April 25, 2012 File No. 1753-03-01

*****DRAFT****

Phase II Environmental Site Assessment

Former Lunt Silversmiths, Inc. 298 Federal Street Greenfield, Massachusetts

Prepared For:

Town of Greenfield 114 Main Street Greenfield, Massachusetts 01301

Prepared By:

O'Reilly, Talbot & Okun Associates, Inc. 293 Bridge Street, Suite 500 Springfield, Massachusetts 01103

EnvironmentalSafetyHealthGeotechnical

293 Bridge Street
Suite 500
Springfield, MA 01103
Tel 413 788 6222
Fax 413 788 8830
www.oto-env.com

File No. 1753-03-01 April 25, 2012

Mr. Robert Pyers Director of Economic Development and Marketing Town of Greenfield 114 Main Street Greenfield, MA 01301

Re: Brownfield Phase II Environmental Site Assessment Report

Lunt Silversmith Site 298 Federal Street

Greenfield, Massachusetts

Dear Mr. Pyers:

O'Reilly, Talbot & Okun Associates, Inc. (OTO) is pleased to present this Phase II environmental site assessment of the former Lunt Silversmith site. This report presents our assessment of site soil, groundwater, soil gas, and indoor air conditions, and provides preliminary cost estimates for remediation.

We appreciate the opportunity to work with you on this project. Should you have any questions regarding the report, please do not hesitate to contact us.

Sincerely, O'Reilly, Talbot & Okun Associates, Inc.

DRAFT DRAFT

Valerie D. Tillinghast; LSP Kevin J. O'Reilly; LSP

Associate Principal

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 BACKGROUND	
2.1 SITE DESCRIPTION / SITE SETTING	2
2.1.1 General Description	2
2.1.2 MCP Reporting Categories	2
2.1.3 Goly's Garage	
2.1.4 Phase I ESA Findings	
3.0 PHASE II ACTIVITIES	5
3.1 SOIL BORINGS AND MONITORING WELL INSTALLATION	5
3.2 SOIL SCREENING AND ANALYSIS	
3.2.1 VOCs in Soil	8
3.2.2 Petroleum Hydrocarbons in Soil	8
3.2.3 PCBs in Soil	9
3.2.4 Metals in Soil	9
3.3 GROUNDWATER ASSESSMENT	10
3.3.1 VOCs in Groundwater	11
3.3.2 Petroleum in Groundwater	12
3.3.3 Metals and Cyanide in Groundwater	13
3.4 GROUNDWATER FLOW DIRECTION	13
3.5 CATCH BASIN SAMPLING	
3.6 SUBSLAB SOIL GAS ASSESSMENT	15
3.6.1 Soil Gas Point Installation	15
3.6.2 Soil Gas Sample Collection	15
3.6.3 Soil Gas Analysis and Results	10
3.7 INDOOR AIR ASSESSMENT	17
4.0 CONCEPTUAL SITE MODEL	
4.1 CVOCS IN SOIL AND GROUNDWATER	18
4.2 PETROLEUM IN SOIL NEAR AST	
4.3 METALS IN SOIL NEAR CYCLONES	
4.4 METALS IN FILL SOUTH OF BUILDING	
4.5 WASTE MATERIALS REMAINING IN BUILDING	
5.0 PRELIMINARY REMEDIAL COST ESTIMATES	
6.0 SUMMARY AND CONCLUSIONS	
7.0 LIMITATIONS	25
20 DEFEDENCES	25

TABLE OF CONTENTS (continued)

TABLES

Table 1	Soil Analytical Results: Volatile Organic Compounds (VOCs)
Table 2	Soil Analytical Results: Volatile and Extractable Petroleum Hydrocarbons
Table 3	Soil Analytical Results: Polychlorinated Biphenyls (PCBs)
Table 4	Soil Analytical Results: Inorganic Analytes; Manufacturing Area
Table 5	Soil Analytical Results: Inorganic Analytes; Ball Fields
Table 6	Groundwater Analytical Results: Volatile Organic Compounds (VOCs)
Table 7	Groundwater Analytical Results: Volatile and Extractable Petroleum Hydrocarbons
Table 8	Groundwater Analytical Results: Inorganic Analytes
Table 9	Monitoring Well Survey and Groundwater Elevation Data
Table 10	Catch Basin Water Analytical Results
Table 11	Soil Gas Photoionization Detector Screening Results
Table 12	Soil Gas Analytical Results
Table 13	Indoor Air Analytical Results
Table 14	Preliminary Remedial Cost Estimates

FIGURES

Figure I	Site Locus
Figure 2	Site Plan
Figure 3	Soil Boring and Monitoring Well Locations
Figure 4	MassGIS Priority Resources Map
Figure 5	Groundwater Contour Plan
Figure 6	Soil Gas and Indoor Air Sample Locations
Figure 7	Areas of Concern: CVOCs and Fuel Oil
Figure 8	Areas of Concern: Metals in Soil

APPENDICES

Appendix A	Limitations
Appendix B	Information from Goly's Garage Site
Appendix C	Boring Logs
Appendix D	Laboratory Reports
Appendix E	Groundwater Sampling Logs
Appendix F	Utility Line Mapping and Outfall Sample Information
Appendix G	Soil Gas Point Construction Details and Sampling Logs

1.0 INTRODUCTION

This report presents the results of a Phase II Environmental Site Assessment performed at the former Lunt Silversmiths site at 298 Federal Street in Greenfield, Massachusetts. A Site locus is attached as Figure 1. A site plan showing the property subject to this assessment is provided as Figure 2. The term "Site" as used in this document refers to the study area at 298 Federal Street, including the baseball fields west of the former manufacturing area, but not the northeastern portion of the building (parcel 95-1-UTA).

Our assessment was conducted in accordance with the scope of work identified in our December 6, 2011 proposal the Town of Greenfield, and follows guidance provided in ASTM's "Standard Guide for Environmental Site Assessment: Phase II Environmental Site Assessment Process", Standard E1903-11. The objectives of our assessment were to:

- evaluate the Recognized Environmental Conditions (RECs) identified in the October 19, 2011 Phase I Environmental Site Assessment (ESA) prepared by Weston & Sampson Engineers, Inc. (W&S, 2011);
- render an opinion as to the potential presence of oil or hazardous materials in the soil and groundwater at the Site; and
- develop preliminary remedial cost estimates.

Our study included the assessment of soil, groundwater, soil gas, and indoor air conditions at the Site. Two conditions were identified which require assessment under the Massachusetts Contingency Plan (MCP). These are metals in Site soil, and chlorinated volatile organic compounds (CVOCs), primarily trichloroethylene (TCE), in Site soil and groundwater. The primary exposure route of concern for the CVOCs is inhalation of vapors in indoor air inside Site buildings. CVOC-impacted groundwater has migrated from the Site into the municipal storm drain system. This migration route may require further assessment.

Background information on the Site is provided in Section 2.0, and includes a description of the Site and discussion of the previously identified RECs at the property. Section 3.0 describes the Phase II activities conducted by OTO, and presents analytical results. A conceptual site model and discussion of conditions to address is provided in Section 4.0. Section 5.0 provides preliminary cost estimates. Section 6.0 provides a summary of the Phase II assessment and conclusions.

This report is subject to the limitations in Appendix A.

2.0 BACKGROUND

This section provides a description of the Site and the RECs identified at the Site by the Phase I ESA.

2.1 SITE DESCRIPTION / SITE SETTING

2.1.1 General Description

The Site is an industrially-zoned property located at 298 Federal Street in Greenfield Massachusetts. The property is identified in Town of Greenfield assessor's records as parcel 95-1-UTB, and includes approximately 10.6 acres of land. The attached parcel 95-1-UTA on the northeast has different ownership and was not included in this assessment. Assessor's records indicate the original Site building was constructed in 1850. Multiple additions were made to the building over time. The Site building is listed as having a finished area of approximately 74,280 square feet. The series of interconnected buildings include one- and two-story portions constructed primarily of brick.

The property is bounded by Norwood Street on the north, Federal Street on the east, Kenwood Street on the south, and Davis Street on the west. Residential neighborhoods are located to the north, south, and west. Development to the east, across Federal Street, is primarily commercial.

The Site buildings are serviced by municipal water and sewer systems, and are heated by fuel oil. Heating oil is stored in a 30,000 gallon above-ground tank constructed on the northwest corner of the Site building. The tank is enclosed in a concrete and cinder block building.

Exterior portions of the Site include paved parking areas on the east and west sides of the building. A landscaped garden is located on the east side of the building, near the main entrance. A grassed courtyard is present in the center of the Site building, and is accessible only by passing through the building. Three grassed baseball fields and associated recreational structures are located on the western end of the property. The fields are reportedly used by the Greenfield Minor League.

Local topography is generally flat at an approximate elevation of 260 feet above mean sea level. Site topography slopes gently downward to the west, toward the Green River, which is located approximately 5,500 feet to the west. The nearest surface water body is the Connecticut River, which is located approximately 4,000 feet to the east of the Site.

Soils in this area are mapped as fine glaciolacustrine deposits over thin till. Mapped bedrock outcrops are located approximately 500 feet southeast of the Site. Shallow bedrock has also been reported at the gasoline station across Federal Street, immediately east of the Site. Bedrock in the area is mapped as arkose interbedded with shaley siltstone and arkosic sandstone.

2.1.2 MCP Reporting Categories

The Massachusetts Contingency Plan (MCP) identifies different categories for soil and groundwater which are applicable when a reportable release condition is identified at a site. We reviewed applicable groundwater and soil reporting categories for this Site.

For groundwater, the MCP RCGW-1 category is applicable to groundwater within current or potential drinking water source areas. Current and potential drinking water source areas are defined as areas:

- 1. Within a Potentially Productive Aquifer (PPA);
- 2. Within a Zone II, or Interim Wellhead Protection Area for a public water supply;
- 3. Within the Zone A of a Class A surface water body used as a public water supply;
- 4. Within 500 feet of a private water supply well or greater than 500 feet from a public water supply distribution pipeline; or
- 5. Within a municipality designated aquifer protection area.

A copy of the MassGIS priority resource mapping for the area is provided as Figure 4. None of these features was identified at the Site. Additionally, the area is not within an aquifer protection district identified by the Town of Greenfield. The Site and vicinity are serviced by the municipal drinking water supply. Based on criteria outlined in the MCP, the Site groundwater classification is therefore RCGW-2 for release reporting purposes.

For soil, the MCP indicates that soils located within 500 feet of a residential dwelling and/or within an RCGW-1 groundwater area are classified as RCS-1. Based on the presence of residential properties to the north, south, and west of the Site, Site soils are classified as RCS-1 for release reporting purposes.

2.1.3 Goly's Garage

Goly's Garage (Goly's) is located across Kenwood Street to the south of the Site. Goly's street address is 286 Federal Street. The location of this facility is shown on Figure 2. In February 2010, a Class C Response Action Outcome report prepared on behalf of Goly's (ECS, 2010) was submitted to the MassDEP. That report included a Downgradient Property Status (DPS) opinion that suggested TCE detected in groundwater at Goly's was the result of migration from the Lunt property.

Two groundwater monitoring wells, MW-6 and MW-7, were installed near the southeastern Lunt property line as part of that assessment. Selected figures and data tables from the DPS report are attached in Appendix B. As shown on Table 5 from that report, the TCE concentration reported at MW-6 was 80.8 milligrams per liter (mg/l). TCE was also detected on Goly's property, west of the garage, at monitoring wells MW-9 and MW-10. Concentrations in the wells on Goly's property ranged from 0.001 to 0.005 mg/l, and are below the MCP GW-2 groundwater standard (0.03 mg/l).

Goly's Garage is a Conditionally Exempt Small Quantity Generator listed as generating several spent chlorinated solvents.

2.1.4 Phase I ESA Findings

A Phase I ESA dated October 19, 2011 was prepared by Weston & Sampson Engineers, Inc. (W&S, 2011). The ESA indicates the Site was used for industrial purposes for over 100 years, but is currently vacant. Past use of the facility was identified primarily as silverware manufacturing, but over the years included other products such as bicycle, car and airplane parts, surgical equipment, and military supplies.

The Phase I report identified the following Recognized Environmental Conditions (RECs) at the Site:

- REC-1: Historic use of the Site for manufacturing. Past industrial processes identified at the Site include cutting, stamping, desgreasing, smelting, annealing, electroplating, buffing, and polishing. The use of TCE and petroleum products occurred at the Site. MassDEP records indicate up to five degreasing units and eleven cyclonic dust collectors previously operated at the Site. The locations of the degreasers are not known, with the exception of one unit which remains in the southeastern building (see Figure 2). Five cyclonic dust collectors also remain on Site and are shown on Figure 2.
- REC-2: The presence of abandoned chemical containers throughout the bulding.
- REC-3: The detection of TCE in groundwater at monitoring well MW-6, which was the basis of a Downgradient Property Status (DPS) filing made by a neighbor to the south, Goly's Garage (see Section 2.1.4).
- REC-4: The presence of a 30,000 gallon above-ground heating oil storage tank. Minor staining of the ground was present along the northern exterior wall of the tank building, near the fill hoses. According to the Phase I report, a permit dated September 20, 1979 was identified for construction of an oil storage tank at the Site. This is likely the existing AST on the northwestern side of the building.
- REC-5: The presence of four exterior cyclones which were utilized to remove silver and other particulates.
- REC-6: The western portion of the Site was identified as a REC due to the industrial nature of the property. Historic Sanborn mapping indicates the ballfields on the western site of the Site were previously developed with approximately 50 units of temporary housing for veterans after World War II. Prior to that, a small industrial building was present near the center of the fields in 1914. The nature of the fill materials in the western end of the Site is unknown.
- REC-7: The suspected presence of asbestos-containing building materials, lead-based paint, and PCBs associated with the building and other exterior structures (such as the cyclones).

Section 3.0 identifies the Phase II activities performed to assess these RECs.

3.0 PHASE II ACTIVITIES

To evaluate whether released oil or hazardous materials may be present in Site media, OTO's Phase II assessment included the following:

- performance of 26 soil borings;
- installation of seven groundwater monitoring wells;
- collection and analysis of soil samples from each boring;
- collection and analysis of eleven groundwater samples;
- collection and analysis of two water samples from catch basins in Kenwood Street;
- collection and analysis of two water samples from the storm drain outfall area;
- collection and analysis of six soil gas samples; and
- collection and analysis of four indoor air samples.

These activities and the associated results are described in the following sections. Exploration locations are depicted on Figures 3 and 6.

3.1 SOIL BORINGS AND MONITORING WELL INSTALLATION

OTO conducted a total of 26 soil borings at the Site during two rounds of drilling. On January 11, 2012, 20 borings (LS-1 through LS-20) were performed. On February 21, 2012, six additional soil borings (LS-21 through LS-24, LS-27 and LS-30) were performed. Seven of the borings (LS-10, LS-19, and LS-20 through LS-24) were completed as groundwater monitoring wells. The water table was encountered at depths of 2.5 to 6.5 feet below ground surface during drilling. The water table was shallowest on the western side of the Site, in the ball fields. The monitoring wells were each set to span the water table. Soil boring and monitoring well installation logs are provided in Appendix C.

The rationale for soil boring and monitoring well locations is summarized below:

- 1. Borings LS-1 through LS-6 were placed in the ballfields, with a focus on the approximate location of an historic industrial building in the center of the field, as depicted on the 1914 Sanborn Fire Insurance Map;
- 2. Borings LS-7 and LS-8 were placed at the western end of the building, in the vicinity of former waste storage areas and the 30,000 gallon fuel oil AST;
- 3. Borings LS-9, LS-10 and LS-11 were placed on the north side of the AST to assess possible fuel oil release conditions. LS-10 was completed as a monitoring well, and was placed within an area of stressed vegetation where a surficial release of petroleum appeared to have occurred from the AST fill hose.
- 4. Boring LS-12 was placed further north of the AST, which was interpreted as a possible downgradient location from the AST if utility lines in Norwood Street intercept the water table.

- 5. Boring LS-13 was placed near the southwest corner of the manufacturing portion of the site, in a location inferred to likely be downgradient of the facility.
- 6. Borings LS-14 through LS-17 were placed in central to southern portions of the manufacturing area.
- 7. Boring LS-18 was placed near the Federal Street entrance to the facility. This location was intended to provide assessment of potential gasoline impacts that could be migrating onto the property from a known release at the filling station to the east. However, shallow drilling refusal was encountered at multiple locations, and the water table was not encountered.
- 8. Borings LS-19, LS-20, and LS-21 were placed near the southern property line, along Kenwood Street. These borings were completed as monitoring wells to assess the extent of a previously reported TCE condition at monitoring well MW-6, north of Goly's Garage.
- 9. Borings LS-22 and LS-23 were placed on the south side of Kenwood Street to assess the potential migration of impacted groundwater to the residential area.
- 10. Borings LS-24 and LS-27 were placed inside the fenced area on the west end of the industrial building, near loading docks and waste storage areas. LS-24 was placed within the estimated footprint of a former dumpster, to assess potential historic leakage from waste materials. LS-27 was placed in an area with a wooden canopy which appears to have been used for drum storage. These locations are also immediately downgradient/south of the 30,000 gallon fuel oil AST.
- 11. Boring LS-29 was manually performed using a shovel to collect soil from below a pair of cyclonic dust collectors on the south side of the building. The drill rig could not access this area due to the presence of the cyclones overhead. Soil samples were collected from 0-1 and 1-2 foot depth intervals below the cyclones to assess potential releases of metals from these units.
- 12. LS-30 was placed on the northeast side of the manufacturing building, in the general vicinity of an underground gasoline storage tank depicted on the 1914 Sanborn map, and adjacent to an area believed to have previously housed a degreaser.
- 13. One additional soil sample, identified as "Transformer" was collected manually using a shovel in the vicinity of the transformer in the courtyard. Historic Sanborn mapping indicates a transformer field was located in this area in the 1950s, at a time when oils containing PCBs may have been used. The sample was a composite of three subsamples from around the transformer pad, each collected from the zero to one foot depth interval.

The borings were performed by Seaboard Environmental Drilling of Chicopee, Massachusetts. A Geoprobe direct push drill rig was used at most locations. The Geoprobe uses direct push technology to collect continuous soil samples in plastic sleeves to the depth of exploration. Several of the monitoring well borings were advanced using hollow stem

augers so that a standard two-inch diameter well could be installed. Locations of the borings and monitoring wells are shown on Figure 3.

OTO was present to observe and document the borings, and to screen soil samples for volatile organic compounds (VOCs) using a photoionization detector (PID). Soil boring logs are provided in Appendix C, and include a description of the subsurface materials encountered, the results of soil headspace PID screening, and monitoring well construction details.

Materials encountered in the borings generally consisted of fine to medium sand interpreted as fill in the upper two to seven feet. Debris encountered in the fill included brick fragments and ash. The fill was underlain by fine to medium sand and silt, with clayey silt present at some locations. Auger refusal was encountered at locations LS-18 (5 feet) and LS-20 (10 feet). Based on the reported presence of shallow bedrock at the filling station across Federal Street to the east, the auger refusal was interpreted as bedrock.

3.2 SOIL SCREENING AND ANALYSIS

Soil samples from the borings were screened in the field for volatile organic compounds (VOCs) with a TEI 580B Photoionization Detector (PID). The PID provides a general indication of the presence of volatile organic compounds, which are commonly associated with light petroleum hydrocarbons and solvents. A positive PID reading can be an indicator of impacted soil at the exploration location. Soil headspace PID measurements made during the January 2012 drilling program were performed using a instrument equipped with an 11.7 eV (electronvolt) lamp. This is a higher energy lamp than the standard 10.6 detector. It is sensitive to certain chlorinated VOCs, such as 1,1,1-trichloroethane, which give a poor response on the standard instrument. This instrument was selected based on the reported past use of 1,1,1-trichloroethane at the Site. Results of the soil headspace screening are shown on the boring logs attached in Appendix C.

Positive PID readings were recorded for soil samples collected in the vicinity of the fuel oil AST (borings LS-7, LS-9, LS-24, and LS-27), as well as along the north side of Kenwood Street (borings LS-13, LS-17, LS-19, and LS-20). The highest PID readings recorded at the Site were at LS-9, north of the AST, where a PID reading of 159 parts per million by volume (ppmv) was measured in the headspace of a sample collected from 5 to 6 feet below grade, near the water table. This sample was selected for chemical analysis.

Based on field screening and observations, and on information about historic industrial activities, selected soil samples from the borings were submitted for laboratory analysis. The samples were submitted to Spectrum Analytical Laboratory (Spectrum) of Agawam, Massachusetts for analysis of VOCs, volatile petroleum hydrocarbons (VPH), extractable petroleum hydrocarbons (EPH), polychlorinated biphenyls (PCBs), and/or metals. Additionally, two of the samples which contained elevated metals concentrations (LS-20, 1-3 feet and LS-29, 0-1 foot) were analyzed for leachable metals levels using the toxicity characteristic leaching procedure (TCLP). The results of this analysis were used to assess

whether the soils would be classified as characteristically hazardous under RCRA if they were excavated. Laboratory reports are attached in Appendix D. Soil analytical results are summarized on Table 1 (VOCs), Table 2 (VPH/EPH), Table 3 (PCBs), Table 4 (metals in the manufacturing area) and Table 5 (metals in the ball fields), and are discussed below. The areas of concern are depicted on Figures 7 and 8.

3.2.1 VOCs in Soil

As shown in Table 1, three chlorinated VOCs were detected at concentrations exceeding the applicable RCS-1 reporting standards for soil: cis-1,2-dichloroethylene (DCE); trichloroethylene (TCE); and tetrachlorothylene (also known as perchloroethylene, or PCE).

The highest concentrations were reported at location LS-24, where the zero to four foot depth sample contained 167 mg/kg TCE. The four-foot long Geoprobe sleeve from this sample location contained only 24 inches of recovered soil, so the depth of this material could not be determined more precisely. The water table was encountered at six feet below grade at this location, therefore the soil is identified as unsaturated. The RCS-1 Reportable Concentration for TCE in soil is 0.3 mg/kg. Boring LS-24 was placed within the estimated footprint of a former dumpster. The shallow soil impacts are consistent with a surficial release of material.

Similar high TCE levels were present at boring LS-20, where the TCE concentration was 128 mg/kg in the soil sample collected from one to three feet below grade. This location is on the south side of the building, near the entry to a portion of the building where drums were stored, and where a degreaser is located.

3.2.2 Petroleum Hydrocarbons in Soil

Fifteen soil samples were tested for petroleum hydrocarbons (EPH and/or VPH). Analytical results are summarized on Table 2. Petroleum hydrocarbons were not detected in Site soil at concentrations exceeding the applicable RCS-1 Reportable Concentrations.

The 30,000 gallon AST on the northwest side of the building was identified as a REC in the Phase I report. The age and construction of the AST are unknown, although a construction permit suggests it may date to 1979. Evidence of an oil release to the ground surface had been observed near the fill hose. Based on the observed presence of petroleum in soil near the fill lines, shallow soil in that area is presumed to contain fuel oil at concentrations above reportable levels. Soil that was visually impacted was not tested. A monitoring well was placed at location LS-10 to assess the migration of oil to the water table.

Multiple soil borings were performed on the north, west, and south sides of the AST. A petroleum odor was observed at only one location, LS-8, on the west side of the AST. PID readings for samples from the boring were zero. Soil from approximately five feet below grade (at or near the water table) in LS-8 exhibited at grey black color and petroleum odor. That sample was analyzed for EPH. As shown on Table 2, EPH was not detected.

Sample LS-9, 5-6 feet collected from the north side of the AST exhibited a PID reading of 159 ppmv. That sample was analyzed for EPH and VPH. Both were detected, but at concentrations below reportable levels.

Sample LS-30, collected from the northeast side of the building near the historic location of a gasoline UST, was analyzed for VPH and EPH. EPH was not detected. Each of the three VPH fractions was detected, but at concentrations below RCS-1 reportable concentrations. The detection of VPH is consistent with traces of gasoline.

Surficial soil (from 0 to 2 foot depths) was tested for EPH at two locations on the west side of the building, in a former loading dock/storage area. At location LS-24, where the dumpster was formerly located, EPH was detected but at levels below Reportable Concentrations.

Petroleum was not detected in surface soil near the transformer in the courtyard.

Based on these results, petroleum impacts of concern at the Site appear to be limited to shallow stained soils in the vicinity of the AST fill hoses.

3.2.3 PCBs in Soil

Three shallow soil samples (zero to one or two foot depth) were analyzed for PCBs. Each of these was located in the vicinity of current and/or historic transformers. As shown on Table 3, PCBs were not detected in these samples.

3.2.4 Metals in Soil

Testing for metals was conducted primarily on shallow soils, as the presumed manner in which they would have become located in Site media would be either direct placement of fill or deposition of airborne particles. Shallow soils also have a greater potential for human contact than subsurface soils and are therefore of greater interest in evaluating site risks. Table 4 provides a summary of metals data in the manufacturing portion of the Site, and Table 5 summarizes metals results for soil in the ballfields.

The only exceedence of reportable concentrations in the ballfields was cadmium at location LS-1. That sample contained 2.38 mg/kg cadmium, slightly exceeding the 2 mg/kg RCS-1. The natural background level for cadmium is also 2 mg/kg. This condition would not pose a risk to casual users of the ball fields.

Multiple metals exceeded Reportable Concentrations in shallow (0 to 2 foot) soil samples collected from the manufacturing portion of the Site. Metals present above Reportable Concentrations in one or more soil sample were: antimony, arsenic, cadmium, chromium, copper, lead, nickel, and silver. Concentrations did not exceed the Imminent Hazard levels identified in Section 40.0321 of the MCP.

The most substantial metals exceedences were at location LS-20, on the south side of the building, at a depth of one to three feet. This soil sample also exhibited an elevated TCE concentration, as discussed in Section 3.2.1. The material encountered at this location was brown to black fill containing ash and brick. Soil at this location contained 3,760 mg/kg total lead and 15.5 mg/l of TCLP leachable lead. TCLP analysis indicates the material could be considered a characteristically hazardous waste if it was excavated. This material is currently located below asphalt pavement, and is not accessible by casual users of the Site.

April 2012

Silver levels were significantly above background levels in all but one of the Site soil samples, and exceeded the Reportable Concentration in three samples. The highest silver concentrations were at location LS-29, directly below the cyclones on the south side of the building. The elevated silver concentrations extended to a depth of at least two feet in shallow soil immediately below the cyclones. Metals conditions in soil are conservatively presumed to be similar below the other cyclone locations on Site.

3.3 GROUNDWATER ASSESSMENT

Our groundwater assessment program included the collection and analysis of samples from the seven newly installed monitoring wells (LS-series) and from two wells previously installed as part of the Goly's Garage assessment (MW-6 and MW-7). OTO collected groundwater samples from monitoring wells MW-6, MW-7, LS-10, LS-19 and LS-20 on January 19, 2012, and from monitoring wells LS-21 through LS-24 and MW-6 on February 21, 2012. In each case, the wells installed by OTO were sampled approximately one week after installation. An additional sample was collected from monitoring well LS-19 on March 15, 2012 for RCRA 8 metals analysis based on the presence of elevated metals concentrations detected in Site soil.

Low-flow pumping techniques were used to purge the wells and obtain the groundwater samples. During low flow sampling, a peristaltic pump was used to remove water at a rate low enough to minimize drawdown in the well, while monitoring groundwater chemistry through the use of portable pH, specific conductance, temperature, dissolved oxygen, and oxidation-reduction potential (ORP) meters. A groundwater sample was collected when field measurements had stabilized, indicating a sample representative of the aquifer was being withdrawn. This method limits disturbance of the aquifer and is supported by MassDEP and EPA. Copies of groundwater sampling records are provided in Appendix E.

OTO collected groundwater samples from the previously existing monitoring MW-6 on two dates. This monitoring well was installed as part of the downgradient property assessment conducted for Goly's Garage, and had been reported to contain an elevated level of TCE. During our first round of groundwater monitoring, the well was found to be in poor condition. The cap was missing, and a substantial amount of silt or sand was present at the bottom of the well, likely blocking a portion of the screen. We collected a groundwater sample from the well for comparative purposes, however, the results are considered to be of limited usability due to the missing cap, the potential for rainwater intrusion from the

surrounding paved area, and the partially blocked screen. The total depth of the well measured on January 19, 2012 was 7.8 feet below grade. The boring log prepared by ECS for this monitoring well (provided in Appendix B) indicates MW-6 is screened from 5 to 15 feet below grade. Following collection of our first sample from this well, we placed an expandable cap on the well to prevent the intrusion of water and debris. Prior to collection of our second sample from this location, we aggressively purged the well with a bailer to remove stagnant water and materials settled within the screened zone.

