36	5.30	33.06	DTB = 12.76 FT
OB-08-S	5/14/2021	38.36	5.60	32.76	
OB-08-S	5/13/2022	38.36	5.92	32.44	DTB = 12.76 FT
l		ļ		1	ļ.

		Reference	Depth to	Groundwater	
		Elevation	Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
OB-09-BR	4/22/2020	65.25	8.45	56.80	DTB = 102.60 FT
OB-09-BR	11/9/2020	65.25	9.90	55.35	DTB = 117.80 FT
OB-09-BR	11/25/2020	65.25	17.31	47.94	
OB-09-BR	4/28/2021	65.25	8.91	56.34	DTB = 104.90 FT
OB-09-BR	5/12/2021	65.25	8.41	56.84	
OB-09-BR	10/28/2021	65.25	8.60	56.65	DTB = 104.90 FT
OB-09-BR	11/15/2021	65.25	8.70	56.55	DTB = 104.50 FT
OB-09-BR	4/25/2022	65.25	8.90	56.35	DTB = 102.95 FT
OB-09-BR	5/9/2022	65.25	9.40	55.85	
OB-09-DO	4/22/2020	65.11	8.36	56.75	DTB = 91.50 FT
OB-09-DO	11/25/2020	65.11	9.40	55.71	DTB = 91.12
OB-09-DO	4/28/2021	65.11	8.89	56.22	DTB = 92.68 FT
OB-09-DO	5/12/2021	65.11	8.36	56.75	
OB-09-DO	10/28/2021	65.11	8.61	56.50	DTB = 92.21 FT
OB-09-DO	11/16/2021	65.11	8.68	56.43	
OB-09-DO	4/25/2022	65.11	5.56	59.55	DTB = 93.25 FT
OB-09-DO	5/9/2022	65.11	9.31	55.80	
OB-09-S	4/22/2020	65.22	7.08	58.14	DTB = 21.10 FT
OB-09-S	11/9/2020	65.22	7.70	57.52	DTB = 21.00 FT
OB-09-S	11/25/2020	65.22	7.16	58.06	
OB-09-S	4/28/2021	65.22	7.00	58.22	DTB = 21.11 FT
OB-09-S	5/12/2021	65.22	6.89	58.33	
OB-09-S	10/28/2021	65.22	6.68	58.54	DTB = 21.19 FT
OB-09-S	11/15/2021	65.22	6.90	58.32	DTB = 21.09 FT
OB-09-S	4/25/2022	65.22	7.00	58.22	DTB = 21.15 FT
OB-09-S	5/9/2022	65.22	6.93	58.29	
OB-10-BR	4/22/2020	71.04	18.30	52.74	DTB = 74.00 FT
OB-10-BR	5/6/2020	71.04	17.19	53.85	
OB-10-BR	11/9/2020	71.04	18.70	52.34	DTB = 73.92 FT
OB-10-BR	11/25/2020	71.04	18.61	52.43	
OB-10-BR	4/28/2021	71.04	18.00	53.04	DTB = 74.25 FT
OB-10-BR	5/12/2021	71.04	17.25	53.79	
OB-10-BR	10/28/2021	71.04	17.88	53.16	DTB = 74.65 FT
OB-10-BR	11/15/2021	71.04	17.55	53.49	DTB = 74.00 FT
OB-10-BR	4/25/2022	71.04	17.86	53.18	DTB = 74.50 FT
OB-10-BR	5/9/2022	71.04	18.24	52.80	
OB-10-DO	10/28/2021	71.00	11.68	59.32	DTB = 46.97 FT
OB-10-DO	11/15/2021	71.00	11.80	59.20	DTB = 47.00 FT
OB-10-S	4/22/2020	70.91	8.88	62.03	DTB = 30.12 FT
OB-10-S	5/6/2020	70.91	8.28	62.63	
OB-10-S	4/28/2021	70.91	9.40	61.51	DTB = 30.11 FT
OB-10-S	5/12/2021	70.91	11.29	59.62	
OB-10-S	4/25/2022	70.91	9.72	61.19	DTB = 30.05 FT
OB-10-S	5/9/2022	70.91	10.12	60.79	
OB-11-BR	8/8/2022	75.37	23.49	51.88	DTB = 64.70 FT
OB-11-DO	8/8/2022	75.50	21.55	53.95	DTB = 60.85 FT
OB-11-S	5/7/2020	75.51	20.72	54.79	
OB-11-S	8/8/2022	75.51	14.27	61.24	DTB = 29.76 FT
OB-12-BR	8/8/2022	73.67	21.85	51.82	DTB = 84.81 FT
OB-12-DO	4/22/2020	73.54	14.20	59.34	DTB = 48.70 FT
OB-12-DO	5/8/2020	73.54	14.30	59.24	
OB-12-DO	4/29/2021	73.54	14.76	58.78	DTB = 48.59 FT
OB-12-DO	5/17/2021	73.54	14.50	59.04	
OB-12-DO	10/28/2021	73.54	14.90	58.64	DTB = 48.79 FT
OB-12-DO	11/1/2021	73.54	11.63	61.91	
OB-12-DO	4/25/2022	73.54	14.97	58.57	DTB = 48.60 FT
OB-12-DO	5/9/2022	73.54	15.42	58.12	
OB-12-DO	8/8/2022	73.54	17.60	55.94	DTB = 47.78 FT
OB-12-S	1/15/2020	73.46	12.32	61.14	DTB = 27.05 FT
L-2 3	17 10/2020	, 0.70	12.02	U 1. 17	Li.00 i i

		icitusetts	1		
		Reference	Depth to	Groundwater	
Location	Date	Elevation (Feet)	Water (Feet)	Elevation (Feet)	Note
OB-12-S	5/7/2020	73.46	12.05	61.41	Note
OB-12-S	8/8/2022	73.46	15.58	57.88	DTB = 27.25 FT
OB-12-3 OB-14-DO	4/22/2020	75.05	12.45	62.60	DTB = 56.45 FT
OB-14-DO	5/8/2020	75.05	12.45	62.70	D1B = 30.43 11
OB-14-DO	4/29/2021	75.05	12.33	62.13	DTB = 56.38 FT
					DIB - 30.30 FI
OB-14-DO OB-14-DO	5/17/2021	75.05	12.70	62.35	DTD - 50 44 FT
	4/25/2022	75.05	13.34	61.71	DTB = 56.44 FT
OB-14-DO	5/9/2022	75.05	13.90	61.15	DTD = 22.02 FT
OB-14-DO	8/8/2022	75.05	23.56	51.49	DTB = 33.93 FT
OB-15-S	1/15/2020	63.26	4.50	58.76	DTB = 18.87 FT
OB-15-S	4/22/2020	63.26	4.25	59.01	DTB = 18.95 FT
OB-15-S	5/6/2020	63.26	4.18	59.08	
OB-15-S	4/29/2021	63.26	4.54	58.72	DTB = 18.81 FT
OB-15-S	5/17/2021	63.26	4.51	58.75	
OB-15-S	4/26/2022	63.26	4.68	58.58	DTB = 18.88 FT
OB-15-S	5/9/2022	63.26	4.94	58.32	
OB-16-BR	5/13/2022	67.61	NM	NA	Could not open
OB-17-BR	4/20/2020	49.19	1.64	47.55	DTB = 96.80 FT
OB-17-BR	5/7/2020	49.19	1.97	47.22	
OB-17-BR	4/29/2021	49.19	3.16	46.03	DTB = 47.76 FT
OB-17-BR	5/14/2021	49.19	1.62	47.57	
OB-17-BR	4/25/2022	49.19	2.32	46.87	DTB = 96.48 FT
OB-17-BR	5/11/2022	49.19	4.10	45.09	
OB-17-DO	4/20/2020	48.86	6.42	42.44	DTB = 41.52 FT
OB-17-DO	5/7/2020	48.86	5.28	43.58	
OB-17-DO	4/29/2021	48.86	5.70	43.16	DTB = 41.71 FT
OB-17-DO	5/14/2021	48.86	5.34	43.52	
OB-17-DO	4/25/2022	48.86	5.79	43.07	DTB = 41.44 FT
OB-17-DO	5/11/2022	48.86	6.31	42.55	
OB-18-DO	4/20/2020	45.10	3.75	41.35	DTB = 24.87 FT
OB-18-DO	5/6/2020	45.10	3.60	41.50	
OB-18-DO	4/30/2021	45.10	2.69	42.41	DTB = 24.81 FT
OB-18-DO	5/18/2021	45.10	3.87	41.23	
OB-18-DO	4/27/2022	45.10	3.80	41.30	DTB = 24.86 FT
OB-18-DO	5/11/2022	45.10	4.17	40.93	
OB-18-S	4/20/2020	44.98	3.77	41.21	DTB = 12.23 FT
OB-18-S	5/6/2020	44.98	3.81	41.17	
OB-18-S	4/30/2021	44.98	2.70	42.28	DTB = 12.17 FT
OB-18-S	5/18/2021	44.98	4.08	40.90	
OB-18-S	4/27/2022	44.98	3.99	40.99	DTB = 12.30 FT
OB-18-S	5/11/2022	44.98	4.26	40.72	
OB-19-BR	4/22/2020	74.26	21.75	52.51	DTB = 71.60 FT
OB-19-BR	5/8/2020	74.26	21.75	52.51	
OB-19-BR	4/28/2021	74.26	21.84	52.42	DTB = 84.39 FT
OB-19-BR	5/12/2021	74.26	21.75	52.51	
OB-19-BR	10/28/2021	74.26	22.20	52.06	DTB = 83.40 FT
OB-19-BR	11/15/2021	74.26	22.05	52.21	DTB = 83.50 FT
OB-19-BR	4/25/2022	74.26	22.38	51.88	DTB = 84.74
OB-19-BR	5/11/2022	74.26	22.86	51.40	010 - 04.74
OB-19-DO	4/22/2020	74.28	15.25	59.03	DTB = 57.80 FT
OB-19-DO	5/8/2020	74.28	15.25	59.03	57.50 11
OB-19-DO	11/9/2020	74.28	17.55	56.73	DTB = 57.75 FT
OB-19-DO	11/25/2020	74.28	17.55	56.73	01.0 - 01.10 11
OB-19-DO		74.28	15.26	59.02	DTR - 57.75 FT
OB-19-DO	4/28/2021 5/12/2021				DTB = 57.75 FT
		74.28 74.28	15.10	59.18	DTD - 57.90 ET
OB-19-DO	10/28/2021		15.80	58.48	DTB = 57.80 FT
OB-19-DO	11/15/2021	74.28	15.70	58.58	DTB = 57.90 FT
OB-19-DO	4/25/2022	74.28	16.33	57.95	DTB = 57.82 FT
OB-19-DO	5/11/2022	74.28	17.23	57.05	

		Reference	Depth to	Groundwater	
		Elevation	Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
OB-19-S	1/15/2020	73.96	8.26	65.70	DTB = 33.72 FT
OB-19-S	5/7/2020	73.96	7.60	66.36	
OB-20-BR	4/20/2020	43.85	2.54	41.31	DTB = 85.88 FT
OB-20-BR	5/4/2020	43.85	2.36	41.49	
OB-20-BR	4/8/2021	43.85	2.95	40.90	DTB = 66.31 FT
OB-20-BR	4/26/2022	43.85	2.87	40.98	DTB = 74.18 FT
OB-20-BR	5/11/2022	43.85	3.16	40.69	
OB-20-DO	4/20/2020	43.98	2.70	41.28	DTB = 75.15 FT
OB-20-DO	5/4/2020	43.98	2.48	41.50	
OB-20-DO	11/9/2020	43.98	3.35	40.63	DTB = 74.50 FT
OB-20-DO	11/25/2020	43.98	3.16	40.82	
OB-20-DO	4/8/2021	43.98	3.16	40.82	DTB = 74.33 FT
OB-20-DO	10/28/2021	43.98	2.02	41.96	DTB = 74.13 FT
OB-20-DO	11/11/2021	43.98	2.86	41.12	
OB-20-DO	4/26/2022	43.98	2.97	41.01	DTB = 74.46 FT
OB-20-DO	5/11/2022	43.98	3.33	40.65	
OB-21-BR	4/8/2021	43.88	3.04	40.84	DTB = 99.32 FT
OB-21-DO	4/8/2021	43.28	2.39	40.89	DTB = 79.85 FT
OB-23-BR	4/20/2020	56.48	8.35	48.13	DTB = 85.15 FT
OB-23-BR	5/4/2020	56.48	8.04	48.44	
OB-23-BR	4/30/2021	56.48	7.96	48.52	DTB = 86.15 FT
OB-23-BR	5/14/2021	56.48	8.34	48.14	
OB-23-BR	4/25/2022	56.48	8.81	47.67	DTB = 84.81 FT
OB-23-BR	5/11/2022	56.48	8.15	48.33	
OB-25-BR	4/29/2021	74.26	23.45	50.81	DTB = 86.62 FT
OB-25-BR	5/12/2021	74.26	22.15	52.11	
OB-25-BR	4/25/2022	74.26	23.32	50.94	DTB = 81.30 FT
OB-25-BR	5/11/2022	74.26	25.81	48.45	
OB-25-DO	1/30/2020	74.52	22.07	52.45	DTB = 68.93 FT
OB-25-DO	2/14/2020	74.52	22.13	52.39	DTB = 68.93 FT
OB-25-DO	4/21/2020	74.52	21.50	53.02	DTB = 68.80 FT
OB-25-DO	5/5/2020	74.52	21.30	53.22	
OB-25-DO	11/9/2020	74.52	23.00	51.52	DTB = 68.70 FT
OB-25-DO	11/25/2020	74.52	22.96	51.56	
OB-25-DO	4/29/2021	74.52	22.00	52.52	DTB = 69.70 FT
OB-25-DO	5/12/2021	74.52	21.45	53.07	
OB-25-DO	10/28/2021	74.52	21.80	52.72	DTB = 68.70 FT
OB-25-DO	11/11/2021	74.52	14.50	60.02	
OB-25-DO	4/25/2022	74.52	22.14	52.38	DTB = 69.60 FT
OB-26-BR	4/22/2020	74.44	20.70	53.74	DTB = 93.95 FT
OB-26-BR	5/8/2020	74.44	20.65	53.79	
OB-26-BR	4/28/2021	74.44	21.32	53.12	DTB = 95.60 FT
OB-26-BR	5/12/2021	74.44	20.64	53.80	
OB-26-BR	4/25/2022	74.44	21.32	53.12	DTB = 94.93 FT
OB-26-BR	5/11/2022	74.44	21.53	52.91	
OB-26-DO	4/22/2020	74.48	13.28	61.20	DTB = 59.85 FT
OB-26-DO	5/8/2020	74.48	13.08	61.40	
OB-26-DO	11/9/2020	74.48	15.95	58.53	DTB = 59.90 FT
OB-26-DO	11/25/2020	74.48	15.84	58.64	
OB-26-DO	4/28/2021	74.48	13.67	60.81	DTB = 59.83 FT
OB-26-DO	5/12/2021	74.48	13.25	61.23	
OB-26-DO	10/28/2021	74.48	13.82	60.66	DTB = 59.90 FT
OB-26-DO	11/11/2021	74.48	21.10	53.38	
OB-26-DO	4/25/2022	74.48	14.41	60.07	DTB = 60.88 FT
OB-26-DO	5/11/2022	74.48	65.05	9.43	
OB-27-BR	5/7/2020	71.68	25.97	45.71	DTB = 74.25 FT
OB-27-BR	11/9/2020	71.68	26.90	44.78	DTB = 73.30 FT
OB-27-BR	11/25/2020	71.68	10.51	61.17	
OB-27-BR	4/28/2021	71.68	27.45	44.23	DTB = 73.12 FT

		Reference	Depth to	Groundwater	
		Elevation	Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
OB-27-BR	5/12/2021	71.68	47.61	24.07	
OB-27-BR	10/28/2021	71.68	15.90	55.78	DTB = 73.00 FT
OB-27-BR	11/11/2021	71.68	26.85	44.83	
OB-27-BR	4/25/2022	71.68	9.03	62.65	DTB = 7.00 FT
OB-27-BR	5/11/2022	71.68	27.38	44.30	
OB-28-BR	4/22/2020	74.35	20.60	53.75	DTB = 90.55 FT
OB-28-BR	5/8/2020	74.35	20.53	53.82	
OB-28-BR	4/28/2021	74.35	28.19	46.16	DTB = 91.52 FT
OB-28-BR	5/12/2021	74.35	20.55	53.80	
OB-28-BR	4/25/2022	74.34	21.22	53.12	DTB = 75.68 FT
OB-28-BR	5/11/2022	74.34	21.75	52.59	
OB-28-DO	5/9/2022	74.69	15.40	59.29	
OB-32-DO	4/22/2020	75.70	11.36	64.34	DTB = 47.20 FT
OB-32-DO	5/8/2020	75.70	11.25	64.45	
OB-32-DO	4/29/2021	75.70	11.63	64.07	DTB = 46.21 FT
OB-32-DO	5/12/2021	75.70	10.98	64.72	
OB-32-DO	4/25/2022	75.70	11.25	64.45	DTB = 47.10 FT
OB-32-DO	5/9/2022	75.70	12.15	63.55	
OB-34-DO	4/22/2020	75.10	15.20	59.90	DTB = 59.15 FT
OB-34-DO	5/8/2020	75.10	15.10	60.00	
OB-34-DO	11/9/2020	75.10	17.30	57.80	DTB = 48.78 FT
OB-34-DO	11/25/2020	75.10	17.55	57.55	
OB-34-DO	4/29/2021	75.10	17.02	58.08	DTB = 48.83 FT
OB-34-DO	5/12/2021	75.10	13.40	61.70	
OB-34-DO	10/28/2021	75.10	16.72	58.38	DTB = 59.40 FT
OB-34-DO	11/11/2021	75.10	16.38	58.72	
OB-34-DO	4/25/2022	75.10	15.53	59.57	DTB = 59.08 FT
OB-34-DO	5/9/2022	75.10	17.04	58.06	
OB-35-DO	1/30/2020	81.41	9.20	72.21	DTB = 48.02 FT
OB-35-DO	2/13/2020	81.41	9.61	71.80	DTB = 48.02 FT
OB-35-DO	4/22/2020	81.41	9.84	71.57	DTB = 48.60 FT
OB-35-DO	5/5/2020	81.41	10.07	71.34	
OB-35-DO	8/7/2020	81.41	13.51	67.90	DTB = 47.82 FT
OB-35-DO	8/21/2020	81.41	14.13	67.28	-
OB-35-DO	11/10/2020	81.41	13.71	67.70	
OB-35-DO	11/23/2020	81.41	13.78	67.63	
OB-35-DO	2/4/2021	81.41	12.00	69.41	
OB-35-DO	2/22/2021	81.41	12.66	68.75	
OB-35-DO	4/28/2021	81.41	11.94	69.47	
OB-35-DO	5/13/2021	81.41	11.98	69.43	
OB-35-DO	8/23/2021	81.41	12.05	69.36	DTB = 47.55 FT
OB-35-DO	9/9/2021	81.41	11.36	70.05	
OB-35-DO	10/25/2021	81.41	12.12	69.29	DTB = 47.78 FT
OB-35-DO	11/9/2021	81.41	10.42	70.99	
OB-35-DO	1/26/2022	81.41	10.82	70.59	DTB = 47.85 FT
OB-35-DO	2/10/2022	81.41	10.43	70.98	DTB = 47.78 FT
OB-35-DO	4/26/2022	81.41	10.45	71.16	DTB = 47.72 FT
OB-35-DO	5/12/2022	81.41	11.57	69.84	010 - 41.12 11
OB-36-DO	4/22/2020	75.92	16.97	58.95	DTB = 30.82 FT
OB-36-DO	5/8/2020	75.92	16.99	58.93	515 - 50.02 11
OB-36-DO	11/9/2020	75.92	18.42	57.50	DTB = 33.60 FT
OB-36-DO	11/25/2020	75.92	17.71	58.21	515 - 55.55 11
OB-36-DO	4/30/2021	75.92 75.92	16.31	59.61	DTB = 33.83 FT
OB-36-DO	5/19/2021		17.29		DID - 33.03 FI
		75.92 75.92		58.63	DTB = 34.04 FT
OB-36-DO	10/28/2021		16.62	59.30	DID - 34.04 FI
OB-36-DO	11/11/2021	75.92	19.34	56.58	DTP = 24.94 FT
OB-36-DO	4/26/2022	75.92	17.92	58.00	DTB = 34.84 FT
OB-36-DO	5/12/2022	75.92	20.54	55.38	DTB = 35.22 FT
OB-37-DO	4/22/2020	75.86	18.35	57.51	DTB = 44.25 FT

		Deference	Donth to	Croundwater	
		Reference Elevation	Depth to Water	Groundwater Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
OB-37-DO	5/8/2020	75.86	18.20	57.66	
OB-37-DO	11/9/2020	75.86	19.90	55.96	DTB = 45.30 FT
OB-37-DO	11/25/2020	75.86	19.78	56.08	
OB-37-DO	4/30/2021	75.86	18.61	57.25	DTB = 45.45 FT
OB-37-DO	5/19/2021	75.86	18.68	57.18	
OB-37-DO	10/28/2021	75.86	18.78	57.08	DTB = 45.39 FT
OB-37-DO	11/11/2021	75.86	20.85	55.01	
OB-37-DO	4/26/2022	75.86	18.92	56.94	DTB = 45.36 FT
OB-37-DO	5/12/2022	75.86	21.45	54.41	DTB = 45.47 FT
OB-38-BR	6/1/2021	77.62	13.88	63.74	DTB = 74.90 FT
OB-38-BR	8/23/2021	77.62	15.81	61.81	DTB = 63.66 FT
OB-38-BR	9/10/2021	77.62	16.31	61.31	
OB-38-BR	10/25/2021	77.62	17.00	60.62	DTB = 63.83 FT
OB-38-BR	11/8/2021	77.62	15.45	62.17	DTB = 75.91 FT
OB-38-BR	1/26/2022	77.62	16.07	61.55	DTB = 47.85 FT
OB-38-BR	2/10/2022	77.62	17.02	60.60	DTB = 67.00 FT
OB-38-BR	4/26/2022	77.62	15.66	61.96	DTB = 74.85 FT
OB-38-BR	5/11/2022	77.62	16.55	61.07	
OB-38-DO	4/22/2020	77.45	0.30	77.15	DTB = 44.70 FT
OB-38-DO	5/6/2020	77.45	4.31	73.14	
OB-38-DO	4/30/2021	77.45	1.68	75.77	DTB = 45.29 FT
OB-38-DO	10/26/2021	77.67	3.93	73.74	DTB = 44.54 FT
OB-38-DO	11/16/2021	77.67	4.60	73.07	DTB = 44.45 FT
OB-38-DO	4/25/2022	77.67	3.97	73.70	DTB = 44.15 FT
OB-38-DO	5/11/2022	77.67	5.34	72.33	-
OB-39-BR	6/1/2021	78.67	17.09	61.58	DTB = 85.11 FT
OB-39-BR	8/23/2021	78.67	17.70	60.97	DTB = 54.00 FT
OB-39-BR	9/10/2021	78.67	17.35	61.32	
OB-39-BR	10/25/2021	78.67	17.57	61.10	DTB = 84.53 FT
OB-39-BR	11/8/2021	78.67	15.10	63.57	DTB = 86.00 FT
OB-39-BR	1/26/2022	78.67	16.52	62.15	DTB = 90.11 FT
OB-39-BR	2/10/2022	78.67	16.02	62.65	DTB = 76.70 FT
OB-39-BR	4/26/2022	78.67	16.20	62.47	DTB = 84.00 FT
OB-39-BR	5/10/2022	78.67	16.80	61.87	DTB = 83.30 FT
OB-39-DO	4/30/2021	79.01	16.52	62.49	DTB = 54.23 FT
OB-39-DO	5/14/2021	79.01	16.10	62.91	
OB-39-DO	5/10/2022	78.96	17.30	61.66	DTB = 53.25 FT
OB-40-DO	5/13/2022	80.26	18.31	61.95	DTB = 69.03 FT
OB-41-S	4/20/2020	33.26	3.95	29.31	DTB = 14.32 FT
OB-41-S	5/6/2020	33.26	3.94	29.32	
OB-41-S	11/9/2020	33.26	3.92	29.34	DTB = 14.32 FT
OB-41-S	11/25/2020	33.26	3.83	29.43	
OB-41-S	4/30/2021	33.26	3.64	29.62	DTB = 14.38 FT
OB-41-S	5/14/2021	33.26	4.81	28.45	
OB-41-S	10/26/2021	33.26	3.84	29.42	DTB = 14.42 FT
OB-41-S	11/10/2021	33.26	3.98	29.28	
OB-41-S	4/27/2022	33.26	4.04	29.22	DTB = 14.37 FT
OB-41-S	5/11/2022	33.26	4.07	29.19	
OB-42-BR	4/26/2022	52.02	7.35	44.67	DTB = 80.72 FT
OB-42-BR	5/11/2022	52.02	7.96	44.06	
OB-42-S	4/20/2020	51.40	5.41	45.99	DTB = 14.50 FT
OB-42-S	5/8/2020	51.40	5.28	46.12	
OB-42-S	11/9/2020	51.40	5.95	45.45	DTB = 14.45 FT
OB-42-S	11/25/2020	51.40	5.82	45.58	
OB-42-S	4/30/2021	51.40	4.82	46.58	DTB = 14.42 FT
OB-42-S	5/19/2021	51.40	5.30	46.10	
OB-42-S	10/26/2021	51.40	5.52	45.88	DTB = 14.52 FT
OB-42-S	11/10/2021	51.40	5.19	46.21	
OB-42-S	4/25/2022	51.40	9.62	41.78	DTB = 16.97 FT
ι			·	ļ	!

Location	Date	Reference Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)	Note
OB-42-S	5/11/2022	51.40	6.58	44.82	
OB-43-S	4/20/2020	52.58	11.37	41.21	DTB = 17.00 FT
OB-43-S	5/8/2020	52.58	11.31	41.27	
OB-43-S	11/9/2020	52.58	11.92	40.66	DTB = 16.95 FT
OB-43-S	11/25/2020	52.58	11.68	40.90	
OB-43-S	4/30/2021	52.58	10.53	42.05	DTB = 12.01 FT
OB-43-S	5/19/2021	52.58	11.42	41.16	
OB-43-S	10/26/2021	52.58	12.55	40.03	DTB = 16.97 FT
OB-43-S	11/15/2021	52.58	11.45	41.13	DTB = 17.08 FT
OB-43-S	4/25/2022	52.58	11.58	41.00	DTB = 17.07 FT
OB-43-S	5/11/2022	52.58	11.88	40.70	
OB-44-S	1/30/2020	81.49	6.60	74.89	DTB = 18.30 FT
OB-44-S	2/13/2020	81.49	7.55	73.94	DTB = 18.30 FT
OB-44-S	4/22/2020	81.49	6.37	75.12	DTB = 16.88 FT
OB-44-S	5/5/2020	81.49	6.16	75.33	
OB-44-S	8/7/2020	81.49	8.50	72.99	DTB = 16.40 FT
OB-44-S	8/21/2020	81.49	10.40	71.09	
OB-44-S	11/10/2020	81.49	7.74	73.75	
OB-44-S	11/23/2020	81.49	6.93	74.56	
OB-44-S	2/4/2021	81.49	7.28	74.21	
OB-44-S	2/22/2021	81.49	11.15	70.34	
OB-44-S	4/28/2021	81.49	7.24	74.25	
OB-44-S	5/13/2021	81.49	7.10	74.39	
OB-44-S	8/23/2021	81.49	6.50	74.99	DTB = 18.53 FT
OB-44-S	9/9/2021	81.49	7.35	74.14	
OB-44-S	10/25/2021	81.49	7.30	74.19	DTB = 14.48 FT
OB-44-S	11/10/2021	81.49	7.65	73.84	DTB = 15.34 FT
OB-44-S	1/26/2022	81.49	7.13	74.36	DTB = 14.16 FT
OB-44-S	2/10/2022	81.49	7.08	74.41	DTB = 16.95 FT
OB-44-S	4/26/2022	81.49	7.07	74.42	DTB = 15.00 FT
OB-44-S	5/12/2022	81.49	7.86	73.63	
OB-45-BR	6/1/2021	75.66	18.11	57.55	DTB = 96.88 FT
OB-45-BR	8/23/2021	75.66	17.95	57.71	DTB = 96.20 FT
OB-45-BR	9/10/2021	75.66	16.02	59.64	
OB-45-BR	10/25/2021	75.66	17.80	57.86	DTB = 97.45 FT
OB-45-BR	11/10/2021	75.66	14.45	61.21	DTB = 96.54 FT
OB-45-BR	1/26/2022	75.66	19.33	56.33	
OB-45-BR	2/10/2022	75.66	4.47	71.19	DTB = 96.20 FT
OB-45-BR	4/26/2022	75.66	18.47	57.19	DTB = 91.12 FT
OB-45-BR	5/10/2022	75.66	18.30	57.36	
OB-45-DO	4/30/2021	76.48	12.45	64.03	DTB = 40.93 FT
OB-45-DO	5/14/2021	76.48	13.90	62.58	
OB-45-DO	5/10/2022	76.48	14.90	61.58	DTB = 40.50 FT
OB-45-S	5/10/2022	76.57	10.70	65.87	DTB = 14.35 FT
OB-46-S	1/30/2020	77.24	1.63	75.61	DTB = 13.65 FT
OB-46-S	2/13/2020	77.24	0.10	77.14	DTB = 13.65 FT
OB-47-S	4/22/2020	78.54	12.42	66.12	DTB = 24.46 FT
OB-47-S	5/5/2020	78.54	11.58	66.96	
OB-47-S	4/30/2021	78.54	12.16	66.38	DTB = 24.33 FT
OB-47-S	5/14/2021	78.54	12.99	65.55	
OB-47-S	10/26/2021	78.54	15.21	63.33	DTB = 24.39 FT
OB-47-S	11/10/2021	78.54	12.25	66.29	DTB = 24.56 FT
OB-47-S	5/13/2022	79.13	17.03	62.10	DTB = 24.44 FT
OB-48-S	10/26/2021	75.70	7.75	67.95	DTB = 20.91 FT
OB-48-S	11/15/2021	75.70	19.15	56.55	
OB-48-S	5/13/2022	76.01	NM	NA 50.00	Dry, DTB = 19.56 FT
OB-49-S	1/15/2020	73.56	14.27	59.29	DTB = 17.91 FT
OB-49-S	3/16/2020	73.56	14.82	58.74	
OB-49-S	3/20/2020	73.56	14.42	59.14	

		Reference	Depth to	Groundwater	
		Elevation	Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
OB-49-S	3/25/2020	73.56	13.56	60.00	
OB-49-S	4/21/2020	73.56	13.60	59.96	DTB = 17.90 FT
OB-49-S	5/5/2020	73.56	13.90	59.66	
OB-49-S	8/6/2020	73.56	16.40	57.16	DTB = 17.85 FT
OB-49-S	8/20/2020	73.56	16.83	56.73	DTB = 17.84 FT
OB-49-S	11/9/2020	73.56	15.34	58.22	
OB-49-S	11/24/2020	73.56	12.67	60.89	
OB-49-S	2/4/2021	73.56	14.13	59.43	
OB-49-S	4/12/2021	73.50	0.00	73.50	Dry, DTB = 8.99 FT
OB-49-S	4/26/2021	73.50	0.00	73.50	Dry, DTB = 8.91 FT
OB-49-S	4/28/2021	73.56	14.31	59.25	
OB-49-S	5/13/2021	73.56	14.05	59.51	
OB-49-S	5/24/2021	73.50	14.80	58.70	DTB = 17.75 FT
OB-49-S	6/10/2021	73.50	14.95	58.55	DTB = 17.74 FT
OB-49-S	6/28/2021	73.50	15.45	58.05	DTB = 17.61 FT
OB-49-S	7/12/2021	73.50	12.78	60.72	DTB = 17.47 FT
OB-49-S	8/9/2021	73.50	14.83	58.67	DTB = 17.72 FT
OB-49-S	8/23/2021	73.50	13.90	59.60	Resurveyed June 2021, DTB = 17.70 FT
OB-49-S	9/9/2021	73.50	14.31	59.19	
OB-49-S	9/23/2021	73.50	14.66	58.84	DTB = 17.78 FT
OB-49-S	10/6/2021	73.50	13.91	59.59	DTB = 17.66 FT
OB-49-S	10/25/2021	73.50	7.40	66.10	DTB = 17.71 FT
OB-49-S	11/9/2021	73.50	14.43	59.07	DTB = 17.81 FT
OB-49-S	1/13/2022	73.50	14.72	58.78	DTB = 17.88 FT
OB-49-S	1/26/2022	73.50	14.90	58.60	DTB = 17.70 FT
OB-49-S	1/27/2022	73.50	14.91	58.59	DTB = 17.77 FT
OB-49-S	2/8/2022	73.50	13.62	59.88	DTB = 17.54 FT
OB-49-S	2/15/2022	73.50	14.13	59.37	DTB = 17.81 FT
OB-49-S	5/10/2022	73.50	14.90	58.60	DTB = 17.90 FT
OB-50-S	1/15/2020	73.17	13.77	59.40	DTB = 17.76 FT
OB-50-S	3/16/2020	73.17	14.42	58.75	
OB-50-S	3/20/2020	73.17	14.07	59.10	
OB-50-S	3/25/2020	73.17	12.78	60.39	
OB-50-S	4/21/2020	73.17	13.80	59.37	DTB = 18.00 FT
OB-50-S	5/5/2020	73.17	13.65	59.52	
OB-50-S	8/6/2020	73.17	16.20	56.97	DTB = 17.75 FT
OB-50-S	8/20/2020	73.17	16.58	56.59	DTB = 17.87 FT
OB-50-S	11/24/2020	73.17	14.27	58.90	
OB-50-S	2/4/2021	73.17	13.87	59.30	
OB-50-S	4/12/2021	73.22	0.00	73.22	Dry, DTB = 8.85 FT
OB-50-S	4/26/2021	73.22	0.00	73.22	Dry, DTB = 8.81 FT
OB-50-S	4/28/2021	73.17	13.98	59.19	
OB-50-S	5/13/2021	73.17	13.75	59.42	
OB-50-S	5/24/2021	73.22	14.50	58.72	DTB = 17.63 FT
OB-50-S	6/10/2021	73.22	14.63	58.59	DTB = 17.75 FT
OB-50-S	6/28/2021	73.22	14.99	58.23	DTB = 17.63 FT
OB-50-S	7/12/2021	73.22	10.05	63.17	DTB = 17.78 FT
OB-50-S	8/9/2021	73.22	14.38	58.84	DTB = 17.64 FT
OB-50-S	8/23/2021	73.22	13.70	59.52	Resurveyed June 2021, DTB = 17.68 FT
OB-50-S	9/9/2021	73.22	13.80	59.42	
OB-50-S	9/23/2021	73.22	14.19	59.03	DTB = 17.68 FT
OB-50-S	10/6/2021	73.22	13.52	59.70	DTB = 17.65 FT
OB-50-S	10/25/2021	73.22	8.53	64.69	DTB = 17.72 FT
OB-50-S	11/9/2021	73.22	14.01	59.21	DTB = 17.73 FT
OB-50-S	1/13/2022	73.22	14.55	58.67	DTB = 17.75 FT
OB-50-S	1/26/2022	73.22	14.50	58.72	DTB = 17.65 FT
OB-50-S	1/27/2022	73.22	14.68	58.54	DTB = 17.72 FT
OB-50-S	2/8/2022	73.22	13.57	59.65	DTB = 17.51 FT
OB-50-S	2/15/2022	73.22	13.92	59.30	DTB = 17.85 FT
<u> </u>		·	· · · · · -		ļ · · ·

		Reference	Depth to	Groundwater	
		Elevation	Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
OB-50-S	4/26/2022	73.22	14.10	59.12	DTB = 17.65 FT
OB-50-S	5/10/2022	73.22	14.50	58.72	DTB = 17.70 FT
OB-51-S	1/15/2020	72.04	12.69	59.35	DTB = 16.69 FT
OB-51-S	3/16/2020	72.04	14.26	57.78	
OB-51-S	3/20/2020	72.04	12.61	59.43	
OB-51-S	3/25/2020	72.04	12.43	59.61	
OB-51-S	4/21/2020	72.04	12.55	59.49	DTB = 17.30 FT
OB-51-S	5/5/2020	72.04	12.40	59.64	
OB-51-S	8/6/2020	72.04	14.90	57.14	DTB = 17.30 FT
OB-51-S	8/20/2020	72.04	15.25	56.79	
OB-51-S	11/9/2020	72.04	13.75	58.29	
OB-51-S	11/24/2020	72.04	14.52	57.52	
OB-51-S	2/4/2021	72.04	12.43	59.61	
OB-51-S	4/12/2021	71.92	13.02	58.90	DTB = 17.23 FT
OB-51-S	4/26/2021	71.92	12.24	59.68	DTB = 17.19 FT
OB-51-S	4/28/2021	72.04	12.70	59.34	
OB-51-S	5/13/2021	72.04	12.41	59.63	
OB-51-S	5/24/2021	71.92	13.08	58.84	DTB = 17.22 FT
OB-51-S	6/10/2021	71.92	13.25	58.67	DTB = 17.26 FT
OB-51-S	6/28/2021	71.92	14.78	57.14	DTB = 17.18 FT
OB-51-S	7/12/2021	71.92	11.81	60.11	DTB = 17.28 FT
OB-51-S	8/9/2021	71.92	13.05	58.87	DTB = 17.21 FT
OB-51-S	8/23/2021	71.92	12.27	59.65	Resurveyed June 2021, DTB = 17.24 FT
OB-51-S	9/9/2021	71.92	12.72	59.20	
OB-51-S	9/23/2021	71.92	13.20	58.72	DTB = 17.30 FT
OB-51-S	10/6/2021	71.92	12.25	59.67	DTB = 17.33 FT
OB-51-S	10/25/2021	71.92	9.05	62.87	DTB = 17.23 FT
OB-51-S	11/9/2021	71.92	12.82	59.10	DTB = 17.31 FT
OB-51-S	1/13/2022	71.92	13.35	58.57	DTB = 17.25 FT
OB-51-S	1/26/2022	71.92	13.30	58.62	DTB = 17.30 FT
OB-51-S	1/27/2022	71.92	13.25	58.67	DTB = 17.42 FT
OB-51-S	2/8/2022	71.92	12.09	59.83	DTB = 17.02 FT
OB-51-S	2/11/2022	71.92	12.32	59.60	DTB = 17.24 FT
OB-51-S	4/26/2022	71.92	12.84	59.08	DTB = 17.14 FT
OB-51-S	5/10/2022	71.92	13.30	58.62	DTB = 17.35 FT
OB-52-BR	6/1/2021	71.73	21.56	50.17	DTB = 87.60 FT
OB-52-BR	8/23/2021	71.73	20.80	50.93	DTB = 87.12 FT
OB-52-BR	9/10/2021	71.73	20.72	51.01	
OB-52-BR	10/25/2021	71.73	21.48	50.25	DTB = 85.65 FT
OB-52-BR	11/8/2021	71.73	20.75	50.98	DTB = 87.35 FT
OB-52-BR	1/26/2022	71.73	21.42	50.31	DTB = 85.71 FT
OB-52-BR	2/10/2022	71.73	20.90	50.83	DTB = 86.00 FT
OB-52-BR	5/10/2022	71.73	21.50	50.23	DTB = 85.80 FT
OB-52-DO	6/1/2021	71.78	12.98	58.80	DTB = 49.88 FT
OB-52-DO	8/23/2021	71.78	13.11	58.67	DTB = 49.95 FT
OB-52-DO	9/10/2021	71.78	12.82	58.96	B1B = 40.00 11
OB-52-DO	10/25/2021	71.78	13.93	57.85	DTB = 49.88 FT
OB-52-DO	11/8/2021	71.78	14.17	57.61	DTB = 49.81 FT
OB-52-DO	1/26/2022	71.78	13.82	57.96	DTB = 50.21 FT
OB-52-DO	2/10/2022	71.78	10.67	61.11	DTB = 50.50 FT
OB-52-DO	5/10/2022	71.78	13.98	57.80	DTB = 50.10 FT
OB-52-DO OB-52-S	6/1/2021	72.09	6.73	65.36	DTB = 14.28 FT
OB-52-S OB-52-S	8/23/2021	72.09	6.73	65.16	DTB = 14.28 FT
OB-52-S OB-52-S	9/10/2021	ł			DID - 14.20 FI
OB-52-S OB-52-S		72.09 72.09	6.55 8.30	65.54 63.79	DTB = 14.31 FT
OB-52-S OB-52-S	10/25/2021				DTB = 14.31 FT
OB-52-S OB-52-S	11/8/2021 1/26/2022	72.09	7.04 8.27	65.05	DID - 14.20 FI
		72.09		63.82	DTR = 14.25 FT
OB-52-S	2/10/2022	72.09	6.80	65.29	DTB = 14.25 FT
OB-52-S	5/10/2022	72.09	7.95	64.14	DTB = 14.00 FT

Location	Date	Reference Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)	Note
OB-53-BR	5/10/2022	78.27	22.56	55.71	
OB-54-BR	4/26/2022	74.84	22.90	51.94	DTB = 99.55 FT
OB-54-BR	5/10/2022	74.84	23.08	51.76	DTB = 94.00 FT
OB-55-BR	8/8/2022	NM	22.21	NA	DTB = 84.72 FT
OB-58-DO	8/9/2022	NM	18.97	NA	DTB = 53.41 FT
OB-59-DO	8/9/2022	NM	17.75	NA	DTB = 52.62 FT
OB-60-S	8/16/2022	NM	6.30	NA	DTB = 14.77 FT
P-04	12/9/2020	23.39	0.00	23.39	Well clogged with sediment, DTB = 0.15 FT
P-04R	4/29/2021	23.78	2.88	20.90	DTB = 11.04 FT
P-04R	5/18/2021	23.78	2.85	20.93	
P-04R	10/28/2021	23.78	2.30	21.48	DTB = 11.00 FT
P-04R	11/8/2021	23.78	2.68	21.10	DTB = 10.98 FT
P-04R	1/26/2022	23.78	3.00	20.78	DTB = 10.95 FT
P-04R	2/10/2022	23.78	2.35	21.43	DTB = 11.00 FT
P-04R	5/9/2022	23.78	3.05	20.73	DTB = 10.70 FT
P-05	12/9/2020	33.46	6.59	26.87	DTB = 8.31 FT
P-05R	4/30/2021	33.74	6.74	27.00	DTB = 14.12 FT
P-05R	5/18/2021	33.74	6.94	26.80	
P-05R	10/28/2021	33.74	6.70	27.04	DTB = 14.10 FT
P-05R	11/8/2021	33.74	3.51	30.23	DTB = 14.78 FT
P-05R	1/26/2022	33.74	7.17	26.57	DTB = 14.03 FT
P-05R	2/10/2022	33.74	6.75	26.99	DTB = 14.12 FT
P-05R	5/9/2022	33.74	7.10	26.64	DTB = 13.80 FT
P-09R	12/9/2020	37.86	1.62	36.24	DTB = 4.18 FT
P-09R	4/29/2021	37.86	2.80	35.06	DTB = 4.43 FT
P-09R	5/19/2021	37.86	3.22	34.64	3.5
P-09R	10/28/2021	37.86	1.70	36.16	DTB = 4.37 FT
P-09R	11/11/2021	37.86	2.05	35.81	515 - 4.07 1 1
P-09R	4/26/2022	37.86	2.84	35.02	DTB = 4.25 FT
P-09R	5/10/2022	37.86	2.92	34.94	B1B - 4.20 1 1
P-11R	4/20/2020	47.92	6.09	41.83	DTB = 9.45 FT
P-11R	5/4/2020	47.92	5.78	42.14	5.15 6.16 1 1
P-11R	12/9/2020	47.92	6.15	41.77	DTB = 9.30 FT
P-11R	2/4/2021	47.92	6.65	41.27	515 - 5.50 11
P-11R	4/29/2021	47.92	6.68	41.24	DTB = 9.22 FT
P-11R	5/19/2021	47.92	6.65	41.27	515 - 5.22 11
P-11R	4/26/2022	47.92	6.59	41.33	DTB = 8.25 FT
P-11R	5/10/2022	47.92	NM	NA	Dry
P-13R	4/29/2021	47.05	5.52	41.53	DTB = 13.44 FT
P-13R	5/18/2021	47.05	5.50	41.55	13.77
P-13R	10/28/2021	47.05	4.65	42.40	DTB = 13.75 FT
P-13R	11/8/2021	47.05	5.15	41.90	DTB = 13.70 FT
P-13R	1/26/2022	47.05	5.73	41.32	DTB = 13.77 FT
P-13R	2/10/2022	47.05	4.90	42.15	DTB = 13.72 FT
P-13R	5/9/2022	47.05	5.70	41.35	DTB = 13.40 FT
P-14R	4/29/2021	47.52	5.61	41.91	DTB = 13.79 FT
P-14R	5/18/2021	47.52	5.62	41.90	10.70 1 1
P-14R	10/28/2021	47.52	5.72	41.80	DTB = 13.70 FT
P-14R	11/8/2021	47.52	5.50	42.02	DTB = 13.60 FT
P-14R	1/26/2022	47.52	6.01	41.51	DTB = 13.71 FT
P-14R	2/15/2022	47.52	4.20	43.32	DTB = 13.66 FT
P-14R	5/9/2022	47.52	6.00	41.52	DTB = 13.35 FT
P-19A	4/20/2020	47.52	7.33	40.18	DTB = 10.45 FT
P-19A	5/4/2020	47.51	7.05	40.18	
P-19A P-19A	11/9/2020	47.51	8.20	39.31	DTB = 10.40 FT
P-19A P-19A	11/25/2020	47.51	7.01	40.50	D - 10.70 1 1
P-19A P-19A	12/9/2020	47.51	6.99	40.52	DTB = 10.02 FT
P-19A P-19A	2/4/2021	ł	7.76	39.75	DID - 10.02 I I
P-19A P-19A	4/29/2021	47.51 47.51		39.75 40.75	DTB = 10.41 FT
F-13A	4/28/2021	47.51	6.76	40.70	DID - 10.41 FI

		Reference	Donth to	Groundwater	
		Elevation	Depth to Water	Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
P-19A	5/19/2021	47.51	7.63	39.88	
P-19A	10/28/2021	47.51	7.12	40.39	DTB = 10.40 FT
P-19A	11/16/2021	47.51	7.55	39.96	DTB = 10.40 FT
P-19A	4/26/2022	47.51	7.98	39.53	DTB = 10.40 FT
P-19A	5/10/2022	47.93	8.13	39.80	
P-20	4/8/2021	42.82	2.26	40.56	DTB = 5.55 FT
P-20	10/28/2021	42.82	0.10	42.72	DTB = 75.54 FT
P-20R	11/11/2021	43.56	1.09	42.47	
P-20R	4/26/2022	43.56	2.84	40.72	DTB = 5.31 FT
P-20R	5/11/2022	43.56	2.62	40.94	
P-21	4/20/2020	47.95	6.81	41.14	DTB = 9.02 FT
P-21	5/8/2020	47.95	6.57	41.38	
P-21	11/9/2020	47.95	7.55	40.40	DTB = 9.35 FT
P-21	11/25/2020	47.95	6.11	41.84	
P-21	12/9/2020	47.95	6.50	41.45	DTB = 6.50 FT
P-21	2/4/2021	47.95	7.04	40.91	
P-21	4/29/2021	47.95	7.28	40.67	DTB = 9.41 FT
P-21	5/19/2021	47.95	5.58	42.37	
P-21	3/7/2022	47.95	6.81	41.14	DTB = 10.19 FT
P-21	4/25/2022	47.95	7.03	40.92	DTB = 10.12 FT
P-21	5/10/2022	47.95	7.42	40.53	DTD 07.40 FT
P-21-BR	3/7/2022	48.27	8.91	39.36	DTB = 67.19 FT
P-21-BR P-21-BR	4/25/2022 5/13/2022	48.27	7.13	41.14	DTB = 66.37 FT
P-21-BR P-21-DO	3/7/2022	48.27 48.33	7.71 6.98	40.56 41.35	DTB = 16.69 FT
P-21-DO P-21-DO	4/25/2022 5/13/2022	48.33 48.33	7.08 8.10	41.25 40.23	DTB = 16.70 FT DTB = 16.72 FT
P-23	12/9/2020	39.86	17.31	22.55	DIB - 10.72 F1
P-23	4/29/2021	39.86	7.86	32.00	DTB = 9.86 FT
P-23	5/19/2021	39.86	7.64	32.22	D1B = 3.00 1 1
P-23	5/9/2022	39.86	8.10	31.76	DTB = 9.45 FT
P-30	4/29/2021	48.18	7.10	41.08	DTB = 13.14 FT
P-30	5/18/2021	48.18	7.05	41.13	515 16.1111
P-30	10/28/2021	48.18	6.20	41.98	DTB = 13.10 FT
P-30	11/8/2021	48.18	4.05	44.13	DTB = 12.97 FT
P-30	1/26/2022	48.18	7.19	40.99	DTB = 13.10 FT
P-30	2/10/2022	48.18	6.60	41.58	DTB = 13.10 FT
P-30	5/9/2022	48.18	7.30	40.88	DTB = 12.80 FT
P-31	4/30/2021	30.77	3.06	27.71	DTB = 10.96 FT
P-31	5/18/2021	30.77	4.45	26.32	
P-31	10/28/2021	30.77	3.60	27.17	DTB = 11.20 FT
P-31	11/8/2021	30.77	4.05	26.72	DTB = 11.20 FT
P-31	1/26/2022	30.77	4.77	26.00	DTB - 11.38 FT
P-31	2/15/2022	30.77	4.76	26.01	DTB - 11.29 FT
P-31	5/9/2022	30.77	4.75	26.02	DTB = 11.00 FT
RW-01_MW-18	1/30/2020	63.32	5.62	57.70	DTB = 41.20 FT
RW-01_MW-18	2/14/2020	63.32	10.51	52.81	DTB = 41.20 FT
RW-01_MW-18	4/21/2020	63.32	8.30	55.02	DTB = 40.90 FT
RW-01_MW-18	5/5/2020	63.32	8.25	55.07	DTD 44.05 5T
RW-01_MW-18	8/6/2020	63.32	10.85	52.47	DTB =- 41.25 FT
RW-01_MW-18	8/20/2020	63.32	11.02	52.30	
RW-01_MW-18	11/10/2020	63.32	5.32	58.00	
RW-01_MW-18	11/24/2020	63.32	8.88	54.44	
RW-01_MW-18	2/4/2021	63.32	4.22	59.10	
RW-01_MW-18	4/27/2021	63.32	4.92	58.40	
RW-01_MW-18	5/12/2021	63.32	3.96	59.36	DTD = 54.90 FT
RW-03	1/30/2020	60.80	9.01	51.79	DTB = 54.80 FT
RW-03	2/14/2020	60.80	12.67	48.13	DTB = 54.80 FT
RW-03	4/21/2020	60.80	5.81	54.99	DTB = 55.50 FT

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

		Reference Elevation	Depth to Water	Groundwater Elevation	
Location	Date	(Feet)	(Feet)	(Feet)	Note
RW-03	5/5/2020	60.80	5.70	55.10	
RW-03	8/6/2020	60.80	8.55	52.25	DTB = 55.65 FT
RW-03	8/20/2020	60.80	8.91	51.89	
RW-03	11/10/2020	60.80	3.51	57.29	
RW-03	11/24/2020	60.80	4.95	55.85	
RW-03	2/4/2021	60.80	1.41	59.39	
RW-03	4/27/2021	60.80	2.72	58.08	
RW-03	5/12/2021	60.80	2.20	58.60	
RW-22	8/8/2022	75.15	28.55	46.60	DTB = 107.91 FT
STRMH-02	5/9/2022	51.51	6.40	45.11	

Notes:

Feet = Measured below surface grade

NM = Not Measured NA = Not Applicable

DTB = Depth to Bottom in Feet (FT)

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
AP-12-BR	05/06/2020	73.1	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.21	1.6	0.01 U	0.01 U	1.7	0.01 U
AP-12-BR	11/25/2020	73	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.17	1.3	0.01 U	0.01 U	1.5	0.01 U
AP-12-BR	05/12/2021	77	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.12	1.2	0.01 U	0.01 U	1.3	0.01 U
AP-12-BR	11/11/2021	48.2	0.01 U	0.01 U	0.006	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.15	1.6	0.01 U	0.01 U	2.2	0.01 U
AP-12-BR	05/09/2022	74	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.06	0.41	0.01 U	0.01 U	0.46	0.01 U
AP-12-DO	05/06/2020	47.25	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.16	0.04 U	0.04 U	8.5	9.6	0.04 U	0.04 U	5.7	0.04 U
AP-12-DO	11/25/2020	47	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U UJ	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	11	8.7	0.1 U	0.1 U	3.7	0.1 U
AP-12-DO	05/12/2021	48	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	7.6	8.4	0.1 U	0.1 U	3.2	0.1 U
AP-12-DO	11/11/2021	47.1	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.11	0.1 U	0.1 U	6.4	11	0.1 U	0.1 U	5.3	0.1 U
AP-12-DO	05/09/2022	47	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	6.3	9.7	0.1 U	0.1 U	4.4	0.1 U
AP-12-S	05/06/2020	26.3	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.98	2	0.01 U	0.01 U	1.6	0.032
AP-12-S	11/25/2020	26	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.92	1.7	0.01 U	0.01 U	2.3	0.051
AP-12-S	05/12/2021	19	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	6	4	0.02 U	0.02 U	0.024	0.02 U
AP-12-S	11/11/2021	8.5	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	3.6	2.9	0.02 U	0.02 U	0.02 U	0.02 U
AP-12-S	05/09/2022	10.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5.2	3.2	0.1 U	0.1 U	0.1 U	0.1 U
AP-13-DO	02/14/2020	42.6	16	2 U	2.8	2 U	10 U	2 U	2 U	2 U	2 U	2 U	11	120	2 U	2 U	210	2 U
AP-13-DO	05/05/2020	43	26	1.9	3.1	1 U	7.9	1 U	1 U	1.2	1 U	1 U	33	370	1 U	1.9	43	1 U
AP-13-DO	08/20/2020	46.5	16	2 U	2.1	2 U	10 U	2 U	2 U	2 U	2 U	2 U	26	200	2 U	2 U	33	2 U
AP-13-DO	02/23/2021	43	21	2	2.9	1 U	9.1	1 U	1 U	1.2	1 U	1 U	35	270	1 U	1 U	20	1 U
AP-13-DO	05/20/2021	43	15	2 U	2.8	2 U	10 U	2 U	2 U	2 U	2 U	2 U	16	210	2 U	2 U	15	2 U
AP-13-DO	09/09/2021	45	13	2 U	2.6	2 U	10 U	2 U	2 U	2 U	2 U	2 U	8.4	170	2 U	2 U	20	2 U
AP-13-DO	11/09/2021	42.5	13	2 U	2.4	2 U	10 U	2 U	2 U	2 U	2 U	2 U	3.5	45	2 U	2 U	180	2 U
AP-13-DO	02/15/2022	NA	15	2 U	2.8	2 U	10 U	2 U	2 U	2 U	2 U	2 U	17	150	2 U	2 U	140	2 U
AP-13-DO	05/12/2022	43	10	1.1	2.5	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	15	130	0.8 U	0.8 U	120	0.8 U
AP-13-S	05/05/2020	13	0.002 U	0.002 U	0.001 U	0.002 U	0.04 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.002 U	0.002 U	0.17	0.034	0.002 U
AP-13-S	08/20/2020	14	0.002 U	0.002 U	0.001 U	0.002 U	0.035 J U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U
AP-13-S	11/24/2020	15	0.002 U	0.002 U	0.001 U	0.002 U	0.018	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U
AP-13-S	02/19/2021	15	0.002 U	0.002 U	0.001 U	0.002 U	0.079	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-13-S	05/12/2021	10.95	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-15-S	05/06/2020	12.3	0.002 U	0.002 U	0.001 U	0.002 U	0.13	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U
AP-15-S	05/18/2021	5.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.002 U	0.002 U	0.002 U
AP-15-S	05/11/2022	6	0.002 U	0.002 U	0.001 U	0.002 U	0.029 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.018	0.002 U	0.002 U	0.004	0.002 U
AP-19	05/04/2020	24	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.007	0.002 U	0.002 U	0.026	0.002 U
AP-19	11/25/2020	24	0.002 U	0.002 U	0.001 U	0.002 U	0.016 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.002 U
AP-19	05/17/2021	24	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.004	0.002 U	0.002 U	0.016	0.002 U
AP-19	11/10/2021	23	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.002 U
AP-19	05/09/2022	12.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.013	0.002 U
AP-20	05/04/2020	14	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	1.4	0.11	0.002 U	0.002 U	1	0.002 U
AP-20	11/25/2020	15.5	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.57	0.13	0.01 U	0.01 U	2.3	0.01 U
AP-20	05/17/2021	14.8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.22	0.029	0.002 U	0.002 U	0.19	0.002 U
AP-20	11/10/2021	14.5	0.002 U	0.002 U	0.001 U	0.002 U	0.014	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.015	0.005	0.002 U	0.003	0.027	0.002 U
AP-20	05/09/2022	11.5	0.002 U	0.002 U	0.001 U	0.002 U	0.011 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.12	0.02	0.002 U	0.002 U	0.12	0.002 U
AP-21	05/04/2020	22	0.002 U	0.033	0.001 U	0.002 U	0.011 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-21	11/25/2020	22	0.002 U	0.03	0.001 U	0.002 U	0.024 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-21	05/17/2021	22	0.002 U	0.048	0.001 U	0.002 U	0.01 U	0.002 U	0.002	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-21	11/10/2021	22	0.002 U	0.014	0.001 U	0.002 U	0.01	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-21	05/09/2022	12.5	0.002 U	0.013	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-22	05/04/2020	20.8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.28	0.036	0.002 U	0.002 U	0.094	0.002 U
AP-22	11/25/2020	21	0.02 U	0.02 U	0.015	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	1.1	1.2	0.02 U	0.02 U	1.9	0.02 U
AP-22	05/17/2021	13.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.31	0.04	0.002 U	0.002 U	0.11	0.002 U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
AP-22	11/10/2021	23.5	0.002 U	0.003 J	0.005	0.002 U	0.01 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.62	0.63	0.002 U	0.002 U	1	0.002 U
AP-22	05/09/2022	14	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.18	0.065	0.002 U	0.002 U	0.087	0.002 U
AP-23-DO	02/14/2020	46.9	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	37	220	2 U
AP-23-DO	05/05/2020	46.5	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	47	210	2 U
AP-23-DO	08/20/2020	43	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	4.7	4.9	2 U	79	190	2 U
AP-23-DO	11/24/2020	47	2 U	2 U	1 U	2 U	10 U UJ	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	75	130	2 U
AP-23-DO	02/23/2021	46	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	100	140	1.5
AP-23-DO	05/20/2021	NA	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	4.5	37	0.4 U
AP-23-DO	09/09/2021	46	0.2 U	0.2 U	0.25	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	100	220	1.6
AP-23-DO	11/09/2021	46	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	130	250	2 U
AP-23-DO	02/15/2022	NA	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	81	240	2 U
AP-23-DO	05/12/2022	46	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	50	130	2 U
AP-24-DO	02/14/2020	44.6	32	3.2	3.2	1 U	5 U	1 U	1 U	1 U	1 U	1 U	2.9	15	1 U	1 U	160	1 U
AP-24-DO	05/05/2020	44.8	40	2.6	3.5	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	7.7	1 U	1 U	170	1 U
AP-24-DO	08/20/2020	45	30	3.1	3	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	6.2	1 U	1 U	150	1 U
AP-24-DO	11/24/2020	45	22 J J	2.3	3.2	1 U	5 U UJ	1 U	1 U	1 U	1 U	1 U	1 U	6.4	1 U	1 U	180	1 U
AP-24-DO	02/23/2021	46	52	3.4	5.1	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	5.8	1 U	1.4	220	1 U
AP-24-DO	05/20/2021	45	20	3.1	3.2	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1.8	1 U	1 U	160	2.9
AP-24-DO	09/10/2021	45	20	3.8	4.3	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	1 U	1.2	190	1 U
AP-24-DO	11/09/2021	45	38	3.1	4.6	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	1 U	2.3	230	1 U
AP-24-DO	02/15/2022	NA	41	3.9	5.1	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	240	2 U
AP-24-DO	05/12/2022	44.5	11	2.6	2.2	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	130	2 U
AP-25-DO	02/14/2020	45.5	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.18	2.9	0.04 U	0.045	4.6	0.04 U
AP-25-DO	05/05/2020	46.5	0.04 U	0.04 U	0.021	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.33	4.2	0.04 U	0.04 U	5.1	0.04 U
AP-25-DO	08/20/2020	46.5	0.045	0.04 U	0.1	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.078	1.7	0.04 U	1.7	17	0.04 U
AP-25-DO	11/24/2020	47	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.35	5.7	0.2 U	0.69	10	0.2 U
AP-25-DO	02/19/2021	46	0.01 U	0.01 U	0.005	0.01 U	0.071 D	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.067	0.33	0.01 U	0.01 U	1.6	0.01 U
AP-25-DO	05/12/2021	46	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.069	0.41	0.01 U 0.01 U	0.01 U	1.5 7.4	0.01 U
AP-25-DO	09/10/2021	45.5	0.016	0.016	0.031	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U			0.011	0.01		1.5	7.4	0.032
AP-25-DO AP-25-DO	11/08/2021	46.5	0.04 U 0.02 U	0.04 U 0.02 U	0.025 0.01 U	0.04 U 0.02 U	0.2 U 0.1 U	0.04 U 0.02 U	0.04 U 0.02 U	0.04 U 0.02 U	0.04 U 0.02 U	0.04 U 0.02 U	0.041	0.55 1.2	0.04 U 0.02 U	0.33 0.02 U	1.7	0.04 U 0.02 U
	02/10/2022	46.5	0.02 U	0.02 U	0.001 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U		4.5	0.02 U	0.02 U	0.013	0.006
AP-26-DO AP-26-DO	05/08/2020	59.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	1.6	5.5	0.002 U	0.002 U	0.013 0.02 U	0.006 0.02 U
AP-26-DO	11/25/2020 05/14/2021	59 63.6	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	1.9	6.5	0.02 U	0.02 U	0.02 U	0.02 U
AP-26-DO AP-26-DO	11/11/2021	59.6	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.11	0.48	0.04 U	0.04 U	0.04 0	0.04 U
AP-26-DO	05/11/2022	62	0.01 U	0.01 U	0.003 U	0.002 U	0.03 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.015	0.46	0.002 U	0.002 U	0.007	0.002 U
AP-27-DO	05/06/2020	56.3	0.002 U	0.002 U	0.001 U	0.002 U	0.040 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.013	2.9	0.002 U	0.002 U	0.003	0.002 0
AP-27-DO AP-27-DO	11/25/2020	56	0.002 U	0.002 U	0.001 U	0.002 U	0.024 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.12	16	0.002 U	0.002 U	0.26	0.011
AP-27-DO	05/14/2021	30 44	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.27 0.04 U	2.2	0.02 U	0.02 U	0.20	0.077 0.04 U
AP-27-DO	11/10/2021	56	0.002 U	0.002 U	0.002	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.029	3.8	0.002 U	0.002 U	0.078	0.021
AP-27-DO	05/11/2022	57	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.24	29	0.1 U	0.1 U	0.25	0.1 U
AP-30R-DO	02/13/2020	45	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	5.1	19	0.2 U	0.2 U	22	0.2 U
AP-30R-DO	05/05/2020	45	0.02 U	0.02 U	0.096	0.02 U	0.33	0.02 U	0.02 U	0.34	0.02 U	0.02 U	0.19	2.4	0.02 U	0.02 U	75	0.4
AP-30R-DO	08/21/2020	45	0.8 U	0.8 U	0.4 U	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.85	0.8 U	0.8 U	110	0.8 U
AP-30R-DO	11/24/2020	NA	0.8 U	0.8 U	0.4 U	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	1.8	0.8 U	0.8 U	180	0.8 U
AP-30R-DO	02/23/2021	NA	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	53	1 U	1 U	170	1 U
AP-30R-DO	05/20/2021	NA	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	42	1 U	1 U	100	2
AP-30R-DO	09/09/2021	NA	0.2 U	0.2 U	0.52	0.2 U	1 U	0.2 U	0.2 U	0.26	0.2 U	0.2 U	0.2 U	0.66	0.2 U	0.61	150	0.36
AP-30R-DO	11/09/2021	NA	2 U	2 U	1.2	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	420	2 U
AP-30R-DO	02/15/2022	NA	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	4.7	2 U	2 U	160	2 U
	JL1 1012022	14/1	- 0						- 0	- 0			- 0				L	

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
AP-30R-DO (05/12/2022	NA	0.4 U	0.4 U	0.23	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.41	0.4 U	0.4 U	69	0.4 U
AP-31-DO (02/13/2020	45	0.8 U	0.8 U	0.4 U	0.8 U	4 U	0.8 U	0.8 U	1.5	0.8 U	0.8 U	23	84	0.8 U	0.8 U	3.4	0.8 U
AP-31-DO (05/05/2020	45	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	2	1 U	1 U	17	100	1 U	1 U	6.6	1 U
AP-31-DO (08/21/2020	45	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	2.1	1 U	1 U	23	130	1 U	1 U	2.2	1 U
AP-31-DO (02/23/2021	NA	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	2.4	1 U	1 U	21	160	1 U	1 U	1.8	1 U
AP-31-DO (05/13/2021	NA	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	2.6	1 U	1 U	16	190	1 U	1 U	1 U	1 U
AP-31-DO (09/09/2021	NA	2 U	2 U	1 U	2 U	10 U	2 U	2 U	5	2 U	2 U	27	270	2 U	2 U	15	2 U
AP-31-DO	11/09/2021	NA	2 U	2 U	1 U	2 U	10 U	2 U	2 U	6.4	2 U	2 U	15	270	2 U	2 U	21	2 U
AP-31-DO (02/11/2022	NA	2 U	2 U	1 U	2 U	10 U	2 U	2 U	3	2 U	2 U	6.7	250	2 U	2 U	17	2 U
AP-31-DO (05/09/2022	NA	2 U	2 U	1 U	2 U	10 U	2 U	2 U	7.2	2 U	2 U	9.8	260	2 U	2 U	79	2 U
	02/13/2020	45	0.81	0.8 U	0.4 U	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	49	140	0.8 U	0.8 U	21	0.8 U
	05/05/2020	45	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	53	150	1 U	1 U	17	1 U
	08/21/2020	45	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	65	140	1 U	1 U	8	1 U
	02/23/2021	NA	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	14	22	0.2 U	0.2 U	8.4	0.2 U
	05/13/2021	NA	0.2 U	0.2 U	0.18	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	7.5	10	0.2 U	0.38	68	0.2 U
	09/09/2021	NA	0.4 U	0.4 U	0.21	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	7.6	11	0.4 U	0.5	96	0.4 U
	11/10/2021	NA	0.4 U	0.4 U	0.23	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2.4	3.7	0.4 U	0.82	150	0.4 U
	02/11/2022	NA	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1.3	1.8	1 U	1 U	150	1 U
	05/09/2022	NA	1 U	1 U	0.54	1 U	5 U	1 U	1 U	1 U	1 U	1 U	5	6.8	1 U	1.4	320	1 U
	02/14/2020	35.4	15	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	7.6	34	2 U	5.6	240	2 U
	05/05/2020	34.5	9.1	2.1	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	13	220	1 U
	08/20/2020	34.5	9.8	1.7	0.59	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	9.9	220	1 U
	11/23/2020	35	11	2	0.8	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	8.6	330	1 U
	02/23/2021	35	0.005	0.003	0.001 U	0.002 U	0.082	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.38	0.002 U
	05/13/2021	35	13	4 U	2 U	4 U	20 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	10	350	4 U
	09/09/2021	37.5	13	2.8	1.1	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	29	340	2 U
	11/09/2021	34.6	13	3	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	33	330	2 U
	02/11/2022	34.6	12	2.8	1 U	2 U	10 U	2 U	2 U	2 U	2 U 1 II	2 U 1 II	2 U	2 U	2 U	25	500	2 U
	02/14/2020	35.7	1 U	0.56	0.0	1 U 0.1 U	5 U 0.5 U	1 U 0.1 U	1 U 0.1 U	1 U 0.16		. 0	1 U 0.1 U	3.6 0.41	0.1 U	27 12	110 6.5	1 U 0.2
	05/05/2020	36 36	0.19 0.18	0.42	0.05 U 0.056	0.1 U 0.1 U		0.1 U 0.1 U		0.13	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.41	0.1 U	9.9	12	0.16
	08/20/2020			0.42	0.056		0.5 U						0.1 U	0.35			9.3	0.16
	11/24/2020 02/23/2021	36 36	0.1 U 0.2	0.35	0.054	0.1 U 0.1 U	0.5 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.21	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	0.17	0.1 U 0.1 U	10 20	13	0.15
	05/13/2021	36	0.18	0.72	0.076	0.1 U	0.5 U	0.1 U	0.1 U	0.16	0.1 U	0.1 U	0.1 U	0.13	0.1 U	17	35	0.26
	09/09/2021	36	0.16	1.1	0.11	0.1 U	2 U	0.1 U	0.1 U	0.10 0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	28	61	0.20 0.4 U
	11/09/2021	35	0.4	1.1	0.31	0.4 U	2 U	0.4 U	0.4 U	0.52	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	28	75	0.4 U
	02/11/2022	36	0.4 U	0.8	0.23	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	20	88	0.4 U
	02/11/2022	46.7	0.002 U	0.002 U	0.001 U		0.038	0.002 U	0.002 U	0.002 U	0.016	0.003	0.002 U	0.002 U	0.002 U	0.04	0.004	0.02
	05/05/2020	33	0.002 U	0.002 U	0.001 U	0.002 U	0.032 U	0.002 U	0.002 U	0.002 U	0.018	0.003	0.002 U	0.002	0.002 U	0.054	0.004	0.02
	08/20/2020	32	0.002 U	0.002	0.001 U	0.002	0.067 J U	0.002 U	0.002 U	0.002 U	0.014	0.003	0.002 U	0.004	0.002 U	0.079	0.016	0.013
	11/24/2020	33	0.002 U	0.019	0.001 U		0.049	0.002 U	0.002 U	0.002 U	0.041	0.005	0.002 U	0.006	0.002 U	0.32	0.085	0.047
	02/23/2021	33	0.002 U	0.005	0.001 U	0.003	0.093 D	0.002 U	0.002 U	0.002 U	0.015	0.002	0.002 U	0.004	0.002 U	0.041	0.011	0.011
	05/13/2021	33	0.002 U	0.003	0.001 U	0.003	0.018 J J	0.002 U	0.002 U	0.002 U	0.012	0.002 U	0.002 U	0.002 U	0.002 U	0.042	0.021	0.01
	09/09/2021	32.5	0.002 U	0.023	0.001 U	0.009	0.029	0.002 U	0.002 U	0.002 U	0.026	0.004	0.002 U	0.002	0.002 U	0.4	0.052	0.044
	11/09/2021	33	0.002	0.19	0.067	0.022	0.15	0.002 U	0.002 U	0.04	0.035	0.004	0.002	0.16	0.002 U	38	23	0.15
	02/15/2022	NA	0.02 U	0.068	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.039	0.029	0.02 U	0.02 U	0.02	0.02 U	2.9	0.52	0.073
	02/13/2020	15.6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.002 U	0.002 U	0.015	0.057	0.004
	05/05/2020	16	0.002 U	0.002 U	0.001 U	0.002 U	0.037 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.02	0.003
	08/21/2020	16.5	0.002 U	0.002 U	0.001 U	0.002 U	0.032 J J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
	09/09/2020	NA	0.001 U	0.001 U	0.001 U	0.001 U	0.009	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.001 U	0.001 U	0.002 U	0.003	0.002	0.001

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
AP-36-S	11/23/2020	16	0.002 U	0.002 U	0.001 U	0.002 U	0.019	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.007	0.002 U
AP-36-S	01/26/2021	NA	0.001	0.001	0.001	0.001	0.006	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.003	0.021	0.001
AP-36-S	02/22/2021	16	0.002 U	0.002 U	0.001 U	0.002 U	0.014	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.003	0.002
AP-36-S	05/13/2021	6.78	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.003	0.002 U
AP-36-S	09/10/2021	6.55	0.002 U	0.002 U	0.001 U	0.002 U	0.016	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-36-S	11/09/2021	7.3	0.002 U	0.002 U	0.001 U	0.002 U	0.02	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-36-S	02/10/2022	7.2	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-36-S	05/12/2022	7	0.002 U	0.002 U	0.001 U	0.002 U	0.026 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002	0.002 U	0.004	0.012	0.002 U
AP-37-S	02/13/2020	16.2	0.002 U	0.007	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002	0.002 U
AP-37-S	05/05/2020	16.7	0.002 U	0.011	0.001 U	0.002 U	0.058 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.004	0.002
AP-37-S	08/21/2020	16.5	0.002 U	0.009	0.001 U	0.002 U	0.03 J J	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-37-S	09/09/2020	NA	0.02 U	0.022	0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.04 U	0.04 U	0.02 U	0.02 U	0.04 U	1.9	2	0.077
AP-37-S	11/23/2020	16	0.002 U	0.013	0.001 U	0.002 U	0.02	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.002 U	0.002 U	1.3	0.21	0.013
AP-37-S	01/26/2021	NA	0.001	0.022	0.009	0.001	0.009	0.001	0.001	0.001	0.003	0.001	0.001	0.001	0.001	2.64	2.67	0.001
AP-37-S	02/22/2021	16	0.002 U	0.009	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.004	0.002 U
AP-37-S	05/13/2021	5.7	0.002 U	0.018	0.004	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U	1.6	0.56	0.002 U
AP-37-S	09/10/2021	5.8	0.02 U	0.038	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	5.2	1.8	0.02 U
AP-37-S	11/09/2021	6	0.01 U	0.048	0.007	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	2.2	0.74	0.01 U
AP-37-S	02/22/2022	5.75	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4.3	6.9	0.1 U
AP-37-S	05/12/2022	6	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	6.4	7.5	0.1 U
AP-38-S	02/13/2020	16.4	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.003	0.003
AP-38-S	05/05/2020	16.6	0.002 U	0.002 U	0.001 U	0.002 U	6.7	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.16	0.17	0.004
AP-38-S	06/01/2020	16.6	0.01 U	0.01 U	0.005 U	0.01 U	200	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.15	0.24	0.01 U
AP-38-S	08/21/2020	16	0.04 U	0.04 U	0.02 U	0.04 U	2.9 J J	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.043	0.04 U	0.18	0.29	0.04 U
AP-38-S	09/09/2020	NA	0.5 U	0.5 U	0.5 U	0.5 U	78	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5 U
AP-38-S	11/24/2020	16	0.002 U	0.002 U	0.001 U	0.002 U	0.024	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.008	0.004
AP-38-S	01/26/2021	NA	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.006	0.004
AP-38-S	02/22/2021	17	0.002 U	0.002 U	0.001 U	0.002 U	0.013	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.007	0.004
AP-38-S	05/20/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.007	0.003
AP-38-S	09/10/2021	7	0.002 U	0.002 U	0.001 U	0.002 U	0.011	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-38-S	11/09/2021	7.6	0.002 U	0.002 U	0.001 U	0.002 U	0.01	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.004	0.004
AP-38-S	02/10/2022	7.57	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U	0.019	0.02	0.014
AP-38-S	05/12/2022	7.5	0.002 U	0.002 U	0.001 U	0.002 U	0.028 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U
AP-39-S	02/13/2020	16.4	0.002 U	0.007	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U
AP-39-S	05/05/2020	16.4	0.002 U	0.01	0.001 U	0.002 U	0.052 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.004	0.002 U
AP-39-S	08/21/2020	16	0.002 U	0.007	0.001 U	0.002 U	0.04 J J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-39-S	09/09/2020	NA	0.001 U	0.003	0.001 U	0.001 U	0.005 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.001 U	0.001 U	0.002 U	0.009	0.006	0.001 U
AP-39-S	11/23/2020	16	0.002 U	0.012	0.001 U	0.002 U	0.02	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U	0.16	0.044	0.008
AP-39-S	01/26/2021	NA	0.001	0.002	0.001	0.001	0.038	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.004	0.013	0.001
AP-39-S	02/22/2021	14	0.002 U	0.012	0.001 U	0.002 U	0.013	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.003	0.002 U	0.006	0.009	0.003
AP-39-S	05/13/2021	5.35	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U
AP-39-S	09/10/2021	5.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002	0.002 U
AP-39-S	11/09/2021	5.8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.002 U	0.002 U
AP-39-S	02/10/2022	5.5	0.002 U	0.015	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.003	0.003
AP-39-S	05/12/2022	5.5	0.002 U	0.002 U	0.001 U	0.002 U	0.024 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-40-S	02/13/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.038	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.1	0.015	0.002 U	0.002 U	0.033	0.002 U
AP-40-S	05/05/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.033 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.085	0.011	0.002 U	0.002 U	0.029	0.002 U
AP-40-S	08/20/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.086 J U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.011	0.003	0.002 U	0.006	0.47	0.002 U
AP-40-S	11/24/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.021	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.014	0.005	0.002 U
AP-40-S	02/22/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.023	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.004	0.002 U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
AP-40-S	05/13/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.018	0.002 U
AP-40-S	09/10/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-40-S	11/10/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.004	0.002 U
AP-41-S	02/13/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.13	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.003	0.002 U	0.002 U	0.061	0.002 U
AP-41-S	05/05/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.11	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.11	0.083	0.002 U	0.002	0.41	0.002 U
AP-41-S	11/24/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.013	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.025	0.009	0.002 U	0.002 U	0.009	0.002 U
AP-41-S	02/22/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.002 U	0.006	0.002 U
AP-41-S	05/20/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-41-S	09/10/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-41-S	11/10/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
AP-42-DO	09/23/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.21	0.002 U	0.002 U	0.023	0.002 U	0.002 U	0.16	1.7	0.002 U	0.002 U	0.011	0.002 U
AP-42-DO	11/24/2020	NA	0.02 U	0.02 U	0.09	0.02 U	1.9	0.02 U	0.02 U	0.095	0.02 U	0.02 U	3.7	65 H J	0.02 U	0.02 U	0.077	0.02 U
AP-42-DO	02/22/2021	NA	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2.5	35	0.4 U	0.4 U	0.4 U	0.4 U
AP-42-DO	05/13/2021	NA	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	5.2	60	0.4 U	0.4 U	0.4 U	0.4 U
AP-42-DO	09/10/2021	NA	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2.5	23	0.4 U	0.4 U	0.57	0.4 U
AP-42-DO	11/10/2021	NA	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2.1	24	0.4 U	0.4 U	0.4 U	0.4 U
AP-42-DO	05/09/2022	85	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2.1	22	0.4 U	0.4 U	0.4 U	0.4 U
AP-43-DO	09/23/2020	NA	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	24	160	1 U	1 U	12	1 U
AP-43-DO	02/22/2021	NA	1 U	1 U	1	1 U	5 D	1 U	1 U	1.3	1 U	1 U	3.3	230	1 U	1 U	210	1 U
AP-43-DO	05/13/2021	NA	1 U	1 U	1.1	1 U	6.4	1 U	1 U	1 U	1 U	1 U	2.5	99	1 U	1 U	390	1 U
AP-43-DO	09/09/2021	NA	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	43	2 U	2 U	230	2 U
AP-43-DO	11/10/2021	NA	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	67	2 U	2.6	330	2 U
AP-43-DO	05/09/2022	NA	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	2 U	13	2 U	11	380	2 U
B-3	11/16/2021	8.1	0.026	0.002 U	0.002	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.005	0.002 U	0.002 U	0.002	0.002 U
B-3 (LF)	11/16/2021	8.5	0.023	0.002 U	0.001	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.005	0.002 U	0.002 U	0.002	0.002 U
BR-1_ZONE3	05/07/2020	105	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-1_ZONE3	05/19/2021	105	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-1_ZONE3	05/13/2022	105	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-3_ZONE1	05/07/2020	226	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-3 ZONE1	05/19/2021	226	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-3_ZONE2	05/07/2020	200	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-3 ZONE2	05/19/2021	200	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-3_ZONE3	05/07/2020	167	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-3 ZONE3	05/19/2021	167	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-5_ZONE3	05/07/2020	133	0.002 U	0.002 U	0.001 U	0.002 U	0.011 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U
BR-5 ZONE3	05/20/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-5_ZONE3	05/13/2022	133	0.002 U	0.002	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-6 ZONE3	05/04/2020	42	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U
BR-6 ZONE3	11/25/2020	42	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U UJ	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-6_ZONE3	05/19/2021	42	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U
BR-6_ZONE3	11/16/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.038 D J	0.12	0.002 U
BR-6 ZONE3	05/13/2022	42	0.002 U	0.002 U	0.001 U	0.002 U	0.013	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.04	0.035	0.002 U
BR-7 ZONE1	05/07/2020	152	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-7 ZONE1	05/14/2021	152	0.002 U	0.002	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-7_ZONE1	05/13/2022	152	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-7 ZONE2	05/07/2020	112	0.002 U	0.002 U	0.001 U	0.002 U	0.022 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-7_ZONE2	05/14/2021	112	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-7 ZONE2	05/13/2022	112	0.002 U	0.002 U	0.001 U	0.002 U	0.12	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-7 ZONE3	05/07/2020	69	0.002 U	0.002 U	0.001 U	0.002 U	0.12 0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BR-7_ZONE3	05/14/2021	69	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 d	0.002 U
DIX-1_ZONE3	U0/14/2U2	09	U.UUZ U	U.UUZ U	U.UU1 U	U.UUZ U	U.UI U	U.UUZ U	U.UUZ U	V.UUZ U	U.UUZ U	U.UUZ U	U.UUZ U	U.UUZ U	U.UUZ U	U.UUZ U	U.UUD # J	U.UUZ U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BR-7_ZONE3	05/13/2022	69	0.002 U	0.002 U	0.001 U	0.002 U	0.02	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BW-05	05/06/2020	9.3	0.002 U	0.002 U	0.006	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.002 U	0.002 U	0.59	2.4	0.002 U
BW-05	08/20/2020	10	0.002 U	0.002 U	0.001 U	0.002 U	0.031 J U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.092	0.076	0.002 U
BW-05	11/24/2020	10	0.002 U	0.002 U	0.001 U	0.002 U	0.024	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.014	0.038	0.002 U
BW-05	02/19/2021	10	0.002 U	0.002 U	0.001 U	0.002 U	0.028	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.048	0.002 U
BW-05	05/12/2021	7.7	0.002 U	0.002 U	0.005	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.011	0.002 U	0.18	1.3	0.002 U
BW-05	09/10/2021	7.9	0.002 U	0.002	0.001 U	0.002 U	0.015 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.39	0.22	0.002 U
BW-05	11/08/2021	8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BW-05	02/11/2022	8.1	0.002 U	0.002 U	0.001	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.15	0.15	0.002 U
BW-08	05/06/2020	13.7	0.002 U	0.002 U	0.001 U	0.002 U	0.043 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.04	0.33	0.002 U
BW-08	08/20/2020	12	0.002 U	0.002 U	0.004	0.002 U	0.03 J U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.72	1.1	0.002 U
BW-08	11/25/2020	14	0.002 U	0.002 U	0.001 U	0.002 U	0.019	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
BW-08	02/19/2021	14	0.002 U	0.003	0.001 U	0.002 U	0.027	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.029	0.043	0.002 U
BW-08	05/12/2021	8.1	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.025	0.002 U
BW-08	09/10/2021	8	0.002 U	0.002 U	0.001 U	0.002 U	0.013 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.087	0.047	0.002 U
BW-08	11/08/2021	8.6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.027	0.006	0.002 U
BW-08	02/11/2022	8.6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002	0.002 U
CL02-BR	05/07/2020	78	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.038	0.3	0.008
CL02-BR	05/17/2021	NA	0.002 U	0.002 U	0.001	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.005	0.29	0.038
CL02-BR	05/11/2022	78.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.011	0.1	0.016
CL03-DO	05/04/2020	76	0.002 U	0.026	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL03-DO	05/19/2021	75.22	0.002 U	0.019	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.22	0.25	0.002 U	0.002 U	0.087	0.002 U
CL03-DO	05/11/2022	74.8	0.01 U	0.025	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	1.2	0.43	0.01 U	0.01 U	0.21	0.01 U
CL04-BR	05/04/2020	58.2	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.02	0.002 U	0.002 U	0.011	0.002 U
CL04-BR	05/17/2021	51	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.035	0.002
CL04-BR	05/10/2022	55	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003
CL04-DO	05/04/2020	27.9	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.064	0.003
CL04-DO	05/17/2021	27.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.016	0.002 U	0.002 U	0.006	0.002 U
CL04-DO	05/10/2022	27.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.002 U	0.002 U	0.008	0.002 U
CL06-BR	05/06/2020	70.2	0.002 U	0.002 U	0.001 U	0.002 U	0.013 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL06-BR	05/14/2021	68.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL06-BR	05/10/2022	69	0.002 U	0.002 U	0.001 U	0.002 U	0.02 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL06-DO	05/06/2020	40.5	0.002 U	0.002 U	0.001 U	0.002 U	0.032 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL06-DO	05/14/2021	40.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL06-DO	05/10/2022	40.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL06-S	05/14/2021	10	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-BR_ZONE1	05/07/2020	159	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-BR_ZONE1	05/19/2021	159	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-BR_ZONE2	05/07/2020	102	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-BR_ZONE2	05/19/2021	102	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-BR_ZONE3	05/07/2020	70	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-BR_ZONE3	05/19/2021	70	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-BR_ZONE3	05/12/2022	70	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-DO	05/07/2020	52	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-DO	05/18/2021	51.81	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-DO	05/10/2022	51.6	0.002 U	0.002 U	0.001 U	0.002 U	0.03 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL08-S	05/18/2021	5.79	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL09-BR_ZONE3	05/07/2020	81	0.01 U	0.01 U	0.005	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.11	0.4	0.01 U	0.09	2.8	0.013
CL09-BR ZONE3	05/17/2021	81	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.061	0.17	0.02 U	0.085	2.3	0.032