In addition to the samples collected from monitoring wells, a water sample was collected from the sump in the basement of the north-central portion of the building. The location of the sump is shown on Figure 3. Based on our observations during this sampling program, the basement appears to regularly experience groundwater intrusion. A grab sample of water from the sump was collected on February 28, 2012. The sump water sample was analyzed for VOCs due to its location in the industrial portion of the building where solvents may have been used, and for VPH due to its location proximate to a gasoline UST depicted on historic Sanborn map.

The samples were stored on ice, and were transported to Spectrum Analytical Laboratory under chain-of-custody procedures. Each of the groundwater samples was analyzed for volatile organic compounds (VOCs) by EPA Method 8260. Based on their locations proximate to potential source areas, selected samples were also analyzed for EPH (LS-10, LS-20 and LS-24), volatile petroleum hydrocarbons (LS-10, LS-24 and the sump), metals (MW-6, MW-7, LS-20) and/or total cyanide (MW-6, MW-7 and LS-20). The samples collected for dissolved metals analysis were filtered at the laboratory, with the exception of LS-19. That sample was filtered in the field using a 500 milliliter Nalgene filter unit with a pore size of 0.45 microns.

Laboratory reports are provided in Appendix D. Analytical results are summarized on Table 6 (VOCas), Table 7 (petroleum), Table 8 (metals and cyanide), and are discussed in the following sections.

3.3.1 VOCs in Groundwater

As shown on Table 6, four VOCs were detected in Site groundwater at concentrations exceeding RCGW-2 Reportable Concentrations: DCE; TCE; PCE; and vinyl chloride. Each of these is a chlorinated VOC. These compounds also have a "parent-daughter" relationship that arises from sequential loss of chlorine atoms. When released to the environment, PCE will often naturally degrade to TCE, which will degrade to cis-1,2-dichloroethylene, then vinyl chloride.

The TCE concentration at monitoring well MW-6, north of Goly's Garage, was confirmed to exceed the Reportable Concentration. The detected concentrations were not as high as those reported by ECS in the DPS report prepared for Goly's Garage. However, as discussed above, the well condition has been compromised, and reported groundwater concentrations may be low-biased. Additionally, the testing by ECS was performed in 2007.

Some degree of natural degradation of these constituents would be expected over a five year period.

VOC concentrations in groundwater were highest at LS-19, where TCE was detected at 107 milligrams per liter (mg/l) on the southwest of the Site building. The RCGW-2 for TCE is 0.3 mg/l, and is based on the potential for this compound to migrate from groundwater into overlying buildings. Based on the groundwater contour plan developed during this study (see Section 3.4), monitoring well LS-19 is downgradient of the former dumpster location (boring LS-24) where substantial TCE concentrations were detected in soil. Location LS-24 also had significant TCE impacts in groundwater. These results indicate a separate source of VOCs on the west side of the building.

Monitoring wells LS-22 and LS-23 were placed on the south side of Kenwood Street to assess whether VOC impacts had migrated to the residential neighborhood. Chlorinated VOCs were not detected in groundwater samples from the south side of Kenwood Street. Traces of three non-chlorinated VOCs were detected in those samples, but at levels below Reportable Concentrations. Based on their absence in groundwater on the north side of Kenwood Street, those VOCs are not considered Site-related.

3.3.2 Petroleum in Groundwater

Our assessment did not identify significant petroleum impacts in Site groundwater, as shown on Table 7.

EPH was not detected in groundwater from monitoring well LS-10, which was set within the area of surficial staining near the AST fill hoses, or in LS-24 which is located downgradient of the AST. Based on this information, the surficial staining has affected a localized area of shallow soil, but has not migrated into groundwater.

The only reported detection of petroleum constituents in groundwater was VPH hydrocarbon fractions at LS-24, the dumpster location. The reported C5-C8 aliphatic concentration in LS-24 groundwater exceeds the RCGW-2 reporting standard. However, the laboratory report indicates the C5-C8 aliphatic detection in that sample was the result of one peak, which is not typical of petroleum constituents. Target VPH analytes were not detected. The reported C5-C8 aliphatic hydrocarbon result is likely an analytical artifact resulting from the presence of a an individual compound. Chlorinated VOCs are known to interfere with VPH analysis, which is a gas chromatography method not capable of definitive peak identification. Based on the laboratory note regarding the single peak, and on the presence of TCE and PCE in groundwater sample LS-24, we conclude the VPH is a false positive, and does not constitute a reportable condition.

3.3.3 Metals and Cyanide in Groundwater

Samples selected for metals analysis included LS-24 (within the former dumpster footprint) and wells installed along the downgradient side of the property (LS-19, LS-20, MW-6 and MW-7). Cyanide analysis was performed on samples collected from locations near the southeastern Site building, where Mr. Lunt informed us cyanide had been used in the manufacturing process. Cyanide was not detected in Site groundwater. As shown on Table 8, several dissolved metals were detected in the groundwater samples, but at levels below Reportable Concentrations. These results indicate that the metals impacts detected in Site soil are generally not mobile.

3.4 GROUNDWATER FLOW DIRECTION

The groundwater flow direction was assessed using depth to water table measurements in groundwater monitoring wells combined with elevation survey data. The relative elevations of the Site monitoring wells were surveyed using rod and transit techniques. Depth to water table measurements were made on January 19, 2012 (five wells, prior to the installation of wells LS-21 through LS-24) and on March 15, 2012 (nine wells). The depth to groundwater during our assessment ranged from approximately two to five feet below grade. These measurements were used to determine relative water table elevations, as shown on Table 9.

The relative water table elevations from January 19, 2012 are also depicted on Figure 5, and were used to estimate the groundwater flow direction. As shown, the groundwater flow direction was estimated to be to the southwest. These results are consistent with the flow direction estimated by ECS for the Goly's Garage site south of Kenwood Street. A copy of the ECS groundwater contour plan is provided in Appendix B.

As discussed in Section 3.5 below, a storm drain line on the north side of Kenwood Street appears to intercept the water table. The infiltration of groundwater into this line likely creates an artificial depression of the water table and influences local groundwater flow direction. This is supported by the detection of TCE in the storm water drain line, as discussed below.

3.5 CATCH BASIN SAMPLING

Numerous utility lines are present along Kenwood Street, as shown on the mapping provided in Appendix F. Based on the shallow water table (two to five feet below grade) and on the observed distribution of groundwater impacts (elevated VOC concentrations on the north side of Kenwood Street; nondetectable levels on the south side of the street), the utility lines were suspected of intercepting groundwater. We therefore conducted an assessment of water in the storm drain located on the north side of Kenwood Street, proximate to the Lunt facility.

On March 15, 2012 we collected water samples from two storm drains along the north side of Kenwood Street. The catch basin locations are shown on Figure 3. Catch basin CB-1 is located directly south of the Lunt facility. CB-2 is located south of the playing fields, near the eastern baseball diamond, and is downstream of CB-1. Location CB-2 is estimated to be downgradient of the former dumpster location on the west side of the Site building.

These catch basins and two others in the vicinity were screened with a PID to assess total VOC concentrations in the catch basin air space. PID readings at each location were zero. Water samples were collected from the catch basins by lowering a length of rigid polyethylene tubing through an opening in the grate, and withdrawing the sample using a peristaltic pump at the ground surface. The pump was set to a low flow rate to minimize agitation of the water, and to maintain a continuous stream of water without air bubbles in the tubing. The samples were collected directly into pre-preserved 40-milliliter septum vials and stored on ice.

The samples were delivered to Spectrum Analytical Laboratory for analysis of VOCs. The laboratory report is attached in Appendix D. Analytical results are summarized on Table 10. Three chlorinated VOCs were detected in the water samples: DCE; TCE; and PCE. The higher concentrations were at downstream location CB-2, near the playing fields, where the TCE concentration in the catch basin water was 0.58 mg/l.

As shown on Table 10, the TCE concentration measured in catch basin water near the Lunt facility exceeded the MassDEP surface water benchmark for TCE. The storm sewer discharge point was therefore located and sampled. A plan showing the discharge point for these catch basins was obtained from the Greenfield DPW, and is provided in Appendix F. The plan indicates the line drains to the west, eventually discharging to the Green River. The outfall is located approximately 1.3 miles southwest of the Site, southwest of the intersection of Colrain and Solon Streets.

A copy of the MassDEP priority resource mapping for the outfall area is provided in Appendix F. There are no Zone A, Zone II, or IWPA drinking water supplies mapped in the outfall area. The primary receptors of concern would therefore be aquatic organisms in the river.

On April 11, 2012, we collected two water samples from the vicinity of the outfall. Sample OF-1 was collected directly from the outfall stream, prior to mixing with surface water. Sample OF-2 was collected from the first surface water body which the outfall discharges to, a small ponded area which drains to the Green River. Photographs of the sample locations are included in Appendix F. The samples were analyzed for VOCs; results are summarized on Table 10. VOCs were not detected in the outfall samples.

3.6 SUBSLAB SOIL GAS ASSESSMENT

Based on the presence of elevated concentrations of volatile constituents in Site soil and groundwater, OTO performed a soil gas survey to assess the potential for vapors below the building slab to migrate into indoor air. The soil gas assessment was performed on January 26, January 27, and March 15, 2012. Soil gas sampling logs are provided in Appendix G, and document the soil gas field screening, helium shroud leak checking results, and weather conditions at the time of our survey. The following sections provide additional detail on the installation of the soil gas sample points, collection of the samples, and analytical results.

3.6.1 Soil Gas Point Installation

Our assessment included the installation of 13 permanent soil gas points, shown on Figure 6 as SG-1 through SG-13. As shown, five of the points (SG-1 through SG-5) were placed in the southeastern Site building, in the vicinity of a degreaser remaining in that building.

At each location, Witch Enterprises, Inc. of Agawam, Massachusetts cored a ½-inch diameter hole through the concrete slab to the underlying soil. The floor slab was approximately 6 inches thick at these locations with the exception of SG-12, which had a thickness of 12 inches. The soil gas point was installed by drilling a ½ inch diameter hole through the full thickness of the concrete floor slab. A two-inch diameter concrete core approximately two inches thick and centered over the ½ inch diameter hole was then advanced into the top of the slab. The upper core was then removed by chipping it free from the slab, to create a recess in the slab to receive the soil gas probe assembly.

The soil gas probe assembly was constructed using a ½ inch diameter copper tube slightly longer than the thickness of the concrete slab, a tight fitting rubber washer and stopper, a rubber plug and a removable flush-mounted cap. A two-inch section of one-half inch diameter PVC casing was placed around the copper sampling point. The PVC casing was capped flush with the basement floor surface. To seal the air exchange between the top and bottom of the floor slab the sampling points were secured in place using a fast-setting sulfoaluminate cement that expands upon curing to provide for an air tight seal with the concrete slab and restrict ambient air intrusion. Images showing construction materials and soil gas point assembly are provided in Appendix G.

3.6.2 Soil Gas Sample Collection

Prior to sampling, each soil gas point was purged with a PID. The PID used in January was equipped with a high energy 11.8 eV detector. In March, a standard 10.6 eV detector was used. The PID was attached to each soil gas point and was allowed to run for five minutes to purge ambient air from the assembly. Results of VOC screening are included on the Table 11. As shown, soil gas probes located in the vicinity of the degreaser (SG-1 through SG-5)

exhibited PID readings ranging from 0.4 to 21.6 part per million by volume (ppmv). Total VOC readings were 1 ppmv or lower at the remaining soil gas probe locations.

Based on screening results and the locations of soil gas probes relative to features of interest (such as the former degreaser in the southeastern building), six soil gas samples (SG-4, SG-6, SG-7, SG-9, SG-10 and SG-11) were selected for laboratory analysis. The soil gas samples were collected over a 30 minute sampling interval into 3 liter stainless steel vacuum canisters at a flow rate of approximately 0.2 liters per minute. During the January event, the soil gas samples were collected with the soil gas sampling point, the sample collection canister, the flow regulator and the sample tubing located inside a helium-filled shroud. To sample, the flow controller was opened, the sampling shroud was placed over the sampling equipment and helium was introduced into the shroud at a concentration of approximately 40 to 49%. The soil gas being withdrawn was then monitored continuously with a MGD-2002 multi-gas leak detector calibrated to helium, which is capable of detecting helium at a concentration as low as 25 parts per million by volume (ppmv). The purpose of the shroud was to monitor for leakage and/or short circuiting of air above the concrete slab into the soil gas sampling point, and if leakage is present, to assess what impact any potential leakage may have on soil gas concentrations. Helium concentrations in the soil gas sample were recorded on a sampling log at 10-minute intervals. Shroud helium concentrations were also monitored at approximately ten minute intervals and recorded on the sampling logs, which are attached in Appendix G.

Since helium was detected in the soil gas influent to the sampling canister, a leakage rate was estimated by dividing the helium influent concentration by the helium shroud concentration and multiplying the quotient by 100 to provide a result in percent. Monitoring of the soil gas sampling indicates that a leakage rate of less than 1% was observed in the sample. Leakage rates of less than 1% are not considered significant enough to measurably affect the soil gas analytical results. For these soil gas samples, observed leakage rates were less than 0.6%. Based on the nominal intrusion rates, shrouding was not used during the March 2012 sampling event.

3.6.3 Soil Gas Analysis and Results

The soil gas samples were submitted to Spectrum, where they were analyzed for volatile organic compounds by Method TO-15. The laboratory report is provided in Appendix D. Analytical results are summarized on Table 12.

The soil gas results were evaluated using current vapor intrusion guidance (MassDEP, 2011). That document provides soil gas screening values for residential and commercial/industrial settings. Soil gas concentrations below the published values can generally be interpreted as unlikely to result in indoor air concentrations at levels of concern for the specified receptors. As shown on Table 12, TCE concentrations in soil gas exceeded the MassDEP commercial/industrial values at locations SG-4, SG-9 and SG-10. The highest levels were at SG-4 and SG-9, where concentrations were 30 to 100 times the threshold values. SG-4 is

adjacent to a degreaser. Soil gas concentrations from soil gas probe locations SG-6 and SG-7 were below screening values.

These results indicate vapor intrusion is a significant concern throughout much of the site building, but particularly in the vicinity of the degreasing unit.

3.7 INDOOR AIR ASSESSMENT

On January 26, 2012, OTO collected indoor air samples from four locations (IA-1 through IA-4) within the Site building, as shown on Figure 6. Three of the locations were in basement areas. The water table at the Site is high, and some of the basement areas periodically flood. Due to the high water table (therefore absence of unsaturated soil), soil gas points in this area were not considered viable. Current vapor intrusion guidance (MassDEP 2011) indicates basement space should be considered occupied space if the ceiling height is at least seven feet. In these basements, the presence of offices indicates portions of the basement have been used for offices in the past.

Indoor air sample locations were selected as follows:

- IA-1 was placed within the office area on the east side of the building. There is no basement below this space.
- IA-2 was placed in the northern basement, which has a sump that may serve as a migration pathway. The floor in this space periodically floods.
- IA-3 was placed in the southwest basement, near the metal spiral staircase to the first floor
- IA-4 was place in the north-central basement to assess conditions in the middle of the building, in the general vicinity of a former degreaser. The exact former location of the degreaser is unknown.

At each location, a six-liter Summa air sampling canister was placed with the intake in the typical breathing zone (three to five feet above floor grade, assuming workers may be either sitting or standing). The canisters were equipped with regulators set for a two-hour fill time. The two-hour fill time is shorter than would typically be conducted in an active facility. However, it was deemed appropriate in this facility, as the building has been vacant for months, and there are no daily activities within the building which might affect indoor air conditions.

The air samples were analyzed by Method TO-15 at Spectrum Analytical Laboratory. A copy of the laboratory report is provided in Appendix D. Analytical results are summarized on Table 13. The results were compared to residential and commercial/industrial indoor air threshold values published in current guidance (MassDEP, 2011). As shown on Table 13, concentrations of chlorinated VOCs above residential and commercial/industrial threshold values were detected at IA-2, IA-3 and IA-4. The constituents of concern at these locations were DCE, TCE, and PCE. In the office on the east side of the building, the indoor air

sample (IA-1) contained PCE, but at a concentration below the commercial/industrial threshold value.

Additionally, indoor air concentrations are presumed to exceed threshold values in the vicinity of elevated soil gas results, SG-4 (near the degreaser) and SG-9.

The soil gas and indoor air results indicate indoor air conditions within manufacturing portions of the Site building have been impacted by chlorinated VOCs at levels of potential concern with respect to future Site use.

4.0 CONCEPTUAL SITE MODEL

This section provides our Conceptual Site Model and summarizes the release conditions identified. Suggested remedial response actions and preliminary cost estimates for these conditions are provided in Section 5.0.

A Conceptual Site Model is a framework of understanding that is used to assist in the evaluation and prediction of contamination migration through the environment to where potential contact with receptors may occur. The Site has been used for industrial purposes for approximately 100 years. Based on the current zoning of the property for industrial use, future occupants of the Site are likely to be workers, not residents.

Multiple conditions which exceed MCP reportable levels were identified at the Site. These include:

- Chlorinated VOCs (primarily TCE) in soil and groundwater;
- Petroleum in shallow soil near the AST fill lines; and
- Metals in shallow soil, primarily near the cyclonic dust collectors.

From both a remedial cost and a potential human health perspective, the most significant of these is the CVOCs.

4.1 CVOCS IN SOIL AND GROUNDWATER

Significant concentrations of CVOCs were detected in Site soil and groundwater, particularly along the southern property boundary and in the vicinity of a former dumpster at the west end of the building. The CVOC present at the highest concentrations is trichloroethylene (TCE). CVOCs present at lower concentrations in groundwater included PCE, DCE, and vinyl chloride.

There are likely multiple sources of CVOCs at the Site, including the dumpster footprint at the west end of the building, the degreaser in the southeastern building, and possibly other former degreaser or solvent storage locations within the manufacturing area. The presence of CVOCs in unsaturated soils (above the water table) at locations LS-20 and LS-24 suggests the CVOCs were released to the ground surface in the vicinity of the dumpster and the

degreaser. The elevated TCE concentrations in soil gas at location SG-4 supports the theory that solvents were released to the ground surface in the immediate vicinity of the degreaser.

CVOCs are volatile, and can migrate from soil or groundwater into soil gas, and eventually into ambient air or indoor air in overlying buildings. The primary potential exposure route to CVOCs identified at this Site is inhalation of CVOC vapors that have migrated into buildings. Multiple lines of evidence indicate that vapor intrusion into the Site building is a concern. Chlorinated VOC concentrations in groundwater exceed MCP GW-2 standards, which were developed based on a vapor intrusion model. Soil gas concentrations exceed commercial/industrial screening values at locations SG-4, SG-9 and SG-10. Measured indoor air results exceed published indoor air threshold values for commercial/industrial receptors. In the office space on the east side of the Site building soil gas and indoor air concentrations exceed residential standards, but are within acceptable limits for commercial/industrial use.

CVOCs are also somewhat soluble water, therefore they can migrate from the original point of release in water. At this Site, CVOCs have come to be present in groundwater across the width of the industrial portion of the property, along the southern property line. Groundwater analytical results indicate the VOC impacts have not migrated across Kenwood Street to the south. VOCs were not detected in groundwater at locations LS-22 and LS-23, likely due to interception of the overburden groundwater by a storm drain beneath Kenwood Street. These wells were placed to be downgradient of highest measured impacts in groundwater on the north side of Kenwood Street. CVOC migration into residences on the south side of Kenwood Street is therefore not a concern.

Chlorinated VOCs were reported in groundwater at Goly's Garage (ECS, 2010). We note that the CVOC detected in the highest concentration in groundwater at Goly's was PCE, at a concentration of 4.9 ug/l. By far the primary constituent of concern at the Lunt property is TCE. Comparing the pattern of constituents present in groundwater at Lunt and Goly's does not indicate a consistent source. Goly's is listed as a small quantity generator of chlorinated VOC waste. The VOCs in groundwater at that facility may be associated with garage operations, and not with the impacts measured at Lunt. Regardless of the source, the CVOC concentrations detected at Goly's were well below GW-2 standards, indicating vapor migration into their buildings does not appear to be a pathway of concern.

Groundwater at this Site is not a current or potential drinking water supply, therefore ingestion of the impacted groundwater is not an exposure route of concern.

The impacted groundwater plume appears to be intercepted by a storm drain on the north side of Kenwood Street. There is the potential for Site-related CVOCs to be discharged to a surface water body (the Green River), at the storm drain outfall. The linear distance from the Site to the discharge point is approximately 1.3 miles. The storm drain lines make multiple turns, rather than flowing directly to the outfall, therefore the water flows through over 1.5 miles of pipe prior to discharge. We did not detect CVOCs in water at the outfall. However, our assessment represents a snapshot in time. Conditions at the outfall may vary

depending on the amount of rainfall and on the water table elevation. The TCE concentration measured in catch basin CB-2 exceeds the MassDEP benchmark used for protection of aquatic organisms in surface water. However, in our opinion, resulting concentrations in the Green River are unlikely to exceed the benchmark, due to dilution and volatile losses along the length of the drain line.

There are other possible migration pathways associated with the drain line. These may include loss of impacted groundwater in locations where the water table is lower than the pipe, and migration of CVOCs into homes via sump drain lines that are connected to municipal system. These pathways may warrant further assessment.

4.2 PETROLEUM IN SOIL NEAR AST

The only reported petroleum result above applicable Reportable Concentrations in Site soil or groundwater is believed to be a false positive. That result, VPH C5-C8 aliphatic hydrocarbons in groundwater sample LS-24, was due to a single peak, which is likely TCE. Petroleum hydrocarbons occur in multi-peak patterns, not as individual peaks in chromatographic analysis. TCE is known to interfere with VPH analysis when present, and was detected in groundwater sample LS-24. This C5-C8 aliphatic result is therefore not considered reportable, and does not warrant further VPH testing.

Vegetative stress and soil staining on the north side of the 30,000 gallon AST indicate oil has been released to the ground surface in that area. The release appears to be associated with the fill hoses, which are located near the staining. The oil-stained area is presumed to contain oil above Reportable Concentrations. However, if less than two cubic yards of soil are impacted, the notification requirements of the MCP are not triggered. A soil boring (LS-10) was performed in the stained area, and did not encounter material with an oily appearance or positive PID headspace screening results. Soil samples with elevated PID screening values (such as LS-9, 5-6') did not contain reportable concentrations of petroleum. The available data do not indicate a reportable release condition associated with petroleum at the Site. However, we assume a small volume of oil-impacted soil may warrant removal from this area.

4.3 METALS IN SOIL NEAR CYCLONES

Soil samples were collected from two depths in hand boring LS-29, beneath the cyclones on the south side of the building. As shown on Table 4, metals concentrations in soil beneath the cyclones exceeded Reportable Concentrations for lead, copper, nickel, and silver. Concentrations were higher in the surficial sample (0-1 foot), and lower with depth (1-2 foot) with the exception of lead.

The cadmium result in one ball field sample (LS-1) slightly exceeded the reporting standard. While this condition is reportable, it is not likely to be significant from a human health or remedial cost perspective, relative to other conditions on Site.

During manufacturing operations, the cyclones were used to collect dust from buffing and polishing operations. A 55-gallon drum would be placed on the ground surface beneath each cyclone to accumulate the dust. The metals in surface soil in the area are likely to be the result of dust leakage or overflow from the barrels, which would have resulted in surficial deposition of manufacturing dust. The dust may also have become airborne and been deposited on the ground surface in the surrounding manufacturing area, such as at sample locations LS-14 and LS-15, which also exhibited elevated metals levels.

The available data do not identify the full lateral and vertical extent of the metals impacts in soil. Based on the available data, and on the historic presence of eleven cyclonic dust collectors at the Site, metals impacts are likely to extend across most of the manufacturing portion of the property in surface soil. In the immediate vicinity of the cyclones, impacts may extend to depths of three feet for more.

4.4 METALS IN FILL SOUTH OF BUILDING

Boring LS-20 was performed on the south side of the building, beneath pavement. Approximately three feet of fill materials, including ash and brick, were present at this location. As shown on Table 4, concentrations of lead, arsenic, and antimony were elevated in the fill materials. Coal ash is known to be associated with elevated metals levels, and likely contributes to conditions at this location. However, the silver concentration at this location (33 mg/kg) is also elevated above background, at levels higher than would typically be expected from coal ash. MassDEP has published values for natural background (0.6 mg/kg) and ash-impacted fill (5 mg/kg). The elevated silver result suggests the conditions at location LS-20 may be associated with historic silversmithing activities. Prior manufacturing operations at the property are known to have included the use of lead pots for melting metals.

Based on the elevated lead level, to evaluate potential costs associated with disposal of this material, the soil sample from LS-20 was also analyzed for TCLP leachable lead. The leachable lead concentration (15.5 mg/l) exceeded the RCRA regulatory limit (5 mg/l). If excavated, this material would therefore be classified as a characteristically hazardous waste.

4.5 WASTE MATERIALS REMAINING IN BUILDING

Containerized waste materials remain at multiple locations inside the Site building. While this condition is not reportable to MassDEP, removal and proper disposal of these materials will be required prior to redevelopment. Materials remaining in the building include paints, lacquers, acids, machine lubricants, buffing compounds, and unlabelled containers. These range in size from spray cans to 55-gallon drums. Wastes are primarily accumulated in certain areas near loading docks, but individual containers are also present throughout the building. We recommend the completion of a chemical container inventory to develop estimates of waste volumes and types remaining in the building. An inventory was not included in the Request for Proposals for this project, and was not part of our scope of

work. Accurate cost estimates to dispose of these waste materials cannot be determined until such an inventory is complete.

5.0 PRELIMINARY REMEDIAL COST ESTIMATES

As stated in our proposal, we have evaluated potential remedial alternatives to the extent feasible with the data now available.

As documented in the Section 4, the Site has been impacted above reportable concentrations by metals and by chlorinated volatile organic compounds (primarily trichloroethylene or TCE). For metals, the contamination is likely associated with former cyclone structures that drew metal contaminated dusts from former cutlery manufacturing in the building. Metals are not volatile and are typically of low mobility. As such, they can typically be addressed through cover or capping technologies at relatively low cost. On the other hand, TCE impacts at the Site are of substantially higher concern with respect to potential remediation costs due to:

- 1) TCE mobility in groundwater;
- 2) TCE volatility and vapor migration pathways;
- 3) TCE is a toxic compound and a suspected human carcinogen;
- 4) TCE has been detected over most of the developed portion of the Site in soil, groundwater, soil gas, indoor air, and the storm drain line beneath the adjacent street; and
- 5) The pattern of TCE detections indicates multiple source of the TCE which will have to be identified, further assessed, and remediated as needed.

Table 14 provides our preliminary estimate of potential remediation costs, primarily to address the TCE issue. The costs are based on the assumptions provided below.

Further Site Investigations

MassDEP regulations (310 CMR 40.0000) requires a full delineation of the source, nature and extent of oil or hazardous material (OHM) releases. Given the identification of multiple OHM sources, extensive further characterization of soil, groundwater, soil gas and indoor air quality will be required. Such work should be conducted in a phased manner and the final estimates will be determined as each phase is completed. However, based on our experience at similar site, we believe the ultimate cost of such work, including required MassDEP submittal will likely exceed \$100,000. For our cost table, we recommend an initial budget of \$200,000.

Future Use

The widespread detections of TCE in indoor air at elevated concentrations relative to MassDEP commercial standards indicates that the Site buildings are not likely suitable for residential re-development or use as a school or day care center. For purposes of potential remediation costs, we have therefore assumed the site will remain in commercial or industrial

use. We have also assumed no use of basements for offices or other commercial use, other than for occasional access by maintenance personnel. We also assume that as additional soil gas and indoor air testing is conducted, the owner will be open to demolishing certain buildings or portions of building that may be found to overlie heavily impacted areas.

Remediation Goals and AULs

Given the high TCE concentrations in groundwater, it may not be economically feasible to achieve a Permanent Solution (Class A) Response Action Outcome. We assume that the owner will be open to explore Temporary Solution (Class C) alternatives, with MassDEP input, that control current exposure pathways but do not eliminate all foreseeable future exposure pathways. We also assume that the owner will agree to AULs (Activity and Use Limitations) as needed to limit remediation costs to the extent feasible.