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
CL09-BR_ZONE3	05/12/2022	81	0.02 U	0.02 U	0.011	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.64	4.8	0.02 U
CL09-S	05/17/2021	3.9	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL10-BR	05/04/2020	45	0.002 U	0.002 U	0.001 U	0.002 U	0.011 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.002 U	0.002 U
CL10-BR	05/17/2021	45	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U
CL10-BR	05/10/2022	44.6	0.002 U	0.002 U	0.001 U	0.002 U	0.026 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL10-DO	05/04/2020	30.48	0.002 U	0.004	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.39	0.003	0.002 U	0.002 U	0.002 U	0.002 U
CL10-DO	11/25/2020	30	0.002 U	0.003	0.001 U	0.002 U	0.065	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.5	0.003	0.002 U	0.002 U	0.002 U	0.002 U
CL10-DO	05/17/2021	30	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	1.5	0.083	0.01 U	0.01 U	0.013	0.01 U
CL10-DO	11/10/2021	30.5	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	1.2	0.51	0.02 U	0.02 U	0.05	0.02 U
CL10-DO	05/10/2022	30.5	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	2.9	1.3	0.01 U	0.01 U	0.15	0.01 U
CL10-S	05/04/2020	12.4	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	1.1	0.12	0.002 U	0.004	0.16	0.002 U
CL10-S	11/25/2020	12	0.002 U	0.002 U	0.001 U	0.002 U	0.069	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.019	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL10-S	05/17/2021	12.2	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.22	0.015	0.002 U	0.002 U	0.017	0.002 U
CL10-S	11/10/2021	6	0.002 U	0.002 U	0.001 U	0.002 U	0.012	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.053	0.004	0.002 U	0.002 U	0.003	0.002 U
CL10-S	05/10/2022	5	0.002 U	0.002 U	0.001 U	0.002 U	0.042 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.27	0.009	0.002 U	0.002 U	0.01	0.002 U
CL11-DO	05/17/2021	49.82	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
CL11-DO	05/11/2022	49	0.002 U	0.006	0.009	0.002 U	0.025 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.042	0.002 U	0.002 U	0.002 U	0.002 U
GFS-03	05/04/2020	16	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.024	0.002 U	0.002 U	0.005	0.002 U
GFS-03	05/14/2021	10.6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.049	0.002 U	0.002 U	0.01	0.002 U
GFS-03	11/08/2021	10	0.002 U	0.002 U	0.001 U	0.002 U	0.035 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.061	0.002 U	0.002 U	0.02	0.002 U
GFS-03	05/09/2022	10.6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.017	0.11	0.002 U	0.002 U	0.021	0.002 U
GZ-4	05/06/2020	10.3	0.002 U	0.002 U	0.001 U	0.002 U	0.024 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.007	0.002 U
GZ-4	05/18/2021	4.13	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
GZ-4	05/10/2022	5.9	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.012	0.002 U
MW-002R	05/14/2021	33	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
MW-003R	05/04/2020	29.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
MW-003R	05/14/2021	29	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.002	0.002 U
MW-003R	05/11/2022	1.9	0.002 U	0.002 U	0.001 U	0.002 U	0.019 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
MW-005R	05/04/2020	17.71	0.002 U	0.002 U	0.001 U	0.002 U	0.013 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.015	0.002 U	0.002 U	0.006	0.002 U
MW-005R	05/14/2021	4	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.002 U	0.002 U	0.003	0.002 U
MW-005R	05/11/2022	5.1	0.002 U	0.002 U	0.001 U	0.002 U	0.021 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.002 U	0.002 U
MW-009	05/06/2020	19.5	0.002 U	0.002 U	0.002	0.002 U	0.021 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.003	0.002 U	0.18	0.32	0.002 U
MW-009	11/25/2020	20	0.002 U	0.002 U	0.002 0.001 U	0.002 U	0.01 J	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.003 0.002 U	0.002 U	0.009	0.013	0.002 U
MW-009	05/12/2021	5.46	0.002 U	0.002 U	0.001 U	0.002 U	0.011 U	0.002 U	0.002 U	0.002 U	0.007	0.002 U	0.002 U	0.002	0.002 U	0.11	0.14	0.002 U
MW-009	05/09/2022	5.40	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.007	0.002 U	0.002 U	0.002 0.002 U	0.002 U	0.087	0.039	0.002 U
MW-013	05/09/2022	41	0.1 U	0.1 U	0.05 U	0.002 U	0.5 U	0.1 U	0.1 U	0.1 U	0.007 0.1 U	0.002 U	10	4.4	0.1 U	0.007 0.1 U	0.49	0.1 U
MW-013	05/08/2020	41.17	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	8.7	4.4	0.1 U	0.1 U	0.49	0.1 U
MW-013			0.04 U	0.04 U	0.02 U	0.04 U	0.3 U	0.04 U	0.04 U	0.043	0.1 U	0.04 U	9.2	6.1	0.04 U	0.1 U	0.36	0.1 U
MW-013	11/11/2021 05/09/2022	41 40.5	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.043	0.04 U	0.04 U	5.5	5.8	0.04 U	0.04 U	0.33	0.04 U
MW-014A		58.63	0.002 U		0.02 0	0.002 U	0.2 U	0.002 U	0.002 U	0.002 U	0.002 U		0.002 U	0.08	0.04 U	0.005	0.25	0.04 0
	05/17/2021																	
MW-014A	05/09/2022	58.5	0.002 U	0.002 U	0.001	0.002 U	0.031 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.085	0.002 U	0.014	0.26	0.022
MW-016	05/09/2022	34.5	0.002 U	0.012	0.003	0.002 U	0.01 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U	0.14	0.002 U	0.003	0.14	0.002 U
MW-030	05/14/2021	19	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
MW-034	05/07/2020	63.5	0.01 U	0.01 U	0.018	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.051	0.01 U	0.017	2	0.012
MW-034	05/14/2021	65.68	0.01 U	0.011	0.016	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.05	0.01 U	0.014	1.9	0.012
MW-034	05/10/2022	63.5	0.02 U	0.02 U	0.017	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.043	0.02 U	0.02 U	1.8	0.02 U
MW-2_32-TOZER	05/04/2020	14.27	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.006	0.002 U	0.002 U	0.014	0.002 U
MW-2_32-TOZER	11/25/2020	14	0.002 U	0.002 U	0.001 U	0.002 U	0.03 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.014	0.002 U	0.004	0.043	0.002 U
MW-2_32-TOZER	05/17/2021	6.38	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.064	0.026	0.002 U	0.002 U	0.027	0.002 U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW-2_32-TOZER	11/10/2021	7.3	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
MW-2_32-TOZER	05/10/2022	6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.011	0.013	0.002 U	0.002 U	0.015	0.002 U
OB-04-DO	05/04/2020	67.5	0.002 U	0.002 U	0.002	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.14	0.34	0.002 U	0.049	0.52	0.002 U
OB-04-DO	11/25/2020	66	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.24	0.68	0.01 U	0.099	0.85	0.01 U
OB-04-DO	05/14/2021	68.34	0.002 U	0.002 U	0.002	0.002 U	0.014 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.13	0.37	0.002 U	0.04	0.42	0.002 U
OB-04-DO	11/10/2021	67.5	0.002 U	0.002 U	0.002	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.13	0.37	0.002 U	0.03	0.3	0.002 U
OB-04-DO	05/11/2022	66.9	0.002 U	0.002 U	0.003	0.002 U	0.044 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.16	0.53	0.002 U	0.063	0.58	0.002 U
OB-05-BR	05/06/2020	90.6	0.002 U	0.002 U	0.001	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.39	0.26	0.002 U
OB-05-BR	05/18/2021	95.4	0.002 U	0.004	0.004	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.009	0.002 U	1.2	0.28	0.013
OB-05-BR	05/10/2022	94.1	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.73	0.067	0.01 U
OB-05-DO	05/06/2020	81.6	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.11	2.8	0.02 U
OB-05-DO	11/25/2020	81	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U UJ	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.084	1.7	0.02 U
OB-05-DO	05/18/2021	81.08	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.2	0.59	0.02 U	0.034	1.1	0.032
OB-05-DO	11/10/2021	82	0.002 U	0.002 U	0.001 U	0.002 U	0.01	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U
OB-05-DO	05/10/2022	81.3	0.02 U	0.02 U	0.01 U	0.02 0	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.18	0.6	0.02 U	0.061	1.5	0.02 U
OB-05-S	05/18/2021	8.35	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-06-BR	05/04/2020	94.3	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.019	0.046	0.002 U	0.002 U	0.023	0.002 U
OB-06-BR OB-06-BR	05/18/2021	90.93	0.002 U 0.002 U	0.002 U 0.002 U	0.001 U 0.001 U	0.002 U 0.002 U	0.01 U 0.052 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.022	0.037	0.002 U 0.002 U	0.002 U 0.002 U	0.013	0.002 U 0.002 U
	05/09/2022	90.8		0.002 U		0.002 U			0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.032	0.002 U			
OB-06-DO OB-06-DO	05/04/2020	66.4	0.002 U 0.002 U	0.002 U	0.001 U 0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.027	0.002 U	0.006	0.17	0.002 U 0.003
OB-06-DO	05/18/2021	73.45	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U		0.015	0.002 U	0.003	0.11	
	05/09/2022	65.5		l .	l .										1			
OB-06-S OB-06-S	05/18/2021	8.98 NA	0.002 U 0.002 U	0.002 U 0.002 U	0.001 U 0.001 U	0.002 U 0.002 U	0.01 U 0.01 U	0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U	0.002 U	0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U
OB-06-S	08/19/2021 11/08/2021	NA 8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-06-S	02/10/2022	9.4	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-08-DO	05/06/2020	78.9	0.002 U	0.002	0.001	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.48	2.7	0.002 U	0.002 U	2.3	0.002 0
OB-08-DO	05/14/2021	78.88	0.01 U	0.014 0.02 U	0.025	0.01 U	0.03 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.40	2.7	0.01 U	0.01 U	2.1	0.02 U
OB-08-DO	05/11/2022	77.5	0.02 U	0.02 U	0.015	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.28	2.2	0.02 U	0.02 U	1.4	0.02 U
OB-08-S	05/11/2022	6.3	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.021	0.002 U	0.002 U	0.009 # J	0.002 U
OB-09-BR	11/25/2020	116	0.02 U	0.02 U	0.044	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.77	1.4	0.02 U	0.28	6.2	0.027
OB-09-BR	05/12/2021	104	0.04 U	0.04 U	0.042	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.52	0.6	0.04 U	0.41	4.4	0.04 U
OB-09-BR	11/15/2021	103.5	0.04 U	0.04 U	0.034	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	1.9	2.2	0.04 U	0.045	4.7	0.04 U
OB-09-BR (LF)	11/15/2021	103	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.057 D J	0.63	0.01 U
OB-09-BR	05/09/2022	102	0.04 U	0.04 U	0.058	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.2	8.1	0.04 U
OB-09-DO	11/25/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U
OB-09-DO	05/12/2021	92	0.002 U	0.002 U	0.003	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.003	0.002 U	0.091	0.16	0.002 U
OB-09-DO	11/16/2021	91	0.002 U	0.002 U	0.01	0.002 U	0.012	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.32	0.67	0.002 U
OB-09-DO (LF)	11/16/2021	91	0.002 U	0.002 U	0.025	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.11	0.093	0.002 U	0.51 E	1.7	0.002 U
OB-09-DO	05/09/2022	92	0.01 U	0.01 U	0.019	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.33	1.1	0.01 U
OB-09-S	11/25/2020	20	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U UJ	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.006	0.002 U
OB-09-S	05/12/2021	20	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.03	0.028	0.002 U
OB-09-S	11/15/2021	7.68	0.002 U	0.002 U	0.001 U	0.002 U	0.01	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U
OB-09-S (LF)	11/15/2021	8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.011	0.002 U
OB-09-S	05/09/2022	8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.026	0.011	0.002 U
OB-10-BR	05/06/2020	73	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.41	5.9	0.04 U	0.04 U	2.1	0.04 U
OB-10-BR	11/25/2020	72	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U UJ	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.53	4.7	0.04 U	0.04 U	1.7	0.04
OB-10-BR	05/12/2021	73	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.2	2.3	0.02 U	0.02 U	0.67	0.02 U
OB-10-BR	11/15/2021	73.5	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.085	1.7	0.02 U	0.02 U	2.1	0.047
OB-10-BR (LF)	11/15/2021	73	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.016	0.002 U	0.002 U	0.004	0.002 U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OB-10-BR	05/09/2022	73.5	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	1.2	0.04 U	0.04 U	3.2	0.054
OB-10-DO	11/15/2021	45.5	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01	0.78	0.01 U	0.01 U	0.24	0.15
OB-10-DO (LF)	11/15/2021	45	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.23	0.002 U	0.002 U	0.074	0.038
OB-10-S	05/06/2020	29	0.002 U	0.002 U	0.001 U	0.002 U	0.033 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U
OB-10-S	05/12/2021	10.4	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-10-S	05/09/2022	10.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.005	0.002 U	0.002 U	0.002 U	0.002 U
OB-11-BR	08/08/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.002 U	0.008	0.042	0.015
OB-11-DO	08/08/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.07	0.002 U	0.002 U	0.02	0.002 U
OB-11-S	08/08/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-12-BR	08/08/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U
OB-12-DO	05/08/2020	47.7	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1.6	9.5	0.1 U	0.1 U	2.8	0.1 U
OB-12-DO	05/17/2021	47.59	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1.8	16	0.1 U	0.1 U	6.1	0.1 U
OB-12-DO	11/11/2021	47.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.91	14	0.1 U	0.1 U	5.9	0.1 U
OB-12-DO	05/09/2022	47.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1	14	0.1 U	0.1 U	5	0.1 U
OB-12-DO	08/08/2022	NA	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.92	13	0.1 U	0.1 U	6.1	0.1 U
OB-12-S	08/08/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.11	0.072	0.002 U	0.002 U	0.002	0.002 U
OB-14-DO	05/08/2020	55.5	0.002 U	0.002 U	0.001	0.002 U	0.024	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.15	1.8	0.002 U	0.002 U	0.12	0.002 U
OB-14-DO	05/17/2021	55.38	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.12	1.5	0.02 U	0.02 U	0.16	0.02 U
OB-14-DO	05/09/2022	55.5	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.14	2.1	0.01 U	0.01 U	0.096	0.01 U
OB-14-DO	08/08/2022	NA	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.11	1.2	0.02 U	0.02 U	0.1	0.02 U
OB-15-S	05/06/2020	18	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.002 U
OB-15-S	05/17/2021	6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.18	0.29	0.002
OB-15-S	05/09/2022	5.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.004	0.002 U
OB-17-BR	05/07/2020	95.8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-17-BR	05/14/2021	46.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-17-BR	05/11/2022	95	0.002 U	0.002 U	0.001 U	0.002 U	0.02 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-17-DO	05/07/2020	40.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.009	0.01	0.002 U	0.002 U	0.002 U	0.002 U
OB-17-DO	05/14/2021	40.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.006	0.002 U	0.002 U	0.002 U	0.002 U
OB-17-DO	05/11/2022	40	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.005	0.002 U	0.002 U	0.002 U	0.002 U
OB-18-DO	05/06/2020	23.8	0.002 U	0.002 U	0.001 U	0.002 U	0.045 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.002 U	0.002 U
OB-18-DO	05/18/2021	23.81	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.008	0.044	0.002 U
OB-18-DO	05/11/2022	23.8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.007	0.031	0.002 U
OB-18-S	05/06/2020	11.2	0.002 U	0.002 U	0.001 U	0.002 U	0.02 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-18-S	05/18/2021	3.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-18-S	05/11/2022	5	0.002 U	0.002 U	0.001 U	0.002 U	0.025 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-19-BR	05/08/2020	70.6	0.04 U	0.04 U	0.076	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.59	6.5	0.04 U	3.7	18	0.072
OB-19-BR	05/12/2021	83.39	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.59	6.4	0.4 U	3.1	28	0.4 U
OB-19-BR	11/15/2021	82.4	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.75	9.9	0.4 U	4	31	0.4 U
OB-19-BR (LF)	11/15/2021	82	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.002 U	0.006	0.068	0.002 U
OB-19-BR	05/11/2022	83	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.88	12	0.4 U	4.3	27	0.4 U
OB-19-DO	05/08/2020	57	0.002 U	0.002 U	0.002	0.002 U	0.022 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.15	1.2	0.002 U	0.03	0.69	0.047
OB-19-DO	11/25/2020	56	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.061	0.66	0.01 U	0.034	0.91	0.059
OB-19-DO	05/12/2021	57	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.074	0.45	0.01 U	0.019	0.5	0.042
OB-19-DO	11/15/2021	56.8	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.028	0.93	0.045
OB-19-DO (LF)	11/15/2021	57	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.01	0.002 U	0.011	0.15	0.037
OB-19-DO	05/11/2022	56.5	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.058	0.24	0.02 U	0.038	4.2	0.057
OB-20-BR	05/04/2020	84.88	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.013	0.039	0.002 U
OB-20-BR	04/08/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U
OB-20-BR	05/11/2022	73	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OB-20-DO	05/04/2020	74.15	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.036	0.093	0.002 U
OB-20-DO	11/25/2020	73	0.002 U	0.002 U	0.001 U	0.002 U	0.011 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-20-DO	04/08/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.11	0.002 U
OB-20-DO	11/11/2021	73	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U
OB-20-DO	05/11/2022	73.5	0.002 U	0.002 U	0.001 U	0.002 U	0.012 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.048	0.015	0.002 U
OB-21-BR	04/08/2021	NA	0.002 U	0.003	0.003	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.021	0.1	0.002 U	0.012	0.28	0.008
OB-21-DO	04/08/2021	NA	0.002 U	0.008	0.011	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.24	1.1	0.002 U	0.005	1	0.004
OB-23-BR	05/04/2020	84	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.02	0.021	0.002 U
OB-23-BR	05/14/2021	85	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.11	0.063 # J	0.002 U
OB-23-BR	05/11/2022	83.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-25-BR	05/12/2021	85.62	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.076	0.85	0.04 U	0.64	4.7	0.04 U
OB-25-BR	05/11/2022	80	0.04 U	0.04 U	0.088	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	1.5	6.3	0.04 U	6	19	0.13
OB-25-DO	02/14/2020	68	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.54	10	0.1 U	0.1 U	3.6	0.1 U
OB-25-DO	05/05/2020	68	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.43	13	0.1 U	0.1 U	3.2	0.1 U
OB-25-DO	11/25/2020	67	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.065	3.9	0.04
OB-25-DO	05/12/2021	68.7	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.52	13	0.02 U	0.041	1.6	0.02 U
OB-25-DO	11/11/2021	67.7	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.51	4.5	0.02 U	0.02 U	0.13	0.02 U
OB-25-DO	05/11/2022	68	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.43	14	0.1 U	0.1 U	2.9	0.1 U
OB-26-BR	05/07/2020	93	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.014	0.01 U	0.088	2.4	0.01 U
OB-26-BR	05/12/2021	94.6	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.03	0.02 U	0.13	3.8	0.02 U
OB-26-BR	05/11/2022	93	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.019	0.4	0.002 U
OB-26-DO	05/07/2020	59	0.002 U	0.002 U	0.001 U	0.002 U	0.048 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.068	0.002 U	0.002 U	0.026	0.002 U
OB-26-DO	11/25/2020	58	0.002 U	0.002 U	0.001 U	0.002 U	0.011 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.09	0.002 U	0.002 U	0.027	0.002 U
OB-26-DO	05/12/2021	59	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.066	0.002 U	0.002 U	0.02	0.002 U
OB-26-DO	11/11/2021	58.9	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.57	15	0.2 U	0.2 U	0.89	0.2 U
OB-26-DO	05/11/2022	59	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.16	0.002 U	0.002 U	0.037	0.003
OB-27-BR	05/07/2020	70	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-27-BR	11/25/2020	72	0.002 U	0.002 U	0.001 U	0.002 U	0.015 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-27-BR	05/19/2021	72.12	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-27-BR	11/11/2021	72	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-27-BR	05/11/2022	72	0.002 U	0.002	0.006	0.002 U	0.026 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.042	0.63	0.002 U	0.42	1.3	0.002 U
OB-28-BR	05/07/2020	89.5	0.002 U	0.002 U	0.001 U	0.002 U	0.028 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.025	0.002 U	0.002 U	0.022	0.002 U
OB-28-BR	05/12/2021	90.52	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4.6	0.1 U	0.18	8.5	0.1
OB-28-BR	05/11/2022	74	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.22	8.4	0.1 U	0.15	9	0.13
OB-28-DO	05/09/2022	55	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.23	0.02 U	0.02 U	3.7	0.045
OB-32-DO	05/08/2020	46.2	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.003	0.002 U	0.006	0.002 U	0.002 U	0.14	0.048	0.002 U	0.002 U	0.002 U	0.002 U
OB-32-DO	05/12/2021	45.21	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.073	0.013	0.002 U	0.002 U	0.002 U	0.002 U
OB-32-DO	05/09/2022	46	0.002 U	0.002 U	0.001 U	0.002 U	0.023 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.88	7.7	0.002 U	0.002 U	0.002 U	0.002 U
OB-34-DO	05/08/2020	58	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	1	6.9	0.04 U	0.04 U	0.64	0.04 U
OB-34-DO	11/25/2020	18	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U UJ	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.88	6.3	0.1 U	0.1 U	0.49	0.1 U
OB-34-DO	05/12/2021	47.83	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.061	0.13	0.002 U	0.002 U	0.006	0.002 U
OB-34-DO	11/11/2021	58.1	0.002 U	0.002 U	0.001	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.31	1.3	0.002 U	0.002 U	0.049	0.002 U
OB-34-DO	05/09/2022	58	0.002 U	0.01 U	0.005 U	0.002 U	0.087 U	0.01 U	0.01 U	0.01 U	0.002 U	0.002 U	0.34	0.74	0.01 U	0.002 U	0.031	0.01 U
OB-35-DO	02/13/2020	47	0.01 U	0.01 U	0.1 U	0.2 U	1 U	0.2 U	0.01 U	0.2 U	0.2 U	0.2 U	0.2 U	0.74 0.2 U	0.01 U	0.01 U	28	0.01 U
OB-35-DO	05/05/2020	33	0.04 U	0.04 U	0.037	0.2 U	0.2 U	0.2 U	0.04 U	0.04 U	0.2 U	0.2 U	7.9	6.9	0.04 U	0.4	22	0.052
OB-35-DO	08/21/2020	47	0.04 U	0.04 U	0.037	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	14	6.5	0.04 U	0.18	7	0.032 0.04 U
OB-35-DO	11/23/2020	47	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	14	7.2	0.1 U	0.10 U	3.8	0.1 U
OB-35-DO	02/22/2021	47	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	21	7.4	0.1 U	0.1 U	3.4	0.1 U
OB-35-DO	05/13/2021	47	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	14	8.3	0.1 U	0.1 U	5.6	0.1 U
OB-35-DO	09/09/2021	53	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	22	11	0.1 U	0.44 J	7.5	0.1 U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OB-35-DO	11/09/2021	46.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	14	10	0.1 U	0.38	7.5	0.1 U
OB-35-DO	02/10/2022	46.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	22	10	0.1 U	0.12	6.5	0.1 U
OB-35-DO	05/12/2022	46.5	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	43	11	0.2 U	0.27	6.6	0.2 U
OB-36-DO	05/08/2020	29.8	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	3.1	6.2	0.02 U	0.02 U	0.02	0.02 U
OB-36-DO	11/25/2020	32	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	2.6	5.6	0.04 U	0.04 U	0.04 U	0.04 U
OB-36-DO	05/19/2021	32.83	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	3	5.3	0.04 U	0.04 U	0.04 U	0.04 U
OB-36-DO	11/11/2021	33	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	2.1	4.5	0.04 U	0.04 U	0.04 U	0.04 U
OB-36-DO	05/12/2022	33.5	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	1.6	2.9	0.04 U	0.04 U	0.04 U	0.04 U
OB-37-DO	05/08/2020	43.25	0.003	0.002 U	0.004	0.002 U	0.081	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.38	3.5	0.002 U	0.002 U	0.005	0.002 U
OB-37-DO	11/25/2020	44	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U UJ	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	2.8	12	0.04 U	0.04 U	0.04 U	0.04 U
OB-37-DO	05/19/2021	44.45	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4.8	21	0.1 U	0.1 U	0.1 U	0.1 U
OB-37-DO	11/11/2021	46.1	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4.7	21	0.1 U	0.1 U	0.1 U	0.1 U
OB-37-DO	05/12/2022	44.5	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	3.6	18	0.2 U	0.2 U	0.2 U	0.2 U
OB-38-BR	06/01/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.041	0.14	0.002 U	0.002 U	0.048	0.002 U
OB-38-BR	09/10/2021	62.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.004	0.002 U	0.002 U	0.13	0.002 U
OB-38-BR	11/08/2021	62.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.019	0.002 U	0.002 U	0.014	0.002 U
OB-38-BR	02/10/2022	66	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.049	0.002 U	0.002 U	0.051	0.002 U
OB-38-BR	05/11/2022	60	0.002 U	0.002 U	0.001 U	0.002 U	0.022 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.02	0.07	0.002 U	0.002 U	0.085	0.002 U
OB-38-BR	05/11/2022	72	0.002 U	0.002 U	0.001 U	0.002 U	0.033 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.013	0.076	0.002 U	0.002 U	0.064	0.002 U
OB-38-DO	05/06/2020	43.7	0.002 U	0.002 U	0.001 U	0.002 U	0.04	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.002 U	0.002 U	0.039	0.002 U
OB-38-DO	05/14/2021	44	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.011	0.002 U	0.002 U	0.082 # J	0.002 U
OB-38-DO	11/16/2021	43.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.003	0.064	0.002 U
OB-38-DO (LF)	11/16/2021	43	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.002 U	0.024	0.002 U
OB-38-DO	05/11/2022	43	0.002 U	0.002 U	0.001 U	0.002 U	0.016 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.008	0.024	0.002 U
OB-39-BR	06/01/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002 U	0.002 U
OB-39-BR	09/10/2021	53	0.002 U	0.002	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.006	0.002 U
OB-39-BR	11/08/2021	83.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-39-BR	02/10/2022	75.5	0.002 U	0.002 U	0.001 U	0.002 U	0.013	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-39-BR	05/10/2022	83	0.002 U	0.002 U	0.001 U	0.002 U	0.021 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-39-DO	05/14/2021	53	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.006	0.002 U
OB-41-S	05/06/2020	13.3	0.002 U	0.002 U	0.002	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.048	0.26	0.002 U	0.002 U	0.083	0.002 U
OB-41-S	11/25/2020	13	0.002 U	0.002 U	0.001	0.002 U	0.01 U UJ	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.033	0.16	0.002 U	0.002 U	0.048	0.002 U
OB-41-S	05/14/2021	4.6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.029	0.002 U	0.002 U	0.019 # J	0.002 U
OB-41-S	11/10/2021	4.9	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.015	0.054	0.002 U	0.002 U	0.019	0.002 U
OB-41-S	05/11/2022	5	0.002 U	0.002 U	0.001	0.002 U	0.011 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.024	0.15	0.002 U	0.002 U	0.051	0.002 U
OB-42-BR	05/11/2022	68	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.3	4.9	0.04 U	0.04 U	1.1	0.04 U
OB-42-BR	05/11/2022	78	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.34	4.2	0.04 U	0.04 U	1.1	0.04 U
OB-42-S	05/04/2020	13.5	0.04 U	0.02 U	0.02 U	0.04 U	0.1 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.11	4	0.02 U	0.04 U	1.4	0.04 U
OB-42-S	11/25/2020	13.3	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.055	1.2	0.02 U	0.02 U	0.26	0.02 U
OB-42-S	05/14/2021	5.8	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.099	3.5	0.02 U	0.02 U	0.57	0.021
OB-42-S	11/10/2021	6.6	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.077	3.4	0.02 U	0.02 U	0.29	0.02 U
OB-42-S	05/11/2022	10.7	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.06	2	0.02 U	0.02 U	0.09	0.02 U
OB-43-S	05/06/2020	16	0.002 U	0.002 U	0.001 U	0.002 U	0.054 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.039	0.002 U	0.002 U	0.009	0.002 U
OB-43-S	11/25/2020	10	0.002 U	0.002 U	0.001 U	0.002 U	0.034 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.045	0.002 U	0.002 U	0.007	0.002 U
OB-43-S	05/14/2021	11.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.019	0.002 U	0.002 U	0.005	0.002 U
OB-43-S (LF)	05/20/2021	11.53	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.016	0.05	0.002 U	0.002 U	0.016	0.002 U
OB-43-S	11/15/2021	13.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.015	0.002 U	0.002 U	0.005	0.002 U
OB-43-S (LF)	11/15/2021	13.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.013	0.002 U	0.002 U	0.004	0.002 U
OB-43-S (E1)	05/11/2022	12.5	0.002 U	0.002 U	0.001 U	0.002 U	0.037 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.041	0.002 U	0.002 U	0.009	0.002 U
	UJI I 1/2UZZ	14.3	2.002 0	5.002 0	5.55. 0	002 0	3.007	J.002 0	002 0	2.002	0.2 U	0.2 U		5.511	3.002 0	002 0	5.007	0.2 U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OB-44-S	05/05/2020	15.8	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	13	5.6	0.1 U
OB-44-S	08/21/2020	15.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	12	11	0.1 U
OB-44-S	09/09/2020	NA	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.4 U	0.4 U	0.2 U	0.2 U	0.4 U	13	19	0.2 U
OB-44-S	11/23/2020	15	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	6.8	22	0.1 U
OB-44-S	01/26/2021	NA	0.001	0.001	0.011	0.001	0.005	0.001	0.001	0.001	0.001	0.001	0.25	0.096	0.001	0.807	8.15	0.013
OB-44-S	02/22/2021	16	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	2.2	17	0.2 U
OB-44-S	05/13/2021	8.24	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.2	14	0.2 U
OB-44-S	09/09/2021	7.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	3.5	17	0.1 U
OB-44-S	11/10/2021	8.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5	24	0.1 U
OB-44-S (LF)	11/10/2021	11.96	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1.6	14	0.1 U
OB-44-S	02/22/2022	8.2	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	2.6	28	0.2 U
OB-44-S	05/12/2022	8	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.31	0.2 U	0.2 U	4.4	35	0.2 U
OB-45-BR	06/01/2021	NA	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.74	13	0.2 U	0.2 U	3.4	0.2 U
OB-45-BR	09/10/2021	95	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1.7	60	0.1 U	0.1 U	3.2	0.1 U
OB-45-BR	11/10/2021	96	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	3.9	600	1 U	1 U	6.7	1 U
OB-45-BR (LF)	11/10/2021	95.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.27	11	0.1 U	0.1 U	2.5	0.1 U
OB-45-BR	02/10/2022	95	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.19	12	0.1 U	0.1 U	0.65	0.1 U
OB-45-BR	05/10/2022	70	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.71	23	0.4 U	0.4 U	0.61	0.4 U
OB-45-BR	05/10/2022	90	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.99	27	0.2 U	0.2 U	0.59	0.2 U
OB-45-DO	05/14/2021	30.9	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-46-S	02/13/2020	12.6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-47-S	05/05/2020	23.4	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.015	0.009	0.002 U	0.002 U	0.002 U	0.002 U
OB-47-S	05/19/2021	23	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.015	0.01	0.002 U	0.002 U	0.002 U	0.002 U
OB-47-S (LF)	05/19/2021	23	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.017	0.025	0.002 U	0.002 U	0.016	0.002 U
OB-47-S	11/10/2021	16	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.015	0.019	0.002 U	0.002 U	0.003	0.002 U
OB-47-S (LF)	11/10/2021	16	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.021	0.025	0.002 U	0.002 U	0.004	0.002 U
OB-49-S	01/15/2020	14.27	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	9.9	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
OB-49-S	05/05/2020	17	0.002 U	0.002 U	0.001 U	0.002 U	0.025 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.11	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-49-S	08/20/2020	17	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.26	0.1 U	0.1 U	7.1	0.1 U
OB-49-S	11/24/2020	17	0.04 U	0.04 U	0.14	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	9.5	9.2	0.04 U	0.46	53	0.83
OB-49-S	02/22/2021	17	0.002 U	0.002 U	0.001 U	0.002 U	0.033	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.002 U	0.002	0.002 U
OB-49-S	05/13/2021	15.3	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.007	0.19	0.002 U	0.006	0.4	0.002
OB-49-S	09/09/2021	14.9	0.002 U	0.002 U	0.006	0.002 U	0.014	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.11	0.002 U	0.079	3	0.015
OB-49-S	11/09/2021	8.5	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.071	0.02 U	0.02 U	1.7	0.02 U
OB-49-S	02/15/2022	NA	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.18	4.7	0.1 U
OB-50-S	01/15/2020	13.77	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	44	2.2	0.4 U	0.4 U	0.4 U	0.4 U
OB-50-S	05/05/2020	17	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-50-S	08/20/2020	17	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1.8	11	0.1 U	0.1 U	0.1 U	0.1 U
OB-50-S	11/24/2020	NA	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5.8	4.5	0.1 U	0.1 U	26	0.32
OB-50-S	02/22/2021	17	0.002 U	0.002 U	0.001 U	0.002 U	0.01 D	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-50-S	05/13/2021	15	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	3.6	0.1 U	0.1 U	6.5	0.1 U
OB-50-S	09/09/2021	14.5	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.58	0.1 U	0.1 U	12	0.1 U
OB-50-S	11/09/2021	9.6	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.19	0.1 U	0.43	14	0.1 U
OB-50-S	02/15/2022	NA	0.1 U	0.1 U	0.11	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.29	0.1 U	1.4	38	0.14
OB-50-S	05/10/2022	15	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.33	0.55	0.1 U	0.1 U	7.2	0.1 U
OB-51-S	01/15/2020	12.69	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	13	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
OB-51-S	05/05/2020	16	0.02 U	0.02 U	0.01 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	3.1	2.9	0.02 U	0.02 U	0.02 U	0.02 U
OB-51-S	08/20/2020	17	0.037	0.02 U	0.01	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	2.5	48	0.02 U	0.047	2.9	0.34
OB-51-S	11/24/2020	16	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
OB-51-S	02/22/2021	16	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.16	0.04 U	0.35	3.1	0.04 U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OB-51-S	05/13/2021	13.7	0.02 U	0.02 U	0.031	0.02 U	0.1 U	0.02 U	0.02 U	0.031	0.02 U	0.02 U	0.2	0.94	0.02 U	0.46	4.3	0.027
OB-51-S	09/09/2021	13.5	0.04 U	0.04 U	0.028	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.58	0.04 U	0.53	5.3	0.04 U
OB-51-S	11/09/2021	10.2	0.04 U	0.04 U	0.05	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.11	0.28	0.04 U	2	12	0.045
OB-51-S	02/11/2022	NA	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1	0.21	0.1 U	2.1	8.6	0.1 U
OB-51-S	05/10/2022	14	0.4 U	0.4 U	0.2 U	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2.4	21	0.4 U
OB-52-BR	06/01/2021	NA	0.04 U	0.04 U	0.02 U	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.89	3.4	0.04 U	0.6	3.3	0.058
OB-52-BR	09/10/2021	86	0.04 U	0.04 U	0.086	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	5.9	19	0.04 U	5.5	15	0.04 U
OB-52-BR	11/08/2021	84.5	0.02 U	0.02 U	0.014	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.27	1.1	0.02 U	0.55	3.5	0.02 U
OB-52-BR	02/10/2022	84.5	0.04 U	0.04 U	0.041	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	5.3	9.6	0.04 U	1	8.5	0.04 U
OB-52-DO	06/01/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.016	0.12	0.002 U	0.002 U	0.01	0.002 U
OB-52-DO	09/10/2021	48.5	0.002 U	0.002 U	0.001 U	0.002 U	0.012	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-52-DO	11/08/2021	48.5	0.002 U	0.002 U	0.001 U	0.002 U	0.024 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-52-DO	02/10/2022	49	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-52-S	06/01/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.034	0.3	0.002 U	0.002 U	0.028	0.002 U
OB-52-S	09/10/2021	8	0.002 U	0.002 U	0.001 U	0.002 U	0.013 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-52-S	11/08/2021	9.4	0.002 U	0.002 U	0.001 U	0.002 U	0.024	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-52-S	02/10/2022	9.4	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-53-BR	05/10/2022	80	0.01 U	0.01 U	0.005 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.016	0.58	0.01 U	0.01 U	0.049	0.01 U
OB-54-BR	05/10/2022	70	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1.4	53	1 U	1 U	12	1 U
OB-54-BR	05/10/2022	90	1 U	1 U	0.5 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	49	1 U	1 U	10	1 U
OB-55-BR	08/08/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.047	0.002 U	0.002 U	0.031	0.002 U
OB-57-DO	08/09/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.019	0.002 U	0.002 U	0.036	0.002 U	0.003	0.062	0.38	0.002 U	0.002 U	0.002 U	0.002 U
OB-58-DO	08/09/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
OB-59-DO	08/09/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.005	0.002 U	0.002 U	0.017	0.002 U
OB-60-S	08/16/2022	NA	0.4 U	0.4 U	0.4	0.4 U	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	47	20	0.4 U	1	23	0.4 U
P-04R	05/18/2021	3.88	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-04R	08/20/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-04R	11/08/2021	3.3	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-04R	02/10/2022	4	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-05R	05/18/2021	7.74	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-05R	08/20/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-05R	11/08/2021	7.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-05R	02/10/2022	8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-09	05/10/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U 0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U 0.002 U	0.002 U	0.005	0.002 U
P-09R	12/09/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U		0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U			0.002 U	0.002 U
P-09R	05/19/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 0	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-09R P-09R	08/20/2021	NA 2.27	0.002 U 0.002 U	0.002 U 0.002 U	0.001 U 0.001 U	0.002 U 0.002 U	0.01 U 0.021 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U	0.002 U 0.002 U	0.002 U 0.002 U
	11/11/2021	2.37		1														
P-11R P-11R	05/04/2020	8.5	0.002 U 0.002 U	0.002 U 0.002 U	0.001 U 0.001 U	0.002 U 0.002 U	0.01 U 0.01 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U	0.002 U 0.002 U	0.002 U 0.002 U
P-11R P-11R	12/09/2020 02/19/2021	NA 9	0.002 U	0.002 U	0.001 U	0.002 U	0.01 0	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-11R	05/19/2021	9	0.002 U	0.002 U	0.001 U	0.002 U	0.013 0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-11R	08/20/2021	NA NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-13R	05/18/2021	6.52	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-13R	08/19/2021	0.52 NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-13R	11/08/2021	5.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-13R	02/10/2022	6.75	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-14R	05/18/2021	6.61	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-14R	08/19/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
	JUI 1 // ZUZ I	IVA	0.502 0	0.302 0	3.301 0	0.502 0	3.01 0	5.502 0	5.502 0	0.302 0	0.302 0	5.502 0	3.302 0	0.002 0	3.302 0	5.502 0	5.002 0	0.302 0

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
P-14R	11/08/2021	7	0.002 U	0.002 U	0.001 U	0.002 U	0.031 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-14R	02/15/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-19A	05/04/2020	9.4	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U
P-19A	11/25/2020	10	0.002 U	0.002 U	0.001 U	0.002 U	0.015 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.054	0.002 U
P-19A	12/09/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.002 U
P-19A	02/19/2021	10	0.002 U	0.002 U	0.001 U	0.002 U	0.02	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005 # J	0.002 U
P-19A	05/19/2021	7.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.012	0.002 U
P-19A (LF)	05/19/2021	7.7	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.014	0.002 U	0.002 U	0.015	0.002 U
P-19A	08/19/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-19A	11/16/2021	8.2	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U
P-19A (LF)	11/16/2021	8	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U
P-19A	05/10/2022	9.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-20	05/11/2022	5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-20R	04/08/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-20R	08/20/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-20R	11/11/2021	1.2	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-21	05/08/2020	8.5	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U
P-21	11/25/2020	9	0.002 U	0.002 U	0.001 U	0.002 U	0.072 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-21	12/09/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.016	0.002 U
P-21	02/19/2021	9	0.002 U	0.002 U	0.001 U	0.002 U	0.033	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-21	05/19/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-21	08/20/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-21	12/07/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-21	03/07/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-21	05/10/2022	9	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.003	0.002 U
P-21-BR	03/07/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.014	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.14	0.002 U
P-21-BR	05/13/2022	65.2	0.002 U	0.002 U	0.001 U	0.002 U	0.013 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.16	0.002 U
P-21-DO	03/07/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.002	0.002 U
P-21-DO	05/13/2022	15.7	0.002 U	0.002 U	0.001 U	0.002 U	0.014 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.002 U	0.002	0.002 U
P-23	12/09/2020	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-23	05/19/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-23	08/19/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-30	05/18/2021	8.1	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-30	08/20/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-30	11/08/2021	7.25	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-30	02/10/2022	8.3	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-31	05/18/2021	4.06	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-31	08/20/2021	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-31	11/08/2021	4.6	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
P-31	02/15/2022	NA	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
RW-01 MW-18	02/14/2020	40.2	0.2 U	0.2 U	0.1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.8	1.4	0.2 U	2.3	16	0.22
RW-01 MW-18	05/05/2020	40	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2	0.2	0.1 U	2.7	15	0.13
RW-01_MW-18	08/20/2020	40	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2	1.7	0.1 U	2.5	20	0.24
RW-01 MW-18	11/24/2020	43	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1.4	1.5	0.1 U	2.2	20	0.22
RW-01 MW-18	02/19/2021	35	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.81	0.97	0.1 U	2.9	19	0.25
RW-01 MW-18	05/12/2021	36	0.1 U	0.1 U	0.05 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1.8	1.6	0.1 U	2.6	21	0.25
RW-03	02/14/2020	53.8	0.004	0.01	0.003	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.049	0.002 U	0.091	0.34	0.002 U
RW-03	05/05/2020	54.5	0.004 0.002 U	0.005	0.003 0.001 U	0.002 U	0.048 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007 0.002 U	0.002	0.002 U	0.022	0.1	0.002 U
RW-03	08/20/2020	54.5	0.04 U	0.11	0.05	0.04 U	0.2 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	1.1	6.1	0.04 U
RW-03	11/24/2020	45	0.012	0.07	0.018	0.01 U	0.056	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.042	0.01 U	0.49	1.3	0.01 U
1744-03	11/24/2020	40	U.UTZ	0.07	U.U10	U.U1 U	0.000	U.UI U	U.UI U	U.UI U	U.U1 U	U.UI U	U.UI U	U.U4Z	U.U1 U	U.47	1.3	U.UI U

			1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2- DEC
Location	Date	Depth	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
RW-03	02/19/2021	51	0.004	0.017	0.005	0.002 U	0.06	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.004	0.002 U	0.14	0.4	0.002 U
RW-03	05/12/2021	51	0.002	0.008	0.001	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U	0.045	0.12	0.002 U
RW-22	08/08/2022	NA	0.01 U	0.01 U	0.005 U	0.01 U	0.43	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.045	0.49	0.01 U

Former Varian Facility Site 150 Sohier Road, Beverly, Massachusetts

Notes:

Analytical results presented in milligrams per liter (mg/l).

Analytical results are reported by the laboratory in micrograms per liter (ug/l). Results are presented without changing the number of significant figures reported by the laboratory.

Bedrock wells BR-1 through BR-8, CL8-BR and CL9-BR each have a multilevel groundwater monitoring system present within the bedrock portion of the well. Zone 1 refers to the deepest sample interval, Zone 2 refers to the middle sampling zone and Zone 3 refers to the sampling zone closest to the ground surface.

1,1,2-Trichloroethane, 1,2-dichloropropane, dichloromethane and dichlorodifluoromethane are compounds which have been detected but are not included on the table.

Sample depths are in feet below grade. A sample depth of NA indicates that the sample was not collected at a discrete depth.

DCA - Dichloroethane

DCE - Dichloroethene

PCE - Tetrachloroethene

TCA - Trichloroethane

TCE - Trichloroethene

VC - Vinyl Chloride

NA = discreet sample depth not applicable.

D - Indicates that the result is reported from a secondary dilute sample.

E - Estimated concentration

H - Sample analyzed past method hold time.

J - Estimated concentration

U - Determined to be non-detect at indicated detection limit, lab qualifier or through expert validation protocol.

= The percent recovery for this compound was above the acceptance criteria in the LCS/D, as a result of carryover from aprevious analysis.

(LF) - duplicate sample collected using modified low flow technique.

--- = constituent not analyzed

Samples AP-36-S, AP-37-S, AP-38-S, AP-39-S and OB-44-S sampled on 09/09/2020 and 1/26/2021 sampled by Roux Associates.

CONSTITUENT	UNITS	AP-13-DO 2/14/2018	AP-13-DO 5/8/2018	AP-13-DO 2/14/2019	AP-13-DO 4/29/2019	AP-13-DO 8/21/2019	AP-13-DO 11/18/2019	AP-13-DO 2/14/2020	AP-13-DO 5/5/2020	AP-13-DO 8/20/2020	AP-13-DO 2/23/2021	AP-13-DO 5/20/2021	AP-13-DO 9/9/2021	AP-13-DO 11/9/2021	AP-13-S 11/24/2020	AP-13-S 5/12/2021
Total Metals																
Iron	mg/L	1,400	590	48												
Manganese	mg/L	110	4.8	12												
0.15.1	//	0.000	4 400 1	-5	. =											
Sulfate	mg/L	3,200	1,400J	< 5	< 5											
Nitrate	mg/L	<0.1	<1.0	<5	< 1 UH											
Nitrate/Nitrogen	mg/L															
Metabolic Acids																
Acetic acid	mg/L															
Lactic Acid	mg/L															
n-Butanoic acid	mg/L															
Propionic acid	mg/L															
Pyruvic Acid	mg/L															
Miscellaneous Analys	es															
Methane	ug/L	<10	<10	200	710 J	340 J	140	76	23	11	< 10	11	11	<10	19	1100
Ethane	ug/L	<20	<20	<20	< 20 UJ	< 20 UJ	< 20	< 20	< 20	< 20	21	20	29	34	< 20	< 20
Ethene	ug/L	61	<20	<20	< 20 UJ	< 20 UJ	< 20	< 20	20	< 20	< 20	24	34	23	< 20	< 20
Chloride	mg/L															
TOC	mg/L	650	26	2,400	2,300 J	1,800	1,500	1,100	520	530	38,000	24,000 J J	36,000 J	26,000J		
Dehalococcoides sp.	cells/ml	3.0J	<0.5	186	704	2,360	644	588	460	502	80,000	249	332			
Field Parameters																
рН		7.07	2.99	5.89	6.13	6.27	6.71	6.56	6.35	6.98	3.44	4.37	3.45	5.4	6.53	6.8
ORP	mV	-20.4	51.9	-97.7	-53.7	-88.5	-78.9	-122.3	-107	-115.2	156.2	-41.8	-135.4	-13.1	-118.9	-42.3
Dissolved Oxygen	mg/L	3.22	6.95	0.08	0.37	1.35	5.28	1.2	0.38	0.5	0.13	1.1	0.02	0.55	1.12	4.27
Specific Conductivity	ms/cm	3.411	1.468	4.292	4.021	5.625	5.231	5.546	5.795	6.597	2.273	2.989	2.093	4.184	3.871	0.016

CONSTITUENT	UNITS	AP-23-DO 2/14/2018	AP-23-DO 5/8/2018	AP-23-DO 2/14/2019	AP-23-DO 4/29/2019	AP-23-DO 8/21/2019	AP-23-DO 11/18/2019	AP-23-DO 2/14/2020	AP-23-DO 5/5/2020	AP-23-DO 8/20/2020	AP-23-DO 11/24/2020	AP-23-DO 2/23/2021	AP-23-DO 5/20/2021	AP-23-DO 9/9/2021	AP-23-DO 11/9/2021
Total Metals															
Iron	mg/L	1,500	550	320		-									
Manganese	mg/L	80	5.3	66		-									
Sulfate	mg/L	970	1,400	12	18						1.2				
Nitrate	mg/L	<0.1	<0.1	<5.0	< 1 UH	-									
Nitrate/Nitrogen	mg/L														
Metabolic Acids															
Acetic acid	mg/L				-	-									
Lactic Acid	mg/L														
n-Butanoic acid	mg/L					-									
Propionic acid	mg/L														
Pyruvic Acid	mg/L														
Miscellaneous Analys	ses														
Methane	ug/L	15	12	61 J	250 J	770 J	970 J	1,700	1,200	520	69	160	290	100	110
Ethane	ug/L	<20	<20	<20 UJ	< 20 UJ	< 100 UJ	< 100 UJ	< 100	< 100	< 100	< 20	< 20	< 20	< 20	< 20
Ethene	ug/L	29	<20	<20 UJ	41 J	610 J	1,100 J	3,300	4,100	4,200	790	2,000	9,100	2,200	2,500
Chloride	mg/L														
TOC	mg/L	49	40	16,000 J	9,000 J	4,100 J	2,900 J	2,100	1,500	1,300 J	320 J	570	870	610	500
Dehalococcoides sp.	cells/ml	<10.0	18	5,660	5,700	459,000	402,000	1,080,000	243,000	2,490,000	89,200	442,000	4,010,000	2,600,000	
Field Parameters															
рН		6.93	4.57	6.03	6.53	6.3	7.02	6.63	6.61	7.41	6.49	7.3	6.85	6.84	6.28
ORP	mV	45.2	140.9	-155.1	-145.8	-84.6	-89.1	-124.7	-166.7	-84.9	-99.8	-126	-56.8	-102.7	-89.5
Dissolved Oxygen	mg/L	2.96	2.13	0.08	0.08	1.86	6.36	0.14	0.5	0.42	0.68	3.51	4.17	0.04	0.51
Specific Conductivity	ms/cm	4.418	1.327	21.22	13.38	10.13	8.031	5.269	5.718	5.931	4.792	2.669	5.645	5.658	5.355

CONSTITUENT	UNITS	AP-24-DO 2/14/2018	AP-24-DO 5/8/2018	AP-24-DO 2/14/2019	AP-24-DO 4/29/2019	AP-24-DO 8/21/2019	AP-24-DO 11/18/2019	AP-24-DO 2/14/2020	AP-24-DO 5/5/2020	AP-24-DO 8/20/2020	AP-24-DO 11/24/2020	AP-24-DO 2/23/2021	AP-24-DO 5/20/2021	AP-24-DO 9/10/2021	AP-24-DO 11/9/2021
Total Metals															
Iron	mg/L	3900	710	48											
Manganese	mg/L	120	12	12											
•															
Sulfate	mg/L	11000	2100	<50	< 10						< 2.5				
Nitrate	mg/L	<1.0	<1.0	<50	< 2 UH										
Nitrate/Nitrogen	mg/L														
Metabolic Acids															
Acetic acid	mg/L														
Lactic Acid	mg/L														
n-Butanoic acid	mg/L														
Propionic acid	mg/L														
Pyruvic Acid	mg/L														
Miscellaneous Analys	es														
Methane	ug/L	<10	<10	34 J	48 J	60 J	42 J	48	42	29 J	29	17 J	27 J	< 10	<10
Ethane	ug/L	<20	<20	<20 UJ	< 20 UJ	< 20 UJ	< 20 UJ	< 20	< 20	< 20 UJ	< 20	< 20 UJ	< 20 UJ	< 20	<20
Ethene	ug/L	<20	<20	<20 UJ	20 J	27 J	24 J	31	28	25 J	42	39 J	67 J	23	26
Chloride	mg/L														
TOC	mg/L	190	47	11,000 J	8,500 J	6,000 J	4,800 J	4,100	3,200 J	3,300 J	2,800 J	2,300	2,200	1,900	1,600
Dehalococcoides sp.	cells/ml	<10.0	0.2J	208	334	272	76	162	164	340	3,680	2,570	3,600	2,370	
Field Parameters															
рН		7.16	4.57	6.12	6.46	6.26	6.52	6.3	6.34	6.78	6.52	6.54	6.54	6.73	8.26
ORP	mV	92.6	144.1	-138.9	-129.5	-94.6	-84.9	-121.3	-172.6	-97.3	-116.5	-121.3	-85.9	-127.1	-125.3
Dissolved Oxygen	mg/L	2.73	1.4	0.09	0.06	1.94	4.94	0.6	0.44	0.4	1.09	0.13	0.2	0.16	0.21
Specific Conductivity	ms/cm	4.286	1.267	13.82	10.93	10.42	8.83	7.123	6.291	6.57	5.535	4.597	5.462	5.359	5.117

CONSTITUENT	UNITS	AP-25-DO 2/15/2018	AP-25-DO 5/9/2018	AP-25-DO 1/30/2019	AP-25-DO 4/29/2019	AP-25-DO 8/5/2019	AP-25-DO 10/29/2019	AP-25-DO 1/30/2020	AP-25-DO 4/21/2020	AP-25-DO 8/6/2020	AP-25-DO 8/6/2020	AP-25-DO 2/4/2021	AP-25-DO 9/10/2021	AP-25-DO 11/8/2021	AP-30R-DO 2/15/2019	AP-30R-DO 8/22/2019
Total Metals	O.V.T.O	2/10/2010	0/0/2010	1/00/2010	4,20,2010	0/0/2010	10/20/2010	1700/2020	4/21/2020	0.0.2020	0/0/2020	2,4,2021	0/10/2021	11/0/2021	2/10/2010	0/22/2010
Iron	mg/L															
Manganese	mg/L															
<u>g</u>																
Sulfate	mg/L															
Nitrate	mg/L															
Nitrate/Nitrogen	mg/L															
Metabolic Acids																
Acetic acid	mg/L															
Lactic Acid	mg/L															
n-Butanoic acid	mg/L															
Propionic acid	mg/L															
Pyruvic Acid	mg/L															
Miscellaneous Analys	ses															
Methane	ug/L	<10	<10		< 10										<10	400 J
Ethane	ug/L	<20	<20		< 20										<20	< 20 UJ
Ethene	ug/L	<20	21		< 20										<20	20 J
Chloride	mg/L															
TOC	mg/L	1.2	7.4		1.7											3,700
Dehalococcoides sp.	cells/ml															3,320
Field Parameters																
pН		7.36	6.25	7.81	8.26	7.62	8.1	7.79	7.56	7.88	6.81	7.05	8.2	8.04		9.36
ORP	mV	15.2	57	183.5	81.1	-65.4	-8.4	75.8	57.1	-56.2	-81.4	-5.8	-35.5	-38.4		131.4
Dissolved Oxygen	mg/L	3.03	5.46	7.2	6.82	2.49	6.73	7.37	4.68	0.74	3.33	4.91	6.33	7.04		0.14
Specific Conductivity	ms/cm	4.65	0.157	0.115	0.136	0.13	0.113	0.151	0.178	0.285	0.089	0.093	0.07	0.081		7.806

CONSTITUENT	UNITS	AP-30R-DO	AP-30R-DO 2/13/2020	AP-30R-DO 5/5/2020	AP-30R-DO 8/21/2020	AP-30R-DO 11/24/2020	AP-30R-DO 2/23/2021	AP-30R-DO 9/9/2021	AP-30R-DO 11/9/2021	AP-31-DO 2/15/2019	AP-31-DO 5/2/2019	AP-31-DO 8/27/2019	AP-31-DO 11/19/2019	AP-31-DO 2/13/2020	AP-31-DO 5/5/2020
Total Metals	Citiro	11/10/2010	2/10/2020	0.0.2020	0/21/2020	11/2-1/2020	2/20/2021	0/0/2021	111012021	2/10/2010	0,2,2010	0/2//2010	11/10/2010	2/10/2020	0/0/2020
Iron	mg/L														
Manganese	mg/L														
Manganooo	mg/L														
Sulfate	mg/L					3.5									
Nitrate	mg/L														
Nitrate/Nitrogen	mg/L														
Metabolic Acids															
Acetic acid	mg/L														
Lactic Acid	mg/L														
n-Butanoic acid	mg/L														
Propionic acid	mg/L														
Pyruvic Acid	mg/L														
Miscellaneous Analys	ses														
Methane	ug/L	99 J	130	150	20	12	11	< 10	< 10	<10	40	< 10	< 10	33	< 10
Ethane	ug/L	< 20 UJ	< 20	< 20	< 20	< 20	< 20	< 20	< 20	<20	< 20	< 20	< 20	< 20	< 20
Ethene	ug/L	< 20 UJ	< 20	< 20	< 20	< 20	< 20	< 20	< 20	<20	< 20	< 20	< 20	< 20	< 20
Chloride	mg/L														
TOC	mg/L	3,500 J	2,800	2,100	1,300 J	780 J	460	130 J	58			4.5	2.5	4.9	11
Dehalococcoides sp.	cells/ml	2,340	889	478	2,600	2,720	1,100	1,450			654	328	160	188	3,200
Field Parameters															
pН		9.84	9.05	8.12	7.8	7.14	6.78	6.09	6.13		8.26	6.69	7.07	6.7	6.89
ORP	mV	-78.9	2.6	-83.9	98.6	-27.8	-33.7	-58.2	63.1		81.1	105.4	19.7	15.3	60.2
Dissolved Oxygen	mg/L	0.71	0.43	0.65	0.97	0.68	-0.03	1.18	0.55		6.82	3.11	4.18	1.01	1.79
Specific Conductivity	ms/cm	9.5	6.881	6.836	6.073	5.383	5.288	4.455	4.159		0.136	1.269	1.038	1.697	2.182

CONSTITUENT	UNITS	AP-31-DO 8/21/2020	AP-31-DO 2/23/2021	AP-31-DO 9/9/2021	AP-31-DO 11/9/2021	AP-32-DO 11/8/2018	AP-32-DO 11/27/2018	AP-32-DO 2/14/2019	AP-32-DO 5/2/2019	AP-32-DO 8/27/2019	AP-32-DO 11/19/2019	AP-32-DO 2/13/2020	AP-32-DO 5/5/2020	AP-32-DO 8/21/2020	AP-32-DO 2/23/2021
Total Metals															
Iron	mg/L														
Manganese	mg/L														
Sulfate	mg/L														
Nitrate	mg/L														
Nitrate/Nitrogen	mg/L														
Metabolic Acids															
Acetic acid	mg/L														
Lactic Acid	mg/L														
n-Butanoic acid	mg/L														
Propionic acid	mg/L														
Pyruvic Acid	mg/L														
Miscellaneous Analys	ses														
Methane	ug/L	< 10	< 10	< 10	<10			120	86	30	< 10	45	< 10	< 10	< 10
Ethane	ug/L	< 20	< 20	27	<20			<20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Ethene	ug/L	< 20	< 20	< 20	<20			<20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Chloride	mg/L														
TOC	mg/L	4.2 J	130,000	85,000	97,000					8.8	5	6.6	8.5	4.2 J	110,000
Dehalococcoides sp.	cells/ml	23.1	15,900	938				2,140	5,200	127,000	23,400	47,000	509,000	8,380	11,500
Field Parameters															
рН		7.37	4.61	4.92	16.9	6.42	6.92			6.89	7.19	6.79	7.3	7.49	5
ORP	mV	53.4	45.9	-68.4	-131.2	-34.3	228.2			-38.8	26.4	-23.8	57.9	40.9	30
Dissolved Oxygen	mg/L	1.29	-0.11	1.95	0.19	6.76	0.89			0.65	1.88	0.66	1.54	0.75	0.1
Specific Conductivity	ms/cm	2.105	2.984	3.036	2.325	9.859	3.089			0.949	0.9	0.801	0.916	0.875	4

			I I		Ī		1			1			i	I		1
CONSTITUENT	UNITS	AP-32-DO 9/92021	AP-32-DO 11/10/2021	AP-33-DO 2/14/2018	AP-33-DO 5/8/2018	AP-33-DO 2/14/2019	AP-33-DO 4/29/2019	AP-33-DO 8/21/2019	AP-33-DO 11/18/2019	AP-33-DO 2/14/2020	AP-33-DO 5/5/2020	AP-33-DO 8/20/2020	AP-33-DO 11/23/2020	AP-33-DO 2/23/2021	AP-33-DO 5/13/2021	AP-33-DO 9/92021
Total Metals																
Iron	mg/L			3200	480	200										
Manganese	mg/L			45	3.2	14										
Sulfate	mg/L			11000	1600	<50	< 10									
Nitrate	mg/L	-		<1.0	<1.0	<50	< 2 UH					-				
Nitrate/Nitrogen	mg/L															
Metabolic Acids																
Acetic acid	mg/L	-				-						-				
Lactic Acid	mg/L															
n-Butanoic acid	mg/L															
Propionic acid	mg/L															
Pyruvic Acid	mg/L															
Miscellaneous Analys	es															
Methane	ug/L	< 10	< 10	220	30	84 J	580 J	110 J	1,600 J	1,000	1,200	760 J	480	140	690	1,500 J
Ethane	ug/L	< 20	< 20	<20	<20	<20 UJ	< 20 UJ	< 20 UJ	< 100 UJ	< 100	< 100	< 100 UJ	< 20	< 20	< 20	< 20 UJ
Ethene	ug/L	< 20	< 20	270	44	75 J	240 J	38 J	290 J	160	930	1,900 J	1,200	160	930	3,400 J
Chloride	mg/L															
TOC	mg/L	47,000	20,000	140	52	4,300 J	5000 J	120	2,700 J	630	2,400	2,500 J	380 J	20	450	930
Dehalococcoides sp.	cells/ml	1,900	1,450	<10.0	<0.8	3,770	15,500	851	578	176	7.6	16.6	4.4	810	3,480	78,300
Field Parameters																
pH		5	5	8.18	3.27	6	6.69	6.33	6.54	6.32	6.25	6.56	6.43	7.01	6.46	6.89
ORP	mV	-34	-30	25.7	159.6	-107.4	-110.8	-119.3	-50.3	-118.5	-120.5	-103.6	-126	-164.8	-71	-118.4
Dissolved Oxygen	mg/L	2	0.2	2.66	1.87	0.09	0.79	2.66	2.46	1.19	0.53	0.34	1.73	0.69	0.23	0.76
Specific Conductivity	ms/cm	4	3	8.755	0.983	6.48	7.74	10.25	7.697	5.072	6.946	7.466	2.668	0.512	2.057	5.49

		AP-33-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO	AP-34-DO
CONSTITUENT	UNITS	11/9/2021	2/14/2018	5/8/2018	2/14/2019	4/29/2019	8/21/2019	11/18/2019	2/14/2020	5/5/2020	8/20/2020	11/24/2020	2/23/2021	5/13/2021	9/9/2021	11/9/2021
Total Metals																
Iron	mg/L		110	730	180											
Manganese	mg/L		8.2	7.9	22											
Sulfate	mg/L		120	1500	<25	< 5			-				-			
Nitrate	mg/L		<0.1	<0.1	<5	< 1 UH			-							
Nitrate/Nitrogen	mg/L															
Metabolic Acids																
Acetic acid	mg/L															
Lactic Acid	mg/L															
n-Butanoic acid	mg/L								-				-			
Propionic acid	mg/L															
Pyruvic Acid	mg/L															
Miscellaneous Analys	es															
Methane	ug/L	800 J	12	460	1,900 J	3,000 J	4,100 J	2,900 J	2,800	2,400	3,000	2,700	3600 J	2,400	2400 J	3400 J
Ethane	ug/L	<20 UJ	<20	<20	<100 UJ	< 100 UJ	< 100 UJ	< 100 UJ	< 100	< 100	< 100	< 20	110 J	< 20	110 J	110 J
Ethene	ug/L	2200 J	<20	45	<100 UJ	150 J	< 100 UJ	< 100 UJ	< 100	< 100	230	< 20	100 J	230	270 J	360 J
Chloride	mg/L															
TOC	mg/L	730	29	110	9,800 J	3,600 J	910 J	440 J	450	440 J	420 J	270 J	240	220	270 J	260
Dehalococcoides sp.	cells/ml		<10.0	2.2	90,400	2,640,000	3,380,000	262,000	210,000	90,000	101,000	47,000	48,000	20,200	93,200	
Field Parameters																
рН		6.48	6.95	4.6	6.46	7.03	6.6	7.22	7.06	6.76	6.69	6.97	7.04	6.84	7.34	6.58
ORP	mV	-118	-95.1	138.1	-147.5	-186.2	-123.4	-159.4	-184.1	-120.7	-115.7	-136	-162	-73.9	-157.1	-151.8
Dissolved Oxygen	mg/L	0.68	3.08	1.22	0.15	0.1	1.19	4.34	1.29	0.54	0.41	1.42	0.0	1	0.14	0.38
Specific Conductivity	ms/cm	5.262	4.007	1.078	16.14	9.525	13.38	5.488	5.076	10.02	13.365	8.974	3	9	4	5

		AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-35-DO	AP-40-S
CONSTITUENT	UNITS	2/14/2018	5/8/2018	2/14/2019	4/29/2019	8/21/2019	11/18/2019	2/14/2020	5/5/2020	8/20/2020	11/24/2020	2/23/2021	5/13/2021	9/9/2021	11/9/2021	5/9/2019
Total Metals																
Iron	mg/L	17	6.4	270												
Manganese	mg/L	0.69	0.17	36												
Sulfate	mg/L	72	13	<5	< 5											140
Nitrate	mg/L	<0.1	1.2	<5	< 1 UH	-	-	-								0.4
Nitrate/Nitrogen	mg/L															
Metabolic Acids																
Acetic acid	mg/L															
Lactic Acid	mg/L															
n-Butanoic acid	mg/L				-	-		-								
Propionic acid	mg/L															
Pyruvic Acid	mg/L															
Miscellaneous Analys	ses															
Methane	ug/L	82	81	1,900 J	970	2,600 J	2,900 J	3,800	3,000	3,300 J	2,600	2800 J	2,400	4,300	4700 J	< 10
Ethane	ug/L	<20	<20	<100 UJ	< 100	< 100 UJ	< 100 UJ	< 100	< 100	< 100 UJ	110	150 J	130	290	320 J	< 20
Ethene	ug/L	<20	<20	190 J	< 100	< 100 UJ	280 J	530	190	440 J	130	190 J	210	550	590 J	< 20
Chloride	mg/L															
TOC	mg/L	10	5.8	5,900 J	310 J	3,800 J	1,400 J	1,100	720 J	750 J J	470 J	470 J	480 J	110	100	28
Dehalococcoides sp.	cells/ml	3.8J	1	115,000	5,760	2,320,000	4,510,000	8,940,000	8,650,000	3,860,000	12,000,000	4,110,000	1,220,000	1,780,000		
Field Parameters																
pH	-	7.12	5.76	5.83	6.53	6.26	7.12	7.26	7.22	7.43	6.99	7.25	7.15	7.49	6.67	11.73
ORP	mV	-125.3	48.8	-16.5	-136.1	-116.3	-148.8	-284.1	-196.8	-175.2	-136.3	-181.2	-88.6	-177.7	-141.8	-93.4
Dissolved Oxygen	mg/L	2.56	1.87	0.5	0.05	2.27	6.13	0.29	0.44	0.17	0.89	0.01	0.33	0.05	0.39	3.34
Specific Conductivity	ms/cm	3.124	0.251	1.838	11.15	13.07	9.747	8.07	7.519	8.131	6.002	5.46	6.661	6.549	3.932	1.791

		AP-40-S	AP-40-S	AP-40-S	AP-40-S	AP-40-S	AP-40-S	AP-40-S	AP-40-S	AP-40-S	AP-41-S	AP-41-S	AP-41-S	AP-41-S	AP-41-S
CONSTITUENT	UNITS	8/22/2019	11/18/2019	2/13/2020	5/5/2020	8/20/2020	11/24/2020	2/22/2021	9/10/2021	11/10/2021	5/9/2019	8/22/2019	11/18/2019	2/13/2020	5/5/2020
Total Metals															
Iron	mg/L														
Manganese	mg/L														
Sulfate	mg/L						6.9				200				
Nitrate	mg/L										0.5				
Nitrate/Nitrogen	mg/L														
Metabolic Acids															
Acetic acid	mg/L										1				-
Lactic Acid	mg/L														
n-Butanoic acid	mg/L														
Propionic acid	mg/L	-									-				-
Pyruvic Acid	mg/L														
Miscellaneous Analys	ses														
Methane	ug/L	< 10	< 10	< 10	31 J	740 J	5,500	3,800		4,500	< 10	< 10	< 10	7,200	8,600
Ethane	ug/L	< 20	< 20	< 20	< 20 UJ	< 20 UJ	< 20	< 20		<20	< 20	< 20	< 20	< 200	< 200
Ethene	ug/L	< 20	< 20	< 20	< 20 UJ	< 20 UJ	< 20	< 20		<20	< 20	< 20	< 20	< 200	< 200
Chloride	mg/L														
TOC	mg/L	5.8	150	310	310 J J	590 J	56 J	8		9.3	150	6.9	130 J	190	39
Dehalococcoides sp.	cells/ml	126	2.8	8.8	1.8	141	194,000	10,300		1,200		64.2	79.6	14	1.5
Field Parameters															
рН		10.68	5.5	5.88	7.4	7.06	6.99	6.84	6.44	6.9	11.81	11.88	7.31	6.7	6.84
ORP	mV	159.3	42.4	-17.3	-132.6	-101	-135.7	-110.7	-130.4	-57.9	-44.5	-17.5	-78	-66.4	-74.9
Dissolved Oxygen	mg/L	4.51	1.58	0.22	1.06	0.69	0.37	0.09	3.42	0.07	5.68	0.69	0.81	0.25	0.88
Specific Conductivity	ms/cm	0.319	28.65	0.589	14.73	3.43	0.76	0.242	0.081	0.2412	3.199	1.789	7.458	1.236	0.944

CONSTITUENT	UNITS	AP-41-S 11/24/2020	AP-41-S 2/22/2021	AP-41-S 9/10/2021	AP-41-S 11/10/2021	AP-42-DO 11/24/2020	AP-42-DO 2/22/2021	AP-42-DO 9/10/2021	AP-42-DO 11/10/2021	AP-43-DO 2/22/2021	AP-43-DO 9/9/2021	AP-43-DO 11/10/2021	OB-11-BR 8/8/2022	OB-11-DO 8/8/2022	OB-11-S 8/8/2022
Total Metals															
Iron	mg/L														
Manganese	mg/L														
Sulfate	mg/L					65							14	23	14
Nitrate	mg/L												< 0.1 UD	0.2 D	0.8 D
Nitrate/Nitrogen	mg/L														
Metabolic Acids															
Acetic acid	mg/L						-	-							
Lactic Acid	mg/L														
n-Butanoic acid	mg/L														
Propionic acid	mg/L														
Pyruvic Acid	mg/L														
Miscellaneous Analys	es														
Methane	ug/L	6,300	6,900		2,800	< 10	< 10		<10	< 10	< 10	< 10	30	< 10	< 10
Ethane	ug/L	< 20	< 20		<20	< 20	< 20		< 20	< 20	< 20	< 20	< 20	< 20	< 20
Ethene	ug/L	< 20	< 20		<20	< 20	< 20		< 20	< 20	< 20	< 20	< 20	< 20	< 20
Chloride	mg/L												14 D	25 D	18 D
TOC	mg/L	16 J	10		5.2	12 J	7.7		8.3	51	130	160			
Dehalococcoides sp.	cells/ml	12,400	1,790		8,740	0.8	< 0.6		1.7	77	71.6	31,900	203	< 0.5	< 0.5
Field Parameters															
pH	-	7.2	7.62	6.36	6.48	13.44	13.11	11.5	9.87	6.17	5.59	5.64	7.23	6.94	6.24
ORP	mV	-135.6	-130.9	-114.2	-67	-122.4	-101.7	-17.8	68.6	-86	-95.8	-18.4	-123.6	150.2	199.1
Dissolved Oxygen	mg/L	0.39	0.11	0.63	1.27	0.59	3.76	1.03	0.12	0.04	1.14	0.55	1.97	1.61	3.31
Specific Conductivity	ms/cm	0.595	1.01	0.296	0.1774	7.584	2.31	0.901	0.645	2.47	0.948	1.362	0.2	0.205	0.144

	1	1			1					I			Ī		
CONSTITUENT	UNITS	OB-12-BR 8/8/2022	OB-12-DO 8/8/2022	OB-12-S 8/8/2022	OB-14-DO 8/8/2022	OB-25-DO 11/11/2021	OB-32-DO 2/14/2019	OB-32-DO 4/29/2019	OB-49-S 5/5/2020	OB-49-S 8/6/2020	OB-49-S 8/20/2020	OB-49-S 11/24/2020	OB-49-S 2/22/2021	OB-49-S 5/13/2021	OB-49-S 9/9/2021
Total Metals															
Iron	mg/L														
Manganese	mg/L														
Sulfate	mg/L	8.1	33	18	22				-						-
Nitrate	mg/L	< 0.1 UD	< 0.1 UD	1.7 D	< 0.1 UD										-
Nitrate/Nitrogen	mg/L														
Metabolic Acids															
Acetic acid	mg/L														
Lactic Acid	mg/L														
n-Butanoic acid	mg/L								-		-				
Propionic acid	mg/L														
Pyruvic Acid	mg/L														
Miscellaneous Analys	es														
Methane	ug/L	59	< 10	< 10	68	<10	<10	< 10	< 10		26	3600	120	270	740
Ethane	ug/L	< 20	< 20	< 20	< 20	<20	<20	< 20	< 20		< 20	< 20	< 20	< 20	< 20
Ethene	ug/L	< 20	< 20	< 20	< 20	<20	<20	< 20	< 20		< 20	480	< 20	31	96
Chloride	mg/L	25 D	45 D	130 D	55 D										
TOC	mg/L								460		120 J	590 J	190	200	100
Dehalococcoides sp.	cells/ml	< 0.5	< 0.5	< 0.5	14		1.00	0.450 J	2,700		23.8	424	18.5	2940	21,200
Field Parameters															
pH		9.05	7.59	7.36	7.97		9.41	8.45	6.95	7.58	6.61	6.15	6.23	6.35	7.11
ORP	mV	92	160.2	156.9	-2		433.2	425.3	-107.3	-108.6	-98.1	-74.9	-73.9	-39.6	-74.2
Dissolved Oxygen	mg/L	0.35	2.17	1.84	0.48		2.16	3.08	0.34	2.5	0.31	0.28	0	3.31	1.13
Specific Conductivity	ms/cm	0.203	0.377	0.527	0.404		0.498	0.432	2.419	2.108	0.561	0.53	0.536	0.222	0.288

												1				
CONSTITUENT	UNITS	OB-49-S 11/9/2021	OB-50-S 5/5/2020	OB-50-S 8/6/2020	OB-50-S 8/20/2020	OB-50-S 11/24/2020	OB-50-S 2/22/2021	OB-50-S 5/13/2021	OB-50-S 9/9/2021	OB-50-S 11/9/2021	OB-51-S 5/5/2020	OB-51-S 8/20/2020	OB-51-S 11/24/2020	OB-51-S 2/22/2021	OB-51-S 5/13/2021	OB-51-S 9/9/2021
Total Metals																
Iron	mg/L															
Manganese	mg/L															
_																
Sulfate	mg/L												< 0.5			
Nitrate	mg/L															
Nitrate/Nitrogen	mg/L															
Metabolic Acids																
Acetic acid	mg/L															
Lactic Acid	mg/L															
n-Butanoic acid	mg/L															
Propionic acid	mg/L									-						
Pyruvic Acid	mg/L															
Miscellaneous Analys	ses															
Methane	ug/L	1100	43		21	140	86	360	1,700	2,000	390	4,000	1,300	1,200	3,400	1,900
Ethane	ug/L	<20	< 20		< 20	< 20	< 20	< 20	< 20	<20	< 20	< 100	< 20	< 20	< 20	< 20
Ethene	ug/L	120	< 20		< 20	< 20	< 20	29	150	250	< 20	< 100	< 20	200	840	300
Chloride	mg/L															
TOC	mg/L	120	210		540	750 J	150	130	93	110	500	340 J	270 J	160	180	86
Dehalococcoides sp.	cells/ml		3,480		24.7	5.6	6	672	2,550		316	734	918	50,400	1,340	53,600
Field Parameters																
pH		6.31	5.82	6.82	6.42	6.05	5.87	5.7	6.56	6.21	5.95	7.28	5.91	6.34	6.02	6.9
ORP	mV	-50.6	29.8	-84.1	-88.7	-29.1	-33.8	14.3	-69.8	-41.6	-21.2	-71.8	-57.9	-71.8	-18.1	-122.5
Dissolved Oxygen	mg/L	0.46	0.62	0.75	0.51	1.93	0	0.48	0.86	0.57	0.63	8.0	0.35	0.31	0.79	0.34
Specific Conductivity	ms/cm	0.7	0.615	3.323	1.967	1.701	1.062	0.406	0.707	0.721	0.965	1.637	1.35	0.829	0.384	1.11

		OB-51-S	OB-52-BR	OB-52-DO	OB-55-BR	OB-57-DO	OB-58-DO	OB-59-DO	RW-01_MW-18	RW-01_MW-18
CONSTITUENT	UNITS	11/9/2021	11/8/2021	11/8/2021	8/8/2022	8/9/2022	8/9/2022	8/9/2022	2/15/2018	5/9/2018
Total Metals										
Iron	mg/L									
Manganese	mg/L									
Sulfate	mg/L				14	42	24	20		
Nitrate	mg/L				< 0.1 UD	0.2	< 0.1	< 0.1		
Nitrate/Nitrogen	mg/L									
Metabolic Acids										
Acetic acid	mg/L									
Lactic Acid	mg/L									
n-Butanoic acid	mg/L									
Propionic acid	mg/L									
Pyruvic Acid	mg/L									
Miscellaneous Analys										
Methane	ug/L	2,000	<10	<10	< 10	28	28	170	4,000	5,500
Ethane	ug/L	<20	<10	<20	< 20	< 20	< 20	< 20	160	<200
Ethene	ug/L	480	38	<20	< 20	< 20	< 20	< 20	320	450
Chloride	mg/L				14 D	50	17	28		
TOC	mg/L	110							12.0	6.2
Dehalococcoides sp.	cells/ml				< 0.5	< 0.7	< 0.6	32.7		
Field Parameters										
pH		6.04			7.72	11.59	8.21	8.02	8.81	6.16
ORP	mV	-56.9			-25.1	34.6	-30.6	217.1	-135.6	43.1
Dissolved Oxygen	mg/L	0.43			2.02	7.61	0.62	2.96	0.18	1.52
Specific Conductivity	ms/cm	0.513			0.262	4.351	0.313	0.388	4.529	0.465

CONSTITUENT	UNITS	RW-01_MW-18 2/14/2019	RW-01_MW-18 4/29/2019	RW-01_MW-18 8/5/2019	RW-01_MW-18 1/30/2020	RW-01_MW-18 4/21/2020	RW-01_MW-18 8/6/2020	RW-01_MW-18 11/10/2020	RW-01_MW-18 2/4/2021		RW-03 2/15/2018	RW-03 5/9/2018	RW-03 11/16/2018
Total Metals													
Iron	mg/L												
Manganese	mg/L												
Sulfate	mg/L												
Nitrate	mg/L												
Nitrate/Nitrogen	mg/L												
Metabolic Acids													
Acetic acid	mg/L												
Lactic Acid	mg/L												
n-Butanoic acid	mg/L												
Propionic acid	mg/L												
Pyruvic Acid	mg/L												
Miscellaneous Analys	ses												
Methane	ug/L	3,900	5600								<10	390	3,200
Ethane	ug/L	<200	< 200								<20	<20	<20
Ethene	ug/L	230	< 200								<20	65	200
Chloride	mg/L												
TOC	mg/L	4.4	2.1										
Dehalococcoides sp.	cells/ml												
Field Parameters													
pН		6.24	5.77	7.01	7.44	9.22	9.14	8.73	6.2	5.69	7.98	6.12	7.06
ORP	mV	56	-22.8	-92.7	-177.9	-185	-29.15	-39.2	-88.1	53.1	-200.1	103.7	-132.8
Dissolved Oxygen	mg/L	0.85	0	0.5	1.19	0.61	0.22	0.48	0	0.35	1.17	3.08	0.62
Specific Conductivity	ms/cm	0.304	0.238	2.37	2.153	3.309	3.852	2.222	0.121	0.185	0.784	0.767	1.68

Table 3-9 Water Quality Data Bioremediation Parameters 2018 to Present Building 3 Area Wells

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

		RW-03	RW-03	RW-03	RW-03	RW-03	RW-03	RW-03	RW-03	RW-03	RW-22
CONSTITUENT	UNITS	2/14/2019	8/5/2019	10/29/2019	1/30/2020	4/21/2020	8/6/2020	11/10/2020	2/4/2021	4/27/2021	8/8/2022
Total Metals											
Iron	mg/L										
Manganese	mg/L										
Sulfate	mg/L								-		38
Nitrate	mg/L										< 0.1 UD
Nitrate/Nitrogen	mg/L										
Metabolic Acids											
Acetic acid	mg/L										
Lactic Acid	mg/L										
n-Butanoic acid	mg/L										
Propionic acid	mg/L										
Pyruvic Acid	mg/L										
Miscellaneous Analys	es										
Methane	ug/L	760									43
Ethane	ug/L	<20									< 20
Ethene	ug/L	<20									< 20
Chloride	mg/L										21 D
TOC	mg/L										
Dehalococcoides sp.	cells/ml										< 0.5
Field Parameters											
pH		7.35	7.12	8.04	7.28	7.42	7.32	6.92	7.75	7.19	11.36
ORP	mV	163.4	-105	-22.2	52.7	-52.6	-124.2	-118.1	33	82.2	-83.7
Dissolved Oxygen	mg/L	0.32	0.48	2.75	2.94	0.34	0.34	0.23	2.13	0.88	0.24
Specific Conductivity	ms/cm	0.453	1.277	0.541	0.438	0.233	0.845	0.658	0.359	0.417	1.046

Notes:

< = Less than detection limit

--- = Not analyzed

mg/L = Milligrams per liter

ug/L = Micrograms per liter

mV = Millivolt

ms/cm = Millisiemen per centimeter

TOC = total organic carbon

cells/ml = cells per milliliter

Field parameter results reported are from the closest date to the analytical sampling

* = Sample BW-03 collected on 1/28/2010 but was broken in transit, not analyzed.

D = Result reported is from a diluted sample

J - Estimated concentration

U = Non-detect at indicated detection limit due to validation protocol.

Table 3-10 Water Quality Data Bioremediation Parameters 2018 to Present Building 5 Area Wells

Former Varian Facility Site 150 Sohier Road

Beverly, Massachusetts

CONSTITUENT	UNITS	AP-36-S 8/14/2018	AP-36-S 11/15/2018	AP-36-S 2/14/2019	AP-36-S 4/29/2019	AP-36-S 8/21/2019	AP-36-S 11/18/2019	AP-36-S 2/13/2020	AP-36-S 5/5/2020	AP-36-S 8/21/2020	AP-36-S 11/23/2020	AP-36-S 2/22/2021	AP-36-S 5/13/2021	AP-36-S 9/10/2021	AP-36-S 11/9/2021	AP-36-S 5/12/2022
Dissolved Metals																
Iron	mg/L	<0.05	48	86												
Manganese	mg/L	0.55	26	28												
Sulfate	mg/L	30	<5.0	<5.0	< 5											
Nitrate	mg/L	<0.1	<1.0	<1.0	< 1											
Nitrate/Nitrogen	mg/L															
Miscellaneous Analyse	s															
Methane	ug/L	15	12J	2,300 J	2,800 J	4,400 J	2,500	4,300	1,400 J	2,700 J	3,400	3,200	1500 J	1,600	1,700	1,300
Ethane	ug/L	<20	<20	<100 UJ	< 100 UJ	< 100 UJ	< 100	< 100	< 100 UJ	< 100 UJ	< 20	< 20	< 20 UJ	< 20	<20	< 20
Ethene	ug/L	<20	<20	130 J	< 100 UJ	< 100 UJ	< 100	< 100	< 100 UJ	< 100 UJ	< 20	< 20	< 20 UJ	< 20	<20	100
Chloride	mg/L															
TOC	mg/L	6.5	4,300	3,200 J	1,300	180 J	150	150	1,500 J	220 J	170 J	100	91	110 J	64	
Dehalococcoides sp.	cells/ml	0.5J	4,920	1,720	4,160,000	530,000	22,800	21,800	75	4.4	14,600	3,100	9,360	1,840		
Field Parameters																
pH		7.34	5.99	6.22	7.36	7.22	7.81	7.03	6.8	7.44	7.3	7.0	7.1	7.2	7.2	
ORP	mV	40.6	-108.8	-45.9	-151.9	-84.3	-59.3	-125.2	-110.5	-168.8	-141.4	-104.0	-126.4	-123.0	-143.7	
Dissolved Oxygen	mg/L	6.52	0.42	1.48	0.02	0.79	3.99	0.73	0.77	0.35	0.61	0.39	0.15	0.91	0.73	
Specific Conductivity	ms/cm	0.437	8.117	6.077	5.075	4.01	3.389	2.551	6.753	5.148	3.44	2.765	2.039	2.538	2.151	

Table 3-10 Water Quality Data Bioremediation Parameters 2018 to Present Building 5 Area Wells

CONSTITUENT	UNITS	AP-37-S 8/14/2018	AP-37-S 11/15/2018	AP-37-S 2/14/2019	AP-37-S 4/29/2019	AP-37-S 8/21/2019	AP-37-S 11/18/2019	AP-37-S 2/13/2020	AP-37-S 5/5/2020	AP-37-S 8/21/2020	AP-37-S 11/23/2020	AP-37-S 2/2/2021	AP-37-S 5/13/2021	AP-37-S 9/10/2021	AP-37-S 11/9/2021	AP-37-S 5/12/2022
Dissolved Metals																
Iron	mg/L	<0.05	49	95		-										
Manganese	mg/L	0.44	13	24												
Sulfate	mg/L	29	<5.0	<5.0	< 5											
Nitrate	mg/L	<0.1	<1.0	<1.0	< 1											
Nitrate/Nitrogen	mg/L															
Miscellaneous Analyse	s															
Methane	ug/L	22	<10	2,500 J	3,500	3,000 J	2,400	3,000	3,400	3,400	1,600	1,300	1,800	1,800	1,900	3,100
Ethane	ug/L	<20	<20	<100 UJ	< 100	240 J	470	740	810	870	390	360	420	460	520	910
Ethene	ug/L	31	<20	140 J	260	< 100 UJ	< 100	< 100	510	750	520	620	980	1,200	1,400	2,200
Chloride	mg/L															
TOC	mg/L	6.3	4,800	2,300 J	1,000	140 J	110	91	82	73 J J	58 J	42	43	42	47	
Dehalococcoides sp.	cells/ml	0.7	4,520	59,200	450,000	2,170,000	500,000	403,000	194,000	69,000	984,000	295,000	160,000	93,400		
Field Parameters																
pH		7.2	6.08	6.16	7.4	7.6	8.07	6.99	7.26	7.34	6.97	7.14	7.01	7.23	7.11	
ORP	mV	47.6	-122.3	-41	-110.6	-31.6	-42.1	-125.6	-136.3	-148.5	-125.2	-80.8	-102.9	-113.5	-126.9	
Dissolved Oxygen	mg/L	6.14	0.34	2.84	0.72	1.83	4.36	1.01	0.81	0.41	0.48	1.06	0.34	0.6	1.05	
Specific Conductivity	ms/cm	0.564	7.703	7.171	4.889	4.44	4.336	3.072	3.398	3.492	2.158	2.156	1.88	2.333	2.22	

2018 to Present Building 5 Area Wells

CONSTITUENT	UNITS	AP-38-S 8/14/2018	AP-38-S 11/15/2018	AP-38-S 2/14/2019	AP-38-S 4/29/2019	AP-38-S 8/21/2019	AP-38-S 11/18/2019	AP-38-S 2/13/2020	AP-38-S 5/5/2020	AP-38-S 8/21/2020	AP-38-S 11/24/2020	AP-38-S 2/22/2021	AP-38-S 5/20/2021	AP-38-S 9/10/2021	AP-38-S 11/9/2021	AP-38-S 5/12/2022
Dissolved Metals																
Iron	mg/L	< 0.05	41	80												
Manganese	mg/L	0.29	21	28												
Sulfate	mg/L	39	<5.0	<5.0	< 5	-								-		
Nitrate	mg/L	<0.1	<1.0	<1.0	< 1	-								-		
Nitrate/Nitrogen	mg/L															
Miscellaneous Analyse	s															
Methane	ug/L	11	35J	1,600 J	3,800	3,600 J	2,500	4,700	3,300	4,300	4,000	2,500	3,400	3700 J	2,100	1,600
Ethane	ug/L	<20	<20	<100 UJ	< 100	150 J	380	900	210	< 100	< 20	130	< 20	< 20 J	<20	< 20
Ethene	ug/L	<20	<20	120 J	740	< 100 UJ	< 100	< 100	300	< 100	< 20	160	< 20	< 20 J	<20	< 20
Chloride	mg/L			-		-								-		
TOC	mg/L	13	4,300	3,300 J	1,600	160 J	110	150	2,500	770 J	290 J	170	160	150	130	
Dehalococcoides sp.	cells/ml	1.6	1,260	112,000	1,620,000	1,280,000	38,200	22,000	2,260	1,480	10,000	8,540	10,000	1,930		
Field Parameters																
рН		7.51	6.12	6.24	6.79	7.14	7.71	7.04	6.24	7.09	7.06	6.64	6.79	7.58	6.89	
ORP	mV	44.5	-142.3	-51.3	-90.3	-98.4	-86.3	-128.6	-63	-127.7	-123.5	-43.6	-100.7	-136.9	-121.8	
Dissolved Oxygen	mg/L	6.05	0.46	1.66	0.07	0.86	4.16	0.5	0.68	0.43	2.72	0	0.17	0.73	0.5	
Specific Conductivity	ms/cm	0.499	8.122	6.179	5.469	4.829	3.718	2.714	3.521	2.874	2.239	2.289	2.005	2.377	2.553	

2018 to Present Building 5 Area Wells

CONSTITUENT	UNITS	AP-39-S 8/14/2018	AP-39-S 11/15/2018	AP-39-S 2/14/2019	AP-39-S 4/29/2019	AP-39-S 8/21/2019	AP-39-S 11/18/2019	AP-39-S 2/13/2020	AP-39-S 5/5/2020	AP-39-S 8/21/2020	AP-39-S 11/23/2020	AP-39-S 2/22/2021	AP-39-S 5/13/2021	AP-39-S 9/10/2021	AP-39-S 11/9/2021	AP-39-S 5/12/2022
Dissolved Metals																
Iron	mg/L	0.21	130	52												
Manganese	mg/L	0.29	14	5.9												
Sulfate	mg/L	52	<5.0	<5.0	< 5											
Nitrate	mg/L	<0.1	<1.0	<1.0	< 1											
Nitrate/Nitrogen	mg/L															
Miscellaneous Analyse	s															
Methane	ug/L	<10	<10	3,100 J	2,500	2,900 J	1,800	4,100	2,500	3,900	1,100	1,400	1,100	1,100	550	220
Ethane	ug/L	<20	<20	<20 UJ	< 100	200 J	280	1,100	490	880	240	330	280	330	170	47
Ethene	ug/L	<20	21J	180 J	< 100	< 100 UJ	< 100	< 100	< 100	< 100	< 20	< 20	< 20	< 20	<20	26
Chloride	mg/L															
TOC	mg/L	7.8	4,700	1,700 J	260 J	220 J	190	190	110	110 J J	98 J	61	45	44	38	
Dehalococcoides sp.	cells/ml	1.6	246	4,940,000	744,000	628,000	18,400	27,500	510	6,920	20,900	2,100	1,560	5,130		
Field Parameters																
pH		7.43	6.25	7.1	7.5	7.07	7.8	7.05	7.32	7.5	7.23	7.23	7.64	8.13	7.66	
ORP	mV	-52.6	-117.7	-160.9	-158.8	-23.8	-38.7	-149.6	-139.1	-149.2	-137.1	-137.1	-86	-138.9	-136.5	
Dissolved Oxygen	mg/L	5.93	0.48	2.07	0.08	1.03	5.15	1.05	0.83	0.5	1.04	1.04	0.56	0.39	0.79	
Specific Conductivity	ms/cm	0.537	9.005	6.965	5.404	4.866	4.344	3.391	2.734	3.151	2.132	2.132	1.514	1.86	1.932	

2018 to Present Building 5 Area Wells

CONSTITUENT	UNITS	OB-35-DO 2/27/2018		OB-35-DO 11/15/2018	OB-35-DO 2/14/2019	OB-35-DO 4/29/2019	OB-35-DO 8/21/2019	OB-35-DO 11/18/2019		OB-35-DO 5/5/2020		OB-35-DO 11/23/2020	OB-35-DO 2/22/2021	OB-35-DO 5/13/2021	OB-35-DO 9/9/2021	OB-35-DO 11/9/2021
Dissolved Metals																
Iron	mg/L															
Manganese	mg/L															
Sulfate	mg/L								-					-		
Nitrate	mg/L								-					-		
Nitrate/Nitrogen	mg/L								-					-		
Miscellaneous Analyse	s															
Methane	ug/L	160	180	81	210 DJ	270	370	230	260	300	29	120	210	230	390	310
Ethane	ug/L	<20	<20	<20	<100 UJ	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	<20
Ethene	ug/L	<20	<20	<20	180	< 20	24	< 20	23	34	< 20	< 20	< 20	< 20	28	37
Chloride	mg/L								-					-		
TOC	mg/L				3,300				-			7.4 J	2.4	12	7.1	6
Dehalococcoides sp.	cells/ml								-			250	912	22.6	145	
Field Parameters																
pH	-		8.18		8.02	8.23	8.38	7.31	7.54	7.51	7.64	8.43	7.4	7.56		7.88
ORP	mV		26.1		-28.7	-129	-41.7	-77.2	-118.5	-40.3	-120.4	-47.1	-44.3	-38.4		-53.5
Dissolved Oxygen	mg/L		5.85		2.45	0.03	0.82	5.23	0.28	1.33	0.29	3.27	9.05	1.69		1.11
Specific Conductivity	ms/cm		0.76		0.717	0.702	0.711	0.656	0.783	0.461	2.311	0.775	0.001	0.598		0.774

2018 to Present Building 5 Area Wells

CONSTITUENT	UNITS	OB-44-S 2/14/2018	OB-44-S 5/8/2018	OB-44-S 8/14/2018	OB-44-S 11/15/2018	OB-44-S 2/14/2019	OB-44-S 4/29/2019	OB-44-S 8/21/2019	OB-44-S 11/18/2019	OB-44-S 2/13/2020	OB-44-S 5/5/2020	OB-44-S 8/21/2020	OB-44-S 11/23/2020	OB-44-S 2/22/2021	OB-44-S 5/13/2021	OB-44-S 9/9/2021	OB-44-S 11/10/2021
Dissolved Metals	,,	0.44	0.00	0.00	.0.5	0.00											
Iron	mg/L	0.14	0.09	0.23	<0.5	0.36											
Manganese	mg/L	0.09	0.24	0.66	0.3	0.36											
Sulfate	mg/L	67	74	64	77	73	91										
Nitrate	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1										
Nitrate/Nitrogen	mg/L																
Miscellaneous Analyse	s																
Methane	ug/L	<10	<10	<10	<10	10	49	74	29	< 10	95	58	61	< 10	13	50	35
Ethane	ug/L	<20	<20	<20	<20	<20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	<20
Ethene	ug/L	33	38	<20	<20	<20	< 20	21	< 20	< 20	680	690	350	55	62	250	190
Chloride	mg/L																
TOC	mg/L	4.1	3.3	11	2.6	4.6	3.5 J	12 J	11	200	66	17 J J	4.8 J	3.5	5.3	4.5	5.6
Dehalococcoides sp.	cells/ml	<10.0	21.4	180	31.7	205	377	2,540	545	5,100,000	372,000	707,000	27,200	16,600	2,840	14,200	38,600
Field Parameters																	
pН		7.46	6.98	7.42	6.84	6.98	7.7	8.42	7.77	7.01	7.11	7.87	7.14	7.5	7.1	7.36	7.33
ORP	mV	-112.3	59.6	11.3	-43.3	54.1	-12.7	-31.9	-53.2	-122.3	-25.1	-106.8	-56.7	-71.3	-63.3	-106.1	-107.8
Dissolved Oxygen	mg/L	4.01	1.27	3.16	0.74	5.03	1.1	1.02	4.18	0.92	1.22	1.78	5.57	5.88	1.58	1.22	1.87
Specific Conductivity	ms/cm	0.505	0.698	0.655	1.84	0.683	0.715	0.835	3.318	2.266	0.35	1.021	0.823	0.804	0.735	2.163	0.932

2018 to Present Building 5 Area Wells

CONSTITUENT	UNITS	OB-44-S 5/12/2022	OB-46-S 2/14/2018	OB-46-S 5/8/2018	OB-46-S 8/14/2018	OB-46-S 11/15/2018	OB-46-S 2/14/2019	OB-46-S 4/29/2019	OB-46-S 8/5/2019	OB-46-S 10/29/2019	OB-46-S 1/30/2020	OB-47-S 2/18/2016	OB-47-S 5/26/2016	OB-47-S 2/21/2017	OB-47-S 5/2/2017
Dissolved Metals															
Iron	mg/L		1.6	0.14	2	7.6	6.8					2.9	0.05	< 0.05	< 0.05
Manganese	mg/L		0.07	0.03	2	4.6	3.1					0.52	0.02	<0.01	<0.01
Sulfate	mg/L		20	10	8.9	<0.5	7.4	11				22	24	17	24
Nitrate	mg/L		0.6	<0.1	<0.1	<0.1	<0.1	< 0.1				4.7	2.5	1.4	1.3
Nitrate/Nitrogen	mg/L														
Miscellaneous Analyse	es														
Methane	ug/L	60	<10	<10	120	700	760	560				<10	<10	<10	<10
Ethane	ug/L	< 20	<20	<20	<20	<20	<20	< 20				<20	<20	<20	<20
Ethene	ug/L	220	<20	<20	25	42	<20	< 20				<20	<20	<20	<20
Chloride	mg/L														
TOC	mg/L		14	8.9	8.2	48	14	4.8 J				2.3	2.0	1.7	1
Dehalococcoides sp.	cells/ml		<10.0	722	142	7,790	25,100	654				20	<10		6J
Field Parameters															
pН			7.83	6.84	7.57	7.14	7.38	8.04	7.73	8.75	8.27	7.06	6.41	7.92	6.64
ORP	mV		-75.2	81.2	-96.5	-192.4	-74	144.3	46.2	-62.4	-15.9	64.1	188	85	55.3
Dissolved Oxygen	mg/L		3.93	2.56	3.88	0.37	1.21	0.56	0.56	5.17	6.39	8.18	8.19	3.66	4.4
Specific Conductivity	ms/cm		0.404	3.056	4.115	4.313	3.969	0.891	1.593	0.444	0.689	0.504	0.011	0.381	0.426

Table 3-10 Water Quality Data Bioremediation Parameters 2018 to Present Building 5 Area Wells

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

CONSTITUENT	UNITS	OB-47-S 8/3/2017	OB-47-S 11/16/2017	OB-47-S 2/14/2018	OB-47-S 05/08/218	OB-47-S 11/10/2021
Dissolved Metals						
Iron	mg/L	0.3	<0.25	6.3	< 0.05	
Manganese	mg/L	0.01	< 0.05	0.15	<0.01	
Sulfate	mg/L	23	25	23	24J	-
Nitrate	mg/L	<1.0	<1.0	2.7	2.7J	-
Nitrate/Nitrogen	mg/L					-
Miscellaneous Analyse	s					
Methane	ug/L	<10	<10	<10	<10	-
Ethane	ug/L	<20	<20	<20	<20	-
Ethene	ug/L	<20	<20	<20	<20	-
Chloride	mg/L					-
TOC	mg/L	1.4	1.8	1.5	1.2	-
Dehalococcoides sp.	cells/ml	8J	<10.0	4.0J	<2.9	-
Field Parameters						
pH	-	6.5	6.6	8.15	3.24	6.52
ORP	mV	113.2	147.8	79	68.4	48.8
Dissolved Oxygen	mg/L	2.6	2.85	3.55	6.52	1.86
Specific Conductivity	ms/cm	0.529	0.636	0.366	0.432	0.562

Notes:

< = Less than detection limit

--- = Not analyzed

mg/L = Milligrams per liter

ug/L = Micrograms per liter

mV = Millivolt

ms/cm = Millisiemen per centimeter

TOC = total organic carbon

cells/ml = cells per milliliter

Field parameter results reported are from the closest date to the analytical sampling

* = Sample BW-03 collected on 1/28/2010 but was broken in transit, not analyzed.

D = Result reported is from a diluted sample

J - Estimated concentration

U = Non-detect at indicated detection limit due to validation protocol.

Table 3-11 Stream and Surface Water Results 2020 to Present

		1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2-DC E
Location	Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
CULVERT_OUTFALL	05/06/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.043	0.002 U	0.002 U	0.059	0.002 U
CULVERT_OUTFALL	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.002 U	0.002 U	0.002 U	0.002 U
CULVERT_OUTFALL	05/09/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.005	0.002 U
GDS-01 (1)	03/26/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
GDS-02 (1)	03/26/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
GDS-03 (1)	03/26/2021	0.002 U	0.002 U	0.003	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.045	0.13	0.002 U	0.003	0.27	0.002 U
GDS-03 (1)	05/12/2021	0.002 U	0.002 U	0.002	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.048	0.14	0.002 U	0.003	0.25	0.002 U
GDS-03 (1)	09/10/2021	0.002 U	0.002 U	0.002	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.05	0.14	0.002 U	0.003	0.21	0.002 U
GDS-03 (1)	02/10/2022	0.002 U	0.002 U	0.002	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.066	0.21	0.002 U	0.003	0.27	0.002 U
GDS-03 (1)	05/09/2022	0.002 U	0.002 U	0.003	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.076	0.24	0.002 U	0.004	0.3	0.002 U
STR-02	05/13/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.002 U
STR-02	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U
STR-02	11/16/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U
STR-02	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U
STR-03	05/06/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-03	11/25/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.018 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-03	11/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.002 U
STR-03	05/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-05	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.067	0.002 U	0.002 U	0.02	0.002 U
STR-05	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.009	0.038	0.002 U	0.002 U	0.013	0.002 U
STR-05	11/16/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.05	0.002 U	0.002 U	0.016	0.002 U
STR-05	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.01	0.045	0.002 U	0.002 U	0.012	0.002 U
STR-11	03/26/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.011	0.002 U	0.002 U	0.023	0.002 U
STR-11	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.006	0.002 U	0.002 U	0.016	0.002 U
STR-14	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.006	0.002 U	0.002 U	0.016	0.002 U
STR-14 STR-14	09/10/2021	0.002 U	0.002 U 0.002 U	0.001 U 0.001 U	0.002 U 0.002 U	0.01 U 0.01 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002	0.006	0.002 U 0.002 U	0.002 U 0.002 U	0.015	0.002 U 0.002 U
STR-14	02/10/2022 05/09/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.006	0.002 U	0.002 U	0.013	0.002 U
STR-17	11/09/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004 0.002 U	0.006	0.002 U	0.002 U	0.008	0.002 U
STR-18	03/26/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.000	0.002 U	0.002 U	0.026	0.002 U
STR-18	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.006	0.002 U	0.002 U	0.014	0.002 U
STR-18	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.006	0.002 U	0.002 U	0.016	0.002 U
STR-18	11/16/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.009	0.002 U	0.002 U	0.019	0.002 U
STR-18	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.008	0.002 U	0.002 U	0.014	0.002 U
STR-19	03/26/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.006	0.002 U	0.002 U	0.007	0.002 U
STR-19	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.005	0.002 U	0.002 U	0.007	0.002 U
STR-19	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.002 U	0.006	0.002 U
STR-19	11/16/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.008	0.002 U	0.002 U	0.011	0.002 U
STR-19	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.002 U	0.002 U	0.006	0.002 U
STR-19	05/09/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.01	0.002 U	0.002 U	0.015	0.002 U
STR-20	03/26/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-20	05/13/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-20	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-20	11/16/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-20	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-21	03/26/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-21	05/13/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STR-28	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.011	0.002 U	0.002 U	0.006	0.002 U
STR-28	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.011	0.002 U	0.002 U	0.006	0.002 U
STR-28	11/16/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.009	0.002 U	0.002 U	0.004	0.002 U

Table 3-11 Stream and Surface Water Results 2020 to Present

		1,1,1-TCA	1,1-DCA	1,1-DCE	1,2-DCA	Acetone	Carbon Tetra- chloride	Chloro- benzene	Chloroform	Chloroethane	Methylene chloride	PCE	TCE	Trichlorofluor- methane	VC	cis-1,2-DCE	trans-1,2-DC E
Location	Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
STR-28	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.015	0.002 U	0.002 U	0.007	0.002 U
STREAM-A-57	12/14/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
STRHA-02	11/16/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.009	0.002 U	0.002 U	0.006	0.002 U
STRHA-04	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.038	0.002 U	0.002 U	0.012	0.002 U
STRHA-04	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.02	0.002 U	0.002 U	0.008	0.002 U
STRHA-04	11/16/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.019	0.002 U	0.002 U	0.007	0.002 U
STRHA-04	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.028	0.002 U	0.002 U	0.008	0.002 U
STRHA-07A	05/06/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.012	0.002 U	0.002 U	0.018	0.002 U
STRHA-07A	11/25/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U UJ	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.014	0.002 U	0.002 U	0.019	0.002 U
STRHA-07A	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.009	0.002 U	0.002 U	0.011 # J	0.002 U
STRHA-07A	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.017	0.002 U	0.002 U	0.012	0.002 U
STRHA-07A	11/09/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.013	0.002 U	0.002 U	0.011	0.002 U
STRHA-07A	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.011	0.002 U	0.002 U	0.013	0.002 U
STRHA-07A	05/09/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.01	0.002 U	0.002 U	0.011	0.002 U
STRHA-07B	05/06/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.009	0.043	0.002 U	0.002 U	0.016	0.002 U
STRHA-07B	11/25/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U UJ	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.01	0.044	0.002 U	0.002 U	0.018	0.002 U
STRHA-07B	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.009	0.035	0.002 U	0.002 U	0.015 # J	0.002 U
STRHA-07B	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.033	0.002 U	0.002 U	0.013	0.002 U
STRHA-07B	11/09/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.007	0.028	0.002 U	0.002 U	0.012	0.002 U
STRHA-07B	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.009	0.038	0.002 U	0.002 U	0.015	0.002 U
STRHA-07B	05/09/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.008	0.034	0.002 U	0.002 U	0.012	0.002 U
STRHA-08	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.012	0.002 U	0.002 U	0.006	0.002 U
STRHA-08	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.011	0.002 U	0.002 U	0.006	0.002 U
STRHA-08	11/09/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.01	0.002 U	0.002 U	0.005	0.002 U
STRHA-08	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.016	0.002 U	0.002 U	0.007	0.002 U
STRM-A-SCDS	05/04/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.004	0.002 U
STRM-A-SCDS	11/25/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U UJ	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.006	0.002 U	0.002 U	0.007	0.002 U
STRM-A-SCDS	03/26/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.007	0.002 U	0.002 U	0.008	0.002 U
STRM-A-SCDS	05/12/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.006	0.002 U	0.002 U	0.007	0.002 U
STRM-A-SCDS	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.004	0.002 U	0.002 U	0.006	0.002 U
STRM-A-SCDS	11/16/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.002 U	0.002 U	0.008	0.002 U
STRM-A-SCDS	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.005	0.002 U
STRM-A-SCDS	05/09/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.008	0.002 U	0.002 U	0.012	0.002 U
STRMH-02	05/13/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.012	0.068	0.002 U	0.002 U	0.021	0.002 U
STRMH-02	09/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.006	0.018	0.002 U	0.002 U	0.01	0.002 U
STRMH-02	02/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.003	0.002 U	0.002 U	0.003	0.002 U
STRMH-02	05/09/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002	0.008	0.002 U	0.002 U	0.005	0.002 U
UNNAMED_STREAM	05/06/2020	0.002 U	0.002 U	0.01	0.002 U	0.023 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.009	0.002 U	0.21	1.5	0.008
UNNAMED_STREAM	11/25/2020	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.005	0.003		0.004	0.026	0.002 U
UNNAMED_STREAM	05/13/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.014	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.03	0.1	0.002 U
UNNAMED_STREAM	11/10/2021	0.002 U	0.002 U	0.001 U	0.002 U	0.01 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
UNNAMED_STREAM	05/10/2022	0.002 U	0.002 U	0.001 U	0.002 U	0.023	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U

Table 3-11

Stream and Surface Water Results 2020 to Present

Former Varian Facility Site

150 Sohier Road, Beverly, Massachusetts

Notes:

Analytical results presented in milligrams per liter (mg/l).

Analytical results are reported by the laboratory in micrograms per liter (ug/l). Results are presented without changing the number of significant figures reported by the laboratory.

- DCA Dichloroethane
- DCE Dichloroethene
- PCE Tetrachloroethene
- TCA Trichloroethane
- TCE Trichloroethene
- VC Vinyl Chloride
- NA = discreet sample depth not applicable.
- J Estimated concentration
- U Determined to be non-detect at indicated detection limit, lab qualifier or through expert validation protocol.
- # = The percent recovery for this compound was above the acceptance criteria in the LCS/D, as a result of carryover from aprevious analysis.
- --- = constituent not analyzed
- (1) = GDS-1 GDS-2 and GDS-3 are groundwater discharge point sample locations, results are not indicative of surface water or groundwater concentrations.

Table 3-12 Soil VOC Analytical Results

April, July, August 2022 Well Installation

	Location Code	OB-4	2-BR		OB-53-BR		OB-54-BR	OB-5	5-BR		OB-5	7-DO		OB-5	i8-DO	OB-5	59-DO	OB	-60-S
		OB-42-BR(25-	OB-42-	OB-53-BR-	OB-53-BR-	OB-53-BR-	OB-54-BR(40-45')-	OB-55-BR-	OB-55-BR-	OB-57-DO-	OB-57-DO-	OB-57-DO-	OB-57-DO-	OB-58-DO-35-	OB-58-DO-55-	OB-59-DO-	OB-59-DO-51-	OB-60-S-7-	OB-60-S-16-
	, ,	30')- 20220407	BR(45-50')	(25")- 20220331	(50-55)- 20220331	(80-85')- 20220401	20220405	30.0-220725	59.0-220726	53.5-220722	56.0-220722	58.5-220722	61.0-220726	220729	220729	24.0-220727	220728	20220813	20220813
	Sample Date	4/7/2022	4/8/2022	3/31/2022	3/31/2022	4/1/2022	4/5/2022	7/25/2022	7/26/2022	7/22/2022	7/22/2022	7/22/2022	7/26/2022	7/29/2022	7/29/2022	7/27/2022	7/28/2022	8/13/2022	8/13/2022
	Depth (ft)	25 - 30	45 - 50	19.5 - 19.5	41.5 - 41.5	64 - 64	40 - 45	30 - 30	59 - 59	53.5 - 53.5	56 - 56	58.5 - 58.5	61 - 61	35 - 35	55 - 55	24 - 24	51 - 51	7 - 7	16 - 16
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES																			
1.1.1.2-Tetrachloroethane	mg/kg																	< 0.068	< 0.067
1,1,1-Trichloroethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
1,1,2,2-Tetrachloroethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
1,1,2-Trichloroethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
1,1-Dichloroethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
1,1-Dichloroethene	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
1,1-Dichloropropene	mg/kg																	< 0.068	< 0.067
1,2,3-Trichlorobenzene	mg/kg																	< 0.068	< 0.067
1,2,3-Trichloropropane	mg/kg																	< 0.068	< 0.067
1,2,4-Trichlorobenzene	mg/kg																	< 0.068	< 0.067
1,2,4-Trimethylbenzene	mg/kg																	< 0.068	< 0.067
1,2-Dibromoethane (EDB)	mg/kg																	< 0.068	< 0.067
1,2-Dichlorobenzene	mg/kg																	< 0.068	< 0.067
1,2-Dichloroethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
1,2-Dichloropropane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
1,3,5-Trimethylbenzene	mg/kg																	< 0.068	< 0.067
1,3-Dichlorobenzene	mg/kg																	< 0.068	< 0.067
1,3-Dichloropropane	mg/kg																	< 0.068	< 0.067
1,4-Dichlorobenzene	mg/kg																	< 0.068	< 0.067
1,4-Dioxane	mg/kg																	< 1.7	< 1.7
2,2-dichloropropane	mg/kg																	< 0.068	< 0.067
2-Butanone	mg/kg																	< 0.2	< 0.2
2-Hexanone	mg/kg																	< 0.34	< 0.34
4-Isopropyltoluene	mg/kg																	< 0.068	< 0.067
4-Methyl-2-pentanone	mg/kg																	< 0.31	< 0.3
Acetone	mg/kg	< 1.6	< 2.2	< 8.9	< 9.7	< 2.3	< 1.7	< 2.1	< 1.7	< 8.2	< 42	< 20	< 1.7	< 2	< 2	< 1.9	< 1.8	< 1.7	< 1.7
Benzene	mg/kg																	< 0.068	< 0.067
Bromobenzene	mg/kg																	< 0.068	< 0.067
Bromodichloromethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
Bromoform	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
Bromomethane	mg/kg	< 0.16	< 0.22	< 0.89	< 0.97	< 0.23	< 0.17	< 0.21	< 0.17	< 0.82	< 4.2	< 2	< 0.17	< 0.2	< 0.2	< 0.19	< 0.18	< 0.17	< 0.17
Carbondisulfide	mg/kg																	< 0.068	< 0.067
Carbontetrachloride	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
Chlorobenzene	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
Chlorobromomethane	mg/kg																	< 0.068	< 0.067
Chloroethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
Chloroform	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
Chloromethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
cis-1,2-Dichloroethene	mg/kg	< 0.064	< 0.088	< 0.35	0.46 J	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	0.091	0.13
cis-1,3-Dichloropropene	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
DBCP	mg/kg																	< 0.068	< 0.067
Dibromochloromethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
Dibromomethane	mg/kg																	< 0.068	< 0.067
Dichlorodifluoromethane	mg/kg																	< 0.068	< 0.067
Dichloromethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.17	< 0.17
Diethyl ether	mg/kg																	< 0.34	< 0.34
Diisopropyl Ether	mg/kg																	< 0.068	< 0.067
Ethylbenzene	mg/kg																	< 0.068	< 0.067
Hexachlorobutadiene	mg/kg																	< 0.068	< 0.067
Isopropylbenzene	mg/kg																	< 0.068	< 0.067

Table 3-12 Soil VOC Analytical Results April, July, August 2022 Well Installation

Former Varian Facility Site

150 Sohier Road Beverly, Massachusetts

	Location Code	OB-4	2-BR		OB-53-BR		OB-54-BR	OB-5	5-BR		OB-5	7-DO		OB-5	8-DO	OB-5	i9-DO	OB-	-60-S
	Sample ID	OB-42-BR(25		OB-53-BR-	OB-53-BR-	OB-53-BR-	OB-54-BR(40-45')-	OB-55-BR-	OB-55-BR-	OB-57-DO-	OB-57-DO-	OB-57-DO-	OB-57-DO-	OB-58-DO-35-	OB-58-DO-55-	OB-59-DO-	OB-59-DO-51-	OB-60-S-7-	OB-60-S-16-
		30')- 20220407	BR(45-50')	(25")- 20220331	(50-55)- 20220331	(80-85')- 20220401	20220405	30.0-220725	59.0-220726	53.5-220722	56.0-220722	58.5-220722	61.0-220726	220729	220729	24.0-220727	220728	20220813	20220813
	Sample Date	4/7/2022	4/8/2022	3/31/2022	3/31/2022	4/1/2022	4/5/2022	7/25/2022	7/26/2022	7/22/2022	7/22/2022	7/22/2022	7/26/2022	7/29/2022	7/29/2022	7/27/2022	7/28/2022	8/13/2022	8/13/2022
	Depth (ft)	25 - 30	45 - 50	19.5 - 19.5	41.5 - 41.5	64 - 64	40 - 45	30 - 30	59 - 59	53.5 - 53.5	56 - 56	58.5 - 58.5	61 - 61	35 - 35	55 - 55	24 - 24	51 - 51	7 - 7	16 - 16
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
m,p-xylene	mg/kg																	< 0.068	< 0.067
Methyltert-butylether	mg/kg																	< 0.068	< 0.067
Naphthalene	mg/kg																	< 0.17	< 0.17
n-Butylbenzene	mg/kg																	< 0.068	< 0.067
n-Propylbenzene	mg/kg																	< 0.068	< 0.067
o-Chlorotoluene	mg/kg																	< 0.068	< 0.067
o-Xylene	mg/kg																	< 0.068	< 0.067
p-Chlorotoluene	mg/kg																	< 0.068	< 0.067
sec-Butylbenzene	mg/kg																	< 0.068	< 0.067
Styrene	mg/kg																	< 0.068	< 0.067
tert-AmylMethyl Ether	mg/kg																	< 0.068	< 0.067
tert-Butylalcohol	mg/kg																	< 1.7	< 1.7
tert-Butylbenzene	mg/kg																	< 0.068	< 0.067
tert-ButylEthyl Ether	mg/kg																	< 0.068	< 0.067
Tetrachloroethene	mg/kg	< 0.064	< 0.088	11 J	11 J	< 0.09	0.46	0.43	< 0.07	11	33	10	2.8	< 0.08	< 0.082	< 0.076	< 0.073	0.58	13
Tetrahydrofuran	mg/kg																	< 0.34	< 0.34
Toluene	mg/kg	0.074	0.000	0.25	0.20	0.00		0.005	0.07	0.22	1.7	0.70	0.0/0	0.00	0.000	0.07/	0.070	< 0.068	< 0.067
trans-1,2-Dichloroethene	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069 < 0.069	< 0.085	< 0.07 < 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067 < 0.067
Trans-1,3-Dichloropropene	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09		< 0.085		< 0.33		< 0.79		< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	
Trichloroethene	mg/kg	< 0.064	< 0.088	< 0.35	35 J	< 0.09	0.79	0.97	< 0.07	37	130	70	18	< 0.08	< 0.082	0.36	< 0.073	< 0.068	1.4
Trichlorofluoromethane	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067
Vinyl chloride	mg/kg	< 0.064	< 0.088	< 0.35	< 0.39	< 0.09	< 0.069	< 0.085	< 0.07	< 0.33	< 1.7	< 0.79	< 0.069	< 0.08	< 0.082	< 0.076	< 0.073	< 0.068	< 0.067

Notes: ft = feet

mg/kg = milligrams per kilogram

--- = Parameter not sampled for.

Table 3-13 Building 3 Area Indoor Air Results

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

		Location Code			BLD	G2-6			BLD	G3-1	BLD	G3-2
		Sample ID	BLDG2-6-	BLDG2-6-	BLDG2-6-	BLDG2-6-	BLDG2-6-	BLDG2-6-	BLDG3-1-	BLDG3-1-	BLDG3-2-	BLDG3-2-
			20210325	20210624	20210921	20211222	20220309	20220607	20220309	20220607	20220309	20220607
		Sample Date	3/25/2021	6/24/2021	9/21/2021	12/22/2021	3/9/2022	6/7/2022	3/9/2022	6/7/2022	3/9/2022	6/7/2022
Parameter	Units	TVCIA	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES												
1,1,1-Trichloroethane	ug/m3	4400	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	0.229	0.125
1,1,2,2-Tetrachloroethane	ug/m3	0.2	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137
1,1,2-Trichloroethane	ug/m3	0.72	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109
1,1-Dichloroethane	ug/m3	710	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081
1,1-Dichloroethene	ug/m3	180	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079
1,2-Dichloroethane	ug/m3	0.44	0.121	0.138	0.089	< 0.081	0.093	0.125	< 0.081	< 0.081	0.121	0.085
1,2-Dichloropropane	ug/m3	0.6	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092
Acetone	ug/m3	710	128	245	238	73.2	470	283	4440	1170	2380	1570
Bromodichloromethane	ug/m3	0.65	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	0.141	< 0.134
Bromoform	ug/m3	10	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207
Bromomethane	ug/m3	4.4	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078
Carbontetrachloride	ug/m3	1.9	0.396	0.44	0.478	0.403	0.686	0.535	0.598	0.566	0.679	0.56
Chlorobenzene	ug/m3	44	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461
Chloroethane	ug/m3	NV	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264
Chloroform	ug/m3	3	0.215	0.347	0.22	0.181	0.532	0.19	615	0.386	3010	1.78
Chloromethane	ug/m3	NV	1.08	0.954	1.04	1.01	1.39	1.46	1.29	1.4	1.32	1.42
cis-1,2-Dichloroethene	ug/m3	5.3	0.337	0.309	0.599	0.404	0.515	0.852	0.167	< 0.079	0.464	0.202
cis-1,3-Dichloropropene	ug/m3	NV	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091
Dibromochloromethane	ug/m3	0.48	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17
Dichloromethane	ug/m3	530	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	7.12	5.87	< 1.74	2.91	< 1.74
Tetrachloroethene	ug/m3	4.1	1.93	0.746	0.841	1.06	0.807	1.21	0.298	0.766	0.61	1.32
trans-1,2-Dichloroethene	ug/m3	53	20.7	83.3	543	300	278	563	108	28.8	266	126
Trans-1,3-Dichloropropene	ug/m3	NV	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091
Trichloroethene	ug/m3	1.8	1.27	0.924	0.951	1.15	1.14	1.28	0.172	0.258	0.602	0.559
Trichlorofluoromethane	ug/m3	NV	1.1	1.3	1.26	1.21	1.84	1.51	1.82	1.33	1.72	1.36
Vinyl chloride	ug/m3	1.3	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051

Notes:

ug/m³ - micrograms per meter cubed

< 0.109 - not detected above reporting limit

TVCIA = Threshold Value (Industrial/Commercial) - MassDEP Industrial/Commercial threshold value

BOLD = Result is greater than Threshold Value

Table 3-13 Building 3 Area Indoor Air Results

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

		Location Code			BLD	G3-3			BLD	G3-5	BLD	G6-2
		Sample ID	BLDG3-3-	BLDG3-3-	BLDG3-3-	BLDG3-3-	BLDG3-3-	BLDG3-3-	BLDG3-5-	BLDG3-5-	BLDG6-2-	BLDG6-2-
			20210325	20210624	20210921	20211222	20220309	20220607	20220309	20220607	20220309	20220607
		Sample Date	3/25/2021	6/24/2021	9/21/2021	12/22/2021	3/9/2022	6/7/2022	3/9/2022	6/7/2022	3/9/2022	6/7/2022
Parameter	Units	TVCIA	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES												
1,1,1-Trichloroethane	ug/m3	4400	0.164	0.125	0.131	< 0.109	0.262	0.267	< 0.109	< 0.109	0.131	< 0.109
1,1,2,2-Tetrachloroethane	ug/m3	0.2	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137	< 0.137
1,1,2-Trichloroethane	ug/m3	0.72	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109
1,1-Dichloroethane	ug/m3	710	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081
1,1-Dichloroethene	ug/m3	180	0.155	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079
1,2-Dichloroethane	ug/m3	0.44	< 0.081	< 0.081	< 0.081	< 0.081	0.089	0.081	0.113	< 0.081	0.109	< 0.081
1,2-Dichloropropane	ug/m3	0.6	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	0.116
Acetone	ug/m3	710	205	223	280	165	302	161	16.4	24.7	1020	5530
Bromodichloromethane	ug/m3	0.65	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134	< 0.134
Bromoform	ug/m3	10	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207	< 0.207
Bromomethane	ug/m3	4.4	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078
Carbontetrachloride	ug/m3	1.9	0.377	0.434	0.434	0.409	0.66	0.541	0.66	0.547	0.654	0.554
Chlorobenzene	ug/m3	44	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461
Chloroethane	ug/m3	NV	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264	< 0.264
Chloroform	ug/m3	3	0.22	0.303	0.225	0.112	0.977	0.2	1.2	0.244	0.22	0.161
Chloromethane	ug/m3	NV	1.02	0.979	1.02	0.971	1.41	1.44	1.38	1.42	1.41	1.47
cis-1,2-Dichloroethene	ug/m3	5.3	< 0.079	< 0.079	< 0.079	< 0.079	0.301	0.135	< 0.079	< 0.079	0.492	0.119
cis-1,3-Dichloropropene	ug/m3	NV	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091
Dibromochloromethane	ug/m3	0.48	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17
Dichloromethane	ug/m3	530	< 1.74	90	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74	< 1.74
Tetrachloroethene	ug/m3	4.1	2.12	3.61	3.83	0.922	2.5	21.4	0.393	0.509	1	1.26
trans-1,2-Dichloroethene	ug/m3	53	18.6	4.4	27.4	39.6	195	16.2	7.45	3.54	368	79.3
Trans-1,3-Dichloropropene	ug/m3	NV	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091	< 0.091
Trichloroethene	ug/m3	1.8	0.473	0.855	0.919	0.312	0.747	7.42	< 0.107	< 0.107	0.446	0.339
Trichlorofluoromethane	ug/m3	NV	0.938	1.12	1.11	1.12	2.01	1.34	1.73	1.32	1.78	1.38
Vinyl chloride	ug/m3	1.3	< 0.051	< 0.051	< 0.051	< 0.051	0.284	0.976	< 0.051	< 0.051	< 0.051	< 0.051

Notes:

ug/m³ - micrograms per meter cubed

< 0.109 - not detected above reporting limit

TVCIA = Threshold Value (Industrial/Commercial) - MassDEP Industrial/Commercial threshold value

BOLD = Result is greater than Threshold Value

Table 3-14 Soil Vapor Results Buildings 2 and 3

	I	Location Code			BLDG	52-SV1				BLDG	3-VP1	
		Sample ID	BLDG2-SV1-		BLDG2-SV1-		BLDG2-SV1-	BLDG2-SV1-				BLDG3-VP1-
			20210326	20210625	20210922	20211223	20220310	20220608	20210326	20210625	20210922	20211223
		Sample Date	3/26/2021	6/25/2021	9/22/2021	12/23/2021	3/10/2022	6/8/2022	3/26/2021	6/25/2021	9/22/2021	12/23/2021
		Depth	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0
	Sa	mple Purpose	N	N	N	N	N	N	N	N	N	N
Parameter	Units	I/C SS	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
		Screening										
VOLATILES												
1,1,1-Trichloroethane	ug/m3	310000	< 0.911	< 1.09	< 2.54	1.63	< 0.454	< 1.36	0.507	1.6	0.971	2.3
1,1,2,2-Tetrachloroethane	ug/m3	14	< 1.15	< 1.37	< 3.19	< 0.137	< 0.572	< 1.72	< 0.137	< 0.137	< 0.137	< 0.137
1,1,2-Trichloroethane	ug/m3	50	< 0.911	< 1.09	< 2.54	< 0.109	< 0.454	< 1.36	< 0.109	< 0.109	< 0.109	< 0.109
1,1-Dichloroethane	ug/m3	50000	< 0.676	< 0.809	< 1.88	< 0.081	< 0.337	< 1.01	< 0.081	< 0.081	< 0.081	< 0.081
1,1-Dichloroethene	ug/m3	12000	< 0.662	< 0.793	< 1.84	< 0.079	< 0.33	< 0.991	< 0.079	< 0.079	< 0.079	0.69
1,2-Dichloroethane	ug/m3	31	< 0.676	< 0.809	< 1.88	< 0.081	< 0.337	< 1.01	< 0.081	< 0.081	< 0.081	< 0.081
1,2-Dichloropropane	ug/m3	42	< 0.772	< 0.924	< 2.15	< 0.092	< 0.385	< 1.16	< 0.092	< 0.092	< 0.092	< 0.092
Acetone	ug/m3	50000	< 19.8	< 23.8	< 55.3	14.1	753	37.3	108	53.4	30.9	29
Bromodichloromethane	ug/m3	45	< 1.12	4.22	< 3.12	< 0.134	< 0.558	< 1.67	< 0.134	< 0.134	< 0.134	< 0.134
Bromoform	ug/m3	730	< 1.73	< 2.07	< 4.81	< 0.207	< 0.861	< 2.58	< 0.207	< 0.207	< 0.207	< 0.207
Bromomethane	ug/m3	310	< 0.648	< 0.777	< 1.81	< 0.078	< 0.323	< 0.971	< 0.078	< 0.078	< 0.078	< 0.078
Carbontetrachloride	ug/m3	130	< 1.05	1.51	3.22	1.31	0.944	2.28	0.459	0.604	0.635	0.566
Chlorobenzene	ug/m3	3100	< 3.84	< 4.61	< 10.7	< 0.461	< 1.92	< 5.76	< 0.461	< 0.461	< 0.461	< 0.461
Chloroethane	ug/m3	NV	< 2.2	< 2.64	< 6.15	< 0.264	< 1.1	< 3.3	< 0.264	< 0.264	< 0.264	< 0.264
Chloroform	ug/m3	210	7.33	14	31.9	13	1.59	8.01	0.977	2.08	2.49	1.15
Chloromethane	ug/m3	NV	< 3.45	< 4.13	< 9.6	< 0.413	< 1.72	< 5.16	< 0.413	< 0.413	< 0.413	< 0.413
cis-1,2-Dichloroethene	ug/m3	370	4.16	5.67	10.5	9.08	0.975	6.03	0.242	0.258	0.21	0.234
cis-1,3-Dichloropropene	ug/m3	NV	< 0.758	< 0.908	< 2.11	< 0.091	< 0.378	< 1.13	< 0.091	< 0.091	< 0.091	< 0.091
Dibromochloromethane	ug/m3	33	< 1.42	< 1.7	< 3.96	< 0.17	< 0.71	< 2.13	< 0.17	< 0.17	< 0.17	< 0.17
Dichloromethane	ug/m3	37000	< 14.5	< 17.4	< 40.3	< 1.74	< 7.23	46.6	< 1.74	< 1.74	< 1.74	< 1.74
Tetrachloroethene	ug/m3	290	1570	2740	9220	1340	< 0.565	2880	31	35.8	133	69.2
trans-1,2-Dichloroethene	ug/m3	3700	11.3	7.18	77.3	75.3	488	109	15.8	2.36	21.3	20.1
Trans-1,3-Dichloropropene	ug/m3	NV	< 0.758	< 0.908	< 2.11	< 0.091	< 0.378	< 1.13	< 0.091	< 0.091	< 0.091	< 0.091
Trichloroethene	ug/m3	120	197	369	881	326	0.871	308	27.1	36.8	54.3	43.9
Trichlorofluoromethane	ug/m3	NV	< 2.34	< 2.81	< 6.52	1.28	1.83	< 3.51	0.995	1.03	1.28	0.972
Vinyl chloride	ug/m3	91	< 0.427	< 0.511	< 1.19	< 0.051	< 0.213	< 0.639	< 0.051	< 0.051	< 0.051	3.17

Table 3-14 Soil Vapor Results Buildings 2 and 3

	ı	ocation Code	BLDG	3-VP1	BLDG	3-VP2	BLDG	3-VP3	BLDG	3-VP7
		Sample ID	BLDG3-VP1-	BLDG3-VP1-	BLDG3-VP2-	BLDG3-VP2-	BLDG3-VP3-	BLDG3-VP3-	BLDG3-VP7-	BLDG3-VP7-
			20220310	20220608	20220310	20220608	20220310	20220608	20220310	20220608
		Sample Date	3/10/2022	6/8/2022	3/10/2022	6/8/2022	3/10/2022	6/8/2022	3/10/2022	6/8/2022
		Depth	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0
	Sa	mple Purpose	N	N	N	N	N	N	N	N
Parameter	Units	I/C SS	Result							
		Screening								
VOLATILES										
1,1,1-Trichloroethane	ug/m3	310000	1.67	0.6	160	468	2.46	4.96	0.66	0.911
1,1,2,2-Tetrachloroethane	ug/m3	14	< 0.299	< 0.137	< 6.11	< 43.5	< 0.982	< 0.137	< 0.137	< 0.137
1,1,2-Trichloroethane	ug/m3	50	< 0.237	< 0.109	< 4.86	< 34.5	< 0.78	< 0.109	< 0.109	< 0.109
1,1-Dichloroethane	ug/m3	50000	< 0.176	< 0.081	< 3.6	< 25.6	< 0.579	< 0.081	< 0.081	< 0.081
1,1-Dichloroethene	ug/m3	12000	< 0.172	< 0.079	140	452	0.65	1.54	0.087	0.353
1,2-Dichloroethane	ug/m3	31	< 0.176	< 0.081	< 3.6	< 25.6	< 0.579	< 0.081	0.376	< 0.081
1,2-Dichloropropane	ug/m3	42	< 0.201	< 0.092	< 4.11	< 29.3	< 0.661	< 0.092	< 0.092	< 0.092
Acetone	ug/m3	50000	66.5	182	< 106	< 751	< 17	203	222	189
Bromodichloromethane	ug/m3	45	< 0.291	< 0.134	< 5.96	< 42.4	< 0.958	< 0.134	2.21	2.33
Bromoform	ug/m3	730	< 0.45	< 0.207	< 9.2	< 65.4	< 1.48	< 0.207	0.321	0.837
Bromomethane	ug/m3	310	< 0.169	< 0.078	< 3.46	< 24.6	< 0.555	< 0.078	< 0.078	< 0.078
Carbontetrachloride	ug/m3	130	0.78	0.472	10.9	< 39.8	1.3	0.975	0.679	0.472
Chlorobenzene	ug/m3	3100	< 0.999	< 0.461	< 20.5	< 146	< 3.29	< 0.461	< 0.461	< 0.461
Chloroethane	ug/m3	NV	< 0.573	< 0.264	< 11.7	< 83.4	< 1.88	< 0.264	< 0.264	< 0.264
Chloroform	ug/m3	210	2.99	3.35	8.69	32.4	14.2	10.5	45.4	24
Chloromethane	ug/m3	NV	< 0.898	< 0.413	< 18.4	< 131	< 2.95	< 0.413	0.535	< 0.413
cis-1,2-Dichloroethene	ug/m3	370	0.404	0.385	62.2	416	18.3	19.9	32.2	131
cis-1,3-Dichloropropene	ug/m3	NV	< 0.197	< 0.091	< 4.04	< 28.7	< 0.649	< 0.091	< 0.091	< 0.091
Dibromochloromethane	ug/m3	33	< 0.371	< 0.17	< 7.58	< 53.9	< 1.22	< 0.17	0.375	0.477
Dichloromethane	ug/m3	37000	< 3.79	< 1.74	< 77.1	< 549	< 12.4	1.97	< 1.74	13.9
Tetrachloroethene	ug/m3	290	387	112	8540	75300	1390	271	82.1	180
trans-1,2-Dichloroethene	ug/m3	3700	96.7	8.64	14.3	94	16.4	15	119	42.4
Trans-1,3-Dichloropropene	ug/m3	NV	< 0.197	< 0.091	< 4.04	< 28.7	< 0.649	< 0.091	< 0.091	< 0.091
Trichloroethene	ug/m3	120	130	100	2540	37500	329	191	56.4	107
Trichlorofluoromethane	ug/m3	NV	1.67	1.14	< 12.5	< 88.8	< 2.01	1.17	1.67	1.14
Vinyl chloride	ug/m3	91	0.183	0.084	5930 J	6370	5.83	4.88	1.24	0.171

Table 3-14 Soil Vapor Results Buildings 2 and 3

Former Varian Facility Site 150 Sohier Road Beverly, Massachusetts

Notes:

Samples collected from 30 Tozer Road, 31 Tozer Road, 39 Tozer Road.

ug/m3 = microgram per cubic meter

< indicates chemical not detected, and concentration is less than reporting limit (value shown).

I/C SS Screening = MassDEP industrial/commercial sub-slab soil gas screening value

BOLD =Result exceeds I/C SS

--- = Parameter not sampled for.

J = estimated concentration

Table 3-15 Select Residential Indoor Air Results 34 Longview Drive

Varian Medical Systems Beverly, Massachusetts

	Location			Bas	ement Indoo	r Air					First Floor	Indoor Air			Second Floor Indoor
	Sample ID	ID-4	34-LON-B-	34-LON-B-	34-LON-B-	34-LON-B-	34-LON-B-	34-LON-B-	34-LON-01-	34-LON-01-	34-LON-01-	34-LON-01-	34-LON-01-	34-LON-01-	34-LON-02-20220713
			20210225	20211025	20211115	20220113	20220422	20220713	20210225	20211025	20211115	20220113	20220422	20220713	
	Sample Date	12/7/2020	2/26/2021	10/26/2021	11/16/2021	1/14/2022	4/22/2022	7/14/2022	2/26/2021	10/26/2021	11/16/2021	1/14/2022	4/22/2022	7/14/2022	7/14/2022
Parameter	Threshold Value (Res)	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES (ug/m³)															
1,1,1-Trichloroethane	3	< 1.092	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109	< 0.109
1,1-Dichloroethane	0.8	< 0.81	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081
1,1-Dichloroethene	0.8	< 0.794	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079
cis-1,2-Dichloroethene	0.8	< 0.794	0.083	0.127	0.131	0.17	0.139	0.095	< 0.079	0.087	< 0.079	0.111	< 0.079	< 0.079	< 0.079
Tetrachloroethene	1.4	0.96	0.888	0.868	1.23	1.19	1.2	3.55	0.597	0.542	0.427	0.841	0.509	0.556	<0.136
trans-1,2-Dichloroethene	0.8		< 0.079	0.103	< 0.079	0.143	< 0.079	< 0.079	< 0.079	0.111	< 0.079	0.131	< 0.079	0.139	0.115
Trichloroethene	0.4	< 1.074	0.398	0.914	1	1.1	0.779	0.801	0.215	0.548	0.355	0.688	0.344	< 0.107	<0.107
Vinyl chloride	0.27	< 0.516	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051

Notes:

ug/m³ - micrograms per meter cubed

BOLD

< 0.794 - not detected above reporting limit

Threshold Value (Res) - MassDEP residential threshold value

= Result is greater than Threshold Value

Table 3-16 Select Sub-Slab Soil Vapor Results 34 Longview Drive

Varian Medical Systems Beverly, Massachusetts

	Location		Sub	-Slab Soil Vapor	Point 34LON-S	/01			Sub	-Slab Soil Vapo	r Point 34LON-S	V02		34-LON-SV03	34-LON-SV04	34-LON-SV05
	Sample ID	34-LON-SV01 20210226	34-LON-SV01- 20211026	34-LON-SV-01- 20211116	34-LON-SV01- 20220114	34-LON-SV01- 20220422	34-LON-SV-01- 20220714	34-LON-SV02 20210226	34-LON-SV02- 20211026	34-LON-SV- 02-20211116	34-LON-SV02- 20220114	34-LON-SV02- 20220422	34LON-SV-02- 20220714	34-LON-SV03- 20220309	34-LON-SV04- 20220309	34-LON-SV05- 20220309
	Sample Date	2/26/2021	10/26/2021	11/16/2021	1/14/2022	4/22/2022	7/14/22	2/26/2021	10/26/2021	11/16/2021	1/14/2022	4/22/2022	7/14/22	3/9/2022	3/9/2022	3/9/2022
Parameter	Res Sub-slab Screening	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES (ug/m³)																
1,1,1-Trichloroethane	210	< 0.109	0.131	0.142	< 0.109	0.109	< 0.109	< 0.546	0.824	0.835	0.251	0.256	0.917	< 0.109	< 0.109	< 0.109
1,1-Dichloroethane	56	< 0.081	< 0.081	< 0.081	< 0.081	0.085	< 0.081	< 0.405	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	< 0.081	0.117	< 0.081
1,1-Dichloroethene	56	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.396	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079
cis-1,2-Dichloroethene	56	0.297	0.515	0.646	0.436	0.523	0.42	< 0.396	< 0.079	< 0.079	0.167	< 0.079	< 0.079	0.103	9.44	0.535
Tetrachloroethene	98	0.393	12.2	36.3	3.02	4.46	11	0.949	3.26	10.4	1.16	1.49	16.6	1.75	14	1.48
trans-1,2-Dichloroethene	56	< 0.079	0.167	< 0.079	< 0.079	< 0.079	0.123	< 0.396	0.091	< 0.079	< 0.079	< 0.079	0.083	0.155	< 0.079	0.083
Trichloroethene	28	2.31	65.6	106	31.8	48.3	68.3	1.56	10.3	14	4.46	4.37	24.3	0.586	67.2	4.73
Vinyl chloride	19	0.225	< 0.051	< 0.051	< 0.051	< 0.051	0.151	0.409	< 0.051	< 0.051	< 0.051	< 0.051	0.084	< 0.051	< 0.051	< 0.051

Notes:

ug/m³ - micrograms per meter cubed

< 0.109 - not detected above reporting limit

Res Sub-slab Screening - MassDEP residential sub-slab soil gas screening value

BOLD = Result is greater than Screening Value

Table 4-1

Vertical Hydraulic Gradients Between Overburden and Bedrock Wells 2000 Phase II Comprehensive Site Assessment Report Former Varian Facility Site, Beverly, MA

Central and Western Clusters of Wells CL1, CL3/BR5 and CL8

CL1	Cluster	Octo	ber 5, 19	98 Groun	dwater l	Data			0	verall Vertical Hydraulic Gradient †
Well No.	(Screen or	GW Elev GW Elev. Vertical Gradier				ent †				Between Oct-95 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	Δ (in ft)	D. or U.	+ or -	VALUE	Aquifer	D. or		Remarks
CL1-S	(10-25)	57.15	-				so	И		Weak inconsistent (<0.1') upward or downward gradient within the overburden
CL1-DO	(200-210')	57.53	-0.38	1	-	-0.002	DO			 Gradient between overburden and bedrock cannot be determined. CL1-BR, the deepest bedrock well, has been consistently observed during sampling events to be extremely slow to recharge. The wide
CL1-BR *	(240-280')	-34.06 *	91.59 *	-	*	4	BR	-		range of groundwater elevations measured in this well strongly suggests that it is often in a recovery phase and, therefore, static water level conditions were seldom encountered (See Figure 5-25)

CL3/BF	R-5 Cluster	Octo	ber 5, 19	98 Groun	dwater	Data		0	verall Vertical Hydraulic Gradient †	
Well No.	(Screen or	GW Elev	GW Elev.	Vertic	al Grad	ient †			Between Oct-95 and Oct-98	
	Intake Zone, in ft bgs)	(in ft)	∆ (in ft)	D. or U.	+ or -	VALUE	Aquifer	D. or U	Remarks	
CL3-S	(5-20')	40.62	7.				so	7	Very weak but consistent upward gradient within the overburden, up to 0.1'	
CL3-DO	(65-80')	40.72	-0.10	1	11,5	-0.002	DO		Overall weak upward gradient from the bedrock to	
CL3-BR	(91-111)	40.98	-0.26	1	-	-0.01	BR		the overburden of 0.2' to 0.3'. Inconsistent upward	
BR-5 Zone3	(124.5-133')	41.05	-0.07	1	-	-0.002	BR Z3	7	gradient within the bedrock, with a strong upward	
BR-5 Zone2	(164-172.5')	44.46	-3.41	1		-0.08	BR Z2		gradient of more than 3' noted between Zone 2 at Zone 3 in October 1998.	
BR-5 Zone1	(198.5-209')	44.48	-0.02	1	-	-0.006	BR Z1		Zone 3 in October 1990.	

CL8	Cluster	Octo	ber 5, 19	98 Groun	dwater l	Data		0	verall Vertical Hydraulic Gradient †
Well No.	(Screen or	GW Elev	GW Elev.	Vertic	al Grad	ient †			Between Aug-98 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	∆ (in ft)	D. or U.	+ or -	VALUE	Aquifer		Remarks
CL8-S	(5-10')	40.19					so	7	Very weak but consistent upward gradient within the overburden, up to 0.1'
CL8-DO	(43-53')	40.22	-0.03	1	-	-0.0007	DO		a
CL8-BR Zone3	(60.5-70')	40.29	-0.07	1	0-0	-0.004	BR Z3		Overall weak upward gradient from the bedrock to the overburden of up to 0.1' and weak upward
CL8-BR Zone2	(93-101.5')	40.33	-0.04	1		-0.001	BR Z2		gradient within the bedrock up to 0.2'
CL8-BR Zone1	(150.5-159')	40.07	0.26	1	+	0.004	BR Z1		TO ANY COMPANY AND ADDRESS OF THE PARTY OF T

Table 4-1 Vertical Hydraulic Gradients Between Overburden and Bedrock Wells 2000 Phase II Comprehensive Site Assessment Report Former Varian Facility Site, Beverly, MA

Northern Clusters of Wells CL2, CL6, CL7, CL9, BR3 and BR4

CL2	Cluster	Octo	ber 5, 19	98 Groun	dwater l	Data			0	verall Vertical Hydraulic Gradient †
Well No.	(Screen or	GW Elev	GW Elev.	Vertic	al Crad	ient †			11	Between Oct-95 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	∆ (in ft)	D. or U.	+ or -	VALUE	Aquifer	D. or		Remarks
MW-2R	(4-14')	56.51					so	K		Strong consistent downward gradient within the overburden, from 2' to 3'
CL2-DO	(33-43')	54.18	2.33	1	+	0.08034	DO			Very weak (<0.1') inconsistent upward and
CL2-BR	(54-82.5')	54.20	-0.02	1	-4	-0.0007	BR			downward gradient within the bedrock and between
BR-2 Zone3*	(64.5-74')	54.29	-0.09	1	-	-0.003	BR Z3	N	7	the bedrock and the deep overburden aquifer. (*:
BR-2 Zone2	(108-117.5)	54.25	0.04	1	+	0.0009	BR Z2			Gradient calculated between CL2-DO and BR2/Zone3)
BR-2 Zone1	(136.5-146')	54.26	-0.01	1		-0.00036	BR Z1			DRZ/Z01163 /

CL6	Cluster	Octo	ber 5, 19	98 Groun	dwater	Data			0	verall Vertical Hydraulic Gradient †
Well No.	(Screen or	GW Elev	GW Elev.	Vertic	al Grad	ient †				Between Nov-97 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	∆ (in ft)	D. or U.	+ or -	VALUE	Aquifer	D. or		Remarks
CL6-S	(10-20)	48.33	-				so	K		Strong consistent downward gradient within the overburden, from 1' to 2'
CL6-DO	(34-44')	47.20	1.13	1	+	0.05	DO		******	
CL6-BR	(60-70)	47.22	-0.02	1	-	-0.0008	BR			Very weak (= <0.1') and inconsistent downward
BR-1 Zone3	(95-104.5')	47.10	0.12	1	+	0.003	BR Z3	N	7	gradient within the bedrock and between the
BR-1 Zone2	(142.5-152')	47.06	0.04	1	+	0.0009	BR Z2	!	bedrock and the deep overburden aquifer	
BR-1 Zone1	(195-204.5')	47.11	-0.05	1	- S.	-0.001	BR Z1	1		

CL7	Cluster	Octo	ber 5, 19	98 Groun	dwater l	Data		0	verall Vertical Hydraulic Gradient †
Well No.	(Screen or	GW Elev	GW Elev.	Vertic	al Grad	ient †			Between Aug-98 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	∆ (in ft)	D. or U.	+ or -	VALUE	Aquifer		Remarks
CL7-S	(9-19')	41.46	-				so		Strong consistent downward gradient within the overburden of 1.5'
CL7-DO	(78-88')	40.10	1.36	1	+	0.02	DO		Overall weak (=<0.1') but consistent upward
CL7-BR	(97-107')	40.19	-0.09	1		-0.005	BR	7	gradient from the bedrock to the overburden

CL9	Cluster	Octo	ber 5, 19	98 Groun	dwater l	Data		0	verall Vertical Hydraulic Gradient †
Well No.	(Screen or	GW Elev	GW Elev.	Vertic	al Grad	ient †			Between Aug-98 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	∆ (in ft)	D. or U.	+ or -	VALUE	Aquifer		Remarks
CL9-S	(5-15')	40.96					so		Weak but consistent downward gradient within the overburden, from 0.1' to 0.2'
CL9-DO	(25.5-35.5')	40.70	0.26	1	+	0.01	DO		at a section of a section of the hedrock
CL9-BR Zone3	3 (72-81.5')	42.33	-1.63	1	-	-0.03	BR Z3		Strong consistent upward gradient from the bedrock to the overburden of up to 1.5' and strong upward
CL9-BR Zone		44.22	-1.89	1	-	-0.07	BR Z2	7	gradient within the bedrock of up to 3.5'
CL9-BR Zone		45.81	-1.59	1	-	-0.03	BR Z1		

BR-3 and	BR-4 Wells	Octo	ber 5, 19	98 Groun	dwater l	Data		0	verall Vertical Hydraulic Gradient †
Well No.		GW Elev	GW Elev.	Vertic	al Grad				Between Aug-98 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	∆ (in ft)	D. or U.	+ or -	VALUE	Aquifer		Remarks
MW-35	(10-57')	36.00					DO	K	Inconsistent downward gradient between the deep overburden and the upper bedrock
BR-3 Zone3	(156-166.5')	32.91	3.09	1	+	0.02	BR Z3		Strong consistent upward gradient within the
BR-3 Zone2	(189.5 - 200')	34.29	-1.38	T	0.0	-0.04	BR Z2	7	bedrock of up to 4'
BR-3 Zone1	(215-225.5')	38.15	-3.86	1	-	-0.15	BR Z1		
BR-4 Zone3	(105-115.5')	38.92	· ·				BR Z3		Very weak (<0.1') inconsistent upward and
BR-4 Zone2	(128.5-138')	38.94	-0.02	1		-0.001	BR Z2	N N	downward gradient within the bedrock
BR-4 Zone1	(184-194.5')	38.88	0.06	1	+	0.001	BR Z1		• • • • • • • • • • • • • • • • • • • •

Table 4-1

Vertical Hydraulic Gradients Between Overburden and Bedrock Wells 2000 Phase II Comprehensive Site Assessment Report Former Varian Facility Site, Beverly, MA

Southern Clusters of Wells CL4, BR-6, BR-7 and BR-8

C	L4 Cluster	Octo	ber 5, 19	98 Groun	dwater I	Data		0	verall Vertical Hydraulic Gradient †
Well No	. (Screen or	GW Elev	GW Elev.	Vertic	al Grad	ient †			Between Oct-95 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	Δ (in ft)	D. or U.	+ or -	VALUE	Aquifer D.	or U	Remarks
W-3	(5-10")	40.94	-				SO N	7	Weak inconsistent (0.1' to 0.5') upward or downward gradient within the overburden
CL4-DO CL4-BR	(19-29') (31-55')	40.78 40.75	0.16 0.03	+	+	0.009	DO BR		Overall very weak (=<0.1') downward gradient from the overburden to the bedrock

BR-6 & E	BR-7 Cluster	Octo	ber 5, 19	98 Groun	dwater	Data		0	verall Vertical Hydraulic Gradient †
Well No.	(Screen or	GW Elev	GW Elev.	Vertic	al Grad	ient †			Between Late 97 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	Δ (in ft)	D. or U.	+ or -	VALUE	Aquifer	D. or U	Remarks
P-9	(2-12')	33.07	1				so	7	Strong consistent (up to 3.5') upward gradient between the upper bedrock and the overburden
BR-6 Zone3	(32-41.5')	36.55	-3.48	1	2	-0.1	BR Z3		Overall weak (from 0.2' to 0.3') downward gradient
BR-6 Zone2	(52.5-62')	36.56	-0.01	1		-0.0005	BR Z2	K	within the bedrock
BR-6 Zone1	(84-93.5')	36.28	0.28	1	+	0.009	BR Z1		
P-17	(2-12')	23.81				***	so	71	Strong consistent upward gradient within the overburden, from 7' to 9'
MW-34	(60-65')	32.38	-8.57	1	-	-0.16	DO	************	Overall very weak but somewhat inconsistent
BR-7 Zone3	(59-68.5')	32.31	0.07	1	+	0.014	BR Z3	K	downward gradient from the deep overburden to the
BR-7 Zone2	(101.5-112)	32.10	0.21	1	+	0.005	BR Z2	K	shallow bedrock up to 0.1' and within the bedrock,
R-7 Zone1	(142-151.5')	32.15	-0.05	1	-	-0.001	BR Z1		from 0.1' to 0.2'

BR	-8 Well	Octo	ber 5, 19	98 Groun	dwater I	Data		(Overall Vertical Hydraulic Gradient †
Well No.	(Screen or	GW Elev	GW Elev.	Vertic	al Gradi	ient †	000080		Between Aug-98 and Oct-98
	Intake Zone, in ft bgs)	(in ft)	∆ (in ft)	D. or U.	+ or -	VALUE	Aquifer	D. or U	Remarks
BR-8 Zone3	(172-182.5')	15.17				PT	BR Z3		Weak inconsistent upward or downward gradient
BR-8 Zone2	(194.5-205')	15.09	0.08	1	+	0.003	BR Z2	¥ 7	within the bedrock, from 0.1' to 0.2'
BR-8 Zone1	(211-221.5')	15.03	0.06	1	+	0.004	BR Z1		

Notes:

D.: Downward Hydraulic Gradient

U.: Upward Hydraulic Gradient

SO: Shallower portion of the overburden aquifer

DO: Deeper portion of the overburden aquifer at or near the contact of the overburdenand the bedrock

BR: Bedrock aquifer

BR Z3: Bedrock aquifer Zone 3 Shallowest intake zone

BR Z2: Bedrock aquifer Zone 2 Intermediate depth intake zone

BR Z1: Bedrock aquifer Zone 1 Deepest intake zone

†: Hydraulic vertical gradients iv are calculated as follows: difference in piezometric head between the screen/intake zone considered and the next deeper screen/intake zone divided by the difference in elevations of the two mid-points' screen/intake zones.

 $i_v = \Delta h / \Delta$ mid-screen/intake elevations

Former Varian Facility Beverly, Massachusetts

	Location Code	e AP-3	33-DO	AP-	-34-DO	AP-35-DO		AP-40-S			AP-41-S		AP-4	42-DO	AP-43-DO	B2-PSL5	B2-PSL5	B3-PSL5	B4-PSL5	BLDG3-LAB	BLDG3-SB100	BLDG3-SB101	BLDG3-SB102
	Sample IE	24)-20130910	AP-33-DO(24- 26)-20130910 9/10/2013	,	AP-34-DO(34- 36)-20130911 9/11/2013	AP-35-DO(33- 35)-20130912 9/12/2013	AP40S-11-13 4/30/2019	AP40S-29-31 4/30/2019	AP40S-35-37 4/30/2019	AP41S-0 5/1/2019	AP41S-19-21 5/2/2019	AP41S-33-35 5/2/2019	AP42DO-45- 47-20200916 9/16/2020	AP42DO-55-57 20200916 9/16/2020	AP43-40-42- 20200917 9/17/2020	B2-PSL5(0.5-0.5 19950322 3/22/1995	B2-PSL5(10- 12)-19950322 3/22/1995	B3-PSL5(10- 11)-19991227 12/27/1999	B4-PSL5- 19991227 12/27/1999	BLDG3-LAB(10-12) 19950329 3/29/1995	BLDG3-SB100(8- 10)-20120317 3/17/2012	BLDG3-SB101(7-9 20120317 3/17/2012	9)- BLDG3-SB102(11- 11)-20120318 3/18/2012
	Depth (ft	22 - 24	24 - 26	21 - 23	34 - 36	33 - 35	16.1 - 16.1	20.8 - 20.8	21.8 - 21.8	15.1 - 15.1	22 - 22	24.2 - 24.2	45 - 47	55 - 57	40 - 42	0.5 - 0.5	10 - 12	10 - 11	10 - 11	10 - 12	8 - 10	7 - 9	11 - 11
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES																							
1,1,1,2-Tetrachloroethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0052	< 0.0039	< 0.0041
1,1,1-Trichloroethane	mg/kg	2	1.7	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08	< 0.08	< 5.6	< 0.43	< 0.0039	< 0.0041
1,1,2,2-Tetrachloroethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6	< 0.0038	< 0.0039	< 0.0041
1,1,2-Trichloroethane	mg/kg	< 0.31	< 0.17	< 0.28		< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6	< 0.0038	< 0.0039	< 0.0041
1,1-Dichloroethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08	< 0.08	< 5.6	< 0.43	< 0.0039	< 0.0041
1,1-Dichloroethene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08	< 0.08	< 5.6	< 0.0038	< 0.0039	< 0.0041
1,1-Dichloropropene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
1,2,3-Trichlorobenzene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.43	< 0.0039	< 0.0041
1,2,3-Trichloropropane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.43	< 0.0039	< 0.0041
1,2,4-Trichlorobenzene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
1,2,4-Trimethylbenzene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
1,2-Dibromoethane (EDB)	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
1,2-Dichlorobenzene	mg/kg	< 0.31	< 0.17	< 0.28		< 26										< 0.006	< 56			< 5.6	< 0.0038	< 0.0039	< 0.0041
1,2-Dichloroethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6	< 0.0038	< 0.0039	< 0.0041
1,2-Dichloropropane	mg/kg	< 0.31	< 0.17	< 0.28		< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6	< 0.0038	< 0.0039	< 0.0041
1,3,5-Trimethylbenzene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
1,3-Dichlorobenzene	mg/kg	< 0.31	< 0.17	< 0.28		< 26										< 0.006	< 56			< 5.6	< 0.43	< 0.0039	< 0.0041
1,3-Dichloropropane	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.0038	< 0.0039	< 0.0041
1,4-Dichlorobenzene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26										< 0.006	< 56			< 5.6	< 0.43	< 0.0039	< 0.0041
1,4-Dioxane	mg/kg	< 6.2	< 3.3	< 5.6	< 31	< 530															< 8.5	< 0.078	< 0.081
2,2-dichloropropane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
2-Butanone	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26										< 0.012	< 110			< 11	< 0.43	< 0.0039	< 0.0041
2-Hexanone	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26										< 0.012	< 110			< 11	< 0.0038	< 0.0039	< 0.0041
4-Isopropyltoluene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.43	< 0.0039	< 0.0041
4-Methyl-2-pentanone	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26		4.7	1.0	4.7	4.7	4.7				< 0.012	< 110			< 11	< 0.43	< 0.0039	< 0.0041
Acetone	mg/kg	< 0.31	0.19	< 0.28	12	< 26	< 2	< 1.7	< 1.8	< 1.7	< 1.7	< 1.7	< 11	< 9.2	< 21	< 0.024	< 220			< 22	< 0.43	0.056	0.0066
Acrolein	mg/kg															< 0.024	< 220			< 22			
Acrylonitrile	mg/kg	0.01	0.17	0.20												< 0.024	< 220			< 22	0.42	0.0020	0.0041
Benzene	mg/kg	< 0.31	< 0.17	< 0.28		< 26										< 0.006	< 56			< 5.6	< 0.43	< 0.0039	< 0.0041
Bromobenzene Bromodichleremethane	mg/kg	< 0.31	< 0.17	< 0.28		< 26		.0.047		. 0.040	.0.040	. 0.040					. 54			. E 4	< 0.43	< 0.0039	< 0.0041
Bromodichloromethane	mg/kg	< 0.31	< 0.17	< 0.28		< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6	< 0.0038 < 0.0038	< 0.0039 < 0.0039	< 0.0041
Bromoform Bromomethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56 < 110	< 0.08		< 5.6		< 0.0039	< 0.0041
	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.2	< 0.17	< 0.18	< 0.17	< 0.17	< 0.17	< 1.1	< 0.92	< 2.1	< 0.012 < 0.006	< 56	< 0.5		< 11	< 0.43	< 0.0039	< 0.0041 < 0.0041
Carbondisulfide Carbontetrachloride	mg/kg mg/kg	< 0.31	< 0.17	< 0.28	< 1.0	< 26 < 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6 < 5.6	< 0.0038	< 0.0039	< 0.0041
Chlorobenzene	mg/kg	< 0.31	< 0.17	< 0.28		< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6	< 0.43	< 0.0039	< 0.0041
Chlorobromomethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26		\ 0.00 <i>1</i>	\ U.U/J	\ 0.000	\ U.UU7	\ U.UU7	< 0.44	\ U.J1	\ U.UU	\ J.000		\ U.UU			< 0.43	< 0.0039	< 0.0041
Chloroethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.012	< 110	< 0.8		< 11	< 0.43	< 0.0039	< 0.0041
Chloroform	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.012	< 56	< 0.08		< 5.6	< 0.43	< 0.0039	< 0.0041
Chloromethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.012	< 110	< 0.8		< 11	< 0.43	< 0.0039	< 0.0041
cis-1,2-Dichloroethene	mg/kg	0.42	1.7	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08	0.12	< 5.6	< 0.43	< 0.0039	< 0.0041
cis-1,3-Dichloropropene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6	< 0.0038	< 0.0039	< 0.0041
DBCP	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.0038	< 0.0039	< 0.0041
Dibromochloromethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6	< 0.0038	< 0.0039	< 0.0041
Dibromomethane	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.0038	< 0.0039	< 0.0041
Dichlorodifluoromethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
Dichloromethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.012	< 110	< 0.2		< 11	< 0.0038	< 0.0039	< 0.0041
Diethyl ether	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.43	< 0.0039	< 0.0041
Diisopropyl Ether	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.43	< 0.0039	< 0.0041
Ethene,(2-chloroethoxy)-	mg/kg															< 0.006	< 56			< 5.6			
Ethylbenzene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26										< 0.006	< 56			< 5.6	< 0.43	< 0.0039	< 0.0041
Hexachlorobutadiene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.43	< 0.0039	< 0.0041
Isopropylbenzene	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.43	< 0.0039	< 0.0041
130ргорупостистве	mg/kg	. 0.01	. 0.17	. 0.20	1	120		1	1	<u> </u>	1		I		1	1		1		1	, 0.73	. 0.0007	1 0.001

Former Varian Facility Beverly, Massachusetts

	Location Cod	e AP-3	33-DO	AP-	34-DO	AP-35-DO		AP-40-S			AP-41-S		AP-4	12-DO	AP-43-DO	B2-PSL5	B2-PSL5	B3-PSL5	B4-PSL5	BLDG3-LAB	BLDG3-SB100	BLDG3-SB101	BLDG3-SB102
	Sample II	AP-33-DO(22- 24)-20130910	AP-33-DO(24- 26)-20130910		AP-34-DO(34- 36)-20130911	AP-35-DO(33- 35)-20130912	AP40S-11-13	AP40S-29-31	AP40S-35-37	AP41S-0	AP41S-19-21	AP41S-33-35	AP42DO-45- 47-20200916	AP42DO-55-57 20200916	- AP43-40-42- 20200917	B2-PSL5(0.5-0.5 19950322)- B2-PSL5(10- 12)-19950322	B3-PSL5(10- 11)-19991227	B4-PSL5- 19991227	BLDG3-LAB(10-12)- 19950329	BLDG3-SB100(8- 10)-20120317	BLDG3-SB101(7-9) 20120317)- BLDG3-SB102(11- 11)-20120318
	Sample Dat	e 9/10/2013	9/10/2013	9/11/2013	9/11/2013	9/12/2013	4/30/2019	4/30/2019	4/30/2019	5/1/2019	5/2/2019	5/2/2019	9/16/2020	9/16/2020	9/17/2020	3/22/1995	3/22/1995	12/27/1999	12/27/1999	3/29/1995	3/17/2012	3/17/2012	3/18/2012
	Depth (f) 22 - 24	24 - 26	21 - 23	34 - 36	33 - 35	16.1 - 16.1	20.8 - 20.8	21.8 - 21.8	15.1 - 15.1	22 - 22	24.2 - 24.2	45 - 47	55 - 57	40 - 42	0.5 - 0.5	10 - 12	10 - 11	10 - 11	10 - 12	8 - 10	7 - 9	11 - 11
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
m,p-xylene	mg/kg	< 0.62	< 0.33	< 0.56	< 3.1	< 53															< 0.0077	< 0.0078	< 0.0081
Methyltert-butylether	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26										< 0.006	< 56			< 5.6	< 0.43	< 0.0039	< 0.0041
Naphthalene	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.0038	< 0.0039	< 0.0041
n-Butylbenzene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.43	< 0.0039	< 0.0041
n-Propylbenzene	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.43	< 0.0039	< 0.0041
o-Chlorotoluene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
o-Xylene	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.43	< 0.0039	< 0.0041
p-Chlorotoluene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
sec-Butylbenzene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.43	< 0.078	< 0.081
Styrene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26										< 0.006	< 56			< 5.6	< 0.0038	< 0.0039	< 0.0041
tert-AmylMethyl Ether	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
tert-Butylbenzene	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.0038	< 0.0039	< 0.0041
tert-ButylEthyl Ether	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26															< 0.0038	< 0.0039	< 0.0041
Tetrachloroethene	mg/kg	< 0.31	0.29	< 0.28	52	740	170	0.95	0.44	0.071	0.38	0.62	14	8.8	12	< 0.006	1200	39	7.8	120	15 D	0.0072	0.047
Tetrahydrofuran	mg/kg	< 0.31	< 0.17	< 0.28		< 26															< 0.43	< 0.0039	< 0.0041
Toluene	mg/kg	< 0.31	< 0.17	< 0.28		< 26										< 0.006	< 56			< 5.6	< 0.43	< 0.0039	< 0.0041
trans-1,2-Dichloroethene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08	< 0.08	< 5.6	< 0.0038	< 0.0039	< 0.0041
Trans-1,3-Dichloropropene	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.006	< 56	< 0.08		< 5.6	< 0.43	< 0.0039	< 0.0041
Trichloroethene	mg/kg	< 0.31	< 0.17	< 0.28	70 D	450	0.16	0.098	0.079	< 0.068	< 0.069	1.2	54	42	110	< 0.006	< 56	0.23	0.8	< 5.6	< 0.43	< 0.0039	< 0.0041
Trichlorofluoromethane	mg/kg	< 0.31	< 0.17	< 0.28	< 1.6	< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86			< 0.8			< 0.0038	< 0.0039	< 0.0041
Vinyl acetate	mg/kg															< 0.012	< 110			< 11			
Vinyl chloride	mg/kg	< 0.31	0.52	< 0.28		< 26	< 0.08	< 0.067	< 0.073	< 0.068	< 0.069	< 0.069	< 0.44	< 0.37	< 0.86	< 0.012	< 110	< 0.2	< 0.2	< 11	< 0.0038	< 0.0039	< 0.0041
Xylene (total)	mg/kg	< 0.62	< 0.33	< 0.56	< 6.2	< 53										< 0.006	< 56			< 5.6	< 0.0077	< 0.0078	< 0.0081
GEN CHEMISTRY	3 3																						
Cyanide	mg/kg																< 0.56			< 0.56			
METALS																							
Antimony	mg/kg																< 0.56			< 0.22			
Arsenic	mg/kg																7.3			8.4			
Beryllium	mg/kg																< 0.56			< 0.56			
Cadmium	mg/kg																< 1.7			2			
Chromium	mg/kg																17			23			
Copper	mg/kg																56			110			
Lead	mg/kg																< 5.6			6.9			
Mercury	mg/kg																0.11			< 0.025			
Nickel	mg/kg										+						13			16			
Selenium	mg/kg																< 0.22			< 0.22			
Silver	mg/kg																< 0.22			< 2.2			+
Thallium	mg/kg																			< 0.22			
Zinc	mg/kg																< 0.56			40			
TPH	mg/kg																33			TU			
TPH	mg/kg																			< 11			4
Notes:	шу/ку																< 11			× 11			

Notes:

ft = feet

mg/kg = milligrams per kilogram

--- = Parameter not sampled for.

TPH = total petroleum hydrocarbons

Former Varian Facility Beverly, Massachusetts

	Location Code	BLDG3-SB103	BLDG	3-SB104	BLD	G3-SB105	BLDG3	3-SB106	BLDG	3-SB107	BLDG3	3-SB108	OB-49-S	OB-50-S	OB-51-S
		11)-20120318	6)-20130724	9)-20130724	BLDG3-SB105- 01(5-7)-20130725	11.8)-20130725	5)-20130726	9)-20130726	7)-20130726	BLDG3-SB107-02(7- 8.5)-20130726	5)-20130729	9.6)-20130729	OB49S- 121719-15-17	OB50S- 121819-17-19	OB51S- 121819-9-11
	Sample Date		7/24/2013	7/24/2013	7/25/2013	7/25/2013	7/26/2013	7/26/2013	7/26/2013	7/26/2013	7/29/2013	7/29/2013	12/17/2019	12/18/2019	12/18/2019
	Depth (ft)	11 - 11	5 - 6	8 - 9	5 - 7	11 - 11.8	4 - 5	7 - 9	5 - 7	7 - 8.5	4 - 5	9 - 9.6	15 - 17	17 - 19	9 - 11
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES		0.0007													
1,1,1,2-Tetrachloroethane	mg/kg	< 0.0037													
1,1,1-Trichloroethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
1,1,2,2-Tetrachloroethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
1,1,2-Trichloroethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
1,1-Dichloroethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
1,1-Dichloroethene	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
1,1-Dichloropropene	mg/kg	< 0.0037													
1,2,3-Trichlorobenzene	mg/kg	< 0.0037													
1,2,3-Trichloropropane	mg/kg	< 0.0037													
1,2,4-Trichlorobenzene	mg/kg	< 0.0037													
1,2,4-Trimethylbenzene	mg/kg	< 0.0037													
1,2-Dibromoethane (EDB)	mg/kg	< 0.0037													
1,2-Dichlorobenzene	mg/kg	< 0.0037													
1,2-Dichloroethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
1,2-Dichloropropane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
1,3,5-Trimethylbenzene	mg/kg	< 0.0037													
1,3-Dichlorobenzene	mg/kg	< 0.0037													
1,3-Dichloropropane	mg/kg	< 0.0037													
1,4-Dichlorobenzene	mg/kg	< 0.0037													
1,4-Dioxane	mg/kg	< 0.074													
2,2-dichloropropane	mg/kg	< 0.0037													
2-Butanone	mg/kg	< 0.0037													
2-Hexanone	mg/kg	< 0.0037													
4-Isopropyltoluene	mg/kg	< 0.0037													
4-Methyl-2-pentanone	mg/kg	< 0.0037													
Acetone	mg/kg	0.013	0.0076	0.0037	0.0081	< 0.31	0.0055	0.0045	0.0042	0.0093	< 0.0022	0.0032	< 88	< 86	< 22
Acrolein	mg/kg														
Acrylonitrile	mg/kg														
Benzene	mg/kg	< 0.0037		===						===					
Bromobenzene	mg/kg	< 0.0037													
Bromodichloromethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Bromoform	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Bromomethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 8.8	< 8.6	< 2.2
Carbondisulfide	mg/kg	< 0.0037													
Carbontetrachloride	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Chlorobenzene	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Chlorobromomethane	mg/kg	< 0.0037													
Chloroethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Chloroform	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Chloromethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
cis-1,2-Dichloroethene	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
cis-1,3-Dichloropropene	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
DBCP	mg/kg	< 0.0037													
Dibromochloromethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Dibromomethane	mg/kg	< 0.0037													
Dichlorodifluoromethane	mg/kg	< 0.0037													
Dichloromethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Diethyl ether	mg/kg	< 0.0037													
Diisopropyl Ether	mg/kg	< 0.0037													
Ethene,(2-chloroethoxy)-	mg/kg														
Ethylbenzene	mg/kg	< 0.0037													
Hexachlorobutadiene	mg/kg	< 0.0037													
Isopropylbenzene	mg/kg	< 0.0037													
	שיישייי	2.000,	1		I	I .	I	1	I	l	1	1	1		1

Former Varian Facility Beverly, Massachusetts

	Location Code	BLDG3-SB103	BLDG3	3-SB104	BLD	G3-SB105	BLDG	3-SB106	BLDG	3-SB107	BLDG	3-SB108	OB-49-S	OB-50-S	OB-51-S
	Sample ID	BLDG3-SB103(11- 11)-20120318	BLDG3-SB104-01(5- 6)-20130724	BLDG3-SB104-02(8- 9)-20130724	BLDG3-SB105- 01(5-7)-20130725	BLDG3-SB105-02(11- 11.8)-20130725	BLDG3-SB106-01(4 5)-20130726	BLDG3-SB106-02(7- 9)-20130726	BLDG3-SB107-01(5- 7)-20130726	BLDG3-SB107-02(7- 8.5)-20130726	BLDG3-SB108-01(4- 5)-20130729	- BLDG3-SB108-02(9- 9.6)-20130729	OB49S- 121719-15-17	OB50S- 121819-17-19	OB51S- 121819-9-11
	Sample Date	3/18/2012	7/24/2013	7/24/2013	7/25/2013	7/25/2013	7/26/2013	7/26/2013	7/26/2013	7/26/2013	7/29/2013	7/29/2013	12/17/2019	12/18/2019	12/18/2019
	Depth (ft)	11 - 11	5 - 6	8 - 9	5 - 7	11 - 11.8	4 - 5	7 - 9	5 - 7	7 - 8.5	4 - 5	9 - 9.6	15 - 17	17 - 19	9 - 11
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
m,p-xylene	mg/kg	< 0.0074													
Methyltert-butylether	mg/kg	< 0.0037													
Naphthalene	mg/kg	< 0.0037													
n-Butylbenzene	mg/kg	< 0.0037													
n-Propylbenzene	mg/kg	< 0.0037													
o-Chlorotoluene	mg/kg	< 0.0037													
o-Xylene	mg/kg	< 0.0037													
p-Chlorotoluene	mg/kg	< 0.0037													
sec-Butylbenzene	mg/kg	< 0.074													
Styrene	mg/kg	< 0.0037													
tert-AmylMethyl Ether	mg/kg	< 0.0037													
tert-Butylbenzene	mg/kg	< 0.0037													
tert-ButylEthyl Ether	mg/kg	< 0.0037													
Tetrachloroethene	mg/kg	0.028	< 0.0034	< 0.0026	0.018	22 D	< 0.0021	0.01	0.045	0.0085	< 0.0022	0.021	320	260	110
Tetrahydrofuran	mg/kg	< 0.0037													
Toluene	mg/kg	< 0.0037													
trans-1,2-Dichloroethene	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Trans-1,3-Dichloropropene	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Trichloroethene	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	0.0027	< 0.0024	< 0.0022	< 0.0022	< 3.5	28	< 0.89
Trichlorofluoromethane	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.78	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Vinyl acetate	mg/kg														
Vinyl chloride	mg/kg	< 0.0037	< 0.0034	< 0.0026	< 0.0022	< 0.31	< 0.0021	< 0.0025	< 0.0018	< 0.0024	< 0.0022	< 0.0022	< 3.5	< 3.4	< 0.89
Xylene (total)	mg/kg	< 0.0074													
GEN CHEMISTRY															
Cyanide	mg/kg														
METALS															
Antimony	mg/kg														
Arsenic	mg/kg														
Beryllium	mg/kg														
Cadmium	mg/kg														
Chromium	mg/kg														
Copper	mg/kg														
Lead	mg/kg														
Mercury	mg/kg														
Nickel	mg/kg														
Selenium	mg/kg														
Silver	mg/kg														
Thallium	mg/kg														
Zinc	mg/kg														
TPH															
TPH	mg/kg														

Notes:

ft = feet

mg/kg = milligrams per kilogram

--- = Parameter not sampled for.

TPH = total petroleum hydrocarbons

Table 6-2 Building 5 Area Soil Sample Results Former Varian Facility

Beverly, Massachusetts

	Location Code	AP-36-S	AP-37-S	AP-38-S	AP-39-S	BLD5-SHIP	BLDG5-SV4	OB-39-BR	OB	3-44-S	OB-4	5-BR		OB-53-BR		ОВ	-60-S
	Sample ID	AP-36-S(16-16.9)-	AP-37-S(6-6.8)-	AP-38-S(6-6.8)-	AP-39-S(16-17)-	BLD5-SHIP-	BLDG5-SV4(6-	OB39-BR(37)-	OB-44-S(9-10)-	OB-44-S(17-18)-	OB45-BR(15)-	OB45-BR(35)-	OB-53-BR-(25")-	OB-53-BR-(50-	OB-53-BR-(80-	OB-60-S-7-	OB-60-S-16-
		20180726	20180726	20180725	20180724	19950401	7.5)-20131230	20210429	20131230	20131230	20210507	20210507	20220331	55)-20220331	85')-20220401	20220813	20220813
	Sample Date	7/26/2018	7/26/2018	7/25/2018	7/24/2018	4/1/1995	12/30/2013	4/29/2021	12/30/2013	12/30/2013	5/7/2021	5/7/2021	3/31/2022	3/31/2022	4/1/2022	8/13/2022	8/13/2022
	Depth	16 - 16.9	6 - 6.8	6 - 6.8	16 - 17	11 - 13	6 - 7.5	37	9 - 10	17 - 18	15	35	19.5 - 19.5	41.5 - 41.5	64 - 64	7 - 7	16 - 16
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES																	
1,1,1,2-Tetrachloroethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,1,1-Trichloroethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.56	< 0.052	< 0.071	< 0.039	< 0.15	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
1,1,2,2-Tetrachloroethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.078	< 0.15	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
1,1,2-Trichloroethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.078	< 0.15	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
1,1-Dichloroethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.56	< 0.052	< 0.071	< 0.039	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
1,1-Dichloroethene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.56	< 0.052	< 0.071	< 0.078	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
1,1-Dichloropropene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,2,3-Trichlorobenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,2,3-Trichloropropane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,2,4-Trichlorobenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,2,4-Trimethylbenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,2-Dibromoethane (EDB)	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,2-Dichlorobenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,2-Dichloroethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.039	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
1,2-Dichloropropane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.039	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
1,3,5-Trimethylbenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,3-Dichlorobenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,3-Dichloropropane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,4-Dichlorobenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
1,4-Dioxane	mg/kg	< 2	< 2	< 2	< 2			< 1.8			< 1.9	< 1.8				< 1.7	< 1.7
2,2-dichloropropane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
2-Butanone	mg/kg	I 0.2	< 0.2	< 0.2	< 0.2			< 0.21			< 0.23	< 0.22				< 0.2	< 0.2
2-Hexanone	mg/kg	< 0.3	< 0.4	< 0.3	< 0.3			< 0.35 < 0.071			< 0.38 < 0.077	< 0.36 < 0.073				< 0.34	< 0.34
4-Isopropyltoluene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.008	< 0.067
4-Methyl-2-pentanone Acetone	mg/kg mg/kg	< 2	< 0.3	< 0.3	< 2		< 0.26	< 1.8	< 0.2	< 0.19	< 1.9	< 1.8	< 8.9	< 9.7	< 2.3	< 1.7	< 1.7
Benzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.20	< 0.071	< 0.2	< 0.19	< 0.077	< 0.073	< 0.9	< 9.7	< 2.3	< 0.068	< 0.067
Bromobenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Bromodichloromethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.078	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Bromoform	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.078	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Bromomethane	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2		< 0.024 B U	< 0.18	0.095 BD	< 0.15	< 0.19	< 0.18	< 0.89	< 0.97	< 0.23	< 0.17	< 0.17
Carbondisulfide	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Carbontetrachloride	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.078	< 0.15	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Chlorobenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.039	< 0.15	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Chlorobromomethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Chloroethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.039	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Chloroform	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.078	< 0.15	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Chloromethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.039	< 0.15	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
cis-1,2-Dichloroethene	mg/kg	0.2	0.4	< 0.1	0.3	< 0.56	< 0.052	< 0.071	< 0.078	0.057	< 0.077	< 0.073	< 0.35	0.46 J	< 0.09	0.091	0.13
cis-1,3-Dichloropropene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.039	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
DBCP	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Dibromochloromethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.039	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Dibromomethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Dichlorodifluoromethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Dichloromethane	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2		< 0.052	< 0.18	< 0.039	< 0.15	< 0.19	< 0.18	< 0.35	< 0.39	< 0.09	< 0.17	< 0.17
Diethyl ether	mg/kg	< 0.3	< 0.4	< 0.3	< 0.3			< 0.35			< 0.38	< 0.36				< 0.34	< 0.34
Diisopropyl Ether	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Ethylbenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067

Former Varian Facility Beverly, Massachusetts

	Location Code	AP-36-S	AP-37-S	AP-38-S	AP-39-S	BLD5-SHIP	BLDG5-SV4	OB-39-BR	OB	-44-S	OB-4	5-BR		OB-53-BR		OB-	-60-S
	Sample ID	AP-36-S(16-16.9)-	AP-37-S(6-6.8)-	AP-38-S(6-6.8)-	AP-39-S(16-17)-	BLD5-SHIP-	BLDG5-SV4(6-	OB39-BR(37)-	OB-44-S(9-10)-	OB-44-S(17-18)-	OB45-BR(15)-	OB45-BR(35)-	OB-53-BR-(25")-	OB-53-BR-(50-	OB-53-BR-(80-	OB-60-S-7-	OB-60-S-16-
		20180726	20180726	20180725	20180724	19950401	7.5)-20131230	20210429	20131230	20131230	20210507	20210507	20220331	55)-20220331	85')-20220401	20220813	20220813
	Sample Date	7/26/2018	7/26/2018	7/25/2018	7/24/2018	4/1/1995	12/30/2013	4/29/2021	12/30/2013	12/30/2013	5/7/2021	5/7/2021	3/31/2022	3/31/2022	4/1/2022	8/13/2022	8/13/2022
	Depth	16 - 16.9	6 - 6.8	6 - 6.8	16 - 17	11 - 13	6 - 7.5	37	9 - 10	17 - 18	15	35	19.5 - 19.5	41.5 - 41.5	64 - 64	7 - 7	16 - 16
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Hexachlorobutadiene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Isopropylbenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
m,p-xylene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Methyltert-butylether	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Naphthalene	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2			< 0.18			< 0.19	< 0.18				< 0.17	< 0.17
n-Butylbenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
n-Propylbenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
o-Chlorotoluene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
o-Xylene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
p-Chlorotoluene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
sec-Butylbenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Styrene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
tert-AmylMethyl Ether	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
tert-Butylalcohol	mg/kg	< 2	< 2	< 2	< 2			< 1.8			< 1.9	< 1.8				< 1.7	< 1.7
tert-Butylbenzene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
tert-ButylEthyl Ether	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
Tetrachloroethene	mg/kg	0.1	1.8	0.1	13	1	< 0.052	< 0.071	10 D	14 D	< 0.077	< 0.073	11 J	11 J	< 0.09	0.58	13
Tetrahydrofuran	mg/kg	< 0.3	< 0.4	< 0.3	< 0.3			< 0.35			< 0.38	< 0.36				< 0.34	< 0.34
Toluene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1			< 0.071			< 0.077	< 0.073				< 0.068	< 0.067
trans-1,2-Dichloroethene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.56	< 0.052	< 0.071	< 0.078	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Trans-1,3-Dichloropropene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.078	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Trichloroethene	mg/kg	0.4	0.3	< 0.1	2.5	3.5	< 0.052	< 0.071	0.27 D	6.2 D	< 0.077	< 0.073	< 0.35	35 J	< 0.09	< 0.068	1.4
Trichlorofluoromethane	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1		< 0.052	< 0.071	< 0.078	< 0.038	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Vinyl chloride	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 1.1	< 0.052	< 0.071	< 0.078	< 0.15	< 0.077	< 0.073	< 0.35	< 0.39	< 0.09	< 0.068	< 0.067
Xylene (total)	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1												
GEN CHEMISTRY																	
Cyanide	mg/kg					< 0.56											
METALS																	
Antimony	mg/kg					< 0.22											
Arsenic	mg/kg					5.1											
Beryllium	mg/kg					< 0.56											
Cadmium	mg/kg					< 1.7											
Chromium	mg/kg					24											
Copper	mg/kg					12											
Lead	mg/kg					15											
Mercury	mg/kg					< 0.025											
Nickel	mg/kg					10											
Selenium	mg/kg					0.34											
Silver	mg/kg					< 2.2											
Thallium	mg/kg					< 0.22											
Zinc	mg/kg					44											
TPH																	
TPH	mg/kg					< 11											

Notes:

ft = feet

mg/kg = milligrams per kilogram

--- = Parameter not sampled for.

TPH = total petroleum hydrocarbons

Table 6-3
Soil Analytical Results
PSL-10 Area

Former Varian Facility Beverly, Massachusetts

	Location Code	150_S	OH-02	B-2_32-Tozer	MW-1_32-Tozer	MW-2_32-Tozer	MW-4_32-Tozer	MW-5_32-Tozer	PSL10-GP-16
	Sample ID	150_SOH-02-	150_SOH-02-	B-2_32-TOZER-	MW-1_32-TOZER-	MW-2_32-TOZER-	MW-4_32-TOZER-	MW-5_32-TOZER-	PSL10-GP-16-
	-	19991201-A	19991201-B	20110216	20110215	20110215	20111103	20111103	19991201
	Sample Date	12/1/1999	12/1/1999	2/16/2011	2/15/2011	2/15/2011	11/3/2011	11/3/2011	12/1/1999
	Depth	1 - 3	4 - 6	11.5 - 11.5	20.5 - 20.5	16 - 16	2 - 2	2 - 2	3 - 4
	Sample Purpose	N	N	N	N	N	N	N	N
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES									
1,1,1-Trichloroethane	mg/kg	0.08	< 0.05	< 0.0077	< 0.0061	< 0.0053	< 0.0061	< 0.0049	< 0.05
1,1-Dichloroethane	mg/kg	< 0.05	< 0.05	< 0.0077	< 0.0061	< 0.0053	< 0.0061	< 0.0049	< 0.05
1,1-Dichloroethene	mg/kg	< 0.05	< 0.05	< 0.0077	< 0.0061	< 0.0053	< 0.0061	< 0.0049	< 0.05
Acetone	mg/kg			< 0.0765	< 0.061	< 0.0533	< 0.0605	< 0.0488	
cis-1,2-Dichloroethene	mg/kg	< 0.05	< 0.05	< 0.0077	< 0.0061	0.0636	< 0.0061	< 0.0049	< 0.05
Naphthalene	mg/kg			< 0.0077	< 0.0061	< 0.0053	< 0.0061	< 0.0049	
Tetrachloroethene	mg/kg	1.8	0.37	< 0.0077	< 0.0061	1.49	< 0.0061	< 0.0049	0.15
trans-1,2-Dichloroethene	mg/kg	< 0.05	< 0.05	< 0.0077	< 0.0061	< 0.0053	< 0.0061	< 0.0049	< 0.05
Trichloroethene	mg/kg	0.57	0.06	< 0.0077	0.0869	0.185	< 0.0061	< 0.0049	1.1

Notes:

mg/kg = milligrams per kilogram

--- = Parameter not sampled for

Table 6-4 Summary of Sediment Sample Results Former Varian Facility Beverly, Massachusetts

	Location Code	DOWNSTREAM- SED	MIDSTREAM-SED	STR-11	STR-18	STR-19	STR-20	STR-21	STR-22	STR-23	STR-24	STR-26	STR-27	STR-28	STRHA-08	STRM-A-SCDS
	Sample ID	-	MIDSTREAM SED- 20210513	STR-11-20210326- SOLID	STR-18-20210326- SOLID	STR-19-20210326- SOLID	STR-20-20210326- SOLID	STR-21-20210326- SOLID	STR-22- 20210513	STR-23- 20210518	STR-24- 20210514	STR-26- 20210512	STR-27- 20210512	STR-28- 20210512-S	STRHA-8- 20210512-S	STREAM-A-SCDS- 20210326-SOLID
	Sample Date	5/13/2021	5/13/2021	3/26/2021	3/26/2021	3/26/2021	3/26/2021	3/26/2021	5/13/2021	5/18/2021	5/14/2021	5/12/2021	5/12/2021	5/12/2021	5/12/2021	3/26/2021
	Depth (ft)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOLATILES																
1,1,1-Trichloroethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
1,1,2,2-Tetrachloroethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
1,1,2-Trichloroethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
1,1-Dichloroethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
1,1-Dichloroethene	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
1,2-Dichloroethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
1,2-Dichloropropane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Acetone	mg/kg	< 13	< 21	< 4.9	< 3	< 2.9	< 2.8	< 2.6	< 6	< 13	< 3.3	< 24	< 4	< 4	< 4.4	< 2.5
Bromodichloromethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Bromoform	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Bromomethane	mg/kg	< 1.3	< 2.1	< 0.49	< 0.3	< 0.29	< 0.28	< 0.26	< 0.6	< 1.3	< 0.33	< 2.4	< 0.4	< 0.4	< 0.44	< 0.25
Carbontetrachloride	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Chlorobenzene	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Chloroethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Chloroform	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Chloromethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
cis-1,2-Dichloroethene	mg/kg	< 0.5	12	0.24	< 0.12	0.17	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
cis-1,3-Dichloropropene	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Dibromochloromethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Dichloromethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Tetrachloroethene	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
trans-1,2-Dichloroethene	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Trans-1,3-Dichloropropene	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Trichloroethene	mg/kg	< 0.5	< 0.83	0.24	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	1.1	< 0.16	< 0.16	< 0.18	< 0.1
Trichlorofluoromethane	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
Vinyl chloride	mg/kg	< 0.5	< 0.83	< 0.19	< 0.12	< 0.11	< 0.11	< 0.1	< 0.24	< 0.52	< 0.13	< 0.97	< 0.16	< 0.16	< 0.18	< 0.1
METALS	mallen.	3	5.6						1.2	6.8	0.49	3.8	< 0.5	< 0.46	< 0.44	
Antimony Arsenic	mg/kg	8.2	5.6	8.5	14	4.3	3.9	4	1.2 12 M	7.9	5.1	3.8	< 0.5 3.1	< 0.46 4.5	< 0.44 7.7	6.2
	mg/kg	8.2 45	110	0.0	14	4.3	3.9	4	45	69	19	580	61	4.5 52	68	0.2
Barium Beryllium	mg/kg mg/kg	< 0.71	< 0.99						< 0.64	< 0.8	< 0.47	< 1.3	0.79	< 0.46	< 0.44	
Cadmium	mg/kg	< 0.71	1.9						< 0.64	1.4	0.55	1.7	< 0.5	< 0.46	< 0.44	
Chromium	mg/kg	36	71						25	74	9.6	46	13	6.2	12	
Iron	mg/kg			13000	17000	8500	9300	10000				40				17000
Lead	mg/kg	160	110						120	130	18	74	9.4	5.8	7	
Manganese	mg/kg			320	800	130	91	72					7.4	3.0		130
Mercury	mg/kg	< 0.27	< 0.36						< 0.19	< 0.31 M	< 0.15	< 0.51	< 0.19	< 0.14	< 0.16	
Nickel	mg/kg	14	25	8.8	4.9	5.6	< 5.6	6.3	13	28	8.8	65	5.9	13	11	7.4
Selenium	mg/kg	< 7.1	< 9.9						< 6.4 UM	< 8	< 4.7	< 13	< 5	< 4.6	< 4.4	
Silver	mg/kg	< 3.5	< 5						< 3.2	< 4	< 2.3	< 6.3	< 2.5	< 2.3	< 2.2	
Thallium	mg/kg	< 0.71	< 0.99						< 0.64	< 0.8	< 0.47	< 1.3	< 0.5	< 0.46	< 0.44	
Vanadium	mg/kg	28	48						42 D	46	17	33	16	7.9	14	
Zinc	mg/kg	250	340						100 M	340	60	430	130	36	44	
Notes:	9,119	1	1			1		l .	1	1			1	1	1	

Notes: ft = feet

mg/kg = milligrams per kilogram

--- = Parameter not sampled for.

Table 7-1 Summary Statistics - Soil Former Varian Facility Site

Compound	Units	#Samples	# Hits	% Hits	Minimum	Min Location	Min Depth	Maximum	Background	Max Location	Max Depth	S-1 DC STD	Average
Metals								-					
Arsenic	mg/kg	7	7	100	2.1	B1-PSL7-19950308	5-7	9.6	20	B1-PSL5-19950322	14-15		5.96
Beryllium	mg/kg	7	1	14	0.55	B1-PSL8A(10-12)-19950320	10-12	0.55	0.5	B1-PSL8A(10-12)-19950320	10-12		0.32
Cadmium	mg/kg	7	1	14	2	BLDG3-LAB(10-12)-19950329	10-12	2	2	BLDG3-LAB(10-12)-19950329	10-12		1.00
Chromium	mg/kg	7	7	100	9.8	B1-PSL7-19950308	5-7	24	30	BLD5-SHIP-19950401	11-13		17.69
Copper	mg/kg	7	7	100	8.4	B1-PSL7-19950308	5-7	110	40	BLDG3-LAB(10-12)-19950329	10-12		41.34
Lead	mg/kg	7	3	43	6.1	B1-PSL7-19950308	5-7	15	100	BLD5-SHIP-19950401	11-13		5.57
Mercury	mg/kg	7	4	57	0.064	B1-PSL5-19950322	14-15	0.17	0.3	B1-PSL8A(10-12)-19950320	10-12		0.07
Nickel	mg/kg	7	7	100	8.4	B1-PSL7-19950308	5-7	22	20	B1-PSL5-19950322	14-15		12.84
Selenium	mg/kg	7	2	29	0.23	B1-PSL5-19950322	14-15	0.34	0.5	BLD5-SHIP-19950401	11-13		0.16
Zinc	mg/kg	7	7	100	21	B1-PSL7-19950308	5-7	44	100	B1-PSL5-19950322 BLD5-SHIP-19950401	14-15 and 11-13		35.57
VOCs													
1,1,1-Trichloroethane	mg/kg	75	3	4	0.065	AP-26-DO(0-0)-20080424	0	2		AP-33-DO(22-24)-20130910	22-24	500	0.76
2-Butanone	mg/kg	27	1	4	1	AP-36-S(16-16.9)-20180726	16-16.9	1		AP-36-S(16-16.9)-20180726	16-16.9		2.86
Acetone	mg/kg	66	13	20	0.0032	BLDG3-SB108-02(9-9.6)-20130729	9-9.6	12		AP-34-DO(34-36)-20130911	34-36	500	5.08
Bromomethane	mg/kg	68	1	1	0.095	OB-44-S(9-10)-20131230	9-10	0.095		OB-44-S(9-10)-20131230	9-10	90	1.38
cis-1,2-Dichloroethene	mg/kg	75	10	13	0.057	OB-44-S(17-18)-20131230	17-18	1.7		AP-33-DO(24-26)-20130910	24-26		0.78
Tetrachloroethene	mg/kg	74	46	62	0.0072	BLDG3-SB101(7-9)-20120317	7-9	1200		B2-PSL5(10-12)-19950322	10-12		43.62
Trichloroethene	mg/kg	74	29	39	0.0027	BLDG3-SB107-01(5-7)-20130726	5-7	450		AP-35-DO(33-35)-20130912	33-35		14.84
Vinyl chloride	mg/kg	74	1	1	0.52	AP-33-DO(24-26)-20130910	24-26	0.52		AP-33-DO(24-26)-20130910	24-26		1.12

Background - MassDEP, 2002, Technical Update, Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil, Update to Section 2.3 Guidance for Disposal Site Risk Characterization - In support of the Massachusetts Contingency Plan, May.

Average concentrations calculated using detects and 1/2 the reporting limit for nondetects.