TCE Soil Excavation and Disposal

Based on soil and groundwater data, we expect some highly concentrated areas of TCE contamination will need to be excavated. Because the shallow depth to bedrock will limit excavation depth, we expect the volume to be less than 200 tons.

TCE Groundwater Plume Interception

A several hundred foot wide TCE plume was identified on the north side of Kenwood Street and is intercepted by a storm drain line. While initial testing indicates no discharge of TCE at he drain outfall over a mile away, it is not clear if this is due to off-gassing or infiltration. Regardless, we do not think that MassDEP will be comfortable with on-going discharge of this nature. We have therefore assumed groundwater interception and treatment will likely be required and have include a cost for installation of such a system. The system will require multiple well points, manifolded to an air stripping tower. We assume air emission controls will be required during start up and the first few months of operation but can then be eliminated.

TCE Vapor Intrusion

While it is hoped that further testing, removal of source material and AULs will limit vapor migration remediation costs, the multiple TCE sources and initial vapor reading indicate multiple sub-slab vapor depressurization systems may be required. Based on our experience, our Table 1 costs assume four separate systems will need to be installed and operated to cover approximately 40,000 square feet of building footprint.

Metals Capping

We assume that the shallow metals contaminated soils in the area of the former cyclones can be left in place and capped with clean fill or pavement, and safely maintained long term with an AUL.

Long Tem Operation and Maintenance (O&M)

The groundwater and vapor intrusion interception approaches outlined above will need to operate indefinitely. Costs for required monitoring, reporting, electricity and routine maintenance are likely on the order of \$30,000/year. Assuming a 20 year time frame, and a 6 percent interest rate, the present worth value of the O&M program is estimated at \$200,000.

Contingency

Given the extensive further testing which will be required to fully assess the source and extent of the releases, we recommend at least a 20 percent contingency be applied.

6.0 SUMMARY AND CONCLUSIONS

A Phase II Environmental Site Assessment was performed at the former Lunt Silversmiths site at 298 Federal Street in Greenfield, Massachusetts. The assessment was conducted in accordance with the scope of work in our December 6, 2011 proposal.

Our study included the assessment of soil, groundwater, soil gas, and indoor air conditions at the Site. In addition, water samples were collected from two storm water catch basins adjacent to the Site. A significant release of trichloroethylene (TCE) to Site soil and groundwater was identified. There appear to be at least two sources of TCE at the Site: one near a former degreasing unit on the south side of the building, and one outside the western end of the building.

Several of the conditions identified at the Site are reportable to MassDEP within 120 days of owner knowledge. If you acquired the property, you would have an obligation to notify MassDEP of these conditions within 120 days, if they had not previously been reported. The TCE has migrated into the municipal storm drain system. It the TCE discharges to a surface water body, this could constitute a Condition of Substantial Release Migration (SRM) under 310 CMR 40.0313(5) of the Massachusetts Contingency Plan (MCP), which would be reportable to the MassDEP within 72 hours of owner knowledge. Substantial additional assessment will be required to delineate Site impacts as required by the MCP.

Metals in Site soil were also identified as conditions requiring response actions under the MCP. On-site management with capping and implementation of an AUL are the most cost-effective means of addressing this condition.

Remedial alternatives to address the TCE impacts include excavation of source area soils, interception and treatment of the impacted groundwater, and sub-slab ventilation systems to limit indoor air impacts. Preliminary remedial cost estimates to achieve a Response Action Outcome (RAO) under the MCP are on the order of \$1,000,000. This cost estimate does not include removal and disposal of waste materials remaining inside the building

7.0 LIMITATIONS

Our Site Assessment was performed in accordance with generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographic area. Our findings and conclusions must not be considered as scientific certainties, but rather as our professional opinion concerning the potential significance of the limited data obtained during the course of our study. We do not and cannot represent that the site contains no hazardous material or oil, or that the site is free from latent conditions not observed in our assessment. Our report is subject to the additional Limitations contained in Appendix A.

This assessment and report was prepared on behalf of and for the exclusive use of the Town of Greenfield solely for the purpose of rendering an opinion as to the presence of oil or hazardous materials in site soil and groundwater subject to requirements of M.G.L. Chapter 21E. This report shall not, in whole or in part, be disseminated or conveyed to any other party, or used or relied upon by any other party without the prior written consent of O'Reilly, Talbot & Okun Associates, Inc.

8.0 REFERENCES

Environmental Compliance Services, Inc. (ECS). 2010. Phase IV Completion Report, Downgradient Property Status, Class C-1 Response Action Outcome Statement, and Method 3 Risk Characterization, 286 Federal Street, Greenfield MA, RTN 1-01047. February 8, 2010.

Massachusetts Department of Environmental Protection (MassDEP). 2011. *Interim Final Vapor Intrusion Guidance, WSC#-11-435*. December 2011.

Weston & Sampson Engineers, Inc. (W&S). 2011. Phase I Environmental Site Assessment Report, Town of Greenfield, MA, Former Lunt Silversmiths Property, 298 Federal Street, Greenfield MA. October 19, 2011.

Table 1 Soil Analytical Results Volatile Organic Compounds (VOCs) Concentrations in mg/kg 298 Federal Street Greenfield, MA

Sample No.:	LS-14	LS-17	LS-19	LS-20	LS-24		LS-27	LS-30	Reportable	Method 1	Standards
Depth (feet):	6-8	6-8	7-9	1-3	0-4	6-8	0-2	6-8	Conc.	S-1 /	S-1 /
Date Collected:	1/11/12	1/11/12	1/12/12	1/12/12	2/21/12	2/21/12	2/21/12	2/21/12	RCS-1	GW-2	GW-3
PID Reading (ppmv):	53	24	55	1.3	24	55	11	4.6	NS	NS	NS
Acetone	< 0.069	0.092	< 0.086	< 24.5	< 30	< 0.92	< 0.93	< 0.86	6	50	400
cis-1,2-Dichloroethylene	< 0.007	0.301	8.81	15.3	< 3	< 0.092	< 0.093	< 0.086	0.3	0.4	100
trans-1,2-Dichloroethylene	< 0.007	< 0.009	0.052	< 2.45	< 3	< 0.092	< 0.093	< 0.086	1	1	500
Tetrachloroethylene	0.278	0.203	3.57	< 2.45	29.4	2.02	< 0.093	< 0.086	1	10	30
Trichloroethylene	2.18	4.36	43.1	128	167	7.74	< 0.093	< 0.086	0.3	2	90
Vinyl Chloride	< 0.007	0.038	< 0.009	< 2.45	< 3	< 0.092	< 0.093	< 0.086	0.6	0.6	0.6

- 1. Concentrations in milligrams per kilogram (mg/kg, or parts per million) on a dry weight basis.
- 2. "<" indicates not detected; value is sample-specific quantitation limit.
- 3. "RCS" = Reportable concentration from 310 CMR 40.1600.
- 4. "NS" = No standard.
- 5. Values shown in **bold** exceed Method 1 standards.
- 6. "PID"=Photoionization detector soil headspace measurement in parts per million by volume.
- 7. Only analytes detected in at least one sample are shown; refer to laboratory reports for full analyte listing.
- 8. Shading indicates result exceeds the reportable concentration.

Table 2

Soil Analytical Results

Volatile and Extractable Petroleum Hydrocarbons (VPH/EPH)

Concentrations in mg/kg 298 Federal Street

Greenfield, MA

Sample No.:	LS-6	LS-7	LS-8	LS-9	LS-11	LS-14	LS-15	LS-17	LS-19	LS	-24	LS	-27	LS-30	Transformer	Reportable	Method 1	Standards
Depth (feet):	4-6	2-4	4-6	5-6	4-6	6-8	4-6	6-8	7-9	0-4	6-8	0-2	6-8	6-8	0-1	Conc.	S-1 /	S-1 /
Date Collected:	1/11/12	1/11/12	1/11/12	1/11/12	1/11/12	1/11/12	1/11/12	1/11/12	1/12/12	2/21/12	2/21/12	2/21/12	2/21/12	2/21/12	3/15/12	RCS-1	GW-2	GW-3
PID Reading (ppmv):	0	7.2	0	159	0	53	0	24	55	24	55	11	0.4	4.6	4.6	NA	NA	NA
VPH Fractions												-						
C5-C8 Aliphatics				21.6		< 1.5		2.41	16.4					4.87		100	100	100
C9-C12 Aliphatics				153		< 0.5		< 0.59	< 0.74					19.5		1,000	1,000	1,000
C9-C10 Aromatics				54		< 0.5		< 0.59	< 0.74					5.82		100	100	100
VPH Target Compounds												•						
Benzene				< 0.5		< 0.1		< 0.1	< 0.1					< 0.09		2	30	30
Ethylbenzene				< 0.5		< 0.1		< 0.1	< 0.1					< 0.09		40	500	500
Methyl tert-butyl ether				< 0.5		< 0.1		< 0.1	< 0.1					< 0.09		0.1	100	100
Naphthalene				< 0.5		< 0.1		< 0.1	< 0.1					< 0.09		4	40	500
Toluene				< 0.5		< 0.1		< 0.1	< 0.1					< 0.09		30	500	500
Xylenes (total)				< 1.5		< 0.3		< 0.3	< 0.3					< 0.29		300	300	500
EPH Fractions																		
C9-C18 Aliphatics	< 13	< 12	< 12	981	< 12	< 12	< 12	< 13	< 13	38	< 12	< 11	< 13	< 11	< 12	1,000	1,000	1,000
C19-C36 Aliphatics	< 13	< 12	< 12	< 13	< 12	< 12	< 12	< 13	< 13	44	< 12	< 11	< 13	< 11	< 12	3,000	3,000	3,000
C11-C22 Aromatics	< 13	< 12	< 12	104	< 12	< 12	< 12	< 13	< 13	48	< 12	< 11	< 13	< 11	< 12	1,000	1,000	1,000
EPH Target Compounds																		
Naphthalene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	4	40	500
2-Methylnaphthalene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	0.7	80	300
Acenaphthylene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	1	600	10
Acenaphthene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	4	1,000	1,000
Fluorene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	1,000	1,000	1,000
Phenanthrene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	10	500	500
Anthracene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	1,000	1,000	1,000
Fluoranthene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	0.48	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	1,000	1,000	1,000
Pyrene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	1,000	1,000	1,000
Benzo(a)anthracene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	7	7	7
Chrysene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	0.54	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	70	70	70
Benzo(b)fluoranthene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	0.49	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	7	7	7
Benzo(k)fluoranthene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	70	70	70
Benzo(a)pyrene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	2	2	2
Indeno(1,2,3-cd)pyrene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	7	7	7
Dibenzo(a,h)anthracene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	< 0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	0.7	0.7	0.7
Benzo(g,h,i)perylene	< 0.42	< 0.38	< 0.40	< 0.42	< 0.39	< 0.40	< 0.40	< 0.42	< 0.43	0.38	< 0.41	< 0.38	< 0.43	< 0.38	< 0.39	1,000	1,000	1,000

- 1. Concentrations in mg/kg (parts per million) on a dry weight basis.
- 2. "<" indicates not detected; value is sample-specific quantitation limit.
- 3. "RCS" = Reportable concentration from 310 CMR 40.1600.
- 4. "PID"=Photoionization detector soil headspace measurement in parts per million by volume.
- 5. "---" indicates not analyzed for this parameter.

Table 3
Soil Analytical Results
Polychlorinated Biphenyls (PCBs)
Concentrations in mg/kg
298 Federal Street
Greenfield, MA

Sample No.:	LS-14	LS-15	Transformer	Reportable
Depth (feet):	0-2	0-2	0-1	Conc.
Date Collected:	1/11/12	1/11/12	3/15/12	RCS-1
PCBs (total)	< 0.022	< 0.023	< 0.024	2

- 1. Concentrations in mg/kg (parts per million) on a dry weight basis.
- 2. "<" indicates not detected; value is sample-specific quantitation limit.
- 3. "RCS" = Reportable concentration from 310 CMR 40.1600.

Table 4
Soil Analytical Results: Manufacturing Area
Inorganic Analytes
Concentrations in mg/kg
298 Federal Street
Greenfield, MA

Sample No.:	LS-14	LS-15	LS-20	LS-24	LS-27	LS	-29	MassDEP	MassDEP	Reportable	S-1 /
Depth (feet):	0-2	0-2	1-3	0-4	0-2	0-1	1-2	Natural Soil	Ash Fill	Conc.	GW-2,3
Date Collected:	1/11/12	1/11/12	1/12/12	2/21/12	2/21/12	2/21/12	2/21/12	Background	Background	RCS-1	Standard
Aluminum	8,220	9,410	4, 700	6,180	8,120	12,900	5,290	10,000	10,000	NS	NS
Antimony	< 4.9	< 5.5	113	5.28	< 5.4	10.5	9.3	1	7	20	20
Arsenic	3.16	6.02	37.5	16.5	3.0	7.6	6.03	20	20	20	20
Barium	18.2	34.8	83.9	50.7	7.1	179	42.6	50	50	1,000	1,000
Beryllium	< 0.49	< 0.55	< 0.54	< 0.49	< 0.54	< 0.56	< 0.54	0.4	0.9	100	100
Cadmium	1.26	6.96	< 0.54	1.03	< 0.54	1.28	< 0.54	2	3	2	2
Calcium	323	931	2,250	1,240	767	1,200	737	NA	NA	NS	NS
Chromium (VI or total)*	13	15.9	12.5	46.4	11.2	22.3	8.65	30	40	30	30
Cobalt	3.97	4.63	4.86	6.24	3.2	9.9	3.55	4	4	500	NS
Copper	85	97.7	344	139	5.2	1,770	321	40	200	1,000	NS
Iron	14,400	16,400	25,700	33,400	14,700	24,300	9,750	20,000	20,000	NS	NS
Lead	25.8	50.7	3,760	272	4.9	494	512	100	600	300	300
Magnesium	1,960	2,330	2,000	2,170	2,190	4,510	1,590	5,000	5,000	NS	NS
Manganese	126	191	239	145	89	373	139	300	300	NS	NS
Mercury	0.18	0.22	0.33	1.43	< 0.03	0.26	0.11	0.3	1	20	20
Nickel	77.8	53.2	14.8	20.6	9.6	29.3	11	20	30	20	20
Potassium	422	424	842	470	375	2,090	844	NA	NA	NS	NS
Selenium	< 1.5	< 1.6	< 2.7	< 1.5	< 1.6	< 1.7	< 1.6	0.5	1	400	400
Silver	36	101	33.4	91.7	< 1.6	195	109	0.6	5	100	100
Sodium	25	28.5	152	53	57	72.5	48.8	NA	NA	NS	NS
Thallium	< 2.9	< 3.3	< 3.2	< 3.7	< 3.2	< 3.4	< 3.2	0.6	5	8	8
Vanadium	18	36	28	24	15	51	19	30	30	600	600
Zinc	47	83	57	73	22	1,810	166	100	300	2,500	2,500
TCLP Metals (mg/l)										TCLP limit (mg/l)	
TCLP-Lead			15.5			0.99				5	
TCLP-Silver						0.23				5	_

- 1. Concentrations in milligrams per kilogram (mg/kg, or parts per million) on a dry weight basis.
- 2. "<" indicates not detected; value is sample-specific quantitation limit.
- 3. "RCS" = Reportable concentration from 310 CMR 40.1600.
- 4. Background values from MassDEP "Technical Update: Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil", May 23, 2002.
- 5. Shading indicates result exceeds the reportable concentration.
- * Per the 4/06 MCP, chromium is assumed to be hexavalent unless testing is done to prove otherwise.

Table 5 Soil Analytical Results: Ball Fields Inorganic Analytes Concentrations in mg/kg 298 Federal Street Greenfield, MA

Sample No.:	LS-1	LS-1	LS-5	LS-5	MassDEP	MassDEP	Reportable
Depth (feet):	0-2	2-4	0-2	2-4	Natural Soil	Ash Fill	Conc.
Date Collected:	1/11/12	1/11/12	1/11/12	1/11/12	Background	Background	RCS-1
Arsenic	2.93	< 1.6	2.77	< 1.8	20	20	20
Barium	61.5	15.2	36.4	23.8	50	50	1,000
Cadmium	2.38	< 0.54	0.74	0.61	2	3	2
Chromium (VI or total)*	9.37	11.2	13.1	16.7	30	40	30
Lead	23.1	4.07	45.6	6.97	100	600	300
Mercury	0.044	< 0.034	0.088	< 0.033	0.3	1	20
Selenium	< 1.6	< 1.6	< 1.5	< 1.8	0.5	1	400
Silver	3.57	< 1.6	2.2	< 1.8	0.6	5	100

- 1. Concentrations in milligrams per kilogram (mg/kg, or parts per million) on a dry weight basis.
- 2. "<" indicates not detected; value is sample-specific quantitation limit.
- 3. "RCS" = Reportable concentration from 310 CMR 40.1600.
- 4. Background values from MassDEP "Technical Update: Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil", May 23, 2002.
- * Per the 4/06 MCP, chromium is assumed to be hexavalent unless testing is done to prove otherwise.

Table 6 Groundwater Analytical Results Volatile Organic Compounds (VOCs) Concentrations in mg/l 298 Federal Street Greenfield, MA

Well No.:	LS-10	LS-19	LS-20	LS-21	LS-22	LS-23	LS-24	MV	V-6*	MW-7	Sump		GW-2	GW-3	
Sample Date:	1/19/12	1/19/12	1/19/12	2/28/12	2/28/12	2/28/12	2/28/12	1/19/12	2/28/12	1/19/12	2/28/12	RCGW-2	Standard	Standard	UCLs
Acetone	< 0.010	< 20	< 0.050	< 0.010	0.035	0.072	< 0.010	< 0.010	< 0.050	< 0.010	< 0.010	50	50	50	100
2-Butanone (MEK)	< 0.010	< 20	< 0.050	0.025	0.12	0.30	< 0.010	< 0.010	< 0.050	< 0.010	< 0.010	50	50	50	100
n-Butylbenzene	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	0.0034	< 0.001	< 0.005	< 0.001	< 0.001	NS	NS	NS	10*
sec-Butylbenzene	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	0.0056	< 0.001	< 0.005	< 0.001	< 0.001	NS	NS	NS	10*
1,1-Dichloroethane	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	0.0012	< 0.001	< 0.005	< 0.001	< 0.001	1	1	20	100
1,1-Dichloroethylene	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	0.0036	< 0.001	< 0.005	< 0.001	< 0.001	0.08	0.08	30	100
cis-1,2-Dichloroethylene	< 0.001	6.34	0.024	< 0.001	< 0.001	< 0.001	0.018	0.023	0.17	< 0.001	< 0.001	0.1	0.1	50	100
trans-1,2-Dichloroethylene	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	0.001	0.002	0.0067	< 0.001	< 0.001	0.09	0.09	50	100
Naphthalene	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.005	< 0.001	< 0.001	1	1	20	100
Tetrachloroethylene	< 0.001	6.4	< 0.005	< 0.001	< 0.001	< 0.001	1.63	< 0.001	0.019	< 0.001	< 0.001	0.05	0.05	30	100
Tetrahydrofuran	< 0.002	< 4	< 0.010	0.033	0.15	0.40	< 0.002	< 0.002	< 0.010	< 0.002	< 0.002	50	NS	NS	10*
1,1,1-Trichloroethane	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	0.081	< 0.001	< 0.005	< 0.001	< 0.001	4	4	20	100
Trichloroethylene	< 0.001	107	0.199	< 0.001	< 0.001	< 0.001	17.2	0.088	0.23	< 0.001	0.0016	0.03	0.03	5	50
1,2,4-Trimethylbenzene	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	0.0022	< 0.001	< 0.005	< 0.001	< 0.001	100	NS	NS	10*
1,3,5-Trimethylbenzene	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	1	NS	NS	10*
Vinyl Chloride	< 0.001	< 2	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	0.0014	0.047	< 0.001	< 0.001	0.002	0.002	50	100

- 1. Concentrations in milligrams per liter (mg/l, or parts per million).
- 2. "<" indicates not detected; value is quantitation limit.
- 3. RCGW = Reportable concentration for groundwater, from 310 CMR 40.1600.
- 4. MCP Method 1 groundwater standards from 310 CMR 40.0974(2).
- 5. UCLs = Upper Concentration Limits, from 310 CMR 40.0996(7). "*" indicates a default UCL, not a chemical specific value, per 310 CMR 40.0996(8)(a).
- 6. Shading indicates values exceeds applicable Reportable Concentration.
- 6. "--" = Not analyzed for this parameter.
- 7. "NS" = No standard available.
- * MW-6 results should be used with caution, as they may be low biased due to well conidtion (no cap; open to water intrusion; material settled around screen) at start of project.

Table 7

Groundwater Analytical Results

Volatile and Extractable Petroleum Hydrocarbons (VPH/EPH)

Concentrations in mg/l 298 Federal Street Greenfield, MA

Well No.:	LS-10	LS-20	LS-24	Sump		GW-2	GW-3
Sample Date:	1/19/12	1/19/12	2/28/12	2/28/12	RCGW-2	Standard	Standard
VPH Fractions							
C5-C8 Aliphatics	< 0.075		3.65*	< 0.075	3	3	50
C9-C12 Aliphatics	< 0.025		0.20	< 0.025	5	5	50
C9-C10 Aromatics	< 0.025		0.082	< 0.025	7	7	50
VPH Target Compounds							
Benzene	< 0.005		< 0.005	< 0.005	2	2	10
Ethylbenzene	< 0.005		< 0.005	< 0.005	5	20	5
Methyl tert-butyl ether	< 0.005		< 0.005	< 0.005	5	50	50
Naphthalene	< 0.005		< 0.005	< 0.005	1	1	20
Toluene	< 0.005		< 0.005	< 0.005	40	50	40
Xylenes (total)	< 0.015		< 0.015	< 0.015	5	9	5
EPH Fractions							
C9-C18 Aliphatics	< 0.11	< 0.11	< 0.12		5	5	50
C19-C36 Aliphatics	< 0.11	< 0.11	< 0.12		50	NA	50
C11-C22 Aromatics	< 0.11	< 0.11	< 0.12		5	50	5
EPH Target Compounds							
Naphthalene	< 0.005	< 0.005	< 0.006		1	1	20
2-Methylnaphthalene	< 0.005	< 0.005	< 0.006		2	2	20
Acenaphthylene	< 0.005	< 0.005	< 0.006		0.04	10	0.04
Acenaphthene	< 0.005	< 0.005	< 0.006		6	NA	6
Fluorene	< 0.005	< 0.005	< 0.006		0.04	NA	0.04
Phenanthrene	< 0.005	< 0.005	< 0.006		10	NA	10
Anthracene	< 0.005	< 0.005	< 0.006		0.03	NA	0.03
Fluoranthene	< 0.005	< 0.005	< 0.006		0.2	NA	0.2
Pyrene	< 0.005	< 0.005	< 0.006		0.02	NA	0.02
Benzo(a)anthracene	< 0.005	< 0.005	< 0.006		1	NA	1
Chrysene	< 0.005	< 0.005	< 0.006		0.07	NA	0.07
Benzo(b)fluoranthene	< 0.005	< 0.005	< 0.006		0.4	NA	0.4
Benzo(k)fluoranthene	< 0.005	< 0.005	< 0.006		0.1	NA	0.1
Benzo(a)pyrene	< 0.005	< 0.005	< 0.006		0.5	NA	0.5
Indeno(1,2,3-cd)pyrene	< 0.005	< 0.005	< 0.006		0.1	NA	0.1
Dibenzo(a,h)anthracene	< 0.005	< 0.005	< 0.006		0.04	NA	0.04
Benzo(g,h,i)perylene	< 0.005	< 0.005	< 0.006		0.02	NA	0.02

- 1. Concentrations in milligrams per liter (mg/l, or parts per million).
- 2. "<" indicates not detected; value is quantitation limit.
- 3. RCGW = Reportable concentration for groundwater, from 310 CMR 40.1600.
- 4. MCP Method 1 groundwater standards from 310 CMR 40.0974(2).
- 5. "--" = Not analyzed for this parameter.
- 6. Shading indicates values exceeds applicable Reportable Concentration.
- 7. "NA" = Not applicable.
- * Likely false positive due to chlorinated VOCs; lab noted single peak in quantitation range.

Table 8
Groundwater Analytical Results
Inorganic Analytes
Concentrations in mg/l
298 Federal Street
Greenfield, MA

Well No.:	LS-19	LS-20	LS-24	MV	W-6	MW-7		GW-2	GW-3
Sample Date:	3/15/12	1/19/12	2/28/12	1/19/12	2/28/12	1/19/12	RCGW-2	Standard	Standard
Metals									
Antimony			< 0.006		0.026		8	NA	8
Arsenic	0.025	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.9	NA	0.9
Barium	0.088	0.080	0.031	0.056	0.020	0.048	50	NA	50
Beryllium			< 0.002		< 0.002		0.2	NA	0.2
Cadmium	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	0.004	NA	0.004
Chromium (VI or total)*	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.3	NA	0.3
Copper			< 0.005		0.010		100	NA	NS
Lead	< 0.0075	< 0.0075	< 0.0075	< 0.0075	0.0075	< 0.0075	0.01	NA	0.01
Mercury	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.02	NA	0.02
Nickel			< 0.005		< 0.005		0.2	NA	0.2
Selenium	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	0.1	NA	0.1
Silver	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.007	NA	0.007
Thallium			< 0.005		< 0.005		3	NA	3
Zinc			0.0061		0.040		0.9	NA	0.9
Cyanide (total)		< 0.005		< 0.005	0.017	< 0.005	0.03	NA	0.03

- 1. Concentrations in milligrams per liter (mg/l, or parts per million).
- 2. "<" indicates not detected; value is quantitation limit.
- 3. RCGW = Reportable Concentration for groundwater, from 310 CMR 40.1600.
- * Per the 4/06 MCP, chromium is assumed to be hexavalent unless testing is done to prove otherwise.

Table 9
Monitoring Well Survey and Groundwater Elevation Data
298 Federal Street
Greenfield, MA

		Januar	y 19, 2012	March	15, 2012
Well No.	Reference Elevation (feet)	Depth to water (feet)	Water Table Elevation (feet)	Depth to water (feet)	Water Table Elevation (feet)
LS-10	100.00	5.06	94.9	4.76	95.2
LS-19	93.47	4.53	88.9	4.31	89.2
LS-20	93.94	3.40	90.5	3.91	90.0
LS-21	92.93	NI	NI	2.25	90.7
LS-22	93.38	NI	NI	3.30	90.1
LS-23	93.66	NI	NI	3.70	90.0
LS-24	99.47	NI	NI	5.02	94.5
MW-6	94.74	2.06	92.7	2.90	91.8
MW-7	94.86	2.68	92.2	2.78	92.1

- 1. Elevations relative to an arbitrary datum assigned elevation 100.00 feet.
- 2. Measurements made from top of PVC using an electronic water level indicator.
- 3. NI = Not installed by this date.

Table 10 Catch Basin and Outfall Water Analytical Results Volatile Organic Compounds (VOCs) Concentrations in mg/l 298 Federal Street Greenfield, MA

Well No.:	CB-1	CB-2	OF-1	OF-2	GW-2	GW-3	Surface Water
Sample Date:	3/15/12	3/15/12	4/11/12	4/11/12	Standard	Standard	Benchmark
cis-1,2-Dichloroethylene	0.031	0.16	< 0.001	< 0.001	0.1	50	14
Tetrachloroethylene	< 0.005	0.017	< 0.001	< 0.001	0.05	30	1.1
Trichloroethylene	0.12	0.58	< 0.001	< 0.001	0.03	5	0.19

- 1. Concentrations in milligrams per liter (mg/l, or parts per million).
- 2. "<" indicates not detected; value is quantitation limit.
- 3. Groundwater standards (GW-2/GW-3) are not strictly applicable to water in catch basin; shown for comparative purposes.
- 4. The surface water benchmarks are toxicity-based surface water concentrations used by MassDEP in developing GW-3 groundwater standards. These values are based on toxicity to aquatic life.
- 5. Shading indicates result exceeds surface water benchmark value.