S-1 DC STD denotes S-1 Direct Contact Standard per the MCP

mg/kg = milligrams per kilogram

Table 7-2 Summary Statistics - Groundwater Former Varian Facility Site

Compound	Units	#Samples	# Hits	% Hits	Maximum	Max Location	Max Date	GW-1 std	Average	coc	Reason
Metals	00			70 1110		THUM ECONOMI	max 2 acc	0.00 = 0.00	, we a uge		
Arsenic	mg/L	3	2	67	0.019	GDS-03-20210326	3/26/2021	0.01	0.01	No	NR
Calcium	mg/L	11	11	100	350	OB-57-DO-20220809	08/09/22	na	61.69	No	EN
Iron	mg/L	3	3	100	34	GDS-01-20210326	3/26/2021	na	29.00	No	EN
Magnesium	mg/L	11	11	100	17	OB-12-S-20220808	8/8/2022	na	6.87	No	EN
Manganese	mg/L	3	3	100	7.2	GDS-02-20210326	3/26/2021	na	5.47	No	EN
Potassium	mg/L	11	11	100	62	OB-57-DO-20220809	8/9/2022	na	9.26	No	EN
Sodium	mg/L	11	11	100	140	OB-57-DO-20220809	8/9/2022	na	34.09	No	EN
Arsenic	mg/L	3	1	33	0.013	GDS-03-20210326	3/26/2021	0.01	0.01	No	NR
Iron	mg/L	3	3	100	31	GDS-01-20210326	3/26/2021	NA	26.00	No	EN
Manganese	mg/L	3	3	100	7	GDS-02-20210326	3/26/2021	NA	5.27	No	NR
VOCs						ı					
1,1,1-Trichloroethane	mg/L	563	36	6	52	AP-24-DO-20210223	2/23/2021	0.2	0.78	Yes	
1,1,2,2-Tetrachloroethane	mg/L	563	2	0.4	0.21	AP-23-DO-20210909	9/9/2021	0.005	0.09	No	LF
1,1,2-Trichloroethane	mg/L	563	2	0.4	0.026	AP-35-DO-20211109	11/9/2021	0.005	0.026	No	LF
1,1-Dichloroethane	mg/L	563	69	12	3.9	AP-24-DO-20220215	2/15/2022	0.07	0.15	Yes	
1,1-Dichloroethene	mg/L	563	103	18	5.1	Multiple		0.007	0.13	Yes	
1,2,4-Trimethylbenzene	mg/L	26	1	4	0.004	OB-59-DO-20220809	8/9/2022	NA	0.004	No	LF
1,2-Dichloroethane	mg/L	563	6	1	0.022	AP-35-DO-20211109	11/092021	0.005	0.022	No	LF
1,2-Dichloropropane	mg/L	563	3	1	0.014	OB-10-DO-20211115	11/15/2021	0.005	0.014	No	LF
2-Butanone	mg/L	26	2	8	0.0271	AP-36-S-20210126	1/26/2021	4	0.027	No	LF
Acetone	mg/L	563	77	14	78	AP-38-S-20200909	9/9/2020	6.3	0.60	Yes	
Benzene	mg/L	26	5	19	0.003	OB-59-DO-20220809	8/9/2022	0.005	0.003	No	OS
Bromodichloromethane	mg/L	563	2	0.4	0.0064	OB-57-DO-20220809	8/9/2022	0.003	0.0064	No	LF
Chlorobenzene						AP-22-20211110,	11/10/2021,				
	mg/L	563	3	1	0.003	MW-016-20220509	05/09/2022	0.1	0.003	No	LF
Chloroethane	mg/L	563	24	4	0.041	AP-35-DO-20201124	11/24/2020	NA	0.041	No	LF
Chloroform	mg/L	563	27	5	7.2	AP-31-DO-20220509	5/9/2022	0.07	0.13	No	OS
Chloromethane	mg/L	563	8	1	0.005	Multiple		NA	0.005	No	LF
cis-1,2-Dichloroethene	mg/L	563	404	72	500	AP-33-DO-20220211	2/11/2022	0.07	18.86	Yes	
Dibromochloromethane	mg/L	563	1	0.2	0.002	AP42DO-20200923	9/23/2020	0.002	0.002	No	LF
Dichloromethane	mg/L	563	8	1	0.62	AP-23-DO-20210909	9/9/2021	0.005	0.22	No	LF
Diisopropyl Ether	mg/L	21	1	5	0.002	OB-59-DO-20220809	8/9/2022	NA	0.002	No	LF
Ethylbenzene	mg/L	26	1	4	0.004	OB-59-DO-20220809	8/9/2022	0.7	0.004	No	LF
m,p-xylene	mg/L	26	1	4	0.012	OB-59-DO-20220809	8/9/2022	10	0.012	No	LF
o-Xylene	mg/L	26	1	4	0.006	OB-59-DO-20220809	8/9/2022	10	0.006	No	LF
Tetrachloroethene	mg/L	563	240	43	65	AP-32-DO-20200821	8/21/2020	0.005	1.44	Yes	
Tetrahydrofuran	mg/L	26	6	23	0.25	AP-36-S-20200909	9/9/2020	NA	0.05	Yes	
Toluene	mg/L	26	3	12	0.015	OB-11-DO-20220808	8/8/2022	1	0.015	No	OS
trans-1,2-Dichloroethene	mg/L	563	81	14	2.9	AP-24-DO-20210520	5/20/2021	0.1	0.11	Yes	
Trichloroethene	mg/L	563	315	56	600	OB-45-BR-20211110	11/10/2021	0.005	9.61	Yes	
Vinyl chloride	mg/L	563	210	37	130	AP-23-DO-20211109	11/9/2021	0.002	1.96	Yes	

Notes:

mg/L denotes milligrams per liter

GW-1 denotes GW-1 groundwater standard per the MCP

COC denotes Contaminant of Concern

LF denotes low frequency (detected in less 3 samples) or less than 10% of the samples and low concentration (maximum concentration < 10 times the GW-1 Standard)

OS denotes "other source" of compound identified

NR denotes data not representative

EN denotes essential nutrient

Average concentrations are calculated using the detected concentrations and 1/2 the reporting limit for the nondetect results. If the calculated average was greater than the maximum detected concentration, the maximum detected concentration was used as the average (highlighted in green)

Table 7-3
Summary Statistics - Facility Building Indoor Air
Former Varian Facility Site

Compound	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	CI/TV
1,1,1-Trichloroethane	ug/m3	18	7	0.125	BLDG3-3-20210624	06/24/21	0.284	BLDG5-1-20211007	10/07/21	0.19	4400
1,1-Dichloroethene	ug/m3	18	1	0.155	BLDG3-3-20210325	03/25/21	0.155	BLDG3-3-20210325	03/25/21	0.11	180
1,2-Dichloroethane	ug/m3	18	3	0.089	BLDG2-6-20210921	09/21/21	0.138	BLDG2-6-20210624	06/24/21	0.11	NA GW
Acetone	ug/m3	18	18	73.200	BLDG2-6-20211222	12/22/21	610	BLDG5-1-20200402	04/02/20	245.61	NA
Carbontetrachloride	ug/m3	18	15	0.377	BLDG3-3-20210325	03/25/21	0.516	BLDG5-2-20211007	10/07/21	0.47	NA GW
Chloroform	ug/m3	18	15	0.112	BLDG3-3-20211222	12/22/21	0.576	BLDG5-3-20211007	10/07/21	0.29	NA GW
Chloromethane	ug/m3	18	16	0.740	BLDG5-1-20200402	04/02/20	1.8	BLDG2-6-20210325	03/25/21	0.96	NA GW
cis-1,2-Dichloroethene	ug/m3	18	12	0.309	BLDG2-6-20210624	06/24/21	2.3	BLDG5-2-20200708	07/08/20	0.72	5.3
Dichloromethane	ug/m3	18	7	0.760	BLDG5-2-20190827	08/27/19	90	BLDG3-3-20210624	06/24/21	6.20	NA GW
Tetrachloroethene	ug/m3	18	18	0.746	BLDG2-6-20210624	06/24/21	10	BLDG5-2-20190827	08/27/19	3.63	4.1
trans-1,2-Dichloroethene	ug/m3	18	16	0.896	BLDG5-2-20211007	10/07/21	543	BLDG2-6-20210921	09/21/21	59.13	NA
Trichloroethene	ug/m3	18	18	0.312	BLDG3-3-20211222	12/22/21	8.6	BLDG5-2-20190827	08/27/19	3.15	1.8
Trichlorofluoromethane	ug/m3	18	18	0.938	BLDG3-3-20210325	03/25/21	4.4	BLDG5-2-20190827	08/27/19	2.30	NA GW
Vinyl chloride	ug/m3	18	3	0.056	BLDG5-3-20211007	10/07/21	0.074	BLDG5-1-20211007	10/07/21	0.08	1.3

Notes:

Samples include the most recent four rounds for Buildings 3 and 5, although 2022 results for Building 3 are excluded due to the long term shutdown starting in January. ug/m3 denotes micrograms per cubic meter

Average calculated using detected values and 1/2 the reporting limit for nondetect results

C/I TV denotes Commercial/Industrial Threshold Values (MassDEP, 2016)

NA denotes chemicals excluded based on known source in Building 3

NA GW denotes chemicals excluded because chemical not identified in groundwater

denotes chemical identified as COC in air (Varian buildings)

ug/m3 = micrograms per meter cubed

Table 7-4 Summary Statistics - Tozer Road Indoor Air Former Varian Facility Site

Compound	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	C/I TV	сос	Comment
1,1,1-Trichloroethane	ug/m3	29	1	0.142	39-TOZ-02-20220106	01/06/22	0.142	39-TOZ-02-20220106	01/06/22	0.20	4400	No	Not detected in soil vapor at 39 Tozer in 2022 sampling
1,1,2-Trichloroethane	ug/m3	23	1	0.24	SK-28	12/08/20	0.24	SK-28	12/08/20	0.11	0.72	No	Not a COC in groundwater or in Varian IA
1,2,4-Trimethylbenzene	ug/m3	3	2	0.24	SK-28	12/08/20	0.31	SK-16	12/07/20	0.35	NA	No	Not a COC in groundwater or in Varian IA
1,2-Dichlorobenzene	ug/m3	23	1	0.15	39-TOZ-02-20220106	01/06/22	0.15	39-TOZ-02-20220106	01/06/22	0.34	710	No	Not detected in soil vapor at 39 Tozer in 2022 sampling
1,2-Dichloroethane	ug/m3	23	6	0.081	31-TOZ01-20210330, 31- TOZ03-20210330	3/30/2021, 3/30/2021	0.316	39-TOZ-03-20210319	03/19/21	0.33	0.44	No	All concentrations less than C/I TV
1,3,5-Trimethylbenzene	ug/m3	3	1	0.36	SK-16	12/07/20	0.36	SK-16	12/07/20	1.76	NA	No	Not a COC in groundwater or in Varian IA
1,4-Dichlorobenzene	ug/m3	23	2	0.126	39-TOZ-01-20220106	01/06/22	0.301	39-TOZ-02-20220106	01/06/22	0.35	1.7	No	Not detected in soil vapor at 39 Tozer in 2022 sampling
2-Butanone	ug/m3	20	8	1.73	39-TOZ-03-20220106	01/06/22	6.69	39-TOZ-01-20220106	01/06/22	1.89	4400	No	Not a COC in groundwater or in Varian IA
Acetone	ug/m3	20	20	3.59	31 TOZER 02-20211220	12/20/21	273	39-TOZ-02-20210319	03/19/21	50.85	710	No	Other source identified
Benzene	ug/m3	23	19	0.323	31-TOZ03-20210330	03/30/21	1.24	39-TOZ-02-20220106	01/06/22	0.50	11	No	Not a COC in groundwater or in Varian IA
Carbontetrachloride	ug/m3	23	22	0.3	SK-28	12/08/20	0.623	39-TOZ-02-20220106	01/06/22	0.40	1.9	No	Not a COC in groundwater or in Varian IA
Chloroform	ug/m3	23	18	0.098	31 TOZER 02-20211220	12/20/21	3.6	SK-16	12/07/20	0.56	3	No	Not a COC in groundwater or in Varian IA
cis-1,2-Dichloroethene	ug/m3	29	13	0.079	30TOZER-4-20211229, 30TOZER-6-20211229	12/29/2021, 12/29/2021	2	32 TOZER-1-20150416, 32 TOZER-2-20150416	4/16/2015, 4/16/2015	0.38	5.3	No	All concentrations less than C/I TV
Dichloromethane	ug/m3	23	4	0.26	SK-29	12/08/20	4.93	39-TOZ-01-20210318	03/18/21	1.08	530	No	Not a COC in groundwater or in Varian IA
Ethylbenzene	ug/m3	23	21	0.096	31 TOZER 01-20211220	12/20/21	65.2	39-TOZ-02-20220106	01/06/22	4.43	880	No	Not a COC in groundwater or in Varian IA
m,p-xylene	ug/m3	23	22	0.19	SK-29	12/08/20	283	39-TOZ-02-20220106	01/06/22	18.44	88	No	Not a COC in groundwater or in Varian IA
Naphthalene	ug/m3	20	5	0.273	39-TOZ-01-20210318	03/18/21	2.22	39-TOZ-02-20210319	03/19/21	0.28	2.7	No	Not a COC in groundwater or in Varian IA
o-Xylene	ug/m3	23	21	0.087	31-TOZ02-20210330	03/30/21	101	39-TOZ-02-20220106	01/06/22	6.54	88	No	Not a COC in groundwater or in Varian IA
Styrene	ug/m3	23	16	0.128	31 TOZER 04-20211220	12/20/21	14.6	39-TOZ-01-20220106	01/06/22	1.70	20	No	Not a COC in groundwater or in Varian IA
Tetrachloroethene	ug/m3	29	27	0.217	31 TOZER 04-20211220	12/20/21	7	32 TOZER-1-20150416	04/16/15	1.04	4.1	NA	Previously evaluated (see text)
Toluene	ug/m3	23	21	0.373	31-TOZ02-20210330	03/30/21	9.46	39-TOZ-01-20220106	01/06/22	2.90	4400	No	Not a COC in groundwater or in Varian IA
trans-1,2-Dichloroethene	ug/m3	26	11	0.079	39-TOZ-03-20210319	03/19/21	0.484	30-TOZ-06-20210408	04/08/21	0.21	53	No	All concentrations less than C/I TV
Trichloroethene	ug/m3	29	19	0.183	31 TOZER 02-20211220	12/20/21	3.17	39-TOZ-01-20220106	01/06/22	0.75	1.8	No	Concentrations in indoor air not attributed to VI (see text)
Vinyl chloride	ug/m3	29	1	0.064	39-TOZ-01-20220106	01/06/22	0.064	39-TOZ-01-20220106	01/06/22	0.18	1.3	No	Not detected in soil vapor at 39 Tozer in 2022 sampling
Xylene (total)	ug/m3	17	16	0.313	31-TOZ02-20210330	03/30/21	11.6	39-TOZ-02-20210319	03/19/21	1.63	88	No	Not a COC in groundwater or in Varian IA

See Section 7.1.1.4 for rounds included. COCs = Contaminants of Concern

ug/m3 = micrograms per meter cubed

C/I TV denotes Commercial/Industrial Threshold Values (MassDEP, 2016)

Table 7-5 Residential Indoor Air Sampling Summary Former Varian Facility Site

		N-			I	
	Indoor Air Sampling	No. Locations	Sump	VI Pathway		
Location	Dates	Per Event	Sampled?	Complete?	Notes	Reference
Location	12/7/2020,	. c. zvent	None	complete.	110100	MassDEP (2020); Vapor Intrusion
1 Longview Terrace	2/25/2021	1-3	present	No		Assessment Report (APTIM, 2021c)
2 Longview Terrace	12/7/2020	1	No	No		MassDEP (2020)
3 Longview Terrace	12/7/2020	1	No	No		MassDEP (2020)
9 Longview Terrace	12/7/2020	1	No	No		MassDEP (2020)
10 Longview Terrace	12/7/2020	1	No	No		MassDEP (2020)
11 Longview Terrace	12/7/2020	1	No	No		MassDEP (2020)
29 Longview Drive			None			Vapor Intrusion Assessment Report
20 Longiton Billo	3/4/2021	3	present	No		(APTIM, 2021c)
30 Longview Drive	12/7/2020	1	No	No		MassDEP (2020)
31 Longview Drive	12/8/2020	1	No	No		MassDEP (2020)
	12/7/2020,					MassDEP (2020); Vapor Intrusion
33 Longview Drive	3/2/2021	1-3	Dry	No		Assessment Report (APTIM, 2021c)
	3/2/2021	1-3	Diy	INU	Potential background sources in basement	MassDEP (2020); Vapor Intrusion
	12/7/2020,				identified in 2/2021, removed for next	Assessment Report (APTIM, 2021c);
	2/26/21, 10/26/21,				round. SRM condition identified and IRA	APTIM (2022) Phase V ROS Report July-
	11/16/21, 1/14/22,				initiated; Quarterly soil vapor and indoor	Dec. 2021; APTIM (2022) IRA Status
34 Longview Drive	4/22/22, 7/14/22	2-3	Dry	Potentially	air samples collected.	(draft)
23 Jordan Street	12/7/2020	1	No	No		MassDEP (2020)
						Vapor Intrusion Assessment Report
					Background source of TCE in first round,	(APTIM, 2021c); APTIM (2022) Phase V
26 Jordan St.	2/23/21, 11/3/21	3	Yes	No	removed for second round.	ROS Report July-Dec. 2021
29 Jordan St.	12/8/2020	1	No	No		MassDEP (2020)
32 Jordan St.	12/8/2020	1	No	No		MassDEP (2020)
40 Jordan St.	12/7/2021	1	No	No		MassDEP (2020)
26 Lexington Drive	12/7/2020	1	No	No		MassDEP (2020)
32 Lexington Drive	- /- /	_	_			Vapor Intrusion Assessment Report
· •	3/5/2021	3	Dry	No		(APTIM, 2021c)
33 Lexington Drive	12/8/2020,		None			MassDEP (2020); Vapor Intrusion
00 Ecxington Drive	2/11/2021	1-3	present	No		Assessment Report (APTIM, 2021c)
24 Laviantan Driva			Not			Vapor Intrusion Assessment Report
34 Lexington Drive	2/18/2021	3	accessible	No	Potential background source of PCE	(APTIM, 2021c)
						Vapor Intrusion Assessment Report
			Not		Background source of TCE in first round,	(APTIM, 2021c); APTIM (2022) Phase V
36 Lexington Drive	2/19/21, 10/26/21	3	accessible	No	removed for second round.	ROS Report July-Dec. 2021
	12/7/2020,		None			MassDEP (2020); Vapor Intrusion
38 Lexington Drive	2/12/2021	1-4	present	No		Assessment Report (APTIM, 2021c)
40 Lexington Drive	12/8/2020	1	No	No		MassDEP (2020)
3 Sonning Road	12/7/2020	1	No	No		MassDEP (2020)
	12/7/2020,		None			MassDEP (2020); Vapor Intrusion
27 Sonning Road	2/25/2021	1-2	present	No		Assessment Report ATIM (2021c)
28 Sonning Road	12/7/2020	1	No	No		MassDEP (2020)
						MassDEP (2020); Vapor Intrusion
						Assessment Report (APTIM, 2021c);
	12/8/2020,				PCE in second floor attributed to indoor	APTIM (2022) Phase V ROS Report July-
30 Sonning Road	3/12/21, 10/26/21	1-3	Yes	No	source.	Dec. 2021
04.0	12/7/2020,				Background source of PCE identified in	MassDEP (2020); Vapor Intrusion
31 Sonning Road	3/11/2021	1-3	Yes	No	upper floors	Assessment Report (APTIM, 2021c)
	12/8/2020,				- P.P.	MassDEP (2020); Vapor Intrusion
32 Sonning Road	2/19/2021	1-2	Yes	No		Assessment Report (APTIM, 2021c)
33 Sonning Road	12/9/2020	1	No	No		MassDEP (2020)
-	12/8/2020,		None			MassDEP (2020); Vapor Intrusion
34 Sonning Road	2/19/2021	1-3	present	No		Assessment Report (APTIM, 2021c)
36 Sonning Road	12/8/2020	1	No	No		MassDEP (2020)
39 Sonning Road	12/7/2020,	-				MassDEP (2020); Vapor Intrusion
39 Sonning Road	3/2/2021	1-2	Dry	No		Assessment Report (APTIM, 2021c)
40 Ci C	12/7/2020,		None			MassDEP (2020); Vapor Intrusion
40 Sonning Road	2/26/2021	1-2	present	No		Assessment Report (APTIM, 2021c)
	12/7/2020,					MassDEP (2020); Vapor Intrusion
41 Sonning Road	12///2020, 3/12/2021	1-3	Dry	No		Assessment Report (APTIM, 2021c)
42 Sonning Road	12/8/2020	1-3	No	No		MassDEP (2020)
		1		140		,
43 Sonning Road	12/8/2020,	4.2	None	A1-		MassDEP (2020); Vapor Intrusion
46 Sonning Road	2/23/2021 12/7/2020	1-2	present No	No No	 	Assessment Report (APTIM, 2021c) MassDEP (2020)
47 Sonning Road	12/7/2020	1	No	No		MassDEP (2020)
49 Sonning Road	12/8/2020	1	No	No		MassDEP (2020)
55 Sonning Road	12/7/2020	1	No	No		MassDEP (2020)
57 Sonning Road	12/7/2020	1	No	No		MassDEP (2020)
J	. ,	-			Concentrations greater than the C/I TV in	
			1		the basement, but attributed to	
61 Sonning Road	12/7/2020,		None		background sources identified. No vapor	MassDEP (2020); Vapor Intrusion
	12/23/2021	1-2	present		sampling allowed by owner.	Assessment Report (APTIM, 2021c)
	, .,		,			
63 Sonning Road	12/7/2020,					MassDEP (2020); Vapor Intrusion
	2/12/2021	1-3	Yes	No		Assessment Report (APTIM, 2021c)
65 Sonning Road	12/8/2020	1-3	No	No		MassDEP (2020)
	., -, - 52-0				·	

Table 7-6 Contaminants of Concern Former Varian Facility Site

COCs by Exposure Medium							
Chemical	Soil	Groundwater	Indoor Air (Former Varian Buildings)	Indoor Air 34 Longview Drive			
1,1,1-Trichloroethane	Χ	Х					
1,1-Dichloroethane		Х					
1,1-Dichloroethene		Х					
cis-1,2-Dichloroethene	Х	Х	Х				
Acetone	Х	Х					
Tetrachloroethene	Х	Х	Х	Х			
Tetrahydrofuran		Х					
trans-1,2- Dichloroethene		Х					
Trichloroethene	Х	Х	Х	Х			
Vinyl chloride	Х	Х					

COCs = Contaminants of Concern

Table 7-7 Exposure Profiles Former Varian Facility Site

Time Frame	Receptor	Medium	Exposure Point	Exposure Route	Evaluated?	Rationale
	Facility Workers	Soil	Unpaved surface soil (0-3') at 150 Sohier Road	Ingestion Dermal Contact	No	Limited area of exposure, low concentrations
		Indoor Air	Facility buildings – with systems on	Inhalation	Yes	NA
	'	Soil	Soil - 0-6' 150 Sohier Road	Ingestion Dermal Contact	No	Assumed to be insignificant -see text
	Workers/Facility Visitors/Landscapers, recreational use	Soil	Unpaved surface soil (0-3') – PSL10, grass field	Ingestion Dermal Contact	Yes	NA
Current	Downgradient site workers	150 Sohier Road Dermal Contact No	No	Shown to be Incomplete pathway or No Significant Risk		
		Surface Water	=	Dermal Contact	No	Previously Evalulated (APTIM, 2021a)
	Downgradient Residents	Indoor Air	Various Residential Dwellings	Inhlation	No except 34 Longview Dr.	Shown to be Incomplete pathway or No Significant Risk (except 34 Longview Dr.)
	Facility Workers	Soil	Soil 0-15' 150 Sohier Road	J	No	Would be less than future residents
		Indoor Air	Same as current	NA	NA	NA
	Futuro Bosidonto 150	Soil	Soil 0-15' 150 Sohier Road	_	Yes	NA
	Sohier Road	Indoor Air	Not evaluated		NA	Exposure point concentrations cannot be derived
Future	Construction Workers	Soil	Soil 0-15' 150 Sohier Road	_	Yes	NA
		Groundwater	Groundwater (0-15') – 150 Sohier Road	Dermal Contact	Yes	NA
	Workers/Site Visitors/Landscapers, recreational use	Soil	Soil (0-15') – PSL10, grass field same as current	NA	NA	NA
	Downgradient Site Workers	Indoor air	same as current	NA	NA	NA
	Downgradient	Surface Water	same as current	NA	NA	NA
	Residents	Indoor Air	same as current	NA	NA	NA

Table 7-8
Soil Samples Used in Risk Characterization
Former Varian Facility Site

All Non Hot Spot Samples

Sample ID	Location	Sample ID	Location
OB-42-BR(45-50')	30 Tozer	AP41S-0	150 Sohier Road
OB-42-BR(25-30')-20220407	30 Tozer	AP41S-19-21	150 Sohier Road
AP-26-DO(0-0)-20080424	150 Sohier Road	AP42DO-45-47-20200916	150 Sohier Road
AP-33-DO(22-24)-20130910	150 Sohier Road	AP42DO-55-57-20200916	150 Sohier Road
AP-33-DO(24-26)-20130910	150 Sohier Road	OB39-BR(37)-20210429	150 Sohier Road
AP-34-DO(21-23)-20130911	150 Sohier Road	OB45-BR(15)-20210507	150 Sohier Road
AP-36-S(16-16.9)-20180726	150 Sohier Road	OB45-BR(35)-20210507	150 Sohier Road
AP-37-S(6-6.8)-20180726	150 Sohier Road	OB52-BR(45)-20210426	150 Sohier Road
AP-38-S(6-6.8)-20180725	150 Sohier Road	OB50S-121819-17-19	150 Sohier Road
B1-PSL8(10-12)-19950309	150 Sohier Road	B1-PSL5-19950322	150 Sohier Road
B1-PSL8A(0-0)-19950320	150 Sohier Road	B1-PSL5-19950322-S	150 Sohier Road
B1-PSL8A(10-12)-19950320	150 Sohier Road	B1-PSL7-19950308	150 Sohier Road
B2-PSL5(0.5-0.5)-19950322	150 Sohier Road	B2-PSL7-19991108	150 Sohier Road
B2-PSL8(13-15)-19960301	150 Sohier Road	OB-53-BR-(50-55)-20220331	150 Sohier Road
B3-PSL8(10-12)-19991108	150 Sohier Road	OB-54-BR(40-45')-20220405	150 Sohier Road
B4-PSL8(10-12)-19991108	150 Sohier Road	OB-59-DO-51-220728	150 Sohier Road
BLDG3-SB101(7-9)-20120317	150 Sohier Road	OB-55-BR-30.0-220725	150 Sohier Road
BLDG3-SB102(11-11)-20120318	150 Sohier Road	OB-57-DO-53.5-220722	150 Sohier Road
BLDG3-SB103(11-11)-20120318	150 Sohier Road	OB-57-DO-56.0-220722	150 Sohier Road
BLDG3-SB104-01(5-6)-20130724	150 Sohier Road	OB-57-DO-58.5-220722	150 Sohier Road
BLDG3-SB104-02(8-9)-20130724	150 Sohier Road	OB-58-DO-35-220729	150 Sohier Road
BLDG3-SB105-01(5-7)-20130725	150 Sohier Road	OB-58-DO-55-220729	150 Sohier Road
BLDG3-SB106-01(4-5)-20130726	150 Sohier Road	OB-55-BR-59.0-220726	150 Sohier Road
BLDG3-SB106-02(7-9)-20130726	150 Sohier Road	OB-57-DO-61.0-220726	150 Sohier Road
BLDG3-SB107-01(5-7)-20130726	150 Sohier Road	OB-59-DO-24.0-220727	150 Sohier Road
BLDG3-SB107-02(7-8.5)-20130726	150 Sohier Road	OB-60-S-7-20220813	150 Sohier Road
BLDG3-SB108-01(4-5)-20130729	150 Sohier Road	B4-PSL5-19991227	150 Sohier Road
BLDG3-SB108-02(9-9.6)-20130729	150 Sohier Road		
BLDG5-SV4(6-7.5)-20131230	150 Sohier Road		
AP40S-29-31	150 Sohier Road		
AP40S-35-37	Varian site		

Hot Spot Samples

Hot Spot 1 - Building 3 Chem Lab
B2-PSL5(10-12)-19950322
B3-PSL5(10-11)-19991227
BLDG3-LAB(10-12)-19950329
BLDG3-SB105-02(11-11.8)-20130725

Hot Spot 2 - Building 3 Northeast Corner AP-34-DO(34-36)-20130911 AP-35-DO(33-35)-20130912 BLDG3-SB100(8-10)-20120317 AP40S-11-13 AP41S-33-35 AP43-40-42-20200917 OB49S-121719-15-17 OB51S-121819-9-11

Hot Spot 3 - Building 5
AP-39-S(16-17)-20180724
OB-44-S(17-18)-20131230
OB-44-S(9-10)-20131230
BLD5-SHIP-19950401
OB-53-BR-(25")-20220331
OB-53-BR-(80-85')-20220401
OB-60-S-16-20220813

Table 7-9
Soil Exposure Point Concentrations - 0-6 feet
Former Varian Facility Site

											Method 1
coc	Units	#Samples	# Hits	Minimum	Min Location	Min Depth	Maximum	Max Location	Max Depth	Average	S-1
											Standard
1,1,1-Trichloroethane	mg/kg	14	1	0.065	AP-26-DO(0-0)-20080424	0-0	0.065	AP-26-DO(0-0)-20080424	0-0	0.017	500
Acetone	mg/kg	10	4	0.0042	BLDG3-SB107-01(5-7)-	5-7	0.0081	BLDG3-SB105-01(5-7)-20130725	5-7	0.22	500
cis-1,2-Dichloroethene	mg/kg	14	1	0.4	AP-37-S(6-6.8)-20180726	6-6.8	0.4	AP-37-S(6-6.8)-20180726	6-6.8	0.18	100
Tetrachloroethene	mg/kg	13	4	0.018	BLDG3-SB105-01(5-7)-	5-7	1.8	AP-37-S(6-6.8)-20180726	6-6.8	0.16	30
Trichloroethene	mg/kg	13	2	0.0027	BLDG3-SB107-01(5-7)-	5-7	0.3	AP-37-S(6-6.8)-20180726	6-6.8	0.032	30

COC denotes contaminant of concern

mg/kg denotes milligrams per kilogram

Average calculated using detected values and 1/2 the reporting limit for nondetect results

Method 1 S-1 Standard = Massachusetts Contingency Plan Method 1 standard for soil classified as S-1

Table 7-10
Soil Exposure Point Concentration - 0-15 Feet
Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Depth	Maximum	Max Location	Max Depth	Average
1,1,1-Trichloroethane	mg/kg	39	1	0.065	AP-26-DO(0-0)-20080424	0-0	0.065	AP-26-DO(0-0)-20080424	0-0	0.87
Acetone	mg/kg				BLDG3-SB108-02(9-9.6)-			BLDG3-SB101(7-9)-20120317		
		30	11	0.0032	20130729	9-9.6	0.056		7-9	6.09
cis-1,2-Dichloroethene	mg/kg	39	3	0.091	OB-60-S-7-20220813	7-7	0.4	AP-37-S(6-6.8)-20180726	6-6.8	0.94
Tetrachloroethene	mg/kg	38	21	0.0072	BLDG3-SB101(7-9)-20120317	7-9	1200	B2-PSL5(10-12)-19950322	10-12	48.62
Trichloroethene	mg/kg	38	7	0.0027	BLDG3-SB107-01(5-7)-20130726	5-7	3.5	BLD5-SHIP-19950401	11-13	1.03

COC denotes contaminant of concern

mg/kg denotes milligrams per kilogram

Average calculated using detected values and 1/2 the reporting limit for nondetect results

Table 7-11
Groundwater Sampling Locations Included in Risk Characterization
Former Varian Facility Site

Sample Location	Location	Site Area	Depth	Hot Spot
AP-12-BR	150 Sohier Road	Bld 3	BR	HS-BR
MW-016	150 Sohier Road	Bld 3	BR	HS-BR
OB-09-BR	150 Sohier Road	Bld 3	BR	HS-BR
OB-10-BR	150 Sohier Road	Bld 3	BR	HS-BR
OB-19-BR	150 Sohier Road	Bld 3	BR	HS-BR
OB-25-BR	150 Sohier Road	Bld 3	BR	HS-BR
OB-28-BR	150 Sohier Road	Bld 3	BR	HS-BR
OB-38-BR	150 Sohier Road	Bld 5	BR	HS-BR
OB-45-BR	150 Sohier Road	Bld 5	BR	HS-BR
OB-52-BR	150 Sohier Road	Bld 3	BR	HS-BR
OB-11-BR	150 Sohier Road	Bld 3	BR	NO
OB-12-BR	150 Sohier Road	Bld 3	BR	NO
OB-26-BR	150 Sohier Road	Bld 3	BR	NO
OB-26-DO	150 Sohier Road	Bld 3	BR	NO
OB-27-BR	150 Sohier Road	Bld 3	BR	NO
OB-39-BR	150 Sohier Road	Bld 5	BR	NO
OB-53-BR	150 Sohier Road	Bld 5	BR	NO
OB-54-BR	150 Sohier Road	Bld 3	BR	NO
OB-55-BR	150 Sohier Road	Bld 3	BR	NO
RW-22	150 Sohier Road	Bld 3	BR	NO
AP-12-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-13-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-24-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-25-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-26-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-27-DO	150 Sohier Road	Bld 5	DO	HS-DO
AP-30R-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-31-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-32-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-34-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-42-DO	150 Sohier Road	Bld 3	DO	HS-DO
AP-43-DO	150 Sohier Road	Bld 3	DO	HS-DO
MW-013	150 Sohier Road	Bld 3	DO	HS-DO
OB-04-DO	150 Sohier Road	Bld 3	DO	HS-DO
OB-12-DO	150 Sohier Road	Bld 3	DO	HS-DO
OB-14-DO	150 Sohier Road	Bld 3	DO	HS-DO
OB-19-DO	150 Sohier Road	Bld 3	DO	HS-DO
OB-25-DO	150 Sohier Road	Bld 3	DO	HS-DO
OB-34-DO	150 Sohier Road	Bld 3	DO	HS-DO
OB-35-DO	150 Sohier Road	Bld 5	DO	HS-DO
OB-37-DO	150 Sohier Road	Bld 3	DO	HS-DO
OB-38-DO	150 Sohier Road	Bld 5	DO	HS-DO

Table 7-11
Groundwater Sampling Locations Included in Risk Characterization
Former Varian Facility Site

Sample Location	Location	Site Area	Depth	Hot Spot
OB-52-DO	150 Sohier Road	Bld 3	DO	HS-DO
RW-01_MW-18	150 Sohier Road	Bld 3	DO	HS-DO
AP-23-DO	150 Sohier Road	Bld 3	DO	NO
AP-33-DO	150 Sohier Road	Bld 3	DO	NO
AP-35-DO	150 Sohier Road	Bld 3	DO	NO
MW-014A	150 Sohier Road	Bld 3	DO	NO
MW-030	150 Sohier Road	Bld 5	DO	NO
OB-09-DO	150 Sohier Road	Bld 3	DO	NO
OB-10-DO	150 Sohier Road	Bld 3	DO	NO
OB-10-DO	150 Sohier Road	Bld 3	DO	NO
OB-11-DO	150 Sohier Road	Bld 3	DO	NO
OB-26-BR	150 Sohier Road	Bld 3	DO	NO
OB-32-DO	150 Sohier Road	Bld 3	DO	NO
OB-36-DO	150 Sohier Road	Bld 3	DO	NO
OB-39-DO	150 Sohier Road	Bld 5	DO	NO
OB-45-DO	150 Sohier Road	Bld 5	DO	NO
OB-57-DO	150 Sohier Road	Bld 3	DO	NO
OB-58-DO	150 Sohier Road	Bld 3	DO	NO
OB-59-DO	150 Sohier Road	Bld 3	DO	NO
RW-03	150 Sohier Road	Bld 3	DO	NO
AP-12-S	150 Sohier Road	Bld 3	S	HS-S
OB-49-S	150 Sohier Road	Bld 3	S	HS-S
OB-50-S	150 Sohier Road	Bld 3	S	HS-S
OB-51-S	150 Sohier Road	Bld 3	S	HS-S
OB-52-S	150 Sohier Road	Bld 3	S	HS-S
OB-60-S	150 Sohier Road		S	HS-S
AP-13-S	150 Sohier Road	Bld 3	S	NO
AP-36-S	150 Sohier Road	Bld 5	S	NO
AP-37-S	150 Sohier Road	Bld 5	S	NO
AP-38-S	150 Sohier Road	Bld 5	S	NO
AP-39-S	150 Sohier Road	Bld 5	S	NO
AP-40-S	150 Sohier Road	Bld 3	S	NO
AP-41-S	150 Sohier Road	Bld 3	S	NO
B-3	150 Sohier Road	Bld 5	S	NO
BW-05	150 Sohier Road	Bld 3	S	NO
BW-08	150 Sohier Road	Bld 3	S	NO
MW-009	150 Sohier Road	Bld 3	S	NO
OB-09-S	150 Sohier Road	Bld 3	S	NO
OB-10-S	150 Sohier Road	Bld 3	S	NO
OB-11-S	150 Sohier Road	Bld 3	S	NO
OB-12-S	150 Sohier Road	Bld 3	S	NO
OB-15-S	150 Sohier Road	Bld 3	S	NO

Table 7-11
Groundwater Sampling Locations Included in Risk Characterization
Former Varian Facility Site

Sample Location	Location	Site Area	Depth	Hot Spot
OB-44-S	150 Sohier Road	Bld 5	S	NO
OB-47-S	150 Sohier Road	Bld 5	S	NO
OB-05-BR	27 Tozer Road		BR	NO
OB-05-DO	27 Tozer Road		DO	DHS-DO
OB-43-S	27 Tozer Road		S	HS-S
OB-05-S	27 Tozer Road		S	NO
BR-5_ZONE3	28 Tozer Road		BR	NO
CL03-DO	28 Tozer Road		DO	DHS-DO
CL11-DO	28 Tozer Road		DO	NO
GFS-03	28 Tozer Road		S	HS-S
CL04-BR	30 Tozer Road		BR	NO
OB-42-BR	30 Tozer Road		BR	NO
CL04-DO	30 Tozer Road		DO	NO
OB-42-S	30 Tozer Road		S	HS-S
OB-18-DO	31 Tozer Road		DO	NO
AP-15-S	31 Tozer Road		S	NO
GZ-4	31 Tozer Road		S	NO
OB-18-S	31 Tozer Road		S	NO
CL10-BR	32 Tozer Road		BR	NO
AP-19	32 Tozer Road		DO	NO
AP-20	32 Tozer Road		DO	NO
AP-21	32 Tozer Road		DO	NO
AP-22	32 Tozer Road		DO	NO
CL10-DO	32 Tozer Road		DO	NO
MW-2_32- TOZER	32 Tozer Road		DO	NO
CL10-S	32 Tozer Road		S	NO
BR-7_ZONE1	39 Tozer Road		BR	NO
BR-7_ZONE2	39 Tozer Road		BR	NO
BR-7_ZONE3	39 Tozer Road		BR	NO
OB-08-DO	39 Tozer Road		DO	DHS-DO
MW-034	39 Tozer Road		DO	NO
OB-08-S	39 Tozer Road		S	NO
OB-41-S	39 Tozer Road		S	NO
BR-6_ZONE3	Downgradient Res.		BR	NO
OB-06-BR	Downgradient Res.		BR	NO
OB-20-BR	Downgradient Res.		BR	NO
OB-21-BR	Downgradient Res.		BR	NO
P-21-BR	Downgradient Res.		BR	NO
OB-21-DO	Downgradient Res.		DO	DHS-DO
OB-06-DO	Downgradient Res.		DO	NO
OB-20-DO	Downgradient Res.		DO	NO

Table 7-11
Groundwater Sampling Locations Included in Risk Characterization
Former Varian Facility Site

Sample Location	Location	Site Area	Depth	Hot Spot
P-21-DO	Downgradient Res.		DO	NO
OB-06-S	Downgradient Res.		S	NO
P-04R	Downgradient Res.		S	NO
P-05R	Downgradient Res.		S	NO
P-09	Downgradient Res.		S	NO
P-09R	Downgradient Res.		S	NO
P-11R	Downgradient Res.		S	NO
P-13R	Downgradient Res.		S	NO
P-14R	Downgradient Res.		S	NO
P-19A	Downgradient Res.		S	NO
P-20	Downgradient Res.		S	NO
P-20R	Downgradient Res.		S	NO
P-21	Downgradient Res.		S	NO
P-23	Downgradient Res.		S	NO
P-30	Downgradient Res.		S	NO
P-31	Downgradient Res.		S	NO
BR-1_ZONE3	North of Rt 128		BR	NO
CL02-BR	North of Rt 128		BR	NO
CL06-BR	North of Rt 128		BR	NO
CL09- BR_ZONE3	North of Rt 128		BR	NO
OB-17-BR	North of Rt 128		BR	NO
OB-23-BR	North of Rt 128		BR	NO
CL06-DO	North of Rt 128		DO	NO
MW-003R	North of Rt 128		DO	NO
OB-17-DO	North of Rt 128		DO	NO
CL06-S	North of Rt 128		S	NO
CL09-S	North of Rt 128		S	NO
MW-002R	North of Rt 128		S	NO
MW-005R	North of Rt 128		S	NO
BR-3_ZONE1	Off-Site		BR	NO
BR-3_ZONE2	Off-Site		BR	NO

Table 7-11
Groundwater Sampling Locations Included in Risk Characterization
Former Varian Facility Site

Sample Location	Location	Site Area	Depth	Hot Spot
BR-3_ZONE3	Off-Site		BR	NO
CL08- BR_ZONE1	Off-Site		BR	NO
CL08- BR_ZONE2	Off-Site		BR	NO
CL08- BR_ZONE3	Off-Site		BR	NO
CL08-DO	Off-Site		DO	NO
CL08-S	Off-Site	·	S	NO

BR denotes bedrock groundwater

DO denotes deep overburden groundwater

HS denotes Hot Spot

DHS denotes Downgradient Hot Spot

No denotes location is not in a Hot Spot

S denotes Shallow groundwater

Upgradient and offsite samples are not included in site evaluation

Table 7-12 Groundwater Summary Statistics - Shallow Excluding Hot Spot

Former Varian Facility Site
150 Sohier Road, Beverly, Massachusetts

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	EPC	UCL
1,1,1-Trichloroethane	mg/L	181	2	0.023	B-3-20211116-LF	11/16/21	0.026	B-3-20211116	11/16/21	0.0075	100
1,1-Dichloroethane	mg/L	181	16	0.00164	AP-39S-202110106	01/26/21	0.048	AP-37-S-20211109	11/09/21	0.0083	100
1,1-Dichloroethene	mg/L	181	11	0.001	Multiple	Multiple	0.011	OB-44-S-20210126	01/26/21	0.0048	100
cis-1,2-Dichloroethene	mg/L	181	98	0.002	Multiple	Multiple	35	OB-44-S-20220512	05/12/22	1.3	100
Acetone	mg/L	181	38	0.00581	AP-36-S-20210126	01/26/21	78	AP-38-S-20200909	09/09/20	0.48	100
Tetrachloroethene	mg/L	181	29	0.00123	AP-36-S-20210126	01/26/21	0.31	OB-44-S-20220512	05/12/22	0.015	100
Tetrahydrofuran	mg/L	13	6	0.00899	AP-39S-202110106	01/26/21	0.25	AP-36-S-20200909	09/09/20	0.10	NV
trans-1,2-Dichloroethene	mg/L	181	16	0.001	AP-36-S-20200909	09/09/20	0.077	AP-37-S-20200909	09/09/20	0.0079	100
Trichloroethene	mg/L	181	34	0.002	Multiple	Multiple	0.16	OB-41-S-20201125	11/25/20	0.012	50
Vinyl chloride	mg/L	181	67	0.002	Multiple	Multiple	13	OB-44-S-20200909	09/09/20	0.45	100

Notes:

EPC denotes Exposure Point Concentrations, derived as arithmetic mean of detect values and one half the reporting limits for non-detects mg/L denotes milligrams per liter

NV denotes no value available

Table 7-13 Groundwater Summary Statistics - Shallow Hot Spot

Former Varian Facility Site 150 Sohier Road, Beverly, Massachusetts

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	EPC
1,1,1-Trichloroethane	mg/L	44	1	0.037	OB-51-S-20200820	08/20/20	0.037	OB-51-S-20200820	08/20/20	0.026
1,1-Dichloroethene	mg/L	44	8	0.006	OB-49-S-20210909	09/09/21	0.4	OB-60-S-20220816	08/16/22	0.026
Acetone	mg/L	44	5	0.01	Multiple	Multiple	0.033	OB-49-S-20210222	02/22/21	0.127
cis-1,2-Dichloroethene	mg/L	44	36	0.002	OB-49-S-20201124	11/24/20	53	OB-49-S-20210222	02/22/21	5.7
Tetrachloroethene	mg/L	44	29	0.002	OB-49-S-20210222	02/22/21	47	OB-60-S-20220816	08/16/22	1.91
trans-1,2-Dichloroethene	mg/L	44	10	0.002	OB-49-S-20210513	05/13/21	0.83	OB-49-S-20201124	11/24/20	0.062
Trichloroethene	mg/L	44	36	0.013	OB-43-S-20211115-LF	11/15/21	48	OB-51-S-20200820	08/20/20	2.8
Vinyl chloride	mg/L	44	13	0.006	OB-49-S-20210513	05/13/21	2.4	OB-51-S-20220510	05/10/22	0.22

Notes:

Shallow hot spot is located in groundwater under Building 3 and 5 of the former Varian facility (see Table 7-11)

EPC denotes Exposure Point Concentrations, derived as arithmetic mean of detect values and one half the reporting limits for non-detects

mg/L denotes milligrams per liter

NV denotes no value available

Table 7-14 Buildings 3 and 5 Indoor Air Exposure Point Concentrations

Former Varian Facility Site 150 Sohier Road, Beverly, Massachusetts

сос	Units	EPC Bldg 3-3	EPC Bldg 2-6	EPC Bldg 5 All Locations
cis-1,2-Dichloroethene	ug/m3	ND	0.41	1.12
Tetrachloroethene	ug/m3	2.6	1.14	5.02
trans-1,2-Dichloroethene	ug/m3	22.5	237	2.74
Trichloroethene	ug/m3	0.64	1.1	5.00

Notes:

Samples include the most recent four rounds for Buildings 3 and 5, although 2022 results for Building 3 are excluded due to the long term shutdown starting in January.

COC denotes contaminant of concern

ug/m3 denotes micrograms per cubic meter

EPC denotes exposure point concentration is arithmethic mean using detects and 1/2 the reporting limit for non-detect results

ND denotes not detected in this location in the sampling rounds evaluated

Table 7-15 Risk Summary Former Varian Facility Site

Time Frame	Receptor	Medium	Exposure Point	Comment	Estimated Risk (ELCR)	Estimated Hazard (HI)			
	Varian Site Workers	Soil	Unpaved surface soil (0-3') on Varian site	Limited area of exposure, low concentrations	Not Evaluated	Not Evaluated			
			Varian buildings –	Bld 2-6	6.5E-07	0.92			
		Indoor Air	with systems on	Bld 3-3	8.5E-07	0.16			
				Bld 5	2.9E-06	0.65			
	Utility workers - Varian site	Soil	Soil - 0-6' Varian site	Assumed to be insignificant -see text	Not Evaluated	Not Evaluated			
Current	Downgradient Site Workers/Site Visitors/Landscapers, recreational use	Soil	Unpaved surface soil (0-3') – PSL10, grass field		3.1E-08	0.0059			
Guirent	Downgradient site workers	Indoor Air	Various Commercial Buildings	Shown to be Incomplete pathway or No Significant Risk	Not Evaluated	Not Evaluated			
		Surface Water	Unnamed Stream		3.0E-07	0.05			
		Sediment	Unnamed Stream		Not Evaluated	0.0084			
		Total	Unnamed Stream	Previously Evaluated	3.0E-07	0.058			
	Davis and digital Davidants	Surface Water	Stream A	(APTIM, 2021a)	1.2E-07	0.024			
		Sediment	Stream A		1.3E-09	0.00031			
	Downgradient Residents	Total			1.2E-07	0.024			
		Indoor Air Various Residential In		34 Longview Dr Shown to be Incomplete pathway or No Significant Risk for other locations	3.9E-06	0.48			
	Site workers - Former Varian Site	Soil	Soil 0-15' Varian site	Would be less than future residents	Not Evaluated	Not Evaluated			
		Indoor Air		Same as	current	<u> </u>			
		Soil	Soil 0-15' Varian site		1.7E-06	0.15			
	Future Residents - Former Varian Site	Indoor Air	Not Evaluated	Exposure point concentrations cannot be derived	Not Evaluated	Not Evaluated			
		Soil	Soil 0-15' Varian site		1.2E-08	0.02			
Future		Groundwater	Groundwater (0-15') – Non-Hot Spot		9.3E-07	0.13			
Future	Construction Workers	Groundwater	Groundwater (0-15') – Hot Spot		1.4E-06	5.9			
	Downgradient Site Workers/Site Visitors/Landscapers, recreational use	Total	Soil + Non-Hot Spot GW		9.4E-07	0.15			
		Total	Soil + Hot Spot GW		1.4E-06	5.9			
		Soil	So	il (0-15') – PSL10, gras	ss field - same as curr	ent			
	Downgradient Site Workers	Indoor air		same as	current				
	Downgradient Residents	Surface Water							
	Downgradient Nesidents	Indoor Air		same as	current				

Notes:

ELCR denotes Estimated Lifetime Cancer Risk HI denotes Hazard Index

Table 7-16
Soil Upper Concentration Comparison - 0-15 Feet
Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Depth	Maximum	Max Location	Max Depth	Average	UCL
1,1,1-Trichloroethane	mg/kg	39	1	0.065	AP-26-DO(0-0)-20080424	0-0	0.065	AP-26-DO(0-0)-20080424	0-0	0.87	10,000
cis-1,2-Dichloroethene	mg/kg	39	3	0.091	OB-60-S-7-20220813	7-7	0.4	AP-37-S(6-6.8)-20180726	6-6.8	0.94	5,000
Tetrachloroethene	mg/kg	38	21	0.0072	BLDG3-SB101(7-9)-20120317	7-9	1200	B2-PSL5(10-12)-19950322	10-12	48.62	10,000
Trichloroethene	mg/kg	38	7	0.0027	BLDG3-SB107-01(5-7)-20130726	5-7	3.5	BLD5-SHIP-19950401	11-13	1.03	600

COC denotes contaminant of concern mg/kg denotes milligrams per kilogram

UCL denotes Upper Concentration Limit per 310 CMR 40.0996(6)

Table 7-17
Soil 15 feet and Greater - Hot Spot 2 UCL Comparison
Former Varian Facility Site

сос	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
Acetone	mg/kg	7	1	12	AP-34-DO(34-36)-20130911	09/11/13	12	AP-34-DO(34-36)-20130911	09/11/13	13.19	10,000
Tetrachloroethene	mg/kg	7	7	0.62	AP41S-33-35	05/02/19	740	AP-35-DO(33-35)-20130912	09/12/13	200.66	10,000
Trichloroethene	mg/kg	7	5	0.16	AP40S-11-13	04/30/19	450	AP-35-DO(33-35)-20130912	09/12/13	90.51	600

COC denotes contaminant of concern mg/kg denotes milligrams per kilogram UCL denotes Upper Concentration Limit per 310 CMR 40.0996(6)

Table 7-18
Soil 15 feet and Greater - Hot Spot 3 - UCL Comparison
Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
cis-1,2-Dichloroethene	mg/kg	5	3	0.057	OB-44-S(17-18)-20131230	12/30/13	0.3	AP-39-S(16-17)-20180724	07/24/18	0.1414	5,000
Tetrachloroethene	mg/kg	5	4	11	OB-53-BR-(25")-20220331	03/31/22	14	OB-44-S(17-18)-20131230	12/30/13	10.209	10,000
Trichloroethene	mg/kg	5	3	1.4	OB-60-S-16-20220813	08/13/22	6.2	OB-44-S(17-18)-20131230	12/30/13	2.064	600

COC denotes contaminant of concern mg/kg denotes milligrams per kilogram

UCL denotes Upper Concentration Limit per 310 CMR 40.0996(6)

Table 7-19
Soil 15 Feet and Greater - No Hot Spots - UCL Comparison
Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
1,1,1-Trichloroethane	mg/kg	27	2	1.7	AP-33-DO(24-26)-20130910	09/10/13	2	AP-33-DO(22-24)-20130910	09/10/13	0.30	10,000
Acetone	mg/kg	27	1	0.19	AP-33-DO(24-26)-20130910	09/10/13	0.19	AP-33-DO(24-26)-20130910	09/10/13	4.03	10,000
cis-1,2-Dichloroethene	mg/kg	27	4	0.2	AP-36-S(16-16.9)-20180726	07/26/18	1.7	AP-33-DO(24-26)-20130910	09/10/13	0.26	5,000
Tetrachloroethene	mg/kg	27	16	0.071	AP41S-0	05/01/19	260	OB50S-121819-17-19	12/18/19	13.12	10,000
Trichloroethene	mg/kg	27	14	0.079	OB-54-BR(40-45')-20220405	04/05/22	130	OB-57-DO-56.0-220722	07/22/22	15.46	600
Vinyl chloride	mg/kg	27	1	0.52	AP-33-DO(24-26)-20130910	09/10/13	0.52	AP-33-DO(24-26)-20130910	09/10/13	0.19	600

COC denotes contaminant of concern mg/kg denotes milligrams per kilogram UCL denotes Upper Concentration Limit per 310 CMR 40.0996(6)

Table 7-20
Shallow Groundwater Hot Spot - UCL Comparison
Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
1,1,1-Trichloroethane	mg/L	44	1	0.037	OB-51-S-20200820	08/20/20	0.037	OB-51-S-20200820	08/20/20	0.026	100
1,1-Dichloroethene	mg/L	44	8	0.006	OB-49-S-20210909	09/09/21	0.4	OB-60-S-20220816	08/16/22	0.026	100
Acetone	mg/L	44	5	0.01	Multiple	Multiple	0.033	OB-49-S-20210222	02/22/21	0.127	100
cis-1,2-Dichloroethene	mg/L	44	36	0.002	OB-49-S-20201124	11/24/20	53	OB-49-S-20210222	02/22/21	5.66	100
Tetrachloroethene	mg/L	44	29	0.002	OB-49-S-20210222	02/22/21	47	OB-60-S-20220816	08/16/22	1.91	100
trans-1,2-Dichloroethene	mg/L	44	10	0.002	OB-49-S-20210513	05/13/21	0.83	OB-49-S-20201124	11/24/20	0.062	100
Trichloroethene	mg/L	44	36	0.013	OB-43-S-20211115-LF	11/15/21	48	OB-51-S-20200820	08/20/20	2.80	50
Vinyl chloride	mg/L	44	13	0.006	OB-49-S-20210513	05/13/21	2.4	OB-51-S-20220510	05/10/22	0.22	100

Table 7-21
Shallow Groundwater - Excluding Hot Spot - UCL Comparison
Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
1,1,1-Trichloroethane	mg/L	181	2	0.023	B-3-20211116-LF	11/16/21	0.026	B-3-20211116	11/16/21	0.0075	100
1,1-Dichloroethane	mg/L	181	16	0.00164	AP-39S-202110106	01/26/21	0.048	AP-37-S-20211109	11/09/21	0.0083	100
1,1-Dichloroethene	mg/L	181	11	0.001	Multiple	Multiple	0.011	OB-44-S-20210126	01/26/21	0.0048	100
Acetone	mg/L	181	38	0.00581	AP-36-S-20210126	01/26/21	78	AP-38-S-20200909	09/09/20	0.48	100
cis-1,2-Dichloroethene	mg/L	181	98	0.002	Multiple	Multiple	35	OB-44-S-20220512	05/12/22	1.3	100
Tetrachloroethene	mg/L	181	29	0.00123	AP-36-S-20210126	01/26/21	0.31	OB-44-S-20220512	05/12/22	0.015	100
Tetrahydrofuran	mg/L	13	6	0.00899	AP-39S-202110106	01/26/21	0.25	AP-36-S-20200909	09/09/20	0.10	NV
trans-1,2-Dichloroethene	mg/L	181	16	0.001	AP-36-S-20200909	09/09/20	0.077	AP-37-S-20200909	09/09/20	0.0079	100
Trichloroethene	mg/L	181	34	0.002	Multiple	Multiple	0.16	OB-41-S-20201125	11/25/20	0.012	50
Vinyl chloride	mg/L	181	67	0.002	Multiple	Multiple	13	OB-44-S-20200909	09/09/20	0.45	100

COC denotes contaminant of concern mg/L denotes milligrams per liter UCL denotes Upper Concentration Limit

Table 7-22

Deep Overburden Groundwater Building 3 Hot Spot - UCL Comparison

Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
1,1,1-Trichloroethane	mg/L	111	22	0.016	AP-25-DO-20210910	09/10/21	52	AP-24-DO-20210223	02/23/21	3.218	100
1,1-Dichloroethane	mg/L	111	18	0.016	AP-25-DO-20210910	09/10/21	3.9	AP-24-DO-20220215	02/15/22	0.515	100
1,1-Dichloroethene	mg/L	111	40	0.001	OB-34-DO-20211111	11/11/21	5.1	Multiple	Multiple	0.568	100
Acetone	mg/L	111	8	0.012	OB-52-DO-20210910	09/10/21	9.1	AP-13-DO-20210223	02/23/21	1.498	100
cis-1,2-Dichloroethene	mg/L	111	97	0.003	AP-26-DO-20220511	05/11/22	420	AP-30R-DO-20211109	11/09/21	57.264	100
Tetrachloroethene	mg/L	111	79	0.011	AP-25-DO-20210910	09/10/21	65	AP-24-DO-20210520	05/20/21	4.440	100
trans-1,2-Dichloroethene	mg/L	111	18	0.032	AP-25-DO-20210910	09/10/21	2.9	AP-24-DO-20210520	05/20/21	0.325	100
Trichloroethene	mg/L	111	100	0.01	Multiple	Multiple	270	Multiple	Multiple	37.234	50
Vinyl chloride	mg/L	111	36	0.011	OB-19-DO-20211115-LF	11/15/21	28	Multiple	Multiple	1.752	100

Table 7-23

Deep Overburden Groundwater Building 5 Hot Spot - UCL Comparison

Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
1,1-Dichloroethene	mg/L	16	2	0.002	AP-27-DO-20211110	11/10/21	0.022	OB-35-DO-20200821	08/21/20	0.017	100
cis-1,2-Dichloroethene	mg/L	16	16	0.024	Multiple	Multiple	7.5	Multiple	Multiple	3.047	100
Tetrachloroethene	mg/L	16	11	0.029	AP-27-DO-20211110	11/10/21	43	OB-35-DO-20220512	05/12/22	10.285	100
trans-1,2-Dichloroethene	mg/L	16	2	0.021	AP-27-DO-20211110	11/10/21	0.077	AP-27-DO-20201125	11/25/20	0.037	100
Trichloroethene	mg/L	16	16	0.005	Multiple	Multiple	29	AP-27-DO-20220511	05/11/22	7.652	50
Vinyl chloride	mg/L	16	7	0.003	OB-38-DO-20211116	11/16/21	0.44	OB-35-DO-20210909	09/09/21	0.102	100

Table 7-24

Deep Overburden Groundwater Downgradient Hot Spot - UCL Comparison
Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
1,1-Dichloroethane	mg/L	9	3	0.008	OB-21-DO-20210408	04/08/21	0.025	CL03-DO-20220511	05/11/22	0.011	100
1,1-Dichloroethene	mg/L	9	3	0.011	OB-21-DO-20210408	04/08/21	0.016	OB-08-DO-20210514	05/14/21	0.007	100
Acetone	mg/L	9	1	0.01	OB-05-DO-20211110	11/10/21	0.01	OB-05-DO-20211110	11/10/21	0.010	100
cis-1,2-Dichloroethene	mg/L	9	8	0.087	CL-03-DO-20210519	05/19/21	2.1	OB-08-DO-20210514	05/14/21	1.011	100
Tetrachloroethene	mg/L	9	7	0.18	OB-05-DO-20220510	05/10/22	1.2	CL03-DO-20220511	05/11/22	0.289	100
trans-1,2-Dichloroethene	mg/L	9	2	0.004	OB-21-DO-20210408	04/08/21	0.032	OB-05-DO-20210518	05/18/21	0.009	100
Trichloroethene	mg/L	9	7	0.25	CL-03-DO-20210519	05/19/21	2.2	OB-08-DO-20220511	05/11/22	0.798	50
Vinyl chloride	mg/L	9	5	0.003	OB-05-DO-20211110	11/10/21	0.084	OB-05-DO-20201125	11/25/20	0.024	100

See Table 7-11 for sampling locations included in hot spots and non-hot spot areas

Average concentrations derived as arithmetic mean of detect values and one half the reporting limits for non-detects

COC denotes contaminant of concern

COCs with calculated average concentrations greater than the maximum are shown as the maximum concentrations and highlighted in green

mg/L denotes milligrams per liter

Table 7-25

Deep Overburden Groundwater - Non-Hot Spot - UCL Comparison

Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
1,1,1-Trichloroethane	mg/L	98	11	0.002	Multiple locations	Multiple	13	AP-33-DO	Multiple	0.796	100
1,1-Dichloroethane	mg/L	98	25	0.002	AP-35-DO-20200820	08/20/20	3	AP-33-DO-20211109	11/09/21	0.215	100
1,1-Dichloroethene	mg/L	98	20	0.001	Multiple locations	Multiple	1.1	AP-33-DO-20210909	09/09/21	0.082	100
1,2-Dichloroethane	mg/L	98	6	0.002	AP-35-DO-20200820	08/20/20	0.022	AP-35-DO-20211109	11/09/21	0.022	100
Acetone	mg/L	98	17	0.01	AP-21-20211110	11/10/21	0.15	AP-35-DO-20211109	11/09/21	0.150	100
cis-1,2-Dichloroethene	mg/L	98	74	0.002	Multiple locations	Multiple	500	AP-33-DO-20220211	02/11/22	35.291	100
Tetrachloroethene	mg/L	98	36	0.002	Multiple locations	Multiple	4.7	AP-23-DO-20200820	08/20/20	0.367	100
trans-1,2-Dichloroethene	mg/L	98	16	0.003	Multiple locations	Multiple	1.6	AP-23-DO-20210909	09/09/21	0.155	100
Trichloroethene	mg/L	98	59	0.002	Multiple locations	Multiple	15	OB-26-DO-20211111	11/11/21	0.646	50
Vinyl chloride	mg/L	98	43	0.002	AP-33-DO-20210223	02/23/21	130	AP-23-DO-20211109	11/09/21	7.963	100

See Table 7-11 for sampling locations included in hot spots and non-hot spot areas

Average concentrations derived as arithmetic mean of detect values and one half the reporting limits for non-detects

COC denotes contaminant of concern

COCs with calculated average concentrations greater than the maximum are shown as the maximum concentrations and highlighted in green mg/L denotes milligrams per liter

Table 7-26
Bedrock Groundwater Hot Spot - UCL Comparison

Former Varian Facility Site

COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
1,1-Dichloroethane	mg/L	39	1	0.012	MW-016-20220509	05/09/22	0.012	MW-016-20220509	05/09/22	0.05	100
1,1-Dichloroethene	mg/L	39	9	0.003	MW-016-20220509	05/09/22	0.088	OB-25-BR-20220511	05/11/22	0.03	100
cis-1,2-Dichloroethene	mg/L	39	39	0.004	OB-10-BR-20211115-LF	11/15/21	31	OB-19-BR-20211115	11/15/21	5.34	100
Tetrachloroethene	mg/L	39	33	0.002	OB-38-BR	Multiple	5.9	OB-52-BR-20210910	09/10/21	0.71	100
trans-1,2-Dichloroethene	mg/L	39	8	0.027	OB-9-BR-20201125	11/25/20	0.13	Multiple	Multiple	0.06	100
Trichloroethene	mg/L	39	37	0.004	OB-38-BR-20210910	09/10/21	600	OB-45-BR-20211110	11/10/21	21.65	50
Vinyl chloride	mg/L	39	17	0.003	MW-016-20220509	05/09/22	6	OB-25-BR-20220511	05/11/22	0.72	10

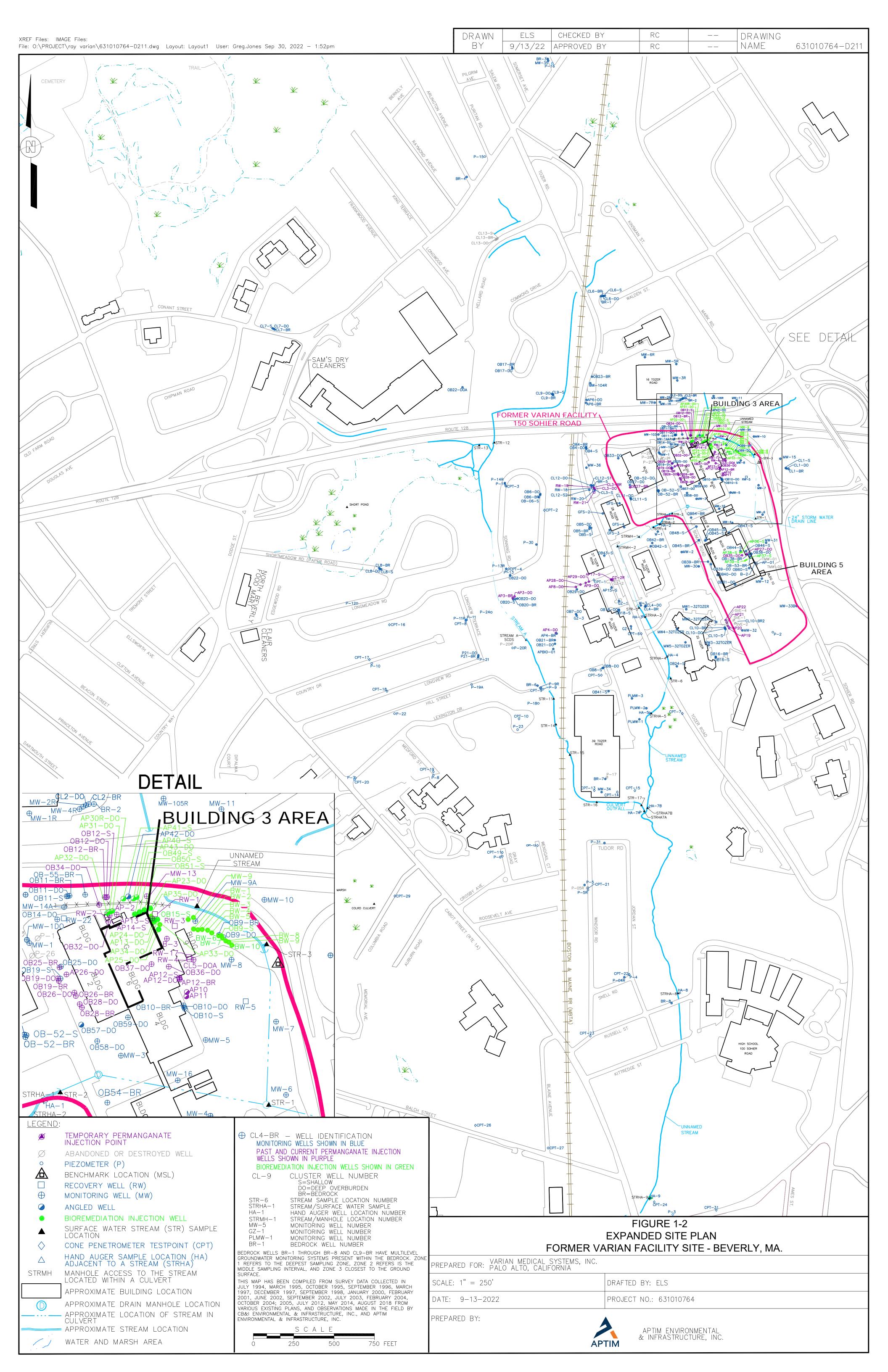
Table 7-27

Bedrock Groundwater Excluding Hot Spot - UCL Comparison
Former Varian Facility Site

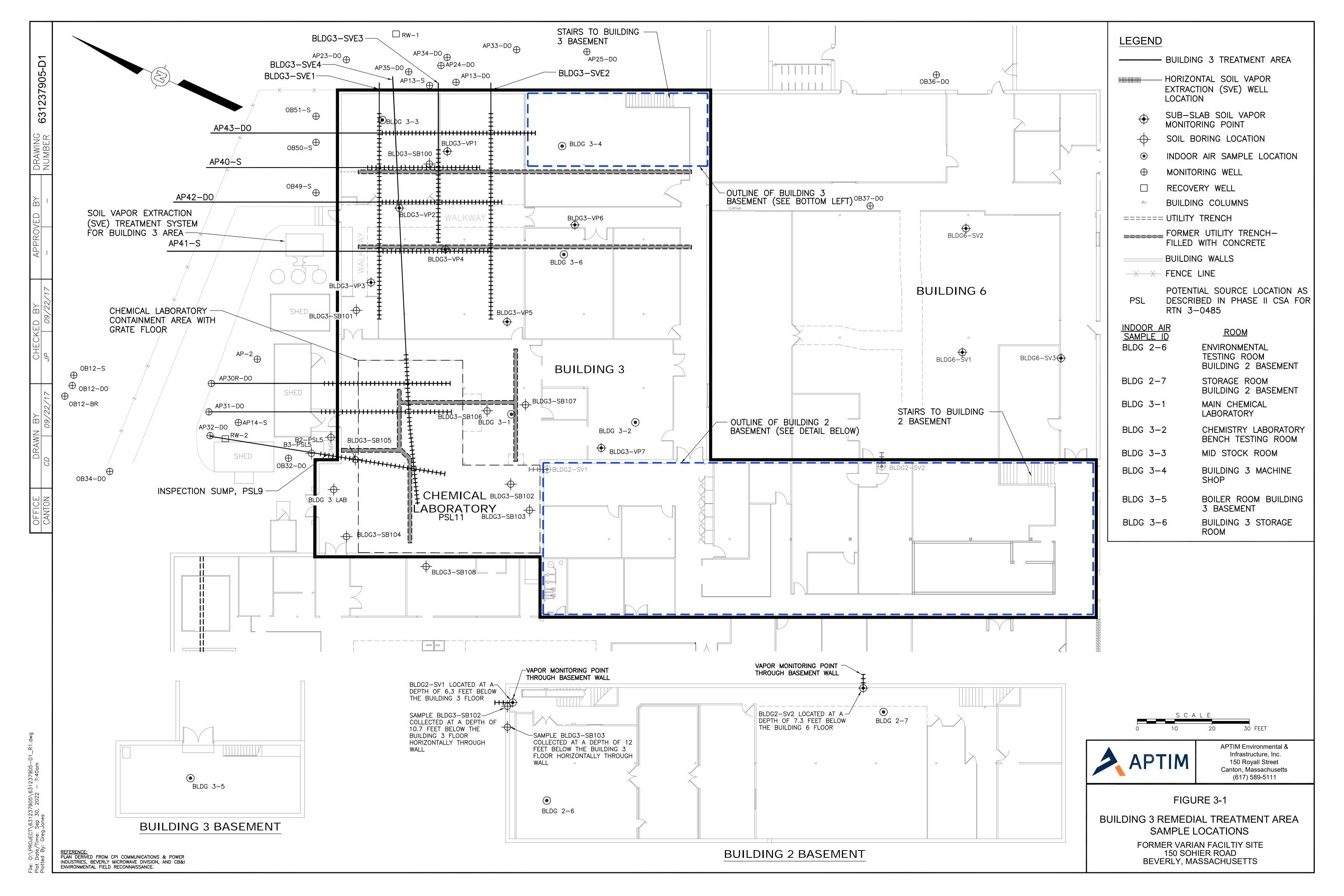
COC	Units	#Samples	# Hits	Minimum	Min Location	Min Date	Maximum	Max Location	Max Date	Average	UCL
1,1-Dichloroethane	mg/L	57	6	0.002	Multiple	Multiple	0.004	OB-05-BR-20210518	05/18/21	0.004	100
1,1-Dichloroethene	mg/L	57	5	0.001	CL02-BR-20210517	05/17/21	0.011	CL09-BR-ZONE3-20220512	05/12/22	0.01	100
Acetone	mg/L	57	8	0.011	OB-26-DO-20201125	11/25/20	0.43	RW-22-20220808	08/08/22	0.11	100
cis-1,2-Dichloroethene	mg/L	57	30	0.002	OB-12-BR-20220808	08/08/22	12	OB-54-BR-70-20220510	05/10/22	0.68	100
Tetrachloroethene	mg/L	57	10	0.004	OB-26-DO-20201125	11/25/20	1.4	OB-54-BR-70-20220510	05/10/22	0.05	100
trans-1,2-Dichloroethene	mg/L	57	9	0.002	CL04-BR-20210517	05/17/21	0.045	OB-28-DO-20220509	05/09/22	0.02	100
Trichloroethene	mg/L	57	20	0.003	Multiple	Multiple	53	OB-54-BR-70-20220510	05/10/22	1.98	50
Vinyl chloride	mg/L	57	16	0.003	BR-6_ZONE3-20210519	05/19/21	1.2	OB-05-BR-20210518	05/18/21	0.08	100

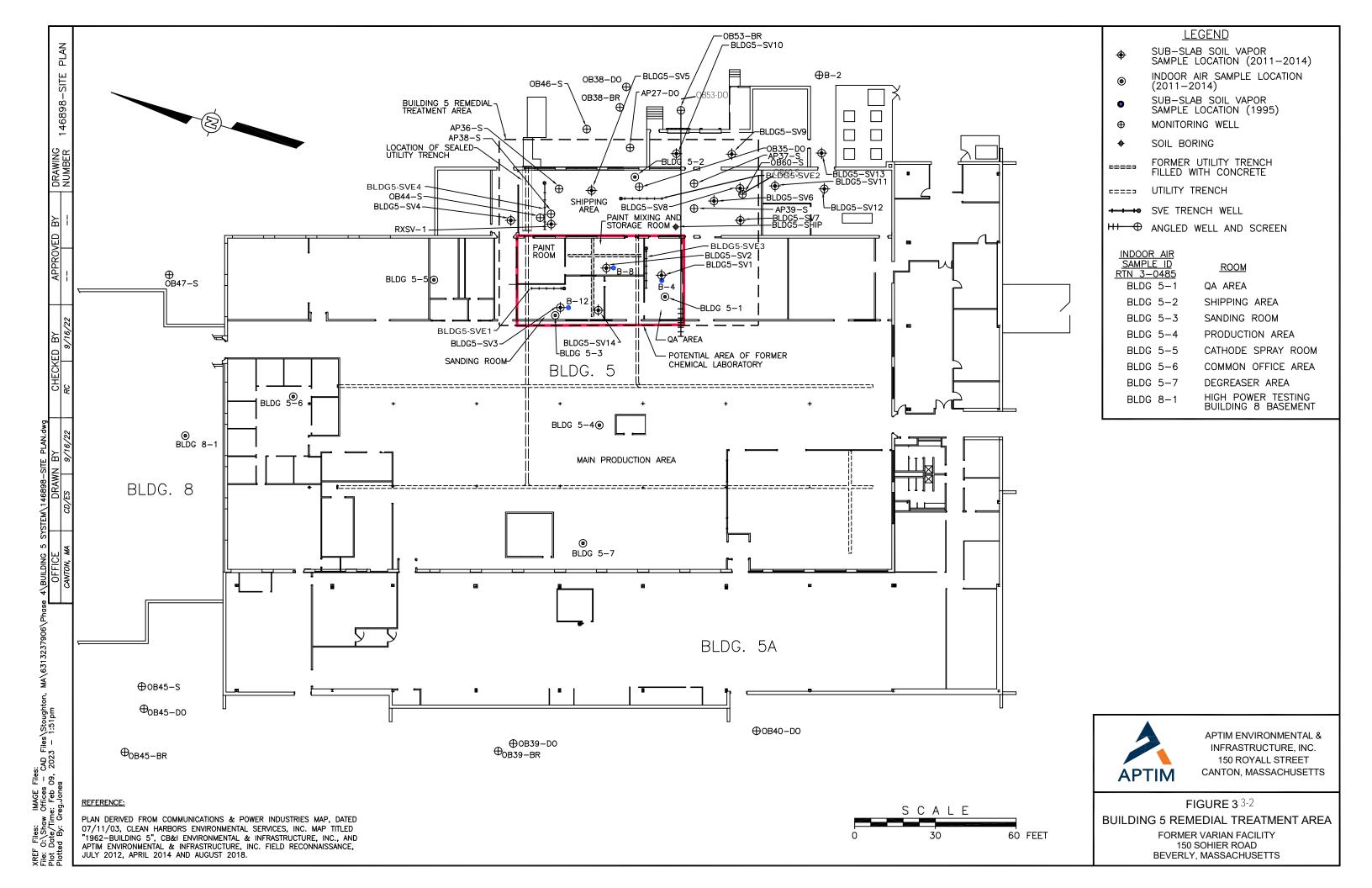
Notes:

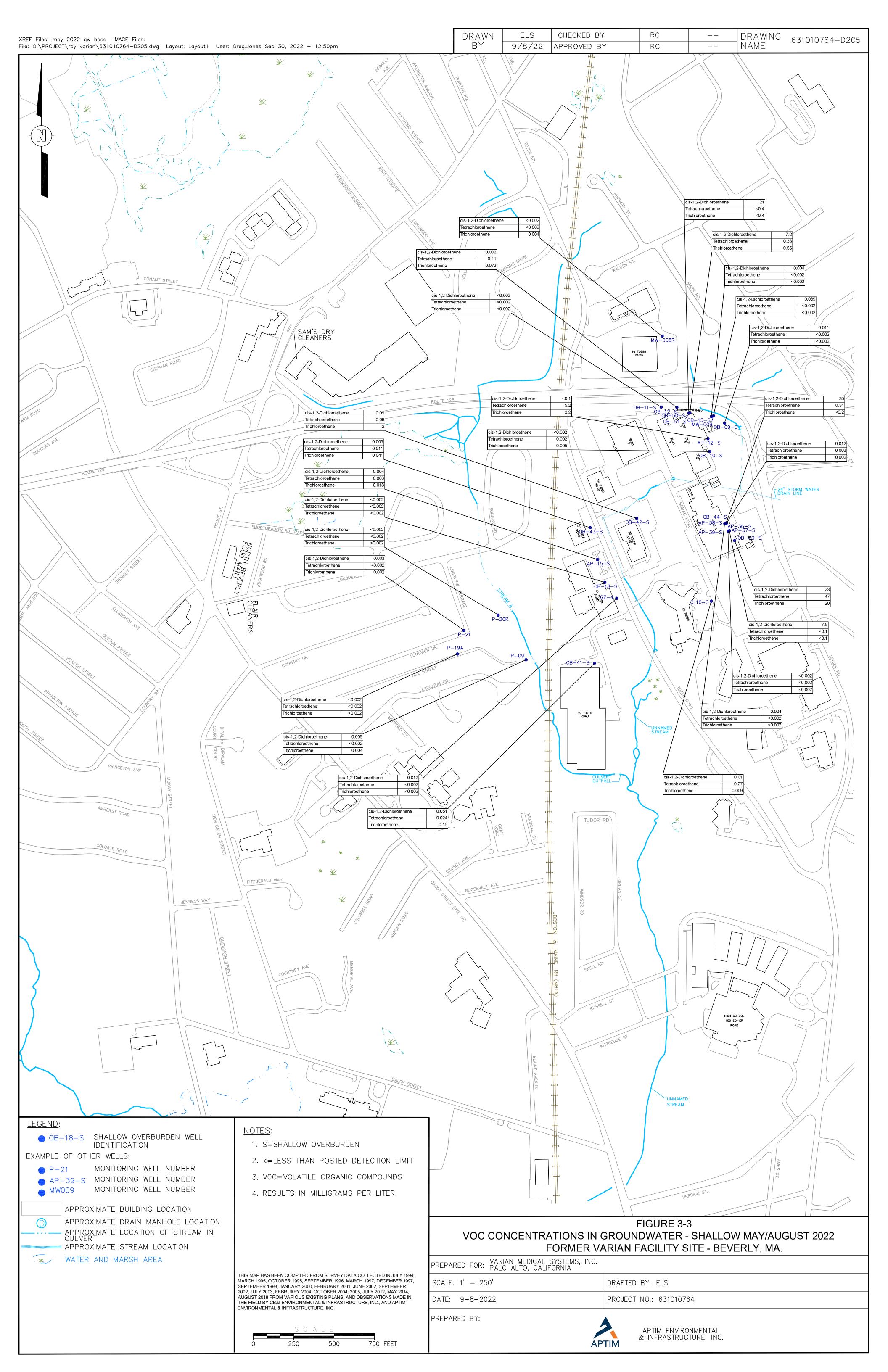
See Table 7-11 for sampling locations included in hot spots and non-hot spot areas

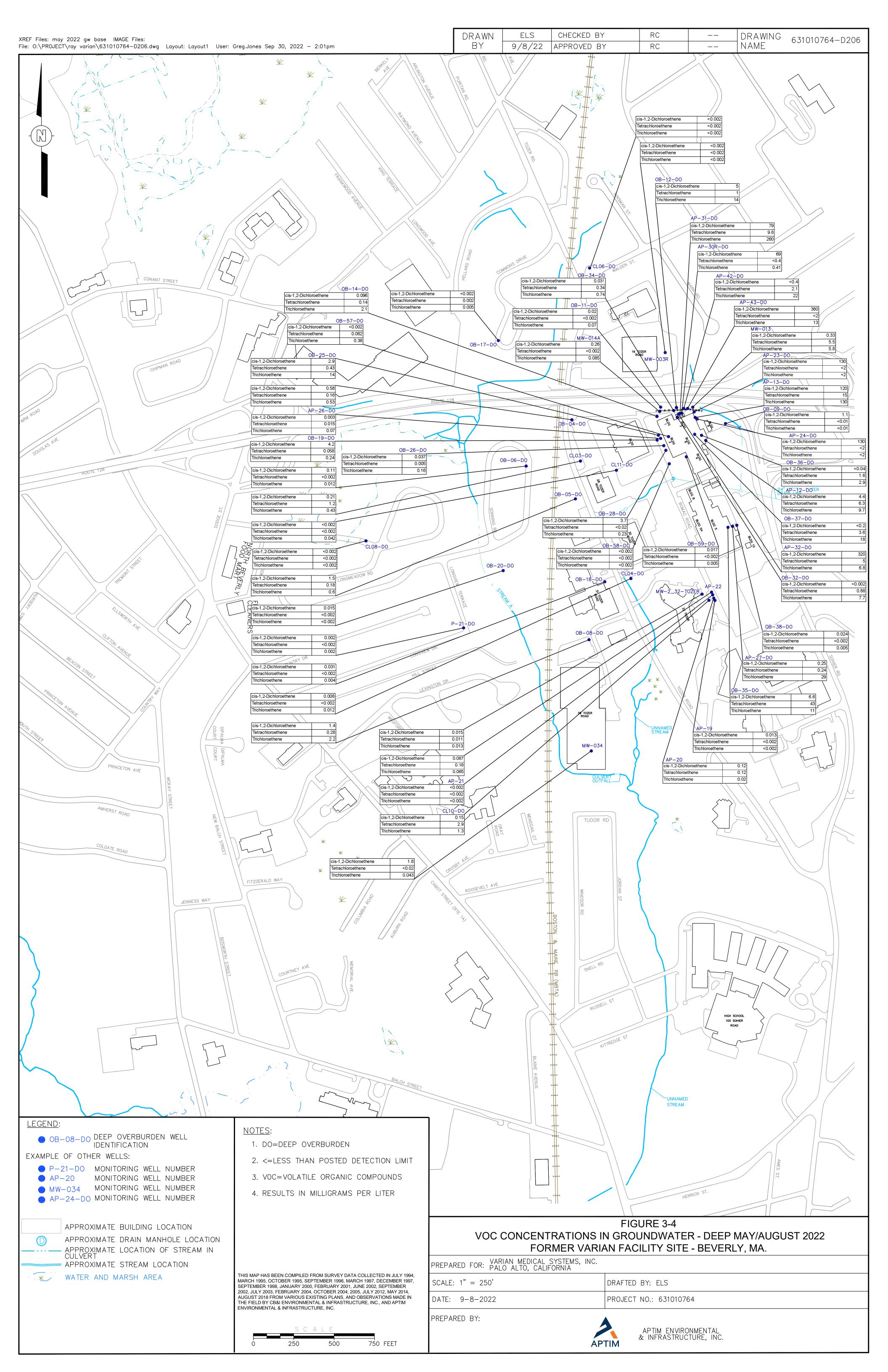

Average concentrations derived as arithmetic mean of detect values and one half the reporting limits for non-detects

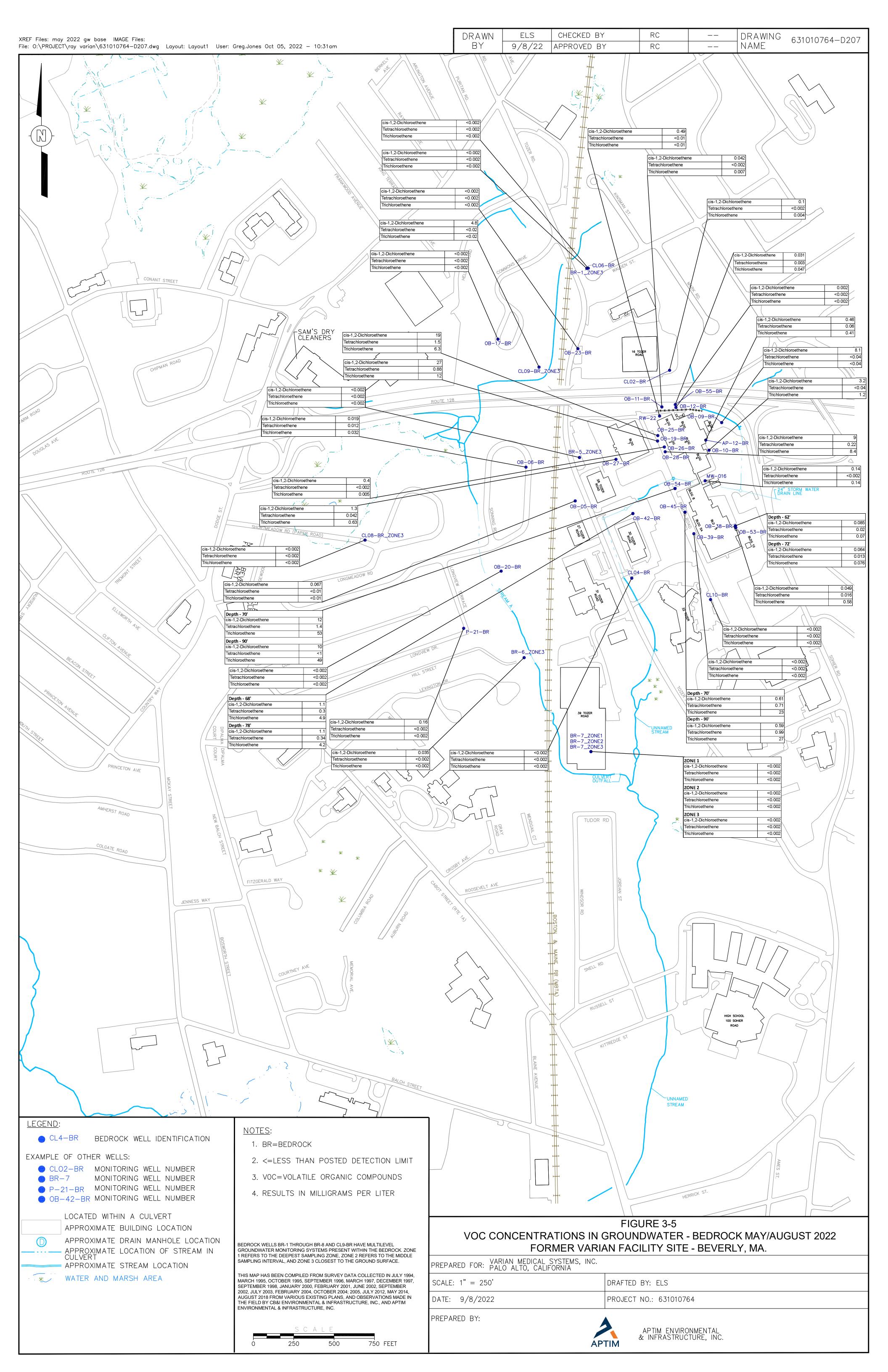
COC denotes contaminant of concern

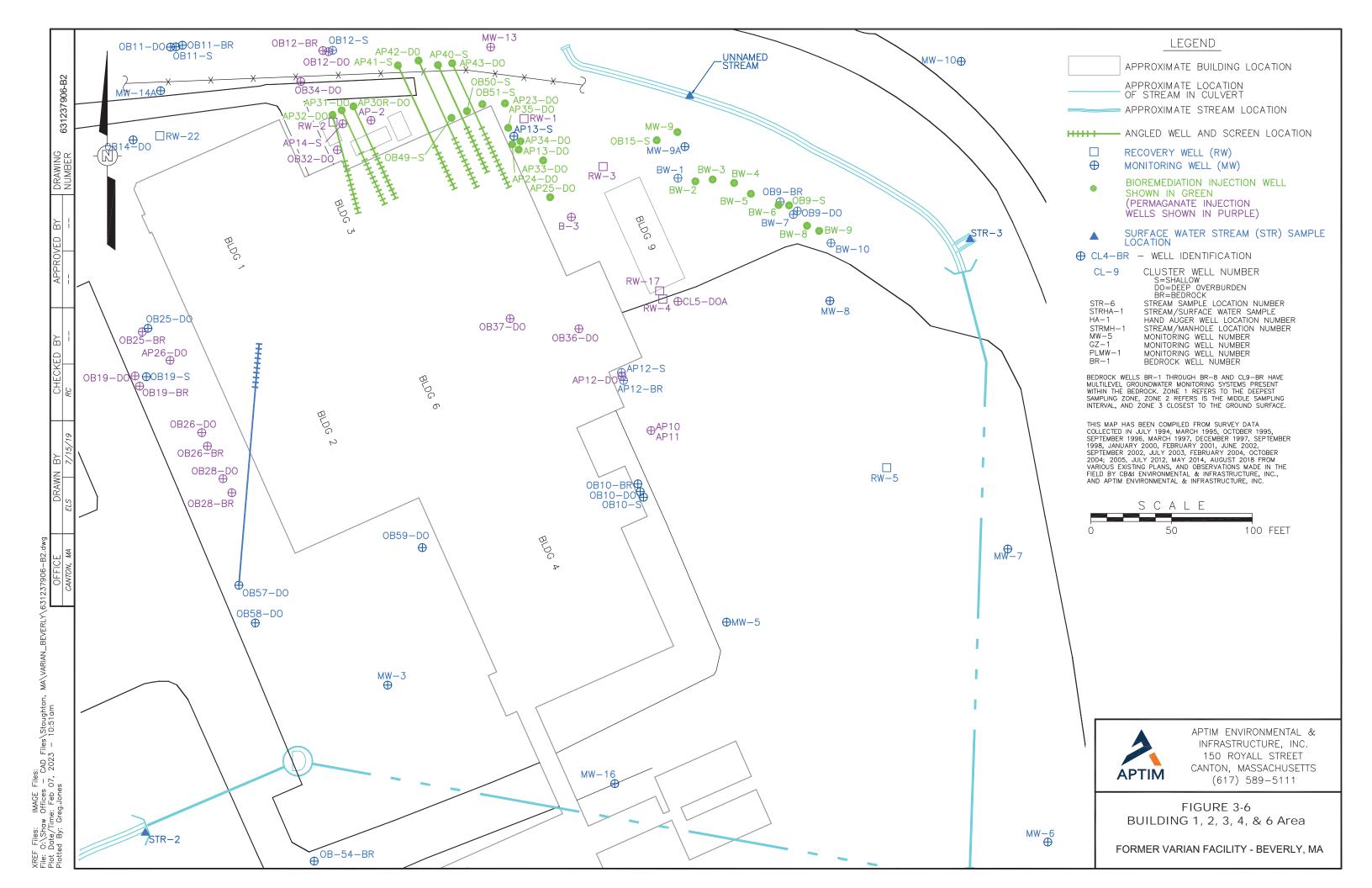

COCs with calculated average concentrations greater than the maximum are shown as the maximum concentrations and highlighted in green

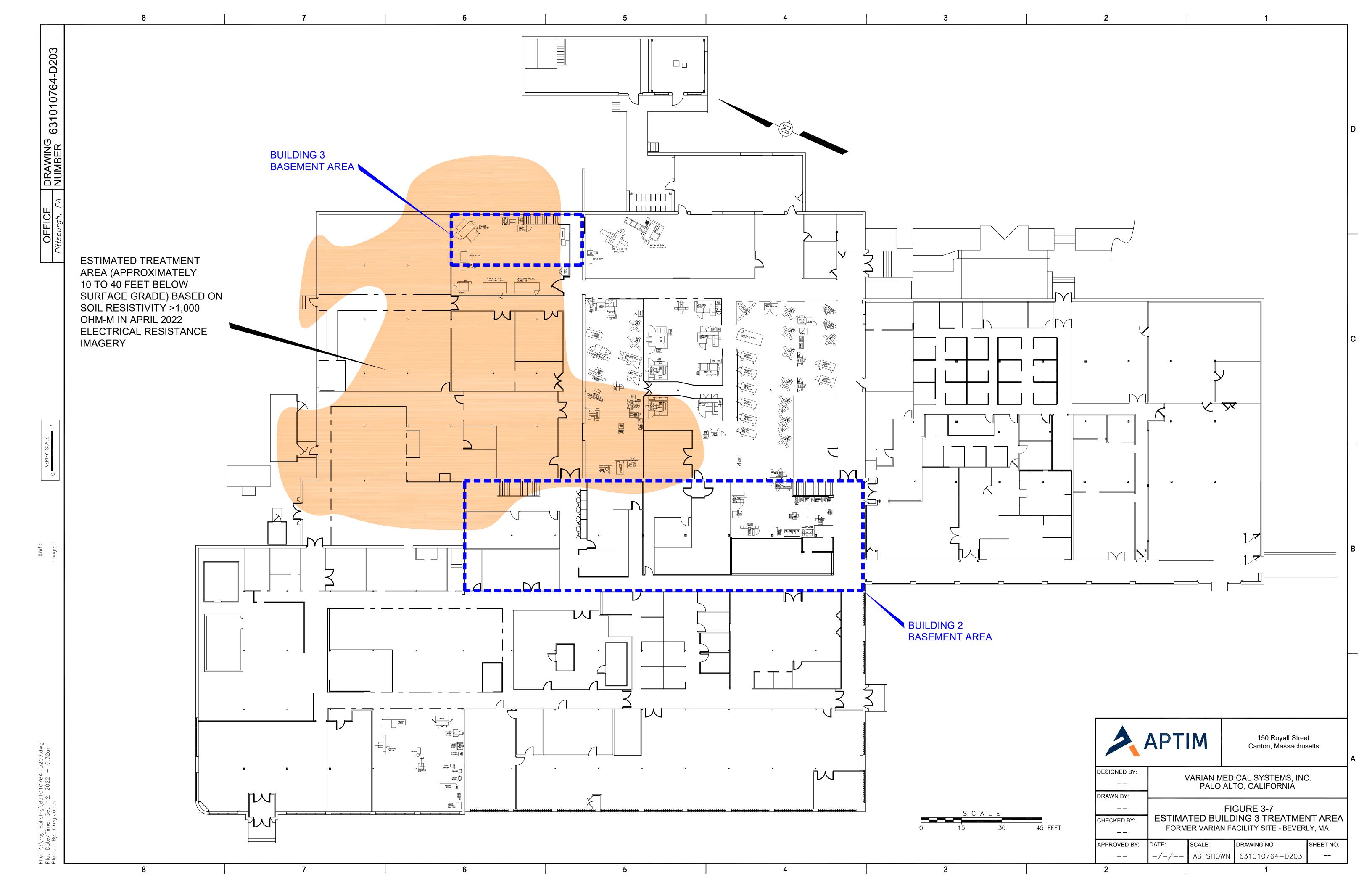

mg/L denotes milligrams per liter

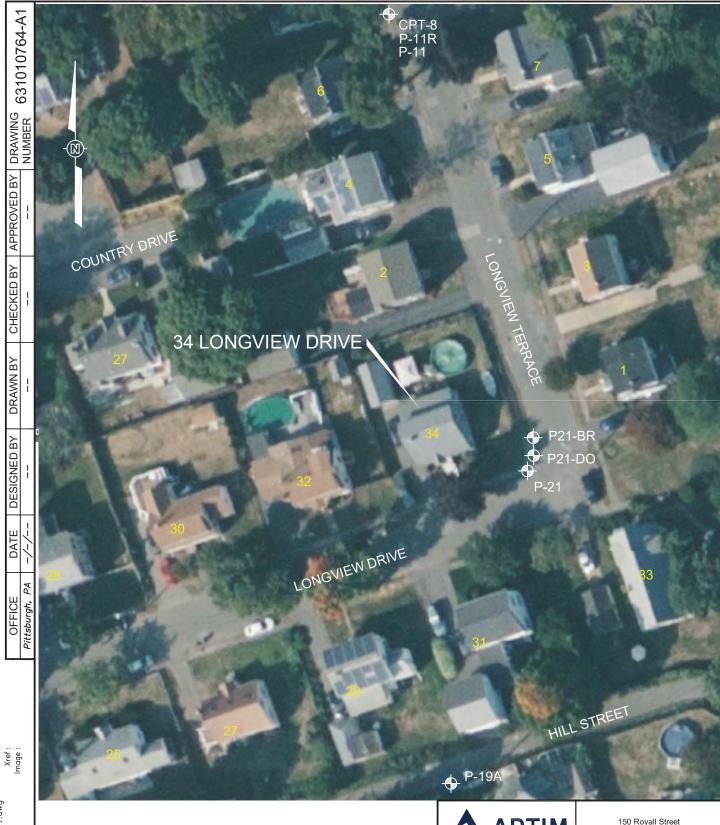

- 1:50pm 2017 User: chris.desiata Sep 22, File: T:\MISC\Varian\Beverly, Ma\139340-01SITELOC.dwg Layout: Varian Site Loc




Xref . Image .