Table 11
Soil Gas Photoionization Detector Screening Results
298 Federal Street
Greenfield, Massachusetts

Sample Location	PID Reading (ppmv)	Selected for Lab Analysis
SG-1	16.7	
SG-2	11.3	
SG-3	0.4	
SG-4	21.6	*
SG-5	0.8	
SG-6	0.0	*
SG-7	0.0	*
SG-8	0.0	
SG-9	0.4	*
SG-10	0.0	*
SG-11	0.0	*
SG-12	0.0	
SG-13	0.0	

- 1. "PID" = Photoionization detector screening reading from PID equipped with 11.8 eV lamp, calibrated to read in benzene equivalents in parts per million by volume (ppmv).
- 2. Measurements performed by OTO on January 26-27, 2012.
- 3. Minimum detection limit approximately 0.1 ppmv.

Table 12
Soil Gas Analytical Results
Concentrations in ug/m³
298 Federal Street
Greenfield, Massachusetts

Sample ID:	SG-4	SG-6	SG-7	SG-9	SG-10	SG-11	Commercial/
PID (ppmv):	21.6	0	0	0.4	0	0	Industrial Sub-Slab
Sample Date:	1/26/12	3/15/12	3/15/12	1/26/12	1/27/12	1/27/12	Screening Values
Volatile Organic Compounds							
Acetone	390	34	26	120	40	55	16,000
Benzene	< 31	< 3.2	< 3.2	< 5.1	1.1	0.61	770
Carbon Disulfide	< 69	< 3.1	< 3.1	< 12	1.2	< 1.2	NA
Dichlorodifluoromethane (Freon 12)	< 97	< 4.9	< 4.9	< 16	3.0	2.8	NA
cis-1,2-Dichloroethylene	< 38	< 4.0	< 4.0	12	< 0.65	< 0.65	700
Ethanol	< 45	480	490	< 7.6	15	9.5	NA
Ethylbenzene	< 50	< 4.3	< 4.3	< 8.4	< 0.85	1.0	20,000
4-Ethyltoluene	< 69	< 4.9	< 4.9	13	2.5	3.0	NA
Hexane	< 45	14	10	< 7.7	1.1	< 0.77	NA
Isopropanol	58	89	104	13	27	9.7	NA
Methyl ethyl ketone (MEK)	< 63	12	21	< 11	2.1	1.8	100,000
Methylene Chloride	< 92	6.2	< 3.5	< 15	< 1.5	< 1.5	770
Tetrachloroethylene	< 81	< 6.8	< 6.8	20	5.5	3.5	290
Tetrahydrofuran	< 39	< 3.0	5.5	< 6.5	< 0.65	< 0.65	NA
Toluene	< 42	< 3.8	7.2	< 7.1	7.4	4.3	100,000
1,1,1-Trichloroethane	280	< 5.5	< 5.5	41	7.9	6.7	100,000
Trichloroethylene	20,000	< 5.4	< 5.4	4,100	170	66	140
Trichlorofluoromethane (Freon 11)	< 150	< 5.6	< 5.6	< 25	16	21	NA
1,2,4-Trimethylbenzene	< 49	< 4.9	< 4.9	35	8.1	3.9	NA
1,3,5-Trimethylbenzene	< 86	< 4.9	< 4.9	15	3.2	2.1	NA
total Xylenes	< 206	< 8.6	< 8.6	< 34	4.4	5.6	2,000

- 1. Only analytes detected are shown on the table. Refer to laboratory reports for full listing of analytical parameters.
- 2. Concentrations in micrograms per cubic meter (ug/m3).
- 3. "PID" = Photoionization detector screening reading from PID equipped with 11.8 eV lamp (January) or 10.6 eV lamp (March), calibrated to read in benzene equivalents.
- 4. "<" = Not detected; value is quantitation limit.
- 5. Sub-Slab Soil Gas Screening Values from MassDEP Interim Final Vapor Intrusion Guidance, WSC#-11-435, December 2011.
- 6. "'NA" indicates no value available.
- 7. Shading indicates measured concentration exceeds the commercial/industrial soil gas screening value.

Table 13
Indoor Air Analytical Results
Concentrations in ug/m³
298 Federal Street
Greenfield, Massachusetts

Sample ID	IA-1	IA-2	IA-3	IA-4	Commercial/
Sample Location	Office	Basement near settling tanks	Basement SW corner	Basement north central	Industrial Indoor Air Threshold Values (TV _{c/i})
Sample Date	1/26/12	1/26/12	1/26/12	1/26/12	values (1 v _{c/i})
Volatile Organic Compounds					
Acetone	8.2	5.8	8.3	< 1.1	700
Benzene	1.8	0.89	< 0.51	1.4	11
Chloromethane	< 0.77	< 0.77	1.3	1.8	NA
Dichlorodifluoromethane (Freon 12)	3.2	3.2	3.4	3.5	NA
cis-1,2-Dichloroethylene	< 0.65	< 0.65	2.6	< 0.65	31
Ethanol	9.5	2.5	7.0	7.8	NA
Hexane	1.5	1.7	< 0.77	1.6	NA
Isopropanol	1.9	1.5	2.0	3.0	NA
Tetrachloroethylene	1.6	2.2	4.4	< 1.4	4.1
Toluene	3.0	1.2	< 0.71	2.1	4,400
Trichloroethylene	< 0.96	5.6	2.3	8.1	1.8
Trichlorofluoromethane (Freon 11)	13	7.9	4.7	9.8	NA

- 1. Only analytes detected are shown on the table. Refer to laboratory reports for full listing of analytical parameters.
- 2. Concentrations in micrograms per cubic meter (ug/m3).
- 3. "<" = Not detected; value is quantitation limit.
- 4. Indoor Air Threshold Values from MassDEP Interim Final Vapor Intrusion Guidance, WSC#-11-435, December 2011.
- 5. "'NA" indicates no threshold value available.
- 6. Shading indicates measured concentration exceeds the commercial/industrial indoor air Threshold Value.

Table 14 Preliminary Remedial Cost Estimates Former Lunt Silversmiths Site 298 Federal Street Greenfield, Massachusetts

Task	Cost Projection
1. Further assessment and reporting	\$200,000
to support MCP obligations	
2. Activity and Use Limitation (AUL)	\$20,000
3. TCE source area soil excavation	\$100,000
and off-site disposal	
4. Groundwater interception and	\$125,000
treatment installation and start-up	
5. Sub-slab depressurization installation	\$150,000
and start-up	
6. Cyclone area soil capping	\$75,000
7. Long term O&M	\$200,000
Subtotal:	\$870,000
Contingency (20%):	\$174,000
Total:	\$1,044,000

293 Bridge Street, Suite 500 Springfield, Massachusetts 01103 Phone: 413-788-6222 www.oto-env.com 298 Federal Street Greenfield, Massachusetts

SITE LOCUS

March, 2012

Figure 1

Figure 4

Okun Associates, Inc.

LEGEND

Chlorinated VOCs in soil, groundwater +/or soil gas above standards

Chlorinated VOCs in soil, groundwater +/or soil gas below standards

- Soil Boring Location
- OTO Monitoring Well Location
- Previously Existing Monitoring Well Location
- ▲ Indoor Air
- Sample Location
- Soil Gas Sample Location

FIGURE 7

AREAS OF CONCERN: CVOCs

FORMER LUNT SILVERSMITH PROPERTY

GREENFIELD, MASSACHUSETTS

File No. 1753-03-01

April 2012

APPENDIX A LIMITATIONS

LIMITATIONS

- 1. Our report does not present scientific certainties, but rather our professional opinions on the data obtained through our assessment. Our report was prepared for the exclusive benefit of our client. Reliance upon the report and its conclusions is not made to third parties or future property owners. We would be pleased to discuss extension of reliance to third parties through execution of a written contract with such parties.
- 2. The observations presented in this report were made under the conditions described herein. The conclusions presented in this report were based solely upon the services described in the report and not on scientific tasks or procedures beyond the scope of the project or the time and budgetary constraints imposed by the client. The work described in this report was carried out in accordance with the contract Terms and Conditions.
- 3. In preparing the report O'Reilly, Talbot & Okun Associates, Inc. relied on certain information provided by state and local officials and other parties referenced herein, and on information contained in prior site reports. Although there may have been some degree of overlap in the information provided by these sources, O'Reilly, Talbot, & Okun Associates, Inc. did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this assessment.
- 4. Limited observations were made of the site and of the structures on the site, as indicated within the report. Where access to portions of the site or to structures on the site was unavailable or limited, we render no opinion as to the presence of hazardous materials/oil or asbestos containing materials, or to the presence of indirect information relating to hazardous materials/oil in that portion of the site. No destructive sampling was conducted to expose hidden potentially asbestos containing materials, and significant amounts of asbestos could be located in these areas, which would not be observed during our visit. In addition, we render no opinion as to the presence of hazardous materials/oil or asbestos containing materials, where direct observations of portions of the site were obstructed by objects or coverings on or over these surfaces.
- 5. Unless otherwise specified in the Report, we did not perform testing or analyses to determine the presence or concentration of asbestos at the site or in the environment at the site.
- 6. The purpose of this Report was to assess the physical characteristics of the subject site with respect to the presence of hazardous material or oil in soil or groundwater at the site. No specific attempt was made to check on the compliance of present or past owners or operators of the site with federal, state, or local laws and regulations, environmental or otherwise.

APPENDIX B INFORMATION FROM GOLY'S GARAGE SITE

SOIL BORING & MONITORING WELL INSTALLATION LOG

Boring Name: MW-6 Job Number: 14685.00 Environmental Compliance Services , Inc **Boring Company:** Site Name: Golys Garage 286 Federal Street Address: 588 Silver Street Address: Town: Agawam Greenfield Town: State/Zip: MA 01301 MA 01001 State/Zip: Foreman: Stanley Werbicki Client: Goly's Garage Inc.

Installed/Finished: 09/08/2006 - 09/08/2006

Location of Boring:

Depth (feet)	Penetration/ Recovery (inches)	Blow Count (per 6 in.)	Strata	Soil Descriptions	Field Testing
0 - 1	12/0				
1 - 2	12/0				
2 - 3	12/0				
3 - 4	12/0				
4 - 5	12/0				
5 - 6	12/9	3-4	Clay	damp gray CLAY, silt, fine sand	356
6 - 7	12/12	3-4	Clay	damp gray CLAY, silt, fine sand	356
7 - 8	12/0				
8 - 9	12/0				
9 - 10	12/0				
10 - 11	12/12	3-2	Clay	wet gray CLAY, trace of silt, fine sand	2187

11 - 12	12/12	3-5	Clay	wet gray CLAY, trace of silt, fine sand	2187
12 - 13	12/0				
13 - 14	12/0				
14 - 15	12/0				
15 - 16	12/12	2-1	Clay	wet gray CLAY, trace of silt, fine sand	1112
16 - 17	12/12	2-2	Clay	wet gray CLAY, trace of silt, fine sand	1112

Boring Type: Hollow Stem Auger 1 Auger Inside Diameter (in): 4.25 Hammer Weight (lbs): 140

Hammer Fall (in): 30

Sampler Inside Diameter (in): 1.375 Sampler Type: S.S. Split Spoon 1

Sampler Length (in.): 24 ECS Inspector: Anita Hansen

Notes:

Well Construction Data:

A 2.00 inch monitoring well was installed at 15.00 ft below grade using 10.00 ft of 0.01 slotted screen and 5.00 ft of solid riser, sand packed to 4.00 ft below grade, bentonite sealed to 3.00 ft below grade; native fill.

Notes: Field Testing values represent total volatile organic vapors (referenced to a benzene standard) measured in the headspace of sealed soil sample jars with an OVM 580B photoionization meter with a Detection Limit of 0.1 ppm. Results reported in Parts Per Million (ppm), BDL=Below Detection Limit

SOIL BORING & MONITORING WELL INSTALLATION LOG

Boring Name: MW-7 Job Number: 14685.00 Environmental Compliance Services , Inc **Boring Company:** Site Name: Golys Garage Address: 286 Federal Street 588 Silver Street Address: Town: Agawam Greenfield Town: State/Zip: MA 01301 MA 01001 State/Zip: Foreman: Stanley Werbicki Client: Goly's Garage Inc.

Installed/Finished: 09/08/2006 - 09/08/2006

Location of Boring:

Depth (feet)	Penetration/ Recovery (inches)	Blow Count (per 6 in.)	Strata	Soil Descriptions	Field Testing
0 - 1	12/0				
1 - 2	12/0				
2 - 3	12/0				
3 - 4	12/0				
4 - 5	12/0				
5 - 6	12/10	1-2	Clay	damp light brown CLAY, trace of fine sand, silt	0
6 - 7	12/12	3-5	Clay	damp light brown CLAY, trace of fine sand, silt	0
7 - 8	12/0				
8 - 9	12/0				
9 - 10	12/0				
10 - 11	12/12	2-1	Clay	moist 22" gray CLAY, over 2" red med sand, clay	0
	1			ļ.	

	11 - 12	12/12	2-refusal	Clay	moist 22" gray CLAY, over 2" red med sand, clay	0

Boring Type: Hollow Stem Auger 1 Auger Inside Diameter (in): 4.25 Hammer Weight (lbs): 140

Hammer Fall (in): 30

Sampler Inside Diameter (in): 1.375 Sampler Type: S.S. Split Spoon 1 Sampler Length (in.): 24

ECS Inspector: Anita Hansen

Notes:

Well Construction Data:

A 2.00 inch monitoring well was installed at 12.00 ft below grade using 10.00 ft of 0.01 slotted screen and 2.00 ft of solid riser, sand packed to 1.00 ft below grade, bentonite sealed to 0.00 ft below grade; native fill.

Notes: Field Testing values represent total volatile organic vapors (referenced to a benzene standard) measured in the headspace of sealed soil sample jars with an OVM 580B photoionization meter with a Detection Limit of 0.1 ppm. Results reported in Parts Per Million (ppm), BDL=Below Detection Limit

TABLE 2 SUMMARY OF RESULTS OF ANALYSIS OF SOIL SAMPLES

Goly's Garage, 286 Federal Street, Greenfield, MA MADEP RTN 1-001047

(MassDEP Methods VPH 97-12 and 5/2004R, EPH 98-1 and 5/2004R, and USEPA 200.7)

Results and standards reported in milligrams per kilogram (mg/Kg) or micrograms per kilogram (µg/Kg), as indicated

Sample Location	S-2 (Northern Wall) ¹	S-3 (East Wall) ¹	S-4 (South Wall) ¹	S-1 (West Wall) ¹	MW-3	EP-3	MW-4	EP-4	MW-5	EP-5	EP-5	EP-1	EP-2	EP-2	MW-6	MW-7
Sampling Date	4/23/1993	4/23/1993	4/23/1993	4/23/1993	8/23/2002	8/26/2009	8/23/2002	8/26/2009	8/23/2002	8/26/2009	8/26/2009	8/26/2009	8/26/2009	8/26/2009	9/8/2006	9/8/2006
Sample Depth	<5'	<5'	<5'	<5'	5-7'	8-9'	5-7'	8-10'	5-7'	0-3'	4-8'	4-8'	0-3'	8-9'	10-12'	10-12'
TOV (ppm)	207	<1	3	6	420	2,800	235	2,570	434	12.6	3,220	3,400	18.7	983	2,187	ND
VPH (mg/Kg)																•
C ₅ -C ₈ Aliphatics	NT	NT	NT	NT	33	86.0	NT	18.2	380	< 0.825	568	691	< 3.97	284	15.4	<1.39
C ₉ -C ₁₂ Aliphatics	NT	NT	NT	NT	11	179	NT	15.4	93	0.453	652	672	<1.32	182	< 0.493	< 0.465
C ₉ -C ₁₀ Aromatics	NT	NT	NT	NT	41	123	NT	11.1	470	0.416	430	517	<1.32	92.3	< 0.493	< 0.465
VPH Analytes (μg/Kg)																
Benzene	<1,000	< 5.0	< 5.0	< 5.0	<230	<665	NT	78.9	<1,200	<55.0	1,600	<6,710	<265	<1,170	<98.7	<92.9
Toluene	<1,500	<7.5	<7.5	<7.5	320	1,520	NT	284	<1,200	<55.0	9,830	11,100	<265	6,970	<98.7	<92.9
Ethylbenzene	<1,000	<5.0	< 5.0	<5.0	3,800	3,770	NT	217	11,600	<55.0	8,220	8,210	<265	<1,170	<98.7	<92.9
Total Xylenes	68,000	<5.0	<5.0	<5.0	25,500	32,890	NT	4,128	175,500	<110	89,820	179,500	<530	3,940	<197	<186
Naphthalene	NT	NT	NT	NT	2,500	13,100	NT	870	<1,200	<55.0	34,440	35,200	<265	9,170	<98.7	<92.9
Methyl tert-butyl ether	<10,000	<50	<50	< 50	<230	<665	NT	<64.0	<1,200	<55.0	<2,820	<6,710	<265	<1,170	<98.7	<92.9
EPH (mg/kg)																•
C ₉ -C ₁₈ Aliphatics	180	56	44	92	<40	NT	NT	NT	880	NT	NT	NT	NT	NT	NT	NT
C ₁₉ -C ₃₆ Aliphatics	NA	NA	NA	NA	<40	NT	NT	NT	330	NT	NT	NT	NT	NT	NT	NT
C ₁₁ -C ₂₂ Aromatics	270	84	66	138	<40	NT	NT	NT	669	NT	NT	NT	NT	NT	NT	NT
PAH ⁽⁴⁾ (μg/Kg)		•	•			•	•		•	•	•	•	•	•		*
Naphthalene	NT	NT	NT	NT	670	NT	NT	NT	6,500	NT	NT	NT	NT	NT	NT	NT
2-Methylnaphthalene	NT	NT	NT	NT	600	NT	NT	NT	11,000	NT	NT	NT	NT	NT	NT	NT
Acenaphthene	NT	NT	NT	NT	<180	NT	NT	NT	530	NT	NT	NT	NT	NT	NT	NT
Acenaphthylene	NT	NT	NT	NT	<180	NT	NT	NT	<230	NT	NT	NT	NT	NT	NT	NT
Fluorene	NT	NT	NT	NT	<180	NT	NT	NT	730	NT	NT	NT	NT	NT	NT	NT
Phenanthrene	NT	NT	NT	NT	<180	NT	NT	NT	1,500	NT	NT	NT	NT	NT	NT	NT
Anthracene	NT	NT	NT	NT	<180	NT	NT	NT	<230	NT	NT	NT	NT	NT	NT	NT
Fluoranthene	NT	NT	NT	NT	<180	NT	NT	NT	<230	NT	NT	NT	NT	NT	NT	NT
Pyrene	NT	NT	NT	NT	<180	NT	NT	NT	260	NT	NT	NT	NT	NT	NT	NT
Benzo(a)anthracene	NT	NT	NT	NT	<180	NT	NT	NT	<230	NT	NT	NT	NT	NT	NT	NT
Chrysene	NT	NT	NT	NT	<180	NT	NT	NT	<230	NT	NT	NT	NT	NT	NT	NT
Benzo(b)fluoranthene	NT	NT	NT	NT	<180	NT	NT	NT	<230	NT	NT	NT	NT	NT	NT	NT
Benzo(k)fluoranthene	NT	NT	NT NT	NT	<180 <180	NT	NT	NT NT	<230	NT NT	NT NT	NT NT	NT NT	NT	NT	NT
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	NT NT	NT NT	NT NT	NT NT	<180 <180	NT NT	NT NT	NT NT	<230 <230	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Dibenzo(a,h)anthracene	NT	NT	NT	NT	<180	NT	NT NT	NT	<230	NT	NT NT	NT	NT	NT	NT	NT
Benzo(g,h,i)perylene	NT	NT	NT	NT	<180	NT	NT	NT	<230	NT	NT	NT	NT	NT	NT	NT
VOC'S by 8260/8240 (μg/Kg)		2,12			100			21.2	1200			2112		2112		
1.2-Dibromoethane (EDB)	NT	NT	NT	NT	NT	NT	NT	NT	<1,200	NT	NT	NT	NT	NT	<97.3	<93.4
cis-1,2-Dichloroethene	<1.000	<5.0	<5.0	<5.0	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	10,100	<93.4
trans-1,2-Dichloroethene	<1,500	<7.5	<7.5	<7.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1,440	<93.4
Tetrachloroethene	<1,500	<7.5	<7.5	<7.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	406	<93.4
Trichloroethene	<1,000	<5.0	<5.0	<5.0	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	85,400	<93.4
Total Xylenes	68,000	<5.0	<5.0	<5.0	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<195	<187
Metals (mg/kg)	•	•	•			•	•		•	•	•	•	•	•		-
Total Lead	NT	NT	NT	NT	NT	NT	NT	NT	38.5	NT	NT	NT	NT	NT	NT	NT

NOTES: ND = Not detected at the method detection limits. NA = Not applicable. NT = sample not tested for this analyte **Bold** = Concentrations Above Method 2 Standard.

¹ This sample was analyzed via USEPA TPH Method 418.1 and USEPA Method 8240. In order to compare these results to current standards, EPH fraction concentrations were calculated from the TPH concentration reported as described in WCS-02-411, Implementation of the MADEP VPH/EPH Approach, Final Policy (October 31, 2002).

² MCP Method 1 Standards pursuant to 310 CMR 40.0975(6)(a),(b), and (c).

³ Standard for Total Xylenes.

⁴ Polycyclic Aromatic Hydrocarbons.

${\bf TABLE~3} \\ {\bf SUMMARY~OF~RESULTS~OF~ANALYSIS~OF~GROUNDWATER~SAMPLES} \\$

Goly's Garage, 286 Federal Street, Greenfield, MA MassDEP RTN 1-1047

MassDEP VPH Methods 97-12 and 5/2004R and USEPA Methods 6010B and 6020A Results reported in milligrams per liter (mg/L) or micrograms per liter (μ g/L) as noted

***	Well ID/ Sampling Depth to Samplin				C ₅ -C ₈ Aliphatic Hydrocarbons	C ₉ -C ₁₂ Aliphatic Hydrocarbons	C ₉ -C ₁₀ Aromatic Hydrocarbons	Benzene	Т-1	E4111	Total Xylenes	T-4-1 DTEV	Naphthalene	Dissolved Lead	
Well ID/ Elevation	Sampling Date	Depth to Water		Sampling Method	Trydrocarbons	mg/L	11ydrocarbons	Бепгепе	1 oluene	Etnyibenzene	μg/L	Total DTEA	Naphthalene	MtBE	mg/L
			MCP Method 2 GW	-2 Standards (2)	3	5	7	2,000	50,000	20,000	9,000 (3)	NA	1,000	50,000	NA
		1	MCP Method 2 GW	-3 Standards (2)	50	50	50	10,000	40,000	5,000	5,000 (3)	NA	20,000	50,000	0.01
MW-1	8/30/02	5.71	94.51	Bailer	< 0.075	< 0.025	< 0.025	< 5.0	< 5.0	< 5.0	<10.0	ND	< 5.0	8.00	NT
100.22	4/26/07	4.82	95.40	Low-flow	< 0.075	< 0.025	< 0.025	< 5.0	< 5.0	< 5.0	<10.0	ND	< 5.0	8.30	NT
	5/31/07	5.26	94.96	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-2	4/26/07	DRY	DRY	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
100.61	5/31/07	DRY	DRY	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	8/30/02	2.98	97.02	Bailer	5.1	2.0	18.0	< 50	900	2,800	23,700	27,400	1,200	< 50	0.0222
100.00	4/26/07		97.05	Low-flow	0.98	0.73	1.67	< 5.0	36.4	272	1,930	2,238	120	< 5.0	NT
	5/31/07	3.36	96.64	Low-flow	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.0166
	8/26/09	3.10	96.90	Low-flow	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.0059
MW-5	8/30/02	3.34	96.07	Bailer	0.53	0.17	8.0	410	85	680	9,393	10,568	690	30	< 0.0075
99.41	4/26/07	2.73	96.68	Low-flow*	0.21	0.19	0.45	15.4	< 5.0	21.5	180.1	217	23.0	< 5.0	0.0114
	5/31/07	3.14	96.27	Low-flow*	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	< 0.0075
MW-6	4/26/07	4.80	93.50	Low-flow	51.9	< 0.250	0.26	<50	<50	< 50	<100	ND	<50	< 50	NT
98.30	5/31/07	3.09	95.21	Low-flow	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-7	4/26/07	2.67	96.20	Low-flow	< 0.0750	< 0.0250	< 0.0250	<5.0	<5.0	<5.0	<10.0	ND	<5.0	< 5.0	NT
98.87	5/31/07	2.89	95.98	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-9	4/26/07		95.17	Low-flow	< 0.0750	< 0.0250	< 0.0250	<5.0	< 5.0	<5.0	<10.0	ND	<5.0	7.10	NT
98.86	5/31/07	3.87	94.99	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-10	4/26/07	5.15	94.06	Low-flow	0.12	< 0.250	< 0.250	< 5.0	< 5.0	< 5.0	<10.0	ND	<5.0	< 5.0	< 0.0075
99.21	5/31/07	6.06	93.15	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-11	4/26/07	4.36	95.43	Low-flow	< 0.0750	< 0.0250	< 0.0250	<5.0	<5.0	<5.0	<10.0	ND	<5.0	<5.0	NT
99.79	5/31/07	5.57	94.22	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-13	4/26/07	3.64	95.61	Low-flow	< 0.0750	< 0.0250	< 0.0250	<5.0	<5.0	<5.0	<10.0	ND	<5.0	<5.0	NT
99.25	5/31/07	4.82	94.43	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
				No. Analyses	12	12	12	12	12	12	12	NA	12	12	7
				No. Detections	6	4	5	2	3	4	4	NA	4	3	4
			-	cy of Detection	50%	33%	42%	17%	25%	33%	33%	NA	33%	25%	57%
				num Detection	51.9	2.0	18.0 MW-3	410	900	2,800	23,700	NA	1,200	30.0	0.0222 MW-3
			Location of Maxis		MW-6 Y	MW-3 Y	MW-3 Y	MW-5 Y	MW-3 Y	MW-3 Y	MW-3 Y	NA NA	MW-3 Y	MW-5 Y	MW-3 N
			COC for	Site GW (Y/N)	Y	Y	Υ	Y	Y	Y	Y	NA	Y	Y	N

¹ MCP Method 1 Standards as documented in 310 CMR 40.0974(2)

NA is Not Applicable

NS is No Sample collected at this well on this date

NT is sample not analyzed for this compound

MtBE is methyl tert butyl ether

² Published Method 2 MCP Standards prior to effective date per 310 CMR 40.0982(7)

³ Standard for Total Xylenes

TABLE 4 SUMMARY OF RESULTS OF ANALYSIS OF GROUNDWATER SAMPLES

Goly's Garage, 286 Federal Street, Greenfield, MA MassDEP RTN 1-1047

 $MassDEP\ EPH\ Methods\ 98-1\ and\ 5/2004R$ Results reported in milligrams per liter (mg/L) or micrograms per liter (µg/L) as noted