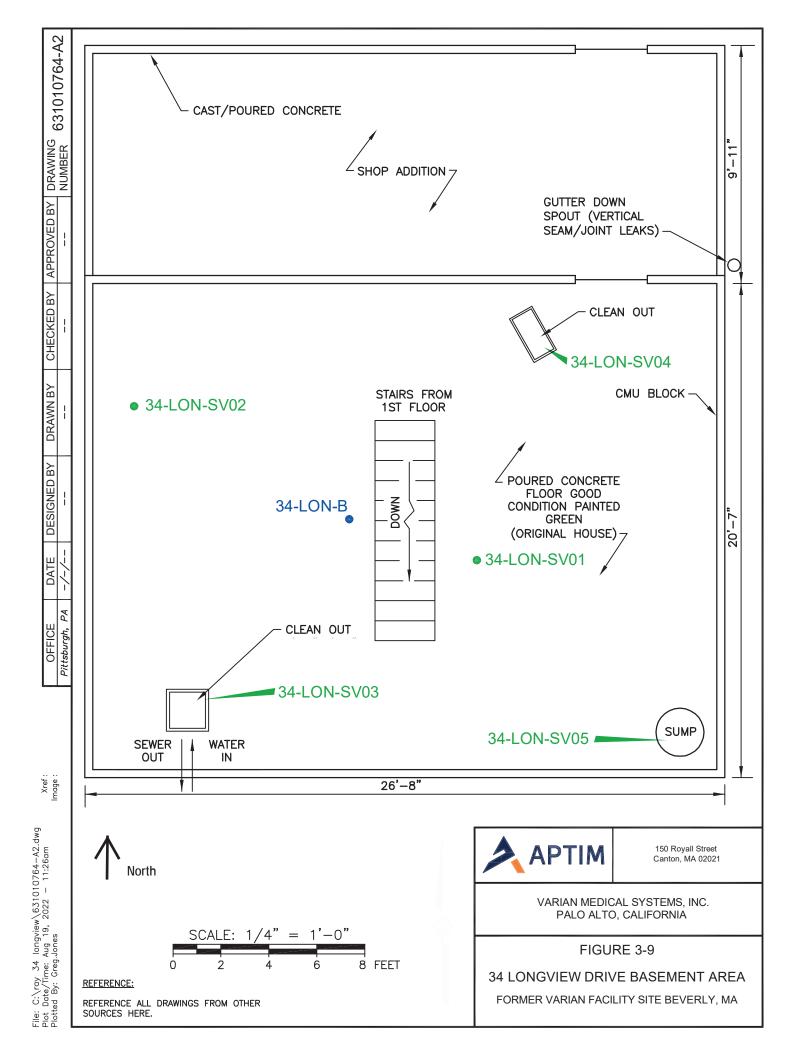


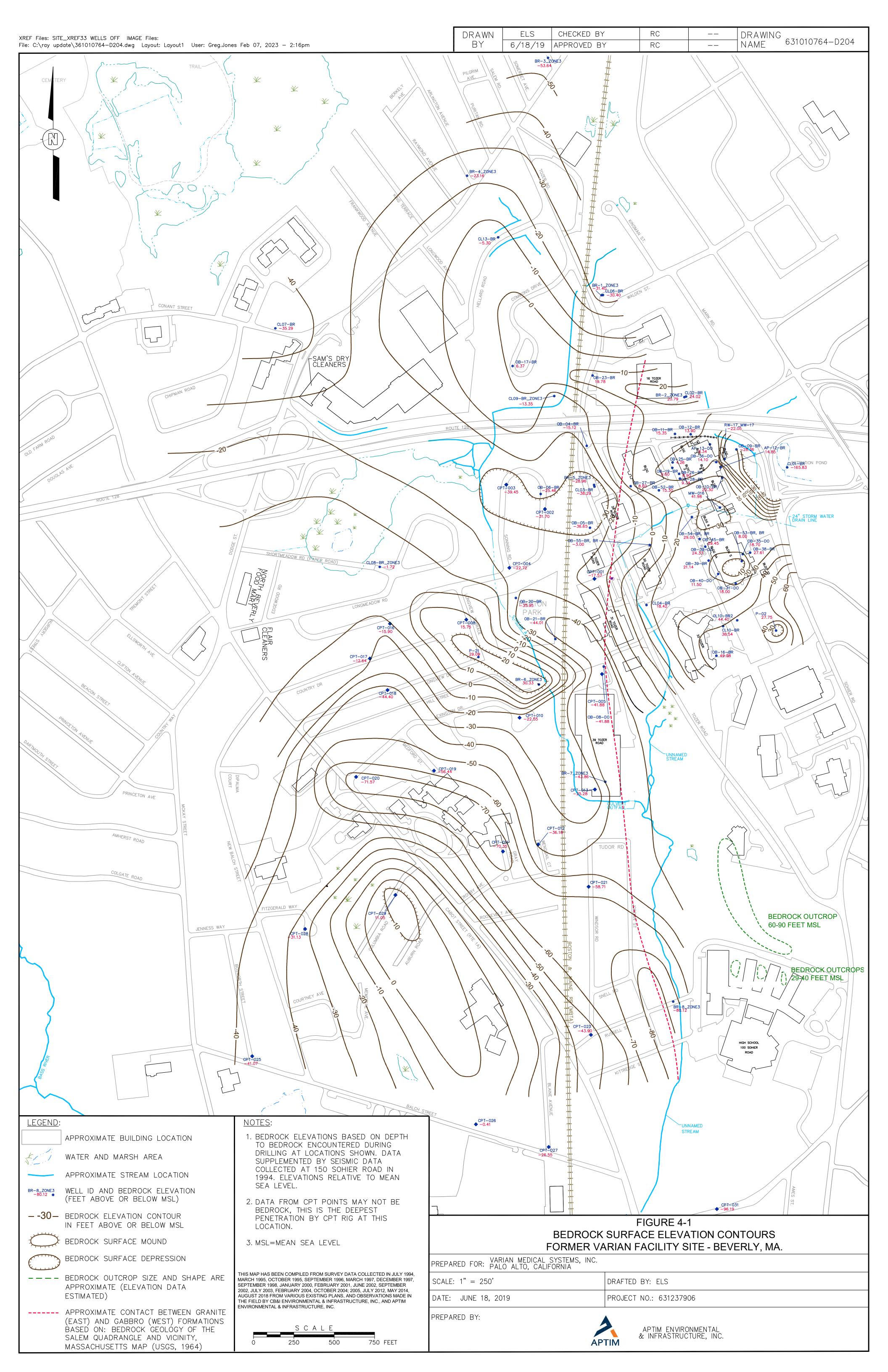


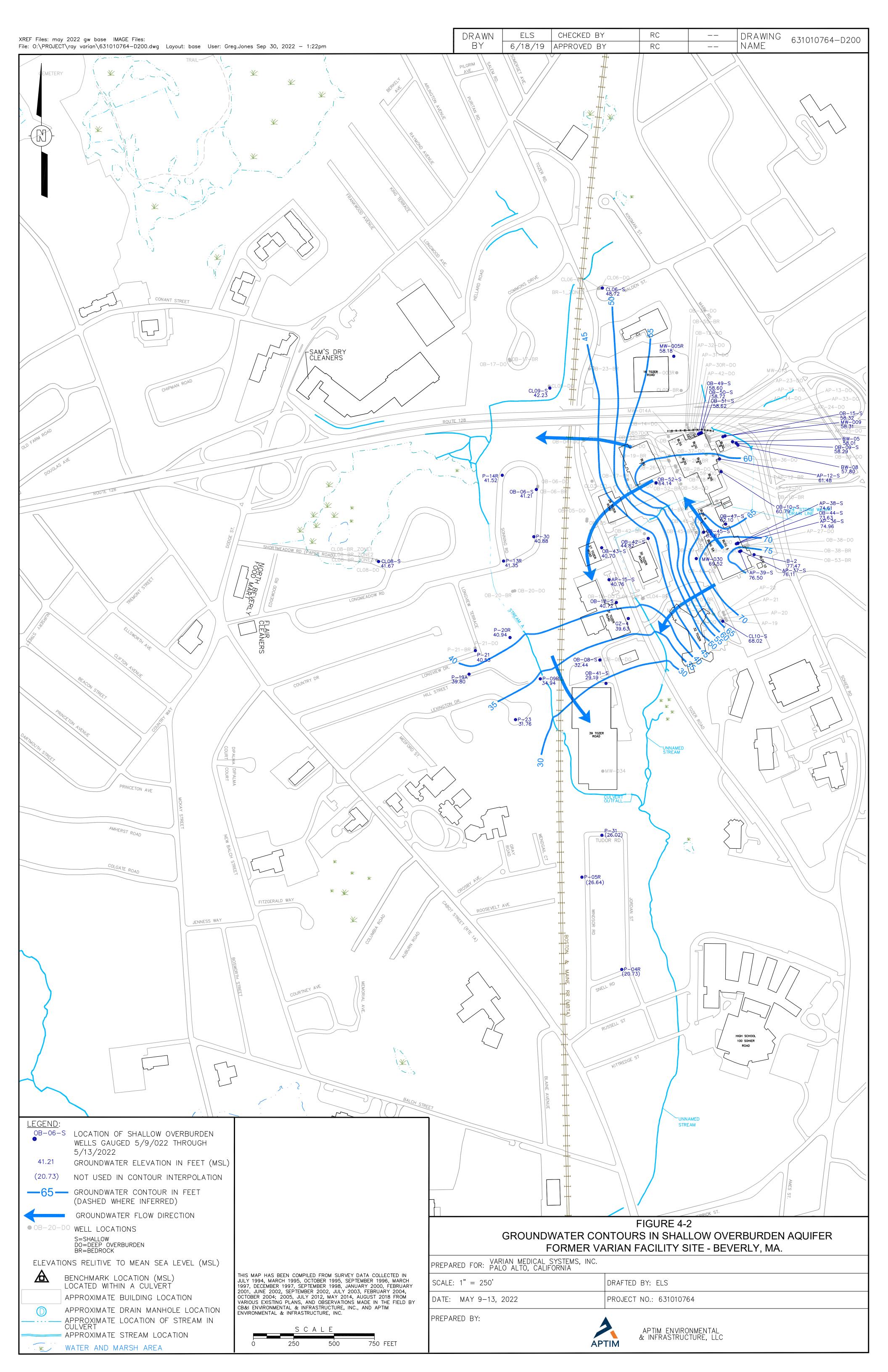
REFERENCE:

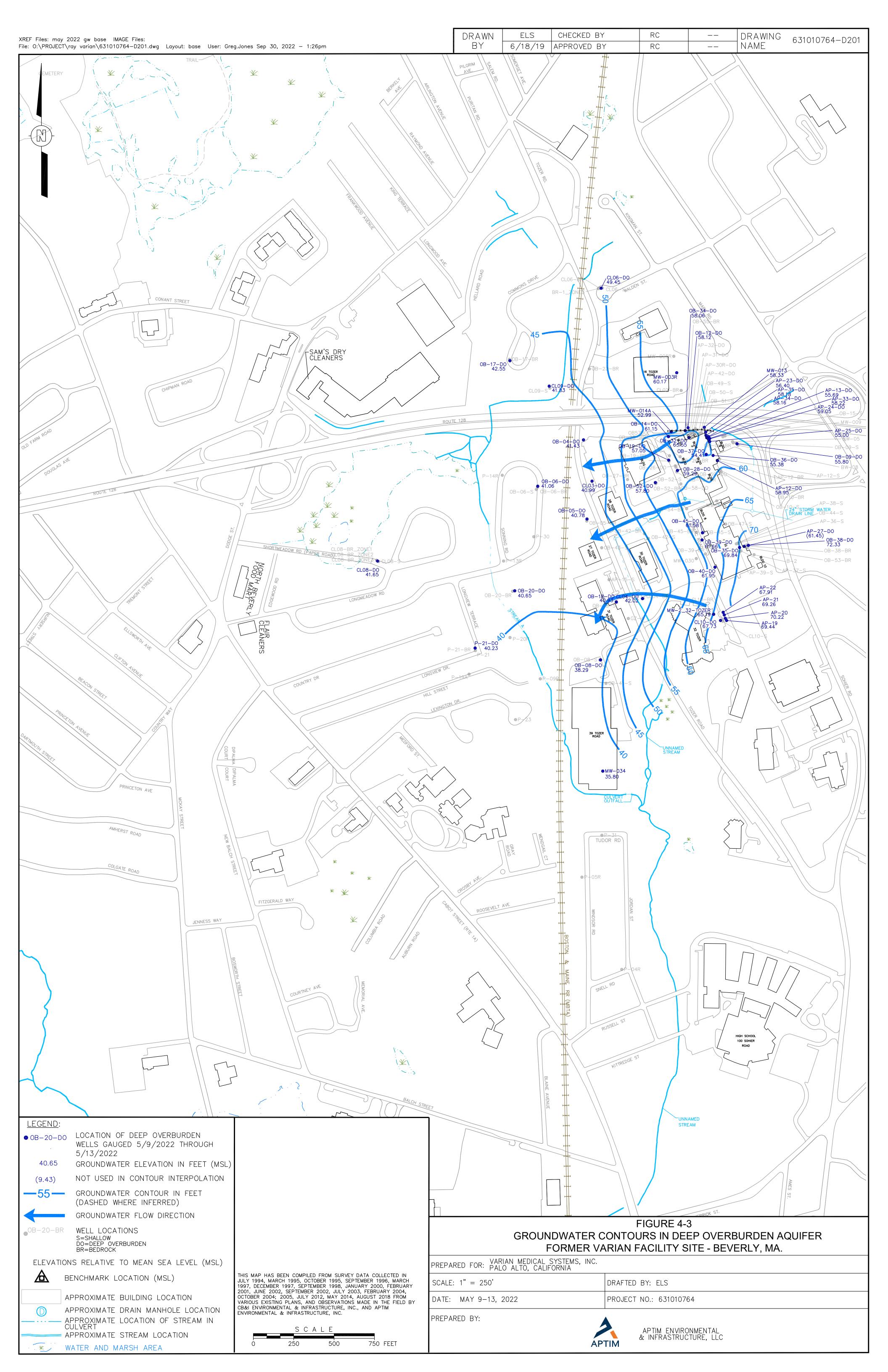
REFERENCE ALL DRAWINGS FROM OTHER SOURCES HERE.

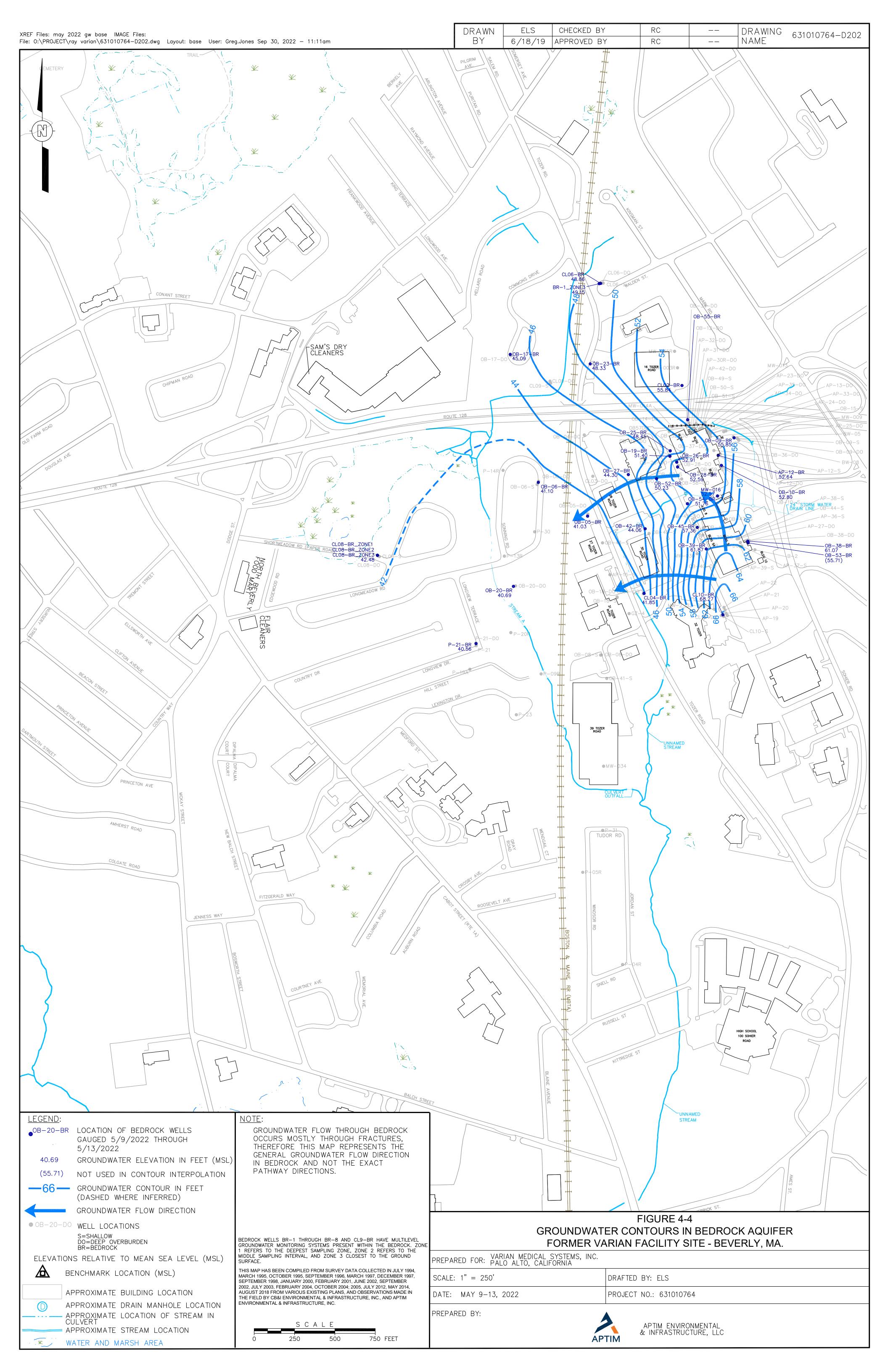
150 Royall Street Canton, MA 02021

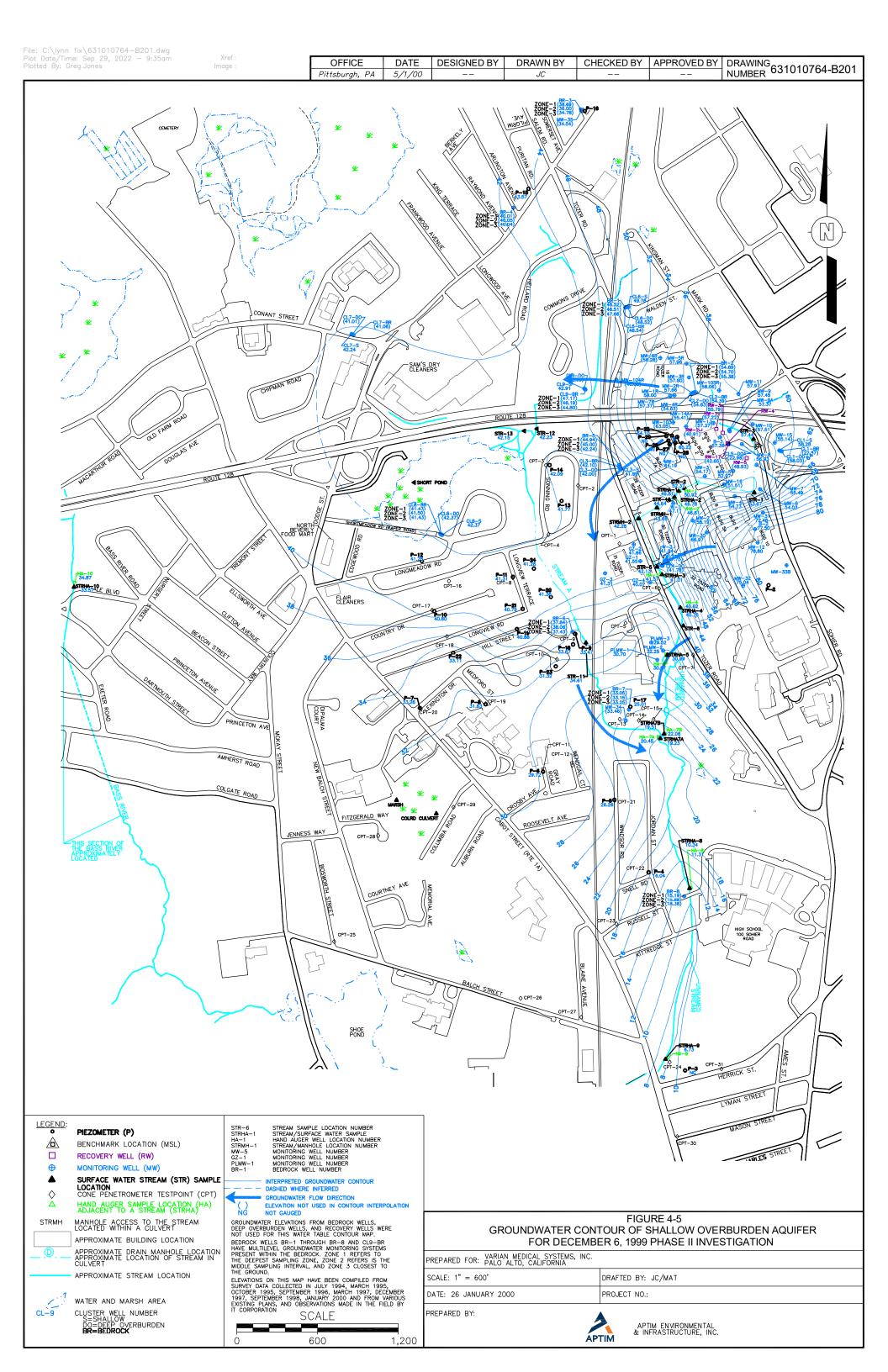

VARIAN MEDICAL SYSTEMS, INC. PALO ALTO, CALIFORNIA

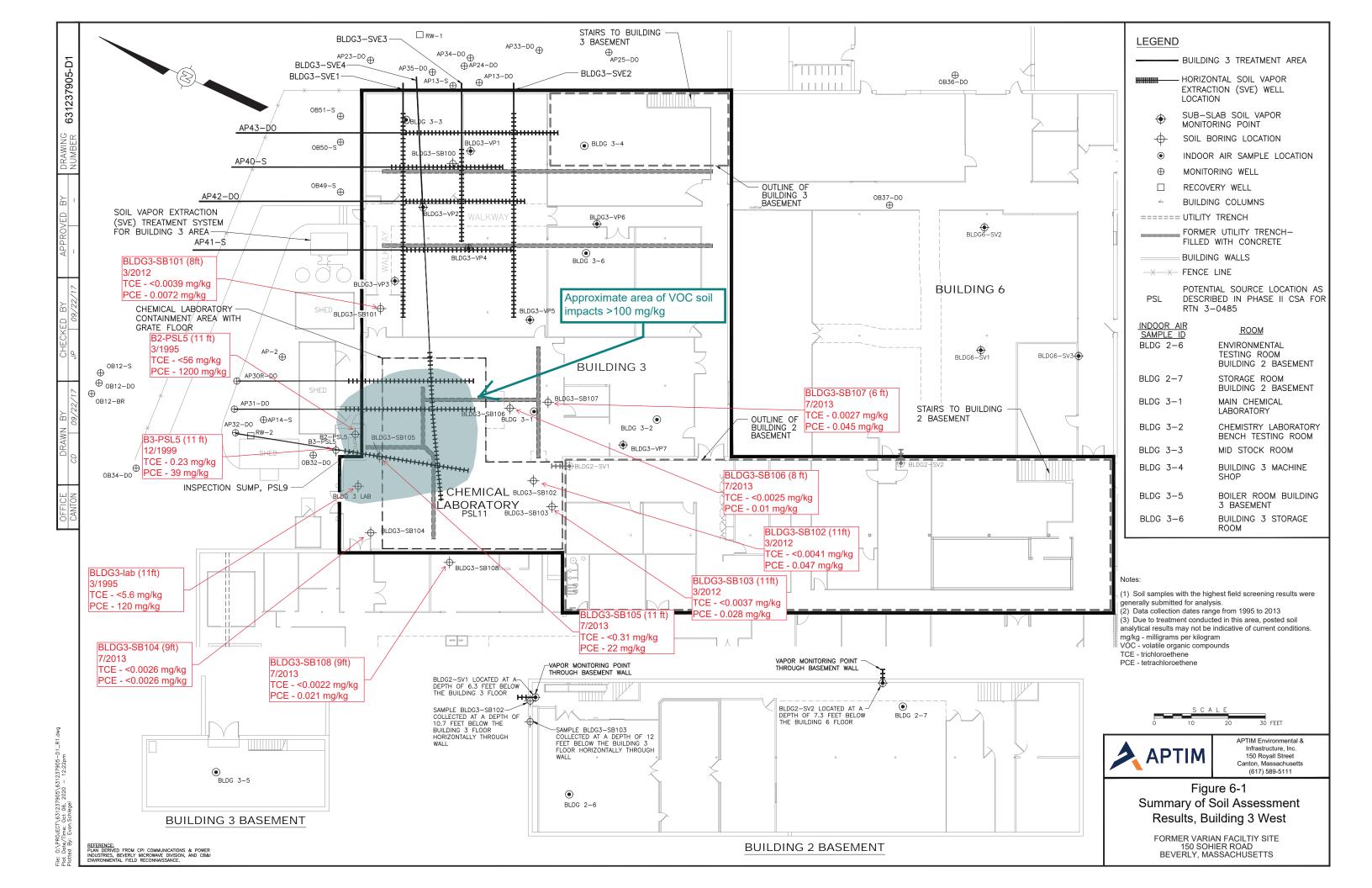

FIGURE 3-8

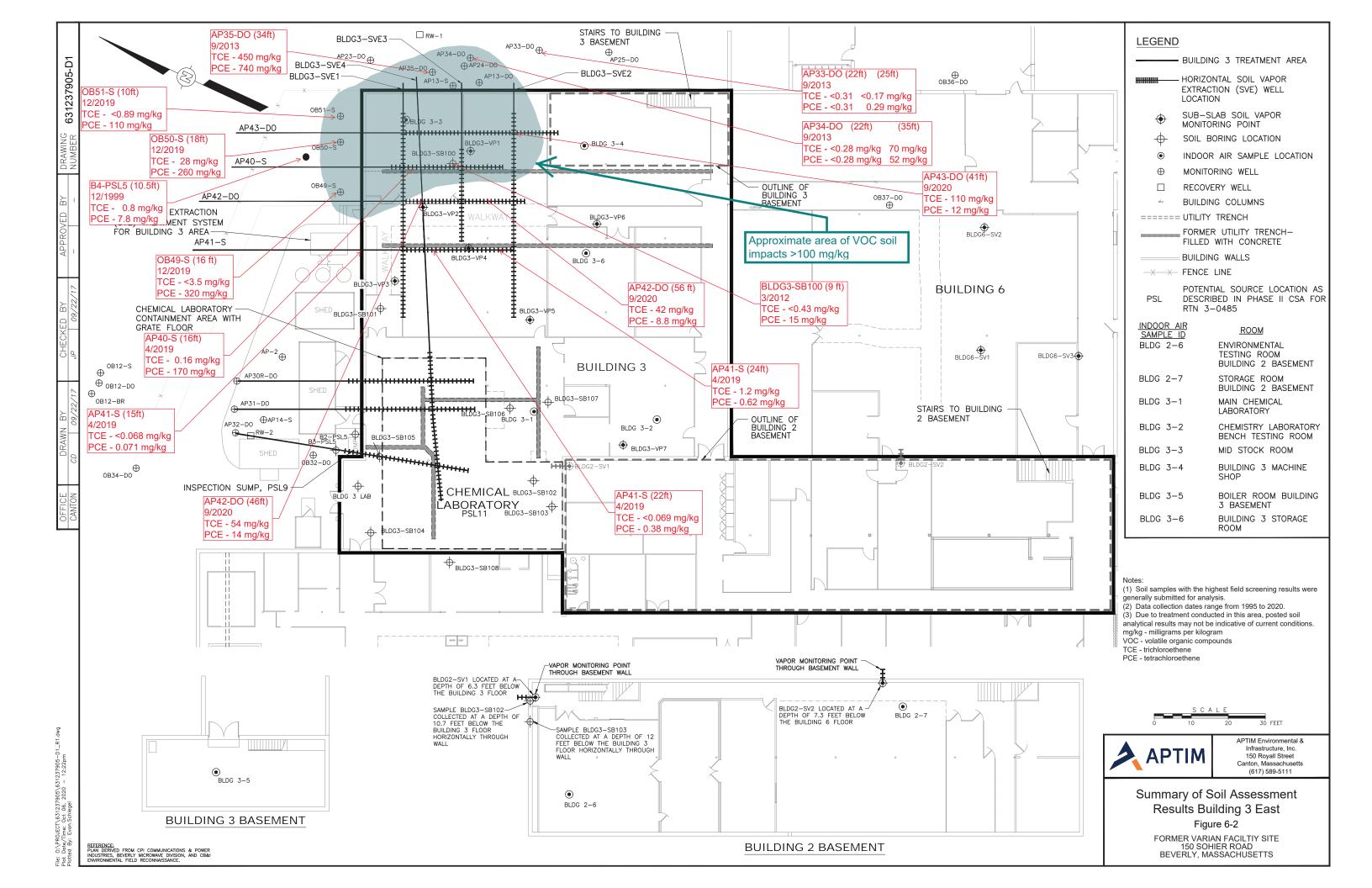

34 LONGVIEW DRIVE

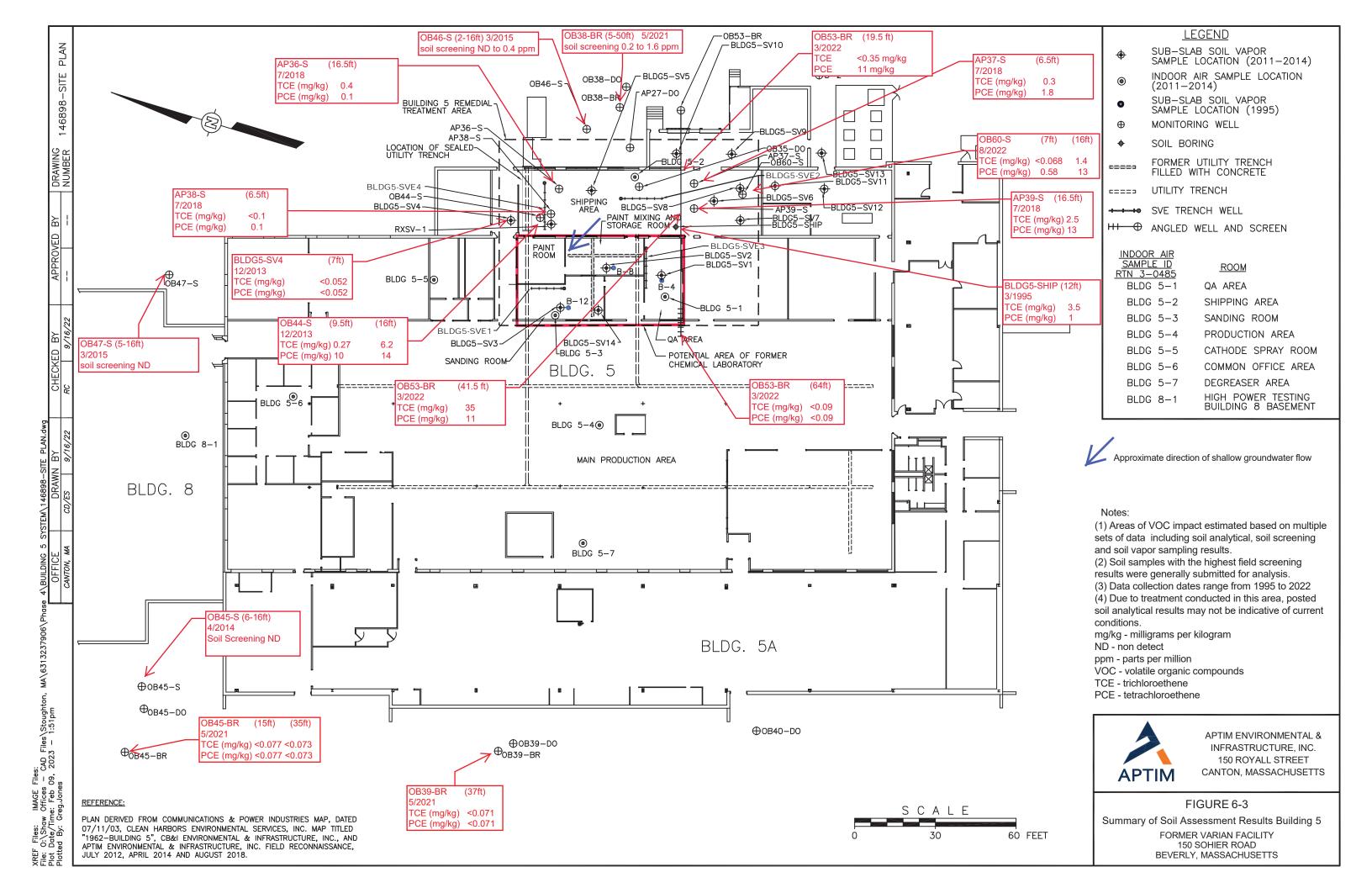

FORMER VARIAN FACILITY SITE BEVERLY, MA

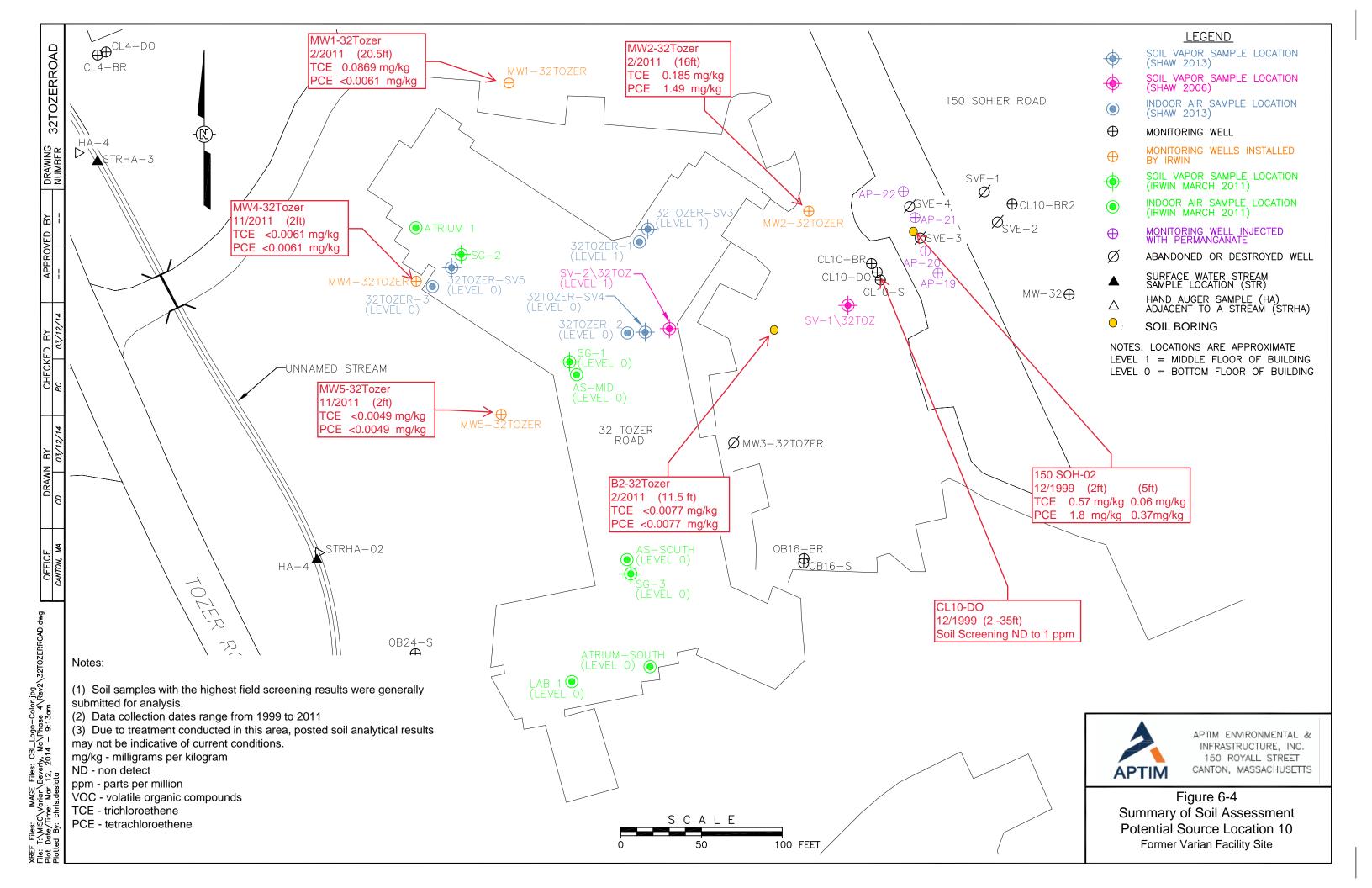

File: C:\ray 34 longview\631010764-A1.dwg Plot Date/Time: Jun 02, 2022 - 6:06am Plotted By: Greg.Jones

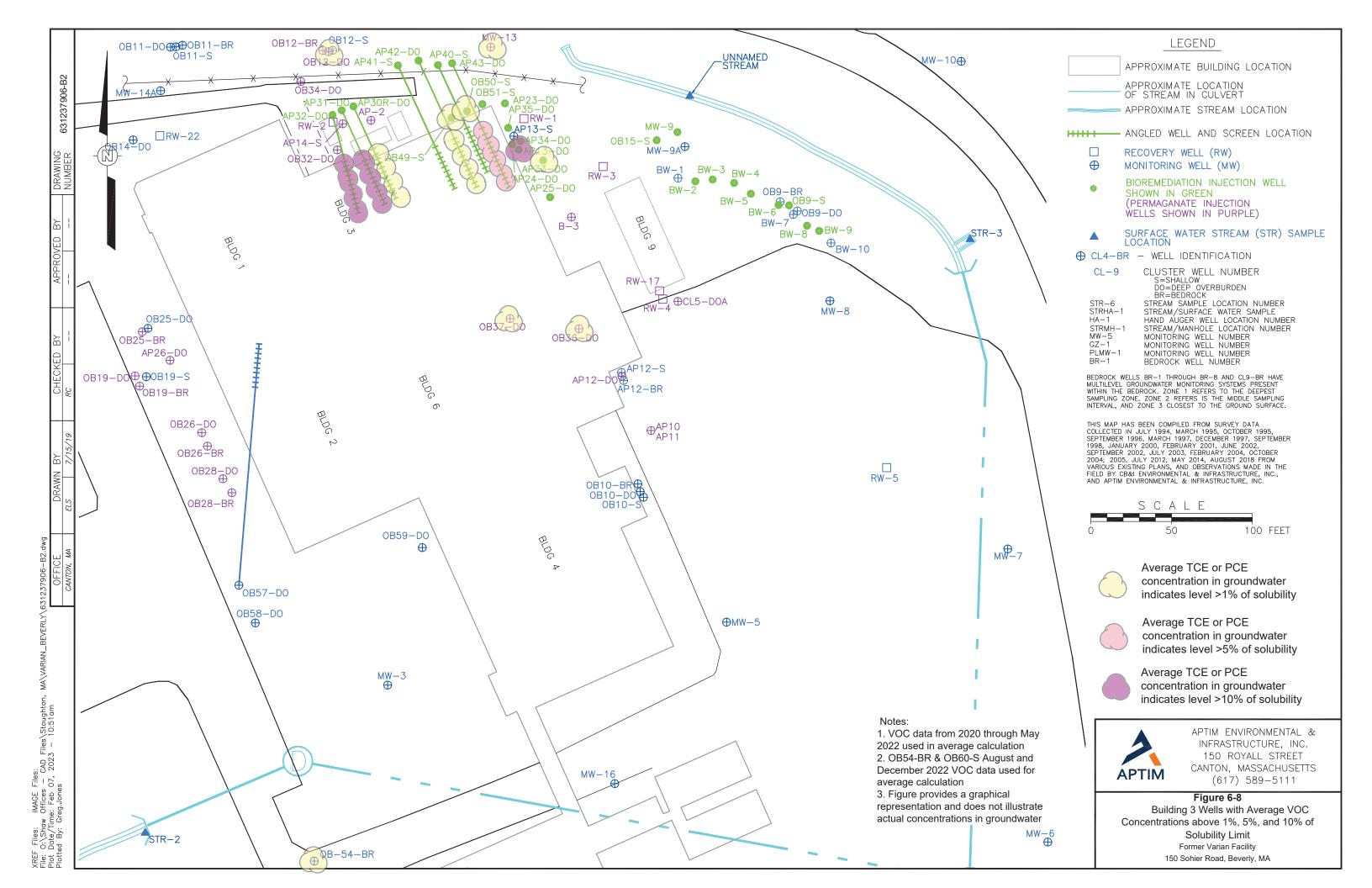


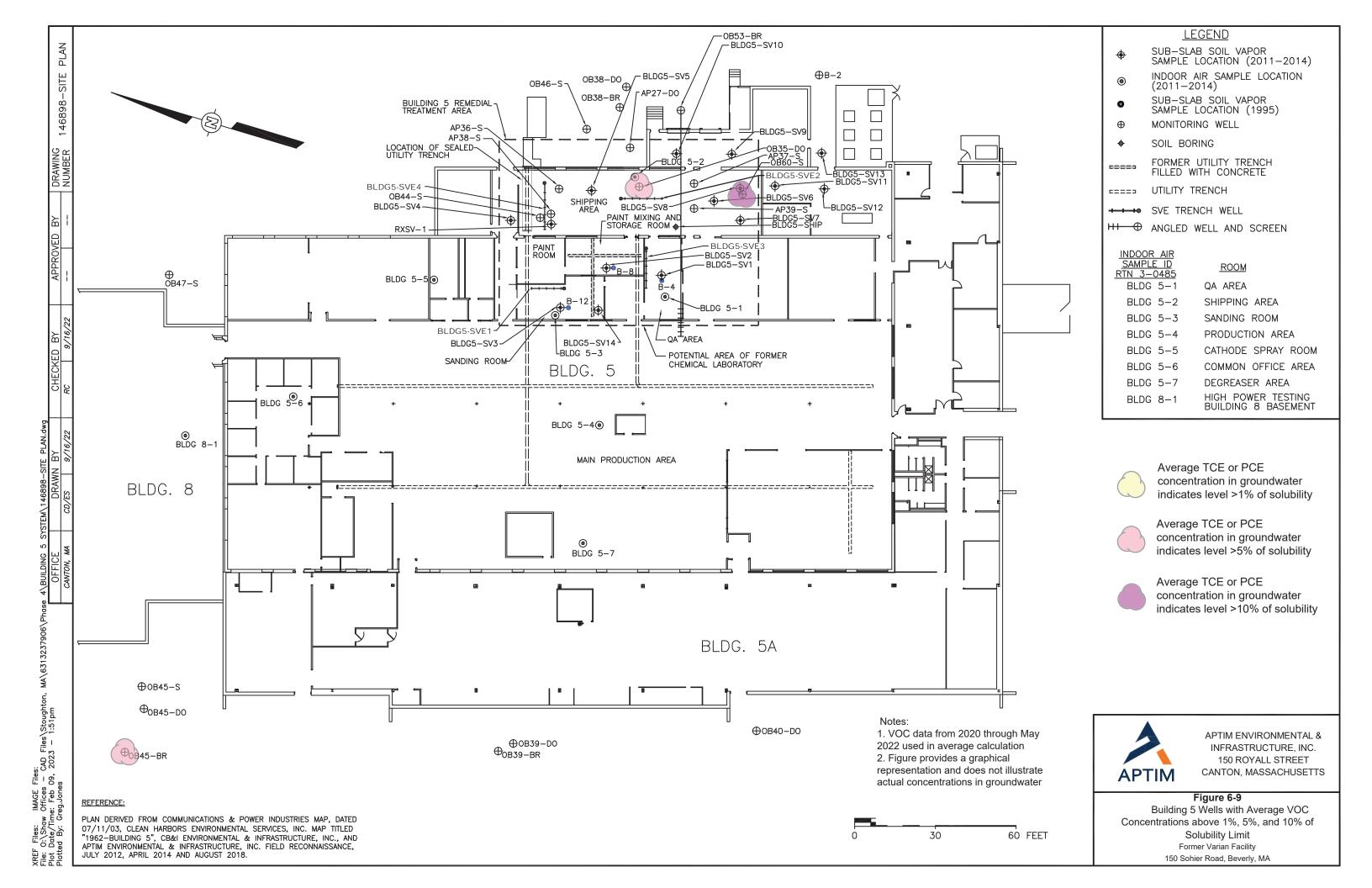


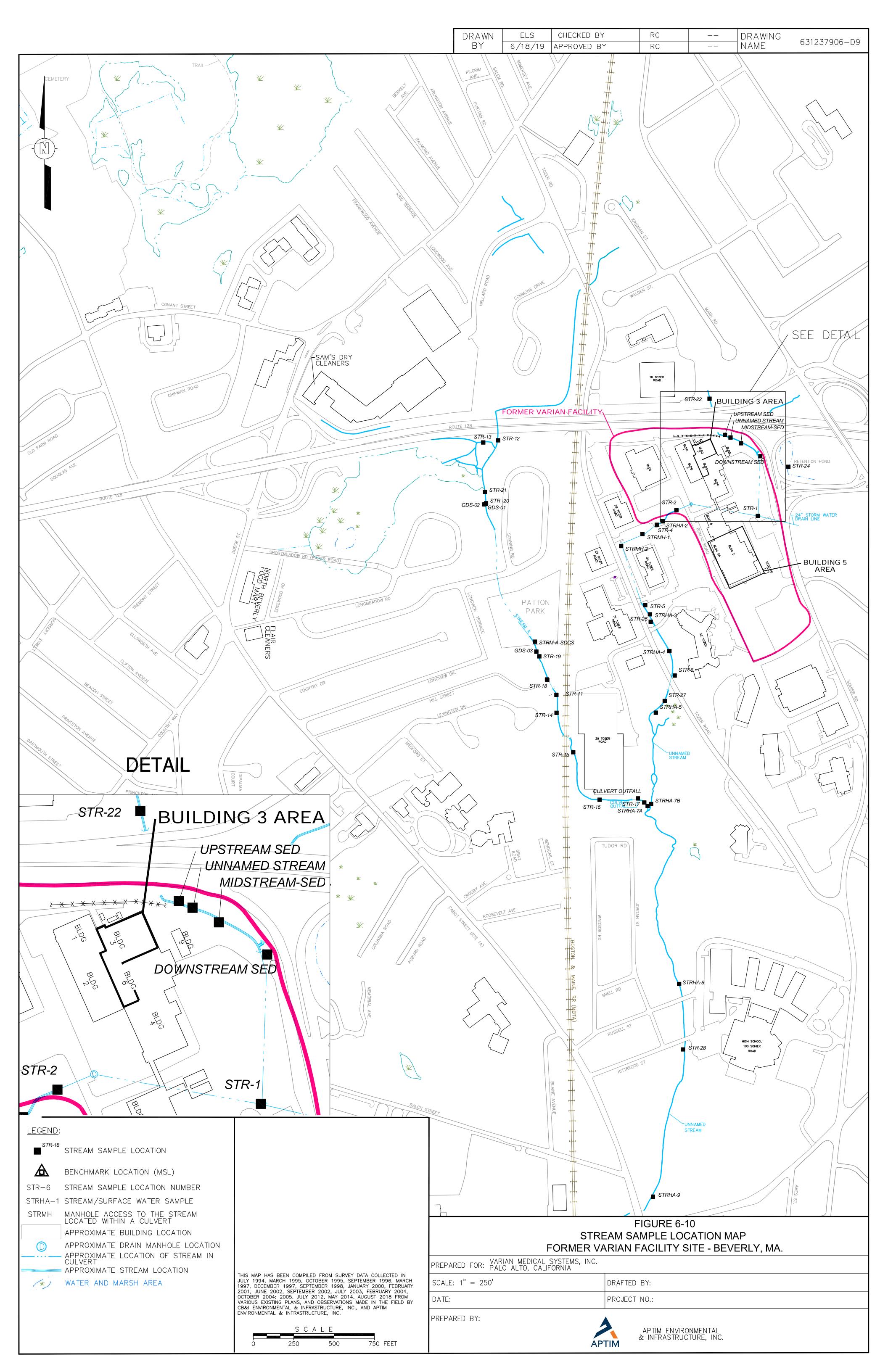


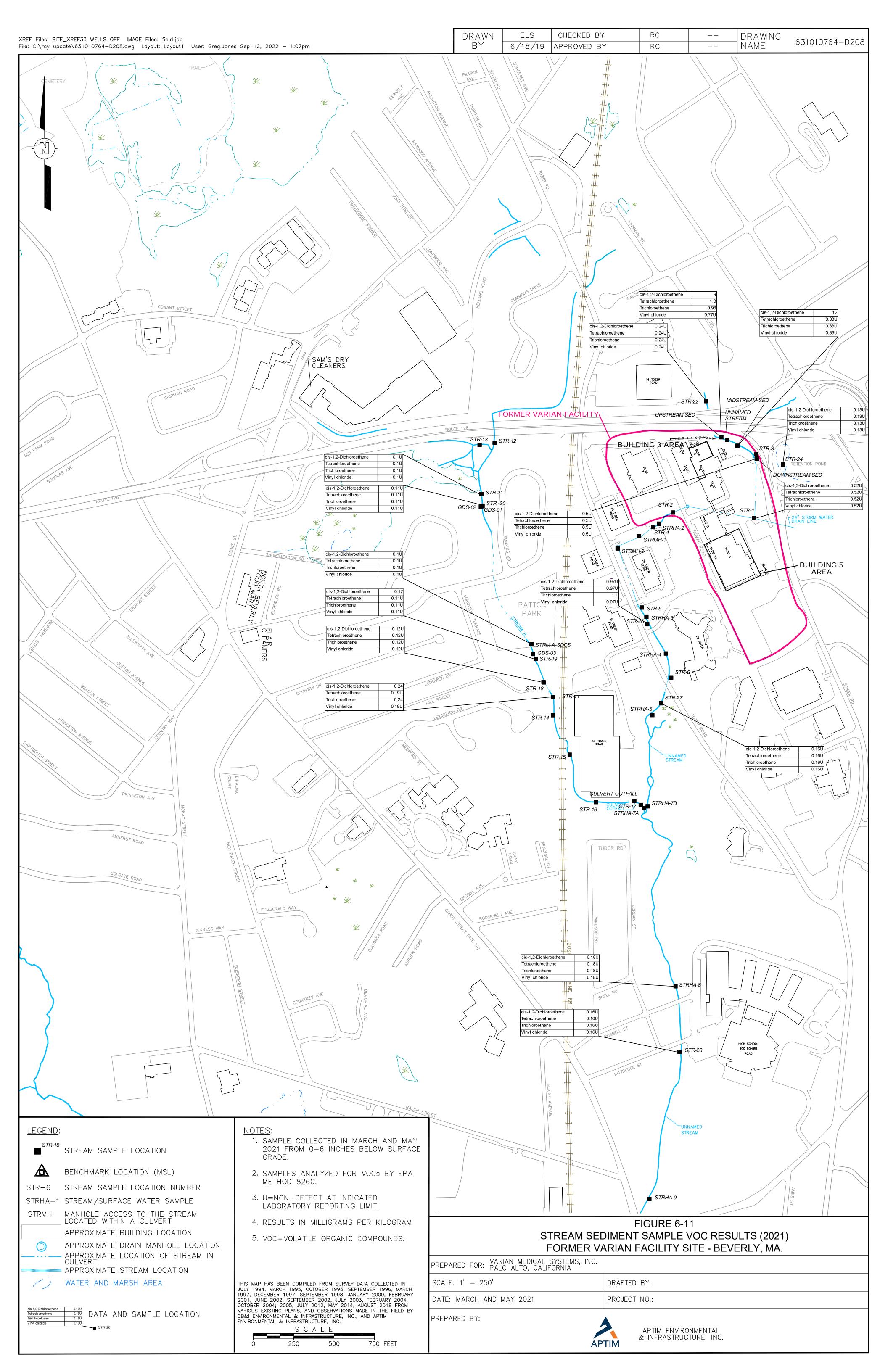


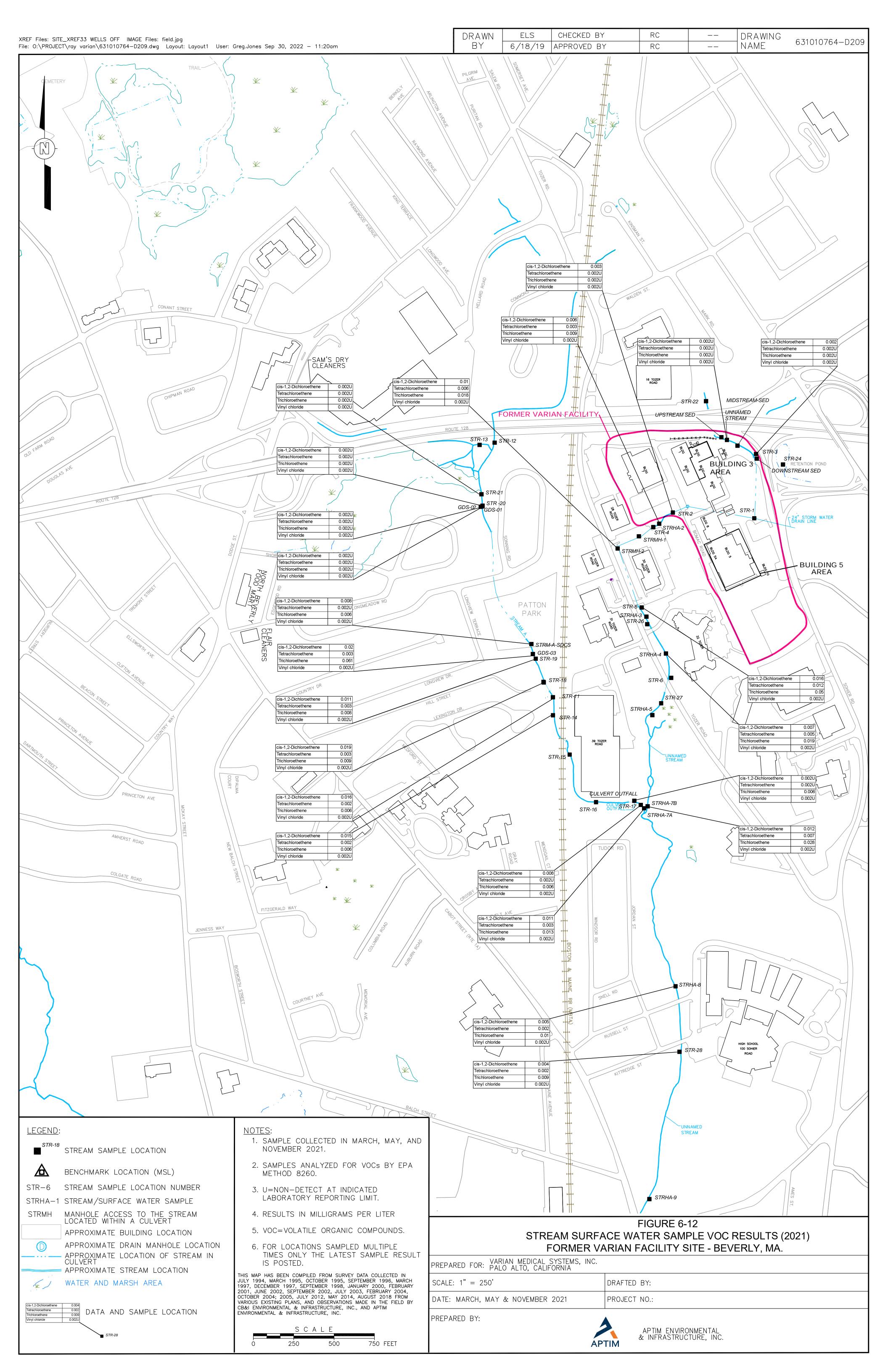












Appendix A

MassDEP Comprehensive Response Action Transmittal Form (BWSC-108)

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC 108

Release Tracking Number

1101000		acining i various
3	-	485

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

A.	SITE LOCATION:			
1. 3	Site Name:	VARIAN-MICROWAVE DIV		
2. :	Street Address:	150 SOHIER RD		
3. (City/Town:	BEVERLY	4. ZIP Code:	019150000
~	5. Check here if the	disposal site that is the so	ource of the release is Tier Classified. Check	the current Tier Classification Category
	a. Tier I	□ b. Tier ID	c. Tier II	
В.	THIS FORM IS BE	CING USED TO: (check a	all that apply)	
	1. Submit a Phase	I Completion Statemen	at, pursuant to 310 CMR 40.0484.	
Г	2. Submit a Revise	ed Phase I Completion S	Statement, pursuant to 310 CMR 40.0484.	
Г	3. Submit a Phase	II Scope of Work, pursu	uant to 310 CMR 40.0834.	
Γ	4. Submit an interi 310 CMR 40.0500.	_	s report does not satisfy the response action	deadline requirements in
V	5. Submit a final P	hase II Report and Cor	mpletion Statement, pursuant to 310 CMR	40.0836.
	6. Submit a Revise	d Phase II Report and (Completion Statement, pursuant to 310 CM	MR 40.0836.
	7. Submit a Phase	III Remedial Action Pla	an and Completion Statement, pursuant to	310 CMR 40.0862.
	8. Submit a Revise	d Phase III Remedial A	action Plan and Completion Statement, p	ursuant to 310 CMR 40.0862.
	9. Submit a Phase	IV Remedy Implementa	ation Plan, pursuant to 310 CMR 40.0874.	
	10. Submit a Modi	fied Phase IV Remedy I	Implementation Plan, pursuant to 310 CM	R 40.0874.
Г	11. Submit an As-F	Built Construction Repo	ort, pursuant to 310 CMR 40.0875.	
	12. Submit a Phase	e IV Status Report, purs	suant to 310 CMR 40.0877.	
	13. Submit a Phase	e IV Completion Staten	nent, pursuant to 310 CMR 40.0878 and 40.	0879.
	Specify the outc	come of Phase IV activitie	es: (check one)	
		eration, Maintenance or M Γemporary Solution.	Ionitoring of the Comprehensive Remedial A	action is necessary to achieve a
	-	ments of a Permanent Solutill be submitted to DEP.	ution have been met. A completed Permanen	t Solution Statement and Report
	-	ments of a Temporary Soluill be submitted to DEP.	ution have been met. A completed Temporar	ry Solution Statement and Report

Revised: 09/03/2013 Page 1 of 5

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC 108

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

Release Tracking Number					
3	-	485			

В.	THIS FORM IS BEING USED TO (cont.): (check all that apply)
	14. Submit a Revised Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879.
	15. Submit a Phase V Status Report, pursuant to 310 CMR 40.0892.
	16. Submit a Remedial Monitoring Report. (This report can only be submitted through eDEP.)
	a. Type of Report: (check one) 🔲 i. Initial Report 🗀 ii. Interim Report 🗀 iii. Final Report
	b. Frequency of Submittal: (check all that apply)
	i. A Remedial Monitoring Report(s) submitted monthly to address an Imminent Hazard.
	ii. A Remedial Monitoring Report(s) submitted monthly to address a Condition of Substantial Release Migration.
	iii. A Remedial Monitoring Report(s) submitted every six months, concurrent with a Status Report.
	iv. A Remedial Monitoring Report(s) submitted annually, concurrent with a Status Report.
	c. Status of Site: (check one) 🔲 i. Phase IV 🔲 ii. Phase V 🔲 iii. Remedy Operation Status 🗀 iv. Temporary Solution
	d. Number of Remedial Systems and/or Monitoring Programs:
Г	A separate BWSC108A, CRA Remedial Monitoring Report, must be filled out for each Remedial System and/or Monitoring Program addressed by this transmittal form. 17. Submit a Remedy Operation Status , pursuant to 310 CMR 40.0893.
	18. Submit a Status Report to maintain a Remedy Operation Status , pursuant to 310 CMR 40.0893(2).
_	19. Submit a Transfer and/or a Modification of Persons Maintaining a Remedy Operation Status
	 (ROS), pursuant to 310 CMR 40.0893(5) (check one, or both, if applicable). □ a. Submit a Transfer of Persons Maintaining an ROS (the transferee should be the person listed in Section D, "Person Undertaking Response Actions"). □ b. Submit a Modification of Persons Maintaining an ROS (the primary representative should be the person listed in Section D, "Person Undertaking Response Actions"). c. Number of Persons Maintaining an ROS not including the primary representative:
	20. Submit a Termination of a Remedy Operation Status, pursuant to 310 CMR 40.0893(6).(check one)
	 a. Submit a notice indicating ROS performance standards have not been met. A plan and timetable pursuant to 310 CMR 40.0893(6)(b) for resuming the ROS are attached. b. Submit a notice of Termination of ROS.
	21. Submit a Phase V Completion Statement, pursuant to 310 CMR 40.0894.
	Specify the outcome of Phase V activities: (check one)
	 a. The requirements of a Permanent Solution have been met. A completed Permanent Solution Statement and Report (BWSC104) will be submitted to DEP. b. The requirements for a Temporary Solution have been met. A completed Temporary Solution Statement and Report (BWSC104) will be submitted to DEP.
	22. Submit a Revised Phase V Completion Statement, pursuant to 310 CMR 40.0894.
	23. Submit a Temporary Solution Status Report , pursuant to 310 CMR 40.0898.
	24. Submit a Plan for the Application of Remedial Additives near a sensitive receptor, pursuant to 310 CMR 40.0046(3).
	a. Status of Site: (check one)
	i. Phase IV iii. Remedy Operation Status iv. Temporary Solution

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

FORM & PHASE I COMPLETION STATEMENT

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

D	XX	C		1	08
D	77	D	U	1	υo

Release Tracking Numb			
	3	-	485

C. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

> if Section B indicates that a **Phase II**, **Phase III**, **Phase IV** or **Phase V** Completion Statement and/or a Termination of a **Remedy Operation Status** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

> if Section B indicates that a **Phase II Scope of Work** or a **Phase IV Remedy Implementation Plan** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

> if Section B indicates that an As-Built Construction Report, a Remedy Operation Status, a Phase IV, Phase V or Temporary Solution Status Report, a Status Report to Maintain a Remedy Operation Status, a Transfer or Modification of Persons Maintaining a Remedy Operation Status and/or a Remedial Monitoring Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP#:	4689				
2. First Name:	BRIAN J		3. Last Name: <u>\(\alpha \)</u>	ЭТЕ	
4. Telephone:	6175896175	5. Ext.:	6. Email:		
7. Signature:					
8. Date:	(mm/dd/yyyy)	_	9. LSP Stamp:		

Revised: 09/03/2013 Page 3 of 5

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

B	W	SC	1	08

Release Tracking Number				
3	-	485	Ī	

D. PE	CRSON UNDERTAI	KING RESPONSE A	CTIONS:		
1. Ch	eck all that apply:	a. change in cont	act name	▼ b. change of address	c. change in the person undertaking response actions
2. Na	me of Organization:	VARIAN MEDICA	AL SYSTEMS INC		
3. Co	ntact First Name:	MATTHEW		4. Last Name:	GILLIS
5. Str	eet: <u>525 9TH STI</u>	REET		6. Title:	
7. Cit	y/Town: <u>WASHING</u>	STON	8. State:	DC	9. ZIP Code: 200040000
10. To	elephone: <u>41045917</u>	10	11. Ext:	12. Email:	matthew.gillis@varian.com
E. RE	ELATIONSHIP TO	SITE OF PERSON U	NDERTAKIN	G RESPONSE ACTION	S: Check here to change relationship
V	1. RP or PRP	a. Owner	b. Operator	C. Generator	d. Transporter
	▼ e	. Other RP or PRP	Specify:	NON-SPECIFIED PRP	
	2. Fiduciary, Secur	red Lender or Munici	pality with Exe	empt Status (as defined b	y M.G.L. c. 21E, s. 2)
	3. Agency or Publi	ic Utility on a Right o	of Way (as defin	ned by M.G.L. c. 21E, s.	5(j))
	4. Any Other Perso	on Undertaking Respo	onse Actions	Specify Relationship:	
F. RE	QUIRED ATTACH	MENT AND SUBMI	TTALS:		
V		issued by DEP or EP		-	are (were) subject to any order(s), permit(s) ach a statement identifying the applicable
~	2. Check here to ce any Phase Reports	-	unicipal Office	er and the Local Board of	Health have been notified of the submittal of
	3. Check here to ce of a Phase III Remo		unicipal Office	r and the Local Board of	Health have been notified of the availability
		rtify that the Chief M edy Implementation I		r and the Local Board of	Health have been notified of the availability
		ertify that the Chief M rementation of a Phase			Health have been notified of any field work
				tus (as per 310 CMR 40. on making this submittal	0893(5)), check here to certify that a (transferee) is attached.
				Status (as per 310 CMR v person making this sub	(40.0893(5)), check here to certify that a mittal is attached.
		y non-updatable info SC.eDEP@state.ma.	•	ed on this form is incorre	ct, e.g. Release Address/Location Aid. Send
V	9. Check here to ce	ertify that the LSP Op	inion containin	g the material facts, data	, and other information is attached.

Page 4 of 5 Revised: 09/03/2013

Massachusetts Department of Environmental Protection

Bureau of Waste Site Cleanup

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

B	W	SC	1	0	8

Release Tracking Number				
3	-	485		

G. CEKTH	FICATION OF FER	SON UNDERTAKING RESPO	MSE ACTIONS	'•
transmittal material inf that I am fu on whose b and imprise >if Section	form, (ii) that, based formation contained ally authorized to make half this submittal in the properties of the contained and the contained are the contained at the contained are the contained at the contained are the contained at the contained	the information contained in thi on my inquiry of those individue in this submittal is, to the best of the ke this attestation on behalf of the is made am/is aware that there a submitting false, inaccurate, or this a Modification of a Remediate.	s submittal, incluuals immediately of my knowledge he entity legally are significant pen incomplete informally Operation Sta	as and penalties of perjury (i) that I have personally ading any and all documents accompanying this responsible for obtaining the information, the and belief, true, accurate and complete, and (iii) responsible for this submittal. I/the person or entity nalties, including, but not limited to, possible fines remation. **Tatus (ROS)*, I attest under the pains and penalties response actions under the ROS as stated in 310
CMR 40.08	393(5)(d) to receive		e from MassDEP	P with respect to performance of response actions
performing	response actions un		at there are signi	ssDEP shall be deemed received by all the persons ifficant penalties, including, but not limited to, complete information.
2. By:			3. Title:	
		Signature	_	
4. For:	VARIAN MEDICAL SY	STEMS INC	5. Date:	
	(Name of person	n or entity recorded in Section D)		(mm/dd/yyyy)
☐ 6. Chec	ck here if the address	s of the person providing certifi	cation is differen	nt from address recorded in Section D.
5 0				
7. Street:				
8. City/Tow	vn:	9. Stat	e:	10. ZIP Code:
11. Telepho	one:	12. Ext.:	13. Email:	
BILI SECTION AN	LABLE YEAR FONS OF THIS FOR	OR THIS DISPOSAL SITE. IM OR DEP MAY RETUR! FORM, YOU MAY BE PE!	YOU MUST LENTHE DOCUM	URANCE FEE OF UP TO \$10,000 PER LEGIBLY COMPLETE ALL RELEVANT MENT AS INCOMPLETE. IF YOU SUBMIT R MISSING A REQUIRED DEADLINE.

Page 5 of 5 Revised: 09/03/2013

Attachment to BWSC 108 150 Sohier Road, Beverly, MA RTN 3-0485

Approvals from the Massachusetts Department of Environmental Protection that this submittal is subject to include:

- Massachusetts Department of Environmental Protection Termination of Remedy Operation Status Notice of Noncompliance, dated February 18, 2022.
- Massachusetts Department of Environmental Protection approval of extension request, letter to Varian Medical Systems, Inc., dated July 6, 2022.
- Public Comment Draft Phase II Addendum Reporting Schedule, Aptim Environmental and Infrastructure, LLC letter to Massachusetts Department of Environmental Protection, dated September 12, 2022

Appendix B

Soil Boring/Well Logs (Post 2000)

APPENDIX B SOIL BORING/WELL LOGS (POST 2000) SHALLOW MONITORING WELLS

Monitoring Well **AP-1**

Project _	Varian/Beve	erly				_ 0	wner Varian Medical Systems, Inc. COMMENTS	
Location	150 Sohiel	r Road, I	Beverly, I	Massac	husetts		Proj. No. <u>806395</u> ND = None detected	
Surface E	lev. <u>80.7 f</u>	ft	Total H	ole Dep	oth	.3 ft.	North East	
Top of Ca	sing _80.09	9 ft	Water I	_evel In	itial $rac{ extstyle ex$	3.0 ft	<u>t.</u> Static <u>▼ 3.0 ft.</u> Diameter <u>8.75 in.</u>	
							Type/Size _ <i>PVC/0.020 in.</i>	
Casing: Di	ia <u>2 in.</u>		Length	7 ft.			Type	
							ig/Core Canterra	
							Stem Auger	
Driller J.	. Keenan		Log By	M. W	/inters		Date	
			П					
ے	Well	. 🥫	Sample ID % Recovery	Blow Count Recovery	. <u>S</u>	USCS Class.	Description	<u>6</u>
Depth (ft.)	Wel	PID (ppm)	ll geo	× Č	Graphic Log	ူတ္သ	(Color, Texture, Structure)	Elevation (ft.)
-	ပိ		Sa 8 F	용정	0	OSC	Geologic Descriptions are Based on the USCS.	∥ ⊞
								00.70
0 -							Asphalt (4")	80.70
-							Concrete (1"-2") Brown, damp, dense, medium SAND 50%, trace	80
_ 2 _		1.0	CG-1				medium and fine sand	
-		1.0					Tan, damp, medium SAND 60%, little medium and fine,	
├ ————————————————————————————————————	500						trace medium gravel	'
L 4 -								
								-76
<u> </u>				19 🗸			Tan, damp, very dense, fine SAND, trace coarse sand,	
⊢ 6 −		3.5	<u>SS-1</u> 75%	29 X			little silt (Glacial Till)	
L _				33				- 74
							Tan, damp, very dense fine SAND 50%, trace medium and coarse sand, trace medium gravel (Glacial Till)	
8 -							and obdise sand, trace mediam graver (Slabiai Till)	
-						sw		-72
_ 10 _								-
				20			Split spoon refusal	
F -		ND	<u>SS-2</u> 5%	50			Tan, damp, very dense, fine SAND, trace coarse subangular and trace fine gravel (Glacial Till)	'0
- 12 -				Ц				
							Same as above	-68
		ND	CG-2					
₃ ├ 14 −								
7 - 6			CG-3/					-66
				25 51			Split spoon refusal Same as above	1
[<u>SS-3</u> 0%	ا ا			Same as above	
3 -				Ц				64
- 							End of exploration at 17.25 feet.	
[- 18 -							·	—62
<u> </u>							Well Construction:	02
\$ ⊵- 20 -							Screen from 17.3 feet to 7.3 feet; casing from 7.3 feet to	
20							grade. Completed at grade with flush roadbox set in concrete.	-60
. — —							Sand Pack/Seal:	
[22 -							Sand pack from 17.3 feet to 5 feet; bentonite from 5 feet	
							to 3 feet; native fill from 3 feet to grade.	-58
ğ								

Monitoring Well AP-12-S
Page: 1 of 1

Project _	Varian Beve	erly				_ 0\	wner Varian Medical Systems, Inc.	COMMENTS
Location	150 Sohie	r Road,	Beverly, N	ЛΑ			Proj. No. <u>832837</u>	Soil classifications were generated from grab samples
Surface El	ev. NA		Total Hol	e Dep	oth _30.	0 ft.	North East	collected from the auger flights unless otherwise stated.
							Static NA Diameter 4 in.	unicoo cinorwico ciatoa.
							Type/Size _ <i>PVC/.010 in.</i>	
							Type _ <i>PVC</i>	
							g/Core CME	
							Stem Auger	
							Date Permit #	
			0 ,					
ے	Well Completion	- (2	Sample ID % Recovery	Blow Count Recovery	oic _	USCS Class.	Description	
Depth (ft.)	Wel	PID (ppm)	Seco	N C	Graphic Log	၂ လ	(Color, Texture, Structu	ıre)
	Ö		Sa %	S S	в) NSC	Geologic Descriptions are Based o	
0 -					, ·O. ·(Asphalt	
					。 <u>(</u>) 。			
) ,		Brown fine-medium SAND with silt and gra	avel, occassional
		0.0			00		cobbles and boulders	
5 -					Υ			
		0.0			$^{\circ}$ $^{\circ}$			
† -	na na	0.0			00			
					。O (
- 10		2.3			$\circ \bigcirc \circ$	SP		
					00	GP		
† -					$^{\circ}$			
					。 () °			
- 15 -		5.7			0 0			
					$^{\circ}$			
<u> </u>					。 () 。			
) [
_ 20 -		12.9			φ 0 Ο (
1/3/0					777)		Light brown-greenish gray CLAY	
<u>-</u>					[///]			
5								
<u> </u>		36.9			[///]	CL		
=		54.3			[/// <u>]</u>			
로 - -		J-1.J			Y///			
50					////			
∄ 30 −		8.1			/ / / /	\vdash		
\$							Bottom of Exploration at 30 feet bsg	
771							Well Construction: Screen from 30 to 10 feet; casing from 10	feet to grade
 							Completed at grade with flush roadbox set	in concrete.
≝ - 35 -							Sand Pack/ Seal:	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							Sand pack from 30 to 8 feet; bentonite from from 6 feet to grade.	m & to 6 feet; native fill
3								
<u></u> 40 −								

Monitoring Well AP-13-S
Page: 1 of 1

Project _	Varian Beve	erly				_ 0	wner Varian Medical Systems, Inc.	COMMENTS
Location	150 Sohie	Soil classifications were generated from grab samples						
Surface E	lev. NA		Total Ho	le Der	oth <u>18.</u>	0 ft.	Proj. No832837 North East	collected from the auger flights unless otherwise stated.
							Static NA Diameter 4 in.	
							Type/Size _ <i>PVC/.010 in.</i>	
			_				Type PVC	
_			_				g/Core Ingersol Rand	
							Stem Auger	
							Date _4/9/02 Permit # _NA	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery		USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based o	
			-				Geologic Descriptions are based o	in the edge.
- 0 -								
	1500 BOX				, D. Č.		Brown silty fine SAND with gravel, cobbles excavated	and boulders, vacuum
_ 2 -					, o o .		CXCUVATCO	
					, 0) 0			
L 4 -						SM		
4) ° ° ° ° '	GM		
					. 0 0 .			
6 -) , 0			
					° 0 0 •			
8 -								
-					\ /			
- 10					\ /			
- 12 -					$ \setminus / $			
- 14 -					$ \ / \setminus \ $			
-					/			
<u> </u>					/ \		Davidar	
2 – 18 –							Boulder	
Š							End of Exploration at 18 feet bsg	
20 —							Well Construction:	
- 22 —							Screen from 18 to 5 feet, casing from 5 feet with a flush roadbox set in concrete.	et to grade. Completed
- 22							Sand Pack/ Seal: Sand from 18 to 3 feet, bentonite from 3 fe	eet to 1 foot native from
§ - 24							1 foot to grade.	oction 100t, native nom
71/9								
26 -								
KCIAL -								
28 -								
30 -								

Monitoring Well **AP-14-S**

	Varian Beve					_ O\	wner <u>Varian Medical Systems, Inc.</u>	COMMENTS Soil classifications were				
Location .	150 Sohie	r Road,	Beverly,	MA		Proj. No832837 generated from grab samples						
Surface El	ev. <u>NA</u>		Total Ho	ole Dep	oth <u>35</u> .	5 ft.	North East	collected from the auger flights unless otherwise stated.				
Top of Cas	sing <i>NA</i>		Water L	evel In	itial <i>NA</i>	ı	Static NA Diameter 4 in.					
Screen: Di	a <u>2 in.</u>		Length	20 ft.	_	Type/Size _ <i>PVC/.010 in.</i>						
							Type _ <i>PVC</i>					
							g/Core CME					
							Stem Auger					
							Date12/28/01 Permit #NA					
CHOOKCO E	- J		I		LIGOTIO	110.						
	uo		ery	ţ.	U U	Class.	Description					
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	Ö	·	\				
	Com	J d)	San % Re	Blow	_ გ_	nscs	(Color, Texture, Structu Geologic Descriptions are Based or	· ·				
			6,	_			Geologic Descriptions are Based or	i the USCS.				
⊢ 0 ⊣												
							brown, dry to moist, SILT, fine to coarse S					
F -							gravel, occassional cobbles and coarse gra	avel				
├ 5 ⊣		0.0				ML SM						
						"						
t 1												
,,												
10	nen ever	0.0	<u>S-1</u> 80%	12 21 56 32			Brown, moist, fine to corse SAND, little to	some silt and fine sand,				
		0.0	80%	56 32			trace fine gravel and cobbles					
L 15 -		0.0				SP						
'3		0.0				J.						
L												
<u> </u> 20				19 🗸			Dark brown majet to wet, madium to coord	o CAND and CILT little				
		0.0	<u>S-2</u> 50%	19 50/2"			Dark brown, moist to wet, medium to coars fine sand trace fine gravel, cobbles	se SAND and SILT little				
F -						SP	graver, consistent					
<u> </u>		0.0				SM	Color change to olive brown, clay content i	ncreasing				
		360			7771		Olive brown, saturated, CLAY, some fine-	medium sand, trace				
<u> </u>					[///]	CL	coarse sand fine gravel occassional sobbl	es				
					<u> </u>							
30 -		36					Saturated, olive gray, fine-medium SAND a	and SILT, some coarse				
<u>}</u> _							sand, little to some clay, trace fine to coars	e gravel				
						SM						
35 -		3.2										
, 33					T65/XX/X /		End of Exploration at 25 5 feet has					
}							End of Exploration at 35.5 feet bsg Well Construction:					
							Screen from 35 to 15 feet; casing from 15					
- 40 −							Completed at grade with flush roadbox set Sand Pack/ Seal:	in concrete.				
							Sand Pack/Seal: Sand pack from 35 to 13 feet; bentonite from	om 13 to 10 feet: arout				
╟┤							10 to grade.	2 12 12 12 0, g . 0 0 1				
8												
- 45 -												

Monitoring Well **AP-15S** Page: 1 of 1

Description Solidar Road, Beverly, MA		Varian Beve					_ 0	wner Varian Medical Systems, Inc.	COMMENTS
Top of Casing NA Screen: Dia 1 in. Length 10 ft. Types Size PVC/.010 in. Casing: Dia 1 in. Length 5 ft. Types Size PVC/.010 in. Casing: Dia 1 in. Length 5 ft. Types Size PVC/.010 in. Types Size PVC/.010 in. Type PVC Geoprobe/Core Fill Material Sand Rig/Core Geoprobe/Core Drill Co. AM Drilling Driller A. Pindar Log By D. Walker Date 8/26/02 Permit # NA Checked By License No. Class By Size Size Size PVC/.010 in. Class Size Size Size PVC/.010 in. Types Size PVC/.010 in. Types Size PVC/.010 in. Types Size PVC/.010 in. Types Size Size Size Size Size Size Size Size	Location .	150 Sohie	r Road,	Beverly, N	1A			Proj. No. <u>832837</u>	No Soil Samples Collected
Top of Casing NA Screen: Dia 1 in. Length 10 ft. Types Size PVC/.010 in. Casing: Dia 1 in. Length 5 ft. Types Size PVC/.010 in. Casing: Dia 1 in. Length 5 ft. Types Size PVC/.010 in. Types Size PVC/.010 in. Type PVC Geoprobe/Core Fill Material Sand Rig/Core Geoprobe/Core Drill Co. AM Drilling Driller A. Pindar Log By D. Walker Date 8/26/02 Permit # NA Checked By License No. Class By Size Size Size PVC/.010 in. Class Size Size Size PVC/.010 in. Types Size PVC/.010 in. Types Size PVC/.010 in. Types Size PVC/.010 in. Types Size Size Size Size Size Size Size Size	Surface El	lev. NA		Total Hole	e Dep	th <u>15</u>	.0 ft.	North East	
Screen: Dia 1 in. Length 10 ft. Type/Size PVC/010 in. Type PVC Type Type PVC Type Type PVC Type	Top of Cas	sing <i>NA</i>		Water Le	vel Ini	itial $rac{ abla}{-}$	8.0 ft	t Static NA Diameter 2 in.	
Casing: Dia 1 in. Length 5 ft. Rig/Core Geoprobe/Core Fill Material Sand Rig/Core Geoprobe/Core Drill Co. AM Drilling Network Diller A Pindar Log By D. Walker Date 8/26/02 Permit # NA Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. No Soil Samples Collected									
Fill Material Sand Rig/Core Geoprobe/Core Drill Co. AM Drilling Date S26/02 Permit # NA Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. No Soil Samples Collected									
Driller A. Pindar Log By License No. Date 8/26/02 Permit # NA	Fill Materia	al Sand		. 5. –			Ri	a/Core Geoprobe/Core	
Driller A. Pindar Log By D. Walker Date 826/02 Permit # NA Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.									
Checked By License No. Color, Texture, Structure) Color, Texture, Structure, Structure) Color, Texture, Structure, Structure									
Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. No Soil Samples Collected No Soil Samples Collected									
- 2	O I CORCU			II		LICCIIS	110.		
- 2		uo		민술	ŧ ≥	O	ass.	Description	
- 2	epth (ft.)	Vell	Olc (md	ll jple	S S	aphi -og	S CE	·	
- 2	۵ ا	Com	<u> </u>	San % Re	Bow	ö	ISC:	· · · · · · · · · · · · · · · · · · ·	
- 2				0`				Geologic Descriptions are Based of	n the USCS.
- 2									
- 2									
- 2									
- 2	o -	<u> </u>							
- 4 -									
- 4 -	├								
- 4 -									
- 6 -									
- 6 -	-								
- 6 -									
- 6 - 8 ♥	├ 4 -								
- 6 - 8 ♥									
- 8 □ - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1								No Soil Samples Collected	
	- 6 -								
	-								
	L o $ abla$								
20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -									
20 - 10 - 12 - 14 - 16 - 18 - 18 - 20 - 20 - 18 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	-								
10 - 12 - 12 - 14 - 16 - 16 - 18 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2									
25 - 12 - 16 - 16 - 18 - 18 - 20 - 20 - 18	்								
20 - 12 - 13 - 16 - 18 - 18 - 20 - 18 - 20 - 18 - 20 - 18 - 20 - 18 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	1/3/0								
20 — 12 — 14 — 16 — 18 — 18 — 20 — 18 — 20 — 18 — 20 — 20 — 20 — 20 — 20 — 20 — 20 — 2	<u>-</u>								
20 - 14 - 18 - 18 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	등 12 -								
14 — 16 — 18 — 18 — 20 — 20 — 20 — 20 — 20 — 20 — 20 — 2	S								
16 - 18 - 18 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	ᆣ								
17	☐ 11 ☐								
16 - 18 - 18 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	75 14 T								
7	計 -								
16 — 18 — 18 — 18 — 20 — 19 — 19 — 19 — 19 — 19 — 19 — 19 — 1	× ×								
18 — 18 — — — — — — — — — — — — — — — —	8 - 16 -								
7	6/1								
7 18 —	Zev.								
	<u></u>								
	ERC								
	<u>₩</u>								
	ŏ ≥ - 20								
<u> </u>	AH 70 7								

Temporary Addition Well AP-17S Page: 1 of 1

	Varian Bev					_ 0\	wner _Varian Medical Systems, Inc.	COMMENTS
Location	150 Sohie	r Road,	Beverly,	MA			Proj. No. <u>832837</u>	No Soil Samples Collected Used as Temporary addition
Surface I	Elev. NA		Total Ho	ole Der	oth	.0 ft.	North East	well for 8/26-27/02 sodium permanganate addition
Top of C	asing NA		Water I	evel In	itial 🔽	8.0 ft	t. Static NA Diameter 2 in.	permanganate addition
							Type/Size PVC/.010 in.	
							Type	
-			-				* *	
							g/Core <u>Geoprobe/Core</u>	
	AM Drilling							
							Date _ <u>8/26/02</u> Permit # _ <i>NA</i>	
Checked	Ву	<u> </u>			Licens	e No.		
Depth (ft.)	Well	OIA (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based o	
- 0 -								
- - 2 -								
- 4 - -							No Soil Samples Collected	
- 6 - -								
- 8 <u>-</u> -								
- 10 - -								
- 12 - -								
- 14 -	_							
_ 16 - _	_							
- 18 - -	_							
_ 20 -	_							

Monitoring Well AP-3

AP-36-S Page: 1 of 1

Surface Elev _MA	Project _	Varian Beve	erly			Ov	vner Varian Medical Systems, Inc.	COMMENTS
Surface Liev. Month Top of Casing: Dia 2 in. Length 10 it. Length 10 it. Rig/Core Acker/Sol Scout Driller John Bord Log By Chris Buerkie Concexed By Raymond Cadoratio Length 10 it. Length 2 it. Rig/Core Acker/Sol Scout Driller John Bord Log By Chris Buerkie Dark John Bord Log By Chris Buerkie Concexed By Raymond Cadoratio Length 2 it. Rig/Core Acker/Sol Scout Driller John Bord Log By Chris Buerkie Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, melt, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information	Location	Beverly, N	1assach	usetts			Proj. No. <u>631237905</u>	Hand cleared 0-5' on 7/25/2018
Screen: Dia 2 In. Length 10 ft. Type/Size 10-Slot/0.01 fin. Type Size 10-Slot/0.01 fin	Surface E	lev. NA		Total Hole	Depth18	3.0 ft.	North East	
Screen: Dia 2 In. Length 10 ft. Type/Size 10-Slot/0.01 fin. Type Size 10-Slot/0.01 fin	Top of Ca	sing <u>81.28</u>	5 ft	Water Leve	el Initial _ <i>N</i>	Α	Static <u>NA</u> Diameter <u>2 in.</u>	*Water from water table or drive
Casing: Dia 2 in. Length Bit. Type Sch. 40 PVC								
Drill Co. Geologic Method Drive and wash (4*) Checked By Raymond Cardcrette License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS Cement 5" with construction sand Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 25% silt, 5% clay), no odor (Fill) No Soil Information No Soil Information 10 - 10 - 3.6 100% 100% 100% 100% 100% 100% 100% 100								
Drill Co. Geologic Method Drive and wash (4*) Checked By Raymond Cardcrette License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS Cement 5" with construction sand Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 25% silt, 5% clay), no odor (Fill) No Soil Information No Soil Information 10 - 10 - 3.6 100% 100% 100% 100% 100% 100% 100% 100	Fill Materi	al <u>0.25 - 0</u>	0.13 inch	Stone		Rig	g/Core Acker/Soil Scout	
Checked By Reymond Cadorette License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Cement 5" with construction sand Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information No Soil Information 3.6 100% 100/5" SC Dark grey, wet", very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet", very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information No Soil Information Very dark grey/silt brown, wet", very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark grey/silt brown, wet", very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)								
Checked By Reymond Cadorette License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Cement 5" with construction sand Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information No Soil Information 3.6 100% 100/5" SC Dark grey, wet", very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet", very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information No Soil Information Very dark grey/silt brown, wet", very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark grey/silt brown, wet", very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	Driller _J	lohn Boyd		Log By	Chris Buerkl	'e	Date <u>_7/26/18</u> Permit # <u>_NA</u>	
Cement 5" with construction sand Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	Checked I	By Raymo	ond Cad	orette	Licens	se No.		
Cement 5" with construction sand Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)								
Cement 5" with construction sand Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	ے	tion	_	wery	ount ery	ass	Description	
Cement 5" with construction sand Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	Dept	Wel	PID ppm	Wilder	w C	SS	(Color, Texture, Struct	ure)
Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	-	Co		Sa %		OSO	•	•
Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)					-			
Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)								
Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)								
Concrete slab Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)							Cement 5" with construction sand	
Dark yellowish brown, moist, silty GRAVEL, some sand (40% coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	├ 0 -							
coarse to fine gravel, 30% fine sand, 25% silt, 5% clay), no odor (Fill) Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)					\mathbb{N}			
(Fill) Dark yellowish brown, moist, sitty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay).			0.0	100% N	^A	XI SM		
Dark yellowish brown, moist, silty SAND, some gravel (40% fine sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	- 2 -				$H \times \times \times$			Sill, 5 % Clay), 110 Odol
sand, 30% coarse to fine gravel, 25% silt, 5% clay, trace cobbles), no odor (Glacial till) No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)				N/	▲//		,	
Sc No Soil Information No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	-		0.0				Dark yellowish brown, moist, silty SAND,	some gravel (40% fine
No Soil Information Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark grey ish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark grey ish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	L 4 -		0.0	100%		SIVI	sand, 30% coarse to fine gravel, 25% silt,	5% clay, trace cobbles),
Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	'						110 Odor (Glaciai tili)	
Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	-					+		
Dark yellowish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)							No Soil Information	
gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information 3.6 Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	F 6 -		0.2	H		sc		
No Soil Information Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	-		0.2	90% 100/5	" [[<i>[]]]</i>			vel, 25% silt, 15% clay),
Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information No Soil Information SC Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)					/	$\parallel \parallel$	no odor (Giaciai tili)	
Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	8 -						No Soil Information	
Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	L _							
Dark grey, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)								
3.6 100% 100/5" SC sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	- 10 -							
3.6 100% 100/5" SC sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)					/ \	$\ \cdot \ $		
sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till) No Soil Information Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% clay), no odor (Glacial till)	-			6	8 17////		Dark grev. wet*. very dense, clavey/silty \$	SAND, some gravel (35%
No Soil Information No Soil Information SC Very dark greyish brown, wet*, very dense, clayey/silty SAND, some gravel (35% sand, 25% coarse to fine gravel, 25% silt, 15% slay) as oder (Claid till)	∞ 12 -		3.6	100% 100/5	" [[<i>[]]]</i>	SC	sand, 25% coarse to fine gravel, 25% silt,	15% clay), no odor
	12					4	(Glacial till)	
	<u></u>							
	RP.O.							
	의 14 -				\parallel \wedge		No Soil Information	
	= -							
	S.GF				/ \	$\ \ \ $		
	ğ⊢ 16 −			6	» П <i>77777</i>		Vame dank manich busine wat* vame dana	a alayay/ailty CAND
	018		5.5	100% 100/5	, <i> </i>	sc		
No Soil Information End of exploration 18 feet below grade						1 1	clay), no odor (Glacial till)	g ,
End of exploration 18 feet below grade	18 -					$\parallel \parallel$	No Soil Information	
20 — Little of exploration to feet below grade	Sec.						End of exploration 18 feet below grade	
	<u></u>	1					End of exploration to leet below grade	
80 20	مر م							
	20 =							

Monitoring Well AP-37-S

	Varian Beve						wner <u>Varian Medical Systems, Inc.</u>	COMMENTS Hand cleared 0-5' on 7/26/2018
	Beverly, N						Proj. No. <u>631237905</u>	
							North East	Collected soil VOC sample 6-6.8'
							Static _ <i>NA</i> Diameter _ <i>2 in.</i>	*Water from water table or drive
Screen: D	ia <u>2 <i>in.</i></u>		Length _	10 ft.			Type/Size _10-Slot/0.01 in.	and wash method.
							Type _ <i>Sch. 40 PVC</i>	
							g/Core Acker/Soil Scout	
							nd wash (4")	
							Date _ 7/26/18 Permit # _ <i>NA</i>	
Checked E	By Raymo	ond Cado	orette		License	e No.		
	_			# .		Š.	D	
ts (;	Well	ش D	Sample ID % Recovery	Blow Count Recovery	Graphic Log	Class.	Description	
Depth (ft.)	Me Omp	PID (ppm)	Rec	ow (Grap Lo	nscs	(Color, Texture, Structu	ure)
	O		ωι%	⊞ "		S	Geologic Descriptions are Based o	n the USCS.
L 0 -							Cement 5" with construction sand	
"				М			Concrete slab	
-		0.0	1,000/	NA / \		sw	Dark brown, moist, well graded SAND, so	me gravel (60% coarse
			100%	M			to fine sand, 40% coarse to fine gravel), n	
2 -				Λ				
-			1	NA			5	1 / 400/ 5
		0.0	100%	()		SM	Dark yellowish brown, moist, silty SAND, s sand, 30% coarse to fine gravel, 25% silt,	some gravel (40% fine
├ 4 −			10070	M			(Glacial till)	070 day), 110 dadi
				IVI			,	
<u> </u>							No Soil Information	
⊢ 6 −					1010			
		31.7	100% 100	58		SM	Dark yellowish brown, wet*, very dense, s	ilty SAND, some gravel
-			100	,,4 111	1/		(25% fine sand, 30% silt, 25% coarse to fi odor (Glacial till)	ne gravei, 10% clay), no
					\ /		(3.3.3.3.3.3.4.7)	
<u></u>					$ \setminus / \mid$			
-					X		No Cail Information	
					$ \ / \ $		No Soil Information	
 10 –					/ \			
					/ \			
		44.7	100 /0	76 📗		SM	Dark yellowish brown, wet*, very dense, s	ilty SAND, some gravel
<u>∞</u> 12 −			100)/0"	Λ /		(25% fine sand, 30% silt, 25% coarse to fi	ne gravel, 10% clay), no
8/7					$ \setminus / $		odor (Glacial till)	
GDT -					$ \setminus / \mid$		No Soil Information	
- 14 -					X			
5 14 − ⊢					$ \ / \ $			
<u>-</u>					/			
9.8.G					/ \			
의 16 -		76.4		72 II			Very dark greyish brown, wet*, very dense	e. clavev/siltv SAND
2018		70.4	^{40%} 100			sc	some gravel (35% fine sand, 25% silt 25%	
. 113							15% clay), no odor (Glacial till)	
12					\vdash		No Soil Information	-
Rev							End of exploration 18 feet below grade	
9							, , , , , , , , , , , , , , , , , , , ,	
일 - 20 -								
CB8								