	Routes reported in intingrams per riter (rigger) or interograms per riter (rigger) as noted																							
Well ID/	Sampling Date		GW Elevation	Sampling Method	C ₉ -C ₁₈ Aliphatic Hydrocarbons	C ₁₉ -C ₃₆ Aliphatic Hydrocarbons mg/L	C ₁₁ -C ₂₂ Aromatic Hydrocarbons	Naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaphthylene	Fluorene	Phenanthrene	Anthracene	Fluoranthen		Benzo(a) anthracene	Chrysene	Benzo(b) fluoranthene			Indeno (1,2,3-cd) pyrene	Dibenzo (a,h) anthracene	
Dievation	Dute		Method 1 GW		5	NA	50	1.000	2.000	NA	10.000	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Method 1 GW		-	50	50																	
1007.1	0./20./02		94.51	-3 Standards Bailer	50			20,000	20,000	6,000	40	40	10,000	30	200	20	1,000	70	400	100	500	100	40	20
MW-1	8/30/02				<0.2	<0.2	<0.2	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
100.22	4/26/07	4.82	95.40	Low-flow	< 0.2	< 0.2	<0.2	<1.0	<1.0	<1.0	1.25	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.200	< 0.500	< 0.500	<1.0
MW-2	4/26/07	DRY	DRY	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
100.61																								
MW-3	8/30/02		97.02	Bailer	2.8	< 0.2	6.7	270	130	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0
100.00	4/26/07	2.95	97.05	Low-flow	0.3	< 0.2	0.4	58.9	15.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.200	< 0.500	< 0.500	<1.0
MW-5	8/30/02	3.34	96.07	Bailer	1.6	0.66	5.9	210	120	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
99.41	4/26/07		96.68	Low-flow	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	5/31/07		96.27	Low-flow	<0.2	<0.2	<0.2	21.5	7.11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.200	< 0.500	< 0.500	<1.0
MW-6	4/26/07	4.80	93.50	Low-flow	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
98.30	5/31/07	3.09	95.21	Low-flow	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-7	4/26/07	2.67	96.20	Low-flow	< 0.2	< 0.2	< 0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.200	< 0.500	< 0.500	<1.0
98.87																								
MW-9	4/26/07	3.69	95.17	Low-flow	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
98.86	4/20/07	3.07)3.17	Low-now	141	141			141	141	141		141		141	141			141	141	141			141
70.00																								
MW-10	4/26/07	5.15	94.06	Low-flow	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
99.21																								
MW-11	4/26/07	4.36	95.43	Low-flow	< 0.2	< 0.2	< 0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.200	< 0.500	< 0.500	<1.0
99.79																								
MW-13	4/26/07	3.64	95.61	Low-flow	< 0.2	< 0.2	< 0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.200	< 0.500	< 0.500	<1.0
99.25	4/20/07	3.04	93.01	Low-now	<0.2	<0.2	<0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.200	<0.500	<0.500	<1.0
11.23				No. Analyses	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
				No. Detections	3	1	3	4	4	ó	1	ó	ó	0	0	0	0	ó	ó	0	0	0	0	ó
				cy of Detection	33%	11%	33%	44%	44%	0%	11%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
				mum Detection	2.8	0.66	6.7	270	130	NA	1.25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Loca		num Detection	MW-3	MW-5	MW-3	MW-5	MW-5	NA	MW-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
				Site GW (Y/N)	Y	Y	Y	Y	Y	N	Y	N	N	N	N	N	N	N	N	N	N	N	N	N

¹ MCP Method 1 Standards as documented in 310 CMR 40.0974(2) NA is Not Applicable NS is No Sample collected at this well on this date NT is sample not analyzed for this compound

${\bf TABLE~5} \\ {\bf SUMMARY~OF~RESULTS~OF~ANALYSIS~OF~GROUNDWATER~SAMPLES} \\$

Goly's Garage, 286 Federal Street, Greenfield, MA MassDEP RTN 1-1047

USEPA Methods 8260B and 504.1

Results reported in milligrams per liter (mg/L) or micrograms per liter (μ g/L) as noted

Well ID/ Elevation	Sampling Date	Depth to Water	GW Elevation	Sampling Method	EDB	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethen
		MCP M	ethod 1 GW-	2 Standards (1)	2	100	90	50	30
		MCP M	ethod 1 GW-	3 Standards (1)	50,000	50,000	50,000	30,000	5,000
MW-1	8/30/02	5.71	94.51	Bailer	NT	NT	NT	NT	NT
100.22	4/26/07	4.82	95.40	Low-flow	NT	NT	NT	NT	NT
	5/31/07	5.26	94.96	Low-flow	NS	NS	NS	NS	NS
MW-2	4/26/07	DRY	DRY	NA	NS	NS	NS	NS	NS
100.61	5/31/07	DRY	DRY	NA	NS	NS	NS	NS	NS
MW-3	8/30/02	2.98	97.02	Bailer	< 50.0	NT	NT	NT	NT
100.00	4/26/07	2.95	97.05	Low-flow	NT	NT	NT	NT	NT
	5/31/07	3.36	96.64	Low-flow	NT	NT	NT	NT	NT
MW-5	8/30/02	3.34	96.07	Bailer	<10.0	NT	NT	NT	NT
99.41	4/26/07	2.73	96.68	Low-flow*	< 0.0100	NT	NT	NT	NT
	5/31/07	3.14	96.27	Low-flow*	NT	NT	NT	NT	NT
MW-6	4/26/07	4.80	93.50	Low-flow	NT	11,300	1,480	< 500	80,800
98.30	5/31/07	3.09	95.21	Low-flow	NT	NT	NT	NT	NT
MW-7	4/26/07	2.67	96.20	Low-flow	NT	NT	NT	NT	NT
98.87	5/31/07	2.89	95.98	NA	NS	NS	NS	NS	NS
MW-9	4/26/07	3.69	95.17	Low-flow	NT	<1.0	<1.0	4.9	2.5
98.86	5/31/07	3.87	94.99	NA	NS	NS	NS	NS	NS
MW-10	4/26/07	5.15	94.06	Low-flow	< 0.0100	<1.0	<1.0	1.0	<1.0
99.21	5/31/07	6.06	93.15	NA	NS	NS	NS	NS	NS
MW-11	4/26/07	4.36	95.43	Low-flow	NT	NT	NT	NT	NT
99.79	5/31/07	5.57	94.22	NA	NS	NS	NS	NS	NS
MW-13	4/26/07	3.64	95.61	Low-flow	NT	NT	NT	NT	NT
99.25	5/31/07	4.82	94.43	NA	NS	NS	NS	NS	NS
				No. Analyses	4	3	3	3	3
				No. Detections	0	1	1	2	2
				y of Detection	0%	33%	33%	67%	67%
		T		um Detection	NA	11,300	1,480	4.9	80,800
		Locatio	on of Maxim COC for S	um Detection	NA	MW-6	MW-6 N	MW-9 Y	MW-6

 $^{^{\}rm 1}$ MCP Method 1 Standards as documented in 310 CMR 40.0974(2)

NA is Not Applicable

NS is No Sample collected at this well on this date

NT is sample not analyzed for this compound

APPENDIX C BORING LOGS

O'REILLY, TALBOT & OKUN ASSOCIATES, INC. ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

					LOG OF BORING LS-1	_		Page	1 OF	1
DO IFOT I	. 07					LOGATION	0 " !! !!!	DDO IFOT NO	1750 00 01	
ROJECT: Lu RILLING CON				FOREMAN	Miles	LOCATION:		PROJECT NO. :		
	ITRACTOR Environmental Drill	ina		HELPER	Doug	DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012	
RILLING EQU		iiig		IILLI LIX	Doug	COMPLETION DEPTH		GROUND SURFAC	F FI FV	
Geoprobe						00 2211011321 111	8'	DATUM		
YPE BIT			SIZE &	TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.	
CASING			Rod			TIME		FIRST	COMPL.	HR.
CASING HAMN	1.	WEIGHT			DROP	WATER LEVEL (FT.)		2.5'		
SAMPLER: SAMPLER		WEIGHT		DROP			Western baseball diam N42° 36.104' W72° 35		er of site	
IAMMER		WEIGITI		DITOF		ENGINEER/GEOLOGIST	Brin Warenda	5.510		
		S	AMPLE	S	I					
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTION	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMAR	KS
	FT	RESIST. BL/6 IN.	IN. 42/48 38/48	NO. S-1 0-4' S-2 4-8'	Top 6": Topsoil, brown, fine SAND and Middle 14": Brown, fine SAND and SII moist Bottom 22": Grey, fine to medium SAN Grey, fine to medium SAND, some silt End of Exploration at 8"	.T, little medium sand, AD, some silt, wet at 2.5'	0.0 (0-2') 0.0 (2-4') 0.0 (4-6')	TOPSOIL FILL 2' SAND AND SILT		
— - —	25									

^{1.} Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING LS-2

					LOG OF BORRING ES-2	=		i ago		
ROJECT : Lur	nt Silversmith					LOCATION:	Greenfield, MA	PROJECT NO. :	1753-03-01	
RILLING CON		ing		FOREMAN HELPER	Mike Doug	DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012	
RILLING EQU		irig		HELFER	Doug	COMPLETION DEPTH	01	GROUND SURFAC	E ELEV.	
Geoprobe YPE BIT			SIZE 8	TVDE OF CO	ORE BARREL	No. Samples	8' 2	DATUM	UNDIST.	
CASING			Rod	TIFLOIC	ONE BANNEL	TIME		FIRST	COMPL.	HR.
CASING HAMM		WEIGHT			DROP	WATER LEVEL (FT.)		4'	00 2.	
SAMPLER:					•	BORING	Center baseball diamo		elds	
SAMPLER HAMMER		WEIGHT		DROP		LOCATION ENGINEER/GEOLOGIST	N42° 36.120' W72° 35 Brin Warenda	5.880'		
			AMPLE							
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTION		FIELD MEASUREMENTS	SOIL DESCRIPTION	REMAF	RKS
_ /			44/48	S-1	Top 8": Topsoil, brown, fine to mediur			TOPSOIL		
_ \ /				0-4'	Middle 12": Brown, fine SAND and SI	LT, some medium sand,	0.0	FILL		
- \/				ì	trace coarse sand Bottom 24": Light brown, fine to media	ım CAND little eilt meiet	(0-2')	2'		
– X I		1		ì	Bottom 24 : Light brown, fine to medic	ani Sand, iitile siit, moist		SAND		
- /\				ì			0.0	1		
-/\I				ì			(2-4')			
/ /				ì						
.\ /			40/48		Brown, fine to medium SAND, little sil	t, wet				
– \ / I	5			4-8'			0.0			
- \/	<u> </u>			ì			(4-6')			
– X I		1		ì						
· /\	<u> </u>			ì			0.0			
_/ \		1		ì			(6-8')			
/				ì				8' ▼		
-				ì	End of Exploration at 8'					
_				ì						
-	10			ì						
	_			ì						
				ì						
_				ì						
_				ì						
-				ì						
				ì						
				ì						
-	15			ì						
_	15			ì						
-	<u> </u>			i						
_]		i						
_		4		i						
-				i						
_		1		i						
]		i						
_				i						
_	20	-		i						
_				i						
_		1		i						
		1		i						
-				i						
_	<u> </u>	-		i						
-	<u> </u>			i						
_		1		i						
<u> </u>	25]		i						
_				i						
_		4		i						
-	<u> </u>			i						
		4	ı l		1		I			

Remarks

^{1.} Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING LS-3

						=		3.		
ROJECT : Lui						LOCATION:	Greenfield, MA	PROJECT NO.:	1753-03-01	
RILLING CON				FOREMAN		DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012	
Seaboard E RILLING EQU	nvironmental Drill	ing		HELPER	Doug	COMPLETION DEPTH		GROUND SURFAC	E EL EV	
Geoprobe	IPIVIENI					COMPLETION DEPTH		DATUM	E ELEV.	
YPE BIT			SIZE &	TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.	
ASING			Rod			TIME		FIRST	COMPL.	HR.
ASING HAMM		WEIGHT			DROP	WATER LEVEL (FT.)		4'	<u> </u>	
AMPLER: SAMPLER		WEIGHT		DROP			Center baseball diamo N42° 36.110' W72° 35		ıll pen	
IAMMER		WEIGHT		DROP		ENGINEER/GEOLOGIST	Brin Warenda			
			AMPLE	S						
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	IN.	TYPE/ NO.	DESCRIPTION		FIELD MEASUREMENTS	SOIL DESCRIPTION	REMAR	KS
_	<u> </u>	-	46/48	S-1 0-4'	Top 12": Topsoil, brown, fine SAND at sand (frost) Middle 12": Brown, fine SAND and SIL Bottom 22": Grey, fine SAND and SIL	.T, dry	0.0 (0-2') 0.0	TOPSOIL 1' FILL 2' SAND AND SILT		
			42/48	S-2 4-8'	Brown to grey, fine SAND and SILT, to	ace medium sand, wet at 4'	(2-4') 0.0			
$\frac{1}{2}$	<u> </u>						(4-6') 0.0			
	<u> </u>	_			End of Exploration at 8'		(6-8')	8' 🔻		
- 					2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00					
<u>-</u>	10									
- -										
<u>-</u>	<u> </u>	_								
- <u></u> -	<u> </u>	_								
<u></u> -	15 <u></u>									
 										
- 	<u> </u>	_								
- -	<u> </u>	1								
_	20	1								
 - 										
<u>-</u>	<u> </u>	-								
- -	<u> </u>	1								
- ·	25	1								
- -	<u> </u>									

Remarks:

^{1.} Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

Page 1 OF 1

LOG OF BORING LS-4

PROJECT: Lunt Silversmith									Inno 1505 110	.===
					FOREMANI	N.C.	LOCATION:	Greenfield, MA		1753-03-01
DRILLING CON		S.::::	_		FOREMAN		DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012
	nvironmental [Jrillin	g		HELPER	Doug	COMPLETION DEPTH		CDOUND CUDEAC	F F1 F1/
DRILLING EQU	IPIVIENI						COMPLETION DEPTH	8'	GROUND SURFAC	E ELEV.
Geoprobe TYPE BIT				CIZE 0	TYPE OF C	ORE BARREL	No. Samples	2	DATUM	UNDIST.
CASING				Rod	TIPE OF C	ORE BARREL	TIME	۷	FIRST	COMPL. HR.
CASING HAMM			WEIGHT	Rou		DROP	WATER LEVEL (FT.)		3.5'	COMP E. TIK.
SAMPLER:			WEIGHT			BROI		Center baseball diamo		<u> </u>
SAMPLER			WEIGHT		DROP			N42° 36.080' W72° 3		
HAMMER					5		ENGINEER/GEOLOGIST	Brin Warenda	1	
			S	AMPLE	S					
SAMPLES	DEPTH		PENETR.	REC.	TYPE/	DESCRIPTION	ON	FIELD	SOIL	REMARKS
	FT.		RESIST.	IN.	NO.			MEASUREMENTS	DESCRIPTION	
			BL/6 IN.							
\ /				44/48	S-1	Top 12": Topsoil, brown, fine SAND ar	nd SILT, trace medium		TOPSOIL	
_ \ /					0-4'	sand (frost)		0.0	1'	
_ \ /						Middle 16": Brown, fine to medium SA	ND, some silt, trace gravel,	(0-2')	FILL	
- V						dry				
_ \						Bottom 16": Brown-grey, fine to mediu	m SAND, little silt,		2.5' ₩	
_ /\						wet at 3.5'		0.0	SAND AND	
- / \								(2-4')	SILT	
_ / \										
		\neg		40/48	S-2	Grey, fine SAND and SILT, trace clay,	wet			
- \ /					4-8'	1		0.0		
_ \		\neg				1		(4-6')		
- /										
_ X	,									
_ /\								0.0		
- / \								(6-8')		
_ / \									8' ₩	
						End of Exploration at 8'				
_										
	10									
	,									
_										
	_									
_										
- - - - - -										
_										
	15	_								
_										
		_								
_										
		4								
_	<u> </u>									
		4				1				
_	<u> </u>					1				
	<u></u>	\dashv								
_										
	20	\dashv								
_						1				
		\dashv				1				
-						1				
		\dashv				1				
_						1				
		\dashv				1				
_						1				
		\dashv								
_	25									
	20	\dashv				1				
_										
		\dashv								
_										
		\dashv				1				
Remarks:				—		1		I .	I	
	ned in field usir	ng TF	I Model 580	B photo	ionization de	etector (PID) with 11.7eV lamp eference	d to benzene in air. Reading	s in parts per million h	v volume. "ND" indic	ates none detected
		-				, , , , , , , , , , , , , , , , , , , ,			,	

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING I S-5

					LOG OF BORING ES-5	=		raye		<u>'</u>		
PROJECT : Lui	nt Silversmith					LOCATION:	Greenfield, MA	PROJECT NO. :	1753-03-01			
ORILLING CON		na		FOREMAN HELPER	Mike Doug	DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012			
ORILLING EQU Geoprobe		<u>.</u>			Dodg	COMPLETION DEPTH	8'	GROUND SURFAC	E ELEV.			
YPE BIT			SIZE &	TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.			
CASING			Rod			TIME		FIRST	COMPL.	HR.		
CASING HAMM		WEIGHT			DROP	WATER LEVEL (FT.)		4'				
SAMPLER: SAMPLER		WEIGHT		DROP		BORING	Center baseball diamo N42° 36.104' W72° 35					
HAMMER						LOCATION ENGINEER/GEOLOGIST	Brin Warenda	5.002				
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTI	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMAF	ks		
- - - -			44/48	S-1 0-4'	Top 12": Topsoil, brown, fine SAND a sand (frost) Middle 16": Brown, fine to medium SA Bottom 16": Grey, fine to medium SAI	ND, some silt, moist	0.0 (0-2')	TOPSOIL 1' FILL 2.5' SAND AND				
	5		48/48	S-2 4-8'	Top 30": Grey, fine to medium SAND Bottom 18": Brown, fine to medium SA		(2-4') 0.0 (4-6')	SILT				
	<u> </u>						0.0 (6-8')	8' ▼				
	10				End of Exploration at 8'							
- - - - -												
— - - - -	15											
- — - —												
- - - -												
- - - - - - -												
_ - _ -	25 											

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

						=		. ago		· ·
PROJECT: Lu						LOCATION:	Greenfield, MA	PROJECT NO.:	1753-03-01	
ORILLING CON				FOREMAN		DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012	
Seaboard E DRILLING EQU	nvironmental Drill	ing		HELPER	Doug	COMPLETION DEPTH		GROUND SURFAC	E EL EV	
Geoprobe	m IVI∟I¶I					CONTRACTION DEPTH	8'	DATUM	LLEV.	
TYPE BIT			SIZE &	TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.	
CASING			Rod			TIME		FIRST	COMPL.	HR.
CASING HAMN	1.	WEIGHT			DROP	WATER LEVEL (FT.)	Fastana kasakali dian	4'	-b	
SAMPLER: SAMPLER		WEIGHT		DROP		BORING LOCATION	Eastern baseball diam N42° 36.076' W72° 35		acners	
HAMMER		WEIGHT		Dittor		ENGINEER/GEOLOGIST	Brin Warenda	, 		
			AMPLE			•				
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTION	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMA	RKS
_ \ _ /			44/48	S-1	Top 12": Topsoil, brown, fine SAND ar	nd SILT, trace medium		TOPSOIL		
_ \ /		_		0-4'	sand (frost)		0.0	1'		
- \/					Bottom 32": Brown-grey, fine SAND a	nd SIL1, trace clay, moist	(0-2')	SAND AND SILT		
— х										
_ / \							0.0			
- / \							(2-4')	l l		
\longrightarrow		4	46/40	6.0	Top 20" Prouse area & CAND	CII T trace along the 4"		4' *		
- \ /			46/48	S-2 4-8'	Top 22": Brown-grey, fine SAND and 3 Bottom 24": Grey, silty clay, wet	oili, trace ciay, wet at 4'	0.0	SILTY CLAY		
- \ /		1		J	Jioy, only olay, wot		(4-6')			
_							· ′			
_										
_ / \							0.0			
- / \							(6-8')	8'		
	-				End of Exploration at 8'			0 .		
_										
_										
	10									
_										
	-									
_										
 -										
-										
_										
 -	-									
_	15									
_										
		4								
_										
_		1								
_										
_	<u> </u>	4								
_	20									
_		1								
- - - -										
		4								
=	 									
- -		1								
=										
		1								
_	25									
=	<u> </u>									
		-								
_	 									
_		1		i			ĺ	1	1	

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING LS-7

ROJECT: Lu	nt Silversmith						LOCATION:	Greenfield, MA	PROJECT NO.:	1753-03-01	
RILLING CON					FOREMAN	Mike	DATE STARTED		DATE FINISHED	01/11/2012	
	Environmental D	rillina			HELPER	Doug					
RILLING EQU		······································				2009	COMPLETION DEPTH		GROUND SURFAC	'E ELEV	
Geoprobe	, <u></u>						COM LETION BEI III	8'	DATUM)L LLL V.	
YPE BIT				CIZE 0	TYPE OF C	ORE BARREL	No Camples		DATOW	UNDIST.	
				4	TIPE OF C	ORE BARREL	No. Samples	2	FIDOT		
CASING				Rod			TIME		FIRST	COMPL.	HR.
CASING HAMM	1.	V	VEIGHT			DROP	WATER LEVEL (FT.)		4'		
SAMPLER:							BORING	Western end of buildin	g, southwest corner		
SAMPLER		٧	VEIGHT		DROP		LOCATION	N42° 36.068' W72° 35	5.767'		
IAMMER							ENGINEER/GEOLOGIST	Brin Warenda			
			S	AMPLE	S						
SAMPLES	DEPTH	P	ENETR.	REC	TYPE/	DESCRIPTION	ON	FIELD	SOIL	REMA	RKS
OAIIII EEO	FT.		RESIST.	IN.	NO.	DESCRIPTION OF THE PROPERTY OF		MEASUREMENTS	DESCRIPTION		
	F1.			IIV.	NO.			WEASUREWENTS	DESCRIPTION		
			BL/6 IN.								
.\ /				30/48	S-1	Top 4": Topsoil, brown, fine SAND and	SILT, trace medium		TOPSOIL		
\ /					0-4'	sand (frost)		2.4	FILL		
_ \ /	_					Middle 12": Brown-black, fine to medic	ım SAND, some ash.	(0-2')	1		
· \/	_					trace red rock, dry	,,	(= -)	2'		
— X		-					a madium CAND trace		SAND AND SILT	1	
- /\						Bottom 14": Brown(iron stained), fine	o medium SAND, trace		SAND AND SILT		
_ / \		_				coarse sand, moist		7.2			
_ / \								(2-4')			
· /											
	1	7		40/48	S-2	Top 20": Brown, fine to medium SANE	, trace silt, wet			ĺ	
. \ /					4-8'	Bottom 20": Grey, fine SAND and SIL		1.3		ĺ	
- \ /					4-0	-	i, some clay (non staining),				
. \ /						wet		(4-6')			
_ V	L					1				ĺ	
Λ	I					ĺ				I	
· / \								0.8			
- / \	_							(6-8')			
- / \									8' ↓		
	<u> </u>	_							۰ ۲		
_						End of Exploration at 8'					
-	10										
		-									
_											
=											
											
-	_										
_		_									
_											
_											
	15										
-	_										
_		-									
=	—					1					
_	<u> </u>	_				1				ĺ	
_	<u> </u>					1					
	<u> </u>					ĺ				I	
		7				1				ĺ	
-						1					
		\dashv				1				ĺ	
=	<u> </u>					1				ĺ	
	20	_				ĺ				I	
_	L					1				ĺ	
						1					
		7				1				ĺ	
-						1				ĺ	
_		-1				1					
_	<u> </u>					ĺ				I	
	<u> </u>					1				ĺ	
	<u></u>					1				ĺ	
_						1					
_	—	_				1					
_	<u></u> ₀₋					1				ĺ	
		_				1				ĺ	
_	<u> </u>					1				ĺ	
	L					1				ĺ	
		7				1				ĺ	
-						1				ĺ	
		\dashv				1				ĺ	
										-	

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

							=			_	
ROJECT : Lui	nt Silversmith						LOCATION:	Greenfield, MA	PROJECT NO.:	1753-03-01	
RILLING CON	ITRACTOR				FOREMAN	Mike	DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012	
	nvironmental	Drilling			HELPER	Doug					
RILLING EQU	IPMENT						COMPLETION DEPTH		GROUND SURFAC	E ELEV.	
Geoprobe				T					DATUM		
YPE BIT					TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.	LID
CASING		10/5	IOUT	Rod		Innon	TIME		FIRST	COMPL.	HR.
CASING HAMM CAMPLER:	l.	VVE	IGHT			DROP	WATER LEVEL (FT.)	Masters and of buildin	4'		
SAMPLER.		\//E	IGHT	$\overline{}$	DROP			Western end of buildin N42° 36.080' W72° 35			
HAMMER		VVL	-10111		DIVOF		ENGINEER/GEOLOGIST	Brin Warenda	7.701		
			S	AMPLE	S		21101112211102020101	Dim Waldinga			
SAMPLES	DEPTH	PE	NETR.		TYPE/	DESCRIPTION	ON	FIELD	SOIL	REMA	RKS
	FT.		SIST.	IN.	NO.			MEASUREMENTS	DESCRIPTION		-
			/6 IN.								
\				36/48	S-1	Top 4": Topsoil, brown, fine SAND and	d SILT (frost)		TOPSOIL		
· \ /					0-4'	Bottom 32": Brown, fine to medium SA	ND, little silt, trace fine	0.0	FILL		
_ \ /						gravel, moist		(0-2')			
· V											
_											
· /\								0.0			
_/ \								(2-4')			
· /											
				42/48	S-2	Top 12": Brown, fine to medium SAND), little silt, trace fine gravel,				
\ /	5				4-8'	wet at 4'	- '	0.0	5' ♥		
_ \						Middle 12": Grey-black, SILTY CLAY,	trace fine sand, wet	(4-6')	SAND AND SILT		
· V						(petroleum odor)		,	1		
– A I						Bottom 18": Grey-brown, fine SAND a	nd SILT, little clay, wet				
/\							•	0.0			
- / \								(6-8')			
· /									8' ₩		
						End of Exploration at 8'					
-											
_	10										
_											
-											
_											
_											
	15										
_											
_											
		4									
_											
_		\dashv									
=											
		\dashv									
_											
	20	_									
_											
_		\dashv									
=											
_		\dashv									
_											
		4									
_											
		4									
_											
	25	\Box									
_											
		\Box									
_											
		_									

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

PROJECT: Lunt Silversn						LOCATION:	Greenfield, MA		1753-03-01	
RILLING CONTRACTOR				FOREMAN		DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012	
Seaboard Environmer DRILLING EQUIPMENT	ntal Drilling			HELPER	Doug	COMPLETION DEPTH		GROUND SURFAC	'E ELEV	
Geoprobe						COMPLETION DEPTH	8'	DATUM	E ELEV.	
TYPE BIT			SIZE &	TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.	
CASING			Rod			TIME		FIRST	COMPL.	HR.
CASING HAMM.		WEIGHT			DROP	WATER LEVEL (FT.)		4.5'		
SAMPLER: SAMPLER		WEIGHT	Т	DROP			Northwest portion of bi N42° 36.082' W72° 35			
HAMMER		WEIGHT		DROF		ENGINEER/GEOLOGIST	Brin Warenda	5.700		
		SA	AMPLE	S						
SAMPLES DEP FT	г.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTIO		FIELD MEASUREMENTS	SOIL DESCRIPTION	REMA	RKS
	_		46/48	S-1 0-4'	Top 12": Topsoil, brown, fine SAND ar dry Middle 16": Brown, fine to medium SA sand, trace debris (brick), dry Bottom 18": Brown, fine to medium SA	ND, some silt, little medium	0.0 (0-2') 0.0 (2-4')	TOPSOIL 1' FILL 3' SAND AND SILT		
	5		40/48	S-2 4-8'	Top 14": Brown, fine to medium SAND Bottom 26": Brown-grey, fine SAND ar		4.3 (4-5') 159.0 (5-6') 2.3 (6-8')	8' ▼		
	10				End of Exploration at 8'					

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

					LOG OF BORING LS-10	_		Page	1OF	1
DO IFOT . I	nt Cilvaramith					I OCATION:	Greenfield, MA	DDO IECT NO .	1752 02 01	
ROJECT : Lu RILLING CON				FOREMAN	Mike	LOCATION: DATE STARTED		PROJECT NO. : DATE FINISHED	1753-03-01 01/12/2012	
	nvironmental Dr	illina		HELPER	Doug	DATE OTARTED	01/11/2012	DATETHNOTIED	01/12/2012	
RILLING EQL		9			9	COMPLETION DEPTH		GROUND SURFAC	E ELEV.	
Geoprobe								DATUM		
YPE BIT				TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.	
CASING			Rod		_	TIME		FIRST	COMPL.	HR.
CASING HAMN	1.	WEIGHT			DROP	WATER LEVEL (FT.)	N. d. d. d. d.	4'	OT ("" "	
SAMPLER: SAMPLER		WEIGHT		DROP		BORING LOCATION	Northwest portion of bin N42° 36.080' W72° 35		ST fill line	
IAMMER		WEIGITI		DIXOF		ENGINEER/GEOLOGIST	Brin Warenda	5.755		
			SAMPLE	S	Ī					
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	IN.	TYPE/ NO.	DESCRIPTI		FIELD MEASUREMENTS	SOIL DESCRIPTION	REMAR	KS
_ /			35/48	S-1	Top 5": Topsoil, brown, fine SAND an			TOPSOIL		
_ \ /		_		0-4'	Bottom 30": Brown, fine to medium S.		0.0	FILL	1'	
- \/					gravel, trace coarse sand, trace debri	s (brick), moist	(0-2')			
— X		-							2'	
- /\							0.0			
-/\	 	1					(2-4')			
· / \	 						(= -7)	4' ↓		
$\overline{}$	- -	1	34/48	S-2	Top 14": Brown, fine to medium SAN			SAND		
_\ /	5			4-8'	Bottom 20": Grey, fine SAND and SIL		0.0	5' ₩		
_ \ /							(4-6')	SAND AND SILT		
_ Y										
. /\										
- / \		_					0.0			
- / \	<u> </u>						(6-8')	0'		
		4			End of Exploration at 8'			8' 🔻		
-					End of Exploration at 8					
_	-									
_	10									
_										
-										
									12'	
-										
_		_								
=										
_		-								
_	15									
_										
-										
		1								
_	<u> </u>	_								
_	<u> </u>				1					
_	- -	-								
-	 				1					
_		-								
-										
_	<u>-</u> ~ -	1								
_										
		1								
_	·									
_		_								
_	<u> </u>									
_	- -	-								
-										
	25 _	-								
=										
_		-	1 1						Ī	

- 1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected 2. Well installed using B-53 Drill Rig with hollow stem augers on 1/12/12, straight drilled to 12'
- 3. 2" well screen from 12'-2', riser from 2'-grade, sand pack from 12'-1', bentonite from 1'-0.5', sand to grade, curb box cemented in place

					LOG OF BURING LS-11	=		Page	1 OF	1
DO IECT . I	at Cilyaramith					I OCATION.	Crossfield MA	DDO IECT NO .	1752 02 01	
ROJECT : Lui RILLING CON	TRACTOR			FOREMAN	Mike	LOCATION: DATE STARTED			1753-03-01 01/11/2012	
	nvironmental Dril	lina		HELPER	Doug	DATE GTARTED	01/11/2012	DATETIMONED	01/11/2012	
RILLING EQU		J			Ť	COMPLETION DEPTH		GROUND SURFAC	E ELEV.	
Geoprobe							8'	DATUM		
YPE BIT			-1	TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.	
ASING		LAVELOUE	Rod		Innon	TIME		FIRST	COMPL.	HR.
CASING HAMM CAMPLER:		WEIGHT			DROP	WATER LEVEL (FT.) BORING	Northwest portion of bu	5'		
SAMPLER		WEIGHT		DROP			N42° 36.079' W72° 35			
IAMMER						ENGINEER/GEOLOGIST	Brin Warenda			
		S	AMPLE			•				
SAMPLES	DEPTH FT.	PENETR. RESIST.	REC. IN.	TYPE/ NO.	DESCRIPTION	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARK	S
\		BL/6 IN.	40/48	S-1	Top 5": Topsoil, brown, fine SAND an	d SILT, frost		TOPSOIL		
`\ /				0-4'	Middle 16": Brown-black, medium SA		0.0	FILL		
_ \					fine sand, trace silt, dry		(0-2')			
_ Y		_			Bottom 19": Brown, fine to medium Sa	AND, some silt, dry		2' ♥		
_ /\	<u> </u>							SAND AND SILT		
- / \ l	_	4					0.0			
- / \							(2-4')			
	<u> </u>		45/48	S-2	Top 30": Brown, fine to medium SANI), some silt, wet at 5'				
· \ /	5			4-8'	Bottom 15": Brown-grey, fine SAND a		0.0			
_ \					1		(4-6')			
_	<u> </u>									
. /	<u> </u>									
_ / \		4					0.0			
- / \	<u> </u>						(6-8')	↓		
/	_	-			End of Exploration at 8'			,		
-					End of Exploration at o					
	_	1								
<u> </u>	10									
_										
_		4								
=	<u> </u>									
_	_									
-										
_		1								
=	<u> </u>									
_	15	-								
-										
_										
<u> </u>										
_										
_	<u> </u>									
-	 									
_										
-										
_										
<u>-</u>										
_	_									
_	<u> </u>									
_	<u></u>									
_										
=										
_										
_	25									
_										
_	<u> </u>									
_										
			•		i .					