Monitoring Well AP-38-S

	Varian Beve						wner <u>Varian Medical Systems, Inc.</u>	COMMENTS Hand cleared 0-5' on 7/24/2018	
	Beverly, N						Proj. No. <u>631237905</u>	and 7/25/2018	
							North East	Collected soil VOC sample	
							StaticNA Diameter2 in 6-6.8'		
Screen: [Dia <u>2 <i>I</i>n.</u>		Length	10 ft.			Type/Size 10-Slot/0.01 in.	*Water from water table or drive and wash method.	
							Type <u>Sch. 40 PVC</u>		
							g/Core Acker/Soil Scout		
							nd wash (4")		
							Date <u>7/25/18</u> Permit # <u>NA</u>		
Checked	By <u>Raymo</u>	ona Caa	orette		Licens	e No.			
	<u> </u>		تي ات	۲ ×		SS.	Description		
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	Class.	Description		
ا م	∧ gmo	д <u>а</u>	Sam 6 Re	Slow	Gra	nscs	(Color, Texture, Structu	,	
			***	ш		Ď	Geologic Descriptions are Based o	n the USCS.	
							0 (511)		
<u> </u>					193193333		Cement 5" with construction sand		
				Λ			Concrete slab		
<u> </u>		0.0	100%	NA ()		GC	Dark yellowish brown, moist, silty SAND, s		
- 2 -				Щ			sand, 30% coarse to fine gravel, 25% silt,	5% clay), no odor (Fill)	
-				NA					
- F				INA			Dark yellowish brown, moist, silty SAND, s	some gravel (40% fine	
L,		0.0	100%			sc	sand, 30% coarse to fine gravel, 25% silt,	5% clay), no odor	
"				M			(Glacial till)		
-				Щ					
					X		No Soil Information		
6 -		0.5	4000/	64		sc	Dark yellowish brown, wet*, very dense, c		
ļ.,			100% 1	00/4" Ш			gravel (40% fine sand, 25% coarse to fine	gravel, 20% silt, 15%	
					$ \setminus / $		clay), no odor (Glacial till)		
8 -					$ \setminus / $		No Soil Information		
ļ.,									
					$ \ / \ $				
 10 -					/				
					/ \				
		36.1	1000/	39		sc	Dark greyish brown, wet*, very dense, cla	yey/silty SAND, some	
<u></u> 12 −			100% 1	00/5" ∐			gravel (40% fine sand, 25% coarse to fine clay), no odor (Glacial till)	gravel, 20% silt, 15%	
8/2					$ \setminus / $		clay), no odor (Glaciai tili)		
[6]					$ \setminus / $				
) - 14 -									
=					$ \ / \ $		No Soil Information		
<u> </u>					/				
16					<u> </u>				
16 -		36.2	1000/	55		sc	Dark greyish brown, wet*, very dense, cla		
201			100% 1	00/5" ∐			gravel (40% fine sand, 25% coarse to fine clay), no odor (Glacial till)	gravel, 20% silt, 15%	
/9/13					$ \times $		No Soil Information		
% - 18 -	1							-	
ÄL.	1						End of exploration 18 feet below grade		
CB81_LOGO Rev: 8/9/13 2018_LOGS.GPJ II_CORP.GDT 8/2/18									
্ল ⊢ 20 −	1								
٥	П		Ш				I		

Monitoring Well AP-3

AP-39-S Page: 1 of 1

Project _	Varian Bev	erly			_ 0	wner Varian Medical Systems, Inc.	COMMENTS
Location	Beverly, N	Hand cleared 0-5' on 7/23/2018					
Surface E	lev. NA		Total Hole D	epth18	.0 ft.	North East	Collected soil VOC sample 16-17'
				•		Static _ <i>NA</i> Diameter _ <i>2 in.</i>	
Screen: D	ia 2 in.		Length 10	ft.		Type/Size	*Water from water table or drive and wash method.
Casing: D	ia 2 in.		Length 81	t.		Type Sch. 40 PVC	HS Augers (8" ob/4.25" ID) from
						ig/Core Acker/Soil Scout	0/10.5
						nd wash (4")	Drive and wash from 10.5' - 18',
						Date _7/23/18 Permit # _NA	4" hole.
			0 ,			Date Territor	
Cilecked	п		1	_ LICEIIS	E NO.		
					SS.	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Recovery Graphic Log	USCS Class.	·	
	S mo	d	Sam 6 Re	BB 공 기	SCS	(Color, Texture, Structu	· ·
			****		_	Geologic Descriptions are Based or	n the USCS.
L 0 -	14 14			nerorerorero		Cement 5" with construction sand	
				π	-	Concrete slab	
-			NA	\mathbb{N}		Dark yellowish brown, moist, clayey/silty G	GRAVEL some sand
		0.0	100%		GC	(40% coarse to fine gravel, 20% medium t	o fine sand, 20% silt,
2 -				$\mathbb{X} \boxtimes \cong \cong$		20% clay), no odor (Fill)	
-			NA				
		0.0	100%		sc	Dark yellowish brown, moist, clayey/silty S medium to fine sand, 20% coarse to fine g	SAND, some gravel (40%
- 4 -					30	clay), no odor (Glacial till)	14VCI, 2070 SIII, 2070
-		3.5	6			Dark yellowish brown, moist, very dense, o	clavev SAND, some
<u> </u>		3.3	100% 100/5"		sc	gravel (50% medium to fine sand, 30% cla	y, 20% coarse to fine
"						gravel), no odor (Glacial till), 5-5.5 feet col	oble/boulder
-							
8 -							
ļ .						No Soil Information, driller indicates multip	le cobbles
 10 -			37	Districts			
			84	/		Dark greyish brown, moist, very dense, sil	tv SAND. some gravel
<u> </u>		73.6	100% 86	$\beta + \beta$	SM	(40% fine sand, 30% coarse to fine gravel	, 30% silt), no odor
12 -		1	86]]		(Glacial till)	
3 12				/			
<u>-</u> -							
<u>5</u>				X		No Soil Information	
= 				\parallel / \setminus			
5				/ \			
<u></u> 16 −			23	DZZZZZ	-		
		89.0	100% 100/6"		sc	Dark grey, wet*, very dense, clayey/silty S	
<u>-</u>						fine sand, 20% coarse to fine gravel, 20% (Glacial till)	SIII, 20% Clay), 110 0001
[- 18 -						No Soil Information	
						End of exploration 40 fact below and	
	-					End of exploration 18 feet below grade	
3							
<u> </u>	1		[

Monitoring Well BW-1 Page: 1 of 1

	Varian Beve						wner <u>Varian Medical Systems, Inc.</u>	COMMENTS First attempt refusal at 7 feet
Location	150 Sohie	r Road,	Beverly,	Massa	chusetts	3	Proj. No. <u>844</u> 877	below surface grade; moved
Surface E	lev. NA		Total Ho	ole Dep	oth _15.	.0 ft.	North East	over approximately 2 feet.
							Static NA Diameter	
Screen: D	ia <u>2 in.</u>		Length	_10 ft.			Type/Size _ <i>NA</i>	
Casing: D	ia <u>2 in.</u>		Length	5 ft.			Type _ <i>PVC</i>	
Fill Materi	al Sand, b	pentonite)			_ Ri	g/Core	
	Zebra Drill							
							Date <u>7/9/03</u> Permit # <u>NA</u>	
Checked	By Raymo	ond Cad	orette		License	e No.		
			015	ŧ.		s,	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	Class.	Description	
D E	M omp	PI (pp	Rec	low (Gray	nscs	(Color, Texture, Structu	ıre)
	S		W %	B T) Si	Geologic Descriptions are Based o	n the USCS.
- o -							Grass	
-								
_ 2 -								
_								
-								
L 4 -								
7								
-	$\ \cdot \ _{\mathbf{H}^{-1}}$							
 6 −							No samples colletected.	
-								
 8 −								
- 10 -								
 12 -								
-								
<u> </u>								
-								
 - 16 -							End of exploration at 15 feet below surface	e grade.
'								
-	1							
10								
- 18 -								
-	4							
_								
<u> </u>	1							

Monitoring Well **B**

BW-2Page: 1 of 1

Project	Varian Bev	erly			_ 0\	wner _Varian Medical Systems, Inc.	COMMENTS
						Proj. No844877	First attempt refusal at 7 feet below surface grade; moved
						North East	over approximately 2 feet.
						Static NA Diameter	
	-					Type/Size NA	
			-			Type	
						g/Core	
						pe	
						Date	
						Date Termit #	
CHECKE	ш			_ LICETIS	II I		
	l o		⊒ di di	2 0	Class.	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count	Graphic Log	S		,
۵ ا	No C	1 d	San % Re	ğ d	nscs	(Color, Texture, Structi Geologic Descriptions are Based o	
			• -			Geologic Descriptions are Based of	n the USCS.
						0	
⊢ 0						Grass	
- 2							
-	-18// 18//						
F 4							
-							
 6						No samples colletected.	
						,	
– 8							
-							
- 10							
11/3/							
5							
[12							
ÖL							
=							
წ							
900							
1003L							
ğ – 16	_					End of exploration at 15 feet below surface	e grade.
3/12/(
e: 6	-						
<u>ا</u> 40							
Hg 18							
MM-	4						
8							
SHAW_COMMERCIAL Rev: 6/12/02 2003LOGS.GPJ IT_CORP.GDT 11/3/09							
σ 	П		Ш		П		

Monitoring Well **BW-3**

Project _	Varian Beve	erly			_ Ov	vner <u>Varian Medical Syst</u>	ems, Inc.	COMMENTS
						Pro		
Surface E	lev. NA		Total Hole D	epth16	.0 ft.	North	_ East	
Top of Ca	sing <i>NA</i>		Water Level	Initial NA	4	Static <i>NA</i>	_ Diameter	
						Type/Size _ <i>NA</i>		
						Type <i>_PVC</i>		
_			-			g/Core		
			M			=		
						Date _7/9/03	Permit # NA	
	Well		Sample ID % Recovery Blow Count		USCS Class.		Description	1
Depth (ft.)	Well	PID (ppm)	mple eco	Recovery Graphic Log	S C		(Color, Texture, Structu	ıro)
	Con	1)	Sar % R Blov	8 Q	 	Geologi	ic Descriptions are Based o	
						233.39	2000	
0 -								
-								
<u> </u>								
L _								
<u> </u>								
-								
<u> </u>								
"						No samples colletect	ted.	
-								
8 -								
-								
- 10								
200								
=[
<u> </u>								
불								
기 - =								
5 - 14 -								
9 14								
<u>-</u>								
Ĭ								
<u> </u>	Tara Tara							
[-						End of exploration at	16 feet below surface	e grade.
ğ								
≰├ 18 —								
A H								
} - 20 -								
ġ								

Monitoring Well **BW-4**

Location 150 Sahier Road, Bevery, Messachuserts	Project _	Varian Beve	erly			0	wner Varian Medical Syst	ems, Inc.	COMMENTS
Top of Casing MA Water Level Initial MA Static MA Diameter Type Size MA Type Size M									
Top of Casing MA Water Level Initial MA Static MA Diameter Type FVC Screen Dia 2 in. Length 4 ft. Type FVC Screen Dia 2 in. Length 4 ft. Type FVC Screen Dia 2 in. Length 4 ft. Type FVC Screen Dia 2 in. Length 4 ft. Type FVC Screen Diameter Di									
Screen: Dia 2 m. Length 4 m. Type Five MA Casing: Dia 2 m. Length 4 m. Type Five MA Type Five Macadism Length 4 m. Type Five MA Type Five Macadism Length 4 m. Type Five Macadism Macad									
Casing: Dia 2 in Length 4 ft. Type PVC Fill Material Sand, bentonite Rig/Core Fill Co. Zefar Drilling Method Geoprobe Tr. Villing Date 7/8/03 Permit # MA Checked By Raymond Cadovette License No. Description Geologic Descriptions are Based on the USCS. Grass Grass No samples colletected. Find of exploration at 14 feet below surface grade.									
Fill Material Sand, bentonite Drill Co. Zebra Drilling Method Geographe Date 7/9/03 Permit # NA Checked By Raymond Caddrette License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Grass O									
Drill or W. McCallister Log by T. Villing Date 7/9/03 Permit # NA Checked By Raymond Cardorete Ucense No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Grass Grass Fig. 3 Structure Geologic Descriptions are Based on the USCS. Fig. 4 - 10 - 110 - 114	_								
Driller W. McCallister Log By T. Villing Date 7/9/03 Permit # NA Checked by Raymond Cadorete License No. Checked by Raymond Cadorete License No. Color, Texture, Structure)							-		
Checked By Raymond Cadorette License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Grass Grass High Color and Color an								Permit # NA	
Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Grass Grass No samples colletected. End of exploration at 14 feet below surface grade.									
Grass Grass No samples colletected. No samples colletected. End of exploration at 14 feet below surface grade.		.							
Grass Grass No samples colletected. No samples colletected. End of exploration at 14 feet below surface grade.	ا ہے ا	_tion		Very	ery ji	ass		Description	
Grass Grass No samples colletected. No samples colletected. End of exploration at 14 feet below surface grade.	Cept (ft.)	Wel	PID	Seco ×	raph	ူတ္သ		(Color, Texture, Structu	ıre)
Grass Grass No samples colletected. No samples colletected. End of exploration at 14 feet below surface grade.		So)	Sa Rigidal		OSO	Geologi		
- 2 -					-			·	
- 2 -									
- 2 -									
- 2							Grass		
- 4 -									
- 4 -	-								
- 4 -		\bowtie							
- 6 -	2								
- 6 -									
- 6 -									
- 8	├ 4 -								
- 8									
- 8	1								
- 8	L 6 -						N		
- 10							No samples colletect	ea.	
- 10	† †								
- 10									
- 12 - - 14 - End of exploration at 14 feet below surface grade.									
- 12 - - 14 - End of exploration at 14 feet below surface grade.	+ +								
- 12	1								
End of exploration at 14 feet below surface grade. - 16	, F 10 -								
End of exploration at 14 feet below surface grade. - 16									
End of exploration at 14 feet below surface grade. - 16	<u> </u>								
End of exploration at 14 feet below surface grade. End of exploration at 14 feet below surface grade. I a surface grade.	[- 12 -								
End of exploration at 14 feet below surface grade. End of exploration at 14 feet below surface grade. I a surface grade.	<u> </u>								
End of exploration at 14 feet below surface grade. End of exploration at 14 feet below surface grade. I a surface grade.	=[
End of exploration at 14 feet below surface grade. End of exploration at 14 feet below surface grade. I a surface grade.	हे⊢ 14 ⊣				-	-			
- 16 - - 18 - 	3						End of exploration at	14 feet below surface	e grade.
									U
	v - 16 -								
	¥ 40								
	<u> </u>								
	3								
ver in the first than	≨ - 20 -								

Monitoring Well **BW-5**

Project _	Varian Beve	erly			_ Ov	vner <u>Varian Medical Syst</u>	ems, Inc.	COMMENTS
						Pro		
Surface E	lev. NA		Total Hole D	epth16	.0 ft.	North	_ East	
Top of Ca	sing <i>NA</i>		Water Level	Initial NA	4	Static NA	_ Diameter	
						Type/Size _ <i>NA</i>		
						Type <i>_PVC</i>		
_			-			g/Core		
			M			=		
						Date _7/9/03	Permit # NA	
	Well		Sample ID % Recovery Blow Count		USCS Class.		Description	1
Depth (ft.)	Well	PID (ppm)	mple eco	Recovery Graphic Log	S C		(Color, Texture, Structu	ıro)
	Con	1)	Sar % R Blov	8 Q	 	Geologi	ic Descriptions are Based o	
						233.39	2000	
0 -								
-								
<u> </u>								
L _								
<u> </u>								
-								
<u> </u>								
"						No samples colletect	ted.	
-								
8 -								
-								
- 10								
200								
=[
<u> </u>								
불								
기 - =								
5 - 14 -								
9 14								
<u>-</u>								
Ĭ								
<u> </u>	Tara Tara							
[-						End of exploration at	16 feet below surface	e grade.
ğ								
≰├ 18 —								
A H								
} - 20 -								
ġ								

Monitoring Well **BW-**

BW-6Page: 1 of 1

Project _	Varian Beve	erly			Ov	wner Varian Medical Systems, Inc.	COMMENTS
			Beverly, Ma			Proj. No <i>844</i> 877	
						North East	
						Static NA Diameter	
						Type/Size NA	
						Type _ <i>PVC</i>	
						g/Core	
			N				
			• .			Date <u>7/9/03</u> Permit # <u>NA</u>	
Checked E	By <u>Raymo</u>	nd Cad	orette	Lice	ense No.		
	_		01 >> +	<u>.</u>	l v	5	•
¥_	Well	۵Ê	Sample ID % Recovery	Recovery Graphic	USCS Class.	Description	
Depth (ft.)	We	PID (ppm)	Rec	3rap	SS	(Color, Texture, Struct	ture)
	ပိ		ĭŏl _% = 6		NS	Geologic Descriptions are Based	on the USCS.
$\vdash 0 \dashv$							
<u> </u>							
<u></u>							
L 4 -							
F -							
6						No samples colletected.	
<u> </u>							
⊢ 8 −							
† †							
10 -							
<u> </u>							
<u> </u>							
12 -							
5							
=							
를 - 14 -							
3							
이 16 -						End of exploration at 15 feet below surface	ce grade.
<u> </u>							
¥							
<u> </u>							
Σ Π							
3							
{							
ξ 				ll l			

Monitoring Well **BW-7**

BW-7Page: 1 of 1

Project _	Varian Beve	erly				_ 0	wner _Varian Medical Systems, Inc.	COMMENTS
	150 Sohie		Beverly, N	1assa	chusetts		Proj. No844877	
							North East	
							Static NA Diameter	
							Type/Size <i>NA</i>	
							Type PVC	
_			-				g/Core	
	Zebra Drilli							
							Date _7/9/03 Permit # _ <i>NA</i>	
				П				
_ ا	Well	<u>-</u>	Sample ID % Recovery	Blow Count Recovery	oje.	USCS Class.	Description	
Depth (ft.)	Wel	PID (ppm)	Seco	× ×	Graphic Log	SSC	(Color, Texture, Struct	ure)
-	S		Sa F	용정	б	nsc	Geologic Descriptions are Based of	
├ 0 -								
-								
<u> </u>								
L _								
<u> </u>								
-								
⊢ 6 −								
"							No samples colletected.	
-								
8 -								
-								
- 10 -								
%								
-								
[- 12 -								
Š								
<u>-</u>								
} - 14 -								
<u> </u>								
8 16							End of exploration at 15 feet below surface	e grade.
10 _								
<u> </u>								
ž								
팅 18 -								
<u>.</u> [
5								
<u></u> 20 −								
ōL	11		1			1		

Monitoring Well **BW**-

BW-8Page: 1 of 1

	Varian Beve						vner Varian Medical Systems, Inc.	COMMENTS
Location	150 Sohie	r Road,	Beverly,	Massa	chusetts	3	Proj. No. <u>844877</u>	
Surface E	lev. NA		Total Ho	ole Dep	oth <u>15</u> .	.0 ft.	North East	
Top of Ca	sing <i>NA</i>		Water L	evel In	itial <i>NA</i>	l	Static NA Diameter	
Screen: D)ia <i>_2 in.</i>		Length	_10 ft.			Type/Size <i>_NA</i>	
							Type	
							g/Core	
	Zebra Drill							
							Date _ 7/10/03 Permit # _ <i>NA</i>	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based or	
			6,			ا ر	Geologic Descriptions are Based of	Title USCS.
_ 0 -								
- 2 -								
_ 4 -								
[
 6 −							No samples colletected.	
-								
8 -								
-								
- 10 -								
-								
_ 12 <i></i>								
 - 14 -								
4.0							End of exploration at 15 feet below surface	grade.
<u> </u>							·	
-	1							
<u> </u>	1							
-								
_ _ 20 _	-							

Monitoring Well **BW-9**

Project _	Varian Beve	erly				_ Ov	vner Varian Medical Systems, Inc.	COMMENTS
	150 Sohie		Beverly, N				Proj. No. <u>844</u> 877	
							North East	
							Static NA Diameter	
							Type/Size NA	
							Type	
							g/Core	
	Zebra Drilli							
							Date	
							Date Permit #	
Checked	y <u>rayme</u>	na oaa			Licens	e No.		
			미술	t >	,	SS.	Description	
Depth (ft.)	/ell	PID (ppm)	ple	Col	Graphic Log	Cla	·	
ا م	Well Completion	д <u>а</u>	Sample ID % Recovery	Blow Count Recovery	ığ –	USCS Class.	(Color, Texture, Struct	
			37%	ш		Ď	Geologic Descriptions are Based of	on the USCS.
o								
├								
2								
├ 4 -								
⊢ 6 −							No complex colletested	
							No samples colletected.	
† †								
 8								
0								
_├ 10 ┤								
00 N								
[
∄— 12 —								
힘								
計	1 1 1 1							
5 - 14 -							End of exploration at 13 feet below surface	e grade (refusal).
Ĭ								
16								
5								
Y G								
≰├ 18 ┤								
# 								
] - 20 -								

Monitoring Well **BW-10**

Project \	Varian Beve	erly				O۱	vner <i>Varian Medical Systems, Inc.</i>	COMMENTS
	150 Sohie		Beverly,	Massa	chusetts		Proj. No844877	
							North East	
							Static NA Diameter	
							Type/Size _ <i>NA</i>	
							Type	
							g/Core	
	Zebra Drilli							—
							Date <u>7/10/03</u> Permit # <u>NA</u>	—
							Date 77:0700 Permit # 70:00	—
Checked		na caa	1		Licens	e No.		-
	L C		미술	ŧ >		SS.	Descriptio	n
Depth (ft.)	/ell	PID (ppm)	ple	Cou	Graphic Log	S		
👸 =	Well Completion	<u>а</u>	Sample ID % Recovery	Blow Count Recovery	Gra	USCS Class.	(Color, Texture, St	
	O		%	а –		ő	Geologic Descriptions are Bas	sed on the USCS.
o								
F -								
2								
├ 4 -								
⊢ 6 −							No complete collete atod	
							No samples colletected.	
h 1								
8 -								
0								
- 10 -								
00 N								
<u> </u>								
<u>-</u> 12 –								
[
<u>-</u>								
5 14 -								
計 -								
ă <u>.</u>							End of exploration at 15 feet below su	face grade.
16								a. a. a.
5								
Y G								
<u>₹</u> 18 –								
[]								
<u></u> }								
3 - 20 -								
	<u> </u>							

CL12-S1Page: 1 of 1 Monitoring Well

	Varian/Beve					wner Varian Medical Systems, Inc.	COMMENTS
Location	150 Sohiei	r Road, I	Be <i>verly, Mass</i>	achusetts		Proj. No. <u>806395</u>	ND = None detected
						North East	
						ft. Static NA Diameter 8.25 in.	
						Type/Size _ <i>PVC/0.010 in.</i>	
						Type PVC	
						g/Core CME 85	
			ervice M				
						Date _ 4/4/00 Permit # _ <i>NA</i>	
			0 ,				
	II				1		
	loi	_	m end	ى ح	ass.	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count	Recovery Graphic Log	USCS Class.		ura)
	Con	_ <u>_</u>	San % R	ğ 5	SC	(Color, Texture, Structi Geologic Descriptions are Based o	
				-	1	Geologic Descriptions are based of	
						Curfoss Cod	
├ 0 −						Surface: Sod	
						From Cuttings: Dark brown sandy SILT	
-							
<u> </u>							
					.]	Same as above, color slightly grayer, moi	st
ļ .							
		ND			.		
<u></u> 10 ∑					1		
10 -						Grayish brown, wet, sandy SILT	
					SM		
1 45							
 15 -					1		
<u> </u>					1		
 20 −		ND			.∥	Same as above, moist, some gravel	
					1	, , , , , , , , , , , , , , , , , , , ,	
-							
		ND		$\parallel \parallel \perp \parallel \parallel$	GM	Brownish growts seed in house and to	DAV/EL and CAND
<u>8</u> − 25 −				RAT	GWS	Brownish gray to grayish brown, moist, Gl some silt	RAVEL AND SAND,
<u>,</u> 6							
[]	-					Bottom of exploration at 25 feet Well Construction:	
QRP P						Screen from 25 feet to 5 feet; casing from	5 feet to grade.
ةٍ⊢ 30 −						Completed at grade with flush roadbox se	et in concrete.
G G						Sand Pack / Seal: Sand pack from 25 feet to 2 feet; bentonit	o from 2 foot to 1 foot:
- AN						native fill from 1 foot to grade.	.
(ARI							
[- 35 -							
6/8							
Rev:]						
္က							
ଞ୍ଚା⊢ 40 −]						
CB8_LLOGO Rev. 8/9/13 VARIAN.GPJ IT_CORP.GDT 9/12/22				Щ			

Monitoring Well **CL12**

CL12-S2Page: 1 of 1

Project Varian/Beverly		wner	COMMENTS ND = None detected
Location 150 Sohier Road,		Proj. No. <u>806395</u>	ND - None detected
		North East	
Top of Casing NA	Water Level Initial NA	Static <u>NA</u> Diameter <u>8.25 in.</u>	
		Type/Size _ <i>PVC/0.010 in.</i>	
Casing: Dia 2.0 in.	Length <u>9.5 ft.</u>		
Fill Material Native, Sand, E	Bentonite R	ig/Core CME 85	
Drill Co. American Drilling S	Service Method Hollow	Stem Auger	
Driller K.Bylund/R.Dean	Log By M. Reilly	Date _ 4/4/00 Permit # _ <i>NA</i>	
Checked By R. Cadorette	License No.		
Depth (ft.) Well Completion PID (Ppm)	Sample ID % Recovery Blow Count Recovery Craphic Log	Description (Color, Texture, Structur	re)
	Sa % Fe Me	Geologic Descriptions are Based on	•
- 0 - ND - 5 - ND - 10 - ND - 15 - ND	GM GW GP	Surface: Sod From cuttings: Topsoil, underlain by light be sandy GRAVEL	prown, moist, silty,
- 20 -	SM GP	Moderate brown, moist, SILT and SAND, h coarse to fine gravel, occasional cobbles	
ND ND	SP	Moderate brown, moist, SILT and SAND, hongraphic coarse to fine gravel, higher coarse gravel Sand layer	nigh percentage of content
- 35 - 		Bottom of exploration at 30 feet Well Construction: Screen from 30 feet to 10 feet; casing from Completed at grade with flush roadbox set Sand Pack / Seal: Sand pack from 30 feet to 8 feet; bentonite native fill from 7 feet to grade.	in concrete.

Monitoring Well

OB 4-SPage: 1 of 1

Project _	Varian Beve	erly			_ 0\	wner Varian Medical Systems, Inc.	COMMENTS							
	Location 150 Sohier Road, Beverly, MA Proj. No. 832837 Well Located at 28 Tozer Road Soil classifications were generated from grab samples													
Surface Elev. NA Total Hole Depth 25.0 ft. North East generated from grab sample collected from the auger flig unless otherwise stated.														
				•			unless otherwise stated.							
						Type/Size PVC/.010 in.								
						Type PVC								
						g/Core Ingersol Rand								
			N											
						Date <u>5/8/02</u> Permit # <u>NA</u>								
O TICORCO E				LICCIIS	C 140.									
	uo		er Fr er	ر <u>ح</u>	ass.	Description								
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count	Recovery Graphic Log	USCS Class.	·								
	Com	4 9	San % Re Blow	G. G.	SC	(Color, Texture, Structu								
			6, –		ر	Geologic Descriptions are Based o	in the 0505.							
$\vdash 0 \dashv$				1312 St 12		Soil/loam, large cobble								
					ML	Brown, fine-medium SILT/SAND with grav	el							
		0.0			SM	Black, moist, fine-medium SAND with grav								
					SM	odor, appears to be saturated with creosof	te or residue from MGP							
		10.5			GP	7 11								
├ 5 -						Same as above with increasing larger peb	bles							
						Came as above mar mercasing larger per								
					SM									
		0.0		0 0	GP									
 10 −				7 6		Same as above, strong odor, moist								
		0.0		0 0 0	SM GP									
) j	GF									
45														
15				b		Same as above								
╟┤				0 2	SM GP									
80/8														
20 -				0										
						Same as above, strong odor, moist								
불					em									
				0	SM GP									
		4.5												
§ 25 –						Find of Fundametrics at 05 foot has								
						End of Exploration at 25 feet bsg								
N L						Well Construction: Screen from 25 to 5 feet, casing from 5 fee	et to grade. Completed							
 						with a flush roadbox set in concrete.	g Joinplotod							
Ž[/o						Sand Pack/ Seal:	not to 4 foot matter forms							
§⊢ 30 ⊣						Sand from 25 to 3 feet, bentonite from 3 feet, bentonite from 3 feet, bentonite from 3 feet, bentonite from 25 feet, bentonite from 3 fee	eet to 1 foot, native from							
ן						. Took to grade.								
3														
<u>₹</u> - 35 -														

Monitoring Well **OB**

OB 5-SPage: 1 of 1

	Proiect	Varian Beve	erly			O	wnerVarian Medical Systems, Inc.	COMMENTS
				Beverly, MA			Proj. No. <u>832837</u>	Well located at 29 Tozer Road Soil classifications were
						.0 ft.	North East	generated from grab samples
							Static NA Diameter 4 in.	collected from the auger flights unless otherwise stated.
							Type/Size PVC/.010 in.	
							Type PVC	
							g/Core Ingersol Rand	
		Paratt Wol		Me				
							Date <u>3/12/02</u> Permit # <u>NA</u>	
(Checked E	By S. Met	ivier		_ Licens	e No.		
		'n		الم بدر		SS.	Description	
	Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count	Graphic Log	Class.	Description	
	De (+	M dwo	g (g	Rec	Gra	nscs	(Color, Texture, Structu	
		0		W % B -	-	🛎	Geologic Descriptions are Based o	n the USCS.
ı					1			
	_ 0 _							
		500	0.0				Dark brown, silty fine SAND with gravel	
						sм		
					0,0			
	_						Light brown silty fine SAND	
ı	– 5 –		0.0					
			0.0			SM		
ŀ	— 10 —						Brown, 2-4 inch subangular GRAVEL	
			0.0		0,0			
			0.0			GP		
					0,0	"		
ŀ	_ 15 —				, 00.			
			0.0		'ٽ' '		Brown, 1-2 inch, subangular GRAVEL	
					0,00		Brown, 12 mon, cabangalar Grave	
					, o o ,	GP		
	- 20 -		0.0		0,00			
90/	20		0.0				Daniel Carlo	
4/19					0 0		Brown, wet fine GRAVEL to coarse SAND	
占					$\circ \circ \circ$			
P.G	0.5		0.0		0 0			
S	– 25 –				0 (SP GP		
=					。 () °			
GPJ					0 0			
062					0 (
	— 30 —				V. i. i. i. i.			
≷							End of Exploration at 30 feet bsg	
12/02							Well Construction:	•
./9 :/							Screen from 30 to 10 feet, casing from 10 Completed with a flush roadbox set in con-	teet to grade.
Re	- 35 -						Sand Pack/ Seal:	OI OIG.
ΉL							Sand pack from 30 to 8 feet, bentonite 8 to	6 feet, native from 6
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG2.GPJ IT_CORP.GDT 4/19/06							feet to grade.	
ΘM								
× S	- 40 -							
SHA	.0							

Monitoring Well **OB-6**

OB-6-SPage: 1 of 1

Project _	Varian Beve	erly				_ 0\	wner Varian Medical Systems, Inc.	COMMENTS
Location	Sonning R							
Surface E	lev. NA		Total Hole	Dep	oth <u>14.</u>	0 ft.	Proj. No. <u>631010758</u> North East	
Top of Ca	sina <i>NA</i>		Water Lev	∕el In	itial $\overline{\underline{\bot}}$	8.5 ft	Static <u>NA</u> Diameter <u>6 in.</u>	
							Type/Size PVC/0.030 Slot in.	
							Type PVC	
							g/Core Hollow Stem Auger	
Drill Co	TDS			Moth	od Ho	_ N	Stem Auger	
							Date	
							Date Fernit #	
Oncoked I			1		LICCIIS	110.		
	ion			ın L	v	Class.	Description	
Depth (ft.)	Nell plet	PID (ppm)		V Co	Graphic Log	SCI		ura)
	Well	_ <u>u</u>	Sample ID % Recovery	Blow Count Recovery	Ū	nscs	(Color, Texture, Struct Geologic Descriptions are Based o	
							Geologic Descriptions are based o	Title 0000.
⊢ 0 −		0.0		\dashv				
	, A							
-								
							Medium brown, medium SAND, some fin	e gravel
├ 2 <i>─</i>							,	- g.s c.
						SW		
-								
⊢ 4 −								
-								
				.4 X			Medium brown, medium SAND, some fine	a gravel
⊢ 6 −		0.0	EE0/	10		sw	Mediam brown, mediam OAND, 30me mix	z graver
				11				
				19	*.*.*.*.			
⊢ 8 −								
\Box							(Saturated water table between 7 - 10 fee	+ \
<u> </u>							(Saturated water table between 7 - 10 fee	i)
5/26/21								
ੂੰ - 10 -								
₽. ©.				3			Madison bassas as dison CAND	
5 -		0.0	40%	6	*****	sw	Medium brown, medium SAND	
<u>=</u>			40%	7				
- 12 —				4 🔲	••••••			
NIN . =								
NON -								
2021-								
[≈] – 14 –								
CB8 LOGO Rev. 8/9/13 2021-SONNING.GPJ IT_CORP.GDT								
Rev:							Bottom of exploration at 14 feet below gro	ound surface
9								
j - 16 −								
CB&								

Monitoring Well **OB 8-S**

Project _	√arian Beve	erly			_ 0	wner _Varian Medical System, Inc.	COMMENTS
			Beverly, Mas			Proj. No. <u>832837</u>	BDL = Below Detection Limit
Surface El	ev. NA		Total Hole D	epth15	.0 ft.	North East	
						t. Static NA Diameter 4.25 in.	
						Type/Size	
			-			Type _ <i>PVC</i>	
-			•			ig/Core Foremost	
			M				
						Date <u>8/6/02</u> Permit # <u>NA</u>	
			• •				
	Well		Sample ID % Recovery Blow Count	1		Description	
Depth (ft.)	Well	PID (ppm)	eco\	Recovery Graphic Log	SCI	(Color, Texture, Struct	ura)
	Con)	Sar % R Blov	<u>o</u>	USCS Class.	Geologic Descriptions are Based of	
						300-300 p. 100 p	
						Pavement	
- 0 -	**** ****			******		Brown, dry, coarse to fine SAND, some fire	ne gravel and silt
		BDL	CG-1				
L 2 -							
- 4 ⊻					:		

⊢ 6 −		BDL	CG-2			Same as above, wet	
					:	Came as assis, not	
					sw		
8							
- 10 -		BDL	CG-3		:		
10		DDL	00-3			Brown, wet, coarse to medium SAND, trac	ce fine sand
<u> </u>					:		
= = = = = = = = = = = = = = = = = = = =				******			
등 14 -					:		
- ARP							
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG3.GPJ IT CORP.GDT 11/3/09						Bottom of exploration at 15 feet.	
GB J						Well Construction:	est to grade
1.5						Screen from 15 to 2 feet, casing from 2 fe Completed with flush roadbox set in conci	
≝⊢ 18 ⊣						Sand Pack / Seal:	
W						Sand pack from 15 to 1.5 feet, bentonite f feet to grade.	rom 1.5 to 1 feet, grout 1
2/02						leet to grade.	
№ 20 −							
8							
JAL 20							
□ 22 - E							
WO -							
§ — 24 —							
光							

Monitoring Well **OB 9-S**

Project _	Varian Beve	erly				_ 0\	wnerVarian Medical Systems, Inc.	COMMENTS					
Location 150 Sohier Road, Beverly, MA Proj. No. 832837 Soll class generated collected													
Surface El	lev. NA		Total Hol	le Dep	oth32.	0 ft.	North East	collected from the auger flights unless otherwise stated.					
							Static NA Diameter 4 in.	annos sanonnos statour					
							Type/Size _ <i>PVC/.010 in.</i>						
							g/Core Ingersol Rand						
							Stem Auger						
							Date _4/4/02 Permit # _NA						
							Date Fernit #						
Checked	3y <u>0. wea</u>	VIOI	1		Licens	e ino.							
	u C			t >		SS.	Description						
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	·						
ا مق	\ V mo	<u>а</u> <u>а</u>	Sam Re	Slow	Gra	SCS	(Color, Texture, Structu						
	0		07%	ш —		Š	Geologic Descriptions are Based o	n the USCS.					
- o -					* - * - - * *		0.000						
							Brown, silty fine SAND with some gravel						
					0 0 0 0	SM							
					0 7	GM							
L 5 -		0.0											
Γ $^{\circ}$ \neg		0.0					Light brown-brown, silty fine SAND						
1						SM							
l													
- 10		0.0			b	SM	Brown, silty fine SAND with rounded grave	ėl					
						GM							
-						SM	Light brown, moist-wet, silty fine SAND						
							No cuttings						
 15 -					$ \setminus / $		140 Gattingo						
					$\mid \; \lor \; \mid$								
-					$ \wedge $								
					/								
20 -		0.0			· · · · · · · · · · · · · · · · · · ·		Light brown, wet, coarse-fine SAND						
80/8							Light brown, wet, coarse line of the						
<u>-</u>													
					• • • • • • • • • • • • • • • • • • • •								
- 25 −		0.0				sw							
3 -													
- - -					* * * * * * * * * * * * * * * * * * * *								
ָלָּבְּי פֿל													
] 20													
∄ 30 −													
							End of Exploration at 30 feet bsg.						
							Well Construction: Screen from 30 to 10 feet, casing from 10	feet to grade.					
							Completed with flush roadbox set in concr						
≝ - 35 -							Sand Pack/ Seal:						
5							Sand from 30 to 8 feet, bentonite from 8 to feet to grade.	o 6 reet, native from 6					
<u> </u>							iset to grade.						
5													
<u>₹</u>													
וֹ וֹה			1	- 1		1							

Monitoring Well

OB10-S Page: 1 of 1

Project _	Varian/Bever	ſly			0\	wnerVarian Medical Systems, Inc.	COMMENTS						
-	cation 150 Sohier Road, Beverly, Massachusetts Proj. No. 832837 NA 200 ft												
Surface Ele	ev. NA												
Top of Cas			Water Level		4	Static NA Diameter 8.5 in.							
Screen: Dia	0 !					Type/Size							
Casing: Dia	- 1		-										
Fill Materia			-			g/Core <u>CME</u>							
	Dragin Drilli	ing, Inc.				Stem Auger							
	odd Coleman		Date1/2/02 Permit #NA										
Checked By	0.44 //												
CHECKEG By	, <u> </u>	1			11								
	<u>io</u>			ن اخ آ	Class.	Description							
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Recovery Graphic Log	S C								
	Com <	a a	San % R	g g g g	uscs ((Color, Texture, Structur	·						
						Geologic Descriptions are Based of	on the USCS.						
├ 0 −						Asphalt							
				61,411	4	Asphalt (4")							
ļ -				9. (7)		Brown, fine to medium SAND, little medium to fine	gravel, trace cobbles, poorly						
		ND		18110		graded							
L 5 -					SP								
				0. 3.0									
_	653 653												
					3								
L 10 -		ND]								
		IND		Sugar		Brown, fine to medium SAND, little medium to fine	gravel, trace cobbles, poorly						
				6.00	SP	graded							
				81.0	ا ا								
1		, ,,,			\$								
15 —		ND		8 6 6 6 6		Brown, fine to medium SAND, little medium to fine	gravel, trace cobbles, poorly						
				10. 17.0		graded							
)- -				2000	SP								
=					4								
20 -		ND		6 19	<u> </u>								
인		טאו		11/1/1	1	Brown, fine to medium SAND, little medium to fine	gravel, trace cobbles, poorly						
5 -		1			SP	graded							
=				1110	1								
25 —		ND			1	Brown, fine to medium SAND, little medium to fine	gravel, trace cobbles, poorly						
2)	graded							
라 -				61116	SP								
					1								
30 -				7:11:11	+	End of Exploration at 30 ft bsg							
						Well Construction:							
<u>-</u>						Screen from 30 feet to 10 feet, casing from 10 feet	to grade. Completed at						
2						grade with a flush roadbox set in concrete.							
₫ - 35 -						Sand Pack/ Seal: Sand from 30 to 7 feet, bentonite from 7 to 4 feet, n	ative from 4 feet to grade.						
۲ <u>ا</u>													
<u>-</u>													
3													
<u>}</u> ⊢ 40 −													
-	11 1			III .	II I								

Monitoring Well **OB 11-S**

Projec	ct _\	√arian Beve	erly			_ 0\	wnerVarian Medical Systems, Inc.	COMMENTS
				Beverly, MA			Proj. No. <u>832837</u>	Soil classifications were generated from grab samples
							North East	collected from the auger flights unless otherwise stated.
							Static NA Diameter 4 in.	uniess otherwise stated.
							Type/Size _ <i>PVC/.010 in.</i>	
							Type	
							g/Core CME	
				Met				
							Date	
Crieci	TOU L			I	. Licerise	- INO.		
		uo		ery		ass.	Description	
Depth	<u>:</u>	Well Completion	PID (ppm)	Sample ID % Recovery Blow Count Recovery	Graphic Log	USCS Class.		,
آ م (Som <	ا م	San % Re	ש פֿי	SCS	(Color, Texture, Structu	
		J		6			Geologic Descriptions are Based or	i the USCS.
⊢ o	, 4				XXXXXXX			
ļ.	4						Brown fine SAND with silt, gravel and occa	ssional cobbles
			0.0				, 3	
<u> </u>			0.0					
L								
- 10	۱ _		0.6					
	7							
Γ								
4,	-		1.3			SM		
<u> </u>	7					GP		
	٦							
			0.0					
<u></u>	ر ر							
1/3/0								
<u>-</u>	1							
P.G								
- 중 25	5 -		0.7					
=								
<u> </u>	+							
062								
∄ 30) 				P22/X282	\vdash		
SHAW_COMMERCIAL_Rev: 6/12/02 WELLLOG2.GPJ IT_CORP.GDT 11/3/09							Bottom of Exploration at 30 feet bsg	
12/02	4						Well Construction:	
9 .;							Screen from 30 to 10 feet; casing 10 feet to with a flush road box set in concrete.	grade. Completed
[∞] − 35	5 -						Sand Pack/ Seal:	
CIAL							Sand pack from 30 to 8 feet; bentonite 8 to	5 feet; native fill from 5
MER	4						feet to grade.	
OM								
≨ − 40) 							

Monitoring Well **OB 12-S**

Project	Varian Beve	erly			O	wner Varian Medical Systems, Inc.	COMMENTS
			Beverly, MA		_	Proj. No832837	Soil classifications were generated from grab samples
				oth 30.	0 ft.	North East	collected from the auger flights
						Static NA Diameter 4 in.	unless otherwise stated.
						Type/Size PVC/.010 in.	
						Type PVC	
			e, native			=	
			Meth				
			• .			Date Permit #	
Checked	By S. Met	ivier		Licens	e No.		
	u o		or in S	0	iss.	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count Recovery	Graphic Log	USCS Class.	·	,
ے ا	Som V	<u>п</u> Ф	Sarr % Re Slow	ş d	SCS	(Color, Texture, Structu	
			6			Geologic Descriptions are Based or	n the USCS.
├ 0 -							
-						Brown, fine SAND with gravel and occassion	onal cobbles
├ 5 -		0.0					
-	-						
- 10 -		0.0					
-							
- 15 -		0.0			SP		
-							
_ 20 _		0.0					
11/3							
<u> </u>							
8 – 25 –		0.0					
<u> </u>		0.0					
=							
9							
90							
∄ 30 −					П		
> 20						Bottom of Exploration at 30 feet bsg	
3/12/(1					Well Construction: Screen from 30 to 10 feet; casing from 10 feet.	feet to grade
ev: 6						Completed with flush roadbox set in concre	ete.
≝ 35 −	1					Sand Pack/ Seal:	
3CIA						Sand pack from 30 to 8 feet; bentonite 8 to feet to grade.	o b reet; native fill from 6
MM -	1						
8							
SHAW_COMMERCIAL Rev. 6/12/02 WELLLOG2.GPJ IT_CORP.GDT 11/3/09 30							

Monitoring Well

OB 15-S Page: 1 of 1

Project _	Varian Beve	ərly				_ 0\	wner	COMMENTS					
							Proj. No832837	Soil classifications were generated from grab samples					
	Location 150 Sohier Road, Beverly, MA Proj. No. 832837 Soli classifications were generated from grab samples collected from the auger flight unless otherwise stated. Top of Casing NA Water Level Initial NA Static NA Diameter 4 in.												
								unicos otriciwise stateu.					
							Type/Size PVC/.010 in.						
							Type PVC						
							g/Core Ingersol Rand						
							Stem Auger						
							Date _4/3/02 Permit # _NA						
	1					1							
	ion	_	⊒è	nu Li	ပ္	ass.	Description						
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.		uro)					
	Con	_ <u> </u>	Sar %R	Blov	<u>ත</u> _	SC	(Color, Texture, Structu Geologic Descriptions are Based o						
							Geologic Descriptions are based of	Title 0000.					
- 0 -					1617		(Vacuum Excavated) Brown, silty fine SAN	ID with gravel and					
					[]		cobbles	Will glaver and					
- 2 -													
<u> </u>					7 0								
_ 4 -					0	SM							
_ L					0 2								
					000								
6 -													
					000								
8 -					1.01.		No cuttings, cuttings filling vacuum excava	tion hole					
-													
 10 -													
-													
 12 -	1 = 1												
<u> </u>													
% — 16 −													
16 -													
	1 = 1												
MEITLOG2:GPJ													
32.G	1						End of Exploration at 20 feet bsg.						
일 - 22 -	1 1						Well Construction:						
WEL .	1 1						Screen from 20 to 10 feet, casing from 10	feet to grade.					
ଷ୍ଟ – 24 –	-						Completed with a flush roadbox set in con-	crete.					
Z0/21/9 - 24 -	4						Sand Pack/ Seal: Sand from 20 to 8 feet, bentonite from 8 to	6 feet, native from 6					
 — 26 −	↓						feet to grade.	5.555 Hauto Holli 0					
							-						
င်္ခြို့													
₩ – 28 –													
8 22													
SHAW_COMMERCIAL 28 30	1												
~/							ı						

Monitoring Well OB 16-S
Page: 1 of 1

COMMENTS

	Varian Beve					wner	COMMENTS Well located at 32 Tozer Road
			Beverly, MA			Proj. No. <u>832837</u>	Soil classifications were
						North East	generated from grab samples collected from the auger flights
						Static NA Diameter 4 in.	unless otherwise stated.
						Type/Size _ <i>PVC/.010 in.</i>	
Casing: Di	a <u>2 in.</u>		Length _7.5	ft.		Type _ <i>PVC</i>	
Fill Materia	al Sand, b	entonite	e, native		_ Ri	g/Core CME	
Drill Co.							
Driller _T	odd Collins		Log By _Da	ve Wattles	5	Date	
Checked E	By S. Meti	ivier		_ Licens	e No.		
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Recovery Graphic Log	USCS Class.	Description (Color, Texture, Structo Geologic Descriptions are Based o	
- 0 -						,	
-						Brown, fine-medium SAND with gravel and	d occassional cobbles
_ 2 _							
4					sw		
-							
- 6 -							
8				N. C.		GRAVEL with brown, fine-medium Sand	
-				100°C			
<u> </u>				000	GW		
				000			
_							
- 12						Brown CLAY with fine sand and little grave	el
6						3	
 - 14 -							
					CL		
RP.G							
[- 16 -							
= = -							
5.7.0 10					$\ -\ $		
§ - 18 -						Pottom of Evaloration at 47.5 fact has	
						Bottom of Exploration at 17.5 feet bsg	
g – 20 –						Well Construction:	
6/12						Screen from 17.5 to 7.5 feet; casing 7.5 fe	et to grade. Completed
Sev.						with flush roadbox set in concrete. Sand Pack/ Seal:	
≝ - 22 -						Sand pack from 17.5 to 5.5 feet; bentonite	5.5 to 3.5 feet.
						22.12 22.11. 11.10 10 0.0 1001, 0011011110	2.5 .0 0.0 1000
<u>-</u> 24 −							
ŏ ≽							
SHA							

Drilling Log

Monitoring Well

OB 18-S Page: 1 of 1

Project _	Varian Beve	erly				_ 0\	wner Varian Medical System, Inc.	COMMENTS					
	Project Varian Beverly Owner Varian Medical System, Inc. COMMENTS Location 150 Sohier Road, Beverly, Massachusetts Proj. No. 832837 No samples taken; see log for OB 18-DO. Surface Elev. NA Total Hole Depth 15.0 ft. North East Bast												
Top of Ca	sing NA		Water Lev	∕el Ini	itial $\overline{\underline{\nabla}}$	6.0 ft	t. Static NA Diameter 4.25 in.						
							Type/Size PVC/0.010 in.						
							Type PVC						
							g/Core Foremost/Split Spoon						
							Stem Auger						
							Date _8/5/02 Permit # _NA						
			• •										
	-,					·							
	ion		Sample ID % Recovery	Blow Count Recovery	<u>.</u>	ass.	Description						
Depth (ft.)	Well	PID (ppm)	eco	S S	Graphic Log	SCI		ro)					
	Well	_ <u>a</u>	Sar %R	Be R	<u>ნ</u> _	USCS Class.	(Color, Texture, Structu Geologic Descriptions are Based or						
			-				Geologie Bescriptions are Based of						
							Ground Surface						
├ 0 -	***						Ground Surface						
2 -													
-													
L 4 -													
' '													
_													
⊢ 6 ∑							Obstruction - concrete						
L _							Countries Control Cont						
8 -													
-													
- 10 -													
-													
- 12 -													
3/08													
=======================================													
[14 -													
				}									
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG3.GPJ IT_CORP.GDT 11/3/09 SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG3.GPJ IT_CORP.GDT 11/3/09							Bottom of exploration at 15 feet.						
E I							Well Construction:	at to grade					
- 1363.							Screen from 15 to 2 feet, casing from 2 feet Completed with flush roadbox set in concre						
≟⊢ 18 <i>−</i>							Sand Pack / Seal:						
ME NE							Sand pack from 15 to 2 feet, bentonite from	n 2 to 1 feet, grout 1					
2/02							feet to grade.						
§													
§ _ −													
JAL 20													
ਹੁੰ ⊢ 22 −													
№ -													
° ≩ − 24 −													
AHS													

Rev: 6/12/02 WELLLOG2.GPJ IT_CORP.GDT

SHAW_COMMERCIAL

Drilling Log

Monitoring Well

OB 19-S Page: 1 of 1

Project Varian Beverly _ Owner __Varian Medical Systems, Inc. COMMENTS Soil classifications were Location 150 Sohier Road, Beverly, MA _____ Proj. No. <u>832837</u> generated from grab samples collected from the auger flights Total Hole Depth 35.0 ft. Surface Elev. NA North ___ unless otherwise stated. ____ Water Level Initial NA Static NA ____ Diameter _4 in. Top of Casing NA Type/Size PVC/.010 in. Length 20 ft. Screen: Dia 2 in. Type PVC Length 15 ft. Casing: Dia 2 in. Rig/Core Ingersol Rand Fill Material Sand, bentonite, native Method Hollow Stem Auger Drill Co. Paratt Wolff _ Log By __Dave Wattles Driller Rick Navatka ___ Date <u>4/17/02</u> Permit # <u>NA</u> Checked By S. Metivier License No. Blow Count Recovery Well Completion JSCS Class. Description Graphic Log Depth (ft.) PID (ppm) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Dark brown, dry fine SILTY SAND with rounded gravel SM GP Ö Light brown, dry fine SILTY SAND with rounded gravel **BDL** SM 5 GP same as above with increasing Gravel 10 1.3 SM 15 BDL SM same as above, moist GP Fine, subangular GRAVEL 0. GΡ 20 Gray-brown, moist, cohesive, SILT BDL ML 25 Light brown, wet, SILT and fine SAND **BDL** ML SM Gray, saturated, SILT and fine SAND 30 BDL ML SM 35 Bottom of exploration at 35 feet bsg. Well Construction: Screen from 35 to 15 feet, casing from 15 feet to grade, completed with a flush road box set in concrete 40 Sand Pack/Seal: Sand from 35 to 13 feet, bentonite from 13 to 11 feet, native from 11 feet to grade

Monitoring Well **OB-20-S**

Proiect	Varian Beve	erly				Ov	vner	COMMENTS					
	Location SCDS Fields, Beverly, Massachusetts Proj. No. 108939 Surface Elev. NA Total Hole Depth 13.0 ft. North East Cuttings.												
							Static NA Diameter	cuttings.					
	-						Type/Size _PVC/0.010 in.						
							Type						
							g/CoreTruck Mounted Mobil B57						
	New Hamp												
							Date _8/30/04 Permit # _NA						
Checked		010110			License	ino.							
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on	·					
							Grass						
- 0 - 2 - 				*****			Brown, medium to fine SAND, some fine gr	avel.					
- 4 -				* * * * * * * * * * * * * * * * * * * *									
- 8 -						SW							
- 10 -				• • • • • • • • • • • • • • • • • • • •									
- 12 -				*									
- 14 —							End of exploration at 13 feet below surface	grade.					
16 -							Well Construction: Screen 3 to 13 feet; casing 3 feet to grade; with flush roadbox	completed at grade					
18 –													
20 —							Sandpack/Seal: Sand 2 to 13 feet; bentonite 2 to 0.5 feet; co	ement 0.5 feet to grade					
 - 22 -													
~~													
24 —													
-													

Monitoring Well

OB 24-SPage: 1 of 1

	Varian Bev					_ 0	wner Varian Medical Systems, Inc.	COMMENTS Well leasted at 22 Terror Bood
Location	150 Sohie	r Road,	Beverly,	MA			Proj. No. <u>832837</u>	Well located at 32 Tozer Road Soil classifications were
							North East	generated from grab samples collected from the auger flights
							Static NA Diameter 4 in.	unless otherwise stated.
Screen: I	Dia <u>2 in.</u>		Length	3 ft.			Type/Size _ <i>PVC/.010 in.</i>	
Casing: [Dia <i>NA in.</i>		Length	NA ft	: .		Type <i>NA</i>	
							g/Core NA	
							vith 140 Pound Hammer	
							Date _ <u>5/2/02</u> Permit # _ <i>NA</i>	
			П					
	Well		Sample ID % Recovery	Blow Count Recovery	ပ	USCS Class.	Description	
Depth (ft.)		PID (ppm)		C C	Graphic Log	SCI		,ma)
	Com	- ម	San % Re	Blov	დ –)SC	(Color, Texture, Structi Geologic Descriptions are Based o	
			0.				Geologic Descriptions are based of	III the 0303.
- o -							Modium donos light brown as adium fire	PAND little allt and alar
							Medium-dense, light brown, medium-fine trace gravel, extensive cobbles	SAND, little slit and clay,
F	1 =					SM	trace graver, extensive separce	
					0000	GM		
- 2 -	1 = 1				9			
L					0			
- 4 -	4						End of Exploration with refusal at 3 feet be	an and an
							End of Exploration with relusar at 5 feet by	9
ŀ	1						Well Construction:	
<u> </u>							Screen from 3 feet to grade. Completed v	vith a flush roadbox set
0							in concrete. Sand Pack/ Seal	
-	_						Sand from 3 feet to grade.	
							9	
⊢ 8 -	-							
- 10 -								
60/								
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG2.GPJ IT_CORP.GDT 11/3/09	4							
5								
[12 -	1							
=[
<u></u>	4							
. 062								
計	1							
≶								
<u>8</u> – 16 –	7							
.: 6/1	1							
Re								
를 18 -	4							
ERC								
MMC -	1							
ა >								
≥ 20 -								
·-	-11					П	11	

Monitoring Well OB-41-S
Page: 1 of 1

Sur Top Scr Cas Fill Drill	cation face El of Caseen: D sing: Di Materia I Co Iler _S	ev. NA sing NA ia 2 in. ia 2 in. GeoSearch Preston	t, Native	Total Hole Del Water Level Ir Length 12 ft Length 3 ft. e, Silica Sand, E Log By S. B.	thusetts oth 15. itial \overline{Q} Bentonite hod $\overline{H0}$ arry	.0 ft. 4.5 ft Right		COMMENTS ND = Not detected Flushmounted 6" roadbox, 2' x 2' concrete pad
i	Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structo Geologic Descriptions are Based o	
GPJ IT_CORP.GDT 3/21	0 - 2 - 4 \subseteq - 6 - 8 - 10 - 12 - 14 -		ND ND			SW	Grass Topsoil Brown with orange tint, moist, loose, coars trace small gravel and cobble Grey, brown, saturated, dense, CLAY, GR	
: 6/12/02 201	16 –						End of exploration at 15 feet below surface	e grade.
MERCIAL Rev	18 —							
SHAW_COM	20 –							

Monitoring Well **OB-4**

OB-42-S Page: 1 of 1

Project _	Varian Beve	erly			_ Ov	wner Varian Medical Systems, Inc.	COMMENTS
Location _	30 Tozer F	Road, B	everly, Massa	chusetts		Proj. No. <u>139340</u>	ND = Not detected
						North East	
						Static NA Diameter	
						Type/Size PVC/Slot 0.010 in.	
						Type _ <i>PVC</i>	
						g/Core 75 CME	
			Me			•	
						Date _ 3/15/11 Permit # _ <i>NA</i>	
	· ·			1			
	ion	_	Sample ID % Recovery Blow Count	ي ي	USCS Class.	Description	
Depth (ft.)	Vell plet	PID (ppm)	oco /	Graphic Log	S	·	,ma)
	Well	_ <u> </u>	Sample ID % Recovery Blow Count	ğ	SC	(Color, Texture, Structu Geologic Descriptions are Based o	
						Geologic Descriptions are based o	
						Apply of the College	
$\vdash 0 \dashv$	NOT TOO					Asphalt (8")	
	MAKA PORT		_				
† †		ND				Brown with orange tint, moist, loose, coars	se to medium SAND,
L 2 -						trace small gravel and cobble	

+ -						Brown, moist, loose, coarse to medium SA	AND trace small gravel
		ND			sw	and cobble	WVD, water small graver
⊢ 4 🚽							
						Drown acturated dance accree to madic	m CAND, some grovel
├ 6 -						Brown, saturated, dense, coarse to medium and cobble (till)	m SAND, Some graver
						and section (any	
1							
L 8 -							A) (E) 1 0 0 D D E ((:))
						Grey brown, saturated, dense, CLAY, GRA	AVEL and COBBLE (till)
F -							
1 40							
_ 10 -							
<u> </u>		ND			CL		
<u>"</u>							
[12 -							
5						Cobble or boulder	
=							
∄ 14 -							
g	· - ·			- <i> </i> //////			
리 일 <mark>는 16 -</mark>						End of exploration at 15 feet below surface	e grade.
<u> </u>							
ž							
d							
<u></u>							
5							
<u></u> }⊢ 20 ⊣							
≒ I	1	l	II.	- 11	п	İ	

Monitoring Well **OB4**

OB43-S Page: 1 of 1

Project _	Varian Beve	erly				_ 0\	wner	COMMENTS						
	Docation 27 Tozer Road, Beverly, Massachusetts Proj. No. 139340 urface Elev. NA Total Hole Depth 16.8 ft. North East													
Surface E	lev. NA		Total Ho	ole Der	oth 16.									
Top of Ca	sing NA		Water I	evel In	itial 🔽	11.2	ft. Static NA Diameter							
							Type/Size PVC/Slot 0.010 in.							
							Type							
							g/Core CME 75							
	Geosearch													
							Date							
							Date Fernit #							
CHECKEUL			П		LICELIS	e No.								
	L C			ŧ,>		Class.	Description							
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	g	·							
ا مّ	Som V	<u>п</u> Ф	San 6 Re	3low Rec	g J	nscs	(Color, Texture, Structu							
			0				Geologic Descriptions are Based or	n the USCS.						
⊢ 0 −	7507 P. 17587						Asphalt (~2" Thick)							
							Brown with orange tint, dry, medium dens	e, fine SAND, little silt,						
-							trace coarse to fine gravel and cobble							
_ 2 -		0.3												
- 4 -		0.3					Brown, dry, medium dense, fine SAND, lit	tle silt, trace coarse to						
						SP	fine gravel and cobble							
				3			Brown, moist, dense, fine SAND, trace sil	t. trace medium to fine						
- 6 -		0.3	40%	3 🗸			gravel (cobble at 6.8')	i, ilado modium to imo						
			40%	5 18										
-				12			5	P 6						
8 -		0.3		15 🗸			Brown, dry, dense, fine SAND, trace silt, t gravel and cobble	race medium to fine						
0		0.5	50%	14			graver and sepple							
				12										
_					$ \times $		Drilled down without split spoon (9' - 10')							
5 10 -				13 /			Provin dry donor modium to fine CAND	traca madium to fina						
		0.4		12			Brown, dry, dense, medium to fine SAND gravel and cobble (moist at 12')	, trace medium to line						
109. Table 1		0.1	100%	15			,							
[12 -				16 ∐										
<u></u>						SW	Brown, wet, dense, medium to fine SAND	, trace medium to fine						
GE -							gravel and cobble							
ÿ ⊢ 14 −														
701														
- 11 2														
50 20					$ \bigvee $									
- 16 -					$ / \rangle $									
New: 6/12/02 2011_277OZER.GPU II_CORP.GDT 12/19/11					\vdash									
							End of exploration at 16.8 feet below surfa	ace grade.						
₫├ 18 ─														
MER														
SHAW_COMMERCIAL														
≩ — 20 —														
/HS														

Monitoring Well **OB-44-S**

	Varian Beve	COMMENTS						
	Building 5,	150 Soh	nier Road,	Bever			•	ND = Not detected
Surface El			Total Hol	le Dept		1 ft.	North East	
Top of Cas	-		Water Le			12.5		
Screen: Di			J	15 ft.			Type/Size PVC/Slot 0.010 in.	
	a <u>1 in.</u>		9	4 ft.			Type	
	Native,		e, Sand				g/CoreGeoprobe/6620 DT	
	Geosearch			Meth		ect P		
Driller _B	. Law		Log By	Dale	Dailey		Date <u>12/30/13</u> Permit # <u>NA</u>	
Checked E	By <u>R. Cad</u>	orette			License	No.		
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description	
ا مّ	Som <	<u>п</u> Ф	Sam % Re	Blow	Gra	SCS	(Color, Texture, Structur	
							Geologic Descriptions are Based or	n the USCS.
- 0 -								
"							Hand clear to 5'	
							Brown, dry, very dense SANDY FILL, some	
<u> </u>							contains concrete, brick and other rock frag 4' (Fill)	ments to approximately
ļ _		ND				SW	4 ([)	
1 .	10 S							
4 -								
-				Н				
6 🕳				1/				
				M			Light brown, dry, very dense, SANDY TILL, (some potential staining at 10')	some gravel (2 - 5 cm);
		256	1000/	IVI			(Some potential staining at 10)	
8 -			100%	1/1				
ļ -				- 1/1				
1 40				/\				
10 -								
-				1//		SW	Brown to light gray, dry, very dense, SAND	and GRAVEL TILL.
- 12 <u>√</u>				W			gravel (2 - 5 cm)	,
'-¥		227	100%	IXI				
_				IAI				
<u>†</u> 14 –				/\				
				Ц				
100				\ /				
j⊢ 16 −]//[Brown, dry, very dense, SANDY TILL, some	e gravel (2 - 3 cm) to 17'
- = −		351	100%				Gray, damp, dense CLAYEY TILL, trace gra	avel
ક્⊩ 18 −]/\[ML	,, ,, ,, :	
. 9				/\				
-	 						End of exploration at 19.10 feet below surfa	ace grade.
⋛ 20 −							Well set at 19 feet below surface grade.	5. 440.
<u> </u>								
‰ - 22 -								
\(\frac{1}{2}\)								
<u> </u>								
≝ ⊢ 24 −								
31								

Monitoring Well **OB-45-S**

Project	Varian Beve	erly				_ 0\	wner Varian Medical Systems, Inc.	COMMENTS
Location	Building 5	, 150 Sol	hier Road	d, Bever	ly, Massa	achus	etts Proj. No. <u>150151</u>	ND = Not detected
Surface	Elev. 76.8	ft.	Total Ho	ole Dept	th <u>19.</u>	1 ft.	North East	
Top of C	asing _76.5	7 ft	Water L	_evel Ini	tial <i>NA</i>	ı	Static <u>¶ 11.4 ft.</u> Diameter <u>4 in.</u>	
Screen:	Dia <u>2 in.</u>		Length	10 ft.			Type/Size PVC/Slot 0.010 in.	
	Dia <u>2 in.</u>						Type	
	rial <i>Native,</i>					_ Ri	g/Core Hollow Stem Auger	
Drill Co.	TDS			_ Meth	nod Ho	llow S	Stem Auger	
Driller .	G. Caouette		Log By	Dale	Dailey		Date <u>4/14/14</u> Permit # <u>NA</u>	
Checked	By R. Cad	dorette			License	e No.		
_ ا	Well		Sample ID % Recovery	Blow Count Recovery	. <u>e</u>	USCS Class.	Description	
Depth (ft.)	Well	PID (ppm)	Seco	ŏ Š	Graphic Log	SC	(Color, Texture, Structu	re)
-	So So		Sal R	B R	9	nsc	Geologic Descriptions are Based o	•
			-					
├ 0		,					Hand clear to 5'	
-							SAND and loose GRAVEL (Fill)	
- 2							97 11 12 and 19999 91 1 1 1 1 2 (1 m)	
-		:				FILL		
†		·						
- 4								
				_				
				10 15			Light brown, dry, very stiff CLAY, some poo	orly sorted, coarse gravel
 6		ND	40%	26		CL		
-				23 _				
8								
"								
-								
- 10				12 🔀	///////		Light brown, dry, very stiff CLAY, little fine g	iravel (Spoon refusal on
L.		. ND		27		CL	potential boulder at 11.5'.)	raver (Opoori relusarori
-			25%			OL.	,	
- 12					///////			
-								
<u>-</u> 14								
\(\frac{\cappa_1}{\cappa_1}\)								
<u></u>	1, 1, 1, 1			15 🗸			Light brown, damp, very stiff CLAY, some f	ine and coarse, poorly
- 16	_	ND	60%	22 X		CL	sorted gravel (1/4" to 1")	
3				35				
=]							End of exploration at 17 feet below surface	grade
를 - 18								
5 -	-							
ਰ - - 20								
20								
2/6/	1							
~ 	-							
۲ ا								
<u>-</u> 24								

Monitoring Well **OB46**-

Project _V	/arian Beve	erly				_ 0\	wner	COMMENTS
Location _	Building 5,	150 Sol	nier Road,	Bever	rly, Massa	achus	etts Proj. No. <u>152728</u>	ND = Not detected above
Surface Ele	ev. NA		Total Ho	le Dep	instrument limit (0.1 ppm)			
Top of Casi	ing <i>NA</i>		Water Le	evel Ini				
Screen: Dia	2 in.		Length	_10 ft.	-			
Casing: Dia	2 in.		Length					
Fill Materia	_ Concret	te, Sand	, Bentonite				g/Core Track Mounted/CME	
Drill Co	Drillex			Meth	hod Ho	llow S	item Auger	
Driller _ <i>Ja</i>	ames, Curtis	s, Alex	Log By	Ben	Short		Date <u>3/13/15</u> Permit # <u>NA</u>	
Checked By	y R. Cad	orette			License	No.		
Depth (ft.)	Well	DID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structur	re)
	Cor		Sal R	8 8	9	nsc	Geologic Descriptions are Based or	·
							Concrete (3")	
0							Cuttings, SAND and GRAVEL	
F -					° () °			
_ 2 _					 			
-		ND			\mathbb{I}	SP GP		
					· () ·			
- 4 -					 5			
					0 D			L CAND
				14		0.47	Light brown to yellowish brown, dense, fine angular to subangular GRAVEL, some fine	
6 -		0.3	55%	28		SW	angular to subangular Orovee, some line.	5 (TIII)
F -				34 19 \ /	******		Same as above, wet at 8'	
⊢ 8 ⊻		ND	050/	23		sw		
			85%	26				
				14			Light grey, fine to medium SAND, SILT and	GRAVEL (Till), boulder
- 10 −		0.3	40% 60 fc	16 △ or 3"		SM GP	at 10' - 11'	
40								
12 -				16		SM	Light grey, GRAVEL (Till)	
├ ┤		ND	35%	14 61	0 1	GP SM	Light grey, SANDY SILT with GRAVEL	
<u></u> 14 −				37		GP		
01/4		0.4		19 24		SM	Dense, SILTY TILL	
<u> </u>		0.4	100%	23		GP		
16 -				25 🔼		\vdash	End of overlanding at 40 foot below	, ourfood grade
3							End of exploration at 16 feet below Well set at 15 feet below surf	v suriace grade. ace drade.
등 - 18 -								3
5 10								
-								
<u> </u>								
ا ا								
8/8/1								
22 –								
ş -								
24 —								
8 24 T								

Monitoring Well **OE**

									Page. I of I
Proje	ect _	Varian Beve	erly				_ Ov	vner	COMMENTS
Loca	ation	Building 5,	150 Sol	nier Roa	ad, Bever	ly, Massa	achuse	etts Proj. No. <u>152728</u>	ND = Not detected above
Surf	ace El	ev. NA		Total I	Hole Dept		0 ft.	North East	instrument limit (0.1 ppm)
Тор	of Cas	sing <i>NA</i>		Water	Level Ini	tial $\stackrel{ extstyle }{=}$	14.0	ft. Static NA Diameter	WOH = Weight of hammer
Scre	en: Di	a <u>2 in.</u>		Length	15 ft.			Type/Size Sch. 40 PVC/Slot 0.010 in.	
Casi	ing: Di	a <u>2 in.</u>		Length	10 ft.			Type Sch. 40 PVC	
Fill N	Materia	Concre	te, Sand	, Bentoi	nite		_ Ri	g/Core _ <i>Track Mounted/CME</i>	
Drill	Co	Drillex			Meth	nod Ho	llow S	tem Auger	
Drille	er _ <i>J</i>	ames, Curti	s, Alex	Log B	y <u>Ben</u>	Short		Date _ <u>3/14/15</u> Permit # _ <i>NA</i>	
Che	cked E	By R. Cad	orette			License	e No.		
ء ا	=	Well		Sample ID % Recovery	Blow Count Recovery	.je	Class.	Description	
tag	(f (f)	Wel mple	PID (ppm)	l mple	Ŏ ×	Graphic Log	SSC	(Color, Texture, Structu	re)
	•	Co		Sal R	용장	9	nscs	Geologic Descriptions are Based of	·
\vdash									
-	0 —				П	*****		COBBLE and loose SAND	
-	-								
\vdash	2 —								
ļ.	_		ND				SW		
L	4 —								
	4								
T	_				2		SW	Light brown to yellow brown, loose fine to r	nedium, SAND and
\vdash	6 —		ND	25%	2 2	:::Ø:;:	GW	GRAVEL, little silt	
F	-				WOH ⊠			Light brown/yellow brown, loose, fine, SILT	and SAND little coarse
-	8 —		ND	15%	2 3		SM	sand	and of the by made dediced
L	_			1070	2				
L,	10 —		ND		2 9	\$	sw	Yellowish brown, loose, fine to medium SA GRAVEL, little silt	ND and subrounded
	10			80%	10 /\ 11		GW	GIV WEE, IIII SIII	
Ī	_				12 12	*****		Yellowish brown, moist, medium dense, fin	e to medium SAND,
	12 —		ND	85%	14		SW	some coarse sand and gravel	
\perp	-				13 📝			Yellowish brown, wet, loose, fine SILTY SA	ND, some subangular
- <i>'</i>	14 ▽		ND	90%	11		SM	gravel	
L	_			30 70	8 ∐				0.1115
_L,	16 —		ND		13 10		SP	Yellowish brown, moist, medium dense, fin- crushed rock	e SAND, trace gravel,
4/16/15	10 -		ם או	45%	14 15		Jr-	3.40/104 100/	
4	_				11 15			Yellowish brown, wet, dense, fine to mediu	m SAND, some gravel
[5] [7]	18 —		ND	85%	19 /\		SW		
원	-				24 <u> </u>	*****	-	Dark grayish brown, wet, medium dense, fi	ne SAND_little silt and
<u>-</u> - 2	20 —		ND		15 15		SP	subangular gravel	TO OT II VD, III.IIO OIII AITA
2	_				17				
2015_BLDG5.GPJ_IT_CORP.GDT	22				3 7			No recovery; rock in tip	
	22 —			0%	7 8				
015	_				7			Yellowish brown, wet, loose, fine to mediun	n SAND, some coarse
	24 —		ND	50%	H		SW	grained	
Rev: 8/9/13	_				Ц	******	\vdash		
.: L	26 —							End of exploration at 25 feet below Well set at 25 feet below sur	
	_							VV Cii Set at 20 leet below Sul	acc grade.
칠.	20								
CB&I LOGO	28 —								
\sim $-$									

Monitoring Well **OB**

Pr	oiect	Varian Beve	erly				Owne	Varian Medical Systems, Inc.	COMMENTS
		Building 5,		nier Road,					ND = Not detected above
				Total Ho				North East	instrument limit (0.1 ppm)
	p of Cas								
	reen: Di	ū		Length				Type/Size Sch. 40 PVC/Slot 0.010 in.	
				•					
		a <u> </u>						ore Track Mounted/CME	
	ill Co.						llow Stem		
								Date <u>3/13/15</u> Permit # <u>NA</u>	
Cł	necked E	By R. Cad	orelle			License	e No		
	ŧ.	Well	ربر (س	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description	
	Depth (ft.)	We	PID (ppm)	Rec	ow C	3rap Lo	CS	(Color, Texture, Structu	ure)
		ပိ		001%	≅ ∝		n l	Geologic Descriptions are Based	on the USCS.
\vdash									
上	0 —				П			SAND and GRAVEL	
-	-					. O .			
	2 -					00			
	2 -		ND				SP GP		
⊢	-					, O,	GP		
L	4 -					0 ()			
	4					0 0			
H	-				3	0.0		Light brown, loose, medium SAND	
L	6 -		ND		2		SP		
	U			100%	2		SM	Dark grey, fine SAND and SILT	
F	-				2		O.W.	Dark grey, fine SAND and SILT, over black	to very dark brown fine
L	8 -		ND	20%	2		SM	SAND and SILT, rock in tip	to very dark brown, line
				20%	3			, 1	
F	_				2			No recovery	
\vdash	10 -			0%	2 2	$\mid \times \mid$			
				0 70	2				
	_								
\vdash	12 -				12	******		Yellowish brown, dry to slightly damp, med	dium dense fine to
			ND		17		sw	medium SAND, some subangular gravel	diditi delise, line to
Γ	_		IND		19		SW	, 3 3	
0/15	14 -				12 8			No recovery	
4/1	_				4	$ \setminus / $			
)				0%	16 18	$ / \setminus $			
<u>%</u>	16 -				12	$\langle \cdot \rangle$		No soil recovery, dry	
8	_		ND	F0/	17	$\mid \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$		<i>y. y</i>	
=				5%	19 16	$ / \setminus $			
2015_BLDG5.GPJ_IT_CORP.GDT_4/10/15	18 —				6			Light brown, slightly moist, dense, fine to n	nedium SAND and
DG5	_		ND	E00/	8 🛚		SW	angular to subangular GRAVEL, crushed	rock at 19' - 20'
2_BL	0.0			50%	26 15		GW		
	20 —					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		End of exploration at 20 feet belo	w surface grade
	-							Well set at 20 feet below sur	w suriace grade. face grade.
8/8	22								•
Rev	22 –	1							
οβ-	-	-							
ğ	24 -								
CB&I_LOGO Rev: 8/9/13	24 -								

Monitoring Well **OB49-S**

APTIM			3	Page: 1 of 1
Project <i>Varian</i>		_ Owne		COMMENTS
Location Beverly, MA			Proj. No. <u>631237905</u>	0-5' Precleared on 12/16/19.
Surface Elev. NA	Total Hole Depth 19	.0 ft.	North East	Soil VOC sample collected 15-17'.
Top of Casing NA	Water Level Initial	9.0 ft.	Static _ 	
Screen: Dia 2 in.	Length 10 ft.		Type/Size sch.40 PVC, slotted/0.01 in.	Monitoring Well OB49-S: Flush mount. Native fill 0.5-5'
Casing: Dia 2 in.				bgs. Bentonite seal 5-7' bgs. Morie #2 silica sand 7-19' bgs.
			ATV Pia (CMT 55LC)	2-inch PVC 10-slot screen 9-19' bgs. End cap.
Drill Co. Geosearch Inc.				ago. Ena oup.
Driller Kenneth Bylund			Date	
Checked By Chris Buerkle				
Depth (ft.) Well Completion PID (ppm)	Sample ID % Recovery Blow Count Recovery Graphic Log	USCS Class.	Description	
(ft.) (Maril Impletii	Sample ID % Recovery Blow Count Recovery Graphic Log		(Color, Texture, Structure	<i>a</i>)
	Sal % Re		Geologic Descriptions are Based on the	
		-		
0.0				
		SM	0.24 City CAND (CM) majet deek brown 10	ND 2/2 600/ fine
_ 2 _			0-2': Silty SAND (SM), moist, dark brown 10 sand, 40% silt, trace gravel, roots, no odor,	(Probable Fill).
				(
L 4 - 6 6 6 1	, 00		2-5': Silty SAND with gravel (SM), moist, da 10YR 4/4, 45% fine to medium sand, 30% f	
0.0		SM	25% silt, no odor, (Probable Fill).	ine to coarse graver,
	3 🕅 🗎		,	
− 6 − 0.0	30% 2 0 0		5-7' spoon: Same as 2-5', very loose, (Prob	able Fill).
	3			
0.0	37 × 55% 50/3" • 55%		7-9' spoon: Silty SAND with gravel (SM), mo	oist, very dense, dark
			yellowish brown 10YR 4/4, 50% fine to med	
- <u>I</u>	17 0 5		coarse gravel (angular to subangular), 20% Till).	siit, no odor, (Giaciai
- 10 - 0.1	23		9-11' spoon: Same as 7-9', wet.	
0.1	75% 28 / 1		o 11 opeen. came as 1 o, wet.	
	30 7			
- 12 → □ 0.2	30 X	SM	11-13' spoon: Same as 7-9', wet.	
	30 30			
	13 7 6			
0.9 0.9	15 /\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		13-15' spoon: Silty SAND with gravel (SM),	
	21 0		50% fine to medium sand, 35% fine to coarsubangular), 15% silt, no odor, (Glacial Till)	
1	13 \\ 17 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
<u>- 16 </u>	60% 19		15-17' spoon: Same as 13-15', odor.	
	16	╢—╟-		
18	18		17-19' spoon: No recovery.	
	0% 21 22		17-10 Spoon. No recovery.	
₹ - 20 -			19' Total Depth (reached target depth).	
<u>-</u>				
	i II	n II		

Monitoring Well

OB50-S Page: 1 of 1

Top of Casing NA Screen: Dia 2 in. Casing: Dia 2 in. Fill Material (monitor)	A Total Howell Find Water Length Length Inc. Ind Log By Log By	ole Depth 19 Level Initial 29 10 ft. 9 ft. 11: see comment 12: Method 14 13: Chris Buerkl	9.0 ft. 7 11.0 (S.) Riollow S	Varian Medical Systems Inc. Proj. No. 631237905	COMMENTS 0-5' Precleared on 12/16/19. Soil VOC sample collected 17-19'. Monitoring Well OB50-S: Flush mount. Native fill 0.5-5' bgs. Bentonite seal 5-7' bgs. Morie #2 silica sand 7-19' bgs. 2-inch PVC 10-slot screen 9-19' bgs. End cap.
Depth (ft.) (ft.) (Mell Completion	PID (ppm) Sample ID % Recovery	Blow Count Recovery Graphic Log	USCS Class.	Description (Color, Texture, Struct Geologic Descriptions are Based o	
- 0	0.0 0.0 0.0 10% 0.4 20% 1.9 40% 1.2 50% >9,999 85% >9,999 45%	5 7 5 3 X 7 5 3 X 7 5 3 X 7 5 3 X 7 5 3 X 7 5 3 X 7 5 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	M M M M M M M M M M M M M M M M M M M	0-2': Silty SAND (SM), moist, dark brown sand, 40% silt, trace gravel, roots, no odd 2-5': Silty SAND with gravel (SM), moist, 10YR 3/4, 45% fine to medium sand, 35% gravel, no odor, (Probable Fill). 5-7' spoon: Same as 2-5', medium dense 7-9' spoon: Silty SAND with gravel (SM), dark yellowish brown 10YR 4/4, 60% fine fine to coarse gravel (angular), 20% silt, 19-11' spoon: Same as 7-9', wet at 11' bgs 11-13' spoon: Silty SAND with gravel (SM 50% fine to medium sand, 35% fine to co subangular), 15% silt, no odor, (Glacial T 13-15' spoon: Silty SAND with gravel (SM 10YR 4/4, 60% fine to medium sand, 20% (angular to subangular), 20% silt, odor, (C 15-17' spoon: Same as 13-15', strong odd 17-19' spoon: Same as 13-15', strong odd 19' Total Depth (reached target depth).	dark yellowish brown silt, 20% fine to coarse (Probable Fill). moist, medium dense, to medium sand, 20% no odor, (Probable Fill). (Probable Fill). (Probable Fill). (Probable Fill). (Probable Fill). (I), wet, dense, 10YR 4/4, arse gravel (angular to ill). (I), wet, medium dense, fine to coarse gravel Glacial Till). (I), or.

Monitoring Well O

Project _	Varian					_ 0	wner Varian Medical Systems Inc.	COMMENTS
	Beverly, M					_	Proj. No. <u>631237905</u>	0-5' Precleared on 12/16/19.
			Total Ho	ole Der	oth 19.	O ft.	North East	Soil VOC sample collected
Tan of Co	NA		Matail	one Deb	:a: -1 ∇	13.0	ft. Static NA Diameter 8 in.	9-11'.
								Monitoring Well OB51-S:
							Type/Size sch.40 PVC, slotted/0.01 in.	Flush mount. Native fill 0.5-5' bgs. Bentonite seal 5-7' bgs.
			Length 9 ft.					Morie #2 silica sand 7-19 bgs. 2-inch PVC 10-slot screen 9-19
Fill Materi	al <u>(monito</u>	ring well	installed.	see co	omments	:.) Ri	ig/Core ATV Rig (CMT-55LC)	bgs. End cap.
Drill Co.	Geosearch	Inc.		Meth	nod Ho	llow S	Stem Augers 8"OD/4.25"ID	
Driller _K	Cenneth Bylu	ınd	Loa Bv	Chris	Buerkle		Date <u>12/18/19</u> Permit # <u>NA</u>	
	By Chris E		0 ,				NH P.G. 827	
	-,		П			1	<u> </u>	
				±∠		SS.	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Везоприон	
De d	M w	ਰ ਕੁ	Regul	Jow Recc	Gra	SSS	(Color, Texture, Structu	ıre)
	U U		w %	<u>B</u> <u>L</u>		🖺	Geologic Descriptions are Based or	the USCS.
⊢ 0 −	H			П				
	1500 B000	0.0				CNA		
_						SM	0-2': Silty SAND (SM), moist, dark brown	10YR 3/3, 60% fine
⊢ 2 −							sand, 40% silt, trace gravel, roots, no odo	r, (Probable Fill).
		0.0						
						SM	2-5': Silty SAND with gravel (SM), moist, o	Jark vallowich brown
<u> </u>					0.6		10YR 3/4, 60% fine to medium sand, 20%	fine to coarse gravel
		0.0					20% silt, no odor, (Probable Fill).	mie te ecarec graver,
-				5 🗸			,	
⊢ 6 −		3.9	60%	5			5-7' spoon: Silty SAND (SM), moist, loose	, dark yellowish brown
			00%	5 5		SM	10YR 4/2, 60% fine to medium sand, 30%	silt, 10% fine gravel
-				5 🗸			(subangular), no odor, (Probable Fill).	
⊢ 8 −		65.7	 /	5 🛚			7-9' spoon: 7-8.5': same as 5-7'. 8.5-9': Sil (SM), moist, medium dense, dark yellowis	h brown 10VP 4/4 60%
			55%	7 6	6	SM	fine to medium sand, 20% fine to coarse g	
-				2		Civi	20% silt, no odor, (Probable Fill).	, a. c. (ag. to casag.,,
- 10 -		220	500/	2 🛆		SM	9-11' spoon: Silty SAND (SM), moist, very	loose, 10YR 4/4, 70%
			50%	2 2			fine to medium sand, 25% silt, 5% fine gra	avel (angular), no odor,
-				9 7	6		(Probable Fill).	/-
_		>9,999		15			11-13' spoon: Silty SAND with gravel (SM) moist wet at 13'
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0,000	60%	19 14			medium dense, 10YR 4/4, 55% fine to me	dium sand, 25% fine to
1/3/20 \[\bullet \bul				7	0 7		coarse gravel (angular to subangular), 209	
2019 VARIAN LOGS (DRAFT) GPJ II CORP GDT		>9,999		5 X	[Till).	\
P.A.P.		. 5,555	65%	7			13-15' spoon: Silty SAND with gravel (SM 10YR 4/4, 60% fine to medium sand, 20%	
				13 7 V	0 7	SM	(angular to subangular), 20% silt, strong o	dor, (Glacial Till).
= 		>9,999		11 🛆			15-17' spoon: Same as 13-15', strong odo	
e. G.		- 5,555	50%	11				••
<u>타</u> -				19 7	6 6			
) - 18 -		>9,999		15			17-19' spoon: Silty SAND with gravel (SM	
SO		/5,555	35%	14			10YR 4/4, 55% fine to coarse sand, 30% f	
와 -				20	· · o . ·		(angular to subangular), 15% silt, strong o	dor, (Glaciai Till).
A 20							19' Total Depth (reached target depth).	
ĕ ├ 20 -								
- 201								
1 22 -								
APTIM Rev: 12/4/17								
<u></u>	1							
₹∟	II .		II			<u> </u>	II.	

Monitoring Well **OB**

OB52-S Page: 1 of 1

Project	Varian Beve	erly				O۱	wner	COMMENTS
	150 Sohiei	r Road, E	Beverly, N	1A		_	Proj. No. <u>631010758</u>	
					oth 15.	5 ft.	North East	
							Static NA Diameter 2 in.	
							Type/Size PVC/0.10 Slot in.	
							Type <u>PVC</u>	
							g/Core Hollow Stem Auger	
Drill Co.							Stem Auger/Air Rotary	
							Date <u>5/17/21</u> Permit # <u>NA</u>	
Checked I	By Chris E	suerkie			Licens	e No.		
Depth (ft.)	Well	OIA)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Struct Geologic Descriptions are Based o	·
							Coolegio Doos.i.piioiio dio Daosa (
							Asphalt (0-0.3')	
├ 0 -							7 Opriait (0 0.0)	
L								
<u></u>								
† -								
L 4 -								
"								
-								
6 -								
L _								
⊢ 8 −							No soil logging (see boring log of OB52-E	R for soil information)
							140 3011 logging (see boning log of Oboz-L	or for soil information).
<u> </u>								
- 10 -								
'0								
-								
<u>-</u> 12 −								
<u>.</u> _								
불								
<u>-</u> 14 −								
2								
9 -								
 - 16								
A I							45 51 total danth of overland the	
<u>-</u>							15.5' total depth of exploration.	
707								
⋛ 18 −								
<u> </u>								
Ž Š								
<u></u> 20 −	4 1							
-1 -	II .							

Monitoring Well

OB-60-SPage: 1 of 1

Project _	Varian Beve	erly				_ 0\	wner	COMMENTS
Location .	150 Sohiei	r Road, I	Beverly, N	ИА			Proj. No. <u>631010764</u>	0-5 feet was hand cleared on 8/6/2022
Surface El	lev. NA		Total H	ole Dep	oth <u>17.</u>	0 ft.	North East	Samples submitted on
Top of Cas	sing <i>NA</i>		Water L	evel In	itial <i>NA</i>		Static _ <i>NA</i> Diameter _6 <i>in.</i>	8/13/2022 for VOC analysis by method 8260D from depths of 7
							Type/Size PVC/10 Slot in.	feet and 16 feet below surface
Casing: Di	a <u>2 in.</u>		Length	5 ft.			Type _ <i>PVC</i>	grade.
Fill Materia	al Silica H	olliston S	Sand 25			_ Ri	g/Core	
Drill Co.	Geosearch			Meth	nod Ho	llow S	Stem Auger 2"	
Driller _K	en Byland		Log By	CK			Date <u>8/13/22</u> Permit # <u>NA</u>	
Checked E	_{By} <u>RC</u>				License	e No.		
Depth (ft.)	Well	(mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structor) Geologic Descriptions are Based or	•
- 0 -	19 19 19 19 19 19 19 19 19 19 19 19 19 1						Concrete	
- 2 - - 2 -								
- 4 -				D				
- 6 - - 8 -		29.3	50%	<u> </u>		SM	Brown, dry, coarse SILT/SAND, some gradense, spoon refusal at 3"	ivel and clay, very
- 10 -		142.8	50%			SM	Olive gray, dry, SILT/SAND, very dense,	spoon refusal at 3"
- 2 – 12 –				Т				
78 - 14 -		261.2	50%			SM	Olive gray, moist, SILT/SAND, very dense	e, spoon refusal at 3"
3			30 70					
18 -							End of exploration 17 feet below surface (grade
20 -								
22 — - 22 —								
24 —								

Monitoring Well **P-4R**

	/arian Beve					_ 0	wner <u>Varian Medical Systems, Inc.</u>	COMMENTS P-4 Replacement well
	Sonning R						Proj. No. <u>631010758</u>	1 -4 Replacement Well
							North East	
							Static NA Diameter 6 in.	
							Type/Size	
							Type <i>PVC</i>	
							g/Core Hollow Stem Auger	
	TDS							
							Date _ 4/20/21 Permit # _ <i>NA</i>	
Checked E	Зу				License	e No.		
	по		ار ت	r x		SS.	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	·	
	No.	ਰ ਕੁ	Sam 6 Re	3low Rec	Gra	SCS	(Color, Texture, Structu	
			110			n	Geologic Descriptions are Based or	n the USCS.
├ 0 ⊣		0.0		-				
	[,',A]							
† †								
							Orange/brown, coarse SAND and fine GR	RAVEL
├ 2 -							,	
						SW		
<u> </u>								
├ 4 -								
+ +				5	******			
				3			Medium grey, SILT and fine GRAVEL, so	me clay
├ 6 ⊣		0.0	75%	9		SP		•
				11				
† †				Ч	345 S S S S S S S S S S S S S S S S S S S			
8								
7/0								
₅├ 10 ┤				3 √				
<u> </u>		0.0	 /	3 🛚		ML	Medium grey, SILT and CLAY	
3 - -			55%	4			3 3.	
	F. (13.4			3				
[12 -							Bottom of exploration at 12 feet below gro	ound surface
<u>~</u>								
NO NO								
[
 8								
<u>-</u>								
[

Rev: 8/9/13 2021-SONNING.GPJ IT CORP.GDT 5/26/21

CB&I LOGO

Drilling Log

Monitoring Well

P-5R

Page: 1 of 1 Owner Varian Medical Systems, Inc. Project Varian Beverly COMMENTS P-5 Replacement well Location Sonning Road, Beverly, MA ____ Proj. No. <u>63101075</u>8 15.0 ft. Surface Elev. NA Total Hole Depth North ___ $\sqrt{2}$ 7.8 ft. Top of Casing NA Water Level Initial _ Static NA ____ Diameter <u>6 in.</u> Type/Size PVC/0.030 Slot in. Length 10 ft. Screen: Dia 2 in. Type PVC Length 5ft. Casing: Dia 2 in. Rig/Core Hollow Stem Auger Fill Material Sand, bentonite Hollow Stem Auger Drill Co. TDS Method ____ Log By *Ryan Fichman* Date <u>4/20/21</u> Driller Darwin __ Permit # _*NA*_ Checked By _ License No. Blow Count Recovery Well Completion JSCS Class. Description Graphic Log PID (ppm) Depth (ft.) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. 0.0 Medium brown, coarse SAND and fine GRAVEL 2 SW Medium brown, coarse SAND, some silt, little fine gravel SP 6 0.0 40% 5 (lower section partially saturated, water table between 7.5 - 8 feet) 10 Light brown, fine SAND, some silt SM 0.0 55% 12 14 Bottom of exploration at 15 feet below ground surface 16

Monitoring Well |

P-9RPage: 1 of 1

Location Surface E Top of Ca Screen: D Casing: D Fill Materi Drill Co. Driller S Checked	28 Hill Street NA Ising NA Ising 2 in. Isina 2 in. Isina Sand and Geosearch Steve By R. Cad	nd bente	Total Hole Water Lev Length Length conite Log By	e Deptivel Inition 2.5 ft. Method	h 5.5 ial Q	2.5 ft. 2.5 ft. River oproblem No.	Varian Medical Systems, Inc. Proj. No115974 North East	Geologic information collected from hand digging for (0 - 5 ft. bsg).
Depth (ft.)	Well	OIA (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	(Color, Texture, Struc Geologic Descriptions are Based	
- 0 - - 2 - - 2 - - 4 -						GW GW	Asphalt Brown, medium SAND and cobble Grey, medium SAND and gravel Cobble Grey, medium to fine SAND and gravel Grey CLAY	
SHAW_COMMERCIAL Rev: 6/12/02 28HILL2005.GPJ IT_CORP.GDT							Refusal at possible bedrock. End of exploration at 5.5 feet below surfa WELL CONSTRUCTION 5.5' - 2': 2" Sch. 40 PVC Screen 2' - Grade: 2" Sch. 40 PVC Casing 5.5' - 1.5': Sand 1.5' - 1': Bentonite Completed with roadbox at grade.	ce grade.