^{1.} Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

						D		I	
PROJECT : Lu				EODEMA::	Miller	LOCATION:	Greenfield, MA	PROJECT NO. :	1753-03-01
ORILLING CON		na		FOREMAN		DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012
Seaboard E DRILLING EQU	Environmental Drilli	ng		HELPER	Doug	COMPLETION DEPTH		GROUND SURFAC	`F FI FV
Geoprobe	DIFIVIEINI					COMPLETION DEFTH	8'	DATUM	C CLCV.
TYPE BIT			SIZE 8	TYPE OF C	ORE BARREL	No. Samples	2	DATOW	UNDIST.
CASING			Rod			TIME		FIRST	COMPL. HR.
CASING HAMM	Л.	WEIGHT	-		DROP	WATER LEVEL (FT.)		3.5'	
SAMPLER:					-		Northwest portion of b	uilding, northcentral	portion of parking area
SAMPLER		WEIGHT		DROP			N42° 36.089' W72° 35	5.751'	
HAMMER						ENGINEER/GEOLOGIST	Brin Warenda		
			AMPLE						
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTION	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS
\	1		33/48	S-1	2" Asphalt			ASPHALT	
	<u> </u>			0-4'	Top 23": Brown, fine to medium SANI trace coarse sand, dry Bottom 10": Brown, fine to medium sa		0.0 (0-2')	FILL	
_/\							0.0 (2-4')	4'	
<u>-</u>	5		36/48	S-2 4-8'	Top 18": Brown-grey, fine SAND and Bottom 18": Grey, fine SAND and SIL		0.0 (4-6')	SAND AND SILT	
-					Fact of Factorships at O		0.0 (6-8')		
- -					End of Exploration at 8'				
 - 	10								
- 									
 -	<u> </u>								
<u>-</u>	15								
- -									
 - _									
- -	<u> </u>								
 - -	20								
<u>-</u>									
 -	25								
- -									
_	<u> </u>								

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING LS-13

					LOG OF BORING LO-13	_		. ago	OF	<u> </u>
PROJECT : Lui	nt Silversmith					LOCATION:	Greenfield, MA	PROJECT NO. :	1753-03-01	
DRILLING CON	TRACTOR			FOREMAN		DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012	
	nvironmental Dr	illing		HELPER	Doug					
ORILLING EQU Geoprobe	IPMENI					COMPLETION DEPTH	8'	GROUND SURFAC	E ELEV.	
TYPE BIT			SIZE 8	TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.	
CASING			Rod			TIME	-	FIRST	COMPL.	HR.
CASING HAMM		WEIGHT	-		DROP	WATER LEVEL (FT.)		3'		
SAMPLER:		WEIGHT		DDOD			Southwest corner of pa			
SAMPLER HAMMER		WEIGHT		DROP		LOCATION ENGINEER/GEOLOGIST	N42° 36.049' W72° 35 Brin Warenda	0.801	1	
		-	SAMPLE	S		2.10.1122.17020200101	Dim Waldinga			
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTI	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARI	KS
-			27/48	S-1 0-4'	3" Asphalt Top 12": Brown, fine to medium SANI dry Bottom 12": Brown-grey, fine SAND a		0.0 (0-2')	ASPHALT FILL 1.5' SILTY CLAY		
- \	5		48/48	S-2 4-8'	Grey, SILTY CLAY, wet		(2-4') 4.1 (4-6')			
							0.0 (6-8')	8' ▼		
	10				End of Exploration at 8'					
<u>-</u> -		-								
- - - -										
 - -										
- - - - - - - - - -										
- - - - -	25									

Remarks:

^{1.} Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

							-		- ,		
PROJECT : Lui							LOCATION:	Greenfield, MA	PROJECT NO.:	1753-03-01	
RILLING CON	ITRACTOR				FOREMAN		DATE STARTED	01/11/2012		01/11/2012	
	nvironmental	Drillin	g		HELPER	Doug					
ORILLING EQU	IPMENT						COMPLETION DEPTH	40'	GROUND SURFAC	E ELEV.	
Geoprobe TYPE BIT				\$17E °	TVDE OF O	ORE BARREL	No. Samples	12' 3	DATUM	UNDIST.	
CASING				SIZE &	ITE OF C	ONE DARREL	TIME	3	FIRST	COMPL.	HR.
CASING HAMM	1.	T	WEIGHT	. 100		DROP	WATER LEVEL (FT.)		4'	CONT. L.	1111.
SAMPLER:								Western portion of buil			
SAMPLER		T	WEIGHT		DROP		LOCATION	N42° 36.056' W72° 35			
HAMMER							ENGINEER/GEOLOGIST	Brin Warenda			
		_		AMPLE							
SAMPLES	DEPTH FT.		PENETR. RESIST.	REC. IN.	TYPE/ NO.	DESCRIPTION	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMAI	RKS
	г.		BL/6 IN.	IIN.	NO.			WIEASUREWIENTS	DESCRIPTION		
\			DL/0 II4.	46/48	S-1	Top 6": Topsoil, brown, fine SAND and	SILT. dry		TOPSOIL		
- \ /				10/10	0-4'	Bottom 40": Brown, fine to medium SA		0.0	SAND AND SILT		
- \ /						sand, wet at 4'	,,,	(0-2')	1		
- V						i i		` ,			
_											
_ / \								0.0			
_ / \								(2-4')			
\leftarrow		\dashv		40/15	0.5	B #					
- \ /	⊢ ,			46/48	S-2	Brown, fine to medium SAND, some s	iit, trace coarse sand, wet	1.0			
-\/	5	\dashv			4-8'			1.2 (4-6')			
- \/	_							(4-0)			
— X I		\dashv									
- /\								53.1			
-/\								(6-8')			
-/\											
_ \				46/48	S-3	Top 14": Brown, fine to medium SAND), some silt, trace coarse				
_\ /					8-12'	sand, wet		50.1	9' ▼		
_ \ /						Bottom 32": Grey, CLAYEY SILT, trac	e fine sand, wet	(8-10')	CLAYEY SILT		
— X I	10	-									
- /\	_							11.0			
- / \		\dashv						11.2 (10-12')			
- / \	_							(10-12)	12'		
		\dashv				End of Exploration at 12'					
_						· ·					
_											
	15	-									
=	-										
_		\dashv									
-	_										
_		\exists									
_											
_		\Box									
-											
_	20	_									
- -	_										
_		\dashv									
-	-	- 1									
_		\dashv									
=											
_		\exists									
<u> </u>]									
_		\neg									
_	25										
_											
_		_									
_	<u> </u>										

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

						=				
ROJECT: Lui						LOCATION:	Greenfield, MA	PROJECT NO.:	1753-03-01	
RILLING CON				FOREMAN	Mike	DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012	
	nvironmental D	rilling		HELPER	Doug					
RILLING EQU	IPMENT					COMPLETION DEPTH	01	GROUND SURFAC	E ELEV.	
Geoprobe YPE BIT			SIZE 8	TVDE OF C	ORE BARREL	No. Samples	8' 2	DATUM	UNDIST.	
ASING			Rod	KITIFL OF C	ONE BANNEL	TIME		FIRST	COMPL.	HR.
ASING HAMM	1.	WEIGH [*]			DROP	WATER LEVEL (FT.)		5'	00 2.	
AMPLER:							Western end of buildin		ar transformer p	ad
AMPLER		WEIGH	Γ	DROP			N42° 36.053' W72° 35	5.744'		
IAMMER					-	ENGINEER/GEOLOGIST	Brin Warenda			
04451.50	DEDT!!	DENET	SAMPLE				EIEI B	2011	55.44	D1/0
SAMPLES	DEPTH FT.	RESIST		TYPE/ NO.	DESCRIPTION	JN	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMA	KNO
.\/		BL/6 IN	48/48	S-1	Top 6": Topsoil, brown, fine SAND and	d SILT, trace medium		TOPSOIL		
_ \ /				0-4'	sand		0.0	FILL		
. \ /					Bottom 42": Brown, fine to medium SA	AND, some silt, trace debris	(0-2')			
– X I					(brick), moist					
- /\							0.0			
- / \		-					(2-4')			
· / \							(2-4)	4' ↓		
()			44/48	S-2	Top 30": Brown, fine to medium SAND), some silt, wet at 5'		SAND AND SILT		
· \ /				4-8'	Bottom 14": Grey, medium-coarse SA		0.0	1		
_ / /					trace silt, wet		(4-6')			
_										
. /										
_ / \							0.0			
- / \							(6-8')	↓ ↓		
					End of Evaluation at 0!			,		
-					End of Exploration at 8'					
-	10									
_										
_										
-										
_										
-										
_										
	15									
_										
-										
_		_								
-	—									
_										
•										
					1					
_	20				1					
-										
_		_								
-										
_		-								
-	_									
_										
• 										
_										
_	25				1					
-										
_		_								
-	_									
		_								

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

					<u> </u>	_		ŭ	 -	
ROJECT: Lur						LOCATION:			1753-03-01	
RILLING CON				FOREMAN		DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012	
Seaboard E RILLING EQU	nvironmental Drill	ing		HELPER	Doug	COMPLETION DEPTH		GROUND SURFAC	E ELEV	
Geoprobe	IF WILINI					COMPLETION DEFTIT	8'	DATUM	L LLLV.	
YPE BIT				TYPE OF C	ORE BARREL	No. Samples	2		UNDIST.	
ASING		WEIGHT	Rod		Innon	TIME		FIRST	COMPL.	HR.
CASING HAMM CAMPLER:		WEIGHT			DROP	WATER LEVEL (FT.) BORING	Western portion of buil	5' ding southeastern e	nd inside dated	area
SAMPLER		WEIGHT		DROP			N42° 36.050' W72° 35		na moide gated	aioa
IAMMER					_	ENGINEER/GEOLOGIST	Brin Warenda			
SAMPLES	DEPTH	PENETR.	AMPLE	S TYPE/	DESCRIPTIO	ON.	FIELD	SOIL	REMA	DKG
SAWIFLES	FT.	RESIST. BL/6 IN.	IN.	NO.	DESCRIP III	JN .	MEASUREMENTS	DESCRIPTION	KEWA	NN3
\		22,0	36/48	S-1	Top 6": Topsoil, brown, fine SAND and	d SILT, dry		TOPSOIL		
_ \ /				0-4'	Bottom 30": Brown-grey, fine SAND a	nd SILT, some medium	0.0	SAND AND SILT		
. \/					sand, trace fine gravel, wet at 4'		(0-2')			
– X I		4								
· /\							0.0			
_/ \							(2-4')			
(
- \ /			42/48	S-2 4-8'	Top 28": Brown-grey, fine SAND and strace fine gravel, bottom 30" wet	SILI, some medium sand,	0.0			
- \	3			4-0	Bottom 14": Grey, fine-medium SAND	. some silt, wet	(4-6')			
· V I					1 1,7	, ,	(- ,			
_ /\										
_ / \							0.0			
· / \							(6-8')	↓		
					End of Exploration at 8'					
_	10									
_	10	-								
_										
_		-								
-										
_										
_										
-	15									
_		1								
_		4								
_										
_		1								
		1								
_	<u> </u>									
_		†								
	20]								
_ `										
_										
-										
_		1								
_		4								
-										
_		†								
<u>-</u>	25]								
_ `										
_		4								
-										
		-			1		1		ı	

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

			LOG OF BORING LS-17	_		Page	1OF1
				I contract		Inno inor un	.===
PROJECT: Lunt Silversmith PRILLING CONTRACTOR		FOREMAN	I Mike	LOCATION:			1753-03-01 01/11/2012
Seaboard Environmental Dr	illing	HELPER	Doug	DATE STARTED	01/11/2012	DATE FINISHED	01/11/2012
PRILLING EQUIPMENT	g	TILLI LIX	2009	COMPLETION DEPTH		GROUND SURFAC	E ELEV.
Geoprobe						DATUM	
YPE BIT			CORE BARREL	No. Samples	3		UNDIST.
CASING		od	T	TIME		FIRST	COMPL. HR.
CASING HAMM.	WEIGHT		DROP	WATER LEVEL (FT.)	O	4'	
SAMPLER: SAMPLER	WEIGHT	DROP			Southeast corner of pa N42° 36.040' W72° 35		
HAMMER	WEIGHT	Bitoi		ENGINEER/GEOLOGIST	Brin Warenda	5.700	
	SAN	/IPLES		•			
SAMPLES DEPTH FT.	PENETR. R RESIST. BL/6 IN.	IEC. TYPE/ IN. NO.	DESCRIPTION	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS
$\overline{}$		4/48 S-1	2" Asphalt			ASPHALT	
	1	0-4'	Brown, fine to medium SAND, some f	ine gravel, trace silt, dry	0.8 (0-2')	FILL	
-/\					8.0 (2-4')		
5	4	6/48 S-2 4-8'	Top 6": Grey, fine to medium SAND, I Bottom 40": Grey, CLAYEY SILT, trad		14.7 (4-6')	CLAYEY SILT	
					24.4 (6-8')		
10	4	8/48 S-3 8-12'	Top 24": Grey, fine SAND and SILT, s Bottom 24": Grey, CLAYEY SILT, trace		2.4 (8-10') 5.3 (10-12')		
			End of Exploration at 12'		(10-12)	12'	

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

						_				
PROJECT : Lu	nt Silversmith					LOCATION:	Greenfield, MA	PROJECT NO.:	1753-03-01	
ORILLING CON				FOREMAN	Mike	DATE STARTED	01/12/2012	DATE FINISHED	01/12/2012	
Seaboard E	nvironmental Drilli	ng		HELPER	Doug					
ORILLING EQU						COMPLETION DEPTH		GROUND SURFAC	E ELEV.	
	Mounted Rig	A	0135	T/DE 05 0	ODE DADDEL	No Complet	5'	DATUM	LINIDIOT	
CASING	Hollow Stem	Auger		KIYPE OF C	ORE BARREL	No. Samples TIME	2		UNDIST.	ID.
CASING CASING HAMN	1	WEIGHT	Rod		DROP	NME WATER LEVEL (FT.)		FIRST	COMPL. H	łR.
SAMPLER: 2" (D.D. Split Spoon	WEIGHT			DIVOE	BORING	Southeast portion of si	te northeast corner	of building visitor park	kina
SAMPLER. 2 C	Safety	WEIGHT		DROP		LOCATION		N42° 36.034' W72°		y
HAMMER	Callety	140 lbs.		30" (Wire Li	ne)	ENGINEER/GEOLOGIST	Brin Warenda			
			AMPLE			•				
SAMPLES	DEPTH	PENETR.	REC.	TYPE/	DESCRIPTION	ON	FIELD	SOIL	REMARKS	
	FT.	RESIST.	IN.	NO.			MEASUREMENTS	DESCRIPTION		
		BL/6 IN.								
<u>-</u> ,					1" ASPHALT			ASPHALT		
					8" BRICK			FILL		
- \ /			12/24		Brown-grey, fine SAND and SILT, mo	ist	0.0	SAND AND SILT		
$ \times$				1-3'						
- / \										
\longleftrightarrow		17/41/	14/24	S-2	Top 12": Very dense, brown-grey, fine	SAND and SILT moist	0.0			
- \ /		50 for 1"	14/24	3-2 3-5'	Bottom 2": Very dense, brown-grey, line		0.0			
– X		50 101 1		3-3	fine gravel, dry	O O, AND AND OILT, SUITE				
- / \					g. a. o.,		1	↓		
, \		1			Auger refusal at 5'		1		Off-set two times and	d
=									could not advance pa	
		1							3 feet. No well instal	
_									at this location due to	
		1							shallow refusal.	
<u>-</u>										
_										
	10									
_										
_										
		l .								
_										
		-								
_	_									
		1								
_	15									
		1								
_							1			
_		1								
_]			1					
_							1			
							1			
_	<u> </u>									
							1			
_							1			
- -	20	ł								
_							1			
_		-								
_							1			
		1					1			
_							1			
		1					1			
_	-						1			
		1					1			
_	25						1			
_		1								
_							1			
	_	1					1			
_							1			
		1			ì		1			

Remarks:

1. Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

					LOG OF BORING LS-19	=		Page	1OF	1
ROJECT : Lu	nt Silveremith					LOCATION:	Greenfield, MA	PROJECT NO. :	1753-03-01	
RILLING CON				FOREMAN	Mike	DATE STARTED	01/12/2012	DATE FINISHED	01/12/2012	
	nvironmental D	rilling		HELPER	Doug		* * * * * * * * * * * * * * * * * * * *		•	
RILLING EQU						COMPLETION DEPTH		GROUND SURFAC	E ELEV.	
YPE BIT	Mounted Rig Hollow St	om Augor	SIZE S	TVDE OF C	ORE BARREL	No. Samples	12' 5	DATUM	UNDIST.	
CASING	1 lollow St	elli Augel	Rod	XIII LOI C	ONE BANNEL	TIME	<u> </u>	FIRST	COMPL.	HR.
CASING HAMN	1.	WEIGH			DROP	WATER LEVEL (FT.)		4'		
	D.D. Split Spoor		_		•	BORING	Southcentral of parking		-	
SAMPLER SAMMER	Safety	WEIGH 140 lbs		DROP 30" (Wire Li	ne)	LOCATION ENGINEER/GEOLOGIST	N42° 36.043' W72° 35 Brin Warenda	D.774'		
,		1 10 150	SAMPLE		<u> </u>	2.10.1122.170202000.01	Dim Walenda			
SAMPLES	DEPTH		R. REC.		DESCRIPTI	ON	FIELD	SOIL	WELL	
	FT.	RESIST		NO.			MEASUREMENTS	DESCRIPTION	CONSTRUC	TION
_		BL/6 IN			2" ASPHAL			ASPHALT		
-					6" FROST LAYER			FILL	1	
			16/24	S-1	Top 4": Brown, fine SAND and SILT,	some medium sand, dry	0.3			
_ 🗙				1-3'	Middle 6": Grey, fine GRAVEL, dry			2' *	2'	
- /\					Bottom 4": Brown-grey, fine SAND an	nd SILT, moist		SAND AND SILT		
\longleftrightarrow		_	18/24	S-2	Brown-grey, fine SAND and SILT, we	t at 4'	1.0			
· \/			10,21	3-5'	grey, me er all and eler, me					
_										
\longleftrightarrow	5	_	45/04	0.0	Carry OLANEN OUT transfers and		0.0	5' Y CLAYEY SILT		
- \ /			15/24	S-3 5-7'	Grey, CLAYEY SILT, trace fine sand,	wet	0.8	CLAYEY SILT		
- X										
- \ /			16/24		Grey, CLAYEY SILT, trace fine sand,	wet	54.8			
– X		-		7-9'						
·/ \										
$\overline{}$			16/24		Grey, CLAYEY SILT, trace fine sand,	wet	9.7			
– X	10	_		9-11'						
- / \										
_		_						+		
_					End of Exploration at 12'					
_		-								
-										
_	15	_								
=										
			I							
_			I							
_			I							
_		\dashv	I							
<u> </u>			1							
-		1	I							
_	20	_								
_			I							
 -			I							
_	<u> </u>	_	1							
=			I							
		\dashv	I							
<u>-</u>			I							
_	<u> </u>		I							
_	25	-	I							
-			I							
 -			I							

^{1.} Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

^{2. 2&}quot; well screened from 12'-2', riser from 2'-grade, sand pack from 10'-1', bentonite seal from 1'-0.5', sand to grade, curb box cemented in place

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING LS-20

PROJECT : Lui						LOCATION:	Greenfield, MA	PROJECT NO. :	1753-03-01	
DRILLING CON				FOREMAN		DATE STARTED	01/12/2012	DATE FINISHED	01/12/2012	
	nvironmental Drill	ing		HELPER	Doug					
DRILLING EQU						COMPLETION DEPTH	401	GROUND SURFAC	E ELEV.	
	Mounted Rig	A	וסודה מ	TVDE OF O	ODE DARREI	Na Carrela	10'	DATUM	LINDICT	
CASING	Hollow Stem		Rod	XITPE OF C	ORE BARREL	No. Samples TIME	4	FIRST	UNDIST. COMPL.	HR.
CASING HAMM	1	WEIGHT	Nou		DROP	WATER LEVEL (FT.)		4.5'	COIVIFL.	ΠN.
	D.D. Split Spoon	WEIGHT			DI CO		Southcentral portion of		spaces	
	Safety	WEIGHT		DROP		LOCATION	N42° 36.026' W72° 35			
HAMMER	-	140 lbs.		30" (Wire Li	ne)	ENGINEER/GEOLOGIST	Brin Warenda			
			AMPLE							
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTIO	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	WEL CONSTRU	
_					2" ASPHALT			ASPHALT		
					4" FROST LAYER			FILL		
- \ /		15/24/17/15	22/24		Dense brown-black, fine SAND and Si	ILT, some ash, trace	1.3			
$ \times$ $ $		4		1-3'	debris (brick), dry				2'	
- / 🖊								2'		
\longrightarrow		20/20/20/10	20/24		Dense brown-grey, fine to medium SA	ND same silt maint wat	0.0	SAND AND SILT		
- \ /		20/20/20/10	20/24	S-2 3-5'	at 4.5'	IND, Some Siit, moist- wet	0.0	JAND AND SILI		
- X		1		3-3	4.5.0					
- / \								5'		
\leftarrow		7/1/1/1	20/24	S-3	Very soft, grey, SILTY CLAY, wet		0.0	SILTY CLAY	1	
- \/				5-7'	, , , , , , , , , , , , , , , , , , , ,					
$ \times$ $ $		1								
-/ \										
_ \		24/50 for 5"	14/24	S-4	Top 12": Grey, SILTY CLAY, wet		0.0			
_ 🗸				7-9'	Bottom 2": Brown-red, fine to medium	SAND, some gravel, wet				
- /\								<u> </u>		
								9' 🔻		
_								BEDROCK		
	10				Augus vatural at 10'					
_					Auger refusal at 10'					
<u>—</u>										
-										
_										
		1								
	<u> </u>									
_	<u> </u>									
	15									
_	<u> </u>									
<u>—</u>		1								
_	<u> </u>									
		1								
-					1					
_	_	1								
_	<u> </u>									
_]								
	20									
_										
		1								
_					1					
		1								
-	<u> </u>									
	<u> </u>	1			1					
-										
		1								
-	25									
_		1								
]								
_]								
	_	1	1	I			l	1	Ī	

Remarks

^{1.} Soil screened in field using TEI Model 580B photoionization detector (PID) with 11.7eV lamp eferenced to benzene in air. Readings in parts per million by volume. "ND" indicates none detected

^{2. 2&}quot; well screened from 10'-2', riser from 2'-grade, sand pack from 10'-1', bentonite seal from 1'-0.5', sand to grade, curb box cemented in place

LOG OF BORING LS-21

PROJECT:	Lunt Silversmith					LOCATION	Greenfield, MA	PROJECT NO.	1753-03-01
DRILLING CON				FOREMAN		DATE STARTED	·	DATE FINISHED	
Seaboard Er	nvironmental Drilling			HELPER	Jeff	2/21/2012 COMPLETION DE	EPTH 12'	2/21/2012 GROUND SURFACE E	ELEV
Geoprobe						COMPLETION DE	EP 11 12	DATUM	ILEV.
TYPE BIT			SIZE 8	RTYPE OF C	ORE BARREL	No. of samples co	llected 3	UNI	DIST.
CASING					T	TIME		FIRST	COMPL. HR.
CASING HAMM. SAMPLER:		WEIGHT			DROP	WATER LEVEL (F BORING	-T.) Southeastern corner o	5.5'	
SAMPLER. SAMPLER	Split Spoon	WEIGHT		DROP		LOCATION	Southeastern corner o	rileius	
HAMMER						ENGINEER/GEO	Brin Thompson		
			SAMPLE			•			
SAMPLES	DEPTH FT.	PENETR. RESIST.	REC. IN.	TYPE/ NO.	DESCRIPTION		FIELD MEASUREMENTS	SOIL DESCRIPTION	WELL CONSTRUCTION
_	,	BL/6 IN.	46/48	S-1	Top 12": Brown, fine to medium SAN	ID and CILT	0.0	TOPSOIL	
 - 			40/40	0'-4'	trace fine gravel, dry (TOPSOIL)	ND and SILT,	(0'-2')	1' \ \	1'
$\vdash \setminus /$	_				Bottom 34": Brown to gray, fine SAN	ID and SILT, dry	0.0	SAND AND	
							(2'-4')	SILT	2'
$\vdash \land$									
\vdash / \		1							
/ / /	 								
	<u> </u>	1	40/48		Top 36": Gray, fine SAND and SILT,		0.0		
$\vdash \setminus$ /	5	1		4'-8'	Bottom 4": Gray, CLAYEY SILT, trac	ce fine sand, wet	(4'-6')		
F //	—						0.0		
$\vdash X$		1					(6'-8')		
 									