Monitoring Well **P-11**

P-11RPage: 1 of 1

Project _	Varian Beve	erly				_ 0	wner Varian Medical Systems, Inc.	COMMENTS
			race, Bev	erly, N	1assachu	ısetts	Proj. No. <u>132653</u>	P-11 Replacement well
							North East	
							Static NA Diameter	
							Type/Size PVC/0.030 Slot in.	
							Type _ <i>PVC</i>	
	al Native		3.			R	g/Core Hollow Stem Auger	
				Metl	hod Ho	llow .	Stem Auger	
							Date10/23/08 Permit #NA	
	, <u> </u>							
	tion		Sample ID % Recovery	Blow Count Recovery	. <u>u</u>	ass.	Description	
Depth (ft.)	Well nplet	PID (ppm)	nple eco/	v Co	Graphic Log	SCI	(Color, Texture, Structu	rol
	Well Completion	9	Sar R	Blov	Ğ	USCS Class.	Geologic Descriptions are Based or	
						_	Coologie Decemptions are Dasca of	1 110 0000.
├ 0 ⊣								
					N /			
├ ┤					\			
					\			
├ 2 -					$ \setminus / $		No samples taken.	
					$ \setminus / $		The samples tanding	
+ +					$ \setminus $			
					$ \setminus $			
├ 4 -					$ \setminus $			
					I V I			
+ -					I (I			
					I /\ I			
⊢ 6 −					/\			
					$ \ / \ $			
					$\parallel / \parallel \parallel$			
					$\parallel / \parallel \parallel \parallel$			
_L 8 _								
) 								
<u>}</u>								
<u>.</u>								
) - 10 -								
ے = '							Designation in the state of the	
<u> </u>							Replacement well set at 10 feet below surfa	ace grade.
2								
รู รู - 12 -								
ğ[
71/9								
) - 14 -								
<u> </u>								
¥[]								
ا ا								
<u></u> }⊢ 16 ⊣								

16

Drilling Log

Monitoring Well P-13R Page: 1 of 1 Project Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS Location Sonning Road, Beverly, MA _____ Proj. No. <u>631010758</u> P-13 Replacement well 14.0 ft. Surface Elev. NA ___ Total Hole Depth North ____ No split spoon samples taken due to insufficient overhead room to extend mast. Top of Casing NA Water Level Initial 5.0 ft. Static NA Diameter 6 in. Type/Size PVC/0.030 Slot in. _ Length _10 ft. Screen: Dia 2 in. Type PVC Casing: Dia 2 in. ____ Length _4 ft. Rig/Core Hollow Stem Auger Fill Material Sand, bentonite Method Hollow Stem Auger Drill Co. TDS _____ Log By *Ryan Fichman* Driller Darwin ____ Date <u>4/19/21</u> Permit # <u>NA</u> Checked By _ License No. _ Blow Count Recovery Well Completion Description Graphic Log PID (ppm) Depth (ft.) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. 2 6 SW Orange-brown, medium SAND, some fine gravel 8 5/26/21 10 Rev: 8/9/13 2021-SONNING.GPJ IT CORP.GDT 12 14 Bottom of exploration at 14 feet below ground surface

Monitoring Well |

P-14RPage: 1 of 1

Project Varian	n Bever	ly				_ Ov	vner <i>Varian Medical Systems, Inc.</i>	COMMENTS
Location Sonn			erly, MA				Proj. No. <u>631010758</u>	P-14 Replacement well
						0 ft.	North East	
Top of Casing	NA		Water Le	evel In	itial 🔽	6.0 ft.	Static NA Diameter 6 in.	
							Type/Size PVC/0.030 Slot in.	
							Type PVC	
							g/Core _Hollow Stem Auger	
Drill Co. TDS								
							Date <u>4/19/21</u> Permit # <u>NA</u>	
Checked By	1				License	e No.		
	<u> </u>		اج ا	ıt 、		SS.	Description	
Depth (ft.)	Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description	
De W	: du	P qq	Rec	Jow Recc	Gra L	SCS	(Color, Texture, Structu	re)
	0		W %	- 8		SD	Geologic Descriptions are Based on	the USCS.
0	^^	0.0						
[3.3]							Dark brown, fine SAND, some silt, little co	parse gravel
├ 2 -								
						SP		
F 4 1								
L 4 - L	_							
	\exists							
	3 1							
	\exists			9 \/				
	34	0.0		23		sw	Medium grey/brown, coarse SAND, some	coarse gravel, orange
	\exists	0.0	60%	12		300	brown coarse sand stringer	
	∄			14				
	∄: (
	∄							
├ 8 ┤ [34							
	∄							
	\exists							
	∄				ل م یا			
	∄			11	1071		0 " " 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N.D.
		0.0	2501	12	ЙŅ	GW	Grey/brown, fine GRAVEL and coarse SA	טא
	= 1		35%	15	M 이			
12				14	Key			
'4	= 1							
	∄ 1							
	∄							
	∄							
							Bottom of exploration at 14 feet below gro	und surface
<u>}</u>							,	
 								
 16								

Monitoring Well F

P-19A

Page: 1 of 1 Project Varian Beverly ____ Owner __Varian Medical Systems, Inc. COMMENTS Well located on Hill Street Location 150 Sohier Road, Beverly, MA _____ Proj. No. <u>832837</u> Soil classifications were generated from grab samples Surface Elev. NA North ___ collected from the auger flights Top of Casing NA Water Level Initial NA Static NA Diameter 4 in. unless otherwise stated. ___ Type/Size _PVC/.010 in. _ Length _7 ft. Screen: Dia 2 in. Type PVC Casing: Dia 2 in. _____ Length 3.5 ft. _ Rig/Core _CME Fill Material Sand, bentonite, native Drill Co. <u>Dragin Drilling Inc.</u> Method <u>Hollow Stem Auger</u> ___ Log By __Dave Wattles Driller Todd Collins ____ Date _1/9/02 ____ Permit # _NA Checked By S. Metivier License No. _ Blow Count Recovery Well Completion JSCS Class. Description Graphic Log Depth (ft.) PID (ppm) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Dark brown, fine-medium SAND with gravel 2 0 1.1 0 0 6 Light brown fine SAND 0.0 SP 8 Dark brown fine SAND 0.0 SP 10 12 Bottom of Exploration at 11 feet bsg Well Construction: 14 Screen from 10.5 to 3.5 feet; casing from 3.5 feet to grade. WELLLOG2.GPJ IT_CORP.GDT Completed with flush roadbox set in concrete. Sand Pack/ Seal 16 Sand pack from 10.5 to 2 feet; bentonite from 2 feet to grade. 18 Rev: 6/12/02 20 22 COMMERCIAL 24

SCDS2005.GPJ IT_CORP.GDT 11/3/09

Rev: 6/12/02

Drilling Log

Monitoring Well

P-20R

Page: 1 of 1 Owner Varian Medical Systems, Inc. Project Varian Beverly COMMENTS Location SCDS Fields, Beverly, Massachusetts _____ Proj. No. <u>115974</u> Split spoon sample collected at 0-10 feet below surface grade ____ Total Hole Depth <u>12.0 ft.</u> North ____ Surface Elev. NA and sent to laboratory for Top of Casing NA Water Level Initial 2.5 ft. Static NA Diameter analysis. _____Type/Size _______PVC/0.010 in. _ Length _10 ft. Screen: Dia 2 in. _ Type _PVC Casing: Dia 2 in. _____ Length <u>1.75 ft.</u> _ Rig/Core _Geoprobe Fill Material Grout, #3 Sand Drill Co. Geosearch Method Geoprobe _____ Log By _*J. Parshall* Driller Steve ____ Date <u>7/20/05</u> Permit # <u>NA</u> Checked By R. Cadorette License No. _ Blow Count Recovery Well Completion Description Graphic Log Depth (ft.) PID (ppm) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Grass Orange brown, medium to fine SAND 2 50% 6 Gray brown, fine SAND 100% 8 SP 10 12 End of exploration at 13 feet below surface grade. 14 Well set at 12 feet below surface grade. WELL CONSTRUCTION 16 12' - 2': 2" PVC Screen 2' - 3": Sched. 40 PVC Casing 12' - 1': Sand 1' - 8": Bentonite 18 Completed with roadbox below surface grade. 20

Monitoring Well

P-30

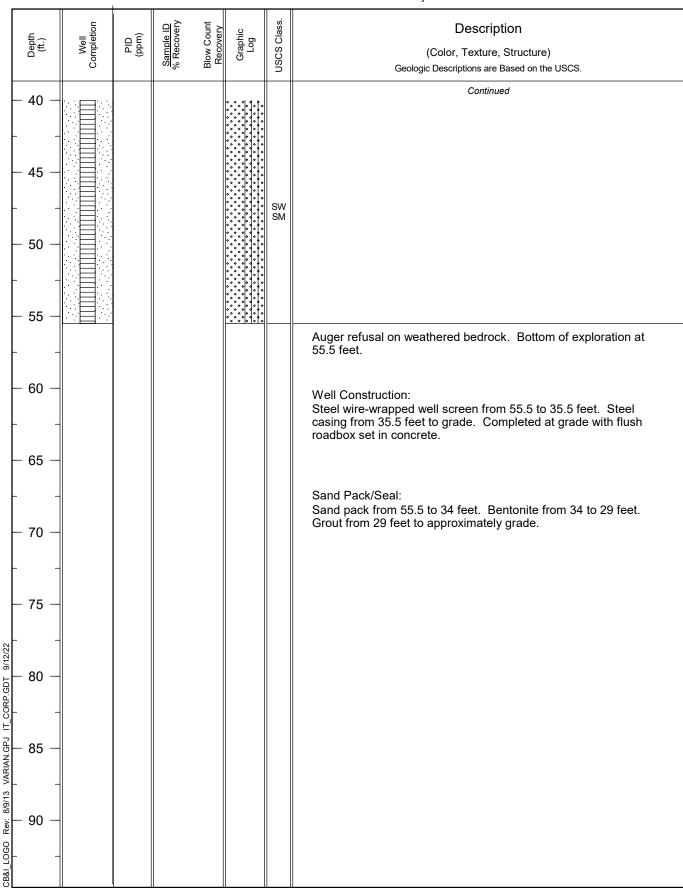
$\Delta \Gamma \Gamma$	1141						· ·	Page: 1 of 1
Proiect _	Varian Beve	erly				_ 0\	wnerVarian Medical Systems, Inc.	COMMENTS
	Sonning R		verly, MA			_ •	Proj. No. <u>631010758</u>	
					oth 14.	0 ft.	North East	
							Static NA Diameter 6 in.	
							Type/Size PVC/0.030 Slot in.	
							Type PVC	
							g/Core Hollow Stem Auger	
	TDS							
Driller _D	arwin		Log By	Ryar	n Fichmar	1	Date <u>4/19/21</u> Permit # <u>NA</u>	
Checked E	Зу				License	e No.		
	_		>			ν _ο		
₽	Well Completion	_ <u>_</u> €	Sample ID % Recovery	Blow Count Recovery	hic	USCS Class.	Description	
Depth (ft.)	We	PID (ppm)	Jamp	ow C	Graphic Log	085	(Color, Texture, Struct	ure)
	ပိ		S %	용호)SN	Geologic Descriptions are Based o	
⊢ 0 −		0.0		_				
	, ' A ' A							
-								
					******		M 15 1 5 CANID 1511	
<u> </u>					*****		Medium brown, fine SAND, litle coarse gr	avel
						SW		
						SVV		
-								
├ 4 -								
-					*****			
				14				
⊢ 6 −		0.0		16 /\		SP	Medium brown, coarse to fine SAND, son	ne coarse gravel
		0.0	50%	15		"		
<u>¥</u>				17				
				_				
├ 8 −								
<u>-</u> -								
					ra ta katara			
				10				
		0.0		11		SP	Medium SAND and some gravel, Orange	-brown fine sand
=		0.0	25%	12		35	stringer, coarse sand and fine gravel belo	W
				10				
<u> </u> 12 –					(1441 - 1441) 1441 - 1441			
}} -								
303								
- 14 —								
5								
							Bottom of exploration at 14 feet below gro	ound surface
3								
<u>-</u> 16 −								

Monitoring Well **P-31**

							rage. I of I
Project Varian Beve	rly				_ Ow	ner Varian Medical Systems, Inc.	COMMENTS
Location Sonning R	oad, Bei	verly, MA				Proj. No. <u>631010758</u>	
						North East	
Top of Casing NA		Water I	ovol In	itial $\overline{\nabla}$	3.0 ft.	Static NA Diameter 6 in.	
Screen: Dia 2 in.							
Casing: Dia 2 in.							
						/Core Hollow Stem Auger	
Drill Co. TDS							
Driller <i>Darwin</i>		Log By	Ryar	r Fichmar	n	Date <u>4/20/21</u> Permit # <u>NA</u>	
Checked By				License	e No.		
Depth (ft.) Well	_	Sample ID % Recovery	Blow Count Recovery	. <u>o</u>	USCS Class.	Description	
Depth (ft.)	PID (mdd)	ll ple	ο × ο × ο × ο × ο × ο × ο × ο × ο × ο ×	Graphic Log	S	(Color, Texture, Struct	uro)
C C C C	_ =	Sar % R	B _o	Ö	SC	Geologic Descriptions are Based of	
						Geologic Descriptions are based of	in the USCS.
	0.0						
						Orange/brown, fine SAND	
├ 2 - 						Grange/brown, fine Grave	
					sw		
			, z	*****			
			3			Danier for a CAND and all	
⊢ 6 ⊣ ≡	0.0		3		SP	Brown/grey, fine SAND, some silt and cla	ny
	0.0	5%	2		"		
			3				
├ 8 - 							
					$\ \ \ $		
					$\ \ \ $		
					$\ \ \ $		
					$\ \ \ $		
<u>-</u> 10 →			4 🛛		$\ \ \ $		
	0.0		4	$ \ \ \ \ $	ML	Light grey, SILT and CLAY	
가 <u>네</u> /===	0.0	25%			''	3 3 7,	
			6	ЩЩ	$\parallel \parallel \parallel$		
[- 12 —			5		$\ \ \ $	B. (1) (1) (1) (1)	
· -					$\ \ \ $	Bottom of exploration at 11.5 feet below of	ground surface
					$\ \ \ $		
2					$\ \ \ $		
					$\ \ \ $		
<u>2</u>					$\ \ \ $		
ő					$\ \ \ $		
					$\ \ \ $		
g					$\ \ \ $		
					$\ \ \ $		
[

APPENDIX B SOIL BORING/WELL LOGS (POST 2000) DEEP OVERBURDEN MONITORING WELLS

Injection Well AP-2
Page: 1 of 2


Р	Project _	Varian/Beve	rly			_ Ov	wner Varian Medical Systems, Inc.	COMMENTS
							Proj. No806395	
							North East	
							Static NA Diameter 6 in.	
							Type/Size Steel wire wrap/0.020 in.	
							Type Sch. 40 Steel	
							g/Core CME 450	
							25 feet, then Drive & Wash to BOE	
							Date _7/12/00 Permit # _NA	
				0 ,				
Г								
	ح	Well	<u> </u>	Sample ID % Recovery Blow Count	ic ic	USCS Class.	Description	
	Depth (ft.)	Mell Well	PID (ppm)	w Cc	Graphic Log	SS C	(Color, Texture, Structu	ıre)
	_	S S		Sa % Fa	<u>م</u> الغ	DSN	Geologic Descriptions are Based or	
┝								
							Surface: Sod	
十	- 0 -						Tan, coarse to fine SAND with some SILT	and occasional
							boulders. (FILL)	
┢	-	A A A						
		Δ Δ Δ Δ Δ						
╟	- 5 -							
		A 4 ^Δ						
╌	-							
		A 4 A 4						
-	- 10 - -	A D D					Brown to gray coarse SAND and fine GRA SILT. Occassional boulder. (TILL)	AVEL with some fine
							SILT: Occassional boulder. (TILL)	
		A A A A A A				SW		
L	- 15	D D						
	10	A A						
L								
		4 4 A A A						
	- 20 -	4 A A A A						
	- 20 -	A A					Gray to brown, fine to coarse SAND and S	SILT, some gravel.
		Δ Δ					(TILL)	
ļ	-							
2	0.5	\[\(\alpha \) \[\alpha \]						
/12/2	- 25 -							
يَّا ا							 	
P.G.	-	Δ Δ					Gray to brown coarse to medium SAND at GRAVEL.	nd fine to coarse
S		A,47			000		GIVIVEL.	
╘╟	- 30 -				Ø D			
GPJ					0 (
	-				. O .	GW		
¥					0			
9/13	- 35 -				0 (
.× 8/					. O .			
- R	-							
CB&I_LOGO Rev: 8/9/13 VARIAN.GPJ IT_CORP.GDT 9/12/22						SW	Gray to brown, fine to coarse SAND and S (TILL)	SILT, some gravel.
<u>~</u> -	- 40 -				\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\		, ,	
BL							Continued Next Page	

Injection Well AP

Page: 2 of 2

Project	Varian/Beverly	Owner	Varian Medical Systems, Inc.
Location	150 Sohier Road, Beverly, Massachusetts		Proj. No. <u>806395</u>

SCDS2004.GPJ IT_CORP.GDT 11/3/09

Rev: 6/12/02

COMMERCIAL

Drilling Log

Monitoring Well

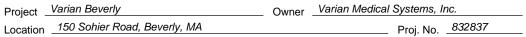
AP-3-DO

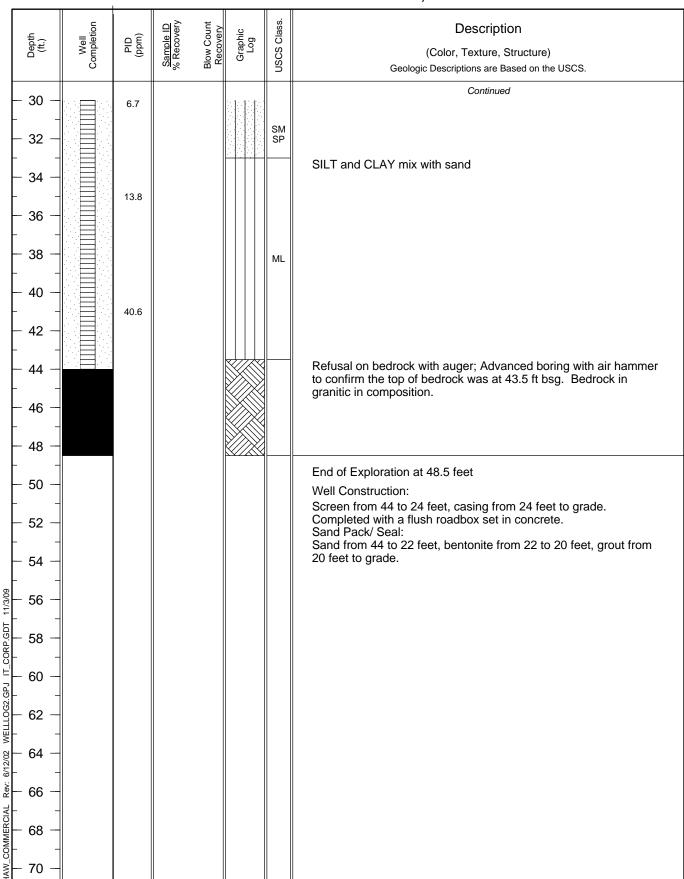
Page: 1 of 1 COMMENTS Project Varian Beverly Owner Varian Medical Systems, Inc. Soccer field Location SCDS Fields, Beverly, Massachusetts _____ Proj. No. <u>108939</u> ppm = parts per million 45.0 ft. Surface Elev. NA North ___ Total Hole Depth Water Level Initial ______4.0 ft. ND = Non-detect, below PID Top of Casing NA Static NA ____ Diameter _ limit of 1 ppm Type/Size PVC/0.010 in. Length 20 ft. Screen: Dia 2 in. Type PVC Casing: Dia 2 in. Length 25 ft. Rig/Core Truck mounted S9 Geoprobe Fill Material Sand and bentonite Method Direct Push Drill Co. Geosearch, Inc. Driller P. Rodney ___ Log By J. Perrry ___ Date <u>8/11/04</u> Permit # <u>NA</u> Checked By R. Cadorette License No. Blow Count Recovery Well Completion JSCS Class. Description Graphic Log Depth (ft.) PID (ppm) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Top Soil 5 ND SW Light brown, well graded SAND and gravelly sand. 10 15 ND SM Yellowish orange, SILTY SAND. 20 25 ND SM Olive grey, SILTY SAND. 30 35 S-4 100% ND SM Olive grey, SILTY SAND. 40 ND SM Dark grey, SILTY SAND. 45 End of exploration at 45 feet below surface grade. 50 Well Construction: Screen 25 to 45 feet; casing 25 feet to grade; completed at grade with flush roadbox 55 Sandpack/Seal: Sand 22 to 45 feet; bentonite 16 to 22 feet; sand 16 to 0.5 feet; cement 0.5 feet to grade 60

Monitoring Well AP-4-DO Page: 1 of 1

	Varian Beve					_ 0\	wner Varian Medical Systems, Inc. COMMENTS
	SCDS Fie						Proj. No. 108939 ppm= parts per million
							North East
Top of Ca	sing <i>NA</i>		Water Le	evel In	itial $rac{ extstyle ex$	8.0 ft	t Static _NA Diameter
Screen: D	ia <i>_2 in.</i>		Length	20 ft.	•		Type/Size _ <i>PVC/0.010 in.</i>
							Type
							ig/Core Truck mounted S9 Geoprobe
	Geosearch						· · · · · · · · · · · · · · · · · · ·
							Date _8/11/04 Permit # _NA
			0 ,				Date Territ #
Checked	Jy		П		Licens	e No.	
	u c		미층	έs		SS.	Description
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	·
ا م	S mo	ш _е	Sam 6 Re	Slow	25	SCS	(Color, Texture, Structure)
			***	ш		Ď	Geologic Descriptions are Based on the USCS.
L 0 -							Grass
<u> </u>							
⊢ 5 −				Н			
		4.0	S-1	- 1/1			Light brown, SILTY SAND.
<u> </u>		1.9	<u>S-1</u> 100%	/		SM	(3" thick, black layer at 8 feet).
 10 –				4			(c,,,,,
- 15 -				П			
-		2.7	S-2			SP	Light grey, poorly graded SAND, little silt.
- 20 -				٦			
-							
_ 25 _							
20							
-		1.7	S-3			sw	Light brown, well graded SAND and gravelly sand, little silt.
- 30 -				Ц	******		
SCDS2004.GPJ II_CORP.GDT 11/3/09							
卢 35 -				Н		\parallel	
P.G		2.1	S-4			sw	Light brown well graded SAND and gravelly condititle silt
0							Light brown, well graded SAND and gravelly sand, little silt.
<u></u>				H	*****		
		2.6	S-5			$\ _{sw}\ $	Light brown, well graded SAND, some medium to fine sand.
2007							Light brown, won graded of the content to fine daria.
²⁵ − 45 −				Ч	******		Find of combination at 45 feet below conference and
							End of exploration at 45 feet below surface grade.
Rev: 6/12/02							
ω ₁ 30 −							Well Construction:
							Screen 20 to 45 feet; casing 20 feet to grade; completed at grade
팅 - 55 -							with flush roadbox
MER							Sandpack/Seal: Sand 45 to 22 feet; bentonite 22 to 16 feet; sand 16 to 0.5 feet;
N							Cement 0.5 feet to grade
SHAW_COMMERCIAL							
ŤS L							

Monitoring Well AP-6-DO Page: 1 of 2


Location Surface E Top of Ca Screen: D Casing: D Fill Materia Drill Co. Driller	lev. NA sing NA ia 2 in. ia 2 in. al Sand, b Paratt Wol Rick Navatka	n Road,	Beverly, MA Total Hole Water Leve Length _2 Length _2 e, native Log By	Depthel Initia	al <u>48.</u> NA d <u>Ho</u> Wattles	5 ft. Rig.	Proj. No	
_ 0 -	ŏ			ā ~	٠٠٠ مرا. ١	Sn	Geologic Descriptions are Based o	
- 2 - - 2 - - 4 - - 6 - 		0.0				SM GP	Brown, silty fine SAND with rounded grave	el
- 8 - - 10 - - 12 -		0.4				GM GP	1-2 inch GRAVEL with brown, silty fine sale2 inch subangular and rounded GRAVEL1 inch GRAVEL with coarse sand	nd
- 14 16 18 18		0.0				SP SM GP	Brown, coarse-fine SAND, becoming mois	
6412/02 WELLLOG2.GPJ IT_CORP.GDT		908					Boulder No cuttings	
SHAW_COMMERCIAL Rev. 6/11		10.9				SM SP	Saturated, running silty fine SAND Continued Next Page	



Monitoring Well

AP-6-DO

Page: 2 of 2

Shaw E	- & I, Inc.						wontoning vvei	Page: 1 of 1
Proiect _	Varian Beve	erly				_ Ov	nerVarian Medical Systems, Inc.	COMMENTS
	150 Sohie	r Road,	Beverly,	Massa	chusetts		Proj. No. <u>844</u> 877	Samples not collected.
							North East	
	sing <i>NA</i>							
•	•						Type/Size _ <i>PVC/0.010 in.</i>	
			_				Type _ <i>NA</i>	
	Zebra Drilli						g/Core <u>Geoprobe 6600/Core</u> e	
							Date <u>8/7/03</u> Permit # <u>NA</u>	
			. >			(i)		
_ ₽	Well	o Îe	Sample ID % Recovery	Blow Count Recovery	pic B	USCS Class.	Description	
Depth (ft.)	We	PID (ppm)	Reco	ow C	Graphic Log	SS	(Color, Texture, Structu	re)
	ပိ		% ~	贸조		NS	Geologic Descriptions are Based or	the USCS.
L 0 -								
-								
							No samples collected	
├ 5 -								
-								
1 40								
10 -								
L .								
- 15 -								
-								
20 -								
<u> </u>								
<u> </u>								
-								
3						$\ \ \ $		
- 30 -						$\ \ \ $		
<u>[</u>								
-								
 - 35 -								
35 -								
<u> </u>						$\ \ \ $		
						$\ \ \ $		
<u>-</u> 40 −						$\ \ \ $		
							End of exploration at 40 feet below surface	grade.
-	∥							
3								

Monitoring Well AF

AP9-DO Page: 1 of 1

Project _	Project Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS										
Location	150 Sohie	r Road,	Beverly,	Massa	chusetts		Proj. No. <u>844</u> 877	Samples not collected.			
							North East				
Top of Ca	sing <i>NA</i>		Water L	evel In	itial <i>NA</i>	١	Static NA Diameter 2 in.				
							Type/Size _ <i>PVC/0.010 in.</i>				
							Type _ <i>NA</i>				
Fill Materi	ial <u>Sand, E</u>	Bentonite	Э			_ Ri	g/Core Geoprobe 6600/Core				
Drill Co.	Zebra Drilli	ing		Meth	nod Ge	oprol	pe				
Driller _E	Evan Moraiti	's	Log By	_ <i>D.</i> W	/alker		Date <u>8/7/03</u> Permit # <u>NA</u>				
Checked	Ву				License	e No.					
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structor) Geologic Descriptions are Based of				
			0.			_ ا	Geologic Descriptions are based of				
- 0 -	- VA_ - VA										
- 5 -							No samples collected				
- 10 -											
- 15 -											
_ 20 -											
- 25 -											
							Tight drilling at 28 feet below surface grad	е			
30 -											
35 -											
— 40 —							End of exploration at 40 feet below surface	e grade.			
- 45 -	-										

Monitoring Well

AP-12-DOPage: 1 of 2

	oject Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS cation 150 Sohier Road, Beverly, MA Proj. No. 832837 COMMENTS Soil classifications were generated from grab samples												
Location	150 Sohie	r Road,	Beverly,	MA			Proj. No. <u>832837</u> generated from gr	ab samples					
Surface E	lev. NA		Total H	ole Der	oth <u>58</u> .		North East Collected from the unless otherwise	auger flights					
							Static NA Diameter 4 in.	, accur					
							Type/Size _ <i>PVC/.010 in.</i>						
							Type _ <i>PVC</i>						
_			_				tig/Core CME						
							Stem Auger						
							ivier Date <u>1/7/02</u> Permit # <u>NA</u>						
			• .										
	Well		Sample ID % Recovery	Blow Count Recovery	.≌	USCS Class.	Description						
Depth (ft.)	Well	PID (ppm)	nple eco	ν Ο 8	Graphic Log	SCI	(Color, Texture, Structure)						
	Con		Sar R	Blo Re	Ō		Geologic Descriptions are Based on the USCS.						
							Coologie Boosilphone and Bacoa on the Cool.						
- 0 -													
-							Brown fine-medium SAND with gravel and cobbles						
_ 2 -													
					0 2								
L 4 -		0.0			p \								
"		0.0											
					0 7								
6 -						sw							
-													
8 -		0.0			6 4								
-													
- 10 -													
-					b 7								
<u> </u>		1.3					- Davidson						
ļ							Boulder						
<u> </u>					20								
[']							Brown fine-medium SAND with gravel and cobbles						
g 40													
Rev: 6/12/02 WELLLOG2:GPJ IT_CORP.GDT 11/3/09		0.6			0 7								
<u></u>													
[18 -													
Ğ <u></u> -					00 7	sw							
≒⊢ 20 −				28 ∏	0								
E			<u>SS-1</u> 50%	28 33 65 72									
წ ⊝ – 22 –			3370	72	0 0								
킑													
≥ ⊠— 24 —													
20/21		0.0					Brown, wet, medium density CLAY, some fine sand and si	lt, poorly					
9 - 9		3.6				CL	graded						
- 등							Large COBBLE						
월 28 -							Brown, wet, loose fine SAND and silt, poorly graded , too v	wet for					
₩ - -						SM	soil vapor headspace sample						
SHAW_COMMERCIAL - 28 30													
돐							Continued Next Page						



Monitoring Well

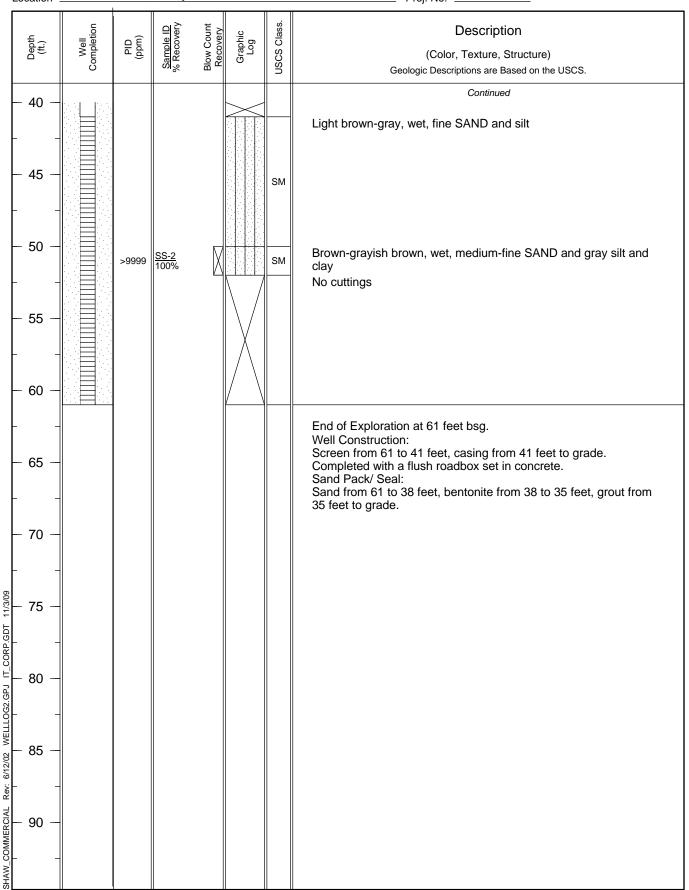
AP-12-DO

Page: 2 of 2

Monitoring Well

AP-13-DO Page: 1 of 2


Location	Total Hole Dep Water Level In Length 20 ft Length 41 ft e, grout Metl Log By Dave	oth 61.0 ft. NA Rig Rig Mod Hollow Si Wattles License No.		ure)
SHAW_COMMERCIAL Rev. 6/12/02 WELLLOGZ.GPJ IT_CORP.GDT 11/3/09 - 10 - 15 - 15 - 15 - 15 - 15 - 15 - 15	<u>SS-1</u> 100%	SM GM	Brown, silty fine SAND with gravel and bo excavated No cuttings Brown-orange, wet, medium-fine SAND No cuttings	



Monitoring Well

AP-13-DO

Page: 2 of 2

Monitoring Well AP-19
Page: 1 of 1

Project Location .	COMMENTS Soil classifications were generated from grab samples							
							North East	collected from the auger flights unless otherwise stated.
							Static NA Diameter 4 in.	
							Type/Size <i>PVC/.010 in.</i>	
Casing: D	ia <u>2 in.</u>		Length	_25 ft.			Type _ <i>PVC</i>	
							/Core _Ingersol Rand	
	Paratt Wol							
Driller _R	Rick Navatka	<u>a</u>	Log By	Dave	e Wattles	3	Date <u>5/13/02</u> Permit # <u>NA</u>	
Checked E	By S. Met	ivier			Licens	e No		
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Struct	ura)
	Con	_ <u>u</u>	San % Re	Blov	.p_	USC	Geologic Descriptions are Based of	
- 0 -								
						SM	Dark brown, dry, silty fine SAND	
-							Fine GRAVEL and coarse sand	
						SP GP		
- 5 -		0.0			$^{\circ}$ $^{\circ}$ $^{\circ}$			
						ML	Light brown fine sandy SILT, with fine rou	nded gravel
-						GP	C CAND WE WE	1.6
							Light brown, coarse-fine SAND with silt ar	nd fine rounded gravel
<u></u> 10 −		0.0						
					0 7	CM		
h -						SM GP		
					0			
- 15		0.0						
					۵			
h -						SM	Moist, gray silty fine SAND	
							Boulder	
_ 20 -		0.0			, 0 (SP	Dark gray, fine SAND with fine gravel and	rock fragments
					· 0°	GP	-	· ·
-					H		Boulder	
						$\parallel \parallel$	25-27' split spoon, light brown fine SAND	
25 –		0.0	SS-1	X			_0 op op,g 2 @/2	
-		0.0	<u>SS-1</u> 50%			SP		
-								
30 -							End of Exploration at 30 feet bsg.	
4							Well Construction:	
							Screen from 30 to 25 feet, casing from 25 Completed with flush roadbox set in conci	reet to grade.
							Sand Pack/Seal:	
35 —							Sand Pack from 30 to 23 feet, bentonite 2	3 to 21 feet, grout from
							21 feet to grade.	
3 40								
[⊢ 40 −			II		1	1 1		

Monitoring Well AP-20

	oject Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS cation 150 Sohier Road, Beverly, MA Proj. No. 832837 Calion 150 Sohier Road, Beverly, MA											
Location _	150 Sohie	r Road,	Beverly,	MA			Proj. No. <u>832837</u>	generated from grab samples				
Surface Ele	ev. <u>NA</u>		Total Ho	le Dep	oth _20.	.0 ft.	North East	collected from the auger flights unless otherwise stated.				
							Static NA Diameter 4 in.					
Screen: Dia	a <u>2 in.</u>		Length	5 ft.			Type/Size					
Casing: Dia	2 in.		Length	_15 ft.			Type _ <i>PVC</i>					
Fill Materia												
Drill Co.	Paratt Wol	ff		Meth	nod Ho	llow S	Stem Auger					
Driller Ri	ck Navatka	3	Log By	Dave	e Wattles	3	Date _5/14/02 Permit # _ <i>NA</i>					
	-											
	Well Completion	(Sample ID % Recovery	Blow Count Recovery	<u>ي</u> .	Class.	Description					
Depth (ft.)	Well	PID (ppm)	nple eco	ν Ο 0 0	Graphic Log	SCI	(Color, Texture, Structu	ro)				
"	Co)	Sar R R	Blo	Ō	nscs	Geologic Descriptions are Based or	·				
							Coolingto Decomplicate Decomp					
├ 0 →					Тыл		Light brown silty fine SAND with little round	led gravel				
F -							Light brown only line of the with little rounc	iou gravor				
⊢ 2 −												
L 4					0 7							
L 4 -						SM						
		0.0										
		0.0										
F 6												
					000							
8							light brown, moist, medium-fine SAND with	rounded gravel				
F -												
 10 −		0.0										
	999 999					SP						
- 12 -						SP						
-												
L 14 -												
					Q.,;;,,,							
16		0.0	<u>SS-1</u> 100%	М			Light brown fine SAND with coarse-mediur inclusions and fine sandy silt with inclusion	n sand and fine gravel				
		0.0	100%	Ν			inclusions and fine sandy siit with inclusion	5				
						SP						
18 —												
\$ †					۲ٔ اُوا	SM	gray, silty fine SAND with fine gravel and re	ock fragments				
} 20 →	1	0.0						-				
<u>:</u> }							End of Exploration at 20 feet bsg.					
22 -							Well Construction:					
∯							Screen from 20 to 15 feet, casing 15 feet to	grade. Completed with				
<u> </u> 24							flush roadbox set in conrete.	J - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
<u> </u>							Sand Pack/Seal	R to 11 feet grout 11				
26 -							Sand Pack from 20 to 13 feet, bentonite 13 feet to grade.	o to 11 leet, grout 11				
├ 28 -												
├ 30 ┤												

Monitoring Well **AP-21**

	roject Varian Beverly Owner Varian Medical Systems, Inc. Ocation 150 Sohier Road, Beverly, MA Proj. No. 832837 COMMENTS Soil classifications were generated from grab samples collected from the aurer flights													
					oth 30.	.0 ft.	North East	collected from the auger flights unless otherwise stated.						
							Static NA Diameter 4 in.	uniess otherwise stated.						
							Type/Size PVC/.010 in.							
							Type PVC							
							g/Core Ingersol Rand							
Drill Co.														
Driller _R														
Checked E														
Checked														
<u> </u>	Well Completion		Sample ID % Recovery	Blow Count Recovery	ان _ _ ان	Class.	Description							
Depth (ft.)	Wel	PID	Seco	w C	Graphic Log	ူ ဗ္ဗ	(Color, Texture, Structu	re)						
-	కే		Sas %	Blo	0	nscs	Geologic Descriptions are Based or	·						
L 0 -		\downarrow						1 10						
							Light brown silty fine SAND with little coars rounded gravel	e sand and fine						
-							grand grand							
					0 7									
⊢ 5 −		0.0			0	sм								
					0 2									
-														
 10 -		0.0					Light brown coarse-fine SAND with gravel							
<u> </u>														
4.5						SP								
- 15		0.0												
							Doubler							
_ 20 _							Boulder							
							No cuttings							
					$ \bigvee $									
5					$ / \setminus $									
25 –						$\ - \ $	Boulder							
:							No cuttings							
<u>-</u>					$ \setminus $									
					$ / \setminus $									
30 -														
							End of Exploration at 30 feet bsg.							
							Well Construction: Screen from 30 to 25 feet, casing from 25 f	eet to grade.						
_ 35 —							Completed with a flush roadbox set in cond	crete.						
							Sand Pack/ Seal: Sand Pack 30 to 23 feet, bentonite 23 to 2	1 feet, grout 21 feet to						
							grade.	, g						
40 —														

Monitoring Well **AP-22**

	oject Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS cation 150 Sohier Road, Beverly, MA Proj. No. 832837 Calion 150 Sohier Road, Beverly, MA												
Location	150 Sohie	r Road,	Beverly,	MA			Proj. No. <u>832837</u>	generated from grab samples					
Surface E	lev. NA		Total Ho	ole Der	oth _20.	0 ft.	North East	collected from the auger flights unless otherwise stated.					
							Static NA Diameter 4 in.	aooo oaormoo oaatou.					
							Type/Size _ <i>PVC/.010 in.</i>						
							Type						
	al Sand, b												
	Paratt Wol												
							Date Permit #						
Checked	Зу <u>олие</u> й	IVIGI			License	e No.							
	u.		미호	۲×		SS.	Description						
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	Class.	·						
ا مق	\ Vo luo;	<u>а</u> <u>а</u>	Sam Re	Slow	Gra	nscs	(Color, Texture, Structu	·					
	0		01%	ш —		ő	Geologic Descriptions are Based or	n the USCS.					
L 0 -													
							No cuttings, cuttings in vacuum excavation	hole					
2 -													
-													
├ 4 −					Пы	\vdash	Light brown silty fine SAND with gravel						
-		0.0											
- 6 -													
<u> </u>					0 7	SM							
- 8 -													
"													
					b] 9								
 10 −		0.0			, b b .		Fine rounded GRAVEL						
-	***) O	GP							
<u> </u>					\$	\vdash	Light brown, moist, silty, fine SAND with fir	ne gravel and coarse					
-							sand						
<u> </u>						SM							
<u> </u>							City fine CANID						
 - 16 -		0.0	<u>SS-1</u> 75%	M			Silty fine SAND and sandy silt with inclusio sand and fine gravel	ns of coarse-medium					
		0.0	75%	H			Sand and mie graver						
<u> </u>				٦		SM							
18 —													
3 -													
20 –		0.0				\vdash							
<u>i</u>							End of Exploration at 20 feet						
_ 22 _							·						
-							Well Construction: Screen from 20 to 15 feet, casing from 15	feet to grade					
 - 24 -							Completed with a flush road box set in con	crete.					
24							Sand Pack/ Seal:						
							Sand pack from 20 to 13 feet, bentonite from 11 feet to grade	om 13 to 11 feet, grout					
<u></u>							from 11 feet to grade.						
<u> </u>													
⊢ 28 −													
<u>-</u>													
- - 30 –													
1		1	II		1	1							

Monitoring Well AP-24-DO
Page: 1 of 1

Proje	ect _	√arian Beve	erly				_ 0\	wner	COMMENTS
Loca	tion .	150 Sohie	r Road,	Beverly, I				Proj. No	
Surfa	ace El	ev. NA		Total Ho	le Dep	oth <u>55</u> .	0 ft.	North East	
								Static NA Diameter	
								Type/Size _ <i>PVC/0.010 in.</i>	
								Type PVC	
	-			_				g/Core Truck Mounted/Mobil B57	
								nd Wash / Casing	
								Date <u>8/2/04</u> Permit # <u>NA</u>	
				• •					
<u> </u>),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-y		I		2.001.0	 		
		uo.		ery	r r	ပ	ass.	Description	
ep th	(H.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	·	\
^		Con	_ 3	Sar % R	Blov	დ_	180	(Color, Texture, Structu Geologic Descriptions are Based or	
<u> </u>								Geologic Descriptions are based of	Title 0000.
	o —	X X							
L									
- 1	0 -								
ŀ	4								
	20 –								
_	.0								
ŀ	1								
⊢ 3	so –							Fine SAND and SILT, cobbles	
							SM	Title SAIND and SILT, cobbles	
L									
စ္က									
11/3/									
<u></u>	-0 ⊢							Coarse to fine SAND, with silt	
P.G							SM		
<u>5</u> -	4								
=									
gil 5	io –								
70025	,								
990						×///×/			
7 -	+							Weathered Bedrock	
9/12/								End of exploration at 55 linear feet.	
<u>ĕ</u>	60 -							Well Construction:	
الَّـ								Screen 32.5 to 52.5 feet; casing 32.5 feet t	o grade; completed at
RCIA								grade with flush roadbox	
MM								Sandpack/Seal: Sand 30 to 52.5 feet; bentonite 28 to 30 fee	et: arout 28 to 0.5 feet:
8								cement 0.5 feet to grade	or, grout 20 to 0.0 166t,
SHAW_COMMERCIAL Rev: 6/12/02 LOGS2004.GPJ IT_CORP.GDT 11/3/09	′0 –							-	
ω L				1			1	I .	

Monitoring Well AP-25-DO Page: 1 of 1

		Varian Beve						wner Varian Medical Systems, Inc.	COMMENTS
		150 Sohie						Proj. No. <u>108939</u>	Installed at 3 to 1 angle, west towards Building 3. Well head
								North East Static Diameter	17' from Building 3.
								Static Diameter	
								Type PVC	
	-			-				g/Core CME750 ATV	
								nd Wash / Casing	
								Date	
								Date Fellill #	
	TOOKOG I			1		LIOCITO	U 110.		
	_	ion		ery	r nt	<u>.</u> 2	Class.	Description	
	Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	S	(Color, Texture, Structu	re)
		Co)	Sar % R	Bo	Ō	nscs	Geologic Descriptions are Based or	
\vdash									
	•								
	0 —								
F	=								
-	10 —								
-	-								
\vdash	20 —								
F	_							Commission and collected	
								Samples not collected.	
L	30 —								
	00								
60	40								
1/3/0	40 —								
5									
P.G	-								
Ö									
=	50 —								
4.GP									
S200.	-							End of exploration at 52 linear feet.	
L0G								Well Construction:	
702	60 —							Well Construction: Screen 52 to 32 feet; casing 32 feet to grad	de: completed at arade
SHAW_COMMERCIAL Rev: 6/12/02 LOGS2004.GPJ IT_CORP.GDT 11/3/09								with flush roadbox	ue, completed at grade
Rev:	-							Sandpack/Seal:	arout 26 to 0.5 facts
JAL								Sand 28 to 52 feet; bentonite 26 to 28 feet cement 0.5 feet to grade	, grout ∠o to 0.5 leet;
ERCI	70 —							J. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
OMM	. •								
ŏ ≥_	_								
SHA									

Monitoring Well

AP-26-DO Page: 1 of 1

	Varian Beve						wner Varian Medical Systems, Inc.	COMMENTS
Location	150 Sohie	r Road,	Beverly, Ma	ssa	chusetts	5	Proj. No. <u>108939</u>	8" casing to 30'.
Surface E	lev. NA		Total Hole	Dep	th _65	.0 ft.	North East	No split spoon samples collected. Geological logging
							Static <i>NA</i> Diameter	was completed using drill
•	-						Type/Size	cuttings.
							Type PVC	
_			-				g/Core	
			oring N				-	
							Date	
			• •					
Спескеа	ву <u>т. оаа</u>	Orono		_	Licens	e No.		
				#		SS.	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Recovery	Graphic Log	USCS Class.		
ا ۾	× iiio	<u>а</u>	Sam Re	Rec	Gra	 	(Color, Texture, Structu	
			% =			∥ ຶ	Geologic Descriptions are Based o	n the USCS.
L 0 -							Grass	
							Light brown, BOULDERS AND COBBLES	medium sand
-							Light brown, bookberto 7114b cobbeec	, modium sana.
					H			
 10 -]		
-					$\mathcal{X}_{\mathcal{C}}$			
20								
- 20 -					LC.			
- 30 -								
							SILTY SAND and gravel.	
-					$\uparrow \prod \dot{\uparrow}$	GM	Ole 1 To and grave.	
 40 -								
						1	Grey, SILTY SAND with some clay.	
_						sc		
308						1		
<u></u>							COBBLE layer.	
.69							Grey, SILT AND CLAY with some fine san	
NO.						ML	Grey, GIET 7114D GERTT WITH SOME TIME SAIN	u.
<u>-</u> ⊢ 60 −								
2						\parallel		
96					17XIII		White-grey, quartz, BEDROCK.	
SHAW_COMMERCIAL Rev: 6/12/02 LOGSZ004.6PJ IT_CORP.6DT 11/3/09							End of exploration at 65 feet below surface	e grade.
ु⊢ 70 −	∥ 						Well Construction:	
2/02							Screen 45 to 65 feet; casing 45 feet to gra	de; completed at grade
							with roadbox	
м М							Sandpack/Seal: Sand 33 to 65 feet; bentonite 27 to 33 feet	t: grout 27 to 0.5 feet:
_ 80 −	1						cement 0.5 feet to grade	, g - a- a
JER(]							
W O								
§ — 90 —	∦							
								

Monitoring Well AP-27-DO

	oject Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS No split spoon samples collected. Geological logging							
	Surface Flav. NA Tatal Hale Booth 62 0 ft North Fact was complicated using drill							
Top of Casing NA Water Level Initial NA							cuttings.	
Screen: Dia 4 in. Length 20 ft.								
Casing: Dia 4 in. Length 42 ft. Fill Material Sand, bentonite, grout						* *		
			oring Met		_			
						Date _ 7/16/04 Permit # _ NA		
			• •			Date 7770/07 Permit # 777		
Checked	3y <u>71. Oad</u>	Orono		License	e No.			
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery Blow Count	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based or	·	
						Pavement		
- 10 - 				3		BOULDERS AND COBBLES, medium grav	vel. some medium to	
- 20 - 				XX		fine sand.		
- 30 - 				242				
- 40 -					ML	Greyish SILT, some clay, trace fine gravel.		
<u> </u>					$\parallel \parallel$	BOULDER.		
├ 50 -				Y XX	-	Fractured BEDROCK, potassium feldspars	amphibole. lavers of	
:						orange silt in fractures.		
; -						Same as above interbedded with tan, soft t	o hard cemented sand.	
60 -					╚	Greenish, SCHIST, quartz, dark colored fe		
						End of exploration at 62 feet below surface		
						Well Construction:		
70 -						Screen 42 to 62 feet; casing 42 feet to gra with flush roadbox Sandpack/Seal: Sand 40 to 62 feet; bentonite 38 to 40 feet; cement 0.5 feet to grade		
80 -						ourners o.o leet to grade		

Monitoring Well AP-28-DO Page: 1 of 1

Project Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS							
Location 31 Tozer Road, Beverly, Massachusetts Proj. No. 108939							
Surface Elev. NA Total Hole Depth 45.0 ft. North East							
Top of Casing NA Water Level Initial NA							
						Type/Size	
Casing: Dia 1.5 in. Length 20 ft.							
Fill Material Sand and bentonite Rig/Core Truck Mounted S9 Geoprobe Drill Co. Geosearch, Inc. Method Direct Push							
						Date <u>8/13/04</u> Permit # <u>NA</u>	
			• .			Date Grace Permit #	
Checked	71. Odd	Orotto	1	Licens	e No.		
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count	Graphic Log	USCS Class.	Description (Color, Texture, Struct	ura)
	Con	٥	Sar % Ra Blov	Ō	 SC	Geologic Descriptions are Based of	
						Geologic Descriptions are based of	
- 0 -						None noted	
- 5 - - 10 - - 15 -							
- 20 - - 25 - 25 -						No samples collected.	
30 -							
35 -							
40 -							
5 5 – 45 –							
OSERZO -						End of exploration at 45 feet below surfac	e grade.
<u></u> 50 −						Mall Constructions	
						Well Construction:: Screen 20 to 45 feet; casing 20 feet to grawith flush road box Sandpack/Seal:	ade; completed at grade
— 60 —						Sand 18 to 45 feet; bentonite 13 to 18 fee cement 0.5 feet to grade	t; sand 13 to 0.5 feet;
65 —							

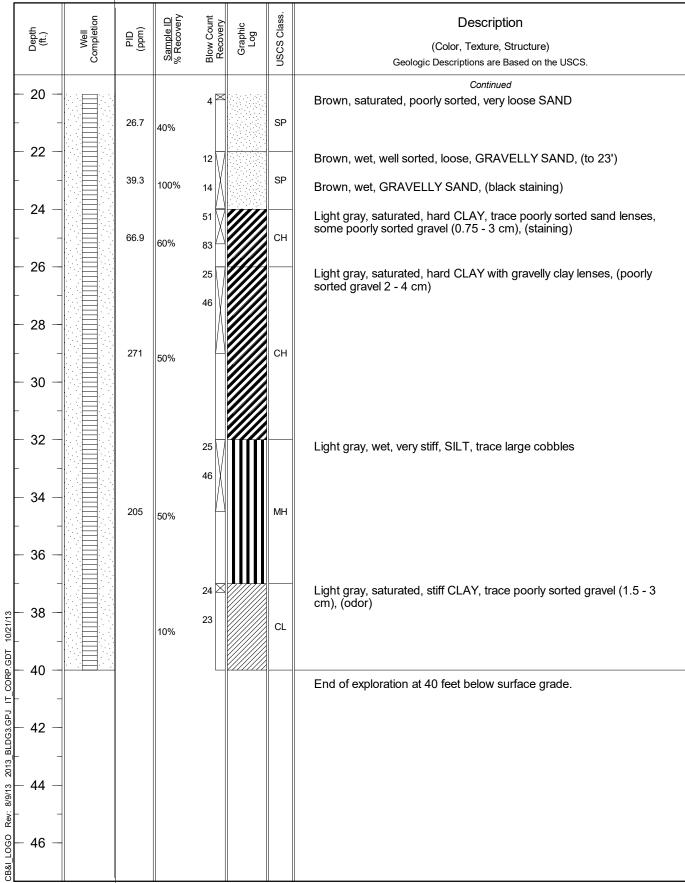
Monitoring Well AP-29-DO Page: 1 of 1

Location Surface E Top of Ca Screen: D Casing: D Fill Materia Drill Co. Driller	lev. NA sing NA ia 1.5 in. ia 1.5 in. al Sand a Geosearch	nd bento	Total Hole D Water Level Length 25 Length 20 ponite Log By J. H	chusetts epth 45 Initial NA ft. ft. ethod Di Perry	i.0 ft.	Proj. No
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
Rev. 6/12/02 31TOSERZ004.GPJ II_CORP.GDT 11/3/09 -						No samples collected. End of exploration at 45 feet below surface grade. Well Construction: Screen 20 to 45 feet; casing 20 feet to grade; completed at grade
SHAW_COMMERCIAL_Rev:						with flush roadbox Sandpack/Seal: Sand 18 to 45 feet; bentonite 13 to 18 feet; sand 13 to 0.5 feet; cement 0.5 feet to grade

Monitoring Well AF

AP-33-DOPage: 1 of 2

Project _	Varian Beve	erly				_ Ov	wner Varian Medical Systems, Inc. COMMENTS
Location	Building 3,	150 Soh	nier Road,	Beverl	ly, Massa	achuse	etts Proj. No. <u>150151</u> ND = Not Detected
Surface El	ev. NA		Total Hol	e Deptl	h <u>40.</u>	0 ft.	North East
Top of Cas							ft Static _ 11.2 ft. _ Diameter
•	ia <u>2 in.</u>						Type/Size PVC/Slot 0.010 in.
							Type PVC
							g/Core <u>CME-75/140 Hammer</u>
	TDS						-
							Date9/10/13 Permit #NA
	_{By} <u>Raymo</u>						
Checked			1		LICEIISE	= INO.	
	E		□ Zi	ŧ,	0	SS.	Description
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	, '
ے ا	No.	L G	Sam 6 Re	Slow	ng d	SCS	(Color, Texture, Structure)
			67.6				Geologic Descriptions are Based on the USCS.
- o -	4 4						Hand cleared to 0' - 5'.
							Hand cleared to 0 - 5.
- H							
2 -		ND				SP	Brown, damp, loose, poorly sorted, fine SAND, trace gravel (Fill)
-							
├ 4 −							
				5 🕅			Same as above (Fill)
⊢ 6 −		0.8	60%			SP	
			00 78	16			
- H				30			Brown, damp, medium dense, fine SAND, 2" lens of gray, dry,
- 8 -		1.0		XII		SM	medium dense, gravel, some silt
"		1.0	75%	16		Oivi	
							Brown, moist, poorly sorted, medium dense, SILTY SAND
				9			Blown, moist, poorly sorted, medium dense, SILTT SAND
 10 −		1.1	60%	19		SM	
<u>∓</u> 133				23			Grayish brown, moist, stiff, CLAYEY SAND, trace gravel (10%) to 12'
12 \		1.1	30%	27		sc	Brown, wet, stiff, CLAYEY SAND to 13'
5				۱			DIGWII, WOL, GUII, OLATET OAND WITO
P.G.				4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 		Brown, wet, well sorted, loose, SAND, some gravel (1 - 1.5 cm)
览 - 14 -		1.3		<u> </u>		sw	
2013_BLDG3.GPJ IT_CORP.GDT 10/21/13			40%	8			
GP. –				9		\vdash	Brown, wet, very loose SAND, occasional 1" lenses of brown, loose
7 -							clay
월 16 -		1.7	75%	13		SP	
2013							
				10			Brown, wet, loose SAND, trace gravel (to 18.5')
⁶ / ₈ – 18 –		18.8	90%	27		SP	
Rev.: 8/9/13				۷ 🖺	97/1.Sh	GC	Brown, wet, poorly sorted, stiff, GRAVELLY CLAY
9 -		00.7		NA 📈	//SVB///S		Boulder at 19'
- 20 - 20 -		26.7	40%	M		SP	
SBS							Continued Next Page


Monitoring Well

AP-33-DO

Page: 2 of 2

Project Varian Beverly Owner Varian Medical Systems, Inc.

Location Building 3, 150 Sohier Road, Beverly, Massachusetts Proj. No. 150151

Monitoring Well A

AP-34-DO

Page: 1 of 2

Project .	Varian Beve	erly				_ Ov	vnerVarian Medical Systems, Inc.	COMMENTS
Location	Building 3,	150 Sol	nier Road,	, Beverly	y, Massa	achuse	etts Proj. No. <u>150151</u>	ND = Not Detected
	lev. NA						North East	
Top of Ca	sing <i>NA</i>		Water Le	evel Initi	ial $rac{ extstyle imes}{ extstyle extstyl$	12.01	ft Static <u>▼ 11.4 ft.</u> Diameter <u>4.25 in.</u>	
Screen: E)ia <u>2 in.</u>		Length	20 ft.			Type/Size PVC/Slot 0.010 in.	
Casing: D	- ·						Type _ <i>PVC</i>	
_			U				g/Core CME-75/140 Hammer	
Drill Co.							tem Auger	
Driller _			Log By				Date <u>9/11/13</u> Permit # <u>NA</u>	
	By Raymo							
_	tion		Sample ID % Recovery	Blow Count Recovery	<u>.</u> 2	ass.	Description	
Depth (ft.)	Well	PID (mdd)	nple (eco)	∑	Graphic Log	USCS Class	(Color, Texture, Structu	re)
"	Con	_	Sar R	Bo	Ō	SC	Geologic Descriptions are Based o	
							Coologie Bossiipiloile are Bassa e	
- 0	4						Hand cleared to 0' - 5'.	
							Brown, dry, very loose, fine SAND, (Fill)	
- 2 -								
						SP		
T .								
L 4 -				-				
-								
-				1 🕅			Brown, damp to dry, very loose, well sorted	fine SAND trace well
				1		0.0	sorted gravel (approximately 2 cm) (Fill)	, into or and, adoc won
 6 −		0.1	30%	2		SP		
-	<u> </u>			4				CAND
				3			Brown, damp to moist, loose, well sorted, fi sorted gravel (0.5 - 2 cm) (Fill)	ne SAND, trace poorly
 8 -	+	0.8	60%	10		SP	Sorted graver (0.0 - 2 orn) (1 iii)	
				11				
				4			Brown, wet, loose, well sorted, fine SAND,	trace well sorted gravel
- 10 -		1.1	050/	5		SP	(0.5 - 3 cm) (Fill)	
			85%	8				
<u>_</u>				10			Brown, wet, medium dense, fine, well sorte	d SAND, some poorly
1020NP.GDT 1021/13		1.1		12		SP	sorted gravel (0.5 - 3 cm), trace cobbles (Fi	
§		1.1	90%	7		5P		
		:		8			Duranta and mandian	manuful CAND and
<u> </u>				6 X .			Brown, saturated, loose, fine and medium, GRAVEL (0.5 - 2 cm) (Fill)	poorly sorted SAND and
일 <mark>는 14</mark> -		1.5	20%	4		SW	0.1.12 (0.0 2 0) (1)	
2013_BLDG3.GPJ_IT				5	, , , , , , , , , , , , , , , , , , , ,			
93.G				3			Brown, saturated, very loose, well sorted, m	nedium SAND, some
∄⊢ 16 -		2.0	45%	1		SP	poorly sorted gravel (0.5 - 2.5 cm) (Fill)	
13 –			70 /0	1 3				
1				5			Brown, saturated, very loose, well sorted, m	nedium SAND, some
8/ _{8/13} - 18 -		21.8		6		SP	poorly sorted gravel (0.5 - 2.5 cm) (Fill)	
Rev		21.0	85%	6		51		
				8 . 5 /			Brown, wet, loose, well sorted, medium SA	ND some well sorted
50		41.4	50%	10		SP	gravel, trace poorly sorted cobbles (Fill)	ND, SOITIC WOII SUITEU
- 20 -	1]		- 1	* . * *		Continued Next Page	
٥ ـــــ	П	1	Ш					

Monitoring Well

AP-34-DC

Page: 2 of 2

Varian Beverly Varian Medical Systems, Inc. Owner Building 3, 150 Sohier Road, Beverly, Massachusetts 150151 Location Proj. No. Well Completion Blow Count Recovery **USCS Class** Sample ID % Recovery Description Graphic Log PID (mdd) Depth (ft.) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Continued 20 7 41.4 SP 50% 9 Same as above, (Fill) (staining and at 22') 19 20 SP 22 164 100% 18 19 Brown, saturated, well sorted, dense SAND (Fill) 10 29 24 SP 44.9 70% 31 39 Brown, wet, loose, well sorted, medium SAND (Fill) (to 26') 12 SP 57 26 39.5 50% Grayish brown, wet, poorly sorted, very hard SAND and GRAVEL, 53 SW rock at 26', (strong odor) Brown, wet, well sorted, hard, medium SAND (to 28.5') 28 50 SP 28 13.9 100% Rock or boulder 30 Dark brown, moist, loose, medium dense, SILTY SAND, some poorly sorted, coarse gravel (2 - 5 cm), (staining) 4 42.4 SM 25% 12 15 32 Brownish gray, wet, SANDY GRAVEL (to 32.5') 9 GM Dark brown, wet, loose, SAND, (staining at 33') 9 SP 275 95% 11 Gray, moist, sticky, stiff CLAY (to 34') 16 CL 34 Gray, wet, stiff CLAY, some poorly sorted gravel (0.5 - 1.5 cm) 6 5 1682 СН 60% 6 13 36 Gray, wet, very stiff, CLAY, trace poorly sorted gravel 16 18 773 СН 40% 31 17 38 CB&I_LOGO Rev: 8/9/13 2013_BLDG3.GPJ IT_CORP.GDT 10/21/13 Gray, wet, stiff CLAY, trace poorly sorted gravel 7 7 СН 1118 80% 10 14 40 10 Same as above 8 1029 60% 10 12 42 End of exploration at 42 feet below surface grade. Well set at 39.42 feet below surface grade. 44 46

Monitoring Well AP-35-De

Page: 1 of 2

Project Varian Bev	rerly			_ Ov	vnerVarian Medical Systems, Inc.	COMMENTS
		nier Road, Beve	rly, Massa	achuse	etts Proj. No. <u>150151</u>	ND = Not Detected
Surface Elev. NA		Total Hole Dep	th _40.	0 ft.	North East	Drilling started 9/11/2013 and
Top of Casing NA		Water Level In	itial $\underline{\underline{\qquad}}$	12.5	ft. Static <u>NA</u> Diameter <u>4.25 in.</u>	finished 9/12/2013.
Screen: Dia 2 in.		Length 20 ft			Type/Size PVC/Slot 0.010 in.	
					Type _ <i>PVC</i>	
Fill Material #2 Sar					g/Core CME-75/140 Hammer	
					tem Auger	
Driller <i>Gary</i>					Date9/12/13 Permit # <i>NA</i>	
Checked By Raym						
	+		11 1			
Depth (ft.) Well Completion		Sample ID % Recovery Blow Count Recovery	, ⊝	USCS Class.	Description	
Depth (ft.)	PID (mdd)		Graphic Log	S	(Color, Texture, Structur	e)
Co.		Sample ID % Recovery Blow Count Recovery	l o	nsc	Geologic Descriptions are Based on	
	+					
	<u> </u>				Hand cleared to 0' - 5'.	
├ 2 - 					Light brown, wet, well sorted, medium SANI	D (Fill)
					Light storm, wet, well contea, mediam of the	-, (· ···/
	3					
-4 - 1						
L 6 -						
				SP		
8						
├ 10 ├						
<u></u>	1					
S 12 <u> </u>						
B 14 - 14						
		1 \(\bar{1} \)			Same as above (Fill)	
		2			Carrie as above (i iii)	
☐ 16 — I	0.3	70% 3		SP		
		3				
		2			Same as above (Fill)	
[®]	0.4	65% 6		SP		
§		6				
	1			SP	Same as above (Fill)	
20 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 —						
ňI	1	II.	п		Continued Next Page	

Monitoring Well AP-35-DO

Page: 2 of 2

Project	Varian Beverly	Owner	Varian Medical Systems, Inc.).
Location	Building 3, 150 Sohier Road, Beverly, M	lassachusetts	Proj. No.	150151

Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 20 -							Continued
_ 22 _						SP	
_ 24 _		56.8	60%	10 17 18 17		sw	Brown, wet, poorly sorted, GRAVELLY SAND, (gravel 0.25 - 3 cm), trace clay
_ 26 _		52.5		6 10 14		SW	Brown, saturated, poorly sorted, medium dense, SAND, some poorly sorted gravel (0.25 - 1.25 cm)
- 28 -				11			Rock or boulder at 26.5'
- 30 -							Poorly sorted, SAND and GRAVEL, rock or boulder at 29'
- 32 -						SW GW	
		0500		8 7		sw	Brown, wet, poorly sorted, medium dense SAND to 34.25', some gravel (0.5 - 2 cm)
- 34 -		3596	70%	16 /\ 20 19 /		OL	Light brownish gray, stiff, CLAYEY SILT, some gravel Brown, wet, dense, gravelly SAND to 35.75', (30% gravel, 0.25 - 1.0
- 36 -		3429	100%	18 16		SW	cm) Light brownish gray, moist, stiff, SILTY CLAY, trace gravel and silt
<u>-</u> 38 –			0%	10 / \ 6 8 17			No recovery
GDT 10/21				10			
- 40 -							End of exploration at 40 feet below surface grade.
HELDG3.GPJ							
8/9/13 2013 - 44							
CB8/I LOGO Rev: 8/9/13 2013 BLDG3.GPJ II_CORP.GDT 10/21/13							

Monitoring Well CL

CL12-DOPage: 1 of 2

Project _	Varian/Beve	rly				_ 0	wner Varian Medical Systems, Inc.	COMMENTS
Location	150 Sohier	Road, L	Beverly, N	/lassaci	husetts		Proj. No. <u>806395</u>	ND = None detected
							North East	
Top of Ca	sing <i>NA</i>		Water L	evel In	itial $\underline{\underline{\nabla}}$	10.0	ft. Static NA Diameter 8.75 in.	
Screen: D	ia 2.0 in.		Length	5.0 ft			Type/Size _ <i>PVC/0.010 in.</i>	
							Type _ <i>PVC</i>	
•			•				ig/Core CME 85	
							Stem Auger	
							Date _ 4/4/00 Permit # _ <i>NA</i>	
Oncored	п — — — — — — — — — — — — — — — — — — —		II		LICCIIS	I 110.		
	uo			ŧ≥	0	ass.	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.		,
	Com v	д Э	San % Re	Blow	6	SC	(Color, Texture, Structu	,
			-10				Geologic Descriptions are Based or	the USCS.
							Surface: Sod	
├ 0 -					8088		Medium to dark brown topsoil to approxim	ately 1 foot depth,
						ML	underlain by moderate, yellowish brown, s	andy silt to silty sand,
-						'''-	little fine gravel to 4 feet	
├ 5 -	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ		S_1	2			Olive gray, moist, sandy SILT and CLAY v	with traces of coarse
	4 0 4 0	ND	<u>S-1</u> 60%	2 4 3 		ML	sand/fine rounded gravel, medium stiff	
-	A 4 A A A							
	4 4 A A							
<u></u> 10 □				12 🗆			Moderate to reddish brown, wet medium of	lanaity agarag to fina
	A A	ND	<u>S-2</u> 45%	12 12 15		sw	Moderate to reddish brown, wet,medium of SAND with trace of silt and clay, trace of f	
-	D D			15 ∟	******		gravel	
- 15 -	مُنْ مُمُ الْمُمُ							
		ND	<u>S-3</u> 50%	8680		sw	Dark,to moderate and yellowish brown, we coarse to fine SAND, trace of clay and silt	
L _	A A		30 70	ğЦ	*******		subrounded to subangular gravel, mediun	n density
	4							,
_ 20 -								
F 20 -		ND	<u>S-4</u> 55%	10 10 10 10		SW	Light to moderate brown, wet, medium de	nsity,coarse to fine
	Δ Δ Δ	ND	55%	10	******	O	SAND, trace silt	
-	A A A							
N .	Δ. Δ							
- 25 -	A A A		S-5	16			Same as above	
		ND	<u>S-5</u> 50%	6 14 12 12	******	SW		
<u>-</u>								
- 30 -	Δ Δ							
≟ <mark> </mark> – 30 –				4 🗆			Moderate brown and yellowish brown, inte	urlavered wet med
		ND	<u>S-6</u> 90%	4 6 15 22		sw	dense, fine, SAND, medium sand with tra	
2) 	Δ Δ Δ Δ Δ			22 🗀	******		coarse sand with some medium sand, trac	
VAKIAN.GPJ	A A						medium density	
ੇ ≃ੁ⊢ 35 −			0.7	لـ ي			Gravel rich layer observed at 33'	
. JS _	[A 4 A A A A A A A A A A A A A A A A A	ND	<u>S-7</u> 100%	38 <u></u>		sw	Moderate brown, wet, fine and medium SA	
75 — 35 — - Yes.	4 4 4 4 A					<u> </u>	sand, dense (not representative, due to he augers, therefore spoon only advanced 1	
	ام ا						and a second strip developed in	· */
	D D							
090 — 40 —	4 4						Continued Next Page	
٠ ــــ	II.		Ш			11	11	

Owner

Varian Medical Systems, Inc.

Monitoring Well

CL12-DO

Page: 2 of 2

Project Varian/Beverly 150 Sohier Road, Beverly, Massachusetts Proj. No. <u>806</u>395 Location Well Completion Blow Count Recovery USCS Class. Description Graphic Log Depth (ft.) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Continued 40 Moderate to grayish brown, wet, med, dense, fine SAND, grading <u>S-8</u> 85% ND SW downward to coarse SAND, fine gravel in tip, medium densitiy 45 Light to moderate brown, wet, medium, loose, to fine SAND, <u>S-9</u> 90% ND SW some coarse sand, trace fine, rounded gravel, very loose 50 11 15 14 16 Light to moderate brown, wet, medium, dense SAND, trace fine, ND SW subangular, weathered gravel, layer of coarse SAND, layer of fine SAND, medium dense 55 Unable to collect sample due to >5' of "blow-in" in augers, S-11 proceed to 60'; "blow-in" recovered in sampler; light brown, wet, medium SAND, trace coarse sand 60 Greenish brown, wet, dense, medium SAND, underlain by light S-12 30% ND GC gray, bluish gray, and olive-brown, weathered rock (highly fractured), clay and coarse to fine sand (Very hard drilling 62 - 64 feet (cobbles or boulder)) 65 Light gray to olive gray, wet, very dense, SILT, CLAY, and coarse S-13 25% ND CL to fine SAND, trace fine, rounded gravel 70 Greenish gray, wet, CLAY, SILT, and medium to coarse SAND, S-14 35% ND GM trace to little subangular gravel to approximately 71.6', then yellow-brown to yellowish orange, medium density, silty coarse to medium SAND, some silt, little subrounded gravel 75 Olive gray and greenish gray, moist, very dense, SILT, CLAY, and ND CL fine to medium SAND, trace fine, angular gravel, very dense, bottom 3 inches greenish gray and greenish black, weathered Rev: 8/9/13 VARIAN.GPJ IT_CORP.GDT 9/12/22 rock (possibly basalt or gabbro) Bottom of exploration at 75.5 feet on bedrock (auger refusal). 80 Well Construction: Screen from 74 feet to 69 feet; casing from 69 feet to grade. Completed at grade with flush roadbox set in concrete. Sand Pack / Seal: Sand Pack 75.5 feet to 62 feet; bentonite 62 feet to 60 feet; grout 85 60 feet to grade. 90 CB&I LOGO

Monitoring Well

CL13-DO Page: 1 of 1

Project _	Varian/Beve	erly			_ Ov	vner Varian Medical Systems Inc.	COMMENTS
			erly, MA			Proj. No. <u>820014</u>	
					.0 ft.	North 575768.6587 #2ast 765013.9447 ft.	
Top of Ca	sing NA		Water Level In	nitial $\overline{\underline{\nabla}}$	10.0	ft. Static NA Diameter 10 in.	
						Type/Size 10 slot PVC	
			Length 46 ft				
-			-			* *	
						g/Core Barber	
						- 12/22/00 - NA	
						Date Permit #	
Checked	By <i>Raymo</i>	na Caa	orette	Licens	e No.		
	_		01.5 ±		Š.	Description	
₩	Well	ωÊ	Sample ID % Recovery Blow Count Recovery	Graphic Log	USCS Class.	Description	
Depth (ft.)	M duc	PID (ppm)	Rec ow (Grag	ပ္သ	(Color, Texture, Structure	e)
	ŭ		N %		Sn	Geologic Descriptions are Based on	the USCS.
├ 0 -				••••••		Graygreen, coarse-fine SAND, little medium	n-fine gravel, wet at 10'
-						Graygreen, coarse line of true, intie median	i illic graver, wet at 10
_							
 5 −					sw		
-							
- 10 ∑							
'0 -							
-				******		Graygreen, coarse-fine SAND, little silt and	clay, trace
_ 15 -						medium-fine gravel	
'					sw		
-							
_ 20 -						Croy acturated CII T with trace and	
						Gray, saturated, SILT with trace sand	
_							
<u> </u>					ML		
L .							
- 30						Gray, coarse-fine SAND, with little medium-	fine gravel, and trace
_						silt, refusal at 55'	g ,
- 35 - - 35 - - 40 - - 45 -							
- 35 -						Well Construction	
-						Well screened with 10 slot 2 inch diameter F	PVC screening from 55
 - 40 -						to 45 feet, 2 inch PVC casing from 45 feet to	
40 -				[:a::b:		grade with fluch roadbox set in concrete.	
-					sw	Sand pack/Seal:	
_ 45 <u>-</u>							
75						Sand Pack: from 55 to 43 feet, Bentonite fro	om 43 to 41 feet, grout
-						to grade	
- 50 -							
				[
- 55 -					\vdash	Pottom of Evoloration	
						Bottom of Exploration	
_							
- 55 - 60 -							
<u>.</u>							

WELLLOG2.GPJ IT CORP.GDT

Rev: 6/12/02

COMMERCIAL

Drilling Log

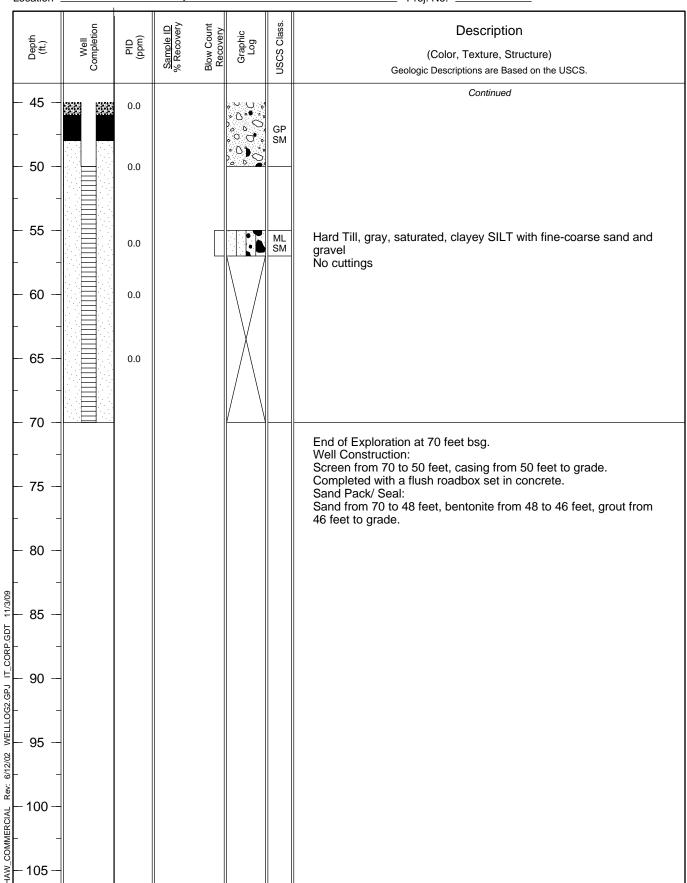
Monitoring Well

OB 4-DOPage: 1 of 2

Project Varian Beverly _ Owner __Varian Medical Systems, Inc. COMMENTS Well located at 28 Tozer Road Location 150 Sohier Road, Beverly, MA _____ Proj. No. <u>832837</u> Soil classifications were generated from grab samples Surface Elev. NA North ___ collected from the auger flights ____ Water Level Initial NA Top of Casing NA Static NA Diameter 4 in. unless otherwise stated. Type/Size PVC/.010 in. Length 20 ft. Screen: Dia 2 in. ____ Type _*PVC* Casing: Dia 2 in. _ Length _50 ft. _ Rig/Core __Ingersol Rand Fill Material Sand, bentonite, grout Drill Co. Paratt Wolff _____ Method _Hollow Stem Auger Driller Rick Navatka Log By Steve McGinn ____ Date <u>5/8/02</u> Permit # <u>NA</u> Checked By S. Metivier License No. Blow Count Recovery Well Completion JSCS Class. Description Graphic Log Depth (ft.) PID (ppm) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Grass, loam Ь Black and brown, fine-medium SAND with silt and gravel, slight asphalt odor 0 SM 5 0.0 Brown, fine-medium SAND with gravel and silt 10 0.0 SF 15 0.0 Brown, moist, fine-medium SAND with gravel and silt, few subangular fractured cobbles SP 20 0.0 Subangular-subrounded GRAVEL with some broken cobbles and brown coarse-fine sand GP 0 00 25 0.0 b Brown, moist, fine-medium SAND with silt, gravel and cobbles, large cobble at 34 feet 0 30 0.0 6 0 35 0.0 GRAVEL with some moist, brown, fine-medium sand and silt, ° 0 increasing cobbles at 45 feet Q. 40 0.0 0 SM 0 45 Continued Next Page

Monitoring Well

OB 4-DO


Page: 2 of 2

Project Varian Beverly

Location 150 Sohier Road, Beverly, MA

Owner Varian Medical Systems, Inc.

Proj. No. 832837

4/19/06

Rev: 6/12/02 WELLLOG2.GPJ IT_CORP.GDT

COMMERCIAL

Drilling Log

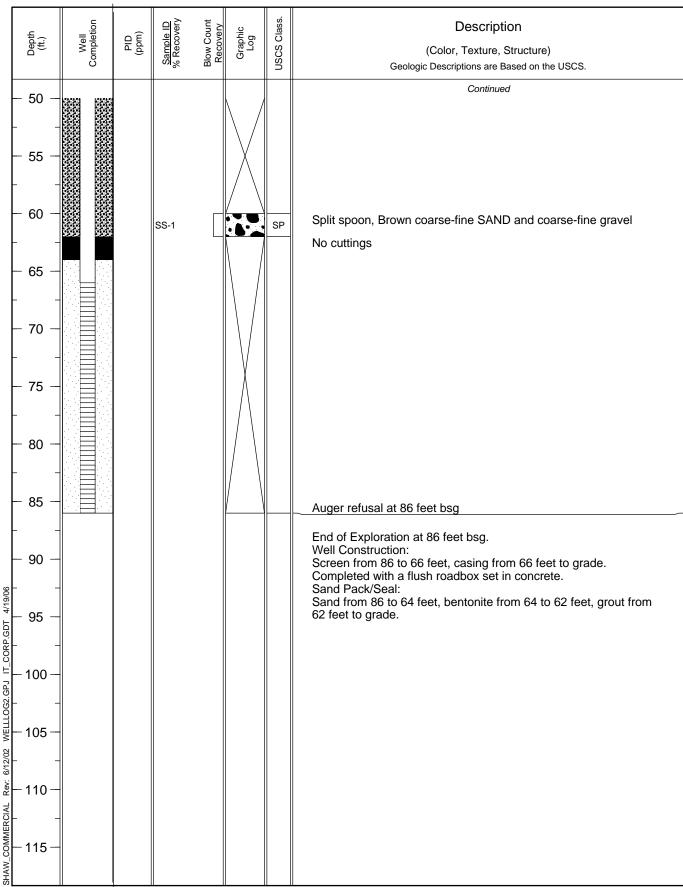
Monitoring Well C

OB 5-DO

Page: 1 of 2 Project Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS Well located at 29 Tozer Road Location 150 Sohier Road, Beverly, MA _____ Proj. No. <u>832837</u> Soil classifications were generated from grab samples Surface Elev. NA 86.0 ft. ___ Total Hole Depth _ North ____ collected from the auger flights Top of Casing NA Water Level Initial 14.5 ft. Static NA Diameter 4 in. unless otherwise stated. Type/Size PVC/.010 in. Screen: Dia 2 in. _ Length _20 ft. ____ Length 66 ft. Type PVC Casing: Dia 2 in. _ Rig/Core _ Ingersol Rand Fill Material Sand, bentonite, grout Method Hollow Stem Auger Drill Co. Paratt Wolff Driller Rick Navatka Log By Tom LeCalvez ____ Date <u>3/21/02</u> Permit # <u>NA</u> Checked By S. Metivier License No. _ Blow Count Recovery Well Completion Description Graphic Log Depth (ft.) PID (ppm) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Brown, SILT, trace clay and fine sand ML 0.0 SM Gray, fine SAND little silt Gray-brown, fine SAND, little silt and coarse-fine gravel, wet at 14 SP 10 0.0 Brown, saturated coarse-fine GRAVEL, little coarse-fine sand 15 0.0 20 0.0 25 30 0.0 35 0.0 40 0.0 45 No cuttings 50 Continued Next Page

Monitoring Well

OB 5-DO


Page: 2 of 2

Project Varian Beverly

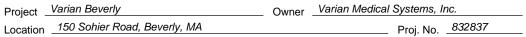
Location 150 Sohier Road, Beverly, MA

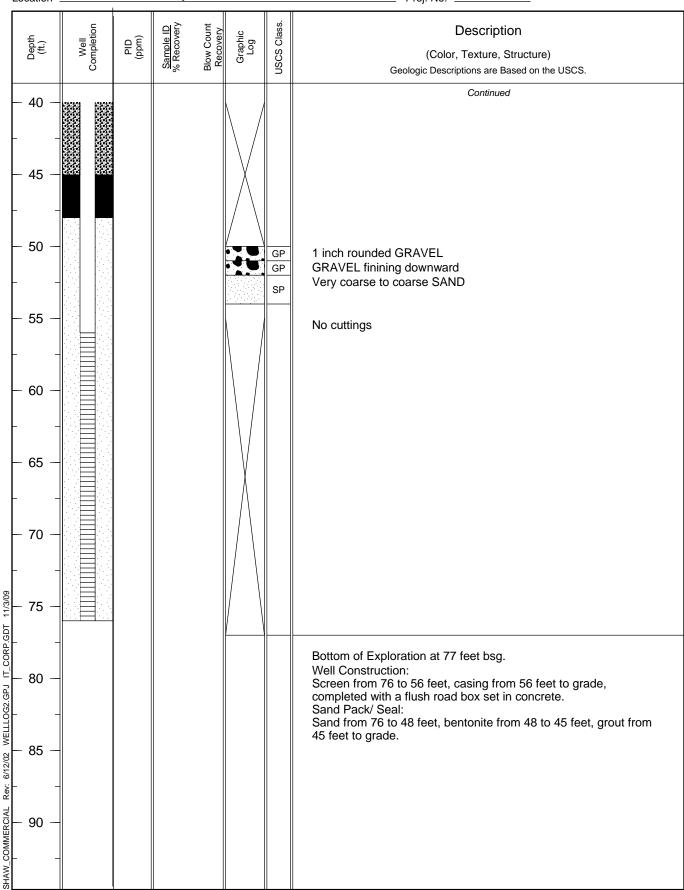
Owner Varian Medical Systems, Inc.

Proj. No. 832837

Monitoring Well

OB 6-DOPage: 1 of 2


Project Varian Beverly		Own	er Varian Medical Systems, Inc.	COMMENTS
Location 150 Sohier Road,			Proj. No. <u>832837</u>	Well located on Sonning Road Soil classifications were
Surface Elev. NA	Total Hole Depth _		North East	generated from grab samples collected from the auger flights
			Static NA Diameter 4 in.	unless otherwise stated.
			Type/Size PVC/.010 in.	
			Type PVC	
			Core HSA	
Drill Co. Paratt Wolff				
			Date <u>4/11/02</u> Permit # <u>NA</u>	
	0 ,		Date Permit #	
Checked By	Lice	nse no		
l uo		lss.	Description	
Depth (ft.) Well Completion PID (ppm)	Sample ID % Recovery Blow Count Recovery Graphic	USCS Class.		
	Sam Sam Slow Gra	808	(Color, Texture, Structi	
	S3/% II	Ď	Geologic Descriptions are Based of	on the USCS.
			Brown, silty, fine SAND with fine rounded	gravel
0.0				
		SM		
		GP		
⊢ 5 −				
0.0				
		-	2-3 inch GRAVEL	
		SP		
├ 10 - 🎆 🎆			Brown, silty fine SAND with fine rounded of	rravel
		>	2.01, 0, 0	y. w. v.
0.0				
		зм		
→ 15 → ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※		GP		
		[]		
			Fine rounded GRAVEL	
- 20 -		SP	Fille founded GRAVEL	
		J J		
11/3/09			No cuttings	
		/		
9.0 9.0		/		
통 - 25 - 3 - 3 - 3 - 3		/		
		/		
B				
[SG]	\ /			
<u> </u>				
- 25				
-				
6/	/ \			
³ / ₂ – 35 –				
	/	\		
NMC N				
ŏ		$\parallel \parallel$		
SHAW_COMMERCIAL			Continued Next Page	

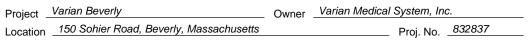


Monitoring Well

OB 6-DO

Page: 2 of 2

Monitoring Well


OB 8-DOPage: 1 of 2

Description	Project _	Varian Beve	erly			_ Ov	vner Varian Medical System, Inc.	COMMENTS
Surface Elev. NA Total Hole Depth 80.0 ft. Top of Casing NA Water Level Initial 4.0 ft. Static NA Diameter 4.25 in. Screen: Dia 2 in. Length 10 ft. Type/Size PVC/0.010 in. Casing: Dia 2 in. Length 70 ft. Type PVC Fill Material Native, bentonite, grout Rig/Core Foremost Drill Co. AM Drilling Nethod Hollow Stem Auger Driller J. Skalle Log By Kara Tudman Date 8/6/02 Permit # NA Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. BDL CG-1 BDL CG-3 BDL CG-3 BDL CG-3 Same as above Same as above								BDL = Below Detection Limit
Top of Casing NA Water Level Initial Va.0 ft. Static NA Diameter 4.25 in. Screen: Dia 2 in. Length 10 ft. Type PVC Casing: Dia 2 in. Length 70 ft. Type PVC Fill Material Native, bentonite, grout Rig/Core Foremost Drill Co. AM Drilling Method Hollow Stem Auger Driller J. Skafe Log By Kara Tudman Date 8/6/02 Permit # NA Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. BDL CG-1 BDL CG-2 BDL CG-3 BDL CG-3 BDL CG-3 Same as above	Surface E	lev. NA		Total Hole D	epth 80			
Screen: Dia 2 in. Length 70 ft. Type PVC Casing: Dia 2 in. Length 70 ft. Type PVC Fill Material Native, bentonite, grout Rig/Core Foremost Drill Co. AM Drilling Driller J. Skaife Log By Kara Trudman Date 8/6/02 Permit # NA Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Pavement BDL CG-1 BDL CG-2 BDL CG-2 BDL CG-3 BDL CG-3 Same as above Sw								
Casing: Dia 2 in. Length Native, bentonite, grout Rigicore Foremost Drill Co. AM Drilling Method Hollow Stem Auger Driller J. Skalle Log By Kara Tudman Date 8/6/02 Permit # NA Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Pavement BDL CG-1 BDL CG-2 BDL CG-3 BDL CG-3 Same as above								
Fill Material Native, bentonite, grout Drill Co. AM Drilling Method Hollow Stem Auger Driller J. Skaife Log By Kara Tudman Date 8/6/02 Permit # NA Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Pavement BDL CG-1 BDL CG-2 BDL CG-2 BDL CG-3 BDL CG-3 BDL CG-3 Same as above								
Drill Co. MM Drilling Driller J. Skaffe Log By Checked By License No. Date 8/6/02 Permit # NA								
Driller J. Skaile Log By Kara Tudman Date 8/6/02 Permit # NA Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Pavement BDL CG-1 BDL CG-2 BDL CG-3 BD								
Checked By License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Pavement BDL CG-1 BDL CG-2 BDL CG-3								
Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Pavement BDL CG-1 BDL CG-2 BDL CG-3				• •				
Pavement BDL CG-1 BDL CG-2 BDL CG-2 BDL CG-3 BDL	Checked	Ву			_ Licens	e No.		
Pavement BDL CG-1 BDL CG-2 BDL CG-2 BDL CG-3 BDL		Ē		015 F		.ss.	Description	
Pavement Brown, dry, coarse to fine SAND, some fine gravel and silt Brown, wet, coarse to medium SAND, trace fine sand BDL CG-2 BDL CG-3 BDL CG-3 Same as above	₽ (;	ell	عَ ۵	Sove	phic gg	Clas	Description	
Pavement Brown, dry, coarse to fine SAND, some fine gravel and silt Brown, wet, coarse to medium SAND, trace fine sand BDL CG-3 BDL CG-3 Same as above	De T	N duo	교영	Rec Now (Gra Cra	CS	(Color, Texture, Structi	ure)
BDL CG-1 BDL CG-2 BDL CG-2 BDL CG-3 Brown, dry, coarse to fine SAND, some fine gravel and silt Brown, wet, coarse to medium SAND, trace fine sand Same as above		ŭ		N % E		Sn	Geologic Descriptions are Based of	on the USCS.
BDL CG-1 BDL CG-2 BDL CG-2 BDL CG-3 BDL CG-3 Brown, dry, coarse to fine SAND, some fine gravel and silt Brown, wet, coarse to medium SAND, trace fine sand Same as above								
BDL CG-1 BDL CG-2 BDL CG-2 BDL CG-3 BDL CG-3 Brown, dry, coarse to fine SAND, some fine gravel and silt Brown, wet, coarse to medium SAND, trace fine sand Same as above								
BDL CG-1 BDL CG-2 BDL CG-2 BDL CG-3 BDL CG-3 Brown, dry, coarse to fine SAND, some fine gravel and silt Brown, wet, coarse to medium SAND, trace fine sand Same as above								
BDL CG-1 BDL CG-1 Brown, dry, coarse to fine SAND, some fine gravel and slit Brown, dry, coarse to fine SAND, some fine gravel and slit Brown, wet, coarse to medium SAND, trace fine sand BDL CG-2 Brown, wet, coarse to medium SAND, trace fine sand Same as above						$\ \ \ $		
- 5			BDL	CG-1	******		Brown, dry, coarse to fine SAND, some fir	ne gravel and silt
BDL CG-2 Brown, wet, coarse to medium SAND, trace fine sand BDL CG-3 BDL CG-3 Same as above	L .							
BDL CG-2 BDL CG-2 Brown, wet, coarse to medium SAND, trace fine sand BDL CG-3 Same as above								
- 15 - BDL CG-3 Same as above - 25 - Sw	├ 5 -							
- 15 - BDL CG-3 Same as above Sw								
- 15 - BDL CG-3 Same as above Sw	-							
- 15 - BDL CG-3 Same as above Sw								
- 15 - BDL CG-3 Same as above	- 10 -		BDL	CG-2			Brown, wet, coarse to medium SAND, trac	ce fine sand
- 20 — BDL CG-3 Same as above - 25 — Sw					******		, ,	
- 20 — BDL CG-3 Same as above - 25 — Sw	ļ .							
- 20 — BDL CG-3 Same as above - 25 — Sw	L 15 -							
- 25 - Sw	'3							
- 25 - Sw	ļ							
- 25 - Sw								
25 - sw	├ 20 -		BDL	CG-3			Same as above	
							dame as above	
	25					.,,		
BDL CG-4 Brown, wet, coarse to medium SAND, trace fine sand and fine gravel Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Continued Next Page						500		
BDL CG-4 Brown, wet, coarse to medium SAND, trace fine sand and fine gravel Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand	1/3/					$\ \ \ $		
BDL CG-4 Brown, wet, coarse to medium SAND, trace fine sand and fine gravel Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand	-					$\ \ \ $		
Brown, wet, coarse to medium SAND, trace fine sand and fine gravel BDL CG-5 Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Continued Next Page	- 30 S		BDL	CG-4			Proun wat accres to medium CAND to	on fine pand and fine
BDL CG-5 Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Continued Next Page	NO.							be line sand and line
BDL CG-5 Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Continued Next Page	-						giavoi	
BDL CG-5 Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Continued Next Page	2				•˙•,•¸•,°,•,•,•,•,•,•,•,•,•,•,•,•,•,•,•,•,	$\ \ \ $		
BDL CG-5 Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Continued Next Page	ဖြ <u>ု</u> 35 –					$\ \ \ $		
BDL CG-5 Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Continued Next Page	ГО							
BDL CG-5 Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Continued Next Page						$\ \ \ $		
Brown, wet, coarse to medium SAND, little fine gravel, trace fine sand Continued Next Page	> N _ 10 _		BDI	CG-5		$\ \ \ $		
Sand Sand Continued Next Page	12/0 12/0		DUL	30-3				e fine gravel, trace fine
# 45 — 45 —	9					$\ \ \ $	sana	
45	χ Φ							
BANKO A Continued Next Page	₫ - 45 -					$\ \ \ $		
NO	ERC							
S S S S S S S S S S						$\ \ \ $		
Continued Next Page	<u>کا</u> ح				0,0,0,0,0	$\ \ \ $		
	₹ 50 -	There is a second				$\ \ \ $	Continued Next Page	

Monitoring Well **OB 8-DO**

Page: 2 of 2

							F10J. No
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 50 -	333 333	BDL	CG-6				Continued Brown, wet, medium to fine SAND, some coarse sand and silt
- 55 -							
- 60 - 		BDL	CG-7				Same as above
- 65 -						sw	
- 70 - 		BDL	CG-8				Same as above
- 75 - 							
- 80 -		BDL	CG-9		******		Same as above Bottom of exploration at 80 feet.
- 85 -							Well Construction: Screen from 80 to 70 feet, casing from 70 feet to grade. Completed with flush roadbox set in concrete. Sand Pack / Seal: Sand pack from 80 to 55 feet, bentonite from 55 to 51 feet, grout
- 90 -							51 feet to grade.
- 55 –							
- 100 -							
105 — 105 —							
CIAL Rev. 6/1							
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG3.GPJ IT_CORP.GDT 11/3/09							

Monitoring Well **OB 9-DO**

Page: 1 of 2

Solider Road, Beverly, MA	F	Project _	Varian	Beve	erly				_ 0	wner	COMMENTS
Surface Elev. NA Total Hole Depth You Casing NA Water Level Initial Mark Static NA Diameter 4 in. Diameter 4 in. Type PVC Casing Dia 2 in. Length 20 ft. Fill Material Sand bentonite, grout Police Press No. Police Paratt Wolff Diale Rick Navadka Log By Dave Waters Date 4/3/02 Permit # NA Checked By S. Metivier License No. Descriptions are Based on the USCS. Brown, silty fine SAND with gravel SM Mills Dianeter 4 in. SM SM Mills Diameter 4 in. NA Diameter 4 in. Type PVC Rig/Core Ingersol Rand Diale 4/3/02 Permit # NA Clocked By S. Metivier Descriptions are Based on the USCS. Descriptions are Based on the USCS. Brown, silty fine SAND with gravel SM Mills Dianeter 4 in. SM Diameter 4 in. Type PVC Rig/Core Ingersol Rand Diale 4/3/02 Permit # NA Clocked By S. Metivier License No. Descriptions are Based on the USCS. Brown, silty fine SAND with gravel SM Mills Dianeter 4 in. SM Diameter 4 in. Type PVC Rig/Core Ingersol Rand Date 4/3/02 Permit # NA Clocked By S. Metivier License No. Descriptions are Based on the USCS.											
Top of Casing MA Water Level Initial MA Static MD Diameter 4 in. Screen: Dia 2 in. Length 20 it. Type/Size PVC/O10 in. Type EVC Fill Material Sand. bentonite, grout Right Fill Method Hollow Stem Auger Driller Rick Navanka Log By Dave Wattles Date 4/3/02 Permit # MA Checked By S. Metivier Log By Dave Wattles Date 4/3/02 Permit # MA Checked By S. Metivier Log By Dave Wattles Date 4/3/02 Permit # MA Checked By S. Metivier Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Brown, Silty fine SAND with fine sand Dark brown, SILT with day, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT Gray, saturated, running, coarse-fine SAND and SILT											collected from the auger flights
Screen: Dia 2 Im. Length 20 It. Length 76 It. Type Sev PVC/010 In. Type PVC It. Type PVC It. Length 2 In. Length 76 It. Type PVC It. Type PVC It. Length 2 In. Le											uriless otherwise stated.
Casing: Dia 2 m. Length 76 ft. Type EVC Fill Material Sand bentonite, grout Dnill Co. Earatt Wolff Dnill Co. Faratt Wolff Checked By S. Metrivier Checked By S. Metrivier License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Brown, Silty fine SAND with fine sand Dark brown, SiLT with fine sand Dark brown, SiLT with fine sand Dark brown, SiLT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT Gray, saturated, running, coarse-fine SAND and SILT											
Fill Material Sand bentonite, grout Prid Wolff Material Sand bentonite, grout Material Dave Wattes Date 4/3/02 Permit # NA Date Wattes Date Material Date Mate											
Drill Co. Parat Wolff Driller Rick Navalka Log by Dave Wattles Date 4/3/02 Permit # NA Checked by S. Metrivier License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Brown, Silty fine SAND with gravel Light brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT Gray, saturated, running, coarse-fine SAND and SILT											
Driller Rick Navalia. Checked By S. Methyler License No. License No. Date 4/3/02 Permit # NA Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Brown, silty fine SAND with gravel Light brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT Gray, saturated, running, coarse-fine SAND and SILT Gray, saturated, running, coarse-fine SAND and SILT											
Checked By S. Metrivier License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Brown, silty fine SAND with gravel Light brown, SILT with fine sand Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT Gray, saturated, running, coarse-fine SAND and SILT											
Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Brown, silty fine SAND with gravel Light brown, SILT with fine sand Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT Gray, saturated, running, coarse-fine SAND and SILT SP ML SP ML											
Brown, silty fine SAND with gravel SM GM Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT SP ML SP ML SP ML	(Shecked	Ву	. IVIELI	VIEI			Licens	e No.		
Brown, silty fine SAND with gravel SM GM Light brown, SILT with fine sand Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT Gray, saturated, running, coarse-fine SAND and SILT				<u> </u>			ŧ ,		SS.	Description	
Brown, silty fine SAND with gravel SM GM Light brown, SILT with fine sand Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT Gray, saturated, running, coarse-fine SAND and SILT		t.)	=	letic	۵É	Sove	Sver Ner	phic og	Cla	Description	
Brown, silty fine SAND with gravel SM GM Light brown, SILT with fine sand Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT SP ML		De (+	>	J J	g g	Rec	Secondary 10 M	Gra	SCS	l ·	
Brown, silty line SAND with gravel SM GM Light brown, SILT with fine sand Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT SP ML SP ML				°		W % _ [ן מ		S	Geologic Descriptions are Based or	n the USCS.
Brown, silty line SAND with gravel SM GM Light brown, SILT with fine sand Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT SP ML SP ML	Ī										
Brown, silty line SAND with gravel SM GM											
Brown, silty line SAND with gravel SM GM											
Brown, silty line SAND with gravel SM GM		•		l							
O.0 - 5	Ī	- 0 -								Brown, silty fine SAND with gravel	
O.0 - 5	L								SM		
Light brown, SILT with fine sand Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT SP ML SP ML											
Dark brown, SILT with clay, becoming wet at 12 feet Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT SP ML SP ML	ŀ	- 5 -			0.0						
Dark brown, SILT with clay, becoming wet at 12 feet Dark brown, SILT with clay, becoming wet at 12 feet No cuttings, 1 foot boulder at 18 feet Gray, saturated, running, coarse-fine SAND and SILT SP ML SP ML									ML	Light brown, SILT with fine sand	
- 10 -	ŀ	-							SM	Dark brown SILT with alove becoming wet	at 12 fact
No cuttings, 1 foot boulder at 18 feet - 20		_ 10 _			0.0			Ш		Dark brown, Sill with day, becoming wet	at 12 leet
No cuttings, 1 foot boulder at 18 feet - 20		- 10 -			0.0			ШШ			
Gray, saturated, running, coarse-fine SAND and SILT SP ML SP ML	-							ШШ	GL		
Gray, saturated, running, coarse-fine SAND and SILT SP ML SP ML								ļIIII,		No service as A foot bounded as 440 foot	
Gray, saturated, running, coarse-fine SAND and SILT 25	╌	– 15 –						\ /		No cuttings, 1 foot boulder at 18 feet	
Gray, saturated, running, coarse-fine SAND and SILT 25								$ \setminus / $			
Gray, saturated, running, coarse-fine SAND and SILT 25											
Gray, saturated, running, coarse-fine SAND and SILT 25	ŀ	- 20 -						$ \ / \ $			
- 25								/			
- 25	╌										
86/8/200 WEUTLOGS.GPJ 11/20RP.GPT 11/30RP.GPT 11/30RP.										Gray, saturated, running, coarse-fine SAN	D and SILT
	6	– 25 –									
	1/3/0										
	Ę										
	힑	- 30 -									
	띩										
	탈	-									
	굞	_ 25 _									
	62.0	- 35 -							SP		
	위								ML		
	WEI										
	ğ	- 40 -									
	6/12										
	Rev:	-									
Continued Next Page		- 45 -									
Continued Next Page	133	. •									
Continued Next Page	MM										
Continued Next Page	20_2	ΕO									
	SHAV	- 50 -								Continued Next Page	

Monitoring Well

OB 9-DOPage: 2 of 2

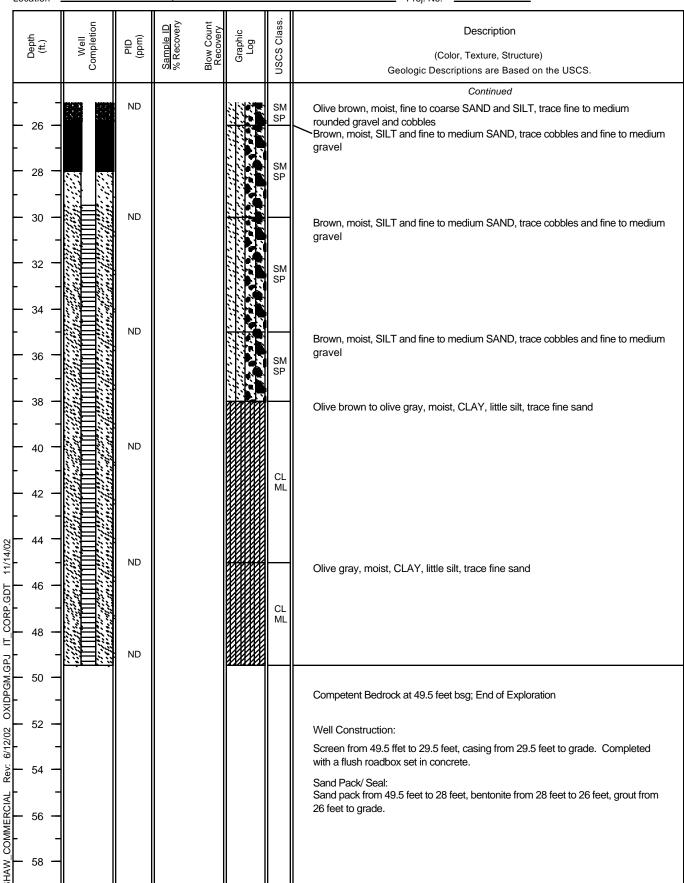
Project _Varian Beverly Owner Varian Medical Systems, Inc. Location 150 Sohier Road, Beverly, MA Proj. No. <u>832837</u>

Location	150 Soniei	Moau,	Deveriy,	IVIA			Proj. No
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 50 -							Continued
- 55 -							
- 60 -							
- 65 -							
- 70 - 						SP	
- 75 - 						SP ML	
- 80 - 							
- 85 - 							
- 90 - 60/£							
30RP.GDT 11/							End of Exploration at 97 feet bsg.
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG2.GPJ IT_CORP.GDT 11/3/05							Well Construction: Screen from 96 to 76 feet, casing from 76 feet to grade. Completed with a flush roadbox set in concrete. Sand Pack/ Seal:
— 105 —							Sand from 96 to 73 feet, bentonite from 73 to 70 feet, grout from 70 feet to grade.
IERCIAL Rev: 0							
— 115 —							

Monitoring Well

OB10-DOPage: 1 of 2

Project Varian/Be	verly			_ Ow	vner Varian Medical Systems, Inc.	COMMENTS
Location 150 Soh	ND = None detected					
Surface Elev. NA		Total Hole Dept	h <u>49.</u> 8	5 ft.	Proj. No. <u>832837</u> North East	
Top of Casing NA		Water Level Initi			Static NA Diameter 8.5 in.	
Screen: Dia 2.0 ir	1.	Length 20 ft.			Type/Size	
Casing: Dia 2.0 ir	1.	Length 29.5 f	ft.		Type PVC	
		Grout				
	Orilling, Inc.				tem Auger	
Driller Todd Collin	ns	Log By M. Re			Date <u>12/27/01</u> Permit # <u>NA</u>	
Checked By S. M	letivier		License			
· ·	П		I I			
Depth (ft.) Well Completion		Sample ID % Recovery Blow Count Recovery	.≌	USCS Class.	Description	
Depth (ft.) Well	PID (ppm)	mple (eco	Graphic Log	SC	(Color, Texture, Structure	اد
Co.		Sar Blo	g l	nsc	Geologic Descriptions are Based of	·
	-			-		
					Asphalt	
	7 44		NIONES I		Asphalt	
					Brown, moist, fine to coarse SAND and SILT, little	to some fine rounded gravel
_ 2 _	ND					
- 4 - H						
				SM		
				SP		
F 6 -						
- 8 - B						
10 →	ND				Olive brown, moist, fine to coarse SAND and SILT,	little to some fine rounded
1/14/02					gravel	
1714						
				SM SP		
하 네				-		
14						
	ND					
					Olive brown, moist, fine to coarse SAND and SILT,	little fine to medium rounded
de d					gravel	
16 – 16 – 18 – 18 – 18 – 18 – 18 – 18 –				SM		
18 -				SP		
2 (1) (1)						
70 – 00 – 00 – 00 – 00 – 00 – 00 – 00 –						
□ 20 - N	ND			\vdash	Olive brown, moist, fine to coarse SAND and SILT,	trace fine to medium
Rev:					rounded gravel and cobbles	
SHAW_COMMERCIAL 22 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -				SM SP		
				Or'		
S 24 −						
SH/					Continued Next Page	



Monitoring Well

OB10-DOPage: 2 of 2

Project Varian/Beverly Owner Varian Medical Systems, Inc.