		1						7.5' ₩	
 	<u> </u>							CLAYEY SILT	
F \ /	Ъ		42/48		Gray, CLAYEY SILT, trace fine sand	l, wet	0.0		
$\vdash \setminus$ /				8'-12'			(8'-10') 0.0		
F \/	10						(10'-12')		
$\vdash X$							(:		
 									
	-				End of exploration a	+ 10'		+	
					End of exploration a	1 12			
\vdash					1				
	15	1							
F									
]							
<u> </u>	<u> </u>	4							
H	—								
	 	1							
]							
 									
\vdash	20	1			1				
F	-								
		1							
		1							
									
<u> </u>		-							
F									
		1							
	25]							
 	_								
<u> </u>	<u> </u>	-							
H	—								
F		1			1				
Remarks:	•	•	•	•	•			•	•

- 1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)
- 2. 1" PVC well at 12' below ground surface, screen 12'-2', riser from 2' to ground surface. Sand pack 12'-1', bentonite clay seal 1'-0.5', sand to grade, curb box cemented in place

LOG OF BORING LS-22

PROJECT:	Lunt Silversmith					LOCATION	Greenfield, MA	PROJECT NO.	1753-03-01	
DRILLING CON		FOREMAN David				DATE STARTED		DATE FINISHED		
Seaboard Er	nvironmental Drilling			HELPER	Jeff	2/21/2012 COMPLETION DE	EPTH 12'	2/21/2012 GROUND SURFACE E	ELEV/	
Geoprobe						COMPLETION DE	_1 111 12	DATUM	-∟∟ √ .	
TYPE BIT			SIZE 8	TYPE OF C	ORE BARREL	No. of samples co	llected 3	UNE	DIST.	
CASING		WEIGHT			Innon	TIME	 \	FIRST	COMPL. HR.	
CASING HAMM. SAMPLER:		WEIGHT			DROP	WATER LEVEL (F BORING		4' etween 22 and 28 Kenda	all St	
SAMPLER	Split Spoon	WEIGHT		DROP		LOCATION	South side of street, be	etween 22 and 20 Nenda	all St.	
HAMMER						ENGINEER/GEO	Brin Thompson			
			AMPLE							
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTION		FIELD MEASUREMENTS	SOIL DESCRIPTION	WELL CONSTRUCTION	
	/ 		22/48	S-1	Top 4": Brown, fine SAND and SILT,	dry (TOPSOIL)	0.0	TOPSOIL		
				0'-4'	Bottom 18": Brown to gray, fine to m	edium SAND,	(0'-2')	FILL	1'	
L \ /					some silt, moist		0.0			
⊢ X							(2'-4')		2'	
F /\										
<u> </u>					L		_			
$\vdash \setminus$ /	₅		48/48	S-2 4'-8'	Top 12": Brown to gray, fine to medi silt, wet at 4'	um SAND, some	0.0	E'		
$\vdash \setminus \land$	<u> </u>			4-8	Bottom 36": Gray, CLAYEY SILT, tra	ace fine sand wet	(4'-6') 0.0	5' ↓ CLAYEY SILT	- I	
F \/					Detail of the start of the star	iiio Jana, wet	(6'-8')			
							<u> </u>			
\perp / \										
⊢ / \										
 	}		44/48	S-3	Gray, CLAYEY SILT, trace fine sand	l wet	0.0			
上 \ /			11/10	8'-12'	Stay, GERTET GIET, trade line dance	, 1101	(8'-10')			
							0.0			
\Box \forall	10						(10'-12')			
⊢ /\										
\vdash / \	<u> </u>									
/ /	 							↓		
					End of exploration a	t 12'		·		
\vdash										
\vdash										
F	15									
	<u> </u>				1					
\vdash	—									
	 									
					1					
F	_									
\vdash										
F										
\vdash										
\vdash										
F					1					
\vdash										
\vdash	25									
\vdash	—									
\vdash	 									
Remarks:				·	·		·			

- 1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)
- 2. 1" PVC well at 12' below ground surface, screen 12'-2', riser from 2' to ground surface. Sand pack 12'-1', bentonite clay seal 1'-0.5', sand to grade, curb box cemented in place

LOG OF BORING LS-23

PROJECT:	Lunt Silversmith					LOCATION	Greenfield, MA	PROJECT NO.	1753-03-01
DRILLING CON		FOREMAN David				DATE STARTED		DATE FINISHED	
Seaboard Er DRILLING EQUI	nvironmental Drilling			HELPER	Jeff	2/21/2012 COMPLETION DE	EPTH 12'	2/21/2012 GROUND SURFACE E	I E\/
Geoprobe						COMIT LE HON DE	_1 111 12	DATUM	-∟∟ √ .
TYPE BIT			SIZE 8	TYPE OF CO	ORE BARREL	No. of samples co	llected 3	UNI	DIST.
CASING		WEIGHT			Innon	TIME	 \	FIRST	COMPL. HR.
CASING HAMM. SAMPLER:		WEIGHT			DROP	WATER LEVEL (F BORING		4.5' d St between #14 and P	lumbing Supply
SAMPLER	Split Spoon	WEIGHT		DROP		LOCATION	Coult side of Renwood	d of between #14 and 1	difficing Supply
HAMMER						ENGINEER/GEO	Brin Thompson		
2			AMPLE					2011	
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	IN.	TYPE/ NO.	DESCRIPTION		FIELD MEASUREMENTS	SOIL DESCRIPTION	WELL CONSTRUCTION
			40/48	S-1	Top 4": Brown, fine to medium SANI	and SILT, dry	0.0	TOPSOIL	
$\vdash \setminus$ /				0'-4'	(TOPSOIL)		(0'-2')	FILL	1
F \/					Next 6": CONCRETE Bottom 30": Brown, fine to medium 5	AND little cilt	0.0 (2'-4')		2'
$\vdash X$					moist	, ittle siit,	(2-4)		_
F / \	_								
	 		38/48	S-2	Top 6": Brown, fine to medium SANI) little silt moist	0.0	4.5'	
F\ /	<u> </u>		30/40	3-2 4'-8'	Bottom 32": Brown to gray, CLAYEY		(4'-6')	CLAYEY SILT	1
$\vdash \setminus \land$					sand, wet at 4.5'	,	0.0		
$\sqsubset Y$							(6'-8')		
\vdash \land									
\vdash / \									
/ /	 								
			30/48		Gray, CLAYEY SILT, little fine sand,	wet	0.0		
$\Gamma \setminus I$				8'-12'			(8'-10')		
F \/							0.0		
$\vdash X$	10						(10'-12')		
 									
<u> </u>	<u> </u>							+	
					End of exploration a	: 12'			
<u> </u>									
\vdash	15								
\vdash	-								
L									
\vdash	—								
\vdash									
\vdash	20								
\vdash	—								
	_								
\vdash									
H	-								
	<u> </u>								
	25								
L									
\vdash	<u> </u>								
\vdash	—								
F									
Remarks:	•	•						•	•

- 1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)
- 2. 1" PVC well at 12' below ground surface, screen 12'-2', riser from 2' to ground surface. Sand pack 12'-1', bentonite clay seal 1'-0.5', sand to grade, curb box cemented in place

LOG OF BORING LS-24

PROJECT:	Lunt Silversmith					LOCATION	Greenfield, MA	PROJECT NO.	1753-03-01
DRILLING CONT	FRACTOR vironmental Drilling			FOREMAN HELPER	David Jeff	DATE STARTED 2/21/2012		DATE FINISHED 2/21/2012	
DRILLING EQUI				TILLFLIX	Jeli	COMPLETION DE	PTH 12'	GROUND SURFACE E	LEV.
Geoprobe								DATUM	
TYPE BIT			SIZE 8	RTYPE OF C	ORE BARREL	No. of samples co	llected 3	UND	
CASING HAMM.		WEIGHT			DROP	WATER LEVEL (F	-T)	FIRST 6'	COMPL. HR.
SAMPLER:						BORING		ner dumpster area, west	of building
SAMPLER	Split Spoon	WEIGHT		DROP		LOCATION		•	
HAMMER	1		AMPLE	-0	1	ENGINEER/GEOI	. Brin Thompson		
SAMPLES	DEPTH	PENETR.		TYPE/	DESCRIPTION		FIELD	SOIL	WELL
J	FT.	RESIST.	IN.	NO.			MEASUREMENTS	DESCRIPTION	CONSTRUCTION
	 	BL/6 IN.	24/48	S-1	Brown, fine to medium SAND and S	LT trace fine	24.1	FILL	
+ \ /	—		24/40	0'-4'	gravel, moist	LT, trace line	(0'-4')		1'
$\vdash \setminus \nearrow$							(-)		
\sqsubset \lor									2'
F /\									
\vdash / \									
「	<u>├</u>								
			36/48		Top 18": Brown, fine to medium SAN	ID and SILT,		4.5'	J 🗐 📗
$\vdash \setminus$ /	5			4'-8'	trace fine gravel, moist	AND 005	(4'-6')	SAND AND SILT	
F \/	-				Bottom 18": Brown, fine to medium 5 wet at 6'	MIND, SUITE SIII,	54.6 (6'-8')		
\vdash X							(- 0)		
- / \	<u> </u>								
\vdash	}			S-3	Top 24": Brown, fine to medium SAN	ID some silt wet	17.9		
上 \ /				8'-12'	Bottom 24": Gray, CLAYEY SILT, tra		(8'-10')		
							1.2		
$\vdash X$	10						(10'-12')	10'	
F /\	<u> </u>							CLAYEY SILT	
\vdash / \									
									
_					End of exploration as	: 12'			
<u> </u>									
<u> </u>	15								
F	-								
	<u> </u>								
F	-								
F									
L_									
\vdash	<u> </u>								
\vdash									
F									
	25								
\vdash	<u> </u>								
Remarks:					<u>I</u>				<u> </u>

- 1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)
- 2. 1" PVC well at 12' below ground surface, screen 12'-2', riser from 2' to ground surface. Sand pack 12'-1', bentonite clay seal 1'-0.5', sand to grade, curb box cemented in place

LOG OF BORING LS-27

PROJECT: DRILLING CONTI	Lunt Silversmi	th		-		Dovid	LOCATION	Greenfield, MA	PROJECT NO.	1753-03-01
Seaboard Env		illing			FOREMAN HELPER	Jeff	DATE STARTED 2/21/2012		DATE FINISHED 2/21/2012	
RILLING EQUIP	MENT	19					COMPLETION DE	PTH 12'	GROUND SURFACE E	LEV.
Geoprobe	5340DT			0175 ^	TVDE 05 0	ODE DADDEL	No. of accounts	1	DATUM	NOT
YPE BIT ASING				SIZE 8	ITPE OF C	ORE BARREL	No. of samples co	lected 3	UNI FIRST	OIST. COMPL. HR
CASING HAMM.			WEIGHT			DROP	WATER LEVEL (F		6.5'	
SAMPLER:							BORING		ing, south side of AST lo	ocation
SAMPLER		Ī	WEIGHT	I	DROP		LOCATION	D : T	Ι	T
HAMMER			S	AMPLE	S		ENGINEER/GEOL	Brin Thompson		
SAMPLES	DEPTH FT.	ŀ	PENETR. RESIST.		TYPE/ NO.	DESCRIPTION		FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS
$\overline{}$			BL/6 IN.	30/48	S-1	Brown, fine to medium SAND and S	IIT trace(-)	10.7	FILL	
· \ /					0'-4'	fine gravel, moist		(0'-2')		
_ \								0.4		
– X I								(2'-4')		
· /\										
-/ \										
/\										
$\setminus \overline{}$				30/48	S-2	Top 18": Brown, fine to medium SAN	ID and SILT, trace (0.3		
- \ /	5				4'-8'	fine gravel, moist to wet at 6.5' Bottom 12": Gray, CLAYEY SILT, tra	oo fine cand wat	(4'-6') 0.4		
\/						DOMOIT 12 . Gray, CLATET SILT, III	ioc iiie saliu, wel	(6'-8')		
- X I	<u> </u>							(- - /		
_ / \									7' ↓	1
/ \									CLAYEY SILT	
\leftarrow				18/48	S-3	Gray, CLAYEY SILT, trace fine sand	l wet	0.0		
				13/40	8'-12'	July, OE TET OILT, Have line Salic	.,	(8'-10')		
- \								0.0		
_	10							(10'-12')		
. /\										
- / \l										
· / \									↓	
						End of exploration a	t 12'		· ·	
_										
_										
	15									
_										
_										
_										
<u> </u>										
_										
_		-								
_										
_										
· 										
_	25									
_										
				1						

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

_		~-		
Page	1	OF	1	

PROJECT:	Lunt Silversmith					LOCATION	Greenfield, MA	PROJECT NO.	1753-03-01
DRILLING CONT	RACTOR			FOREMAN	David	DATE STARTED	*	DATE FINISHED	
Seaboard En	vironmental Drilling			HELPER	Jeff	2/21/2012		2/21/2012	
DRILLING EQUIP	PMENT					COMPLETION DE	PTH 2'	GROUND SURFACE EL	_EV.
	Chovol							DATUM	
TYPE BIT CASING CASING HAMM. SAMPLER: SAMPLER			SIZE 8	TYPE OF CO	ORE BARREL	No. of samples co	llected 2	UNDI	
CASING						TIME		FIRST	COMPL. HR.
CASING HAMM.		WEIGHT			DROP	WATER LEVEL (F	·T.)	NE	
SAMPLER:							Directly beneath two cy	clones, south side of bui	lding
SAMPLER		WEIGHT		DROP		LOCATION			
HAMMER						ENGINEER/GEOL	Brin Thompson		
			AMPLE						
SAMPLES	DEPTH	PENETR.	REC.	TYPE/	DESCRIPTION		FIELD	SOIL	REMARKS
	FT.	RESIST.	IN.	NO.			MEASUREMENTS	DESCRIPTION	
		BL/6 IN.							
L > ✓				S-1	Dark brown, fine to medium sand, so	me silt, little coarse	0.0	FILL	
	<u> </u>			0'-1'	sand, dry				
L > ✓					Brown, fine to medium sand, little silt	dry	0.0		
				1'-2'				2' ♦	
_					End exploration at 2'				
<u></u>	L								
L									
	5								
		1							
_		1							
		1							
_									
		1							
	10								
_									
		i							
_									
-									
		1							
-	15								
	13	1							
H									
 									
H									
 									
H									
 									
H									
		1							
	20								
	—— ²⁰ —	1							
_	<u> </u>								
 		1							
 -	<u> </u>								
 		1							
L	<u> </u>								
<u> </u>									
L	<u> </u>								
_									
<u> </u>	25								
L	<u></u>								
<u></u>									
L	<u> </u>]							
<u> </u>		<u> </u>	L I	<u> </u>			<u></u>		
Domorko:									-

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

LOG OF BORING LS-30

Page 1 OF 1

DDO IFOT:	Lorent Cilcon and adult					LOCATION	One sufficient MA	IDDO IECT NO	4752.00.04
PROJECT: DRILLING CONT	Lunt Silversmith		- 1	FOREMAN	David	LOCATION DATE STARTED	Greenfield, MA	PROJECT NO. DATE FINISHED	1753-03-01
	vironmental Drilling			HELPER	Jeff	2/21/2012		2/21/2012	
DRILLING EQUI	PMENT					COMPLETION DE	EPTH 12'	GROUND SURFACE EI	LEV.
Geoprobe	5340DT							DATUM	
TYPE BIT CASING			SIZE 8	TYPE OF C	ORE BARREL	No. of samples co	llected 3	UND	
CASING HAMM.		WEIGHT	l		DROP	WATER LEVEL (F	-T \	FIRST 6'	COMPL. HR.
SAMPLER:		WEIGHT			DROI			erty, near loading dock	l l
SAMPLER	Split Spoon	WEIGHT		DROP		LOCATION		,,	
HAMMER						ENGINEER/GEOL	. Brin Thompson		
			SAMPLE						
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTION		FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS
	_		28/48	S-1	Brown, fine to medium SAND, some	silt, little fine	0.0	FILL	
$\vdash \setminus$ /		4		0'-4'	gravel, trace debris (brick), dry		(0'-2')		
F \/	<u> </u>						0.0		
— X							(2'-4')		
- /\								4' ↓	
\vdash / \		1						SAND AND	
								SILT	
			14/48	S-2	Brown to gray, fine to medium SAND	, some silt, wet	4.6		
$\vdash \setminus$ /	5	4		4'-8'	at 6' (petroleum odor)		(4'-8')		
F //	<u> </u>								
⊢ X	<u> </u>	-							
/ / \	—							8'	
\vdash / \								CLAYEY SILT	
F / \								1	
	<u> </u>		36/48	S-3	Gray, CLAYEY SILT, trace fine sand	, wet	0.0		
$\square \setminus$				8'-12'			(8'-10')		
L \ /							0.0		
⊢ X	10	4					(10'-12')		
F /\									
\vdash / \		_							
F / \	_							↓ ↓	
					End of exploration at	12'		,	
-	15								
	— ¹³ —	1							
Ĺ]							
L									
—	<u> </u>	4							
H	—								
		1							
F	20								
<u></u>	<u> </u>								
—	<u> </u>								
—		1							
H	—								
<u> </u>	— —	1							
		1							
	25								
		1							
<u> </u>	<u> </u>								
L	<u> </u>								
F	<u> </u>	1							
Remarks:	1	<u> </u>			ı			l .	L
romains.			-1-1-00		ation datastas (DID) safassas adda base				

1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

APPENDIX D LABORATORY REPORTS

APPENDIX E GROUNDWATER SAMPLING LOGS

PROJECT:	PROJECT: Lant Silve south PROJECT NO.: 1753-07-01										
CITY/STATE:	Come L	11 44			I NOJECI	1 NO.: 17	53-07-01				
SAMPLING PERSO	ONNEL:	R 1									
DATE: 1/19/12			ATHER:	Sunny							
V			· · · · · · · · · · · · · · · · · · ·	Junny		· · · · · · · · · · · · · · · · · · ·					
SAMPLE DESIGN	ATION <u>:</u>	LS-10)		SAMPLING	SFOLIEM	CE No.				
PURGE METHOD:	BAILE	R/PUMP-I	OW or HIG	H FLOW ? /	OTITOD	BEQUEIN	LE IVO.	<u>o+ 2</u>			
SAMPLE METHOD): BAILE	R PERISTA	ALTIC PUM	OTHER							
WELL DATA											
MEASURING POIN	<i>T</i> : Top	of: (PVC)/ Cu	rh hox / Pro	tective nine	/ Oth						
Vertical distance fro	m measu	ring point to s	round surfa	iceive pipe	Other:	1.	/4 4				
WELL DIAMETER:	2	' DE	PTH TO WA	1000	,		ve / below g				
STANDING WATER	(ft):		α	T WOLLD	= (aal).	TOTAL D	EPTH: 11	.84			
CONDITION OF WARE	ELL: Go	od Dunlocked	1 / standing	water in anni	- (gai):						
RECHARGE RATE:	Slow /d	Moderate / Fa	st	water in aimi	nus / omer:						
WATER DATA											
APPEARANCE: C1	2027 1	.									
APPEARANCE: CIO		$\frac{dy}{dt} = \frac{1}{2} \frac{dt}{dt}$	en / floating	g product / of	ther:						
	oleum / C	tner (describ	e):	·····							
Time	1148	1153	1158	1203	17.0	7.7		_ ¬			
Depth to water	5.24	5.45	5.57	5.74	1708	1213	1218	-			
Cum. purge volume	_	_		-				-			
pH (S.U.)	6,09	6.08	5.9H	597				1			
Cond'y (umho/cm)	281	282	279	276			 	1			
Temp (°C)	5.63	5.99	6.52	6.68				1			
Turbidity		-					 	4			
Dissolved O_2 (mg/l)	8.98	645	6.68	6.48				-			
ORP/other:	232.8	144.8	193.9	183.3			 	4			
SAMPLE BOTTLES]			
	<u>:</u>	FILTRATIO	ON?: YES (1	If yes, po	ore size: 0.45	micron / oth	er	_			
ANALYSIS		BOTTLES	(number &	& type)	PRESER	RVATIVE	(type&amo	unt)			
OPH		1 4 4000,					(o) produint	, direct			
UPM		3 × 40 m	L VOA		HĆ	1					
VOLS 3 × 40 mL VOAS MCI											
					, , , , , , , , , , , , , , , , , , , ,	····					
											
NOTES AND OBSE	PWATIO	NC.									
2 LA 2	NYAIIU	149:									
Sampled @ 1203											

PROJECT:	Lyn	 	Silver smith			PROJECT NO.: 1753-03-01			
CITY/STATE:	Gree	26.1	d MA			_ = ===================================	173	3.07-01	
SAMPLING PERSO	NNEL	:: B.	Thomaso-						
DATE: $\frac{1}{19/12}$			WEA	THER: 5	innu				
SAMPLE DESIGNA	ATIO.	N:	MW-		.3	SAMPI INC	G SEQUENC	TE No. 7	
PURGE METHOD:	BAII	ER /	PUMP - LO	OF HIGH	H FLOW ?/	OTHER	DEQUENC	L 100. <u>L</u>	* 2
SAMPLE METHOD	: BAl	LER	PERISTA	LTIC PUM	OTHER			· · · · · · · · · · · · · · · · · · ·	
WELL DATA									
MEASURING POIN Vertical distance from	1. I(op or	a noint to	to box / Prot	tective pipe /	Other:			
WELL DIAMETER:	ical distance from measuring point to ground surface: LL DIAMETER: 2" DEPTH TO WATER: 2.							re / below gr	
STANDING WATER	(ft)·		DEI		.68	_ TOTAL DI	EPTH:	94	
CONDITION OF WI	5 <i>U)</i> . E <i>LL:</i> (Good	1) unlocked	/ standing x	E VOLUME	= (gal):			
RECHARGE RATE:	Slow	M	oderate / Fas	st	raici ili aiill	nus / Omer:	no PUL	cap	
WATER DATA APPEARANCE: CL	20 r V 2		A/ ~214 / 1		. .				
APPEARANCE: Clo ODOR. None Petr	oleum	r/Otl	her (describe	en / floating e):	g product / ot	her:		·	
Time	124	2_	1247	1252	1257	1302	1307	1312	- 1
Depth to water	39	3	4.15	4.32	4.54	4.76	150 7	1.51 2	1
Cum. purge volume	_			_	_		 	_	1
pH (S.U.)	59		6.25	6.25	6.21	6.06			1
Cond'y (umho/cm)	1150	>	1159	1159	1145	1133			1
Temp (°C)	8.6	,0	8.27	7.95	7.95	7.98	_	_	1
Turbidity			_	_	 		1===		1
Dissolved O ₂ (mg/l)	340	3	3.00	2.46	2.3 2	2.25			1
ORP/other:	137.	5	110.7	103.6	102.2		-		1
SAMPLE BOTTLES	<u>:</u>		FILTRATI	ON?: YES ()	NO If yes, p		micron / oth	er	1
ANALYSIS				(number &			RVATIVE		 mr4)
VOCo by 8260			3 × 40			HEI	NIALIVE	(rypexamo	unt)
RURA & Metals			1× 500				- 1 at L	KIW	
Total Cymide			1 × 500 1		ishi	Nach	CAS 1	NIPO	
V						1.0011			
VOTES AND OBSE	DYZZ	TIO	JG.			•			
NOTES AND OBSE	KVA	1101	NS:						
Sampled @ 1302									

PROJECT:	Lynt	Silve smith			PROJECT NO.: 1753-07-01			
CITY/STATE:	Gu t	11 4. 4			I NOJEC	1 NO.: 17	53-07-01	
SAMPLING PERSO	ONNEL: 18	1 1 200						
DATE: 1/19/12		WEA		unny	·			
SAMPLE DESIGN	ATION:			<u> </u>				
PURGE METHOD:	BAILER	/PLIMP_L		II DI OIX o	SAMPLIN(G SEQUEN	CE No. 3	of 5
SAMPLE METHOD	BAILER	PERISTA	LTIC PLIM	H FLOW ? /	OTHER			
WELL DATA			-211010101	y / Olliek				
MEASURING POIN	T: Top of	E (PVC)/Cu	th han / Du					
Vertical distance fro	m measuri	ng noint to	TO DOX / Pro	tective pipe	Other:			
WELL DIAMETER:	Z"	ng point to g DF	grouna surja PTH TO WA			abo	ve / below g	grade
STANDING WATER	(ft):		TI 170 T T T	2.06	_TOTAL D	EPTH: 7	85	
CONDITION OF WI	ELL: Goo	d/unlocked	/ standing -	E VOLUME	g = (gal):			
RECHARGE RATE:	Slow (M	oderate / Fa	st	vater in aim	uius otner:	no annul	in, cap p	- hited dum
WATER DATA							. ,/	allad repart
APPEARANCE: Cle	ear /clouds	X / ah a						
ODOR: (None) Petro	oleum / Ot	her (describ	en / floating	g product / or	ther:			
Time		ilei (describi	e):			·		
Depth to water	1325	1330	1335	1340	1345	שענו	1355	7
Cum. purge volume	3.26	3.83	4.15	4.46	-		1	-
pH (S.U.)	2 2	<u></u>			_	_		1
Cond'y (umho/cm)	7.13	6.17	5.93	5.91	_	_	_	1
Temp (°C)	1008	992	980	943	_	_	_	1
Turbidity	4,83	4.47	4,69	4.26		_	_	1
Dissolved O ₂ (mg/l)	<u> </u>			_	_	_		1
	8.95	8.72	8.56	8.19	-		_	1
	96.8	119.9	125,0	124.8		_	_	1
SAMPLE BOTTLES:		FILTRATIO	ON?: YES	If yes, po	ore size: 0.45	micron / oth	ier	뒤
ANALYSIS			(number &				(type&amo	
VOCS by 8260		4 40 m			HCI	CVAIIVE	(type&amo	ount)
lepp & metals	- 1	x coo		iiti	1	1.()	<u> </u>	
Total Lyanide				lastic	Nach	las tr	KILL	
-					10,700	,		
NOTES AND OBSER	RVATION	g.						
Sampled @ 1340								

PROJECT:	Lu	n‡	Silver sm. 4L			PROJECT NO.: 1753-02-01			
CITY/STATE:	G		11 44 4			PROJEC	1 NO.: 17	53-07-01	
SAMPLING PERSO	ONNE	L. R	7						
DATE: 1/19/12	1.1.2	ZB		THER:					
1.1			TI LA	Inek:					
SAMPLE DESIGN	VATIO	DN:	LS-20			CAMDI INI	araran	OT N	
PURGE METHOD	BAI	LER	PUMP - L	OW or HIGH	H FLOW 2		J SEQUEN	CE No. 4	of 5
SAMPLE METHOL): BA	ILER	PERISTA	LTIC PUM) / OTHER	OTHER			
WELL DATA					, only				
MEASURING POIN	<i>√T</i> : т	on of	E PVC/Cm	ih ham (D)					
Vertical distance fro	om me	asuri:	na noint to a	O DOX / Prot	ective pipe	Other:			
WELL DIAMETER:			ve / below g	grade					
STANDING WATER	2(ft)·	2"		PTH TO WA		3.40	_TOTAL D)EPTH: <u>9</u>	.63
CONDITION OF W	\widetilde{ELL} :	Good	Dunlocked	/ mt n m .1 !	E VOLUME	= (gal):			
RECHARGE RATE:	Slov	w/(M	oderate / Fas	r standing v	vater in ann	ulus / other:			
		7							
WATER DATA APPEADANCE									
APPEARANCE: CI	earyc	loudy	silty / she	en / floating	product / o	ther:			
ODOR. None / Pen	oleun	17 Otl	ner (describe	e):					
Time	1353	5	1400	1905	1410		1	T	=
Depth to water	3.5	76	3.68	3.78	3.84	1415	1420	1425	4
Cum. purge volume	_				3.01				-
pH (S.U.)	5.3	3	5,37	5.28	\$.32	 		+	-
Cond'y (umho/cm)	230	<u>ح</u>	231	228	720	 			-{
Temp (°C)	€.3	C	8.40	8.23	8.12			+	
Turbidity		_							-
Dissolved O_2 (mg/l)	8.9	9	6.18	6.24	6.05	 		+	
ORP/other:	176,	O	132.5	127.0	176.1				1
SAMPLE BOTTLES	,								_
	≟		FILTRATIO	N?: YES (N	If yes, po	ore size: 0.45	micron / oth	ıer	
ANALYSIS			BOTTLES					(type&amo	
VOC, by 8260	5	3	N YU m		<u> </u>	HCI	KIAIIVE	(сурежащо	ount)
EPH		2	" 1000 ~		~	HCI	· · · · · · · · · · · · · · · · · · ·		
RIPA & Metals		ı	x 500 m			1101	_	***************************************	
Total Lynnde			× 5700 m			Naor	1		
*				1001	<u> </u>	10001	1		
NOTES AND OBCOM	DIT 4 ~								
NOTES AND OBSE	KVAT	TON	S:						
Samled @ 1410									