Location 150 Sohier Road, Beverly, Massachusetts Proj. No. 832837

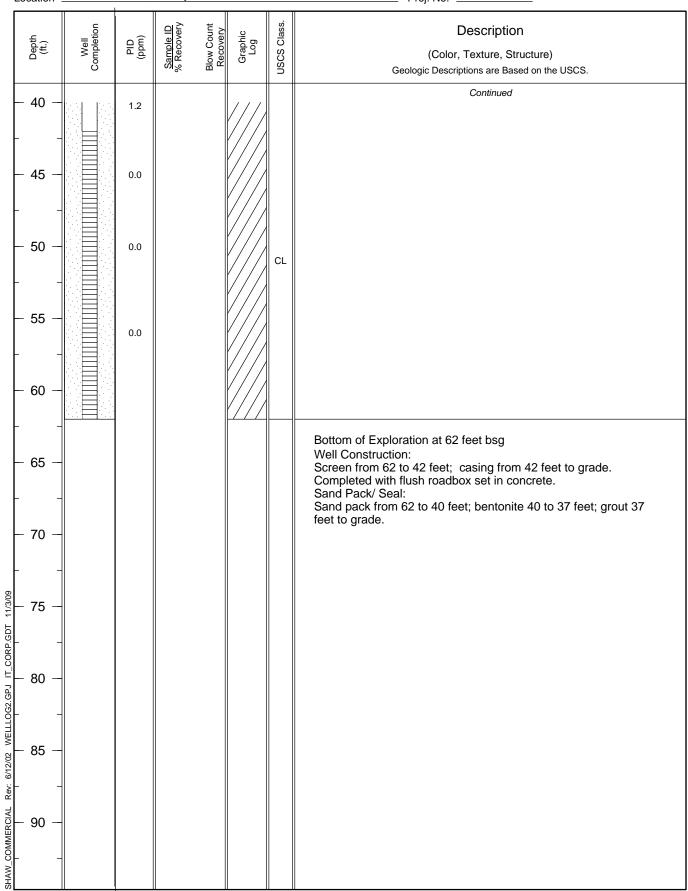
Monitoring Well

OB 11-DOPage: 1 of 2

Project	Varian Beve	erly			O	wnerVarian Medical Systems, Inc.	COMMENTS
	150 Sohie	r Road,	Proj. No832837	Soil classifications were generated from grab samples			
					0 ft.	North East	collected from the auger flights
						Static NA Diameter 4 in.	unless otherwise stated.
						Type/Size PVC/.010 in.	
						Type/Size	
						g/Core <u>CME</u>	
			Meth				
			• •			Date	
Checked	By <u>S. Мей</u>	vier		Licens	e No.		
			ory to		SS.	Decembries	
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery Blow Count Recovery	Graphic Log	Class.	Description	
De (f	Mo	P (P	Rec low l	Gra	nscs	(Color, Texture, Structure)	ure)
	°		01%		🖺	Geologic Descriptions are Based o	n the USCS.
- o -							
						Brown, fine-medium SAND with silt, grave	l and occassional
						cobbles	
<u> </u>		3.6					
- 10 -		4.3					
		1.0					
_ 15 _					SM		
'0		0.0			SW		
- 20 -							
		2.1					
11/3							
5							
9. 9. 9.							
<u>₹</u> 25 −		0.0					
=							
2.GP							
∄ 30 −		0.0				Brown, moist, fine-medium SAND with inc	reasing silt and clay,
> 2							
3/12/(SM		
Rev. 6/12/02 WELLLOG2.GPJ IT_CORP.GDT 11/3/09							
		4.6					
RCIA				////		Gray, moist CLAY	
MM -					CL		
8							
SHAW_COMMERCIAL						Continued Next Page	
<i>σ</i>	11		II.			<u> </u>	

Monitoring Well

OB 11-DO


Page: 2 of 2

Project Varian Beverly

Location 150 Sohier Road, Beverly, MA

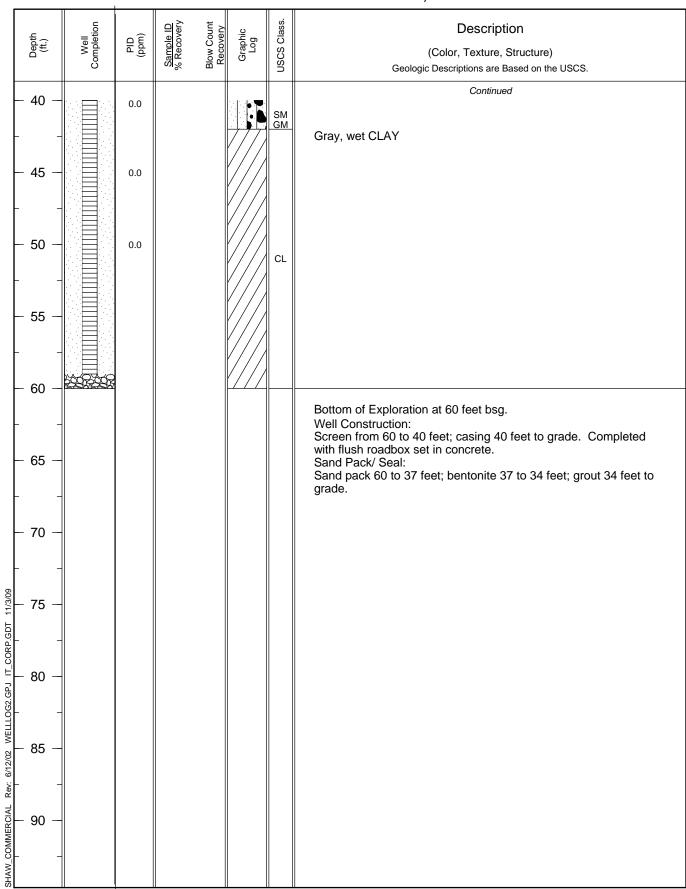
Owner Varian Medical Systems, Inc.

Proj. No. 832837

Monitoring Well OB 12-DO
Page: 1 of 2

Page: 1 COMMENTS

		Varian Bev				Ov	vner	COMMENTS
ı	_ocation	150 Sohie	er Road,	Beverly, MA			Proj. No. <u>832837</u>	Soil classifications were generated from grab samples
,	Surface E	lev. NA		Total Hole Dept	h <u>60.0</u>) ft.	North East	collected from the auger flights unless otherwise stated.
Top of Casing NA Water Level Initial N							Static NA Diameter 4 in.	
							Type/Size _ <i>PVC/.010 in.</i>	
				Length 39 ft.				
				e, grout				
				Metho				
				Log By Dave				
ſ		I					Description	
	Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count Recovery	Graphic Log	USCS Class.		
	De T	M ∨ gmo	d	Sam Slow Reco	Gra	scs	(Color, Texture, Structu	
		0		ол% п		Ď	Geologic Descriptions are Based or	n the USCS.
-	- 0 -				XXXXX		Light brown fine SAND with gravel and occ	eassional cobbles
							Light brown line SAND with graver and occ	cassional copples
ŀ								
ŀ	- 5 -							
ŀ								
ŀ	- 10 -							
ŀ								
ŀ	- 15 -		0.0			sw		
ŀ								
ŀ	- 20 -		0.0					
/3/08								
-								
GD								
Š.	- 25 -		0.0					
Ė								
욠								
2 9 2 7								
븲	- 30 -		0.0				Light brown fine SAND with gravel with inc	reasing silt and clav
×.							g 2.2 2 g.a.o	and and and
12/02								
ڊ. ڊ			0.0					
Re	- 35 -					SM GM		
CIAL								
MER								
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG2.GPJ IT_CORP.GDT 11/3/09								
ΑΨ	- 40 -	1 =					Continued Next Page	
ö۱		II	1				Continued Next Fage	



Monitoring Well

OB 12-DO

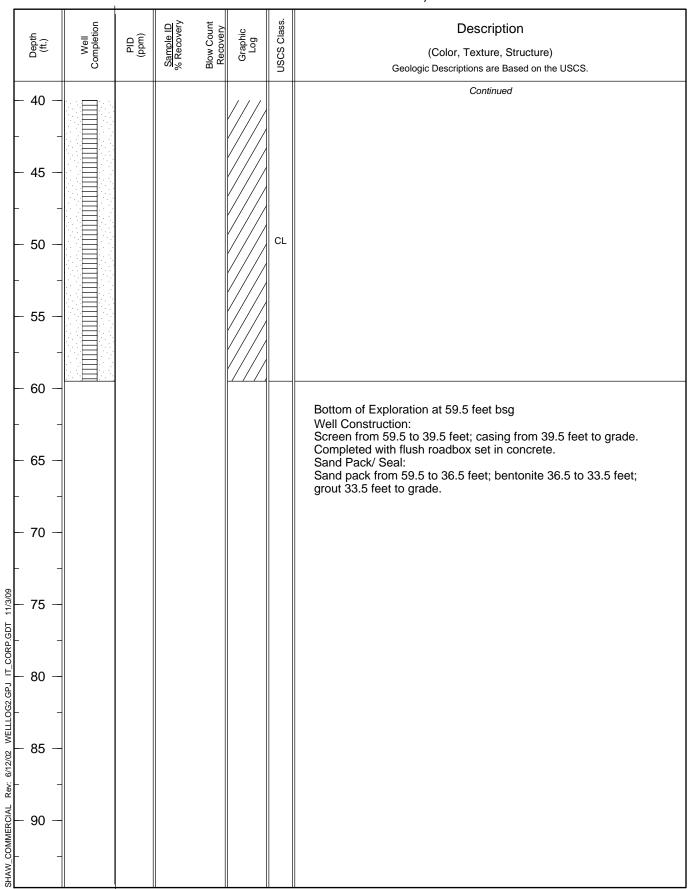
Page: 2 of 2

Project .	Varian Beverly	Owner	Varian Medical Systems, Inc.
•	150 Sohier Road, Beverly, MA		Proj. No. <u>832837</u>

Monitoring Well OB 14-DO
Page: 1 of 2

COMMENTS

ı	Project _	Varian Bev	erly			_ Ov	vner Varian Medical Systems, Inc.	COMMENTS		
				Beverly, MA			Proj. No. <u>832837</u>	Coil aloggifications were		
						5 ft.	North East	collected from the auger flights unless otherwise stated.		
Top of Casing NA Water Level Initial N								uriless otherwise stated.		
							Type/Size PVC/.010 in.			
							Type PVC			
				e, grout						
				Meth						
							Date Permit #			
,	Спескеа	Ву <u>О. Ме</u>	+ -		License	e No.				
		E		olž t y		SS.	Description			
	Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count Recovery	Graphic Log	USCS Class.				
	ص ق	× mo	<u>а</u> <u>а</u>	Sam Slow Rec	Gra	SCS	(Color, Texture, Structu			
				ол% ш		Ď	Geologic Descriptions are Based or	n the USCS.		
	- 0 -		4		314 314		Tanasil and and			
							Topsoil and sod			
							Brown, fine-medium SAND with gravel and	d occassional cobbles		
			0.0				,			
	- 5 -		0.0							
	Ü									
			0.0							
	- 10 -									
	10									
						SW				
	- 15 -		0.0							
	- 15 -		0.0							
	-									
	00									
9	– 20 –									
11/3/			2.7							
님										
₹P.G	05		0.6							
8	– 25 –		0.3				Brown fine SAND with gravel with increasi	ng silt and clay		
			Ŭ.J							
2.GP					00					
LOG	00									
	- 30 -		0.0			sм				
5 2					0 7					
3/12/($ \varphi $					
ek					0					
-R	- 35 -				0 7					
RCIA			0.0		////		Gray, wet, CLAY			
MME		1			///	CL				
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG2.GPJ IT_CORP.GDT 11/3/09	_				////					
¥	- 40 -				′′′′		Continued Next Page			
Ø		II .	1	1 11			1			



Monitoring Well

OB 14-DO

Page: 2 of 2

Project _	Varian Beverly	Owner .	Varian Medical Systems, Inc.	
Location	150 Sohier Road, Beverly, MA		Proj. No. <u>832837</u>	

Monitoring Well

OB 17-DOPage: 1 of 2

Project _	Varian Beve	erly			_ 0\	wnerVarian Medical Systems, Inc.	COMMENTS		
			Beverly, MA			Proj. No. <u>832837</u> Well located on Commons Drive Soil classifications were			
						North East	generated from grab samples collected from the auger flights		
						Static NA Diameter 4 in.	unless otherwise stated.		
						Type/Size _PVC/.010 in.			
						Type			
						g/Core _Ingersol, Rand			
Drill Co	Paratt Wol	ff	, g. ca.	athad H	N	Stem Auger			
						Pes Date <u>3/14/02</u> Permit # <u>NA</u>			
			• •			Date Fernit #			
Checked			1	Licens	II II				
	u l				SS.	Description			
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery Blow Count	Recovery Graphic Log	USCS Class.				
۵۵ ا	× liii	ਜ ਕੁ	Sam s Re	Green	SCS	(Color, Texture, Structi			
			ол% п		Ď	Geologic Descriptions are Based o	n the USCS.		
L 0 -						D 011 7 7 7			
						Brown SILT, coarse-fine sand, coarse-fine	rounded gravel		
_ 2 _									
-				p s	1				
4 -		0.0		0 0 0	ML				
<u> </u>					1				
- 6 -									
-									
⊢ 8 −					1				
-				6	-	Brown, moist to wet, silty coarse-medium	SAND and fine rounded		
- 10 -		0.0				gravel, boulder at 10 feet	SAND and line founded		
-									
<u> </u>				o v	SM				
L '									
 - 14					1 1				
						No cuttings			
60		0.1		\ /					
% – 16 – 13°				$\ \setminus /$					
Rev: 6/12/02 WELLLOG2.GPJ 1T_CORP.GDT 11/3/09 - 1				$\ \setminus /$					
[- 18 -	9333 -			$\ \setminus /$					
Ö				$\ \setminus /$					
<u>-</u> 20 –		0.0		X					
- GP	17.1			/\					
⁵ – 22 –									
ু ১ – 24 –				/ \					
7,12/0		0.0		/ \					
9C 96		0.0		<u> </u>					
					ML SW	Saturated, brown, SILT and fine SAND, so	ome fine gravel		
RCIA				.0.0.		GRAVEL and COBBLES			
₩ - 28 -				, o o	GP				
SHAW_COMMERCIAL				0 0 .					
<u>₹</u> 30 −				P. (10 P.	$\parallel = \parallel$	Continued Next Page			
<u></u>	1		<u> </u>						

Monitoring Well

OB 17-DO

Page: 2 of 2

Project Varian Beverly

Owner Varian Medical Systems, Inc.

Location 150 Sohier Road, Beverly, MA

Proj. No. 832837

Location	100 301116		Bovony,	7777			Proj. No
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 30 - - 32 - - 34 - - 36 - - 38 - - 40 - - 42 -		0.1				ML SW	Continued Brown, saturated SAND and SILT, some gravel and cobbles
SHAW_COMMERCIAL Rev. 6/12/02 WELLLOG2.GPJ IT_CORP.GDT 11/3/09 - 44							End of Exploration at 43 feet bsg. Well Construction: Screen from 43 to 23 feet, casing from 23 feet to grade. Completed with a flush roadbox set in concrete. Sand Pack/ Seal: Sand from 43 to 21 feet, bentonite from 21 to 18 feet, grout from 18 feet to grade.
HAW_COMMERCIAL Rec							

Shaw E & I, Inc.				Monitoring Well	OB 18-DO Page: 1 of 1
Project Varian Beverly				Varian Medical System, Inc.	COMMENTS
				Proj. No. <u>832837</u>	BDL = Below Detection Limit
				North East	Could not sample past 15' - 17' interval due to running sands.
				Static NA Diameter 4.25 in.	
			Type/Size PVC/0.010 in.		
Casing: Dia 2 in.	_			•	
Fill Material <u>Native, ber</u> Drill Co. <u>AM Drilling</u>			-	ore Foremost/Split Spoon	
				_ Date <u>8/5/02</u> Permit # <u>NA</u>	
				Date Fernit #	
Checked By			TWO		
tion		ount ery ic	ass.	Description	
Depth (ft.) Well Completion	(ppm) Sample ID % Recovery	Blow Count Recovery Graphic Log	USCS Class.	(Color, Texture, Structure)	re)
	Sa %	88 9) NSO	Geologic Descriptions are Based on	•
				Ground Surface	
0				Brown, dry, medium to fine SAND, some co	parse sand, trace fine
				gravel	
	DL CG-1				
5	DL SS-1		SW	Same as above	
	50%	2		Brown, wet, coarse to fine SAND, some fine	e gravel
- 10 -		******			
				Obstruction - concrete	
	SS-2	1		Brown, wet, coarse to medium SAND, some	e fine gravel, little fine
₩ ₩ ^B	DL <u>SS-2</u> 50%	2		sand and silt	-
- 15 -	CC 2	6 \(\tag{\cont.} \\ \cont		Brown, wet, coarse to medium SAND, some	e fine sand little silt
В	DL <u>SS-3</u> 75%	8		and fine gravel	o into ourid, intio oiit
<u></u>			0.44		
			SW		
ğ - 25 - <u> </u>					
30				Bedrock	
				Bottom of exploration at 30 feet.	
				Well Construction:	
6/1:				Screen from 30 to 20 feet, casing from 20 f Completed with flush roadbox set in concre	eet to grade.
35 —				Sand Pack / Seal:	ic.
CIAL				Sand pack from 30 to 17 feet, bentonite fro 14 feet to grade.	m 17 to 14 feet, grout
⊻i ∥ i	II.	ll l	1 II	14 ICCL IU GIAUC.	

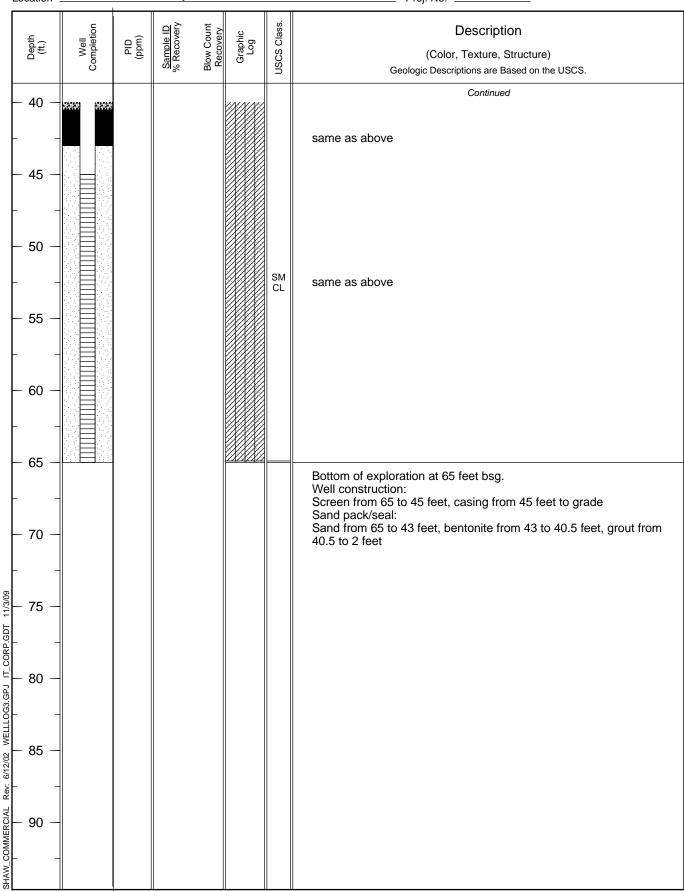
Monitoring Well

OB 19-DOPage: 1 of 2

Project Varian Beverly Owner Varian Medical System, Inc. COMMENTS										COMMENTS
									Proj. No832837	
									North East	
	Top of Casing NA Water Level Initial NA									
	Screen: Dia _2 in. Length _20 ft.									
									Type	
	Fill Material Sand, bentonite, grout Rig/Col									
									groule	
									Date <u>3/5/02</u> Permit # <u>NA</u>	
									Date Territor	
_	riccica	П	- 1		ı		LICCIIS	110.		
			ion			<u> </u>	o	ass.	Description	
	Depth (ft.)		Completion	PID (ppm)	Sample ID % Recovery		Graphic Log	USCS Class.		uro)
	Δ		Con	_ <u>u</u>	San % Re	Blow Count Recovery Graphic Log		180	(Color, Texture, Structu Geologic Descriptions are Based o	
-		-						_	Geologic Descriptions are based of	in the 0000.
┢	- 0 -	201	<u> </u>			-	ТЬТ			
						-	[
┢	-									
						-	0 4			
┝	- 5 -			1.3					Light brown, fine SAND with silty gravel, or	ccasional cobbles
				1.5		-				
F	-					.				
								SM		
┝	- 10 -			55.0			0 7	GP		
				55.9						
F				72.6					GRAVEL with brown, fine, silty sand	
				66.3			0 7		Brown, fine SILTY SAND with gravel	
F	- 15 -			1.9						
ŀ	-									
									Brown, moist, SILTY SAND	
┝	- 20 -			1.2				SM	Danier and CH TV CAND	
3/09	-								Brown, wet, SILTY SAND	
11/	-							\vdash	Moist, SILTY SAND, with clay	
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOG3.GPJ IT_CORP.GDT 11/3/09				23.6						
RP.	- 25 -								Wet, fine SAND, with silt and clay	
ŏ	-									
ᇍ	-			9.1						
63.6										
3	- 30 -								saturated, fine SAND with silt and clay	
WE	-							SM		
2/02	-									
6/1										
Rev	- 35 -									
JAL										
JERC	-									
NO MI										
» _	- 40 -						XXXX			
SH.									Continued Next Page	

Monitoring Well

OB 19-DO


Page: 2 of 2

Project Varian Beverly

Location 150 Sohier Road, Beverly, Massachusetts

Owner Varian Medical System, Inc.

Proj. No. 832837

Monitoring Well OB-20-DO Page: 1 of 1

Project <u>Varian Beverly</u> Owner <u>Varian Medical Systems, Inc.</u> Location <u>SCDS Fields, Beverly, Massachusetts</u> Proj. No. 1	Mo colit cocon comples
Surface Elev. NA Total Hole Depth 82.0 ft. North East Top of Casing NA Water Level Initial NA Static NA Diamet	was completed using drill cuttings.
Screen: Dia 2 in. Length 20 ft. Type/Size PVC/0.010 in. Casing: Dia 2 in. Length 58 ft. Type PVC Fill Material Sand, bentonite, grout Rig/Core Truck Mounted Mobil B57	
Drill Co. New Hampshire Boring Method Drive and Wash	
Driller Mark D'Ambrosen Log By P. Lindblom Date 8/24/04 Permit # Checked By R. Cadorette License No.	
	I
청○ 등호 ◘ㅌ 劕贠 │ 仌 > 등 및 ◌	escription
Color, - Col	Texture, Structure) ions are Based on the USCS.
Grass	
Brown, medium to fine SANE	O, some fine gravel.
- 20 - SW SW	
- 40 - CL Grey CLAY.	
- 50 -	
Brown, fine SAND.	
Brown, fine SAND. SP Brown, fine SAND. Grey SILT, fine sand. Green, BEDROCK, compete	
Grey SILT, fine sand.	
	nt andesite or diorite (plagioclause,
The state of the s	
Screen 58 to 78 feet; casing with flush roadbox	58 feet to grade; completed at grade
Sandpack/Seal: Sand 56 to 78 feet; bentonite	e 54 to 56; grout 54 to 0.5 feet;
cement 0.5 feet to grade	
MY	

Monitoring Well

OB-21-DOPage: 1 of 1

	roject Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS								
Location	SCDS Fie	lds, Bev	erly, Mass	achus	setts		Proj. No. <u>108939</u>	No split spoon samples collected. Geological logging	
Surface E	lev. NA		Total Hole	e Dep	oth <u>88.</u>		North East	was completed using drill cuttings.	
							Static Diameter	outungo.	
							Type/Size		
							Type		
-			-				g/Core Truck Mounted Mobil B57		
	New Hamp						•		
							Date _8/17/04 Permit # _NA		
			• •						
Checked I	Зу	orette			License	e No.			
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	S Class.	Description (Color, Texture, Structu	ure)	
	ိ		S %	용종		nscs	Geologic Descriptions are Based or	· ·	
- 0 - - 10 - - 20 - - 30 - - 40 - - 50 -						sw	Grass Brown, medium to fine SAND, some fine g BOULDER. Brown, medium to fine SAND, some fine g		
- 60 - 70 - 70 - 70 - 70 - 70 - 70 - 70						CL	Tan, medium to fine SAND, some fine grave Grey CLAY. Green BEDROCK, andesite or diorite compand quartz). End of exploration at 88 feet below surface Well construction:	petent (plagioclause	
100 -							Screen 66.5 to 86.5 feet; casing 66.5 to grawith flush roadbox Sandpack/Seal: Sand 64 to 86.5 feet; bentonite 62 to 64 fe		
- 110 — 							cement 0.5 feet to grade	, 5	

OB 22-DOPage: 1 of 2 Monitoring Well

Project .	Varian Beve	erly				_ 0\	wner	COMMENTS
							Proj. No. <u>832837</u>	Well located in the Shaw Shopping Plaza
	Location150 Sohier Road, Beverly, MA Surface ElevNA Total Hole Depth45.0 ft.							Soil classifications were generated from grab samples
	Top of Casing NA Water Level Initial NA							collected from the auger flights
							Type/Size PVC/.010 in.	unless otherwise stated.
							Type	
							g/Core <u>CME</u>	
	Dragin Drii							
							Date1/28/02 Permit #NA	
			• .				Date 1723/62 Permit # 1701	
Спескеа	Бу		П		Licens	e No.		
	uo		의호	t z	0	ass.	Description	
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.		
ا م	Som <	L @	Sam 6 Re	3low Rec	Gig L	SCS	(Color, Texture, Struct	
			57/8	ш		Ď	Geologic Descriptions are Based of	n the USCS.
- o -	 							
					b		Dark brown, fine SAND with silt and grave	I
					0		j	
- 2 -						CM		
-					7 0	SM GP		
L 4 -								
4					0 2			
-							Green-gray, moist CLAY	
- 6 -					Y///	CL		
					6-0-(Dark brown SAND with coarse gravel	
					。 () °			
8 -				26 🗸	0			
-		22.9	50%	29 /\ 21	00			
<u> </u>				12	。 () °			
		40.0		16 X	b			
		12.8	30%	11	00			
<u> </u>				9	0 \			
8 - 8 -					$ \cdot $			
6 - - - 14 -					0 0			
					° 0 (
T_CORP.GDT					$ \circ \bigcirc \circ $			
්⊨ 16 -					00	GP		
<u>=</u>					000			
					. 00			
징 18 -				15 🗸	<u>ک</u> _ (Brown, clean GRAVEL	
6/12/02 WELLLOGZ.GPJ		BDL	50%	12 🛆 9	0 0		·	
≶ 20			30%	8	0 0			
<u>20 - 20 - 20 ا</u>				5) ° ()			
	$\parallel \parallel \parallel \parallel \parallel$	BDL	50%	5 /\ 5	00			
⁸ − 22 −				5				
Z					$ \circ \bigcirc \circ $			
SHAW_COMMERCIAL					00			
<u></u> 24 -	1 = 1				° 0 (
× -	# "				. N º		O-Minus d.N. / D.	
ਲ							Continued Next Page	

Monitoring Well

OB 22-DOPage: 2 of 2

Project _	Varian Beverly	Owner	Varian Medical Systems, Inc.	
Location	150 Sohier Road, Beverly, MA		Proj. No. <u>832837</u>	

Location ₋	150 Sohiei	Roau,	beveriy,	IVIA			Proj. No. <u>832837</u>
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 26 - - 28 -					。 。 。 。 。	GP	Continued
- 30 -					。		Brown, wet, medium to coarse SAND with silt and gravel
- 32 -					00000		
- 34 - 					0000		
- 36 - 					0 0 0 0	SM GP	
- 38 - 40 -					0 0 0 0		
- 42 -					0000		
- 44 -					0000		
- 46 -							Bottom of exploration at 45 feet bsg.
- 48 -							Well Construction: Screen from 43.5 to 23.5 feet; casing from 23.5 feet to grade. Completed with flush road box set in concrete Sand Pack/ Seal:
- 50 – 50 – 50 – 50 – 50 – 50 – 50 – 50							Sand pack from 43.5 to 20 feet; bentonite 20 to 18 feet; native fill from 18 feet to grade
52 — 52 — 54 — 54 —							
37 SCIAL Rev. 6/							
SHAW_COMMERCIAL Rev: 6/12/02 WELLLOGS.GPJ IT_CORP.GDT 11/3/09 89							

Rev: 6/12/02 2003LOGS.GPJ IT_CORP.GDT 11/3/09

COMMERCIAL

Drilling Log

Monitoring Well

OB25-DO

Page: 1 of 2 Project Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS ND = Not detected Location 150 Sohier Road, Beverly, Massachusetts _____ Proj. No. __844877 Soil classification from grab Surface Elev. 74.8 ft. North ___ samples collected from auger Top of Casing 74.52 ft. Water Level Initial NA Static NA flights unless otherwise stated. Type/Size PVC/0.010 in. _ Length _10 ft. Screen: Dia 4 in. Type PVC _ Length _60 ft. Casing: Dia 4 in. Fill Material Sand, Bentonite, Grout Rig/Core Mobile Method Hollow Stem Auger/Air Rotary Drill Co. Parratt Wolff Log By J. Frazier Driller *lan Grassie* ___ Date _6/12/03 ___ Permit # _*NA* Checked By Raymond Cadorette License No. Well Completion Blow Count Recovery Description Graphic Log Depth (ft.) PID (ppm) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Medium brown, organic SILT, cobbles to 6" diameter OL Medium brown, slightly moist to dry, CLAY and SILT, with little gravel Same as above ND 10 Brown, slightly moist, soft, CLAY and SILT, with some fine sand Very moist, soft, CLAY and SILT, with some fine sand and little gravel 15 Same as above, with rock/cobble (at 16 ft.) 20 Same as above ML Same as above with rock/cobble (at 24 ft.) ND 25 Light brown, moist, soft, CLAY and SILT, with some fine sand Same as above 30 ND Brown/grey, wet, CLAY and SILT, with some fine sand 35 Continued Next Page

Monitoring Well **OB25-DO**

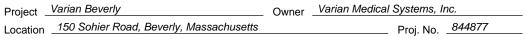
Page: 2 of 2

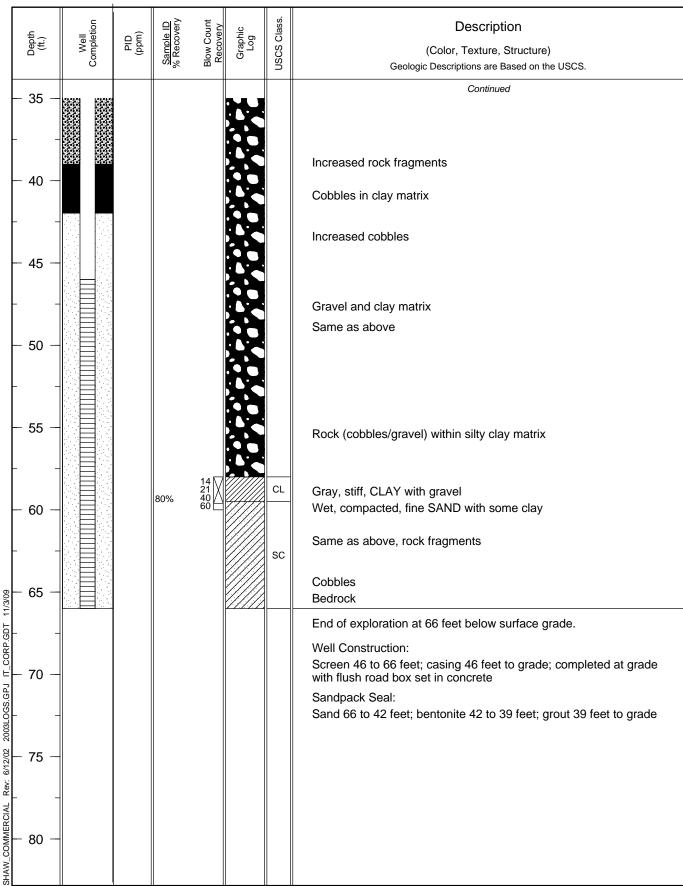
Project __Varian Beverly Owner Varian Medical Systems, Inc. Location 150 Sohier Road, Beverly, Massachusetts _____ Proj. No. <u>844</u>877

Location .	130 Some Road, Devery, Wassachusens						Proj. No. <u>044077</u>
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 35 -		ND					Continued Light grey, wet, CLAY and SILT with some fine sand
- 40 -							
- 45 -						ML	Same as above
- 50 - 							Same as above with cobble, hard
- 55 - 							Very hard
- 60 -		ND					Boulders
— 65 —		ND			888		
- 70 -					36		Auger refusal at 68.5 feet below surface grade. Air rotary from 68.5 to 70 feet below surface grade.
12/02 2003LOGS.GPJ IT_CORP.GDT 11/3/09 							End of exploration at 70 feet below surface grade. Well Construction: Screen 60 to 70 feet; casing 60 feet to grade; completed at grade with flush road box set in concrete
SHAW_COMMERCIAL Rev: 6/12/02							Sandpack Seal: Sand 70 to 57 feet; bentonite 57 to 52 feet; grout 52 feet to grade
SHAW_COMM							

Monitoring Well C

OB26-DOPage: 1 of 2


Projec	ct _\	/arian Bev	erly			_ 0	wner _Varian Medical Systems, Inc.	COMMENTS
Locat		ND = Not detected						
Surfa	ce El	Soil classification from grab samples collected from auger						
							North East Static Diameter	flights unless otherwise stated.
		-					Type/Size _ <i>PVC/0.010 in.</i>	
			Type					
Fill Ma								
							Stem Auger/Mud Rotary Date _6/26/03 Permit # _NA	
							Date 0/20/03 Permit # NA	
Checi	kea E	y <u>rayin</u>	Ha Odd	orette	Licens	e No.		
		<u> </u>		이를 받고		SS.	Description	
Depth		Well Completion	PID (ppm)	Sample ID % Recovery Blow Count Recovery	Graphic Log	Class.	Description	
	=	N duo	4 g	Reco	Gra	nscs	(Color, Texture, Structu	
		0		01% B =		∥ šĭ	Geologic Descriptions are Based or	the USCS.
		reserves proper			<u> </u>			
							Medium brown, slightly moist, SILT with lar	ge cobbles
<u> </u>	1					ML		
							Medium brown, slightly moist, medium firm	, SILT with large
⊢ 5							cobbles	
					$\parallel + \parallel +$			
L			ND				Medium brown, slightly moist, SILT, with co	oarse gravel
			ND		^	GМ		
 10) –						Began mud rotary drilling, limited soil return	ns
							Rock fragments in mud	
-	4				.00			
							Cobbles within silty matrix	
1	_				37	İ	Cobbles within sity matrix	
- 15	7							
					7		Same as above	
-	+				N		S ame as assets	
3/09							Same as above	
2003LOGS.GPJ IT_CORP.GDT 11/3/09								
TG9.							Same as above	
ORP								
ŏ -								
Z								
ું⊱ 2	5 -							
3100					7		Large cobbles at 26 ft.	
500								
6/12/02					A			
.1/9					H			
§ − 30	ן ⊢				375			
- [[4				75		Same as above	
OMIN							Game as above	
SHAW_COMMERCIAL	,]				L			
SHA .							Continued Next Page	



Monitoring Well

OB26-DO

Page: 2 of 2

Monitoring Well

OB27-DOPage: 1 of 2

	Varian Bev					wner Varian Medical Systems, Inc.	COMMENTS ND = Not detected
						Proj. No. <u>844</u> 877	
						North East	Soil classification from grab samples collected from auger
Top of Ca	sing _72.00	6 ft	Water Level	Initial _ <i>N</i>	4	Static NA Diameter 10 in.	flights unless otherwise stated.
Screen: D	ia <u>4 in.</u>		Length 20	ft.		Type/Size _ <i>PVC/0.010 in.</i>	Sand pack installed 63 to 28 ft.
Casing: D	ia <u>4 in.</u>		Length 42	ft.		Type _ <i>PVC</i>	due to hole collapse.
						g/Core Mobile	
Drill Co.	Parratt Wo	olff	Me	thod H	ollow S	Stem Auger/Mud & Air Rotary	
Driller _/a	an Grassie		Log By J. H	razier		Date <u>6/19/03</u> Permit # <u>NA</u>	
	I			П			
	Well		Sample ID % Recovery	. <u></u>	USCS Class.	Description	
Depth (ft.)	Well	PID (ppm)	nple eco	Graphic Log	ပ္သ	(Color, Texture, Struct	ura)
	Co		Sar % R Blov	<u> </u>	SC	Geologic Descriptions are Based of	
						Coologie Beschiptions are Basea	
├ 0 -	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				\parallel		
						Medium brown, slightly moist, organic SIL	.T, little sand
					OL		
├ 5 -						Cobble layer	
						Medium brown, moist, GRAVEL and SILT	
L -					GM	,,	
						Cobble layer	
					\vdash	Cobbie layer	
 10 -		ND					
						Medium brown, slightly moist, SILT and G	RAVEL, with cobbles
-							
						Madium brown majet etiff CDAVEL and	CII T
1						Medium brown, moist, stiff, GRAVEL and	SILI
- 15				111119		Switch to Air Botony	
						Switch to Air Rotary	
-]			
60%						Brown, dry, hard, COBBLES and SILT	
[- 20 -]		Large boulders/cobbles up to 2 ft. thick	
						24. go bodidoro, obbolos up to 2 it. tillok	
7. 7.					GM		
ပ ြ -					5141		
=]		Same as above	
g g − 25 −						Dry, stiff, SILT and GRAVEL	
9						•	
5003							
Rev. 6/12/02 2003LOGS.GPJ IT_CORP.GDT 11/3/09 20]			
3/12/							
°E 30 −							
ĕ Ş							
₹ - -							
8				T P			
SHAW_COMMERCIAL	iller al - Jean					0 %	
ਲ				1		Continued Next Page	9

Monitoring Well

OB27-DOPage: 2 of 2

Project _	Varian Beverly	Owner	Varian Medical Systems, Inc.	
•	150 Sohier Road, Beverly, Massachusetts		Proj. No <i>844877</i>	-

L	ocation .	ion						Proj. No. <u>844877</u>
	Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
ļ	- 35 -	rest rest						Continued
-	- 40 -							Switch to Mud Rotary (at 38 ft.) ROCK fragments in mud, some sand
	- 45 -							Same as above
							GM	Dense formation with cobbles in silty matrix
	- 50 -							Same as above
-	- 55 -							Larger ROCK fragments of quartzite, diorite
-	- 60 -							
								End of exploration at 63 feet below surface grade
SHAW_COMMERCIAL Rev: 6/12/02 2003LOGS.GPJ IT_CORP.GDT 11/3/09	- 65 -							Well Construction: Screen 63 to 43 feet; casing 43 feet to grade; completed at grade with flush road box set in concrete
CORP.G								Sandpack Seal:
)_ 	- 70 -							Sand 63 to 28 feet; bentonite 28 to 25 feet; grout 25 feet to approximate grade
OGS.GF								
2003L								
6/12/02	- 75 -							
Rev:								
ERCIAL								
COMM	- 80 -							
SHAW								

Monitoring Well **OB**

OB28-DOPage: 1 of 1

Location 150 Schier Road, Beverly, Massachusetts Proj. No. 944927 Top of Casing: NA Total Hole Depth 10.0 ft. North East Screen: Dia NA Length NA State NA Diameter Type NA Length NA Type NA Length NA Type NA Length NA Type NA Length NA Length NA Type NA Length NA Length NA Length NA Type NA Length NA Len	1	Project _	Varian B	Beverly				Owner Varian Medical Systems, Inc.	COMMENTS
Surgen: Dia NA Water Level Initial NA Static NA Diameter Screen: Dia NA Length NA Type/Size NA Type NA Prill Material Grout Registrated NA Static NA Diameter Simples collected from auger Rights unless otherwise stated. Screen: Dia NA Length NA Type NA Type NA Prill Material Grout Registrated NA Prill Co. Parratit Wolff No Nethod Hollow Stem Auger/Rotary Drill Co. Parratit Wolff Date 6/26/03 Permit # NA Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel End of exploration at feet below surface grade.	ı	Location	150 So	hier Road, E	Beve	erly, Mas	sach	usetts Proj. No. <u>844877</u>	ND = Not detected
Top of Casing NA Water Level Initial NA Static NA Diameter Rights unless otherwise stated. Screen: Dia NA Length NA Types NA Types NA Type	;	Surface E	lev <i>N</i> /	<u> </u>	Tota	al Hole D	epth		Soil classification from grab samples collected from auger
Screen: Dia NA Length NA Type/Size NA Type NA NA NA Length NA NA Length NA NA Length NA NA NA NA NA NA NA NA NA NA NA NA NA									
Casing: Dia MA Length Hollow Stern Auger/Rotary Drill Co. Parratt Wolff Drill Co. Parratt Wolf Co. Parratt Wolff Drill Co. Parratt Wolff Drill Co. Parratt Wolff Drill Co. Parratt Wolff Drill Co. Parratt Wolff Drill Co. Parratt Wolff Drill Co. Parratt Wolff Drill Co. Parratt Wolff Drill Co. Parratt Wolff Drill Co. Parratt Wolff Drill Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf Co. Parratt Wolf			_						
Fill Material Grout Rig/Core Mobile/Track Mounted Drill Co. Parratt Wolff Method Hollow Stem Auger/Rotary Driller Jan Grassie Log By J. Frazier Date 6/26/03 Permit # NA Checked By Raymond Cadorette License No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel OH Same as above End of exploration at feet below surface grade.						-		• • • • • • • • • • • • • • • • • • • •	
Drill Co. Parratt Wolff Jan Grassie Log By J. Frazier Date 6/26/03 Permit # NA	Ì	Eill Matari	a Grou	ut		.g		Pig/Coro Mobile/Track Mounted	
Driller lan Grassie Log By Raymond Cadorette License No. Checked By Raymond Cadorette License No.			Parratt	Wolff		N 4	othoo	Hollow Stem Auger/Rotary	
Checked By Raymond Cadorette License No. Checked By Raymond Cadorette License No.									
Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. OH					_	-			
Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel Same as above End of exploration at feet below surface grade.	,	Checked	<u> , кау</u>	III CIII CAAC	7011		_	icerise No.	
Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel Same as above End of exploration at feet below surface grade.							SS.	Description	
Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel Same as above End of exploration at feet below surface grade.		t p	ୁ ଜୁ		Ner S	phic	Ca	Description	
Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel Same as above End of exploration at feet below surface grade.		De T	d g	Re Re	Sec.	Gra L	SSS		
Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel Same as above End of exploration at feet below surface grade.				01% &	ال و		👸	Geologic Descriptions are Based on the U	JSCS.
Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel Same as above End of exploration at feet below surface grade.	l								
Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel Same as above End of exploration at feet below surface grade.									
Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel Same as above End of exploration at feet below surface grade.									
Medium brown, slightly moist, soft, SILT with organic matter, some pebbles/gravel Same as above End of exploration at feet below surface grade.		•							
OH pebbles/gravel Same as above OH End of exploration at feet below surface grade.	ı	- 0 -							
- 5 - ND OH Same as above - 10 - End of exploration at feet below surface grade. - 15									matter, some
- ND OH Same as above - 10 -	ŀ						ОН	pebbles/gravel	
- ND OH Same as above - 10 -									
- 10 - ND OH End of exploration at feet below surface grade.	ŀ	- 5 -			Н				
- 10 - ND OH End of exploration at feet below surface grade.								Same as above	
End of exploration at feet below surface grade. - 15	ļ		ND				ОН		
End of exploration at feet below surface grade. - 15									
End of exploration at feet below surface grade. - 15		_ 10 _			Ш				
- 15 - - 20 -		10							
								End of exploration at feet below surface gra	ade.
	Ī								
	l	— 15 —							
	ŀ								
894W COMMERCIAL Rev. 6/12/02 2007 11/2/02 2007 2007 2007 2007 2007 2007 2007	ŀ	- 20 -							
SHAW COMMERCIAL Rev. 6/12/02 20081005 (5P) II CORP. COMMERCIAL Rev. 6/12/02 20081005 (5P) II CORP. COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL Rev. 6/12/02 20081005 (5P) II COMMERCIAL REV. 6/12	60,4								
25 - 30 - 30 - 35 - 35 - 35 - 35 - 35 - 3	11/3								
25 — 25 — 30 — 35 — 35 — 40 — 40 — 40 — 40 — 40 — 40 — 40 — 4	Ë								
31 - 30 - 30 - 35 - 35 - 35 - 35 - 35 - 35	7 9.	_ 25 _							
SHAW COMMERCIAL Rev. 6/12/02 2003L0GS/GPJ 1		23							
BHAW COMMERCIAL Rec. 6/12/05 2000 1 2	=								
SHAW_COMMERCIAL Rev. 6/12/02 20031063 - 35	GP.	_							
SHAW COMMERCIAL 86. 6/12/02 2003/04 - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 3	Ses								
SHAW_COMMERCIAL Rev. 6/12/02 20	320	- 30 -							
SHAW_COMMERCIAL_Rev. 6/12/05 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 4	20								
SHAW_COMMERCIAL Rev. 90 — 40 — 40 —	12/02								
SHAW COMMERCIAL 40 — 40 — 40 —	6/1								
- 40 — 40 —	Re≷	- 35 -							
- 40 — 40 —	ξ								
WW COW HIS	R								
	MM								
	გ -	40							
	ЖАV	- 40 -							

Monitoring Well OB29-DO Page: 1 of 1

Surface El Top of Cas Screen: D Casing: Di Fill Materia	sing <u>NA</u> ia <u>1 in.</u> ia <u>1 in.</u> ia <u>Sand, E</u>	r Road, zer Bentonite	Beverly, M Total Hol Water Le Length L	Massacl le Depth evel Initia 15 ft. 25 ft.	husetts n <u>40.</u> al <u>NA</u>	0 ft.	Type/Size _ <i>PVC/0.010 in.</i> Type _ <i>NA</i> g/Core _Geoprobe 6600/Core	COMMENTS Samples not collected.
	Zebra Drilli van Moraiti						Date <u>8/7/03</u> Permit # <u>NA</u>	
			• •					
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Struct Geologic Descriptions are Based of	
- 0 -	va va							
- 5 -							No samples collected	
- 10 -								
- 15 - 								
_ 20 _								
25 —								
30 -								
35 —								
- 40 45 45							End of exploration at 40 feet below surfac Well Completion: Screen from 40 to 25 feet, casing from 2.5 Completed with flush roadbox set in concr Sand Pack/Seal: Sand 40 feet to 2 feet, bentonite from 2 fe	5 feet to grade. rete.
S - 50 -								

Monitoring Well

OB30-DOPage: 1 of 1

Project _	Varian Beve	erly			_ Ov	vner Varian Medical Systems	COMMENTS
			Beverly, Massa			Proj. No. <u>844221</u>	
						North East	
						Static NA Diameter 2 in.	
						Type/Size	
						Type/Size	
						g/Core	
						Wash with Roller Bit	
Driller $^{\Lambda}$	/lark D'Ambi	rosia_	Log By Dave	e Walker		Date <u>_12/9/03</u> Permit # <u>_NA</u>	
Checked	By <i>Brian</i> S	Smith		License	e No.		
					, i		
_ ≘	Well	<u>ر</u> ج	Sample ID % Recovery Blow Count Recovery	p Pic	USCS Class.	Description	
Depth (ft.)	We We	PID (ppm)	Secondary Control	Graphic Log	ဗ္ဂ	(Color, Texture, Structi	ure)
	ο̈	_	S S S S S S S S S S S S S S S S S S S	ا ق) NSC	Geologic Descriptions are Based o	
L 0 -							
L .							
						Brown, medium to fine SAND, little coarse	gravel and cobbles
L 10 -							
10 -							
						Tan, coarse to medium SAND	
20 -							
-							
- 30 -					sw		
					"	M E CAND	
-						Medium SAND, some gray rock chips	
L 40 -							
g							
1/3/							
F							
[50 -							
R.							
<u>-</u>							
2							
· 60 -							
S12(777		Brown CLAY, little silt and gray/white rock	cuttings
의 -				r///I	CL		
70				Y///		Bedrock	
₹ 70 –						End of exploration at 69 feet below surface	e arade
. <u></u>						End of exploration at 09 leet below Sulfact	e graue.
- الْ	∦ 					Well Construction:	
CIAI						Screen 59 to 69 feet; casing 59 feet to gra	ide; completed at grade
H 80 -						with flush roadbox	
IMO OMI						Sandpack/Seal: Sand 57 to 69 feet; bentonite 52 to 57 fee	t: arout 52 feet to arade
S 	<u>∥</u>					Cana or to object, bentonite of to of lee	i, grout oz ieet to grade
SHAW_COMMERCIAL Rev. 6/12/02 LOGS1203.GPJ IT_CORP.GDT 11/3/09 1							

Monitoring Well OB31-DO Page: 1 of 1 COMMENTS

	Varian Beve 150 Sohie						vner <u>Varian Medical Systems</u> Proj. No. <u>844221</u>	COMMENTS Building 5					
	Broken 4" casing in hole at 18' -												
		North East 2 in	46'										
	_						Static NA Diameter 2 in. Type/Size PVC/0.010 in.						
	ia <u>2 in.</u> al <u>Sand, b</u>												
Drill Co.													
	lark D'Ambi												
Checked E													
Checked	Jy					INO.							
Description Output O													
Depth (ft.)	Well	PID (ppm)	eco d	ap CC	Fog	SCI	(Color, Texture, Structu	ure)					
	Cor		San San	g all g		USC	Geologic Descriptions are Based or	· ·					
- 10 -													
					\exists								
<u> </u>				. 6			Large boulder						
_ 20 _													
	\bowtie												
-													
						ѕм							
30	\bowtie												
├							Coarse to medium SAND, some silt, little fi	ine gravel					
40													
:					iiiii '		Moist, SILT, some clay to fine sand						
[
50 -													
<u>[</u>					╢.	SM	Coarse to medium SAND, some fine sand	and silt					
<u> </u>						JIVI	Coarse to medium oand, some line salid	and sin					
60 –													
					$\ \ $	ѕм	Coarse to fine SAND, some silt and clay, s	some rock fragments					
						$-\parallel$	Bedrock						
5							End of exploration at 64 feet below surface	e grade.					
70 -							Well Construction:						
							Screen 54 to 64 feet; casing 54 feet to grad	de; completed at grade					
[with flush roadbox Sandpack/Seal:						
							Sand 52 to 64 feet; bentonite 50 to 52 feet	; grout 50 feet to grade					
80 -													
<u> </u>													

Monitoring Well OB32-DO Page: 1 of 1

Location Surface E Top of Ca Screen: [Casing: [Fill Mater Drill Co. Driller	Elev. NA asing NA Dia 2 in. Dia 2 in. rial Sand, b NH Boring	pentonite	Total Hole I Water Leve Length	Ssachusetts Depth 61 Il Initial NA 0 ft. Method Dr rian Smith	.0 ft. A Ri rive &	Dwner Varian Medical Systems Proj. No. 844221 North East Static NA Diameter 2 in. Type/Size PVC/0.010 in. Type PVC Dig/Core Track Mounted Wash with Roller Bit Date 12/17/03 Permit # NA Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 0 -						Costagle Descriptions are based on the coops.
- - 10 -					SP	Brown, coarse SAND, with trace silt
- 20 - -						
- 30 -					SW	Brown, coarse to medium SAND, with little silt and fine gravel
- 40 -						Gray, CLAY and SILT, with some fine sand
6/12/02 LOGS1203.GPJ IT_CORP.GDT 11/3/09	-				CL ML	Gray, SILT and CLAY, with fine to coarse sand and some fine gravel Bedrock
⁸ / ₂ − 70 −	_					End of exploration at 61 feet below surface grade. Well Construction: Screen 51 to 61 feet; casing 61 feet to grade; completed at grade with flush roadbox Sandpack/Seal:
SHAW_COMMERCIAL	-					Sand 49 to 61 feet; bentonite 45 to 49 feet; grout 45 feet to grade

Monitoring Well

OB33-DOPage: 1 of 1

	Varian Beve						wner Varian Medical Systems	COMMENTS	
Location	150 Sohie	r Road,	Beverly,	Massa	chusetts	;	Proj. No. <u>844221</u>	Broken 4" stell casing in ground at 17' - 52'.	
Surface E	lev. NA		Total Ho	ole Der	oth _56.		North East		
							Static _ <i>NA</i> Diameter _2 <i>in.</i>		
							Type/Size		
							Type PVC		
							g/Core		
							Wash with Roller Bit		
							Date		
			• •						
Checked	By <i>Brian</i> S	3111101			License	e No.			
Depth (ft.)	Well	Sample ID % Recovery	Blow Count Recovery	Description Color, Texture, Structure) Geologic Descriptions are Based on the USCS.					
							,		
L 0 -									
-					, o, o .				
					00.				
10 -							Brown, coarse SAND and GRAVEL with tr	ace silt	
					$\begin{bmatrix} 0 & \checkmark \\ 0 & 0 \end{bmatrix}$	0.5			
_					.00.	GP			
L 20 -					, , ,				
20 -					, 0, ~; , 0 0 .				
ļ .									
					, ° ° °				
- 30 -					.00.				
-							Brown, medium to fine SAND, with some s	silt and gravel	
8							, 1111 2	3	
- 40									
2					ЩЩП	GM			
) 									
- 50 -							Gray/brown, medium to fine SAND, with so	ome silt and fine gravel	
3							5.2.5,2.2,	and mid graver	
							Bedrock		
							End of exploration at 56 feet below surface	e grade.	
60 -	1						Well Construction:		
							Screen 46 to 56 feet; casing 46 feet to gra	de; completed at grade	
	1						with flush roadbox Sandpack/Seal:		
3							Sand 44 to 56 feet; bentonite 42 to 44 feet	t; grout 44 feet to grade	
 70 -]								

80

Drilling Log

Monitoring Well OB34-DO Page: 1 of 1 COMMENTS Project Varian Beverly Owner Varian Medical Systems Location __150 Sohier Road, Beverly, Massachusetts _____ Proj. No. <u>844221</u> ___ Total Hole Depth 64.0 ft. North Surface Elev. NA Top of Casing NA Water Level Initial NA Static NA Diameter 2 in. __ Type/Size __*PVC/0.010 in.* __ Length __10 ft. Screen: Dia 2 in. _____ Type _*PVC* Casing: Dia 2 in. _____ Length 54 ft. ____ Rig/Core *Track Mounted* Fill Material Sand, bentonite, grout Drill Co. NH Boring Method Drive & Wash with Roller Bit Driller Mark D'Ambrosia Log By Brian Smith Date 1/7/04 Permit # NA Checked By Brian Smith License No. _ Blow Count Recovery Well Completion Description Graphic Log Depth (ft.) PID (ppm) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. 10 20 Brown, coarse SAND, with some gravel SW 30 40 Rev: 6/12/02 LOGS1203.GPJ IT_CORP.GDT 11/3/09 50 Gray/brown, medium to fine SAND, with some silt and gravel GM 60 **Bedrock** End of exploration at 64 feet below surface grade. 70 Well Construction: Screen 54 to 64 feet; casing 54 feet to grade; completed at grade with flush roadbox Sandpack/Seal: Sand 52 to 64 feet; bentonite 50 to 52 feet; grout 50 feet to grade

Monitoring Well

OB35-DOPage: 1 of 1

ı	Project _	Varian Beve	erly			_ 0	wnerVarian Medical Systems	COMMENTS
ı	Location	150 Sohie		Beverly, Mass			Proj. No. <u>844221</u>	Building 5
;	Surface E	lev. NA		Total Hole De	pth <u>63</u>	.0 ft.	North East	
	Top of Ca	sing <i>NA</i>		Water Level I	nitial <u>N</u> A	١	Static NA Diameter 1 in.	
							Type/Size _ <i>PVC/0.010 in.</i>	
							Type _ <i>PVC</i>	
	-			-			g/Core Skid Mounted	
							Wash with Roller Bit	
							Date <u>12/29/03</u> Permit # <u>NA</u>	
				• .				
	۔	Well		Sample ID % Recovery Blow Count	. <u>e</u>	Class.	Description	
	Depth (ft.)	Well	PID (ppm)	mple kecor w Cc	Graphic	SC	(Color, Texture, Structu	ıre)
		Co		Sal % R	9	nscs	Geologic Descriptions are Based o	
ŀ							<u> </u>	
ŀ	— O —				ШПП			
l	-				ЩЩТ		Coarse to fine GRAVEL, coarse to fine sa	nd and silt
l	— 10 —				ЩЩТ	GM		
ŀ	_				ЩЩП			
ŀ	— 20 —							
ŀ	-							
					H		Cobbles	
ŀ	— 30 —							
						GM		
ŀ	-							
							Silty TILL with clay	
_	— 40 —							
/3/09								
	-							
9.		Y // Y //				GC		
Ř	— 50 —							
=								
3PJ	-							
203.0								
GS1	— 60 —						BEDROCK	
6/12/02 LOGS1203.GPJ IT_CORP.GDT 11/3/09					778777		End of exploration at 63 feet below surface	e grade.
6/12/								
Rev:	70						Well Construction:	do: completed at are de
اب	— 70 —						Screen 53 to 63 feet; casing 53 feet to gra with flush roadbox	ue, completed at grade
RC.							Sandpack/Seal:	
MME	_						Sand 50 to 63 feet; bentonite 48 to 50 feet	; grout 48 feet to grade
8	00							
SHAW_COMMERCIAL	— 80 —							

Monitoring Well OB36-DO Page: 1 of 1

Location Surface E Top of Ca Screen: D Casing: D Fill Materi Drill Co. Driller	lev. NA sing NA ia 1 in. ia 1 in. Sand, t NH Boring Steve, Adam By Ray Ca	er Road,	Beverly, Mas Total Hole D Water Level Length 10 Length 52 e, grout Log By 70	epth 62 Initial N. ft. ft. ethod D. m LeCalv	Ringle & ez		COMMENTS Building 6 Loading Dock
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery Blow Count	Recovery Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based o	
- 0 - 							
- 10 - 							
- 20 - 					SM	Coarse to fine SAND and medium to fine of	gravel, some silt (till)
- 30 -							
40 -						Boulder Coarse to fine SAND, medium to fine grav	vel, some silt (till)
Rev: 6/12/02 LOGS1203.GPJ IT_CORP.GDT 11/3/09	Y // Y //				SM		
- 00 – 60 – 60 –					CL	Silty CLAY and GRAVEL Bedrock	
MERCIAL Rev: 6/12/02						End of exploration at 62 feet below surface Well Construction: Screen 52 to 62 feet; casing 52 feet to grawith flush roadbox Sandpack/Seal:	de; completed at grade
SHAW COMMERCIAL						Sand 50 to 62 feet; bentonite 48 to 50 feet	t; grout 48 feet to grade

Monitoring Well

OB37-DOPage: 1 of 1

	Varian Beve						wner Varian Medical Systems	COMMENTS
Location .	150 Sohie	r Road,	Beverly,	Massa	chusetts	;	Proj. No. <u>844221</u>	Hallway Location
Surface El	lev. NA		Total Ho	ole Der	oth <u>61.</u>		North East	
							Static NA Diameter 1 in.	
							Type/Size _ <i>PVC/0.010 in.</i>	
							Type PVC	
_			_				g/Core Skid Mounted	
							Wash with Roller Bit	
							Date	
Checked E	By <i>Ray Ca</i>	adorette			License	e No.		
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based or	· ·
- 0 -								
- 10 -								
 - 20 -							Coarse to fine SAND, medium to fine grav	el, some silt (till)
						SM		
- 30 - 								
10							Boulder	
,								
						SM	Coarse to fine SAND, medium to fine grav	el, some silt
5 - 50 -								
60 -					K///K	CL	Silty CLAY and GRAVEL Bedrock	/1
							End of exploration at 61 feet below surface	e grade.
<u> </u>							2.13 3. Supportation at 31 100t bolow surface	. g. aao.
							Well Construction:	
 70							Screen 51 to 61 feet; casing 51 feet to gra	de; completed at grade
							with flush roadbox Sandpack/Seal:	
							Sand 50 to 61 feet; bentonite 48 to 50 feet	; grout 48 feet to grade
								-
80 -								

Monitoring Well OB-38-DO Page: 1 of 1

Si To Si Ci Fi Di	Top of Casing NA Water Screen: Dia 2 in. Leng Casing: Dia 2 in. Leng Fill Material Sand, bentonite, ground Drill Co. New Hampshire Boring Driller Mark D'Ambrosen Log E					oth 55. itial NA	0 ft. Riive an	g/Core Truck Mounted Mobil B57	,
	0							Pavement	
-	- 10 30					000000000000000000000000000000000000000	GW	Greyish, medium to fine GRAVEL, some n	nedium sand.
60/٤/	40 —							Greyish, SILT and CLAY.	
U IT_CORP.GDT 11	50 —		0.5 3.7	<u>S1</u> 100% <u>S2</u> 30%	16 X		ML	Tannish grey, wet, SILT and CLAY, trace for the control of the con	 angular fragments of
JGS2004.GF	60 —				0			End of exploration at 55 feet below surface Well Construction:	e grade.
SHAW_COMMERCIAL Rev: 6/12/02 LOGS2004.GPJ IT_CORP.GDT 11/3/09	- 70 —							Screen 35 to 55 feet; casing 35 feet to grawith flush road box Sandpack/Seal: Sand 33 to 55 feet; bentonite 31 to 33 feet cement 0.5 feet to grade	
SHAW_CC	80 —								

Monitoring Well OB-39-DO Page: 1 of 1

Loca Surf Top Scre Casi Fill N	ation ace El of Caseen: Di ing: Di Materia Co	sing NA ja 2 in. ja 2 in. ja Sand, b New Hamp flark D'Ambi By R. Cad	n Road,	Beverly, Marchael Hole Water Lev Length Length Se, grout oring Log By Length Log By Le	e Depvel In 20 ft. 35 ft. Meth	oth 55. itial NA	Oft. Rive and the No.	Date Permit #	COMMENTS No split spoon samples collected. Geological logging was completed using drill cuttings.
	(ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based or	
	0 —	<u> </u>				V D V		Grass	
- 1	- 10 — -					000000000000000000000000000000000000000	GW	Medium to fine GRAVEL, cobbles, mediun	n sand (glacial till).
-	20 —					00000			
	30 —					X OX		BOULDER.	
	- 40 — -					000000	GW	Medium to fine GRAVEL, cobbles, mediun	n sand (glacial till).
ORP.GDT	50 —						SP	SAND.	
 □	_							Weathered light granite BEDROCK, potass quartz.	sium feldspar and
\$\$2004.G	60 —							End of exploration at 55 feet below surface	e grade
Rev: 6/12/02 LOC	- 70 —							Well Construction: Screen 35 to 55 feet; casing 35 feet to gra with flush roadbox Sandpack/Seal: Sand 33 to 55 feet; bentonite 31 to 33 feet cement 0.5 feet to grade	•
SHAW_COMMERCIAL	- 30 —								

Monitoring Well OB-40-DO
Page: 1 of 1
COMMENTS

F	Proiect	Varian Beve	erly			O	wner _Varian Medical Systems, Inc.	COMMENTS
				Beverly, Mas			Proj. No. <u>108939</u>	
							North East	
							Static NA Diameter	
							Type/Size	
				-			Type	
	-			-				
		New Hamp	g/Core					
							Date _7/6/04 Permit # _NA	
				0 ,			Date Termit#	
, ,	JIICORCU	п I		1		C 140.		
-	_	u oi		alg alg	ی جے	ass.	Description	
-	Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Recovery Graphic Log	USCS Class.	·	uro)
-	Δ	Con	_ 3	Sar % Re Blov	<u>a</u> <u>a</u>	SC	(Color, Texture, Structu Geologic Descriptions are Based or	
┟							Geologic Descriptions are based of	Title 0000.
-								
-								
-							Grass	
ŀ	- 0 -	V/A V/A			Ž D Ž		Glass	
-								
ı	-				1000			
-	40							
Ī	– 10 –				975			
	_						Brown, TILL with cobbles	
-								
ļ	- 20 -				K			
-								
╌					900			
-					Ď v Č			
ŀ	- 30 -							
-					K	GW		
ŀ						GW		
-	40				000			
Ī	- 40 -				N v Č			
L					1 V V			
8					K		Croy TILL with ashbles	
11/3/	- 50 -						Grey, TILL with cobbles	
					000			
P.G								
ρ ρ					1 S			
바	- 60 -				No St			
GP					\$ 60°C		Cobble or possible weathered bedrock.	
2004					200		Cobbie of possible weathered bedreek.	
.068	- 70 -				Roc	\vdash		
22	70 -						End of exploration at 69 feet below surface	e grade.
3/12/(<u> </u>					Well Construction:	
ek:							Screen 49 to 69 feet; casing 49 feet to gra-	de; completed at grade
7	- 80 -	∦					with flush roadbox.	-
RCIA	-						Sandpack/Seal: Sand 47 to 69 feet; bentonite 45 to 47 feet	arout 47 to 0.5 feet
MME		╢ ┃					cement 0.5 feet to grade	, 3.000 10 0.0 1001,
Ŝ								
SHAW_COMMERCIAL Rev: 6/12/02 LOGS2004.GPJ IT_CORP.GDT 11/3/09	- 90 -	1						
ω L		11		1	- II	11	II.	

Monitoring Well

OB-45-DOPage: 1 of 2

Project _	Varian Beve	rly				_ Ow	ner Varian Medical Systems, Inc.	COMMENTS						
	Project Varian Beverly Owner Varian Medical Systems, Inc. COMMENTS Location Building 5, 150 Sohier Road, Beverly, Massachusetts Proj. No. 150151 ND = Not detected *PID response may have been													
Surface E	lev. <u>76.7 ft</u>	*PID response may have been												
Top of Ca	sing _76.48	ft.	Water L	evel Init	tial <i>NA</i>	ı	Static <u>NA</u> Diameter <u>4 in.</u>	due to moisture.						
	ia <u>2 in.</u>			15 ft.			Type/Size PVC/Slot 0.010 in.							
							Type							
	al <i>Native,</i>					_ Rig	/Core Hollow Stem Auger							
Drill Co.							em Auger							
	G. Caovette						Date							
	By R. Cado													
₽_	Well	o Î	Sample ID % Recovery	Blow Count Recovery	hic	Class.	Description							
Depth (ft.)	M We	PID (ppm)	Recub	ow C eco	Graphic Log	USCS ((Color, Texture, Structi	ure)						
	ပိ		% <u>%</u>	폴~		NS	Geologic Descriptions are Based	on the USCS.						
- o -	4 4				· · · · · · · · · · · · · · · · · · ·									
							Hand clear to 5'							
							SAND and loose GRAVEL (Fill)							
- 2 -														
						FILL								
4 -														
-				23 🛚			Light brown, dry, very stiff CLAY; some po	orly sorted coarse gravel						
- 6 -		ND	050/	32		CL	Light brown, any, vary can object, come po	ony contou, course graver						
			25%	35 28										
-					////////									
- 8 -														
10														
- 10 -				15			Gray, dry, boulder to 11.5'							
-		ND	45%	27 🛆 30										
_				30		CL	Light brown, dry, very stiff CLAY to 12'							
2/14														
1/9														
[- 14 -														
				40 🖂	///////		Links because of a second at # OLAN, a const	6						
° 10		ND		18 30		CL	Light brown, damp, very stiff CLAY; some sorted gravel (1/4" to 3/4")	line and coarse, poorly						
<u>-</u> 16 -		ND	35%	28 30		CL	graver (iv it evil)							
- 1965.0				30	///////									
립 - 18 -														
2014														
SHAW_COMMERCIAL_Rev: 8/9/13_2014_BLD65.GPJ_IT_CORP.GDT_6/12/14														
<u></u>				17 🗸			Light brown, damp, stiff, SANDY CLAY; so	ome well sorted fine aravel						
		ND	45%	35 🛆		CL	5 · ·····, ·····, ······, ·····, ···· ··· ··							
JAL CO			45%	28 35										
[22 -														
- PMO														
% - 24 -														
AH8							Continued Next Page	•						

Monitoring Well

OB-45-DOPage: 2 of 2

Project .	Varian Beverly	Owner	Varian Medical Systems, Inc	2.
Location	Building 5, 150 Sohier Road, Beverly, Massac	husetts	Proj. No.	150151

Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 24 -	XA XA						Continued
_ 26 —		ND	60%	29 50		sw	Light brown, damp, very hard, SAND; some well sorted fine gravel (spoon refusal at 26.5' - 27')
28 -					*******		
- 30 -		ND	40%	22 X 18 Z 27		sw	Gray, dry, very hard, poorly sorted, coarse, SAND; some well sorted, coarse gravel
32 -				37	*****		
34 -				57 🔀	63-21 7		Light gray, dry to slightly damp, coarse GRAVEL with some light
- 36 - 		ND	25%	42 35 120		GC	brownish gray, interbedded clay lenses (approximately 0.5" - 1" in thickness)
- 38 -							
- 40 -		ND	35%	13 120	• • • • • • • • • • • • • • • • • • •	SW	Brown, dry, medium SAND, some well sorted, coarse GRAVEL (spoon refusal at 41')
- 42 - 			3370		• • • • • • •		
- 44 -							
19 — 46 —		5.3*	30%	17 X 25 50		SW	Brown, wet, poorly sorted, medium SAND; some poorly sorted, fine gravel
- 48 —							
46 – 46 – 48 – 48 – 50 – 50 – 50 – 50 – 50 – 50 – 50 – 5							End of exploration at 49 feet below surface grade
200 – 52 – 54 – 54 – 54 – 56 – 56 – 56 – 56 – 56							
56 —							

Monitoring Well

OB-52-DOPage: 1 of 1

	Varian Beve					_ 0\	wner Varian Medical Systems, Inc.	COMMENTS
Location	Sonning R	oad, Be	erly, MA				Proj. No. <u>631010758</u>	
Surface E	lev. NA		Total Hole	Dep	th <u>50.</u>	0 ft.	North East	
							ft. Static NA Diameter 4 in.	
							Type/Size _PVC/0.10 Slot in.	
							Type _ <i>PVC</i>	
							g/Core Hollow Stem Auger	
							Stem Auger/Air Rotary	
							Date _5/17/21 Permit # _NA	
			• •					
		1		П				
	Well		Sample ID % Recovery	Blow Count Recovery	<u>.</u> 2	USCS Class.	Description	
Depth (ft.)	Well	PID (ppm)	nple eco	N CO	Graphic Log	SCI	(Color, Texture, Structu	ura)
	Con	_	Sar % R	용 웨	Ō	SC	Geologic Descriptions are Based or	
				$-\parallel$			Coolegie Decemptions are Bassa of	1 1110 0000.
							Asphalt (0-0.3')	
├ 0 -							Aspirali (0-0.3)	
ļ -								
_								
├ 5 -								
-								
- 10 -								
-								
- 15 -								
ļ .								
 20 −								
-								
_ 25 _								
20								
-								
- 30 -								
∑ 35 \								
- 40 –								
AP -								
ŏ <u>-</u> -								
⊒ 45 −								
38.6								
β								
288, LOGO Rev. 89/13 2021, LOGS, GPJ 1T CORP.GDT 7/22/21 20 20 20 20 20 20 20 20 20 20 20 20 20								
13								
6/8								
55 —								
g	1							
을 - 60 -								
CB8								

Monitoring Well **OB-58-DO**

Page: 1 of 2

Project _	COMMENTS Samples collected for 8260							
Location							Proj. No. <u>631010764</u>	(VOC) analysis at 35' and 55' below ground surface.
							North East	
							Static _ <i>NA</i> Diameter _ <i>2 in.</i>	Target high resistivity zone 35'.
							Type/Size PVC/10 Slot in.	ND = non-detect
Casing: D	ia <u>2 in.</u>		Length	45ft			Type _ <i>PVC</i>	
							g/Core	
					Stem Auger 2"			
Driller			Log By	KT				
Checked I	_{Ву <i> JA</i>}				License			
	no		Ole Var	rut A	0	ISS.	Description	•
Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	·	
ا مُ		" @	Sam % Re	3low Rec	½	SCS	(Color, Texture, Structu	
			.0				Geologic Descriptions are Based or	n the USCS.
L 0 -	L							
"	1	D A			\		Augured straight to 15' bgs, no samples to	o visually inspect
-					\			
	A A A	Ā			\ /			
⊢ 5 −	Δ A	A			$ \setminus / $			
		Δ.			\/			
-	A D	٨						
	A 4 A	1°			/\			
├ 10 −	4 A	i A			$ \ / \ $			
	Δ. i ^Δ Δ	à ^Δ			/ \			
-	Δ 4 ^Δ	Ď 4 [∆]			/ \			
	Δ Δ Δ	△			// \			
- 15 -	D A	. · · · · · · · · · · · · · · · · · · ·		9 🗸			Brown med-fine SAND with silt, semi-den	se no odor dry angular
		0.2	50%	9 4			gravel (60% sand, 30% silt, 10% gravel)	se, no odor, dry, angular
-		ND		10 7		SM		
]	A A A	A IND	100%	18/_			Defined hand week from the	
∑ — 20 —	4 4 A	ND	0%		$ \setminus / $		Refusal, hard rock fragments	
~ -		Þ.		- 4	$\mid X \mid$			
[Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	β ,Δ		23 [<u> </u>		Brown word fire OAND ''I 'I'	
3	A A	ND		24 26		SM	Brown med-fine SAND with silt, angular g no odor (50% sand, 30-40% silt, 15-20% s	
<u> </u>	A A	b		234688324417217841			Gray SILT with m-f sand, angular gravel (
<u>۲</u>		.^ 0.5 ▶		14 17	$ \ \ \ $	ML	no odor (60% silt, 30% sand, 20% gravel)	
-	A A A	0.4	100%	$\frac{12}{17}$	$ \ \ \ \ $	IVIL		
й 		Ä	100%	41 / 18 7	++++		Gray SILT, some f-c angular gravel, liittle	clay trace sands very
<u>2</u>	Δ Δ Δ Δ .	0.5	80%	18/	$ \ \ \ \ $	ML	dense, dry no odor (45% silt, 30% clay, 5	
	4 4 4	,⁴ 0.6	1000/	17 18		ML	Gray SILT, some clay, some sand, little f-	coarse angular gravel,
<u> </u>	A 4	Δ.4	100%	24 / 13 /	++++		trace sands, very dense, wet, no odor Gray SILT, some clay, some sand, little f-	coarse angular gravel
∛ 2 – 35 <i>–</i>	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	0.1	85%	19 304 131 21 321 21		ML	very dense, wet, no odor (50% silt, 25% s	
35 <u></u>	A A	0.4	100%	28 21 28 21		SP	gravel) Brown med-coarse SAND, little silt and cl	av. trace angular gravel
		. [△]	100%	21 / 29 /			loose, wet, no odor (75% sand, 25% silt a	nd clay)
3		0.2	100%	37	$ \ \ \ $	ML	Gray SILT, some sand, little clay, subang wet, no odor (65% silt, 25% sand, 10% cla	
5 - 40	4 4 4	ND		7/		ML		ay, graver,
		1					Continued Next Page	

Monitoring Well

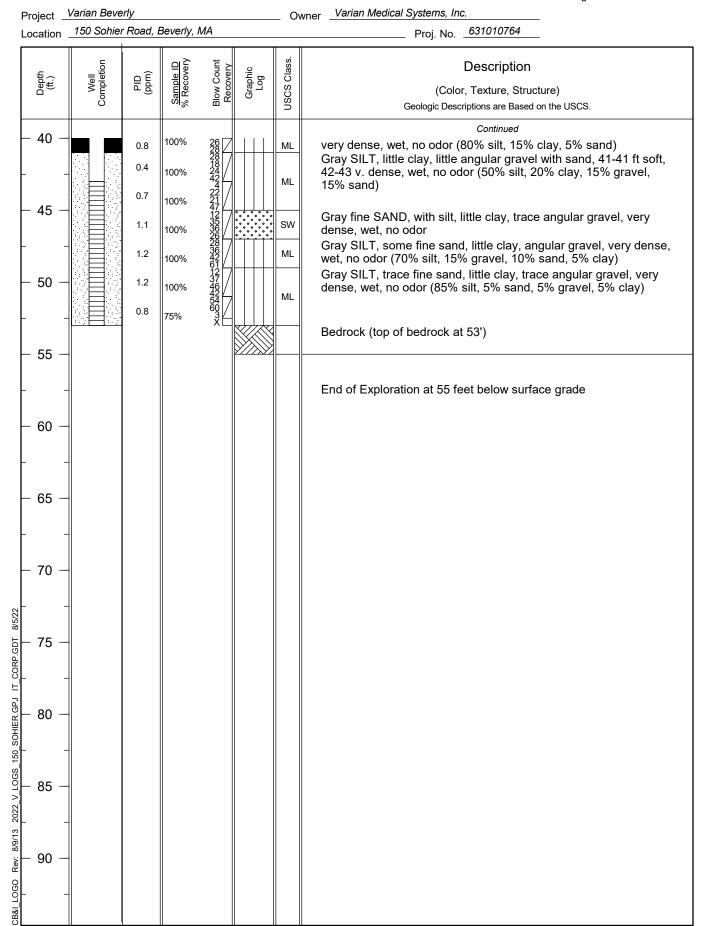
OB-58-DO

Page: 2 of 2

Project Varian Beverly Varian Medical Systems, Inc. Owner Location 150 Sohier Road, Beverly, MA Proj. No. <u>631010764</u> Well Completion Blow Count Recovery USCS Class. Sample ID % Recovery Description Graphic Log PID (mdd) Depth (ft.) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Continued 40 100% `Gray SILT, trace clay, angular gravel, very dense, wet, no odor ND 9123466848831689523685937108180XXX 111111 ML 0.1 Gray SILT, some sand, little clay, angular gravel, very dense, wet, 100% no odor (65% silt, 25% sand, 10% clay/gravel) 100% 45 ML0.2 100% 0.3 100% Gray SILT with gravel, suspected fractured weathered bedrock, 50 ML ND 10% very dense, wet, no odor Gray SILT, little sand, trace gravel 0.6 100% ML 0 100% 55 Bedrock 0.4 End of Exploration at 57 feet below surface grade 60 65 70 CB&I_LOGO Rev: 8/9/13 2022_V_LOGS_150_SOHIER.GPJ IT_CORP.GDT 8/5/22 75 80 85 90

Monitoring Well

OB-59-DOPage: 1 of 2


Project _	Varian Beve	erly				_ 0	wner Varian Medical Systems, Inc.	COMMENTS	
Location	150 Sohiel						Proj. No631010764	Samples collected for 8260 (VOC) analysis at 24' and 51'	
Surface E	lev. NA	below ground surface.							
							Static <u>NA</u> Diameter <u>2 in.</u>	Target high resistivity zone	
							Type/Size _PVC/10 Slot in.	24-25'.	
			_				Type PVC		
-			-				g/Core		
							Stem Auger 2"		
							Date		
	-,								
_	tion		Sample ID % Recovery	Blow Count Recovery	<u>.</u> 2	Class.	Description		
Depth (ft.)	Well	PID (mdd)	ll du	N Co	Graphic Log	S CI	(Color, Texture, Struct	ure)	
"	Cor		Sar R	Bo	g	nscs	Geologic Descriptions are Based of	•	
							Concrete		
├ 0 -							Augured straight to 15' bgs, no samples t	o visually inspect	
	A 4 A A A A				\ /				
-	D D				\ /				
					$ \setminus / $				
├ 5 -					$ \setminus / $				
					\/				
-	A 4 A A A				ΙXΙ				
	1 A A A	1			/\				
 10 -					/ \				
	A A A A				/				
-	[A 4 A A A A A A A A A A A A A A A A A A				/ \				
					/ \				
- 15 -	Α Δ Α Δ Δ Δ Δ Δ Δ			18 7			Medium brown sandy SILT, semi-dense,	dry, no odor (70% silt,	
	1 b	1.7	100%	38 61		ML	30% sand)	,	
-		NA NA	00/	19 38 60 2 X			NA refued		
2			0%	- \$ 60 1	$ \setminus / $		NA, refusal		
20 -		NA	0%	\$	X		NA, refusal (cobbles in shoe)		
		1.2		25 46	$ / \setminus $				
인 -	β β β β β β β β β β	1.4	100%	XX5661033486623883			Charle amount like SH T. darrage I	000/ 514 000/	
8	A A A	NA	0%	64 58			Gray gravelly SILT, dense, dry, no odor (angular gravel, 10% fine sand)	ou% siit, 30% coarse	
≒ 25 −				46 42 7		ML	angular graver, 1070 mile sama)		
д Б		0.6	100%	38 43					
事 -		0.6	10001	7			Gray SILT, some f-coarse angular gravel	, little clay, trace sands,	
OS O		"."	100%	12	$ \ \ \ \ $	ML	v. dense, dry no odor (45% silt, 30% grav	rei, 15% clay, 5% sand)	
्र्ले	D D	0.5	100%	12 18 38 60	$ \ \ \ $				
889/13 2022 V_LOGS_150_SOHIER.GPJ IT_CORP.GDT	Δ Δ			60 /	KH		NA, refusal		
<u>-</u>		NA	0%						
2022	A 4 A	0.3	4000/	10 37 7			Gray SILT, some f-coarse angular gravel		
ੁ⊏ 35 −			100%	27/	$ \ \ \ \ $	ML	dense, wet, no odor (45-50% silt, 20% gr sand)	avei, 15% clay, 15%	
	D D	0.2	100%	16 /	$ \ \ \ $				
Ke	A A A			107557 56465601215	++++	 .	Gray SILT, some f-coarse sand, little clay	, trace angular gravel,	
8		1.6	100%	20 / 21 /	ШШ	ML	wet, no odor, sand layer at 38 ft.		
CB% LOGO Rev. - 40	مُن مُ الْمُن مُ	0.8		12/		ML	Gray SILT, little clay, trace fine sand, trac		
SB CB							Continued Next Page		

Monitoring Well

OB-59-DO

Page: 2 of 2

Monitoring Well

P-21-DO Page: 1 of 1

Project _	∕arian Beve	rly				_ Ov	wner Varian Medical Systems, Inc.	COMMENTS
	34 Longvie							
							North East	
							Type/Size PVC	
							Type PVC	
							g/Core Hollow Stem Auger	
	Geosearch							
			Log By	Sara	Head		Date <u>3/1/22</u> Permit # <u>NA</u>	
Checked E	By <u>Jen Ga</u>	iley			License	e No.		
	_					, i		
_{= -}	tion	2 =	e D	ount	Graphic Log	USCS Class.	Description	
) Sept	Depth (ft.) Well Completion (ppm) PID (ppm) Sample ID % Recovery Recovery Graphic					0 80	(Color, Texture, Struct	ure)
	Ö	Con Sar Sar Sar Sar Sar Sar Sar Sar Sar Sar) 	Geologic Descriptions are Based o	
							3 1	
├ 0 -	4 4							
					.0,			
	A A				000			
├ 2 -					۰٥٠٪،		Hand Cleared to 5'	
	\[\begin{picture}(100,0) & \begin{picture}(10	0.0			000	GP	Light Brown, poorly sorted, SAND and GF	RAVEL, some fines.
	4 A A				. 0, _,			
├ 4 →	Δ. Δ.							
	A 4 A 4				0 0 °		<u> </u>	
	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ			1 2				
⊢ 6 ⊣	Δ Δ			2				
	Δ Δ			2			Reddish brown, poorly graded,SAND	
- 8 -	α 4 ^Δ α 4 ^Δ	0.2				SP	recadion brown, poorly graded, 57 (14)	
		0.2	15%					
- 10 -								
				5				
ր 12 ऱ				44 36				
12 4				46				
TOS				I۸I				
일 14 -		0.1	70%	/\l		SP		
위 _				/ /				
= 40								
급 - 16 -								
50				L		$\vdash\vdash$		
18 -								
							Bedrock encountered - End of Exploration	n - 17 feet below ground
							surface	
₹ <u></u> 20 −								
2 2								
20%								
€ 22 −								
CB81 LOGO Rev: 8/9/13 2022 V.34 LONGVIEWLOGS.GPJ IT CORP.GDT								
ğ X								
응 - 24 -								
1								
CB8								