Lynt	Silve Smith			PROTEC	T NO	~~
Gua E	.13 44 4			I ROJEC	CT NO.: <u>17</u>	55-07-01
ONNEL:	B. Thomasa.			· · · · · · · · · · · · · · · · · · ·		
	WEA					
17 4 000 00 -			unn's		· · · · · · · · · · · · · · · · · · ·	
VATION:	LS-19			SAMPLIN	G SEOUEN	CE No.
BAILER	R/PUMP - LA	OW or HIG	H FLOW?/		2	<u>3 G</u>
): BAILE	R (PERISTA	LTIC PUM	OTHER			

VT: Top o	of: (PVC)/ Cu	rb box / Pro	tective nine	/ Othor		
om measur	ing point to g	round surfa	ice.	Outer:	1.	/1 1
WELL DIAMETER: 2" DEPTH TO WATER:					abo	ve / below grad
R(ft):		011			$-^{10IALD}$	EPTH: 11.8
ELL: (Go	od Junlocked	/ standing	water in anni	ilus / other		·
: Slow/	Moderate Fas	st	acor in anni	alus / OMET.		
iear /cloud roleum / O	ly)/ silty / she ther (describe	en / floating e):	g product / of	ther:		
1501	1806	1511	1516	1,021	Time	
4.69	4.71			1321	186	1531
	_			 		+==
5.80	5.98	6.03	6.06	_		
1 / 4 1.	1					L
694	712	711	713	_	_	
6.89	6.74	7.09	7.01		-	
6.89			T		_	
6.89			T		-	
6.89	6.74	7.09	7.01			
6.89	0.80	7.09	7.01		-	er
6.89	6.74 0.80 134.0 FILTRATIO	7.09 0.63 134.1 DN?: YES (1	7.01 - 0.67 174.3 179.3	ore size: 0.45	micron / oth	
6.89 1.91 1.93.5 S:	0.80	7.09 0.63 134.1 0N?: YES (1	7.01 	ore size: 0.45	micron / oth	er(type&amour
6.89 1.91 1.93.5 S:	6.74 0.82 134.0 FILTRATIC BOTTLES	7.09 0.63 134.1 0N?: YES (1	7.01 	ore size: 0.45	micron / oth	
6.89 1.91 1.93.5 S:	6.74 0.82 134.0 FILTRATIC BOTTLES	7.09 0.63 134.1 0N?: YES (1	7.01 	ore size: 0.45	micron / oth	
6.89 1.91 1.93.5 S:	6.74 0.82 134.0 FILTRATIC BOTTLES	7.09 0.63 134.1 0N?: YES (1	7.01 	ore size: 0.45	micron / oth	
6.89 1.91 1.93.5 S:	6.74 0.82 134.0 FILTRATIC BOTTLES	7.09 0.63 134.1 0N?: YES (1	7.01 	ore size: 0.45	micron / oth	
6.89 1.91 1.93.5 S:	6.74 O.Sa) 134.0 FILTRATIC BOTTLES 3 4 40 m	7.09 0.63 134.1 0N?: YES (1	7.01 	ore size: 0.45	micron / oth	
6.89 1.91 1.93.5 S:	6.74 O.Sa) 134.0 FILTRATIC BOTTLES 3 4 40 m	7.09 0.63 134.1 0N?: YES (1	7.01 	ore size: 0.45	micron / oth	
	NATION: SAILER OF BAILER OF TOP COM measur CELL: CONTROL OF Slow (Control of the control of the	WEAN NATION: BAILER / PUMP - LA D: BAILER PERISTA NT: Top of: PVO/ Cur om measuring point to g Z'' DE R(ft): ELL: Good Junlocked Slow / Moderate / Fast lear / Cloudy / silty / she roleum / Other (describe 1521 (206 4.4 4.7 4.7 1	WEATHER: WEATHER: WEATHER: WEATHER: WEATHER: WEATHER: WEATHER: WEATHER: WEATHER: SUMMARY WEATHER: WEATHER	WEATHER: Suncy WEATHER: Suncy WEATHER: WE	WEATHER: SAMPLIN SAMPLIN BAILER / QUMP - LOW or HIGH FLOW? / OTHER D: BAILER PERISTALTIC PUMP / OTHER WT: Top of: PVO/ Curb box / Protective pipe / Other: om measuring point to ground surface: 2" DEPTH TO WATER: 4.53 R(ft): ONE VOLUME = (gal): ELL: Good unlocked / standing water in annulus / other: Slow / Moderate / Fast lear / Cloudy / silty / sheen / floating product / other: roleum / Other (describe): 1521	WEATHER: SAMPLING SEQUENCE: BAILER PERISTALTIC PUMP / OTHER O: BAILER PERISTALTIC PUMP / OTHER OVI: Top of: PVO/ Curb box / Protective pipe / Other: about measuring point to ground surface: about measuring point to ground surface: about Moderate / Sampling water in annulus / other: Slow / Moderate / Fast Dear / Cloudy / silty / sheen / floating product / other: roleum / Other (describe): 1521

PROJECT:	Lunt	+ Silver	smitl			PROJE(CTNO.: 17	73-03-01		
CITY/STATE:		enfield 1				_				
SAMPLING PERSO	NNEL:	<u>B.</u>	Warendo							
DATE: 2/28/12	<u> </u>	И	EATHER:	P	Sunny	40°F.	Windy			
SAMPLE DESIGNA	ATION				9.		J			
PURGE METHOD:				IICII I	EL OWA /	SAMPLIN	G SEQUENC	$CE No. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	<i>x</i> 5	
SAMPLE METHOD	· BAIL	FR (PERIS	TAI TIC DI	IIGH I	FLUW ?/	OTHER				
	. 10,1110	DIC!	TALTICI	OIVII)	OTHER					
WELL DATA	TT TD	. Ga	~							
MEASURING POIN	1: 1op	of: EVC	Curb box /]	Protec	tive pipe /	Other:				
Vertical distance from WELL DIAMETER:	m measi							e / below gr	ade	
STANDING WATER	(ft):		DEPTH TO			1.60	TOTAL D	<i>EPTH:</i>		
CONDITION OF WI	09. ELL: G	ood/unloc	ked / standis	ONE I	VOLUME	= (gal):	·			
RECHARGE RATE:	Slow A	Moderate	reu / Stallull / Fact	ng wai	ici in annu	ius / other:				
	0.017	- Violotato /								
WATER DATA	7/K+									
APPEARANCE: Cle	ear// clou	idy (silty)	sheen / float	ing pr	oduct / otl	ner:	·····			
ODOR: None / Petr	oleum /	Other (desc	cribe):						_	
Time	0930	093	5 0940	0	0945	0950	0955	1006	1	
Depth to water	_			•						
Cum. purge volume	~ 1/8 sc1	~1450	(1 ~3/8 5	1	1/2 541			_		
pH (S.U.)	5.60		3 5.5	9	5.58		_	_		
Cond'y (umho/cm)	179.2	156.	8 150.	7	147.3		_	_		
Temp (°C)	7.3	8.6	6.7		6.6	_		_		
Turbidity						<i></i> ,				
Dissolved O ₂ (mg/l)	1.68	1.73	3 1.77	2	1.60	-	_	_		
ORP/other:							_	_		
SAMPLE BOTTLES	<u>:</u>	FILTRA	ATION?: YES	S / ((0)) If yes no	ore size: 0.4	5 micron / othe	r	1	
ANALYSIS			ES (numbe							
VOC. 12 8260		3 x 40	A LA CHUINDE				ERVATIVE	(type&amoi	int)	
7 0200		((ML	VUA	2	HCI				
										
NOTEC AND OR										
NOTES AND OBSE										
Sampled C	0945	>								

PROJECT:	Luni	+ Silversm.	# L		PROJEC.	TNO.: 17	^7 -d2. Al	
CITY/STATE:	Gree	enfield MA				170	3-01-01	
SAMPLING PERSO	ONNEL:	B. W	laceada					·
DATE: 2/28/17	L	WEA	THER: P.	Sugar	40°F,	(a) d.		· · · · · · · · · · · · · · · · · · ·
, ,				-NUUJ.		winzy		
SAMPLE DESIGN			2		SAMPLINO	G SEQUENC	E No. Z	145
PURGE METHOD:	BAILE	R/PUMP-LO)Wor HIGH	HFLOW?/	OTHER			
SAMPLE METHOL): BAIL	ER PERISTA	LTIC PUM	OTHER				
<u>WELL DATA</u>								
MEASURING POIN	<i>T:</i> Top	of: (VC) Cur	b box / Prot	ective nine /	Other:	· · · · · · · · · · · · · · · · · · ·		
Vertical distance from	m measi	uring point to g	round surfa	ce:	<u></u>	ahox	re / below gra	ada .
WELL DIAMETER:	4		PTH TO WA		.66	TOTAL DI		aue
STANDING WATER	R(ft):		ONE	T VOLUME	= (gal):		<i>л</i> 111	
CONDITION OF W	ELL: G	ood/unlocked	/ standing w	vater in annu	lus / other:			
R ECHARGE RATE:	Slow (Moderate / Fas	st					
WATER DATA			•		· · · · · · · · · · · · · · · · · · ·			
APPEARANCE: CI	ear / clos	ıdı (gilti) ahad	m / flooding					
ODOR: (None) Peti	roleum /	Other (describe	ar / Hoating	product / oth	ner:			
			<u>!</u>					•
Time	1005	10,0	1015	1020	1025	1030	1035	
Depth to water	<u> </u>							
Cum. purge volume	-1/8 sal		23/8 551	~ 1/2 5 1	_	_	_	
pH(S.U.)	6.48	6,50	6,53	6.53	_		_	
Cond'y (umho/cm)	137.3		130.2	126.8		, : -	_	
Temp (°C)	6.6	6.4	6.1	6.1	_	_	_	
Turbidity			_		_	_	1	
Dissolved O ₂ (mg/l)	6.01	5.98	5.99	5.82	-	_		
ORP/other:	_	_	_	_	-		_	
SAMPLE BOTTLES	<u>}:</u>	FILTRATIO)N?: YES / (If yes, po	re size: 0.45	micron / othe	r	:
ANALYSIS		BOTTLES				RVATIVE (t)]
VOC, 3, 8260		3 × 40 0	nh Vul			CI	урсжиноц	1111)
			,	7.3		<u> </u>		
							·	
70770								
NOTES AND OBSE	RVATIO	ONS:						
Sampled C	1020							
•								

PROJECT:	Lunt	Silvesmi	# [PROJECT NO.: 1753-03-01				
CITY/STATE:		Rela, MA						
SAMPLING PERSO		B. n	larenda					
DATE: 2/28/12		WEA	THER: P.	Sunny	40°F,	Windu		
SAMPLE DESIGN	ATION:	LS-23				•	~~~~	
PURGE METHOD:				I EL OW 2 /	SAMPLIN(i SEQUEN(CE No. 3 👨	45
SAMPLE METHOD	BAILER	PERISTA	LTIC PLIM	A/OTHED	OTHER	-		
WELL DATA			DITO I ONI) OTHER				
MEASURING POIN	Ton of	€ GOO	.i. i. (15) .					
MEASURING POIN Vertical distance fro	n maasurii	ever cur	ro box / Prot	ective pipe /	Other:			
WELL DIAMETER:	m measurir 1 ``	g poini io g iad				ve / below gra	ıde	
STANDING WATER			PTH TO WA		.81	_TOTAL D	EPTH:	
CONDITION OF WI	ELL: Good)/ unlocked	/ standing w	VOLUME	= (gai): lus / other:	· · · · · · · · · · · · · · · · · · ·		
RE CHARGE RATE:	Slow / Me	oderate / Fas	st	atti ili aililu	ius / omei.			
WATER DATA								
APPEARANCE: Cl	ear / cloudy	(silty) shee	en / floating 1	product / otl	ner:			
ODOR (None) Petr	oleum / Otl	ner (describe	e):			· · · · · · · · · · · · · · · · · · ·		
Time	1036	1041	1.54/			T		
Depth to water	_	1011	1046	1051	1056	110)	1106	
Cum. purge volume	~ 48541	-1/241	~3/4 941					
pH(S.U.)	7.01	6.91	6.89		-	 	 	1
Cond'y (umho/cm)	606	288	548		-			
Temp (°C)	8.0	8.8	9.3	_	_			
T urbidity								
Dissolved O ₂ (mg/l)	2.70	2.91	2.93	_	_			
ORP/other:	_		-	_			-	
SAMPLE BOTTLES	: :	FILTRATIO	ON?: YES / ((i) If yes, no	ore size: 0.45	micron / other		
ANALYSIS			(number &				type&amou	<u></u>
VOC. 3, 8260	3	* 40	nh Vuf			ICI	(typeccamou	111)
			N- VVI	13				
								
					···			
NOTES AND OBSE	RVATION	· C.						لـــــــــــــــــــــــــــــــــــــ
A	RVATION	:						
S well		dry @ 1	1048, let	1	Δ .1 s	A		
/ Voc 1	INC	V4 4 C	IVIX GT	Neharoc	x then	Sampled		

GROUNDWATER SAMPLING RECORD

PROJECT:	Lunt	Silversm	11		PROJECT NO.: 1763-03-01					
CITY/STATE:	Green	Beld MA				-				
SAMPLING PERSO		<u>B.</u> u	arenda							
DATE: 2/28/13	<u> </u>	_ WEA	THER: P.	Sunny	40°F,	Windy				
SAMPLE DESIGN		LS-24			SΑΜΡΙ ΙΝΙ	G SEQUENC	TENO 4	1-		
PURGE METHOD:	BAILER /	PUMP - LO	OW or HIGH	IFLOW?/	OTHER		E NO.	3F 3		
SAMPLE METHOD	: BAILER	PERISTA	LTIC PUMI)/OTHER						
<u>WELL DATA</u>										
MEASURING POIN	T: Top of:	(VC) Cur	b box / Prot	ective nine /	Other:					
Vertical distance fro	m measurin	g point to g	round surfac	ce:		ahor	zo / bolovy or			
W ELL DIAMETER:	1.,		PTH TO WA		8.40		ve / below gr	ade		
STANDING WATER(ft): ONE VOLUME = (gal): CONDITION OF WELL: Good/unlocked / standing water in annulus / other:										
CONDITION OF WI	ELL: Good	/ unlocked	/ standing w	ater in annul	us / other:					
RECHARGE RATE:	Slow /(Mo	oderate / Fas	st			-				
WATER DATA										
APPEARANCE: Cle	ear / cloudy	(silty/shee	en / floating i	nroduct / oth	er.					
ODOR: None Petr	oleum / Oth	er (describe):	product / oth						
Time	1110	1115	1120	1125	1130	1135	T lukes	- 1		
Depth to water	_	-	-	1100	1120	1135	1140	1		
Cum. purge volume	~1/8 sal	- 1/4 501	23/8 561	-1/2 591						
pH(S.U.)	7.20	7.21	7.22	7.22		_	_			
Cond'y (umho/cm)	304	297	303	308	<u> </u>		_			
Temp (°C)	11.2	12.5	12.6	12.5	-		_			
Turbidity			-		-					
Dissolved O ₂ (mg/l)	1.55	1.24	1.17	ار (_		-			
ORP/other:		_	_	-		-	-1			
<u>SAMPLE BOTTLES</u>	·	FILTRATIC	N?: YES / (If yes, por	re size: 0.45	micron / othe	r	J		
ANALYSIS			(number &			RVATIVE (unt)		
VOC, by 8260						101	ty peccamo			
EPH	1	YIL	^				······································			
TAL-23)	x suo ,		D'.	As Is (b) filly)					
NOTES AND ORSE	DVATEON	~						الحسي		

C 1125

PROJECT:	Lunt	Silversmi	H		PROJEC	TNO.: De	7-02-01
CITY/STATE:		Reld MA			_		3.03.01
SAMPLING PERSON	VNEL:	B. W	acenda				
DATE: 2/28/12	· · · · · · · · · · · · · · · · · · ·	WEAT	THER: P.	Sunny	40°F,	Windu	
SAMPLE DESIGNA	TION:	MW-6		•		•	Y77.3.1
PURGE METHOD:			WACHIGH	I FI OW 2 /	<i>SAMPLIN</i> (OTUED	3 SEQUENC	ENo. 5 of S
SAMPLE METHOD:	BAILER	PERISTAI	TIC PUM	ነ I LOW የ / ነ ን/ OTHER	JIHEK		
WELL DATA				, , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·		
MEASURING POINT	Top o	f: (VC) Curl	h hox / Prote	ective nine /	Other		
Vertical distance from	n measuri	ng point to g	ound surfac	po:	Other.	ahari	ro / hala 1-
WELL DIAMETER:	2 "	DEP	TH TO WA		2.97	TOTAL DI	e / below grade
STANDING WATER	ft):		ONE	VOLUME	= (aal).		ZI III.
CONDITION OF WE	LL: Goo	/ unlocked	standing w	ater in annul	us / other:		
RECHARGE RATE:(Slow/M	loderate / Fas	t				
WATER DATA					· · · · · · · · · · · · · · · · · · ·		
APPEARANCE: Clea	ar / cloud	v (silty)/ shee	n / floating r	araduct / oth	or.		
ODOR: None Petro	leum / O	ther (describe));	noduct / oth	.CI.		
Time		1	T	ī	j —	T	
Depth to water	_	 		N_	1		
Cum. purge volume	-	1		1-1-		,	
pH(S.U.)		PF		100	1 0		
Cond'y (umho/cm)			,				
Γemp (°C)			10				
Furbidity)				
Dissolved O ₂ (mg/l)							
ORP/other:							
SAMPLE BOTTLES:		FILTRATIO	N?: YES / N	(i) If yes, no	re size: 0.45	micron / othe	r
ANALYSIS		BOTTLES					type&amount)
VOC, 3, 8260		2 x 40 m				ici 1ci	type&amount)
<u> </u>			,				
NOTES AND OBSER	VATION	JS•					
Sampled C	. 7 2 3 1 1 1 1 1	15)					
	2 cal	lons of	water f	in nell	before	·	Ja San 1.1
		arametus			rethre	it run d	by. Sampled

PROJECT:	Lunt S	silwsmith			PROJECT NO.: 1753-03-01				
CITY/STATE:	Greenhe	Id. MA							
SAMPLING PERSON	VNEL:	B. War	enda						
DATE: 3/15/12		WEAT	HER: ? . <i>(</i>	Floody, Y	0°F, W	dy			
SAMPLE DESIGNA	-	LS-19			<i>SAMPLING</i>	SEQUENC.	ENo. lo	FI	
PURGE METHOD:					THER				
SAMPLE METHOD:	BAILER /	PERISTAL	TIC PUMP	/ OTHER					
WELL DATA									
MEASURING POIN	<i>T</i> : Top of:	PVC) Curb	box / Prote	ctive pipe /	Other:				
Vertical distance from	m measuring		abov	e / below gra	ade				
WELL DIAMETER: DEPTH TO WATER: 4.						TOTAL DE	EPTH:		
STANDING WATER	· ·			VOLUME =		-			
CONDITION OF WE	ELL: Good	/ unlocked /	standing wa	ater in annul	us / other:				
RECHARGE RATE:	Slow Mo	derate/ Fast							
WATER DATA									
APPEARANCE: Cle	ear / oloudy	/ silty / sheer	n / floating r	product / oth	er.				
ODOR None Petr								_	
Time	1035	1040	1045	1050	1055	1100	1100		
Depth to water	4.45	4.54	4.61	4.69	1		-		
Cum. purge volume	~ 1/8 SAILUL	~ 47 56110-	~1/2 scillum	-3/2 galler	_	_			
pH (S.U.)	6.80	6.38	6.13	6.02		_			
Cond'y (umho/cm)	659	704	705	708	_		-		
Temp (°C)	8.66	8.36	8.11	8.00	(_	_		
Turbidity							_		
Dissolved O ₂ (mg/l)	1.17	0.75	0.63	0.60	_	_			
ORP/other:	109.6	108.5	107.3	59.6	_	-	-		
SAMPLE BOTTLES	<u>S:</u>	FILTRATIC	NES/N	O. If yes, po	re size 0.45	micron/ othe	er	-	
ANALYSIS		BOTTLES	(number &	type)	PRESE	RVATIVE	(type&amoi	unt)	
RCEA 8	i	× 500 0	nh Plas	itic		NO3			
						·			
								<u> </u>	
NOTES AND OBSE	RVATION	IS:							
_		seld 614	rad tim	· Onical	l joh	Smal.	``		
- Sungre C	1,00	KW DIM	1 TO) / " / "	- Joures	17110	-ungna	100		

APPENDIX F UTILITY LINE MAPPING AND OUTFALL SAMPLE INFORMATION	

MassDEP - Bureau of Waste Site Cleanup MCP Numerical Ranking System Map: 500 feet & 0.5 Mile Radii

Site Name: Catch Basin Outfall Area Greenfield, MA RTN: NDB3 MA Coordinates: 108674mE, 926856mN

The information shown on this map is the best available at the date of printing. For more information please refer to www.mass.gov/mgis/massgis.htm

PHOTOGRAPHS OF OUTFALL SAMPLE LOCATIONS NEAR SOLON STREET, GREENFIELD, MA, TAKEN ON APRIL 11, 2012

Photo 1. Storm drain daylight location.

Photo 3. Sample location OF-1.

Photo 2. View of outfall and ponding area below.

Photo 4. Sample location OF-2.

	APPENDIX G	
SOIL GAS POINT C	CONSTRUCTION DETAILS	AND SAMPLING LOGS

Sample Soil Gas Probe Assembly

Sample Soil Gas Probe Assembly – Exploded View

Sample Soil Gas Probe Assembly – Partly Assembled

Sample Soil Gas Probe Assembly

Project Name: Location:					Project Number: _ [753-03-0]	Date: 1/26/12	
Weather:	Cloudy	tree neld, MA					
SAMPLE DESIGNATIO Lab Canister Numb Lab Regulator Numb	er: 0164			_	SAMPLING SEQUENCE NUMBER:	1 & 4	
SAMPLING DATA				-		ONAL DATA	
Time	1535	1545	1565	1605	Time Initial: _	1535	
He in Shroud (%)	49.8%			<u> </u>	Time Final:	1605	
		44.2%	39.7%	34.5%	Pressure Initial:	30"Hg	
He in line (ppm)	0.0	1225	1025	1350	Pressure Final:	() " Ha	
Ambient He (ppm)	Ö	0	O	υ υ	Temperature Initial:	SV°F	
PID in line (ppmv)	21.6	13.3	7.4	8.0	_	SO F	
Ambient PID (ppmv)	0.0	0.0	٥.٥	O. U	Temperature Final:		
-L4	C 1				Can size:	3 L	
Laboratory:	Spectour	^			Fill time:	30 minute	
analysis:	TO-15				(based on regulator setting)		
lotes and Observations ((Odors, etc):						
Describe soil gas point loc	ation: Adjaces	+ to de	grease, in	estern siele	of Luilding		
Soil gas point construction			V	ash strong	· · · · · · · · · · · · · · · · · · ·	1	
PID used: Theme	CUIR	~ 11.8 ev	-	, 5, 6	~ 100 lap ocinentia in	- place	

Project Name:		versmith			Project Number: 1783-03-01		Date: 1/26/12 Sampler: BMW
Location: Weather:	Greateld Chada						
		Rain					
SAMPLE DESIGNATION Lab Canister Number					SAMPLING SE	QUENCE NUMBER:	2 of 4
Lab Regulator Number			-	-			
				-		ADDIT	IONAL DATA
SAMPLING DATA							
Time	1615	1625	1/ 7	1/10 =		Time Initial: _	1615
He in Shroud (%)			1635	1675		Time Final:	1645
tie iii Siiroud (%)	39.5%	31.7%	24.4%	19.10%		Pressure Initial:	29 "Hg
He in line (ppm)	D	725	1075	850			
Ambient He (ppm)	0	U	U	Ö		Pressure Final:	O Hy
PID in line (ppmv)	0	1.9	1. 3	0.4		Temperature Initial:	SV° F
Ambient PID (ppmv)		0	(·)	•		Temperature Final:	SU "F
(ppinv)	0			0		Can size:	3 L
Laboratory:	Spectour	^				Fill time:	30 minute
Analysis:	TO-15					(based on regulator setting)	
Notes and Observations (C	Odors, etc):				 -		
Describe soil gas point locat							
Soil gas point construction/o	^	length = 6	t• 1.15	1. 4	and car		,
PID used: Theme	CUND	1		asher, stoppe,	PUC exer	cemented in -	place
ID about. INVINO		w/ 11.8 el	1 lamp				

Project Name:	Lunt Sil	versmith			Project Number: 1783-03-01	727/12		
Location:	brea field					Date: 426/12 Sampler: BMW		
Weather:	- Cloudy	Rain				Samples: BMW		
SAMPLE DESIGNATION Lab Canister Number	r: 1078				SAMPLING SEQUENCE NUMBER:	3 of 4		
Lab Regulator Number	1: 0054			-				
ADDITIONAL DATA								
SAMPLING DATA					Time Initial:			
Time	0840	0850	0900	00	Time faitiai:	0840		
II : CI	†		0 100	0910	Time Final:	0910		
He in Shroud (%)	40.6%	29.5%	18.5%	15.7%	Pressure Initial:	29" Ha		
He in line (ppm)	0	1825	750	800	Pressure Final:	0" Hu		
Ambient He (ppm)	0	ا ن	ن ن	S	Temperature Initial:	50 ° F		
PID in line (ppmv)	0,0	0.0	0.0	0.0				
Ambient PID (ppmv)	0,0	0.0	(), ()	υ. ప	Temperature Final:			
	C 1				Can size:	3 L		
Laboratory:	Spectman	^			_ Fill time:	30 minute		
Analysis: T0-15 (based on regulator setting)								
Notes and Observations (O	dors, etc):	between 1	0000 and	0900, accide	tally Lit Le shround is low			
Describe soil gas point locat	ion: Coadu		anea	, , ,	tally hit we shround in loc	ic of helium		
Soil gas point construction/depth: Cyper the E (") wash we shall be a characteristic of the construction								
PID used: Them S&UB w 11.8 eV lame								
		•						

Project Name: Location: Weather:	Lunt Silv Greateld Clandy	ersmith MA Rain		· · · · · · · · · · · · · · · · · · ·	Project Number: [783-03-0]	Date: 126/12 Sampler: EMW	
SAMPLE DESIGNATIO Lab Canister Numbe					SAMPLING SEQUENCE NUMBER:	y of 4	
Lab Regulator Numbe		>		- -			
SAMPLING DATA					<u>ADDITI</u>	ONAL DATA	
Time					Time Initial:	0914	
	0914	0924	0934	0944	Time Final:	0924	
He in Shroud (%)	45.3%	39.8%	33.3%	29.7%	Pressure Initial:	29 " Hu	
He in line (ppm)	٥	125	350	175	Pressure Final:	O" Ha	
Ambient He (ppm)	0	0	S	U	Temperature Initial:	IJ°F	
PID in line (ppmv)	0.0	0.0	0.0	0:0			
Ambient PID (ppmv)	0.0	0.0	00	0.0	Temperature Final:		
Laboratory:	Spectrum	Can size:	3 L 30 minute				
Analysis: T0-15 (based on regulator setting)							
Notes and Observations (Odors, etc):						
Describe soil gas point loca	ition: Office	area =	> southou	ester other	<u>-e</u>		
Soil gas point construction/	depth: Coppe	rtuling =	6" (Nush, Stopp	a, PVC cap comented in-	place	
PID used: Them	ે. શબ્હ	J 11.8 ev	lamp	11			